File size: 3,078 Bytes
873619f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11aed43
873619f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Open WebText Corpus"""


import os
import re
from itertools import chain

import datasets


_CITATION = """\
@misc{Gokaslan2019OpenWeb,
  title={OpenWebText Corpus},
  author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex},
  howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}},
  year={2019}
}
"""

_DESCRIPTION = """\
An open-source replication of the WebText dataset from OpenAI.

This is a small subset representing the first 10K records from the original dataset - created for testing.

The full 8M-record dataset is at https://huggingface.co/datasets/openwebtext
"""

_URL = "https://cdn-datasets.huggingface.co/nlp/datasets/openwebtext/openwebtext-10k.tar.xz"

class Openwebtext10k(datasets.GeneratorBasedBuilder):
    """The Open WebText dataset."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="plain_text",
            description="Plain text",
            version=datasets.Version("1.0.0"),
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({"text": datasets.Value("string")}),
            homepage="https://skylion007.github.io/OpenWebTextCorpus/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(_URL)
        owt_dir = os.path.join(dl_dir, "openwebtext-10k")
        subset_xzs = [
            os.path.join(owt_dir, file_name)
            for file_name in sorted(os.listdir(owt_dir))
            if file_name.endswith("xz")  # filter out ...xz.lock
        ]
        ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count() * 0.75))
        nested_txt_files = [
            [
                os.path.join(ex_dir, txt_file_name)
                for txt_file_name in sorted(os.listdir(ex_dir))
                if txt_file_name.endswith("txt")
            ]
            for ex_dir in ex_dirs
        ]
        txt_files = chain(*nested_txt_files)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files}),
        ]

    def _generate_examples(self, txt_files):
        """Yields examples."""
        for idx, filepath in enumerate(txt_files):
            with open(filepath, encoding="utf-8") as f:
                yield idx, {"text": re.sub("\n\n\n+", "\n\n", f.read()).strip()}