wmt14-en-de-pre-processed / wmt14-en-de-pre-processed.py
stas's picture
fix
f7a8f5c
raw
history blame
5.05 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" WMT16 English-Romanian Translation Data with further preprocessing """
from __future__ import absolute_import, division, print_function
import csv
import json
import os
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {WMT14 English-German Translation Data with further preprocessing},
authors={},
year={2016}
}
"""
_DESCRIPTION = "WMT14 English-German Translation Data with further preprocessing"
_HOMEPAGE = "http://www.statmt.org/wmt16/"
_LICENSE = ""
_DATA_URL = "https://cdn-datasets.huggingface.co/translation/wmt_en_de.tgz"
class Wmt14EnDePreProcessedConfig(datasets.BuilderConfig):
"""BuilderConfig for wmt16."""
def __init__(self, language_pair=(None, None), **kwargs):
"""BuilderConfig for wmt16
Args:
for the `datasets.features.text.TextEncoder` used for the features feature.
language_pair: pair of languages that will be used for translation. Should
contain 2-letter coded strings. First will be used at source and second
as target in supervised mode. For example: ("se", "en").
**kwargs: keyword arguments forwarded to super.
"""
name = "%s%s" % (language_pair[0], language_pair[1])
description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1])
super(Wmt14EnDePreProcessedConfig, self).__init__(
name=name,
description=description,
version=datasets.Version("1.1.0", ""),
**kwargs,
)
# Validate language pair.
assert "en" in language_pair, ("Config language pair must contain `en`, got: %s", language_pair)
source, target = language_pair
non_en = source if target == "en" else target
assert non_en in ["de"], ("Invalid non-en language in pair: %s", non_en)
self.language_pair = language_pair
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Wmt14EnDePreProcessed(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
Wmt14EnDePreProcessedConfig(
language_pair=("en", "de"),
),
]
def _info(self):
source, target = self.config.language_pair
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
),
supervised_keys=(source, target),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_DATA_URL)
source, target = self.config.language_pair
non_en = source if target == "en" else target
path_tmpl = "{dl_dir}/wmt_en_de/{split}.{type}"
files = {}
for split in ("train", "val", "test"):
files[split] = {
"source_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="source"),
"target_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="target"),
}
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["val"]),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]),
]
def _generate_examples(self, source_file, target_file):
"""This function returns the examples in the raw (text) form."""
with open(source_file, mode="rb") as f:
source_sentences = f.read().decode("utf8").split("\n")
with open(target_file, mode="rb") as f:
target_sentences = f.read().decode("utf8").split("\n")
assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
len(source_sentences),
len(target_sentences),
source_file,
target_file,
)
source, target = self.config.language_pair
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
result = {"translation": {source: l1, target: l2}}
# Make sure that both translations are non-empty.
if all(result.values()):
yield idx, result