# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ WMT16 English-Romanian Translation Data with further preprocessing """ from __future__ import absolute_import, division, print_function import csv import json import os import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {WMT14 English-German Translation Data with further preprocessing}, authors={}, year={2016} } """ _DESCRIPTION = "WMT14 English-German Translation Data with further preprocessing" _HOMEPAGE = "http://www.statmt.org/wmt16/" _LICENSE = "" _DATA_URL = "https://cdn-datasets.huggingface.co/translation/wmt_en_de.tgz" class Wmt14EnDePreProcessedConfig(datasets.BuilderConfig): """BuilderConfig for wmt16.""" def __init__(self, language_pair=(None, None), **kwargs): """BuilderConfig for wmt16 Args: for the `datasets.features.text.TextEncoder` used for the features feature. language_pair: pair of languages that will be used for translation. Should contain 2-letter coded strings. First will be used at source and second as target in supervised mode. For example: ("se", "en"). **kwargs: keyword arguments forwarded to super. """ name = "%s%s" % (language_pair[0], language_pair[1]) description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1]) super(Wmt14EnDePreProcessedConfig, self).__init__( name=name, description=description, version=datasets.Version("1.1.0", ""), **kwargs, ) # Validate language pair. assert "en" in language_pair, ("Config language pair must contain `en`, got: %s", language_pair) source, target = language_pair non_en = source if target == "en" else target assert non_en in ["de"], ("Invalid non-en language in pair: %s", non_en) self.language_pair = language_pair # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class Wmt14EnDePreProcessed(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ Wmt14EnDePreProcessedConfig( language_pair=("en", "de"), ), ] def _info(self): source, target = self.config.language_pair return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {"translation": datasets.features.Translation(languages=self.config.language_pair)} ), supervised_keys=(source, target), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_DATA_URL) source, target = self.config.language_pair non_en = source if target == "en" else target path_tmpl = "{dl_dir}/wmt_en_de/{split}.{type}" files = {} for split in ("train", "val", "test"): files[split] = { "source_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="source"), "target_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="target"), } return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["val"]), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]), ] def _generate_examples(self, source_file, target_file): """This function returns the examples in the raw (text) form.""" with open(source_file, encoding="utf-8") as f: source_sentences = f.read().split("\n") with open(target_file, encoding="utf-8") as f: target_sentences = f.read().split("\n") assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % ( len(source_sentences), len(target_sentences), source_file, target_file, ) source, target = self.config.language_pair for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): result = {"translation": {source: l1, target: l2}} # Make sure that both translations are non-empty. if all(result.values()): yield idx, result