File size: 5,042 Bytes
6b0ef43
 
 
 
 
 
 
 
 
 
 
 
 
 
f8eb0d7
6b0ef43
 
 
 
 
 
 
 
 
 
fb7e3a0
477f457
 
 
6b0ef43
 
 
f8eb0d7
6b0ef43
 
 
f8eb0d7
 
6b0ef43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" WMT16 English-Romanian Translation Data with further preprocessing """

from __future__ import absolute_import, division, print_function

import csv
import json
import os

import datasets

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {WMT16 English-Romanian Translation Data with further preprocessing},
authors={},
year={2016}
}
"""

_DESCRIPTION = "WMT16 English-Romanian Translation Data with further preprocessing"
_HOMEPAGE = "http://www.statmt.org/wmt16/"
_LICENSE = ""


_DATA_URL = "https://cdn-datasets.huggingface.co/translation/wmt_en_ro.tar.gz"


class Wmt16EnRoPreProcessedConfig(datasets.BuilderConfig):
    """BuilderConfig for wmt16."""

    def __init__(self, language_pair=(None, None), **kwargs):
        """BuilderConfig for wmt16

        Args:
            for the `datasets.features.text.TextEncoder` used for the features feature.
          language_pair: pair of languages that will be used for translation. Should
            contain 2-letter coded strings. First will be used at source and second
            as target in supervised mode. For example: ("se", "en").
          **kwargs: keyword arguments forwarded to super.
        """
        name = "%s%s" % (language_pair[0], language_pair[1])

        description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1])
        super(Wmt16EnRoPreProcessedConfig, self).__init__(
            name=name,
            description=description,
            version=datasets.Version("1.1.0", ""),
            **kwargs,
        )

        # Validate language pair.
        assert "en" in language_pair, ("Config language pair must contain `en`, got: %s", language_pair)
        source, target = language_pair
        non_en = source if target == "en" else target
        assert non_en in ["ro"], ("Invalid non-en language in pair: %s", non_en)

        self.language_pair = language_pair


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Wmt16EnRoPreProcessed(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        Wmt16EnRoPreProcessedConfig(
            language_pair=("en", "ro"),
        ),
    ]

    def _info(self):
        source, target = self.config.language_pair
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"translation": datasets.features.Translation(languages=self.config.language_pair)}
            ),
            supervised_keys=(source, target),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(_DATA_URL)

        source, target = self.config.language_pair
        non_en = source if target == "en" else target
        path_tmpl = "{dl_dir}/wmt_en_ro/{split}.{type}"

        files = {}
        for split in ("train", "val", "test"):
            files[split] = {
                "source_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="source"),
                "target_file": path_tmpl.format(dl_dir=dl_dir, split=split, type="target"),
            }

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["val"]),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]),
        ]

    def _generate_examples(self, source_file, target_file):
        """This function returns the examples in the raw (text) form."""
        with open(source_file, encoding="utf-8") as f:
            source_sentences = f.read().split("\n")
        with open(target_file, encoding="utf-8") as f:
            target_sentences = f.read().split("\n")

        assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % (
            len(source_sentences),
            len(target_sentences),
            source_file,
            target_file,
        )

        source, target = self.config.language_pair
        for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
            result = {"translation": {source: l1, target: l2}}
            # Make sure that both translations are non-empty.
            if all(result.values()):
                yield idx, result