--- dataset_info: features: - name: type_ dtype: string - name: block struct: - name: html_tag dtype: string - name: id dtype: string - name: order dtype: int64 - name: origin_type dtype: string - name: text struct: - name: embedding sequence: float64 - name: text dtype: string splits: - name: train num_bytes: 2266682282 num_examples: 260843 download_size: 2272790159 dataset_size: 2266682282 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "es_indexing_benchmark" Here is a code on how to pull and index this dataset to elasticsearch: ```python import datasets from tqdm import tqdm from src.store.es.search import ESBaseClient from src.store.es.model import ESNode ds = datasets.load_dataset('stellia/es_indexing_benchmark', split='train', ignore_verifications=True) client = ESBaseClient() index_name = "tmp_es_index" nodes = [] for row in tqdm(ds): esnode = ESNode(**row) esnode.meta.id = esnode.block.id nodes.append(esnode) client.delete_index(index_name) client.init_index(index_name) batch_size = 5000 for i in tqdm(range(0, len(nodes), batch_size)): client.save(index_name, nodes[i:i+batch_size], refresh=False) ``` Consider empty `~/.cache/huggingface/datasets` with `rm -rf ~/.cache/huggingface/datasets` if you have problem loading the dataset. ## Dataset for "Inference Benchmark" The dataset can also be used to test our api endpoints for inference models (retrieval, reranker, disambiguation model). To note that reranker and disambiguation model are finetuned on the same base model, meaning that it has slightly difference on inference time. However, the input length distributions differs for the two models. Here is the code to test on (in asyncio mode to be closer the real case): ```python import asyncio import datasets from tqdm import tqdm from src.utils.stage.stage_utils import AppConfig from src.api_client.embed_ import async_encode from src.api_client.disambig import async_disambig ds = datasets.load_dataset('stellia/es_indexing_benchmark', split='train', ignore_verifications=True) texts = [] for row in tqdm(ds): texts.append(row['text']) # extract pure text # Encoding with embed model: config = AppConfig(stage='dev') tasks = [] batch_size = 10 for i in range(0, len(texts), batch_size): tasks.append(asyncio.create_task(async_encode(texts[i: i+ batch_size]))) res = await asyncio.gather(*tasks) # Test on reranker/disambiguation tasks = [] num_rerank = 10 for i in range(0, len(texts), num_rerank+1): if len(texts[i+1: i+1+num_rerank]) == 0: break tasks.append( asyncio.create_task( async_disambig( texts[i], texts[i+1: i+1+num_rerank] ) ) ) res = await asyncio.gather(*tasks)