File size: 2,329 Bytes
0ef63ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import json
import pandas as pd
import re

def find_json_files(directory):
    json_files = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(".json"):
                json_files.append(os.path.join(root, file))
    return json_files

def clean_and_convert_data(json_data):
    if "text" in json_data:
        json_data["text"] = re.sub(r'[^\x00-\x7F]+', ' ', json_data["text"])
    
    int_fields = ["minkilled", "mincaptured", "minleaderskilled", "minfacilitatorskilled", "minleaderscaptured", "minfacilitatorscaptured"]
    bool_fields = ["killq", "captureq", "killcaptureraid", "airstrike", "noshotsfired", "dataprocessed", "flagged", "glossarymeta", "leaderq"]
    
    for field in int_fields:
        if field in json_data:
            json_data[field] = int(json_data[field])
    
    for field in bool_fields:
        if field in json_data:
            json_data[field] = json_data[field].lower() == "true"
    
    return json_data

def load_json_to_dataframe(json_files):
    data = []
    skipped_files = []
    for file in json_files:
        try:
            with open(file, "r") as f:
                json_data = json.load(f)
                json_data = clean_and_convert_data(json_data)
                data.append(json_data)
        except json.JSONDecodeError as e:
            print(f"Skipping file {file} due to JSON decoding error: {str(e)}")
            skipped_files.append(file)
    return pd.DataFrame(data), skipped_files

def main():
    # Directory containing the JSON files
    directory = "../original_json_data"
    
    # Find all JSON files recursively within the directory
    json_files = find_json_files(directory)
    
    # Load the contents of JSON files into a pandas DataFrame
    df, skipped_files = load_json_to_dataframe(json_files)
    
    # Export the DataFrame as a Parquet file
    output_file = "../exported_press_releases_2024.parquet"
    df.to_parquet(output_file)
    
    print(f"Successfully exported {len(json_files) - len(skipped_files)} JSON files to {output_file}")
    if skipped_files:
        print(f"Skipped {len(skipped_files)} files due to JSON decoding errors.")
        print("Skipped files:")
        for file in skipped_files:
            print(file)

if __name__ == "__main__":
    main()