Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
leondz commited on
Commit
2ffd27d
·
1 Parent(s): cc3335c

reader running for all langs

Browse files
Files changed (1) hide show
  1. offenseval_2020.py +37 -21
offenseval_2020.py CHANGED
@@ -26,12 +26,6 @@ logger = datasets.logging.get_logger(__name__)
26
 
27
 
28
  _CITATION = """\
29
- @inproceedings{zampieri-etal-2020-semeval,
30
- title = {{SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020)}},
31
- author = {Zampieri, Marcos and Nakov, Preslav and Rosenthal, Sara and Atanasova, Pepa and Karadzhov, Georgi and Mubarak, Hamdy and Derczynski, Leon and Pitenis, Zeses and \c{C}\"{o}ltekin, \c{C}a\u{g}r{\i}},
32
- booktitle = {Proceedings of SemEval},
33
- year = {2020}
34
- }
35
  """
36
 
37
  _DESCRIPTION = """\
@@ -87,8 +81,9 @@ class OffensEval2020(datasets.GeneratorBasedBuilder):
87
  features=datasets.Features(
88
  {
89
  "id": datasets.Value("string"),
 
90
  "text": datasets.Value("string"),
91
- "label": datasets.features.ClassLabel(
92
  names=[
93
  "OFF",
94
  "NOT",
@@ -104,21 +99,42 @@ class OffensEval2020(datasets.GeneratorBasedBuilder):
104
  def _split_generators(self, dl_manager):
105
  """Returns SplitGenerators."""
106
  train_text = dl_manager.download_and_extract(f"offenseval-{self.config.name}-training-v1.tsv")
107
- train_labels = dl_manager.download_and_extract(f"offenseval-{self.config.name}-labela-v1.tsv")
108
- test = dl_manager.download_and_extract(f"offenseval-{self.config.name}-test-v1.tsv")
109
 
110
  return [
111
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file}),
 
112
  ]
113
 
114
- def _generate_examples(self, filepath):
115
- logger.info("⏳ Generating examples from = %s", filepath)
116
- with open(filepath, encoding="utf-8") as f:
117
- OffensEval2020_reader = csv.DictReader(f, delimiter="\t", quotechar='"')
118
- guid = 0
119
- for instance in OffensEval2020_reader:
120
- instance["id"] = str(guid)
121
- for dropfield in ('post_id', 'search_keywords', 'itr', 'disagreement_solving', 'created_at', 'in_reply_to_status_id'):
122
- instance.pop(dropfield)
123
- yield guid, instance
124
- guid += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
 
28
  _CITATION = """\
 
 
 
 
 
 
29
  """
30
 
31
  _DESCRIPTION = """\
 
81
  features=datasets.Features(
82
  {
83
  "id": datasets.Value("string"),
84
+ "original_id": datasets.Value("string"),
85
  "text": datasets.Value("string"),
86
+ "subtask_a": datasets.features.ClassLabel(
87
  names=[
88
  "OFF",
89
  "NOT",
 
99
  def _split_generators(self, dl_manager):
100
  """Returns SplitGenerators."""
101
  train_text = dl_manager.download_and_extract(f"offenseval-{self.config.name}-training-v1.tsv")
102
+ test_labels = dl_manager.download_and_extract(f"offenseval-{self.config.name}-labela-v1.csv")
103
+ test_text = dl_manager.download_and_extract(f"offenseval-{self.config.name}-test-v1.tsv")
104
 
105
  return [
106
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": 'train'}),
107
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": {'labels':test_labels, 'text':test_text}, "split": 'test'}),
108
  ]
109
 
110
+ def _generate_examples(self, filepath, split=None):
111
+ if split == "train":
112
+ logger.info("⏳ Generating examples from = %s", filepath)
113
+ with open(filepath, encoding="utf-8") as f:
114
+ OffensEval2020_reader = csv.DictReader(f, delimiter="\t", quotechar='"')
115
+ guid = 0
116
+ for instance in OffensEval2020_reader:
117
+ instance["text"] = instance.pop("tweet")
118
+ instance["original_id"] = instance.pop("id")
119
+ instance["id"] = str(guid)
120
+ yield guid, instance
121
+ guid += 1
122
+ elif split == 'test':
123
+ logger.info("⏳ Generating examples from = %s", filepath['text'])
124
+ labeldict = {}
125
+ with open(filepath['labels']) as labels:
126
+ for line in labels:
127
+ line = line.strip().split(',')
128
+ if line:
129
+ labeldict[line[0]] = line[1]
130
+ with open(filepath['text']) as f:
131
+ OffensEval2020_reader = csv.DictReader(f, delimiter="\t", quotechar='"')
132
+ guid = 0
133
+ for instance in OffensEval2020_reader:
134
+ instance["text"] = instance.pop("tweet")
135
+ instance["original_id"] = instance.pop("id")
136
+ instance["id"] = str(guid)
137
+ instance["subtask_a"] = labeldict[instance["original_id"]]
138
+ yield guid, instance
139
+ guid += 1
140
+