File size: 2,045 Bytes
d40c2c8 90999b7 776b57b 90999b7 eca3555 ad43a85 776b57b 90999b7 776b57b 90999b7 282bf7a 776b57b fa5cb67 ad881b0 776b57b 90999b7 e167710 776b57b bea62f4 d40c2c8 032b161 477575c 8419e19 c6d0feb 67f9a1e 69d9e2c c6d0feb 1f1fdb0 477575c 83459d5 e398fde 477575c 69d9e2c ce50bb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: cc-by-sa-3.0
license_name: cc-by-sa
configs:
- config_name: en
data_files: en.json
default: true
- config_name: ca
data_files: ca.json
- config_name: de
data_files: de.json
- config_name: es
data_files: es.json
- config_name: el
data_files: el.json
- config_name: fa
data_files: fa.json
- config_name: fi
data_files: fi.json
- config_name: fr
data_files: fr.json
- config_name: it
data_files: it.json
- config_name: pl
data_files: pl.json
- config_name: pt
data_files: pt.json
- config_name: ru
data_files: ru.json
- config_name: sv
data_files: sv.json
- config_name: ua
data_files: ua.json
- config_name: zh
data_files: zh.json
---
#
by @mrfakename
~10k items from each language.
Only for training StyleTTS 2-related **open source** models.
processed using: https://huggingface.co/styletts2-community/data-preprocessing-scripts (styletts2 members only)
## License + Credits
Source data comes from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) and is licensed under CC-BY-SA 3.0. This dataset is licensed under CC-BY-SA 3.0.
## Processing
We utilized the following process to preprocess the dataset:
1. Download data from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) by language, selecting only the first Parquet file and naming it with the language code
2. Process using [Data Preprocessing Scripts (StyleTTS 2 Community members only)](https://huggingface.co/styletts2-community/data-preprocessing-scripts) and modify the code to work with the language
3. Script: Clean the text
4. Script: Remove ultra-short phrases
5. Script: Phonemize
6. Script: Save JSON
7. Upload dataset
## Note
East-asian languages are experimental and in beta. We do not distinguish between chinese traditional and simplified, the dataset consists mainly of simplified chinese. We recommend converting characters to simplified chinese during inference using a library such as `hanziconv` or `chinese-converter`. |