File size: 10,966 Bytes
c79c794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import os

from datasets import load_dataset, Audio, concatenate_datasets

# Set processors (optional)

num_proc = os.cpu_count()//2
num_dataloaders = os.cpu_count()//2

print(f"Cpu count: {os.cpu_count()}\nNum proc: {num_proc}\nNum dataloaders: {num_dataloaders}")

# Load datasets

train = load_dataset()
dev = load_dataset()
test = load_dataset()

import unicodedata
import re

def preprocess_text(batch):
  # Convert to lowercase
  batch['sentence'] = batch['sentence'].lower()

  # Normalize text
  batch['sentence'] = unicodedata.normalize('NFKC', batch['sentence'])
  batch['sentence'] = re.sub(r'[\’\ʻ\ʼ\ʽ\‘]', "'", batch['sentence'])

  # Remove punctuation and special characters
  batch['sentence'] = re.sub(r'[^\w\s\']', '', batch['sentence'])
  batch['sentence'] = re.sub(r'_', ' ', batch['sentence'])

  # Remove excessive whitespace
  batch['sentence'] = ' '.join(batch['sentence'].split())

  return batch

import librosa
import numpy as np

def get_lens(batch):
  try:
    audio_len = librosa.get_duration(y=batch['audio']['array'], sr=batch['audio']['sampling_rate'])
  except:
    del batch['audio']
    batch['audio'] = None
    audio_len = 0.0
    transcript_len = len(batch['sentence'])
    batch['audio_len'] = audio_len
    batch['transcript_len'] = transcript_len
    batch['len_ratio'] = float(audio_len)/float(transcript_len)
    batch['num_feature_vecs'] = int(np.round(audio_len * 1000 / 20))
    return batch
  
  transcript_len = len(batch['sentence'])

  batch['audio_len'] = audio_len
  batch['transcript_len'] = transcript_len
  batch['len_ratio'] = float(audio_len)/float(transcript_len)
  batch['num_feature_vecs'] = int(np.round(audio_len * 1000 / 20)) # seconds -> milliseconds, divide by 20 millisecond feature_win_step, round up to nearest int

  return batch

def data_checks(batch):
  audio_check = (batch['audio_len']>1.0 and batch['audio_len']<30.0)
  transcript_check = (batch['transcript_len']>10)

  input_output_ratio = float(batch['num_feature_vecs']) / float(batch['transcript_len'])
  input_output_ratio_check = input_output_ratio>1.0 # CTC algorithm assumes the input is not shorter than the ouput

  return (audio_check and transcript_check and input_output_ratio_check)

train = train.map(preprocess_text, num_proc=num_proc)
dev = dev.map(preprocess_text, num_proc=num_proc)

try:
  train = train.map(get_lens, num_proc=num_proc)
except:
  train = train.map(get_lens, num_proc=4)

try:
  dev = dev.map(get_lens, num_proc=num_proc)
except:
  dev = dev.map(get_lens, num_proc=4)

train = train.filter(data_checks, num_proc=num_proc)
dev = dev.filter(data_checks, num_proc=num_proc)

train_mean = np.mean(train['len_ratio'])
train_std = np.std(train['len_ratio'])

dev_mean = np.mean(dev['len_ratio'])
dev_std = np.std(dev['len_ratio'])

num_std_devs = 2
train = train.filter(lambda batch: (abs(batch['len_ratio'] - train_mean) - (num_std_devs * train_std)) <= 0, num_proc=num_proc)
dev = dev.filter(lambda batch: (abs(batch['len_ratio'] - dev_mean) - (num_std_devs * dev_std)) <= 0, num_proc=num_proc)

print(f"Train hours: {sum(train['audio_len'])/3600}\nDev hours: {sum(dev['audio_len'])/3600}")

train = train.remove_columns(['audio_len', 'transcript_len', 'len_ratio', 'num_feature_vecs'])
dev = dev.remove_columns(['audio_len', 'transcript_len', 'len_ratio', 'num_feature_vecs'])

alphabet = None # define the language's alphabet here e.g. " 'abcdefghijklmnorstuwyzƙƴɓɗ" for Hausa

alphabet = sorted(list(set(alphabet)))

vocab_dict = {v: k for k, v in enumerate(alphabet)}

vocab_dict["|"] = vocab_dict[" "]
del vocab_dict[" "]

vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)

import json

with open('vocab.json', 'w') as vocab_file:
  json.dump(vocab_dict, vocab_file)

from transformers import Wav2Vec2CTCTokenizer

tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("./", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")

from transformers import Wav2Vec2FeatureExtractor

feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True)

from transformers import Wav2Vec2Processor

processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)

def prepare_dataset(batch):
  audio = batch["audio"]
  batch["input_values"] = processor(audio=audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
  batch["input_length"] = len(batch["input_values"])
  batch["labels"] = processor(text=batch["sentence"]).input_ids
  return batch

try:
  train = train.map(prepare_dataset, remove_columns=train.column_names, num_proc=num_proc)
except:
  train = train.map(prepare_dataset, remove_columns=train.column_names, num_proc=4)

try:
  dev = dev.map(prepare_dataset, remove_columns=dev.column_names, num_proc=num_proc)
except:
  dev = dev.map(prepare_dataset, remove_columns=dev.column_names, num_proc=4)

import torch

from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union

@dataclass
class DataCollatorCTCWithPadding:
  """
  Data collator that will dynamically pad the inputs received.
  Args:
      processor (:class:`~transformers.Wav2Vec2Processor`)
          The processor used for proccessing the data.
      padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
          Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
          among:
          * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
            sequence if provided).
          * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
            maximum acceptable input length for the model if that argument is not provided.
          * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
            different lengths).
  """

  processor: Wav2Vec2Processor
  padding: Union[bool, str] = True

  def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
      # split inputs and labels since they have to be of different lengths and need
      # different padding methods
      input_features = [{"input_values": feature["input_values"]} for feature in features]
      label_features = [{"input_ids": feature["labels"]} for feature in features]

      batch = self.processor.pad(
          input_features=input_features,
          padding=self.padding,
          return_tensors="pt",
      )

      labels_batch = self.processor.pad(
          labels=label_features,
          padding=self.padding,
          return_tensors="pt",
      )

      # replace padding with -100 to ignore loss correctly
      labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

      batch["labels"] = labels

      return batch

data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)

"""# Model Training"""

import evaluate

wer_metric = evaluate.load("wer")
cer_metric = evaluate.load("cer")

import numpy as np

def compute_metrics(pred):
  pred_logits = pred.predictions
  pred_ids = np.argmax(pred_logits, axis=-1)

  pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id

  pred_str = processor.batch_decode(pred_ids)
  label_str = processor.batch_decode(pred.label_ids, group_tokens=False)

  wer = wer_metric.compute(predictions=pred_str, references=label_str)
  cer = cer_metric.compute(predictions=pred_str, references=label_str)

  return {"wer": wer, "cer": cer}

from transformers import Wav2Vec2ForCTC, TrainingArguments, Trainer, EarlyStoppingCallback

model_checkpoint = "facebook/wav2vec2-xls-r-300m"

model = Wav2Vec2ForCTC.from_pretrained(
    model_checkpoint,
    attention_dropout=0.0,
    hidden_dropout=0.0,
    feat_proj_dropout=0.0,
    mask_time_prob=0.05,
    layerdrop=0.0,
    ctc_loss_reduction="mean",
    pad_token_id=processor.tokenizer.pad_token_id,
    vocab_size=len(processor.tokenizer),
)

model.freeze_feature_encoder()

import wandb

dataset = None
language = None
sample_hours = None
version = None
batch_size = None
grad_acc = 1
eval_batch_size = batch_size//2
epochs = None
output_dir = f"{model_checkpoint.split('/')[-1]}-{dataset}-{language}-{sample_hours}hrs-{version}"

wandb.init(
    project="ASR Africa",
    entity="asr-africa-research-team",
    name=output_dir,
)

training_args = TrainingArguments(
  output_dir=output_dir,
  group_by_length=True,
  per_device_train_batch_size=batch_size,
  per_device_eval_batch_size=eval_batch_size,
  gradient_accumulation_steps=grad_acc,
  eval_strategy="epoch",
  logging_strategy="epoch",
  save_strategy="epoch",
  num_train_epochs=epochs,
  gradient_checkpointing=True,
  fp16=True,
  learning_rate=None,
  lr_scheduler_type='linear',
  warmup_ratio=None,
  save_total_limit=2,
  load_best_model_at_end=True,
  metric_for_best_model="wer",
  greater_is_better=False,
  optim='adamw_torch',
  push_to_hub=True,
  hub_model_id=f"asr-africa/{output_dir}",
  hub_private_repo=True,
  dataloader_num_workers=num_dataloaders,
)

trainer = Trainer(
  model=model,
  data_collator=data_collator,
  args=training_args,
  compute_metrics=compute_metrics,
  train_dataset=train,
  eval_dataset=dev,
  tokenizer=processor.feature_extractor,
  callbacks=[
    EarlyStoppingCallback(
      early_stopping_patience=10,
      early_stopping_threshold=1e-3
    )
  ],
)

trainer.train()

kwargs = {
    "dataset_tags": "",
    "dataset": "",
    "language": "",
    "model_name": "",
    "finetuned_from": model_checkpoint,
    "tasks": "automatic-speech-recognition",
}

trainer.push_to_hub(**kwargs)

other_test_dataset_1 = load_dataset()
other_test_dataset_2 = load_dataset()

test = concatenate_datasets([test, other_test_dataset_1, other_test_dataset_2]).shuffle(42)

test = test.map(preprocess_text, num_proc=num_proc)

try:
  test = test.map(get_lens, num_proc=num_proc)
except:
  test = test.map(get_lens, num_proc=4)

test = test.filter(data_checks, num_proc=num_proc)

test_mean = np.mean(test['len_ratio'])
test_std = np.std(test['len_ratio'])
num_std_devs = 2
test = test.filter(lambda batch: (abs(batch['len_ratio'] - test_mean) - (num_std_devs * test_std)) <= 0, num_proc=num_proc)

print(f"Test hours: {sum(test['audio_len'])/3600}")

test = test.remove_columns(['audio_len', 'transcript_len', 'len_ratio', 'num_feature_vecs'])

try:
  test = test.map(prepare_dataset, remove_columns=test.column_names, num_proc=num_proc)
except:
  test = test.map(prepare_dataset, remove_columns=test.column_names, num_proc=4)

results = trainer.evaluate(eval_dataset=test, metric_key_prefix="test")
print(results)

wandb.log(results)

train.cleanup_cache_files()
dev.cleanup_cache_files()
test.cleanup_cache_files()

torch.cuda.empty_cache()