Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
Libraries:
Datasets
pandas
License:
jordanpainter01 commited on
Commit
7695b6b
·
1 Parent(s): 9b2610b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -1
README.md CHANGED
@@ -1,3 +1,39 @@
1
  ---
2
- license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - Jordan Painter, Diptesh Kanojia
4
+ language:
5
+ - en
6
+ license:
7
+ - cc-by-sa-4.0
8
+ multilinguality:
9
+ - monolingual
10
+ pretty_name: 'Utilising Weak Supervision to create S3D: A Sarcasm Annotated Dataset'
11
+ size_categories:
12
+ - 100K<n<1M
13
+ source_datasets:
14
+ - original
15
+ task_categories:
16
+ - text-classification
17
  ---
18
+
19
+ ## Table of Contents
20
+ - [Dataset Description](#dataset-description)
21
+
22
+ -
23
+ # Utilising Weak Supervision to Create S3D: A Sarcasm Annotated Dataset
24
+ This is the repository for the S3D dataset published at EMNLP 2022. The dataset can help build sarcasm detection models.
25
+
26
+ # S3D-v2 Summary
27
+ The S3D-v2 dataset is our silver standard dataset of 100,000 tweets labelled for sarcasm using weak supervision by a majority voting system of fine-tuned sarcasm detection models. The models used are
28
+ our [roberta-large-finetuned-SARC-combined-DS](https://huggingface.co/surrey-nlp/roberta-large-finetuned-SARC-combined-DS), [bertweet-base-finetuned-SARC-DS](https://huggingface.co/surrey-nlp/bertweet-base-finetuned-SARC-DS)
29
+ and [bertweet-base-finetuned-SARC-combined-DS](https://huggingface.co/surrey-nlp/bertweet-base-finetuned-SARC-combined-DS).
30
+
31
+ S3D contains 13016 tweets labelled as sarcastic, and 86904 tweets labelled as not being sarcastic.
32
+ # Data Fields
33
+
34
+ - Label: A label to denote if a given tweet is sarcastic
35
+
36
+ # Data Splits
37
+ - Train: 70,000
38
+ - Valid: 15,000
39
+ - Test: 15,000