repo_name
stringclasses
1 value
pr_number
int64
4.12k
11.2k
pr_title
stringlengths
9
107
pr_description
stringlengths
107
5.48k
author
stringlengths
4
18
date_created
unknown
date_merged
unknown
previous_commit
stringlengths
40
40
pr_commit
stringlengths
40
40
query
stringlengths
118
5.52k
before_content
stringlengths
0
7.93M
after_content
stringlengths
0
7.93M
label
int64
-1
1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" * Author: Manuel Di Lullo (https://github.com/manueldilullo) * Description: Random graphs generator. Uses graphs represented with an adjacency list. URL: https://en.wikipedia.org/wiki/Random_graph """ import random def random_graph( vertices_number: int, probability: float, directed: bool = False ) -> dict: """ Generate a random graph @input: vertices_number (number of vertices), probability (probability that a generic edge (u,v) exists), directed (if True: graph will be a directed graph, otherwise it will be an undirected graph) @examples: >>> random.seed(1) >>> random_graph(4, 0.5) {0: [1], 1: [0, 2, 3], 2: [1, 3], 3: [1, 2]} >>> random.seed(1) >>> random_graph(4, 0.5, True) {0: [1], 1: [2, 3], 2: [3], 3: []} """ graph: dict = {i: [] for i in range(vertices_number)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(vertices_number) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(vertices_number): for j in range(i + 1, vertices_number): if random.random() < probability: graph[i].append(j) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(i) return graph def complete_graph(vertices_number: int) -> dict: """ Generate a complete graph with vertices_number vertices. @input: vertices_number (number of vertices), directed (False if the graph is undirected, True otherwise) @example: >>> print(complete_graph(3)) {0: [1, 2], 1: [0, 2], 2: [0, 1]} """ return { i: [j for j in range(vertices_number) if i != j] for i in range(vertices_number) } if __name__ == "__main__": import doctest doctest.testmod()
""" * Author: Manuel Di Lullo (https://github.com/manueldilullo) * Description: Random graphs generator. Uses graphs represented with an adjacency list. URL: https://en.wikipedia.org/wiki/Random_graph """ import random def random_graph( vertices_number: int, probability: float, directed: bool = False ) -> dict: """ Generate a random graph @input: vertices_number (number of vertices), probability (probability that a generic edge (u,v) exists), directed (if True: graph will be a directed graph, otherwise it will be an undirected graph) @examples: >>> random.seed(1) >>> random_graph(4, 0.5) {0: [1], 1: [0, 2, 3], 2: [1, 3], 3: [1, 2]} >>> random.seed(1) >>> random_graph(4, 0.5, True) {0: [1], 1: [2, 3], 2: [3], 3: []} """ graph: dict = {i: [] for i in range(vertices_number)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(vertices_number) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(vertices_number): for j in range(i + 1, vertices_number): if random.random() < probability: graph[i].append(j) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(i) return graph def complete_graph(vertices_number: int) -> dict: """ Generate a complete graph with vertices_number vertices. @input: vertices_number (number of vertices), directed (False if the graph is undirected, True otherwise) @example: >>> print(complete_graph(3)) {0: [1, 2], 1: [0, 2], 2: [0, 1]} """ return { i: [j for j in range(vertices_number) if i != j] for i in range(vertices_number) } if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def bin_exp_mod(a, n, b): """ >>> bin_exp_mod(3, 4, 5) 1 >>> bin_exp_mod(7, 13, 10) 7 """ # mod b assert not (b == 0), "This cannot accept modulo that is == 0" if n == 0: return 1 if n % 2 == 1: return (bin_exp_mod(a, n - 1, b) * a) % b r = bin_exp_mod(a, n / 2, b) return (r * r) % b if __name__ == "__main__": try: BASE = int(input("Enter Base : ").strip()) POWER = int(input("Enter Power : ").strip()) MODULO = int(input("Enter Modulo : ").strip()) except ValueError: print("Invalid literal for integer") print(bin_exp_mod(BASE, POWER, MODULO))
def bin_exp_mod(a, n, b): """ >>> bin_exp_mod(3, 4, 5) 1 >>> bin_exp_mod(7, 13, 10) 7 """ # mod b assert not (b == 0), "This cannot accept modulo that is == 0" if n == 0: return 1 if n % 2 == 1: return (bin_exp_mod(a, n - 1, b) * a) % b r = bin_exp_mod(a, n / 2, b) return (r * r) % b if __name__ == "__main__": try: BASE = int(input("Enter Base : ").strip()) POWER = int(input("Enter Power : ").strip()) MODULO = int(input("Enter Modulo : ").strip()) except ValueError: print("Invalid literal for integer") print(bin_exp_mod(BASE, POWER, MODULO))
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 203: https://projecteuler.net/problem=203 The binomial coefficients (n k) can be arranged in triangular form, Pascal's triangle, like this: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 ......... It can be seen that the first eight rows of Pascal's triangle contain twelve distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35. A positive integer n is called squarefree if no square of a prime divides n. Of the twelve distinct numbers in the first eight rows of Pascal's triangle, all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers in the first eight rows is 105. Find the sum of the distinct squarefree numbers in the first 51 rows of Pascal's triangle. References: - https://en.wikipedia.org/wiki/Pascal%27s_triangle """ from __future__ import annotations def get_pascal_triangle_unique_coefficients(depth: int) -> set[int]: """ Returns the unique coefficients of a Pascal's triangle of depth "depth". The coefficients of this triangle are symmetric. A further improvement to this method could be to calculate the coefficients once per level. Nonetheless, the current implementation is fast enough for the original problem. >>> get_pascal_triangle_unique_coefficients(1) {1} >>> get_pascal_triangle_unique_coefficients(2) {1} >>> get_pascal_triangle_unique_coefficients(3) {1, 2} >>> get_pascal_triangle_unique_coefficients(8) {1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21} """ coefficients = {1} previous_coefficients = [1] for _ in range(2, depth + 1): coefficients_begins_one = previous_coefficients + [0] coefficients_ends_one = [0] + previous_coefficients previous_coefficients = [] for x, y in zip(coefficients_begins_one, coefficients_ends_one): coefficients.add(x + y) previous_coefficients.append(x + y) return coefficients def get_squarefrees(unique_coefficients: set[int]) -> set[int]: """ Calculates the squarefree numbers inside unique_coefficients. Based on the definition of a non-squarefree number, then any non-squarefree n can be decomposed as n = p*p*r, where p is positive prime number and r is a positive integer. Under the previous formula, any coefficient that is lower than p*p is squarefree as r cannot be negative. On the contrary, if any r exists such that n = p*p*r, then the number is non-squarefree. >>> get_squarefrees({1}) {1} >>> get_squarefrees({1, 2}) {1, 2} >>> get_squarefrees({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}) {1, 2, 3, 5, 6, 7, 35, 10, 15, 21} """ non_squarefrees = set() for number in unique_coefficients: divisor = 2 copy_number = number while divisor**2 <= copy_number: multiplicity = 0 while copy_number % divisor == 0: copy_number //= divisor multiplicity += 1 if multiplicity >= 2: non_squarefrees.add(number) break divisor += 1 return unique_coefficients.difference(non_squarefrees) def solution(n: int = 51) -> int: """ Returns the sum of squarefrees for a given Pascal's Triangle of depth n. >>> solution(1) 1 >>> solution(8) 105 >>> solution(9) 175 """ unique_coefficients = get_pascal_triangle_unique_coefficients(n) squarefrees = get_squarefrees(unique_coefficients) return sum(squarefrees) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 203: https://projecteuler.net/problem=203 The binomial coefficients (n k) can be arranged in triangular form, Pascal's triangle, like this: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 ......... It can be seen that the first eight rows of Pascal's triangle contain twelve distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35. A positive integer n is called squarefree if no square of a prime divides n. Of the twelve distinct numbers in the first eight rows of Pascal's triangle, all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers in the first eight rows is 105. Find the sum of the distinct squarefree numbers in the first 51 rows of Pascal's triangle. References: - https://en.wikipedia.org/wiki/Pascal%27s_triangle """ from __future__ import annotations def get_pascal_triangle_unique_coefficients(depth: int) -> set[int]: """ Returns the unique coefficients of a Pascal's triangle of depth "depth". The coefficients of this triangle are symmetric. A further improvement to this method could be to calculate the coefficients once per level. Nonetheless, the current implementation is fast enough for the original problem. >>> get_pascal_triangle_unique_coefficients(1) {1} >>> get_pascal_triangle_unique_coefficients(2) {1} >>> get_pascal_triangle_unique_coefficients(3) {1, 2} >>> get_pascal_triangle_unique_coefficients(8) {1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21} """ coefficients = {1} previous_coefficients = [1] for _ in range(2, depth + 1): coefficients_begins_one = previous_coefficients + [0] coefficients_ends_one = [0] + previous_coefficients previous_coefficients = [] for x, y in zip(coefficients_begins_one, coefficients_ends_one): coefficients.add(x + y) previous_coefficients.append(x + y) return coefficients def get_squarefrees(unique_coefficients: set[int]) -> set[int]: """ Calculates the squarefree numbers inside unique_coefficients. Based on the definition of a non-squarefree number, then any non-squarefree n can be decomposed as n = p*p*r, where p is positive prime number and r is a positive integer. Under the previous formula, any coefficient that is lower than p*p is squarefree as r cannot be negative. On the contrary, if any r exists such that n = p*p*r, then the number is non-squarefree. >>> get_squarefrees({1}) {1} >>> get_squarefrees({1, 2}) {1, 2} >>> get_squarefrees({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}) {1, 2, 3, 5, 6, 7, 35, 10, 15, 21} """ non_squarefrees = set() for number in unique_coefficients: divisor = 2 copy_number = number while divisor**2 <= copy_number: multiplicity = 0 while copy_number % divisor == 0: copy_number //= divisor multiplicity += 1 if multiplicity >= 2: non_squarefrees.add(number) break divisor += 1 return unique_coefficients.difference(non_squarefrees) def solution(n: int = 51) -> int: """ Returns the sum of squarefrees for a given Pascal's Triangle of depth n. >>> solution(1) 1 >>> solution(8) 105 >>> solution(9) 175 """ unique_coefficients = get_pascal_triangle_unique_coefficients(n) squarefrees = get_squarefrees(unique_coefficients) return sum(squarefrees) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def max_subarray(nums: list[int]) -> int: """ Returns the subarray with maximum sum >>> max_subarray([1,2,3,4,-2]) 10 >>> max_subarray([-2,1,-3,4,-1,2,1,-5,4]) 6 """ curr_max = ans = nums[0] for i in range(1, len(nums)): if curr_max >= 0: curr_max = curr_max + nums[i] else: curr_max = nums[i] ans = max(curr_max, ans) return ans if __name__ == "__main__": n = int(input("Enter number of elements : ").strip()) array = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subarray(array))
def max_subarray(nums: list[int]) -> int: """ Returns the subarray with maximum sum >>> max_subarray([1,2,3,4,-2]) 10 >>> max_subarray([-2,1,-3,4,-1,2,1,-5,4]) 6 """ curr_max = ans = nums[0] for i in range(1, len(nums)): if curr_max >= 0: curr_max = curr_max + nums[i] else: curr_max = nums[i] ans = max(curr_max, ans) return ans if __name__ == "__main__": n = int(input("Enter number of elements : ").strip()) array = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subarray(array))
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Minimax helps to achieve maximum score in a game by checking all possible moves depth is current depth in game tree. nodeIndex is index of current node in scores[]. if move is of maximizer return true else false leaves of game tree is stored in scores[] height is maximum height of Game tree """ from __future__ import annotations import math def minimax( depth: int, node_index: int, is_max: bool, scores: list[int], height: float ) -> int: """ >>> import math >>> scores = [90, 23, 6, 33, 21, 65, 123, 34423] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 65 >>> minimax(-1, 0, True, scores, height) Traceback (most recent call last): ... ValueError: Depth cannot be less than 0 >>> minimax(0, 0, True, [], 2) Traceback (most recent call last): ... ValueError: Scores cannot be empty >>> scores = [3, 5, 2, 9, 12, 5, 23, 23] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 12 """ if depth < 0: raise ValueError("Depth cannot be less than 0") if len(scores) == 0: raise ValueError("Scores cannot be empty") if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, False, scores, height), minimax(depth + 1, node_index * 2 + 1, False, scores, height), ) return min( minimax(depth + 1, node_index * 2, True, scores, height), minimax(depth + 1, node_index * 2 + 1, True, scores, height), ) def main() -> None: scores = [90, 23, 6, 33, 21, 65, 123, 34423] height = math.log(len(scores), 2) print("Optimal value : ", end="") print(minimax(0, 0, True, scores, height)) if __name__ == "__main__": import doctest doctest.testmod() main()
""" Minimax helps to achieve maximum score in a game by checking all possible moves depth is current depth in game tree. nodeIndex is index of current node in scores[]. if move is of maximizer return true else false leaves of game tree is stored in scores[] height is maximum height of Game tree """ from __future__ import annotations import math def minimax( depth: int, node_index: int, is_max: bool, scores: list[int], height: float ) -> int: """ >>> import math >>> scores = [90, 23, 6, 33, 21, 65, 123, 34423] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 65 >>> minimax(-1, 0, True, scores, height) Traceback (most recent call last): ... ValueError: Depth cannot be less than 0 >>> minimax(0, 0, True, [], 2) Traceback (most recent call last): ... ValueError: Scores cannot be empty >>> scores = [3, 5, 2, 9, 12, 5, 23, 23] >>> height = math.log(len(scores), 2) >>> minimax(0, 0, True, scores, height) 12 """ if depth < 0: raise ValueError("Depth cannot be less than 0") if len(scores) == 0: raise ValueError("Scores cannot be empty") if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, False, scores, height), minimax(depth + 1, node_index * 2 + 1, False, scores, height), ) return min( minimax(depth + 1, node_index * 2, True, scores, height), minimax(depth + 1, node_index * 2 + 1, True, scores, height), ) def main() -> None: scores = [90, 23, 6, 33, 21, 65, 123, 34423] height = math.log(len(scores), 2) print("Optimal value : ", end="") print(minimax(0, 0, True, scores, height)) if __name__ == "__main__": import doctest doctest.testmod() main()
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations class Node: def __init__(self, data=None): self.data = data self.next = None def __repr__(self): """Returns a visual representation of the node and all its following nodes.""" string_rep = [] temp = self while temp: string_rep.append(f"{temp.data}") temp = temp.next return "->".join(string_rep) def make_linked_list(elements_list: list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List. >>> make_linked_list([]) Traceback (most recent call last): ... Exception: The Elements List is empty >>> make_linked_list([7]) 7 >>> make_linked_list(['abc']) abc >>> make_linked_list([7, 25]) 7->25 """ if not elements_list: raise Exception("The Elements List is empty") current = head = Node(elements_list[0]) for i in range(1, len(elements_list)): current.next = Node(elements_list[i]) current = current.next return head def print_reverse(head_node: Node) -> None: """Prints the elements of the given Linked List in reverse order >>> print_reverse([]) >>> linked_list = make_linked_list([69, 88, 73]) >>> print_reverse(linked_list) 73 88 69 """ if head_node is not None and isinstance(head_node, Node): print_reverse(head_node.next) print(head_node.data) def main(): from doctest import testmod testmod() linked_list = make_linked_list([14, 52, 14, 12, 43]) print("Linked List:") print(linked_list) print("Elements in Reverse:") print_reverse(linked_list) if __name__ == "__main__": main()
from __future__ import annotations class Node: def __init__(self, data=None): self.data = data self.next = None def __repr__(self): """Returns a visual representation of the node and all its following nodes.""" string_rep = [] temp = self while temp: string_rep.append(f"{temp.data}") temp = temp.next return "->".join(string_rep) def make_linked_list(elements_list: list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List. >>> make_linked_list([]) Traceback (most recent call last): ... Exception: The Elements List is empty >>> make_linked_list([7]) 7 >>> make_linked_list(['abc']) abc >>> make_linked_list([7, 25]) 7->25 """ if not elements_list: raise Exception("The Elements List is empty") current = head = Node(elements_list[0]) for i in range(1, len(elements_list)): current.next = Node(elements_list[i]) current = current.next return head def print_reverse(head_node: Node) -> None: """Prints the elements of the given Linked List in reverse order >>> print_reverse([]) >>> linked_list = make_linked_list([69, 88, 73]) >>> print_reverse(linked_list) 73 88 69 """ if head_node is not None and isinstance(head_node, Node): print_reverse(head_node.next) print(head_node.data) def main(): from doctest import testmod testmod() linked_list = make_linked_list([14, 52, 14, 12, 43]) print("Linked List:") print(linked_list) print("Elements in Reverse:") print_reverse(linked_list) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Author : Syed Faizan (3rd Year Student IIIT Pune) github : faizan2700 You are given a bitmask m and you want to efficiently iterate through all of its submasks. The mask s is submask of m if only bits that were included in bitmask are set """ from __future__ import annotations def list_of_submasks(mask: int) -> list[int]: """ Args: mask : number which shows mask ( always integer > 0, zero does not have any submasks ) Returns: all_submasks : the list of submasks of mask (mask s is called submask of mask m if only bits that were included in original mask are set Raises: AssertionError: mask not positive integer >>> list_of_submasks(15) [15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] >>> list_of_submasks(13) [13, 12, 9, 8, 5, 4, 1] >>> list_of_submasks(-7) # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: mask needs to be positive integer, your input -7 >>> list_of_submasks(0) # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: mask needs to be positive integer, your input 0 """ assert ( isinstance(mask, int) and mask > 0 ), f"mask needs to be positive integer, your input {mask}" """ first submask iterated will be mask itself then operation will be performed to get other submasks till we reach empty submask that is zero ( zero is not included in final submasks list ) """ all_submasks = [] submask = mask while submask: all_submasks.append(submask) submask = (submask - 1) & mask return all_submasks if __name__ == "__main__": import doctest doctest.testmod()
""" Author : Syed Faizan (3rd Year Student IIIT Pune) github : faizan2700 You are given a bitmask m and you want to efficiently iterate through all of its submasks. The mask s is submask of m if only bits that were included in bitmask are set """ from __future__ import annotations def list_of_submasks(mask: int) -> list[int]: """ Args: mask : number which shows mask ( always integer > 0, zero does not have any submasks ) Returns: all_submasks : the list of submasks of mask (mask s is called submask of mask m if only bits that were included in original mask are set Raises: AssertionError: mask not positive integer >>> list_of_submasks(15) [15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] >>> list_of_submasks(13) [13, 12, 9, 8, 5, 4, 1] >>> list_of_submasks(-7) # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: mask needs to be positive integer, your input -7 >>> list_of_submasks(0) # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: mask needs to be positive integer, your input 0 """ assert ( isinstance(mask, int) and mask > 0 ), f"mask needs to be positive integer, your input {mask}" """ first submask iterated will be mask itself then operation will be performed to get other submasks till we reach empty submask that is zero ( zero is not included in final submasks list ) """ all_submasks = [] submask = mask while submask: all_submasks.append(submask) submask = (submask - 1) & mask return all_submasks if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations import math class SegmentTree: def __init__(self, size: int) -> None: self.size = size # approximate the overall size of segment tree with given value self.segment_tree = [0 for i in range(0, 4 * size)] # create array to store lazy update self.lazy = [0 for i in range(0, 4 * size)] self.flag = [0 for i in range(0, 4 * size)] # flag for lazy update def left(self, idx: int) -> int: """ >>> segment_tree = SegmentTree(15) >>> segment_tree.left(1) 2 >>> segment_tree.left(2) 4 >>> segment_tree.left(12) 24 """ return idx * 2 def right(self, idx: int) -> int: """ >>> segment_tree = SegmentTree(15) >>> segment_tree.right(1) 3 >>> segment_tree.right(2) 5 >>> segment_tree.right(12) 25 """ return idx * 2 + 1 def build( self, idx: int, left_element: int, right_element: int, a: list[int] ) -> None: if left_element == right_element: self.segment_tree[idx] = a[left_element - 1] else: mid = (left_element + right_element) // 2 self.build(self.left(idx), left_element, mid, a) self.build(self.right(idx), mid + 1, right_element, a) self.segment_tree[idx] = max( self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)] ) def update( self, idx: int, left_element: int, right_element: int, a: int, b: int, val: int ) -> bool: """ update with O(lg n) (Normal segment tree without lazy update will take O(nlg n) for each update) update(1, 1, size, a, b, v) for update val v to [a,b] """ if self.flag[idx] is True: self.segment_tree[idx] = self.lazy[idx] self.flag[idx] = False if left_element != right_element: self.lazy[self.left(idx)] = self.lazy[idx] self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: self.segment_tree[idx] = val if left_element != right_element: self.lazy[self.left(idx)] = val self.lazy[self.right(idx)] = val self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True return True mid = (left_element + right_element) // 2 self.update(self.left(idx), left_element, mid, a, b, val) self.update(self.right(idx), mid + 1, right_element, a, b, val) self.segment_tree[idx] = max( self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)] ) return True # query with O(lg n) def query( self, idx: int, left_element: int, right_element: int, a: int, b: int ) -> int | float: """ query(1, 1, size, a, b) for query max of [a,b] >>> A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] >>> segment_tree = SegmentTree(15) >>> segment_tree.build(1, 1, 15, A) >>> segment_tree.query(1, 1, 15, 4, 6) 7 >>> segment_tree.query(1, 1, 15, 7, 11) 14 >>> segment_tree.query(1, 1, 15, 7, 12) 15 """ if self.flag[idx] is True: self.segment_tree[idx] = self.lazy[idx] self.flag[idx] = False if left_element != right_element: self.lazy[self.left(idx)] = self.lazy[idx] self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] mid = (left_element + right_element) // 2 q1 = self.query(self.left(idx), left_element, mid, a, b) q2 = self.query(self.right(idx), mid + 1, right_element, a, b) return max(q1, q2) def __str__(self) -> str: return str([self.query(1, 1, self.size, i, i) for i in range(1, self.size + 1)]) if __name__ == "__main__": A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] size = 15 segt = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
from __future__ import annotations import math class SegmentTree: def __init__(self, size: int) -> None: self.size = size # approximate the overall size of segment tree with given value self.segment_tree = [0 for i in range(0, 4 * size)] # create array to store lazy update self.lazy = [0 for i in range(0, 4 * size)] self.flag = [0 for i in range(0, 4 * size)] # flag for lazy update def left(self, idx: int) -> int: """ >>> segment_tree = SegmentTree(15) >>> segment_tree.left(1) 2 >>> segment_tree.left(2) 4 >>> segment_tree.left(12) 24 """ return idx * 2 def right(self, idx: int) -> int: """ >>> segment_tree = SegmentTree(15) >>> segment_tree.right(1) 3 >>> segment_tree.right(2) 5 >>> segment_tree.right(12) 25 """ return idx * 2 + 1 def build( self, idx: int, left_element: int, right_element: int, a: list[int] ) -> None: if left_element == right_element: self.segment_tree[idx] = a[left_element - 1] else: mid = (left_element + right_element) // 2 self.build(self.left(idx), left_element, mid, a) self.build(self.right(idx), mid + 1, right_element, a) self.segment_tree[idx] = max( self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)] ) def update( self, idx: int, left_element: int, right_element: int, a: int, b: int, val: int ) -> bool: """ update with O(lg n) (Normal segment tree without lazy update will take O(nlg n) for each update) update(1, 1, size, a, b, v) for update val v to [a,b] """ if self.flag[idx] is True: self.segment_tree[idx] = self.lazy[idx] self.flag[idx] = False if left_element != right_element: self.lazy[self.left(idx)] = self.lazy[idx] self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: self.segment_tree[idx] = val if left_element != right_element: self.lazy[self.left(idx)] = val self.lazy[self.right(idx)] = val self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True return True mid = (left_element + right_element) // 2 self.update(self.left(idx), left_element, mid, a, b, val) self.update(self.right(idx), mid + 1, right_element, a, b, val) self.segment_tree[idx] = max( self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)] ) return True # query with O(lg n) def query( self, idx: int, left_element: int, right_element: int, a: int, b: int ) -> int | float: """ query(1, 1, size, a, b) for query max of [a,b] >>> A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] >>> segment_tree = SegmentTree(15) >>> segment_tree.build(1, 1, 15, A) >>> segment_tree.query(1, 1, 15, 4, 6) 7 >>> segment_tree.query(1, 1, 15, 7, 11) 14 >>> segment_tree.query(1, 1, 15, 7, 12) 15 """ if self.flag[idx] is True: self.segment_tree[idx] = self.lazy[idx] self.flag[idx] = False if left_element != right_element: self.lazy[self.left(idx)] = self.lazy[idx] self.lazy[self.right(idx)] = self.lazy[idx] self.flag[self.left(idx)] = True self.flag[self.right(idx)] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] mid = (left_element + right_element) // 2 q1 = self.query(self.left(idx), left_element, mid, a, b) q2 = self.query(self.right(idx), mid + 1, right_element, a, b) return max(q1, q2) def __str__(self) -> str: return str([self.query(1, 1, self.size, i, i) for i in range(1, self.size + 1)]) if __name__ == "__main__": A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] size = 15 segt = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Build the quantum full adder (QFA) for any sum of two quantum registers and one carry in. This circuit is designed using the Qiskit framework. This experiment run in IBM Q simulator with 1000 shots. . References: https://www.quantum-inspire.com/kbase/full-adder/ """ import math import qiskit def quantum_full_adder( input_1: int = 1, input_2: int = 1, carry_in: int = 1 ) -> qiskit.result.counts.Counts: """ # >>> q_full_adder(inp_1, inp_2, cin) # the inputs can be 0/1 for qubits in define # values, or can be in a superposition of both # states with hadamard gate using the input value 2. # result for default values: {11: 1000} qr_0: ──■────■──────────────■── │ ┌─┴─┐ ┌─┴─┐ qr_1: ──■──┤ X ├──■────■──┤ X ├ │ └───┘ │ ┌─┴─┐└───┘ qr_2: ──┼─────────■──┤ X ├───── ┌─┴─┐ ┌─┴─┐└───┘ qr_3: ┤ X ├─────┤ X ├────────── └───┘ └───┘ cr: 2/═════════════════════════ Args: input_1: input 1 for the circuit. input_2: input 2 for the circuit. carry_in: carry in for the circuit. Returns: qiskit.result.counts.Counts: sum result counts. >>> quantum_full_adder(1, 1, 1) {'11': 1000} >>> quantum_full_adder(0, 0, 1) {'01': 1000} >>> quantum_full_adder(1, 0, 1) {'10': 1000} >>> quantum_full_adder(1, -4, 1) Traceback (most recent call last): ... ValueError: inputs must be positive. >>> quantum_full_adder('q', 0, 1) Traceback (most recent call last): ... TypeError: inputs must be integers. >>> quantum_full_adder(0.5, 0, 1) Traceback (most recent call last): ... ValueError: inputs must be exact integers. >>> quantum_full_adder(0, 1, 3) Traceback (most recent call last): ... ValueError: inputs must be less or equal to 2. """ if (type(input_1) == str) or (type(input_2) == str) or (type(carry_in) == str): raise TypeError("inputs must be integers.") if (input_1 < 0) or (input_2 < 0) or (carry_in < 0): raise ValueError("inputs must be positive.") if ( (math.floor(input_1) != input_1) or (math.floor(input_2) != input_2) or (math.floor(carry_in) != carry_in) ): raise ValueError("inputs must be exact integers.") if (input_1 > 2) or (input_2 > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2.") # build registers qr = qiskit.QuantumRegister(4, "qr") cr = qiskit.ClassicalRegister(2, "cr") # list the entries entry = [input_1, input_2, carry_in] quantum_circuit = qiskit.QuantumCircuit(qr, cr) for i in range(0, 3): if entry[i] == 2: quantum_circuit.h(i) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(i) # for 1 entries elif entry[i] == 0: quantum_circuit.i(i) # for 0 entries # build the circuit quantum_circuit.ccx(0, 1, 3) # ccx = toffoli gate quantum_circuit.cx(0, 1) quantum_circuit.ccx(1, 2, 3) quantum_circuit.cx(1, 2) quantum_circuit.cx(0, 1) quantum_circuit.measure([2, 3], cr) # measure the last two qbits backend = qiskit.Aer.get_backend("aer_simulator") job = qiskit.execute(quantum_circuit, backend, shots=1000) return job.result().get_counts(quantum_circuit) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
""" Build the quantum full adder (QFA) for any sum of two quantum registers and one carry in. This circuit is designed using the Qiskit framework. This experiment run in IBM Q simulator with 1000 shots. . References: https://www.quantum-inspire.com/kbase/full-adder/ """ import math import qiskit def quantum_full_adder( input_1: int = 1, input_2: int = 1, carry_in: int = 1 ) -> qiskit.result.counts.Counts: """ # >>> q_full_adder(inp_1, inp_2, cin) # the inputs can be 0/1 for qubits in define # values, or can be in a superposition of both # states with hadamard gate using the input value 2. # result for default values: {11: 1000} qr_0: ──■────■──────────────■── │ ┌─┴─┐ ┌─┴─┐ qr_1: ──■──┤ X ├──■────■──┤ X ├ │ └───┘ │ ┌─┴─┐└───┘ qr_2: ──┼─────────■──┤ X ├───── ┌─┴─┐ ┌─┴─┐└───┘ qr_3: ┤ X ├─────┤ X ├────────── └───┘ └───┘ cr: 2/═════════════════════════ Args: input_1: input 1 for the circuit. input_2: input 2 for the circuit. carry_in: carry in for the circuit. Returns: qiskit.result.counts.Counts: sum result counts. >>> quantum_full_adder(1, 1, 1) {'11': 1000} >>> quantum_full_adder(0, 0, 1) {'01': 1000} >>> quantum_full_adder(1, 0, 1) {'10': 1000} >>> quantum_full_adder(1, -4, 1) Traceback (most recent call last): ... ValueError: inputs must be positive. >>> quantum_full_adder('q', 0, 1) Traceback (most recent call last): ... TypeError: inputs must be integers. >>> quantum_full_adder(0.5, 0, 1) Traceback (most recent call last): ... ValueError: inputs must be exact integers. >>> quantum_full_adder(0, 1, 3) Traceback (most recent call last): ... ValueError: inputs must be less or equal to 2. """ if (type(input_1) == str) or (type(input_2) == str) or (type(carry_in) == str): raise TypeError("inputs must be integers.") if (input_1 < 0) or (input_2 < 0) or (carry_in < 0): raise ValueError("inputs must be positive.") if ( (math.floor(input_1) != input_1) or (math.floor(input_2) != input_2) or (math.floor(carry_in) != carry_in) ): raise ValueError("inputs must be exact integers.") if (input_1 > 2) or (input_2 > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2.") # build registers qr = qiskit.QuantumRegister(4, "qr") cr = qiskit.ClassicalRegister(2, "cr") # list the entries entry = [input_1, input_2, carry_in] quantum_circuit = qiskit.QuantumCircuit(qr, cr) for i in range(0, 3): if entry[i] == 2: quantum_circuit.h(i) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(i) # for 1 entries elif entry[i] == 0: quantum_circuit.i(i) # for 0 entries # build the circuit quantum_circuit.ccx(0, 1, 3) # ccx = toffoli gate quantum_circuit.cx(0, 1) quantum_circuit.ccx(1, 2, 3) quantum_circuit.cx(1, 2) quantum_circuit.cx(0, 1) quantum_circuit.measure([2, 3], cr) # measure the last two qbits backend = qiskit.Aer.get_backend("aer_simulator") job = qiskit.execute(quantum_circuit, backend, shots=1000) return job.result().get_counts(quantum_circuit) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" One of the several implementations of Lempel–Ziv–Welch compression algorithm https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch """ import math import os import sys def read_file_binary(file_path: str) -> str: """ Reads given file as bytes and returns them as a long string """ result = "" try: with open(file_path, "rb") as binary_file: data = binary_file.read() for dat in data: curr_byte = f"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible") sys.exit() def add_key_to_lexicon( lexicon: dict[str, str], curr_string: str, index: int, last_match_id: str ) -> None: """ Adds new strings (curr_string + "0", curr_string + "1") to the lexicon """ lexicon.pop(curr_string) lexicon[curr_string + "0"] = last_match_id if math.log2(index).is_integer(): for curr_key in lexicon: lexicon[curr_key] = "0" + lexicon[curr_key] lexicon[curr_string + "1"] = bin(index)[2:] def compress_data(data_bits: str) -> str: """ Compresses given data_bits using Lempel–Ziv–Welch compression algorithm and returns the result as a string """ lexicon = {"0": "0", "1": "1"} result, curr_string = "", "" index = len(lexicon) for i in range(len(data_bits)): curr_string += data_bits[i] if curr_string not in lexicon: continue last_match_id = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lexicon, curr_string, index, last_match_id) index += 1 curr_string = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": last_match_id = lexicon[curr_string] result += last_match_id return result def add_file_length(source_path: str, compressed: str) -> str: """ Adds given file's length in front (using Elias gamma coding) of the compressed string """ file_length = os.path.getsize(source_path) file_length_binary = bin(file_length)[2:] length_length = len(file_length_binary) return "0" * (length_length - 1) + file_length_binary + compressed def write_file_binary(file_path: str, to_write: str) -> None: """ Writes given to_write string (should only consist of 0's and 1's) as bytes in the file """ byte_length = 8 try: with open(file_path, "wb") as opened_file: result_byte_array = [ to_write[i : i + byte_length] for i in range(0, len(to_write), byte_length) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("10000000") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array: opened_file.write(int(elem, 2).to_bytes(1, byteorder="big")) except OSError: print("File not accessible") sys.exit() def compress(source_path: str, destination_path: str) -> None: """ Reads source file, compresses it and writes the compressed result in destination file """ data_bits = read_file_binary(source_path) compressed = compress_data(data_bits) compressed = add_file_length(source_path, compressed) write_file_binary(destination_path, compressed) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
""" One of the several implementations of Lempel–Ziv–Welch compression algorithm https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch """ import math import os import sys def read_file_binary(file_path: str) -> str: """ Reads given file as bytes and returns them as a long string """ result = "" try: with open(file_path, "rb") as binary_file: data = binary_file.read() for dat in data: curr_byte = f"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible") sys.exit() def add_key_to_lexicon( lexicon: dict[str, str], curr_string: str, index: int, last_match_id: str ) -> None: """ Adds new strings (curr_string + "0", curr_string + "1") to the lexicon """ lexicon.pop(curr_string) lexicon[curr_string + "0"] = last_match_id if math.log2(index).is_integer(): for curr_key in lexicon: lexicon[curr_key] = "0" + lexicon[curr_key] lexicon[curr_string + "1"] = bin(index)[2:] def compress_data(data_bits: str) -> str: """ Compresses given data_bits using Lempel–Ziv–Welch compression algorithm and returns the result as a string """ lexicon = {"0": "0", "1": "1"} result, curr_string = "", "" index = len(lexicon) for i in range(len(data_bits)): curr_string += data_bits[i] if curr_string not in lexicon: continue last_match_id = lexicon[curr_string] result += last_match_id add_key_to_lexicon(lexicon, curr_string, index, last_match_id) index += 1 curr_string = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": last_match_id = lexicon[curr_string] result += last_match_id return result def add_file_length(source_path: str, compressed: str) -> str: """ Adds given file's length in front (using Elias gamma coding) of the compressed string """ file_length = os.path.getsize(source_path) file_length_binary = bin(file_length)[2:] length_length = len(file_length_binary) return "0" * (length_length - 1) + file_length_binary + compressed def write_file_binary(file_path: str, to_write: str) -> None: """ Writes given to_write string (should only consist of 0's and 1's) as bytes in the file """ byte_length = 8 try: with open(file_path, "wb") as opened_file: result_byte_array = [ to_write[i : i + byte_length] for i in range(0, len(to_write), byte_length) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("10000000") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array: opened_file.write(int(elem, 2).to_bytes(1, byteorder="big")) except OSError: print("File not accessible") sys.exit() def compress(source_path: str, destination_path: str) -> None: """ Reads source file, compresses it and writes the compressed result in destination file """ data_bits = read_file_binary(source_path) compressed = compress_data(data_bits) compressed = add_file_length(source_path, compressed) write_file_binary(destination_path, compressed) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Implementation of First Come First Served scheduling algorithm # In this Algorithm we just care about the order that the processes arrived # without carring about their duration time # https://en.wikipedia.org/wiki/Scheduling_(computing)#First_come,_first_served from __future__ import annotations def calculate_waiting_times(duration_times: list[int]) -> list[int]: """ This function calculates the waiting time of some processes that have a specified duration time. Return: The waiting time for each process. >>> calculate_waiting_times([5, 10, 15]) [0, 5, 15] >>> calculate_waiting_times([1, 2, 3, 4, 5]) [0, 1, 3, 6, 10] >>> calculate_waiting_times([10, 3]) [0, 10] """ waiting_times = [0] * len(duration_times) for i in range(1, len(duration_times)): waiting_times[i] = duration_times[i - 1] + waiting_times[i - 1] return waiting_times def calculate_turnaround_times( duration_times: list[int], waiting_times: list[int] ) -> list[int]: """ This function calculates the turnaround time of some processes. Return: The time difference between the completion time and the arrival time. Practically waiting_time + duration_time >>> calculate_turnaround_times([5, 10, 15], [0, 5, 15]) [5, 15, 30] >>> calculate_turnaround_times([1, 2, 3, 4, 5], [0, 1, 3, 6, 10]) [1, 3, 6, 10, 15] >>> calculate_turnaround_times([10, 3], [0, 10]) [10, 13] """ return [ duration_time + waiting_times[i] for i, duration_time in enumerate(duration_times) ] def calculate_average_turnaround_time(turnaround_times: list[int]) -> float: """ This function calculates the average of the turnaround times Return: The average of the turnaround times. >>> calculate_average_turnaround_time([0, 5, 16]) 7.0 >>> calculate_average_turnaround_time([1, 5, 8, 12]) 6.5 >>> calculate_average_turnaround_time([10, 24]) 17.0 """ return sum(turnaround_times) / len(turnaround_times) def calculate_average_waiting_time(waiting_times: list[int]) -> float: """ This function calculates the average of the waiting times Return: The average of the waiting times. >>> calculate_average_waiting_time([0, 5, 16]) 7.0 >>> calculate_average_waiting_time([1, 5, 8, 12]) 6.5 >>> calculate_average_waiting_time([10, 24]) 17.0 """ return sum(waiting_times) / len(waiting_times) if __name__ == "__main__": # process id's processes = [1, 2, 3] # ensure that we actually have processes if len(processes) == 0: print("Zero amount of processes") raise SystemExit(0) # duration time of all processes duration_times = [19, 8, 9] # ensure we can match each id to a duration time if len(duration_times) != len(processes): print("Unable to match all id's with their duration time") raise SystemExit(0) # get the waiting times and the turnaround times waiting_times = calculate_waiting_times(duration_times) turnaround_times = calculate_turnaround_times(duration_times, waiting_times) # get the average times average_waiting_time = calculate_average_waiting_time(waiting_times) average_turnaround_time = calculate_average_turnaround_time(turnaround_times) # print all the results print("Process ID\tDuration Time\tWaiting Time\tTurnaround Time") for i, process in enumerate(processes): print( f"{process}\t\t{duration_times[i]}\t\t{waiting_times[i]}\t\t" f"{turnaround_times[i]}" ) print(f"Average waiting time = {average_waiting_time}") print(f"Average turn around time = {average_turnaround_time}")
# Implementation of First Come First Served scheduling algorithm # In this Algorithm we just care about the order that the processes arrived # without carring about their duration time # https://en.wikipedia.org/wiki/Scheduling_(computing)#First_come,_first_served from __future__ import annotations def calculate_waiting_times(duration_times: list[int]) -> list[int]: """ This function calculates the waiting time of some processes that have a specified duration time. Return: The waiting time for each process. >>> calculate_waiting_times([5, 10, 15]) [0, 5, 15] >>> calculate_waiting_times([1, 2, 3, 4, 5]) [0, 1, 3, 6, 10] >>> calculate_waiting_times([10, 3]) [0, 10] """ waiting_times = [0] * len(duration_times) for i in range(1, len(duration_times)): waiting_times[i] = duration_times[i - 1] + waiting_times[i - 1] return waiting_times def calculate_turnaround_times( duration_times: list[int], waiting_times: list[int] ) -> list[int]: """ This function calculates the turnaround time of some processes. Return: The time difference between the completion time and the arrival time. Practically waiting_time + duration_time >>> calculate_turnaround_times([5, 10, 15], [0, 5, 15]) [5, 15, 30] >>> calculate_turnaround_times([1, 2, 3, 4, 5], [0, 1, 3, 6, 10]) [1, 3, 6, 10, 15] >>> calculate_turnaround_times([10, 3], [0, 10]) [10, 13] """ return [ duration_time + waiting_times[i] for i, duration_time in enumerate(duration_times) ] def calculate_average_turnaround_time(turnaround_times: list[int]) -> float: """ This function calculates the average of the turnaround times Return: The average of the turnaround times. >>> calculate_average_turnaround_time([0, 5, 16]) 7.0 >>> calculate_average_turnaround_time([1, 5, 8, 12]) 6.5 >>> calculate_average_turnaround_time([10, 24]) 17.0 """ return sum(turnaround_times) / len(turnaround_times) def calculate_average_waiting_time(waiting_times: list[int]) -> float: """ This function calculates the average of the waiting times Return: The average of the waiting times. >>> calculate_average_waiting_time([0, 5, 16]) 7.0 >>> calculate_average_waiting_time([1, 5, 8, 12]) 6.5 >>> calculate_average_waiting_time([10, 24]) 17.0 """ return sum(waiting_times) / len(waiting_times) if __name__ == "__main__": # process id's processes = [1, 2, 3] # ensure that we actually have processes if len(processes) == 0: print("Zero amount of processes") raise SystemExit(0) # duration time of all processes duration_times = [19, 8, 9] # ensure we can match each id to a duration time if len(duration_times) != len(processes): print("Unable to match all id's with their duration time") raise SystemExit(0) # get the waiting times and the turnaround times waiting_times = calculate_waiting_times(duration_times) turnaround_times = calculate_turnaround_times(duration_times, waiting_times) # get the average times average_waiting_time = calculate_average_waiting_time(waiting_times) average_turnaround_time = calculate_average_turnaround_time(turnaround_times) # print all the results print("Process ID\tDuration Time\tWaiting Time\tTurnaround Time") for i, process in enumerate(processes): print( f"{process}\t\t{duration_times[i]}\t\t{waiting_times[i]}\t\t" f"{turnaround_times[i]}" ) print(f"Average waiting time = {average_waiting_time}") print(f"Average turn around time = {average_turnaround_time}")
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 """ Deutsch-Jozsa Algorithm is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm Premise: We are given a hidden Boolean function f, which takes as input a string of bits, and returns either 0 or 1: f({x0,x1,x2,...}) -> 0 or 1, where xn is 0 or 1 The property of the given Boolean function is that it is guaranteed to either be balanced or constant. A constant function returns all 0's or all 1's for any input, while a balanced function returns 0's for exactly half of all inputs and 1's for the other half. Our task is to determine whether the given function is balanced or constant. References: - https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm - https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html """ import numpy as np import qiskit def dj_oracle(case: str, num_qubits: int) -> qiskit.QuantumCircuit: """ Returns a Quantum Circuit for the Oracle function. The circuit returned can represent balanced or constant function, according to the arguments passed """ # This circuit has num_qubits+1 qubits: the size of the input, # plus one output qubit oracle_qc = qiskit.QuantumCircuit(num_qubits + 1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1, 2**num_qubits) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, f"0{num_qubits}b") # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for index in range(num_qubits): oracle_qc.cx(index, num_qubits) # Next, place the final X-gates for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(num_qubits) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm( oracle: qiskit.QuantumCircuit, num_qubits: int ) -> qiskit.QuantumCircuit: """ Returns the complete Deutsch-Jozsa Quantum Circuit, adding Input & Output registers and Hadamard & Measurement Gates, to the Oracle Circuit passed in arguments """ dj_circuit = qiskit.QuantumCircuit(num_qubits + 1, num_qubits) # Set up the output qubit: dj_circuit.x(num_qubits) dj_circuit.h(num_qubits) # And set up the input register: for qubit in range(num_qubits): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(num_qubits + 1)) # Finally, perform the H-gates again and measure: for qubit in range(num_qubits): dj_circuit.h(qubit) for i in range(num_qubits): dj_circuit.measure(i, i) return dj_circuit def deutsch_jozsa(case: str, num_qubits: int) -> qiskit.result.counts.Counts: """ Main function that builds the circuit using other helper functions, runs the experiment 1000 times & returns the resultant qubit counts >>> deutsch_jozsa("constant", 3) {'000': 1000} >>> deutsch_jozsa("balanced", 3) {'111': 1000} """ # Use Aer's simulator simulator = qiskit.Aer.get_backend("aer_simulator") oracle_gate = dj_oracle(case, num_qubits) dj_circuit = dj_algorithm(oracle_gate, num_qubits) # Execute the circuit on the simulator job = qiskit.execute(dj_circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(dj_circuit) if __name__ == "__main__": print(f"Deutsch Jozsa - Constant Oracle: {deutsch_jozsa('constant', 3)}") print(f"Deutsch Jozsa - Balanced Oracle: {deutsch_jozsa('balanced', 3)}")
#!/usr/bin/env python3 """ Deutsch-Jozsa Algorithm is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm Premise: We are given a hidden Boolean function f, which takes as input a string of bits, and returns either 0 or 1: f({x0,x1,x2,...}) -> 0 or 1, where xn is 0 or 1 The property of the given Boolean function is that it is guaranteed to either be balanced or constant. A constant function returns all 0's or all 1's for any input, while a balanced function returns 0's for exactly half of all inputs and 1's for the other half. Our task is to determine whether the given function is balanced or constant. References: - https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm - https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html """ import numpy as np import qiskit def dj_oracle(case: str, num_qubits: int) -> qiskit.QuantumCircuit: """ Returns a Quantum Circuit for the Oracle function. The circuit returned can represent balanced or constant function, according to the arguments passed """ # This circuit has num_qubits+1 qubits: the size of the input, # plus one output qubit oracle_qc = qiskit.QuantumCircuit(num_qubits + 1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1, 2**num_qubits) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, f"0{num_qubits}b") # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for index in range(num_qubits): oracle_qc.cx(index, num_qubits) # Next, place the final X-gates for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(num_qubits) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm( oracle: qiskit.QuantumCircuit, num_qubits: int ) -> qiskit.QuantumCircuit: """ Returns the complete Deutsch-Jozsa Quantum Circuit, adding Input & Output registers and Hadamard & Measurement Gates, to the Oracle Circuit passed in arguments """ dj_circuit = qiskit.QuantumCircuit(num_qubits + 1, num_qubits) # Set up the output qubit: dj_circuit.x(num_qubits) dj_circuit.h(num_qubits) # And set up the input register: for qubit in range(num_qubits): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(num_qubits + 1)) # Finally, perform the H-gates again and measure: for qubit in range(num_qubits): dj_circuit.h(qubit) for i in range(num_qubits): dj_circuit.measure(i, i) return dj_circuit def deutsch_jozsa(case: str, num_qubits: int) -> qiskit.result.counts.Counts: """ Main function that builds the circuit using other helper functions, runs the experiment 1000 times & returns the resultant qubit counts >>> deutsch_jozsa("constant", 3) {'000': 1000} >>> deutsch_jozsa("balanced", 3) {'111': 1000} """ # Use Aer's simulator simulator = qiskit.Aer.get_backend("aer_simulator") oracle_gate = dj_oracle(case, num_qubits) dj_circuit = dj_algorithm(oracle_gate, num_qubits) # Execute the circuit on the simulator job = qiskit.execute(dj_circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(dj_circuit) if __name__ == "__main__": print(f"Deutsch Jozsa - Constant Oracle: {deutsch_jozsa('constant', 3)}") print(f"Deutsch Jozsa - Balanced Oracle: {deutsch_jozsa('balanced', 3)}")
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This file fetches quotes from the " ZenQuotes API ". It does not require any API key as it uses free tier. For more details and premium features visit: https://zenquotes.io/ """ import pprint import requests API_ENDPOINT_URL = "https://zenquotes.io/api" def quote_of_the_day() -> list: return requests.get(API_ENDPOINT_URL + "/today").json() def random_quotes() -> list: return requests.get(API_ENDPOINT_URL + "/random").json() if __name__ == "__main__": """ response object has all the info with the quote To retrieve the actual quote access the response.json() object as below response.json() is a list of json object response.json()[0]['q'] = actual quote. response.json()[0]['a'] = author name. response.json()[0]['h'] = in html format. """ response = random_quotes() pprint.pprint(response)
""" This file fetches quotes from the " ZenQuotes API ". It does not require any API key as it uses free tier. For more details and premium features visit: https://zenquotes.io/ """ import pprint import requests API_ENDPOINT_URL = "https://zenquotes.io/api" def quote_of_the_day() -> list: return requests.get(API_ENDPOINT_URL + "/today").json() def random_quotes() -> list: return requests.get(API_ENDPOINT_URL + "/random").json() if __name__ == "__main__": """ response object has all the info with the quote To retrieve the actual quote access the response.json() object as below response.json() is a list of json object response.json()[0]['q'] = actual quote. response.json()[0]['a'] = author name. response.json()[0]['h'] = in html format. """ response = random_quotes() pprint.pprint(response)
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def binary_recursive(decimal: int) -> str: """ Take a positive integer value and return its binary equivalent. >>> binary_recursive(1000) '1111101000' >>> binary_recursive("72") '1001000' >>> binary_recursive("number") Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'number' """ decimal = int(decimal) if decimal in (0, 1): # Exit cases for the recursion return str(decimal) div, mod = divmod(decimal, 2) return binary_recursive(div) + str(mod) def main(number: str) -> str: """ Take an integer value and raise ValueError for wrong inputs, call the function above and return the output with prefix "0b" & "-0b" for positive and negative integers respectively. >>> main(0) '0b0' >>> main(40) '0b101000' >>> main(-40) '-0b101000' >>> main(40.8) Traceback (most recent call last): ... ValueError: Input value is not an integer >>> main("forty") Traceback (most recent call last): ... ValueError: Input value is not an integer """ number = str(number).strip() if not number: raise ValueError("No input value was provided") negative = "-" if number.startswith("-") else "" number = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(number))}" if __name__ == "__main__": from doctest import testmod testmod()
def binary_recursive(decimal: int) -> str: """ Take a positive integer value and return its binary equivalent. >>> binary_recursive(1000) '1111101000' >>> binary_recursive("72") '1001000' >>> binary_recursive("number") Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'number' """ decimal = int(decimal) if decimal in (0, 1): # Exit cases for the recursion return str(decimal) div, mod = divmod(decimal, 2) return binary_recursive(div) + str(mod) def main(number: str) -> str: """ Take an integer value and raise ValueError for wrong inputs, call the function above and return the output with prefix "0b" & "-0b" for positive and negative integers respectively. >>> main(0) '0b0' >>> main(40) '0b101000' >>> main(-40) '-0b101000' >>> main(40.8) Traceback (most recent call last): ... ValueError: Input value is not an integer >>> main("forty") Traceback (most recent call last): ... ValueError: Input value is not an integer """ number = str(number).strip() if not number: raise ValueError("No input value was provided") negative = "-" if number.startswith("-") else "" number = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(number))}" if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" A binary search Tree """ from collections.abc import Iterable from typing import Any class Node: def __init__(self, value: int | None = None): self.value = value self.parent: Node | None = None # Added in order to delete a node easier self.left: Node | None = None self.right: Node | None = None def __repr__(self) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({f"{self.value}": (self.left, self.right)}, indent=1) class BinarySearchTree: def __init__(self, root: Node | None = None): self.root = root def __str__(self) -> str: """ Return a string of all the Nodes using in order traversal """ return str(self.root) def __reassign_nodes(self, node: Node, new_children: Node | None) -> None: if new_children is not None: # reset its kids new_children.parent = node.parent if node.parent is not None: # reset its parent if self.is_right(node): # If it is the right children node.parent.right = new_children else: node.parent.left = new_children else: self.root = None def is_right(self, node: Node) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def empty(self) -> bool: return self.root is None def __insert(self, value) -> None: """ Insert a new node in Binary Search Tree with value label """ new_node = Node(value) # create a new Node if self.empty(): # if Tree is empty self.root = new_node # set its root else: # Tree is not empty parent_node = self.root # from root if parent_node is None: return None while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: parent_node.left = new_node # We insert the new node in a leaf break else: parent_node = parent_node.left else: if parent_node.right is None: parent_node.right = new_node break else: parent_node = parent_node.right new_node.parent = parent_node def insert(self, *values) -> None: for value in values: self.__insert(value) def search(self, value) -> Node | None: if self.empty(): raise IndexError("Warning: Tree is empty! please use another.") else: node = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: node = node.left if value < node.value else node.right return node def get_max(self, node: Node | None = None) -> Node | None: """ We go deep on the right branch """ if node is None: if self.root is None: return None node = self.root if not self.empty(): while node.right is not None: node = node.right return node def get_min(self, node: Node | None = None) -> Node | None: """ We go deep on the left branch """ if node is None: node = self.root if self.root is None: return None if not self.empty(): node = self.root while node.left is not None: node = node.left return node def remove(self, value: int) -> None: node = self.search(value) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(node, None) elif node.left is None: # Has only right children self.__reassign_nodes(node, node.right) elif node.right is None: # Has only left children self.__reassign_nodes(node, node.left) else: tmp_node = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value) # type: ignore node.value = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def preorder_traverse(self, node: Node | None) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def traversal_tree(self, traversal_function=None) -> Any: """ This function traversal the tree. You can pass a function to traversal the tree as needed by client code """ if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def inorder(self, arr: list, node: Node | None) -> None: """Perform an inorder traversal and append values of the nodes to a list named arr""" if node: self.inorder(arr, node.left) arr.append(node.value) self.inorder(arr, node.right) def find_kth_smallest(self, k: int, node: Node) -> int: """Return the kth smallest element in a binary search tree""" arr: list[int] = [] self.inorder(arr, node) # append all values to list using inorder traversal return arr[k - 1] def postorder(curr_node: Node | None) -> list[Node]: """ postOrder (left, right, self) """ node_list = [] if curr_node is not None: node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def binary_search_tree() -> None: r""" Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 >>> t = BinarySearchTree() >>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7) >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) 8 3 1 6 4 7 10 14 13 >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) 1 4 7 6 3 13 14 10 8 >>> BinarySearchTree().search(6) Traceback (most recent call last): ... IndexError: Warning: Tree is empty! please use another. """ testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) t = BinarySearchTree() for i in testlist: t.insert(i) # Prints all the elements of the list in order traversal print(t) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: ", t.get_max().value) # type: ignore print("Min Value: ", t.get_min().value) # type: ignore for i in testlist: t.remove(i) print(t) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
""" A binary search Tree """ from collections.abc import Iterable from typing import Any class Node: def __init__(self, value: int | None = None): self.value = value self.parent: Node | None = None # Added in order to delete a node easier self.left: Node | None = None self.right: Node | None = None def __repr__(self) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({f"{self.value}": (self.left, self.right)}, indent=1) class BinarySearchTree: def __init__(self, root: Node | None = None): self.root = root def __str__(self) -> str: """ Return a string of all the Nodes using in order traversal """ return str(self.root) def __reassign_nodes(self, node: Node, new_children: Node | None) -> None: if new_children is not None: # reset its kids new_children.parent = node.parent if node.parent is not None: # reset its parent if self.is_right(node): # If it is the right children node.parent.right = new_children else: node.parent.left = new_children else: self.root = None def is_right(self, node: Node) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def empty(self) -> bool: return self.root is None def __insert(self, value) -> None: """ Insert a new node in Binary Search Tree with value label """ new_node = Node(value) # create a new Node if self.empty(): # if Tree is empty self.root = new_node # set its root else: # Tree is not empty parent_node = self.root # from root if parent_node is None: return None while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: parent_node.left = new_node # We insert the new node in a leaf break else: parent_node = parent_node.left else: if parent_node.right is None: parent_node.right = new_node break else: parent_node = parent_node.right new_node.parent = parent_node def insert(self, *values) -> None: for value in values: self.__insert(value) def search(self, value) -> Node | None: if self.empty(): raise IndexError("Warning: Tree is empty! please use another.") else: node = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: node = node.left if value < node.value else node.right return node def get_max(self, node: Node | None = None) -> Node | None: """ We go deep on the right branch """ if node is None: if self.root is None: return None node = self.root if not self.empty(): while node.right is not None: node = node.right return node def get_min(self, node: Node | None = None) -> Node | None: """ We go deep on the left branch """ if node is None: node = self.root if self.root is None: return None if not self.empty(): node = self.root while node.left is not None: node = node.left return node def remove(self, value: int) -> None: node = self.search(value) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(node, None) elif node.left is None: # Has only right children self.__reassign_nodes(node, node.right) elif node.right is None: # Has only left children self.__reassign_nodes(node, node.left) else: tmp_node = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value) # type: ignore node.value = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def preorder_traverse(self, node: Node | None) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def traversal_tree(self, traversal_function=None) -> Any: """ This function traversal the tree. You can pass a function to traversal the tree as needed by client code """ if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def inorder(self, arr: list, node: Node | None) -> None: """Perform an inorder traversal and append values of the nodes to a list named arr""" if node: self.inorder(arr, node.left) arr.append(node.value) self.inorder(arr, node.right) def find_kth_smallest(self, k: int, node: Node) -> int: """Return the kth smallest element in a binary search tree""" arr: list[int] = [] self.inorder(arr, node) # append all values to list using inorder traversal return arr[k - 1] def postorder(curr_node: Node | None) -> list[Node]: """ postOrder (left, right, self) """ node_list = [] if curr_node is not None: node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def binary_search_tree() -> None: r""" Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 >>> t = BinarySearchTree() >>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7) >>> print(" ".join(repr(i.value) for i in t.traversal_tree())) 8 3 1 6 4 7 10 14 13 >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder))) 1 4 7 6 3 13 14 10 8 >>> BinarySearchTree().search(6) Traceback (most recent call last): ... IndexError: Warning: Tree is empty! please use another. """ testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7) t = BinarySearchTree() for i in testlist: t.insert(i) # Prints all the elements of the list in order traversal print(t) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: ", t.get_max().value) # type: ignore print("Min Value: ", t.get_min().value) # type: ignore for i in testlist: t.remove(i) print(t) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. Note that only the integer weights 0-1 knapsack problem is solvable using dynamic programming. """ def mf_knapsack(i, wt, val, j): """ This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with -1s filled up """ global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: val = mf_knapsack(i - 1, wt, val, j) else: val = max( mf_knapsack(i - 1, wt, val, j), mf_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1], ) f[i][j] = val return f[i][j] def knapsack(w, wt, val, n): dp = [[0 for i in range(w + 1)] for j in range(n + 1)] for i in range(1, n + 1): for w_ in range(1, w + 1): if wt[i - 1] <= w_: dp[i][w_] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_]) else: dp[i][w_] = dp[i - 1][w_] return dp[n][w_], dp def knapsack_with_example_solution(w: int, wt: list, val: list): """ Solves the integer weights knapsack problem returns one of the several possible optimal subsets. Parameters --------- W: int, the total maximum weight for the given knapsack problem. wt: list, the vector of weights for all items where wt[i] is the weight of the i-th item. val: list, the vector of values for all items where val[i] is the value of the i-th item Returns ------- optimal_val: float, the optimal value for the given knapsack problem example_optional_set: set, the indices of one of the optimal subsets which gave rise to the optimal value. Examples ------- >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) (142, {2, 3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) (8, {3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4]) Traceback (most recent call last): ... ValueError: The number of weights must be the same as the number of values. But got 4 weights and 3 values """ if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) num_items = len(wt) if num_items != len(val): raise ValueError( "The number of weights must be the " "same as the number of values.\nBut " f"got {num_items} weights and {len(val)} values" ) for i in range(num_items): if not isinstance(wt[i], int): raise TypeError( "All weights must be integers but " f"got weight of type {type(wt[i])} at index {i}" ) optimal_val, dp_table = knapsack(w, wt, val, num_items) example_optional_set: set = set() _construct_solution(dp_table, wt, num_items, w, example_optional_set) return optimal_val, example_optional_set def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set): """ Recursively reconstructs one of the optimal subsets given a filled DP table and the vector of weights Parameters --------- dp: list of list, the table of a solved integer weight dynamic programming problem wt: list or tuple, the vector of weights of the items i: int, the index of the item under consideration j: int, the current possible maximum weight optimal_set: set, the optimal subset so far. This gets modified by the function. Returns ------- None """ # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(dp, wt, i - 1, j, optimal_set) else: optimal_set.add(i) _construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set) if __name__ == "__main__": """ Adding test case for knapsack """ val = [3, 2, 4, 4] wt = [4, 3, 2, 3] n = 4 w = 6 f = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)] optimal_solution, _ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
""" Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. Note that only the integer weights 0-1 knapsack problem is solvable using dynamic programming. """ def mf_knapsack(i, wt, val, j): """ This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with -1s filled up """ global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: val = mf_knapsack(i - 1, wt, val, j) else: val = max( mf_knapsack(i - 1, wt, val, j), mf_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1], ) f[i][j] = val return f[i][j] def knapsack(w, wt, val, n): dp = [[0 for i in range(w + 1)] for j in range(n + 1)] for i in range(1, n + 1): for w_ in range(1, w + 1): if wt[i - 1] <= w_: dp[i][w_] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_]) else: dp[i][w_] = dp[i - 1][w_] return dp[n][w_], dp def knapsack_with_example_solution(w: int, wt: list, val: list): """ Solves the integer weights knapsack problem returns one of the several possible optimal subsets. Parameters --------- W: int, the total maximum weight for the given knapsack problem. wt: list, the vector of weights for all items where wt[i] is the weight of the i-th item. val: list, the vector of values for all items where val[i] is the value of the i-th item Returns ------- optimal_val: float, the optimal value for the given knapsack problem example_optional_set: set, the indices of one of the optimal subsets which gave rise to the optimal value. Examples ------- >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) (142, {2, 3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) (8, {3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4]) Traceback (most recent call last): ... ValueError: The number of weights must be the same as the number of values. But got 4 weights and 3 values """ if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) num_items = len(wt) if num_items != len(val): raise ValueError( "The number of weights must be the " "same as the number of values.\nBut " f"got {num_items} weights and {len(val)} values" ) for i in range(num_items): if not isinstance(wt[i], int): raise TypeError( "All weights must be integers but " f"got weight of type {type(wt[i])} at index {i}" ) optimal_val, dp_table = knapsack(w, wt, val, num_items) example_optional_set: set = set() _construct_solution(dp_table, wt, num_items, w, example_optional_set) return optimal_val, example_optional_set def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set): """ Recursively reconstructs one of the optimal subsets given a filled DP table and the vector of weights Parameters --------- dp: list of list, the table of a solved integer weight dynamic programming problem wt: list or tuple, the vector of weights of the items i: int, the index of the item under consideration j: int, the current possible maximum weight optimal_set: set, the optimal subset so far. This gets modified by the function. Returns ------- None """ # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(dp, wt, i - 1, j, optimal_set) else: optimal_set.add(i) _construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set) if __name__ == "__main__": """ Adding test case for knapsack """ val = [3, 2, 4, 4] wt = [4, 3, 2, 3] n = 4 w = 6 f = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)] optimal_solution, _ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
MMMMDCLXXII MMDCCCLXXXIII MMMDLXVIIII MMMMDXCV DCCCLXXII MMCCCVI MMMCDLXXXVII MMMMCCXXI MMMCCXX MMMMDCCCLXXIII MMMCCXXXVII MMCCCLXXXXIX MDCCCXXIIII MMCXCVI CCXCVIII MMMCCCXXXII MDCCXXX MMMDCCCL MMMMCCLXXXVI MMDCCCXCVI MMMDCII MMMCCXII MMMMDCCCCI MMDCCCXCII MDCXX CMLXXXVII MMMXXI MMMMCCCXIV MLXXII MCCLXXVIIII MMMMCCXXXXI MMDCCCLXXII MMMMXXXI MMMDCCLXXX MMDCCCLXXIX MMMMLXXXV MCXXI MDCCCXXXVII MMCCCLXVII MCDXXXV CCXXXIII CMXX MMMCLXIV MCCCLXXXVI DCCCXCVIII MMMDCCCCXXXIV CDXVIIII MMCCXXXV MDCCCXXXII MMMMD MMDCCLXIX MMMMCCCLXXXXVI MMDCCXLII MMMDCCCVIIII DCCLXXXIIII MDCCCCXXXII MMCXXVII DCCCXXX CCLXIX MMMXI MMMMCMLXXXXVIII MMMMDLXXXVII MMMMDCCCLX MMCCLIV CMIX MMDCCCLXXXIIII CLXXXII MMCCCCXXXXV MMMMDLXXXVIIII MMMDCCCXXI MMDCCCCLXXVI MCCCCLXX MMCDLVIIII MMMDCCCLIX MMMMCCCCXIX MMMDCCCLXXV XXXI CDLXXXIII MMMCXV MMDCCLXIII MMDXXX MMMMCCCLVII MMMDCI MMMMCDLXXXIIII MMMMCCCXVI CCCLXXXVIII MMMMCML MMMMXXIV MMMCCCCXXX DCCX MMMCCLX MMDXXXIII CCCLXIII MMDCCXIII MMMCCCXLIV CLXXXXI CXVI MMMMCXXXIII CLXX DCCCXVIII MLXVII DLXXXX MMDXXI MMMMDLXXXXVIII MXXII LXI DCCCCXLIII MMMMDV MMMMXXXIV MDCCCLVIII MMMCCLXXII MMMMDCCXXXVI MMMMLXXXIX MDCCCLXXXI MMMMDCCCXV MMMMCCCCXI MMMMCCCLIII MDCCCLXXI MMCCCCXI MLXV MMCDLXII MMMMDXXXXII MMMMDCCCXL MMMMCMLVI CCLXXXIV MMMDCCLXXXVI MMCLII MMMCCCCXV MMLXXXIII MMMV MMMV DCCLXII MMDCCCCXVI MMDCXLVIII CCLIIII CCCXXV MMDCCLXXXVIIII MMMMDCLXXVIII MMMMDCCCXCI MMMMCCCXX MMCCXLV MMMDCCCLXIX MMCCLXIIII MMMDCCCXLIX MMMMCCCLXIX CMLXXXXI MCMLXXXIX MMCDLXI MMDCLXXVIII MMMMDCCLXI MCDXXV DL CCCLXXII MXVIIII MCCCCLXVIII CIII MMMDCCLXXIIII MMMDVIII MMMMCCCLXXXXVII MMDXXVII MMDCCLXXXXV MMMMCXLVI MMMDCCLXXXII MMMDXXXVI MCXXII CLI DCLXXXIX MMMCLI MDCLXIII MMMMDCCXCVII MMCCCLXXXV MMMDCXXVIII MMMCDLX MMMCMLII MMMIV MMMMDCCCLVIII MMMDLXXXVIII MCXXIV MMMMLXXVI CLXXIX MMMCCCCXXVIIII DCCLXXXV MMMDCCCVI LI CLXXXVI MMMMCCCLXXVI MCCCLXVI CCXXXIX MMDXXXXI MMDCCCXLI DCCCLXXXVIII MMMMDCCCIV MDCCCCXV MMCMVI MMMMCMLXXXXV MMDCCLVI MMMMCCXLVIII DCCCCIIII MMCCCCIII MMMDCCLXXXVIIII MDCCCLXXXXV DVII MMMV DCXXV MMDCCCXCV DCVIII MMCDLXVI MCXXVIII MDCCXCVIII MMDCLX MMMDCCLXIV MMCDLXXVII MMDLXXXIIII MMMMCCCXXII MMMDCCCXLIIII DCCCCLXVII MMMCLXXXXIII MCCXV MMMMDCXI MMMMDCLXXXXV MMMCCCLII MMCMIX MMDCCXXV MMDLXXXVI MMMMDCXXVIIII DCCCCXXXVIIII MMCCXXXIIII MMDCCLXXVIII MDCCLXVIIII MMCCLXXXV MMMMDCCCLXXXVIII MMCMXCI MDXLII MMMMDCCXIV MMMMLI DXXXXIII MMDCCXI MMMMCCLXXXIII MMMDCCCLXXIII MDCLVII MMCD MCCCXXVII MMMMDCCIIII MMMDCCXLVI MMMCLXXXVII MMMCCVIIII MCCCCLXXIX DL DCCCLXXVI MMDXCI MMMMDCCCCXXXVI MMCII MMMDCCCXXXXV MMMCDXLV MMDCXXXXIV MMD MDCCCLXXXX MMDCXLIII MMCCXXXII MMDCXXXXVIIII DCCCLXXI MDXCVIIII MMMMCCLXXVIII MDCLVIIII MMMCCCLXXXIX MDCLXXXV MDLVIII MMMMCCVII MMMMDCXIV MMMCCCLXIIII MMIIII MMMMCCCLXXIII CCIII MMMCCLV MMMDXIII MMMCCCXC MMMDCCCXXI MMMMCCCCXXXII CCCLVI MMMCCCLXXXVI MXVIIII MMMCCCCXIIII CLXVII MMMCCLXX CCCCLXIV MMXXXXII MMMMCCLXXXX MXL CCXVI CCCCLVIIII MMCCCII MCCCLVIII MMMMCCCX MCDLXXXXIV MDCCCXIII MMDCCCXL MMMMCCCXXIII DXXXIV CVI MMMMDCLXXX DCCCVII MMCMLXIIII MMMDCCCXXXIII DCCC MDIII MMCCCLXVI MMMCCCCLXXI MMDCCCCXVIII CCXXXVII CCCXXV MDCCCXII MMMCMV MMMMCMXV MMMMDCXCI DXXI MMCCXLVIIII MMMMCMLII MDLXXX MMDCLXVI CXXI MMMDCCCLIIII MMMCXXI MCCIII MMDCXXXXI CCXCII MMMMDXXXV MMMCCCLXV MMMMDLXV MMMCCCCXXXII MMMCCCVIII DCCCCLXXXXII MMCLXIV MMMMCXI MLXXXXVII MMMCDXXXVIII MDXXII MLV MMMMDLXVI MMMCXII XXXIII MMMMDCCCXXVI MMMLXVIIII MMMLX MMMCDLXVII MDCCCLVII MMCXXXVII MDCCCCXXX MMDCCCLXIII MMMMDCXLIX MMMMCMXLVIII DCCCLXXVIIII MDCCCLIII MMMCMLXI MMMMCCLXI MMDCCCLIII MMMDCCCVI MMDXXXXIX MMCLXXXXV MMDXXX MMMXIII DCLXXIX DCCLXII MMMMDCCLXVIII MDCCXXXXIII CCXXXII MMMMDCXXV MMMCCCXXVIII MDCVIII MMMCLXXXXIIII CLXXXI MDCCCCXXXIII MMMMDCXXX MMMDCXXIV MMMCCXXXVII MCCCXXXXIIII CXVIII MMDCCCCIV MMMMCDLXXV MMMDLXIV MDXCIII MCCLXXXI MMMDCCCXXIV MCXLIII MMMDCCCI MCCLXXX CCXV MMDCCLXXI MMDLXXXIII MMMMDCXVII MMMCMLXV MCLXVIII MMMMCCLXXVI MMMDCCLXVIIII MMMMDCCCIX DLXXXXIX DCCCXXII MMMMIII MMMMCCCLXXVI DCCCXCIII DXXXI MXXXIIII CCXII MMMDCCLXXXIIII MMMCXX MMMCMXXVII DCCCXXXX MMCDXXXVIIII MMMMDCCXVIII LV MMMDCCCCVI MCCCII MMCMLXVIIII MDCCXI MMMMDLXVII MMCCCCLXI MMDCCV MMMCCCXXXIIII MMMMDI MMMDCCCXCV MMDCCLXXXXI MMMDXXVI MMMDCCCLVI MMDCXXX MCCCVII MMMMCCCLXII MMMMXXV MMCMXXV MMLVI MMDXXX MMMMCVII MDC MCCIII MMMMDCC MMCCLXXV MMDCCCXXXXVI MMMMCCCLXV CDXIIII MLXIIII CCV MMMCMXXXI CCCCLXVI MDXXXII MMMMCCCLVIII MMV MMMCLII MCMLI MMDCCXX MMMMCCCCXXXVI MCCLXXXI MMMCMVI DCCXXX MMMMCCCLXV DCCCXI MMMMDCCCXIV CCCXXI MMDLXXV CCCCLXXXX MCCCLXXXXII MMDCIX DCCXLIIII DXIV MMMMCLII CDLXI MMMCXXVII MMMMDCCCCLXIII MMMDCLIIII MCCCCXXXXII MMCCCLX CCCCLIII MDCCLXXVI MCMXXIII MMMMDLXXVIII MMDCCCCLX MMMCCCLXXXX MMMCDXXVI MMMDLVIII CCCLXI MMMMDCXXII MMDCCCXXI MMDCCXIII MMMMCLXXXVI MDCCCCXXVI MDV MMDCCCCLXXVI MMMMCCXXXVII MMMDCCLXXVIIII MMMCCCCLXVII DCCXLI MMCLXXXVIII MCCXXXVI MMDCXLVIII MMMMCXXXII MMMMDCCLXVI MMMMCMLI MMMMCLXV MMMMDCCCXCIV MCCLXXVII LXXVIIII DCCLII MMMCCCXCVI MMMCLV MMDCCCXXXXVIII DCCCXV MXC MMDCCLXXXXVII MMMMCML MMDCCCLXXVIII DXXI MCCCXLI DCLXXXXI MMCCCLXXXXVIII MDCCCCLXXVIII MMMMDXXV MMMDCXXXVI MMMCMXCVII MMXVIIII MMMDCCLXXIV MMMCXXV DXXXVIII MMMMCLXVI MDXII MMCCCLXX CCLXXI DXIV MMMCLIII DLII MMMCCCXLIX MMCCCCXXVI MMDCXLIII MXXXXII CCCLXXXV MDCLXXVI MDCXII MMMCCCLXXXIII MMDCCCCLXXXII MMMMCCCLXXXV MMDCXXI DCCCXXX MMMDCCCCLII MMMDCCXXII MMMMCDXCVIII MMMCCLXVIIII MMXXV MMMMCDXIX MMMMCCCX MMMCCCCLXVI MMMMDCLXXVIIII MMMMDCXXXXIV MMMCMXII MMMMXXXIII MMMMDLXXXII DCCCLIV MDXVIIII MMMCLXXXXV CCCCXX MMDIX MMCMLXXXVIII DCCXLIII DCCLX D MCCCVII MMMMCCCLXXXIII MDCCCLXXIIII MMMDCCCCLXXXVII MMMMCCCVII MMMDCCLXXXXVI CDXXXIV MCCLXVIII MMMMDLX MMMMDXII MMMMCCCCLIIII MCMLXXXXIII MMMMDCCCIII MMDCLXXXIII MDCCCXXXXIV XXXXVII MMMDCCCXXXII MMMDCCCXLII MCXXXV MDCXXVIIII MMMCXXXXIIII MMMMCDXVII MMMDXXIII MMMMCCCCLXI DCLXXXXVIIII LXXXXI CXXXIII MCDX MCCLVII MDCXXXXII MMMCXXIV MMMMLXXXX MMDCCCCXLV MLXXX MMDCCCCLX MCDLIII MMMCCCLXVII MMMMCCCLXXIV MMMDCVIII DCCCCXXIII MMXCI MMDCCIV MMMMDCCCXXXIV CCCLXXI MCCLXXXII MCMIII CCXXXI DCCXXXVIII MMMMDCCXLVIIII MMMMCMXXXV DCCCLXXV DCCXCI MMMMDVII MMMMDCCCLXVIIII CCCXCV MMMMDCCXX MCCCCII MMMCCCXC MMMCCCII MMDCCLXXVII MMDCLIIII CCXLIII MMMDCXVIII MMMCCCIX MCXV MMCCXXV MLXXIIII MDCCXXVI MMMCCCXX MMDLXX MMCCCCVI MMDCCXX MMMMDCCCCXCV MDCCCXXXII MMMMDCCCCXXXX XCIV MMCCCCLX MMXVII MLXXI MMMDXXVIII MDCCCCII MMMCMLVII MMCLXXXXVIII MDCCCCLV MCCCCLXXIIII MCCCLII MCDXLVI MMMMDXVIII DCCLXXXIX MMMDCCLXIV MDCCCCXLIII CLXXXXV MMMMCCXXXVI MMMDCCCXXI MMMMCDLXXVII MCDLIII MMCCXLVI DCCCLV MCDLXX DCLXXVIII MMDCXXXIX MMMMDCLX MMDCCLI MMCXXXV MMMCCXII MMMMCMLXII MMMMCCV MCCCCLXIX MMMMCCIII CLXVII MCCCLXXXXIIII MMMMDCVIII MMDCCCLXI MMLXXIX CMLXIX MMDCCCXLVIIII DCLXII MMMCCCXLVII MDCCCXXXV MMMMDCCXCVI DCXXX XXVI MMLXIX MMCXI DCXXXVII MMMMCCCXXXXVIII MMMMDCLXI MMMMDCLXXIIII MMMMVIII MMMMDCCCLXII MDCXCI MMCCCXXIIII CCCCXXXXV MMDCCCXXI MCVI MMDCCLXVIII MMMMCXL MLXVIII CMXXVII CCCLV MDCCLXXXIX MMMCCCCLXV MMDCCLXII MDLXVI MMMCCCXVIII MMMMCCLXXXI MMCXXVII MMDCCCLXVIII MMMCXCII MMMMDCLVIII MMMMDCCCXXXXII MMDCCCCLXXXXVI MDCCXL MDCCLVII MMMMDCCCLXXXVI DCCXXXIII MMMMDCCCCLXXXV MMCCXXXXVIII MMMCCLXXVIII MMMDCLXXVIII DCCCI MMMMLXXXXVIIII MMMCCCCLXXII MMCLXXXVII CCLXVI MCDXLIII MMCXXVIII MDXIV CCCXCVIII CLXXVIII MMCXXXXVIIII MMMDCLXXXIV CMLVIII MCDLIX MMMMDCCCXXXII MMMMDCXXXIIII MDCXXI MMMDCXLV MCLXXVIII MCDXXII IV MCDLXXXXIII MMMMDCCLXV CCLI MMMMDCCCXXXVIII DCLXII MCCCLXVII MMMMDCCCXXXVI MMDCCXLI MLXI MMMCDLXVIII MCCCCXCIII XXXIII MMMDCLXIII MMMMDCL DCCCXXXXIIII MMDLVII DXXXVII MCCCCXXIIII MCVII MMMMDCCXL MMMMCXXXXIIII MCCCCXXIV MMCLXVIII MMXCIII MDCCLXXX MCCCLIIII MMDCLXXI MXI MCMLIV MMMCCIIII DCCLXXXVIIII MDCLIV MMMDCXIX CMLXXXI DCCLXXXVII XXV MMMXXXVI MDVIIII CLXIII MMMCDLVIIII MMCCCCVII MMMLXX MXXXXII MMMMCCCLXVIII MMDCCCXXVIII MMMMDCXXXXI MMMMDCCCXXXXV MMMXV MMMMCCXVIIII MMDCCXIIII MMMXXVII MDCCLVIIII MMCXXIIII MCCCLXXIV DCLVIII MMMLVII MMMCXLV MMXCVII MMMCCCLXXXVII MMMMCCXXII DXII MMMDLV MCCCLXXVIII MMMCLIIII MMMMCLXXXX MMMCLXXXIIII MDCXXIII MMMMCCXVI MMMMDLXXXIII MMMDXXXXIII MMMMCCCCLV MMMDLXXXI MMMCCLXXVI MMMMXX MMMMDLVI MCCCCLXXX MMMXXII MMXXII MMDCCCCXXXI MMMDXXV MMMDCLXXXVIIII MMMDLXXXXVII MDLXIIII CMXC MMMXXXVIII MDLXXXVIII MCCCLXXVI MMCDLIX MMDCCCXVIII MDCCCXXXXVI MMMMCMIV MMMMDCIIII MMCCXXXV XXXXVI MMMMCCXVII MMCCXXIV MCMLVIIII MLXXXIX MMMMLXXXIX CLXXXXIX MMMDCCCCLVIII MMMMCCLXXIII MCCCC DCCCLIX MMMCCCLXXXII MMMCCLXVIIII MCLXXXV CDLXXXVII DCVI MMX MMCCXIII MMMMDCXX MMMMXXVIII DCCCLXII MMMMCCCXLIII MMMMCLXV DXCI MMMMCLXXX MMMDCCXXXXI MMMMXXXXVI DCLX MMMCCCXI MCCLXXX MMCDLXXII DCCLXXI MMMCCCXXXVI MCCCCLXXXVIIII CDLVIII DCCLVI MMMMDCXXXVIII MMCCCLXXXIII MMMMDCCLXXV MMMXXXVI CCCLXXXXIX CV CCCCXIII CCCCXVI MDCCCLXXXIIII MMDCCLXXXII MMMMCCCCLXXXI MXXV MMCCCLXXVIIII MMMCCXII MMMMCCXXXIII MMCCCLXXXVI MMMDCCCLVIIII MCCXXXVII MDCLXXV XXXV MMDLI MMMCCXXX MMMMCXXXXV CCCCLIX MMMMDCCCLXXIII MMCCCXVII DCCCXVI MMMCCCXXXXV MDCCCCXCV CLXXXI MMMMDCCLXX MMMDCCCIII MMCLXXVII MMMDCCXXIX MMDCCCXCIIII MMMCDXXIIII MMMMXXVIII MMMMDCCCCLXVIII MDCCCXX MMMMCDXXI MMMMDLXXXIX CCXVI MDVIII MMCCLXXI MMMDCCCLXXI MMMCCCLXXVI MMCCLXI MMMMDCCCXXXIV DLXXXVI MMMMDXXXII MMMXXIIII MMMMCDIV MMMMCCCXLVIII MMMMCXXXVIII MMMCCCLXVI MDCCXVIII MMCXX CCCLIX MMMMDCCLXXII MDCCCLXXV MMMMDCCCXXIV DCCCXXXXVIII MMMDCCCCXXXVIIII MMMMCCXXXV MDCLXXXIII MMCCLXXXIV MCLXXXXIIII DXXXXIII MCCCXXXXVIII MMCLXXIX MMMMCCLXIV MXXII MMMCXIX MDCXXXVII MMDCCVI MCLXXXXVIII MMMCXVI MCCCLX MMMCDX CCLXVIIII MMMCCLX MCXXVIII LXXXII MCCCCLXXXI MMMI MMMCCCLXIV MMMCCCXXVIIII CXXXVIII MMCCCXX MMMCCXXVIIII MCCLXVI MMMCCCCXXXXVI MMDCCXCIX MCMLXXI MMCCLXVIII CDLXXXXIII MMMMDCCXXII MMMMDCCLXXXVII MMMDCCLIV MMCCLXIII MDXXXVII DCCXXXIIII MCII MMMDCCCLXXI MMMLXXIII MDCCCLIII MMXXXVIII MDCCXVIIII MDCCCCXXXVII MMCCCXVI MCMXXII MMMCCCLVIII MMMMDCCCXX MCXXIII MMMDLXI MMMMDXXII MDCCCX MMDXCVIIII MMMDCCCCVIII MMMMDCCCCXXXXVI MMDCCCXXXV MMCXCIV MCMLXXXXIII MMMCCCLXXVI MMMMDCLXXXV CMLXIX DCXCII MMXXVIII MMMMCCCXXX XXXXVIIII
MMMMDCLXXII MMDCCCLXXXIII MMMDLXVIIII MMMMDXCV DCCCLXXII MMCCCVI MMMCDLXXXVII MMMMCCXXI MMMCCXX MMMMDCCCLXXIII MMMCCXXXVII MMCCCLXXXXIX MDCCCXXIIII MMCXCVI CCXCVIII MMMCCCXXXII MDCCXXX MMMDCCCL MMMMCCLXXXVI MMDCCCXCVI MMMDCII MMMCCXII MMMMDCCCCI MMDCCCXCII MDCXX CMLXXXVII MMMXXI MMMMCCCXIV MLXXII MCCLXXVIIII MMMMCCXXXXI MMDCCCLXXII MMMMXXXI MMMDCCLXXX MMDCCCLXXIX MMMMLXXXV MCXXI MDCCCXXXVII MMCCCLXVII MCDXXXV CCXXXIII CMXX MMMCLXIV MCCCLXXXVI DCCCXCVIII MMMDCCCCXXXIV CDXVIIII MMCCXXXV MDCCCXXXII MMMMD MMDCCLXIX MMMMCCCLXXXXVI MMDCCXLII MMMDCCCVIIII DCCLXXXIIII MDCCCCXXXII MMCXXVII DCCCXXX CCLXIX MMMXI MMMMCMLXXXXVIII MMMMDLXXXVII MMMMDCCCLX MMCCLIV CMIX MMDCCCLXXXIIII CLXXXII MMCCCCXXXXV MMMMDLXXXVIIII MMMDCCCXXI MMDCCCCLXXVI MCCCCLXX MMCDLVIIII MMMDCCCLIX MMMMCCCCXIX MMMDCCCLXXV XXXI CDLXXXIII MMMCXV MMDCCLXIII MMDXXX MMMMCCCLVII MMMDCI MMMMCDLXXXIIII MMMMCCCXVI CCCLXXXVIII MMMMCML MMMMXXIV MMMCCCCXXX DCCX MMMCCLX MMDXXXIII CCCLXIII MMDCCXIII MMMCCCXLIV CLXXXXI CXVI MMMMCXXXIII CLXX DCCCXVIII MLXVII DLXXXX MMDXXI MMMMDLXXXXVIII MXXII LXI DCCCCXLIII MMMMDV MMMMXXXIV MDCCCLVIII MMMCCLXXII MMMMDCCXXXVI MMMMLXXXIX MDCCCLXXXI MMMMDCCCXV MMMMCCCCXI MMMMCCCLIII MDCCCLXXI MMCCCCXI MLXV MMCDLXII MMMMDXXXXII MMMMDCCCXL MMMMCMLVI CCLXXXIV MMMDCCLXXXVI MMCLII MMMCCCCXV MMLXXXIII MMMV MMMV DCCLXII MMDCCCCXVI MMDCXLVIII CCLIIII CCCXXV MMDCCLXXXVIIII MMMMDCLXXVIII MMMMDCCCXCI MMMMCCCXX MMCCXLV MMMDCCCLXIX MMCCLXIIII MMMDCCCXLIX MMMMCCCLXIX CMLXXXXI MCMLXXXIX MMCDLXI MMDCLXXVIII MMMMDCCLXI MCDXXV DL CCCLXXII MXVIIII MCCCCLXVIII CIII MMMDCCLXXIIII MMMDVIII MMMMCCCLXXXXVII MMDXXVII MMDCCLXXXXV MMMMCXLVI MMMDCCLXXXII MMMDXXXVI MCXXII CLI DCLXXXIX MMMCLI MDCLXIII MMMMDCCXCVII MMCCCLXXXV MMMDCXXVIII MMMCDLX MMMCMLII MMMIV MMMMDCCCLVIII MMMDLXXXVIII MCXXIV MMMMLXXVI CLXXIX MMMCCCCXXVIIII DCCLXXXV MMMDCCCVI LI CLXXXVI MMMMCCCLXXVI MCCCLXVI CCXXXIX MMDXXXXI MMDCCCXLI DCCCLXXXVIII MMMMDCCCIV MDCCCCXV MMCMVI MMMMCMLXXXXV MMDCCLVI MMMMCCXLVIII DCCCCIIII MMCCCCIII MMMDCCLXXXVIIII MDCCCLXXXXV DVII MMMV DCXXV MMDCCCXCV DCVIII MMCDLXVI MCXXVIII MDCCXCVIII MMDCLX MMMDCCLXIV MMCDLXXVII MMDLXXXIIII MMMMCCCXXII MMMDCCCXLIIII DCCCCLXVII MMMCLXXXXIII MCCXV MMMMDCXI MMMMDCLXXXXV MMMCCCLII MMCMIX MMDCCXXV MMDLXXXVI MMMMDCXXVIIII DCCCCXXXVIIII MMCCXXXIIII MMDCCLXXVIII MDCCLXVIIII MMCCLXXXV MMMMDCCCLXXXVIII MMCMXCI MDXLII MMMMDCCXIV MMMMLI DXXXXIII MMDCCXI MMMMCCLXXXIII MMMDCCCLXXIII MDCLVII MMCD MCCCXXVII MMMMDCCIIII MMMDCCXLVI MMMCLXXXVII MMMCCVIIII MCCCCLXXIX DL DCCCLXXVI MMDXCI MMMMDCCCCXXXVI MMCII MMMDCCCXXXXV MMMCDXLV MMDCXXXXIV MMD MDCCCLXXXX MMDCXLIII MMCCXXXII MMDCXXXXVIIII DCCCLXXI MDXCVIIII MMMMCCLXXVIII MDCLVIIII MMMCCCLXXXIX MDCLXXXV MDLVIII MMMMCCVII MMMMDCXIV MMMCCCLXIIII MMIIII MMMMCCCLXXIII CCIII MMMCCLV MMMDXIII MMMCCCXC MMMDCCCXXI MMMMCCCCXXXII CCCLVI MMMCCCLXXXVI MXVIIII MMMCCCCXIIII CLXVII MMMCCLXX CCCCLXIV MMXXXXII MMMMCCLXXXX MXL CCXVI CCCCLVIIII MMCCCII MCCCLVIII MMMMCCCX MCDLXXXXIV MDCCCXIII MMDCCCXL MMMMCCCXXIII DXXXIV CVI MMMMDCLXXX DCCCVII MMCMLXIIII MMMDCCCXXXIII DCCC MDIII MMCCCLXVI MMMCCCCLXXI MMDCCCCXVIII CCXXXVII CCCXXV MDCCCXII MMMCMV MMMMCMXV MMMMDCXCI DXXI MMCCXLVIIII MMMMCMLII MDLXXX MMDCLXVI CXXI MMMDCCCLIIII MMMCXXI MCCIII MMDCXXXXI CCXCII MMMMDXXXV MMMCCCLXV MMMMDLXV MMMCCCCXXXII MMMCCCVIII DCCCCLXXXXII MMCLXIV MMMMCXI MLXXXXVII MMMCDXXXVIII MDXXII MLV MMMMDLXVI MMMCXII XXXIII MMMMDCCCXXVI MMMLXVIIII MMMLX MMMCDLXVII MDCCCLVII MMCXXXVII MDCCCCXXX MMDCCCLXIII MMMMDCXLIX MMMMCMXLVIII DCCCLXXVIIII MDCCCLIII MMMCMLXI MMMMCCLXI MMDCCCLIII MMMDCCCVI MMDXXXXIX MMCLXXXXV MMDXXX MMMXIII DCLXXIX DCCLXII MMMMDCCLXVIII MDCCXXXXIII CCXXXII MMMMDCXXV MMMCCCXXVIII MDCVIII MMMCLXXXXIIII CLXXXI MDCCCCXXXIII MMMMDCXXX MMMDCXXIV MMMCCXXXVII MCCCXXXXIIII CXVIII MMDCCCCIV MMMMCDLXXV MMMDLXIV MDXCIII MCCLXXXI MMMDCCCXXIV MCXLIII MMMDCCCI MCCLXXX CCXV MMDCCLXXI MMDLXXXIII MMMMDCXVII MMMCMLXV MCLXVIII MMMMCCLXXVI MMMDCCLXVIIII MMMMDCCCIX DLXXXXIX DCCCXXII MMMMIII MMMMCCCLXXVI DCCCXCIII DXXXI MXXXIIII CCXII MMMDCCLXXXIIII MMMCXX MMMCMXXVII DCCCXXXX MMCDXXXVIIII MMMMDCCXVIII LV MMMDCCCCVI MCCCII MMCMLXVIIII MDCCXI MMMMDLXVII MMCCCCLXI MMDCCV MMMCCCXXXIIII MMMMDI MMMDCCCXCV MMDCCLXXXXI MMMDXXVI MMMDCCCLVI MMDCXXX MCCCVII MMMMCCCLXII MMMMXXV MMCMXXV MMLVI MMDXXX MMMMCVII MDC MCCIII MMMMDCC MMCCLXXV MMDCCCXXXXVI MMMMCCCLXV CDXIIII MLXIIII CCV MMMCMXXXI CCCCLXVI MDXXXII MMMMCCCLVIII MMV MMMCLII MCMLI MMDCCXX MMMMCCCCXXXVI MCCLXXXI MMMCMVI DCCXXX MMMMCCCLXV DCCCXI MMMMDCCCXIV CCCXXI MMDLXXV CCCCLXXXX MCCCLXXXXII MMDCIX DCCXLIIII DXIV MMMMCLII CDLXI MMMCXXVII MMMMDCCCCLXIII MMMDCLIIII MCCCCXXXXII MMCCCLX CCCCLIII MDCCLXXVI MCMXXIII MMMMDLXXVIII MMDCCCCLX MMMCCCLXXXX MMMCDXXVI MMMDLVIII CCCLXI MMMMDCXXII MMDCCCXXI MMDCCXIII MMMMCLXXXVI MDCCCCXXVI MDV MMDCCCCLXXVI MMMMCCXXXVII MMMDCCLXXVIIII MMMCCCCLXVII DCCXLI MMCLXXXVIII MCCXXXVI MMDCXLVIII MMMMCXXXII MMMMDCCLXVI MMMMCMLI MMMMCLXV MMMMDCCCXCIV MCCLXXVII LXXVIIII DCCLII MMMCCCXCVI MMMCLV MMDCCCXXXXVIII DCCCXV MXC MMDCCLXXXXVII MMMMCML MMDCCCLXXVIII DXXI MCCCXLI DCLXXXXI MMCCCLXXXXVIII MDCCCCLXXVIII MMMMDXXV MMMDCXXXVI MMMCMXCVII MMXVIIII MMMDCCLXXIV MMMCXXV DXXXVIII MMMMCLXVI MDXII MMCCCLXX CCLXXI DXIV MMMCLIII DLII MMMCCCXLIX MMCCCCXXVI MMDCXLIII MXXXXII CCCLXXXV MDCLXXVI MDCXII MMMCCCLXXXIII MMDCCCCLXXXII MMMMCCCLXXXV MMDCXXI DCCCXXX MMMDCCCCLII MMMDCCXXII MMMMCDXCVIII MMMCCLXVIIII MMXXV MMMMCDXIX MMMMCCCX MMMCCCCLXVI MMMMDCLXXVIIII MMMMDCXXXXIV MMMCMXII MMMMXXXIII MMMMDLXXXII DCCCLIV MDXVIIII MMMCLXXXXV CCCCXX MMDIX MMCMLXXXVIII DCCXLIII DCCLX D MCCCVII MMMMCCCLXXXIII MDCCCLXXIIII MMMDCCCCLXXXVII MMMMCCCVII MMMDCCLXXXXVI CDXXXIV MCCLXVIII MMMMDLX MMMMDXII MMMMCCCCLIIII MCMLXXXXIII MMMMDCCCIII MMDCLXXXIII MDCCCXXXXIV XXXXVII MMMDCCCXXXII MMMDCCCXLII MCXXXV MDCXXVIIII MMMCXXXXIIII MMMMCDXVII MMMDXXIII MMMMCCCCLXI DCLXXXXVIIII LXXXXI CXXXIII MCDX MCCLVII MDCXXXXII MMMCXXIV MMMMLXXXX MMDCCCCXLV MLXXX MMDCCCCLX MCDLIII MMMCCCLXVII MMMMCCCLXXIV MMMDCVIII DCCCCXXIII MMXCI MMDCCIV MMMMDCCCXXXIV CCCLXXI MCCLXXXII MCMIII CCXXXI DCCXXXVIII MMMMDCCXLVIIII MMMMCMXXXV DCCCLXXV DCCXCI MMMMDVII MMMMDCCCLXVIIII CCCXCV MMMMDCCXX MCCCCII MMMCCCXC MMMCCCII MMDCCLXXVII MMDCLIIII CCXLIII MMMDCXVIII MMMCCCIX MCXV MMCCXXV MLXXIIII MDCCXXVI MMMCCCXX MMDLXX MMCCCCVI MMDCCXX MMMMDCCCCXCV MDCCCXXXII MMMMDCCCCXXXX XCIV MMCCCCLX MMXVII MLXXI MMMDXXVIII MDCCCCII MMMCMLVII MMCLXXXXVIII MDCCCCLV MCCCCLXXIIII MCCCLII MCDXLVI MMMMDXVIII DCCLXXXIX MMMDCCLXIV MDCCCCXLIII CLXXXXV MMMMCCXXXVI MMMDCCCXXI MMMMCDLXXVII MCDLIII MMCCXLVI DCCCLV MCDLXX DCLXXVIII MMDCXXXIX MMMMDCLX MMDCCLI MMCXXXV MMMCCXII MMMMCMLXII MMMMCCV MCCCCLXIX MMMMCCIII CLXVII MCCCLXXXXIIII MMMMDCVIII MMDCCCLXI MMLXXIX CMLXIX MMDCCCXLVIIII DCLXII MMMCCCXLVII MDCCCXXXV MMMMDCCXCVI DCXXX XXVI MMLXIX MMCXI DCXXXVII MMMMCCCXXXXVIII MMMMDCLXI MMMMDCLXXIIII MMMMVIII MMMMDCCCLXII MDCXCI MMCCCXXIIII CCCCXXXXV MMDCCCXXI MCVI MMDCCLXVIII MMMMCXL MLXVIII CMXXVII CCCLV MDCCLXXXIX MMMCCCCLXV MMDCCLXII MDLXVI MMMCCCXVIII MMMMCCLXXXI MMCXXVII MMDCCCLXVIII MMMCXCII MMMMDCLVIII MMMMDCCCXXXXII MMDCCCCLXXXXVI MDCCXL MDCCLVII MMMMDCCCLXXXVI DCCXXXIII MMMMDCCCCLXXXV MMCCXXXXVIII MMMCCLXXVIII MMMDCLXXVIII DCCCI MMMMLXXXXVIIII MMMCCCCLXXII MMCLXXXVII CCLXVI MCDXLIII MMCXXVIII MDXIV CCCXCVIII CLXXVIII MMCXXXXVIIII MMMDCLXXXIV CMLVIII MCDLIX MMMMDCCCXXXII MMMMDCXXXIIII MDCXXI MMMDCXLV MCLXXVIII MCDXXII IV MCDLXXXXIII MMMMDCCLXV CCLI MMMMDCCCXXXVIII DCLXII MCCCLXVII MMMMDCCCXXXVI MMDCCXLI MLXI MMMCDLXVIII MCCCCXCIII XXXIII MMMDCLXIII MMMMDCL DCCCXXXXIIII MMDLVII DXXXVII MCCCCXXIIII MCVII MMMMDCCXL MMMMCXXXXIIII MCCCCXXIV MMCLXVIII MMXCIII MDCCLXXX MCCCLIIII MMDCLXXI MXI MCMLIV MMMCCIIII DCCLXXXVIIII MDCLIV MMMDCXIX CMLXXXI DCCLXXXVII XXV MMMXXXVI MDVIIII CLXIII MMMCDLVIIII MMCCCCVII MMMLXX MXXXXII MMMMCCCLXVIII MMDCCCXXVIII MMMMDCXXXXI MMMMDCCCXXXXV MMMXV MMMMCCXVIIII MMDCCXIIII MMMXXVII MDCCLVIIII MMCXXIIII MCCCLXXIV DCLVIII MMMLVII MMMCXLV MMXCVII MMMCCCLXXXVII MMMMCCXXII DXII MMMDLV MCCCLXXVIII MMMCLIIII MMMMCLXXXX MMMCLXXXIIII MDCXXIII MMMMCCXVI MMMMDLXXXIII MMMDXXXXIII MMMMCCCCLV MMMDLXXXI MMMCCLXXVI MMMMXX MMMMDLVI MCCCCLXXX MMMXXII MMXXII MMDCCCCXXXI MMMDXXV MMMDCLXXXVIIII MMMDLXXXXVII MDLXIIII CMXC MMMXXXVIII MDLXXXVIII MCCCLXXVI MMCDLIX MMDCCCXVIII MDCCCXXXXVI MMMMCMIV MMMMDCIIII MMCCXXXV XXXXVI MMMMCCXVII MMCCXXIV MCMLVIIII MLXXXIX MMMMLXXXIX CLXXXXIX MMMDCCCCLVIII MMMMCCLXXIII MCCCC DCCCLIX MMMCCCLXXXII MMMCCLXVIIII MCLXXXV CDLXXXVII DCVI MMX MMCCXIII MMMMDCXX MMMMXXVIII DCCCLXII MMMMCCCXLIII MMMMCLXV DXCI MMMMCLXXX MMMDCCXXXXI MMMMXXXXVI DCLX MMMCCCXI MCCLXXX MMCDLXXII DCCLXXI MMMCCCXXXVI MCCCCLXXXVIIII CDLVIII DCCLVI MMMMDCXXXVIII MMCCCLXXXIII MMMMDCCLXXV MMMXXXVI CCCLXXXXIX CV CCCCXIII CCCCXVI MDCCCLXXXIIII MMDCCLXXXII MMMMCCCCLXXXI MXXV MMCCCLXXVIIII MMMCCXII MMMMCCXXXIII MMCCCLXXXVI MMMDCCCLVIIII MCCXXXVII MDCLXXV XXXV MMDLI MMMCCXXX MMMMCXXXXV CCCCLIX MMMMDCCCLXXIII MMCCCXVII DCCCXVI MMMCCCXXXXV MDCCCCXCV CLXXXI MMMMDCCLXX MMMDCCCIII MMCLXXVII MMMDCCXXIX MMDCCCXCIIII MMMCDXXIIII MMMMXXVIII MMMMDCCCCLXVIII MDCCCXX MMMMCDXXI MMMMDLXXXIX CCXVI MDVIII MMCCLXXI MMMDCCCLXXI MMMCCCLXXVI MMCCLXI MMMMDCCCXXXIV DLXXXVI MMMMDXXXII MMMXXIIII MMMMCDIV MMMMCCCXLVIII MMMMCXXXVIII MMMCCCLXVI MDCCXVIII MMCXX CCCLIX MMMMDCCLXXII MDCCCLXXV MMMMDCCCXXIV DCCCXXXXVIII MMMDCCCCXXXVIIII MMMMCCXXXV MDCLXXXIII MMCCLXXXIV MCLXXXXIIII DXXXXIII MCCCXXXXVIII MMCLXXIX MMMMCCLXIV MXXII MMMCXIX MDCXXXVII MMDCCVI MCLXXXXVIII MMMCXVI MCCCLX MMMCDX CCLXVIIII MMMCCLX MCXXVIII LXXXII MCCCCLXXXI MMMI MMMCCCLXIV MMMCCCXXVIIII CXXXVIII MMCCCXX MMMCCXXVIIII MCCLXVI MMMCCCCXXXXVI MMDCCXCIX MCMLXXI MMCCLXVIII CDLXXXXIII MMMMDCCXXII MMMMDCCLXXXVII MMMDCCLIV MMCCLXIII MDXXXVII DCCXXXIIII MCII MMMDCCCLXXI MMMLXXIII MDCCCLIII MMXXXVIII MDCCXVIIII MDCCCCXXXVII MMCCCXVI MCMXXII MMMCCCLVIII MMMMDCCCXX MCXXIII MMMDLXI MMMMDXXII MDCCCX MMDXCVIIII MMMDCCCCVIII MMMMDCCCCXXXXVI MMDCCCXXXV MMCXCIV MCMLXXXXIII MMMCCCLXXVI MMMMDCLXXXV CMLXIX DCXCII MMXXVIII MMMMCCCXXX XXXXVIIII
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 58:https://projecteuler.net/problem=58 Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal ,but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%? Solution: We have to find an odd length side for which square falls below 10%. With every layer we add 4 elements are being added to the diagonals ,lets say we have a square spiral of odd length with side length j, then if we move from j to j+2, we are adding j*j+j+1,j*j+2*(j+1),j*j+3*(j+1) j*j+4*(j+1). Out of these 4 only the first three can become prime because last one reduces to (j+2)*(j+2). So we check individually each one of these before incrementing our count of current primes. """ import math def is_prime(number: int) -> bool: """Checks to see if a number is a prime in O(sqrt(n)). A number is prime if it has exactly two factors: 1 and itself. >>> is_prime(0) False >>> is_prime(1) False >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(87) False >>> is_prime(563) True >>> is_prime(2999) True >>> is_prime(67483) False """ if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(number) + 1), 6): if number % i == 0 or number % (i + 2) == 0: return False return True def solution(ratio: float = 0.1) -> int: """ Returns the side length of the square spiral of odd length greater than 1 for which the ratio of primes along both diagonals first falls below the given ratio. >>> solution(.5) 11 >>> solution(.2) 309 >>> solution(.111) 11317 """ j = 3 primes = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1): primes += is_prime(i) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
""" Project Euler Problem 58:https://projecteuler.net/problem=58 Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal ,but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%? Solution: We have to find an odd length side for which square falls below 10%. With every layer we add 4 elements are being added to the diagonals ,lets say we have a square spiral of odd length with side length j, then if we move from j to j+2, we are adding j*j+j+1,j*j+2*(j+1),j*j+3*(j+1) j*j+4*(j+1). Out of these 4 only the first three can become prime because last one reduces to (j+2)*(j+2). So we check individually each one of these before incrementing our count of current primes. """ import math def is_prime(number: int) -> bool: """Checks to see if a number is a prime in O(sqrt(n)). A number is prime if it has exactly two factors: 1 and itself. >>> is_prime(0) False >>> is_prime(1) False >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(87) False >>> is_prime(563) True >>> is_prime(2999) True >>> is_prime(67483) False """ if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(number) + 1), 6): if number % i == 0 or number % (i + 2) == 0: return False return True def solution(ratio: float = 0.1) -> int: """ Returns the side length of the square spiral of odd length greater than 1 for which the ratio of primes along both diagonals first falls below the given ratio. >>> solution(.5) 11 >>> solution(.2) 309 >>> solution(.111) 11317 """ j = 3 primes = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1): primes += is_prime(i) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# pack-refs with: peeled fully-peeled sorted 8668f5792dc673f085966f6f90c9c896081f22e9 refs/remotes/origin/Fewer-forward-propogations-to-speed-tests c1fd8cb9e667ab59ca4446d0dcf216d1696a010c refs/remotes/origin/Python-3.12-on-Debian-bookworm e093689124ab5f4a0938e4801abad0dbeb5bf881 refs/remotes/origin/cclauss-patch-1 04b896124ac5e76d5d5ed4ded91302557b1bc081 refs/remotes/origin/fix-maclaurin_series-on-Python3.12 672d0b39404444787f1ca3b5a3b6fd29a5a75447 refs/remotes/origin/fuzzy_operations.py-on-Python-3.12 9caf4784aada17dc75348f77cc8c356df503c0f3 refs/remotes/origin/master 01dc64a3a2f397872c759c4cb575ad2be5856d6a refs/remotes/origin/quantum_random.py.disabled
# pack-refs with: peeled fully-peeled sorted 8668f5792dc673f085966f6f90c9c896081f22e9 refs/remotes/origin/Fewer-forward-propogations-to-speed-tests c1fd8cb9e667ab59ca4446d0dcf216d1696a010c refs/remotes/origin/Python-3.12-on-Debian-bookworm e093689124ab5f4a0938e4801abad0dbeb5bf881 refs/remotes/origin/cclauss-patch-1 04b896124ac5e76d5d5ed4ded91302557b1bc081 refs/remotes/origin/fix-maclaurin_series-on-Python3.12 672d0b39404444787f1ca3b5a3b6fd29a5a75447 refs/remotes/origin/fuzzy_operations.py-on-Python-3.12 9caf4784aada17dc75348f77cc8c356df503c0f3 refs/remotes/origin/master 01dc64a3a2f397872c759c4cb575ad2be5856d6a refs/remotes/origin/quantum_random.py.disabled
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Reference: https://en.wikipedia.org/wiki/Gaussian_function """ from numpy import exp, pi, sqrt def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int: """ >>> gaussian(1) 0.24197072451914337 >>> gaussian(24) 3.342714441794458e-126 >>> gaussian(1, 4, 2) 0.06475879783294587 >>> gaussian(1, 5, 3) 0.05467002489199788 Supports NumPy Arrays Use numpy.meshgrid with this to generate gaussian blur on images. >>> import numpy as np >>> x = np.arange(15) >>> gaussian(x) array([3.98942280e-01, 2.41970725e-01, 5.39909665e-02, 4.43184841e-03, 1.33830226e-04, 1.48671951e-06, 6.07588285e-09, 9.13472041e-12, 5.05227108e-15, 1.02797736e-18, 7.69459863e-23, 2.11881925e-27, 2.14638374e-32, 7.99882776e-38, 1.09660656e-43]) >>> gaussian(15) 5.530709549844416e-50 >>> gaussian([1,2, 'string']) Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: 'list' and 'float' >>> gaussian('hello world') Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: 'str' and 'float' >>> gaussian(10**234) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... OverflowError: (34, 'Result too large') >>> gaussian(10**-326) 0.3989422804014327 >>> gaussian(2523, mu=234234, sigma=3425) 0.0 """ return 1 / sqrt(2 * pi * sigma**2) * exp(-((x - mu) ** 2) / (2 * sigma**2)) if __name__ == "__main__": import doctest doctest.testmod()
""" Reference: https://en.wikipedia.org/wiki/Gaussian_function """ from numpy import exp, pi, sqrt def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int: """ >>> gaussian(1) 0.24197072451914337 >>> gaussian(24) 3.342714441794458e-126 >>> gaussian(1, 4, 2) 0.06475879783294587 >>> gaussian(1, 5, 3) 0.05467002489199788 Supports NumPy Arrays Use numpy.meshgrid with this to generate gaussian blur on images. >>> import numpy as np >>> x = np.arange(15) >>> gaussian(x) array([3.98942280e-01, 2.41970725e-01, 5.39909665e-02, 4.43184841e-03, 1.33830226e-04, 1.48671951e-06, 6.07588285e-09, 9.13472041e-12, 5.05227108e-15, 1.02797736e-18, 7.69459863e-23, 2.11881925e-27, 2.14638374e-32, 7.99882776e-38, 1.09660656e-43]) >>> gaussian(15) 5.530709549844416e-50 >>> gaussian([1,2, 'string']) Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: 'list' and 'float' >>> gaussian('hello world') Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: 'str' and 'float' >>> gaussian(10**234) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... OverflowError: (34, 'Result too large') >>> gaussian(10**-326) 0.3989422804014327 >>> gaussian(2523, mu=234234, sigma=3425) 0.0 """ return 1 / sqrt(2 * pi * sigma**2) * exp(-((x - mu) ** 2) / (2 * sigma**2)) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# A naive recursive implementation of 0-1 Knapsack Problem This overview is taken from: https://en.wikipedia.org/wiki/Knapsack_problem --- ## Overview The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively. The knapsack problem has been studied for more than a century, with early works dating as far back as 1897 The name "knapsack problem" dates back to the early works of mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage. --- ## Documentation This module uses docstrings to enable the use of Python's in-built `help(...)` function. For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`. --- ## Usage Import the module `knapsack.py` from the **.** directory into your project. --- ## Tests `.` contains Python unit tests which can be run with `python3 -m unittest -v`.
# A naive recursive implementation of 0-1 Knapsack Problem This overview is taken from: https://en.wikipedia.org/wiki/Knapsack_problem --- ## Overview The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively. The knapsack problem has been studied for more than a century, with early works dating as far back as 1897 The name "knapsack problem" dates back to the early works of mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage. --- ## Documentation This module uses docstrings to enable the use of Python's in-built `help(...)` function. For instance, try `help(Vector)`, `help(unit_basis_vector)`, and `help(CLASSNAME.METHODNAME)`. --- ## Usage Import the module `knapsack.py` from the **.** directory into your project. --- ## Tests `.` contains Python unit tests which can be run with `python3 -m unittest -v`.
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,558
Fix doctest tracebacks
### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
CaedenPH
"2022-10-23T13:52:37Z"
"2022-10-23T14:36:11Z"
0f06a0b5ff43c4cfa98db33926d21ce688b69a10
393b9605259fe19e03bdaac2b0866151e1a2afc2
Fix doctest tracebacks. ### Describe your change: Replace `File "/usr/bin..."` with `...` * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" 2D Transformations are regularly used in Linear Algebra. I have added the codes for reflection, projection, scaling and rotation 2D matrices. scaling(5) = [[5.0, 0.0], [0.0, 5.0]] rotation(45) = [[0.5253219888177297, -0.8509035245341184], [0.8509035245341184, 0.5253219888177297]] projection(45) = [[0.27596319193541496, 0.446998331800279], [0.446998331800279, 0.7240368080645851]] reflection(45) = [[0.05064397763545947, 0.893996663600558], [0.893996663600558, 0.7018070490682369]] """ from math import cos, sin def scaling(scaling_factor: float) -> list[list[float]]: """ >>> scaling(5) [[5.0, 0.0], [0.0, 5.0]] """ scaling_factor = float(scaling_factor) return [[scaling_factor * int(x == y) for x in range(2)] for y in range(2)] def rotation(angle: float) -> list[list[float]]: """ >>> rotation(45) # doctest: +NORMALIZE_WHITESPACE [[0.5253219888177297, -0.8509035245341184], [0.8509035245341184, 0.5253219888177297]] """ c, s = cos(angle), sin(angle) return [[c, -s], [s, c]] def projection(angle: float) -> list[list[float]]: """ >>> projection(45) # doctest: +NORMALIZE_WHITESPACE [[0.27596319193541496, 0.446998331800279], [0.446998331800279, 0.7240368080645851]] """ c, s = cos(angle), sin(angle) cs = c * s return [[c * c, cs], [cs, s * s]] def reflection(angle: float) -> list[list[float]]: """ >>> reflection(45) # doctest: +NORMALIZE_WHITESPACE [[0.05064397763545947, 0.893996663600558], [0.893996663600558, 0.7018070490682369]] """ c, s = cos(angle), sin(angle) cs = c * s return [[2 * c - 1, 2 * cs], [2 * cs, 2 * s - 1]] print(f" {scaling(5) = }") print(f" {rotation(45) = }") print(f"{projection(45) = }") print(f"{reflection(45) = }")
""" 2D Transformations are regularly used in Linear Algebra. I have added the codes for reflection, projection, scaling and rotation 2D matrices. scaling(5) = [[5.0, 0.0], [0.0, 5.0]] rotation(45) = [[0.5253219888177297, -0.8509035245341184], [0.8509035245341184, 0.5253219888177297]] projection(45) = [[0.27596319193541496, 0.446998331800279], [0.446998331800279, 0.7240368080645851]] reflection(45) = [[0.05064397763545947, 0.893996663600558], [0.893996663600558, 0.7018070490682369]] """ from math import cos, sin def scaling(scaling_factor: float) -> list[list[float]]: """ >>> scaling(5) [[5.0, 0.0], [0.0, 5.0]] """ scaling_factor = float(scaling_factor) return [[scaling_factor * int(x == y) for x in range(2)] for y in range(2)] def rotation(angle: float) -> list[list[float]]: """ >>> rotation(45) # doctest: +NORMALIZE_WHITESPACE [[0.5253219888177297, -0.8509035245341184], [0.8509035245341184, 0.5253219888177297]] """ c, s = cos(angle), sin(angle) return [[c, -s], [s, c]] def projection(angle: float) -> list[list[float]]: """ >>> projection(45) # doctest: +NORMALIZE_WHITESPACE [[0.27596319193541496, 0.446998331800279], [0.446998331800279, 0.7240368080645851]] """ c, s = cos(angle), sin(angle) cs = c * s return [[c * c, cs], [cs, s * s]] def reflection(angle: float) -> list[list[float]]: """ >>> reflection(45) # doctest: +NORMALIZE_WHITESPACE [[0.05064397763545947, 0.893996663600558], [0.893996663600558, 0.7018070490682369]] """ c, s = cos(angle), sin(angle) cs = c * s return [[2 * c - 1, 2 * cs], [2 * cs, 2 * s - 1]] print(f" {scaling(5) = }") print(f" {rotation(45) = }") print(f"{projection(45) = }") print(f"{reflection(45) = }")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
## Arithmetic Analysis * [Bisection](arithmetic_analysis/bisection.py) * [Gaussian Elimination](arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](arithmetic_analysis/in_static_equilibrium.py) * [Intersection](arithmetic_analysis/intersection.py) * [Jacobi Iteration Method](arithmetic_analysis/jacobi_iteration_method.py) * [Lu Decomposition](arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](arithmetic_analysis/newton_method.py) * [Newton Raphson](arithmetic_analysis/newton_raphson.py) * [Newton Raphson New](arithmetic_analysis/newton_raphson_new.py) * [Secant Method](arithmetic_analysis/secant_method.py) ## Audio Filters * [Butterworth Filter](audio_filters/butterworth_filter.py) * [Equal Loudness Filter](audio_filters/equal_loudness_filter.py) * [Iir Filter](audio_filters/iir_filter.py) * [Show Response](audio_filters/show_response.py) ## Backtracking * [All Combinations](backtracking/all_combinations.py) * [All Permutations](backtracking/all_permutations.py) * [All Subsequences](backtracking/all_subsequences.py) * [Coloring](backtracking/coloring.py) * [Combination Sum](backtracking/combination_sum.py) * [Hamiltonian Cycle](backtracking/hamiltonian_cycle.py) * [Knight Tour](backtracking/knight_tour.py) * [Minimax](backtracking/minimax.py) * [Minmax](backtracking/minmax.py) * [N Queens](backtracking/n_queens.py) * [N Queens Math](backtracking/n_queens_math.py) * [Rat In Maze](backtracking/rat_in_maze.py) * [Sudoku](backtracking/sudoku.py) * [Sum Of Subsets](backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](bit_manipulation/binary_or_operator.py) * [Binary Shifts](bit_manipulation/binary_shifts.py) * [Binary Twos Complement](bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](bit_manipulation/binary_xor_operator.py) * [Count 1S Brian Kernighan Method](bit_manipulation/count_1s_brian_kernighan_method.py) * [Count Number Of One Bits](bit_manipulation/count_number_of_one_bits.py) * [Gray Code Sequence](bit_manipulation/gray_code_sequence.py) * [Reverse Bits](bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](blockchain/diophantine_equation.py) * [Modular Division](blockchain/modular_division.py) ## Boolean Algebra * [Norgate](boolean_algebra/norgate.py) * [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](cellular_automata/conways_game_of_life.py) * [Game Of Life](cellular_automata/game_of_life.py) * [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py) * [One Dimensional](cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](ciphers/a1z26.py) * [Affine Cipher](ciphers/affine_cipher.py) * [Atbash](ciphers/atbash.py) * [Baconian Cipher](ciphers/baconian_cipher.py) * [Base16](ciphers/base16.py) * [Base32](ciphers/base32.py) * [Base64](ciphers/base64.py) * [Base85](ciphers/base85.py) * [Beaufort Cipher](ciphers/beaufort_cipher.py) * [Bifid](ciphers/bifid.py) * [Brute Force Caesar Cipher](ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](ciphers/caesar_cipher.py) * [Cryptomath Module](ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](ciphers/deterministic_miller_rabin.py) * [Diffie](ciphers/diffie.py) * [Diffie Hellman](ciphers/diffie_hellman.py) * [Elgamal Key Generator](ciphers/elgamal_key_generator.py) * [Enigma Machine2](ciphers/enigma_machine2.py) * [Hill Cipher](ciphers/hill_cipher.py) * [Mixed Keyword Cypher](ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](ciphers/mono_alphabetic_ciphers.py) * [Morse Code](ciphers/morse_code.py) * [Onepad Cipher](ciphers/onepad_cipher.py) * [Playfair Cipher](ciphers/playfair_cipher.py) * [Polybius](ciphers/polybius.py) * [Porta Cipher](ciphers/porta_cipher.py) * [Rabin Miller](ciphers/rabin_miller.py) * [Rail Fence Cipher](ciphers/rail_fence_cipher.py) * [Rot13](ciphers/rot13.py) * [Rsa Cipher](ciphers/rsa_cipher.py) * [Rsa Factorization](ciphers/rsa_factorization.py) * [Rsa Key Generator](ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](ciphers/simple_substitution_cipher.py) * [Trafid Cipher](ciphers/trafid_cipher.py) * [Transposition Cipher](ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](ciphers/vigenere_cipher.py) * [Xor Cipher](ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](compression/burrows_wheeler.py) * [Huffman](compression/huffman.py) * [Lempel Ziv](compression/lempel_ziv.py) * [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py) * [Run Length Encoding](compression/run_length_encoding.py) ## Computer Vision * [Cnn Classification](computer_vision/cnn_classification.py) * [Flip Augmentation](computer_vision/flip_augmentation.py) * [Harris Corner](computer_vision/harris_corner.py) * [Horn Schunck](computer_vision/horn_schunck.py) * [Mean Threshold](computer_vision/mean_threshold.py) * [Mosaic Augmentation](computer_vision/mosaic_augmentation.py) * [Pooling Functions](computer_vision/pooling_functions.py) ## Conversions * [Astronomical Length Scale Conversion](conversions/astronomical_length_scale_conversion.py) * [Binary To Decimal](conversions/binary_to_decimal.py) * [Binary To Hexadecimal](conversions/binary_to_hexadecimal.py) * [Binary To Octal](conversions/binary_to_octal.py) * [Decimal To Any](conversions/decimal_to_any.py) * [Decimal To Binary](conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](conversions/decimal_to_octal.py) * [Excel Title To Column](conversions/excel_title_to_column.py) * [Hex To Bin](conversions/hex_to_bin.py) * [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py) * [Length Conversion](conversions/length_conversion.py) * [Molecular Chemistry](conversions/molecular_chemistry.py) * [Octal To Decimal](conversions/octal_to_decimal.py) * [Prefix Conversions](conversions/prefix_conversions.py) * [Prefix Conversions String](conversions/prefix_conversions_string.py) * [Pressure Conversions](conversions/pressure_conversions.py) * [Rgb Hsv Conversion](conversions/rgb_hsv_conversion.py) * [Roman Numerals](conversions/roman_numerals.py) * [Speed Conversions](conversions/speed_conversions.py) * [Temperature Conversions](conversions/temperature_conversions.py) * [Volume Conversions](conversions/volume_conversions.py) * [Weight Conversion](conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Node Sum](data_structures/binary_tree/binary_tree_node_sum.py) * [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py) * [Diff Views Of Binary Tree](data_structures/binary_tree/diff_views_of_binary_tree.py) * [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py) * [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py) * [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py) * [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py) * [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](data_structures/binary_tree/red_black_tree.py) * [Segment Tree](data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](data_structures/binary_tree/segment_tree_other.py) * [Treap](data_structures/binary_tree/treap.py) * [Wavelet Tree](data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](data_structures/hashing/double_hash.py) * [Hash Table](data_structures/hashing/hash_table.py) * [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](data_structures/heap/binomial_heap.py) * [Heap](data_structures/heap/heap.py) * [Heap Generic](data_structures/heap/heap_generic.py) * [Max Heap](data_structures/heap/max_heap.py) * [Min Heap](data_structures/heap/min_heap.py) * [Randomized Heap](data_structures/heap/randomized_heap.py) * [Skew Heap](data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](data_structures/linked_list/from_sequence.py) * [Has Loop](data_structures/linked_list/has_loop.py) * [Is Palindrome](data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](data_structures/linked_list/print_reverse.py) * [Singly Linked List](data_structures/linked_list/singly_linked_list.py) * [Skip List](data_structures/linked_list/skip_list.py) * [Swap Nodes](data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](data_structures/queue/circular_queue.py) * [Circular Queue Linked List](data_structures/queue/circular_queue_linked_list.py) * [Double Ended Queue](data_structures/queue/double_ended_queue.py) * [Linked Queue](data_structures/queue/linked_queue.py) * [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py) * [Queue On List](data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](data_structures/stacks/infix_to_prefix_conversion.py) * [Next Greater Element](data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](data_structures/stacks/prefix_evaluation.py) * [Stack](data_structures/stacks/stack.py) * [Stack With Doubly Linked List](data_structures/stacks/stack_with_doubly_linked_list.py) * [Stack With Singly Linked List](data_structures/stacks/stack_with_singly_linked_list.py) * [Stock Span Problem](data_structures/stacks/stock_span_problem.py) * Trie * [Trie](data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](digital_image_processing/change_brightness.py) * [Change Contrast](digital_image_processing/change_contrast.py) * [Convert To Negative](digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](digital_image_processing/filters/bilateral_filter.py) * [Convolve](digital_image_processing/filters/convolve.py) * [Gabor Filter](digital_image_processing/filters/gabor_filter.py) * [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py) * [Local Binary Pattern](digital_image_processing/filters/local_binary_pattern.py) * [Median Filter](digital_image_processing/filters/median_filter.py) * [Sobel Filter](digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](digital_image_processing/index_calculation.py) * Morphological Operations * [Dilation Operation](digital_image_processing/morphological_operations/dilation_operation.py) * [Erosion Operation](digital_image_processing/morphological_operations/erosion_operation.py) * Resize * [Resize](digital_image_processing/resize/resize.py) * Rotation * [Rotation](digital_image_processing/rotation/rotation.py) * [Sepia](digital_image_processing/sepia.py) * [Test Digital Image Processing](digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](divide_and_conquer/convex_hull.py) * [Heaps Algorithm](divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](divide_and_conquer/inversions.py) * [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](divide_and_conquer/max_subarray_sum.py) * [Mergesort](divide_and_conquer/mergesort.py) * [Peak](divide_and_conquer/peak.py) * [Power](divide_and_conquer/power.py) * [Strassen Matrix Multiplication](divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](dynamic_programming/abbreviation.py) * [All Construct](dynamic_programming/all_construct.py) * [Bitmask](dynamic_programming/bitmask.py) * [Catalan Numbers](dynamic_programming/catalan_numbers.py) * [Climbing Stairs](dynamic_programming/climbing_stairs.py) * [Edit Distance](dynamic_programming/edit_distance.py) * [Factorial](dynamic_programming/factorial.py) * [Fast Fibonacci](dynamic_programming/fast_fibonacci.py) * [Fibonacci](dynamic_programming/fibonacci.py) * [Floyd Warshall](dynamic_programming/floyd_warshall.py) * [Integer Partition](dynamic_programming/integer_partition.py) * [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py) * [Knapsack](dynamic_programming/knapsack.py) * [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](dynamic_programming/minimum_cost_path.py) * [Minimum Partition](dynamic_programming/minimum_partition.py) * [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](dynamic_programming/rod_cutting.py) * [Subset Generation](dynamic_programming/subset_generation.py) * [Sum Of Subset](dynamic_programming/sum_of_subset.py) ## Electronics * [Carrier Concentration](electronics/carrier_concentration.py) * [Coulombs Law](electronics/coulombs_law.py) * [Electric Power](electronics/electric_power.py) * [Ohms Law](electronics/ohms_law.py) ## File Transfer * [Receive File](file_transfer/receive_file.py) * [Send File](file_transfer/send_file.py) * Tests * [Test Send File](file_transfer/tests/test_send_file.py) ## Financial * [Equated Monthly Installments](financial/equated_monthly_installments.py) * [Interest](financial/interest.py) ## Fractals * [Julia Sets](fractals/julia_sets.py) * [Koch Snowflake](fractals/koch_snowflake.py) * [Mandelbrot](fractals/mandelbrot.py) * [Sierpinski Triangle](fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](graphics/bezier_curve.py) * [Vector3 For 2D Rendering](graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](graphs/a_star.py) * [Articulation Points](graphs/articulation_points.py) * [Basic Graphs](graphs/basic_graphs.py) * [Bellman Ford](graphs/bellman_ford.py) * [Bfs Shortest Path](graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](graphs/bidirectional_breadth_first_search.py) * [Boruvka](graphs/boruvka.py) * [Breadth First Search](graphs/breadth_first_search.py) * [Breadth First Search 2](graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](graphs/check_bipartite_graph_dfs.py) * [Check Cycle](graphs/check_cycle.py) * [Connected Components](graphs/connected_components.py) * [Depth First Search](graphs/depth_first_search.py) * [Depth First Search 2](graphs/depth_first_search_2.py) * [Dijkstra](graphs/dijkstra.py) * [Dijkstra 2](graphs/dijkstra_2.py) * [Dijkstra Algorithm](graphs/dijkstra_algorithm.py) * [Dinic](graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](graphs/even_tree.py) * [Finding Bridges](graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](graphs/g_topological_sort.py) * [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py) * [Graph List](graphs/graph_list.py) * [Graph Matrix](graphs/graph_matrix.py) * [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py) * [Greedy Best First](graphs/greedy_best_first.py) * [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py) * [Kahns Algorithm Long](graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py) * [Karger](graphs/karger.py) * [Markov Chain](graphs/markov_chain.py) * [Matching Min Vertex Cover](graphs/matching_min_vertex_cover.py) * [Minimum Path Sum](graphs/minimum_path_sum.py) * [Minimum Spanning Tree Boruvka](graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](graphs/multi_heuristic_astar.py) * [Page Rank](graphs/page_rank.py) * [Prim](graphs/prim.py) * [Random Graph Generator](graphs/random_graph_generator.py) * [Scc Kosaraju](graphs/scc_kosaraju.py) * [Strongly Connected Components](graphs/strongly_connected_components.py) * [Tarjans Scc](graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py) ## Greedy Methods * [Fractional Knapsack](greedy_methods/fractional_knapsack.py) * [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py) * [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py) ## Hashes * [Adler32](hashes/adler32.py) * [Chaos Machine](hashes/chaos_machine.py) * [Djb2](hashes/djb2.py) * [Enigma Machine](hashes/enigma_machine.py) * [Hamming Code](hashes/hamming_code.py) * [Luhn](hashes/luhn.py) * [Md5](hashes/md5.py) * [Sdbm](hashes/sdbm.py) * [Sha1](hashes/sha1.py) * [Sha256](hashes/sha256.py) ## Knapsack * [Greedy Knapsack](knapsack/greedy_knapsack.py) * [Knapsack](knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py) * [Lib](linear_algebra/src/lib.py) * [Polynom For Points](linear_algebra/src/polynom_for_points.py) * [Power Iteration](linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py) * [Schur Complement](linear_algebra/src/schur_complement.py) * [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](machine_learning/astar.py) * [Data Transformations](machine_learning/data_transformations.py) * [Decision Tree](machine_learning/decision_tree.py) * Forecasting * [Run](machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](machine_learning/gradient_descent.py) * [K Means Clust](machine_learning/k_means_clust.py) * [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py) * [Linear Regression](machine_learning/linear_regression.py) * Local Weighted Learning * [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py) * [Logistic Regression](machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](machine_learning/polymonial_regression.py) * [Random Forest Classifier](machine_learning/random_forest_classifier.py) * [Random Forest Regressor](machine_learning/random_forest_regressor.py) * [Scoring Functions](machine_learning/scoring_functions.py) * [Self Organizing Map](machine_learning/self_organizing_map.py) * [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py) * [Similarity Search](machine_learning/similarity_search.py) * [Support Vector Machines](machine_learning/support_vector_machines.py) * [Word Frequency Functions](machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](maths/3n_plus_1.py) * [Abs](maths/abs.py) * [Abs Max](maths/abs_max.py) * [Abs Min](maths/abs_min.py) * [Add](maths/add.py) * [Aliquot Sum](maths/aliquot_sum.py) * [Allocation Number](maths/allocation_number.py) * [Area](maths/area.py) * [Area Under Curve](maths/area_under_curve.py) * [Armstrong Numbers](maths/armstrong_numbers.py) * [Average Absolute Deviation](maths/average_absolute_deviation.py) * [Average Mean](maths/average_mean.py) * [Average Median](maths/average_median.py) * [Average Mode](maths/average_mode.py) * [Bailey Borwein Plouffe](maths/bailey_borwein_plouffe.py) * [Basic Maths](maths/basic_maths.py) * [Binary Exp Mod](maths/binary_exp_mod.py) * [Binary Exponentiation](maths/binary_exponentiation.py) * [Binary Exponentiation 2](maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](maths/binary_exponentiation_3.py) * [Binomial Coefficient](maths/binomial_coefficient.py) * [Binomial Distribution](maths/binomial_distribution.py) * [Bisection](maths/bisection.py) * [Carmichael Number](maths/carmichael_number.py) * [Catalan Number](maths/catalan_number.py) * [Ceil](maths/ceil.py) * [Check Polygon](maths/check_polygon.py) * [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py) * [Collatz Sequence](maths/collatz_sequence.py) * [Combinations](maths/combinations.py) * [Decimal Isolate](maths/decimal_isolate.py) * [Double Factorial Iterative](maths/double_factorial_iterative.py) * [Double Factorial Recursive](maths/double_factorial_recursive.py) * [Entropy](maths/entropy.py) * [Euclidean Distance](maths/euclidean_distance.py) * [Euclidean Gcd](maths/euclidean_gcd.py) * [Euler Method](maths/euler_method.py) * [Euler Modified](maths/euler_modified.py) * [Eulers Totient](maths/eulers_totient.py) * [Extended Euclidean Algorithm](maths/extended_euclidean_algorithm.py) * [Factorial Iterative](maths/factorial_iterative.py) * [Factorial Recursive](maths/factorial_recursive.py) * [Factors](maths/factors.py) * [Fermat Little Theorem](maths/fermat_little_theorem.py) * [Fibonacci](maths/fibonacci.py) * [Find Max](maths/find_max.py) * [Find Max Recursion](maths/find_max_recursion.py) * [Find Min](maths/find_min.py) * [Find Min Recursion](maths/find_min_recursion.py) * [Floor](maths/floor.py) * [Gamma](maths/gamma.py) * [Gamma Recursive](maths/gamma_recursive.py) * [Gaussian](maths/gaussian.py) * [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py) * [Greatest Common Divisor](maths/greatest_common_divisor.py) * [Greedy Coin Change](maths/greedy_coin_change.py) * [Hamming Numbers](maths/hamming_numbers.py) * [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py) * [Is Square Free](maths/is_square_free.py) * [Jaccard Similarity](maths/jaccard_similarity.py) * [Kadanes](maths/kadanes.py) * [Karatsuba](maths/karatsuba.py) * [Krishnamurthy Number](maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](maths/largest_subarray_sum.py) * [Least Common Multiple](maths/least_common_multiple.py) * [Line Length](maths/line_length.py) * [Lucas Lehmer Primality Test](maths/lucas_lehmer_primality_test.py) * [Lucas Series](maths/lucas_series.py) * [Matrix Exponentiation](maths/matrix_exponentiation.py) * [Max Sum Sliding Window](maths/max_sum_sliding_window.py) * [Median Of Two Arrays](maths/median_of_two_arrays.py) * [Miller Rabin](maths/miller_rabin.py) * [Mobius Function](maths/mobius_function.py) * [Modular Exponential](maths/modular_exponential.py) * [Monte Carlo](maths/monte_carlo.py) * [Monte Carlo Dice](maths/monte_carlo_dice.py) * [Nevilles Method](maths/nevilles_method.py) * [Newton Raphson](maths/newton_raphson.py) * [Number Of Digits](maths/number_of_digits.py) * [Numerical Integration](maths/numerical_integration.py) * [Perfect Cube](maths/perfect_cube.py) * [Perfect Number](maths/perfect_number.py) * [Perfect Square](maths/perfect_square.py) * [Persistence](maths/persistence.py) * [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py) * [Points Are Collinear 3D](maths/points_are_collinear_3d.py) * [Pollard Rho](maths/pollard_rho.py) * [Polynomial Evaluation](maths/polynomial_evaluation.py) * [Power Using Recursion](maths/power_using_recursion.py) * [Prime Check](maths/prime_check.py) * [Prime Factors](maths/prime_factors.py) * [Prime Numbers](maths/prime_numbers.py) * [Prime Sieve Eratosthenes](maths/prime_sieve_eratosthenes.py) * [Primelib](maths/primelib.py) * [Proth Number](maths/proth_number.py) * [Pythagoras](maths/pythagoras.py) * [Qr Decomposition](maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](maths/quadratic_equations_complex_numbers.py) * [Radians](maths/radians.py) * [Radix2 Fft](maths/radix2_fft.py) * [Relu](maths/relu.py) * [Runge Kutta](maths/runge_kutta.py) * [Segmented Sieve](maths/segmented_sieve.py) * Series * [Arithmetic](maths/series/arithmetic.py) * [Geometric](maths/series/geometric.py) * [Geometric Series](maths/series/geometric_series.py) * [Harmonic](maths/series/harmonic.py) * [Harmonic Series](maths/series/harmonic_series.py) * [Hexagonal Numbers](maths/series/hexagonal_numbers.py) * [P Series](maths/series/p_series.py) * [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py) * [Sigmoid](maths/sigmoid.py) * [Simpson Rule](maths/simpson_rule.py) * [Sin](maths/sin.py) * [Sock Merchant](maths/sock_merchant.py) * [Softmax](maths/softmax.py) * [Square Root](maths/square_root.py) * [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py) * [Sum Of Digits](maths/sum_of_digits.py) * [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py) * [Sylvester Sequence](maths/sylvester_sequence.py) * [Test Prime Check](maths/test_prime_check.py) * [Trapezoidal Rule](maths/trapezoidal_rule.py) * [Triplet Sum](maths/triplet_sum.py) * [Two Pointer](maths/two_pointer.py) * [Two Sum](maths/two_sum.py) * [Ugly Numbers](maths/ugly_numbers.py) * [Volume](maths/volume.py) * [Weird Number](maths/weird_number.py) * [Zellers Congruence](maths/zellers_congruence.py) ## Matrix * [Binary Search Matrix](matrix/binary_search_matrix.py) * [Count Islands In Matrix](matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](matrix/inverse_of_matrix.py) * [Matrix Class](matrix/matrix_class.py) * [Matrix Operation](matrix/matrix_operation.py) * [Max Area Of Island](matrix/max_area_of_island.py) * [Nth Fibonacci Using Matrix Exponentiation](matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](matrix/rotate_matrix.py) * [Searching In Sorted Matrix](matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](matrix/sherman_morrison.py) * [Spiral Print](matrix/spiral_print.py) * Tests * [Test Matrix Operation](matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](networking_flow/ford_fulkerson.py) * [Minimum Cut](networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](neural_network/convolution_neural_network.py) * [Perceptron](neural_network/perceptron.py) ## Other * [Activity Selection](other/activity_selection.py) * [Alternative List Arrange](other/alternative_list_arrange.py) * [Check Strong Password](other/check_strong_password.py) * [Davisb Putnamb Logemannb Loveland](other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](other/dijkstra_bankers_algorithm.py) * [Doomsday](other/doomsday.py) * [Fischer Yates Shuffle](other/fischer_yates_shuffle.py) * [Gauss Easter](other/gauss_easter.py) * [Graham Scan](other/graham_scan.py) * [Greedy](other/greedy.py) * [Least Recently Used](other/least_recently_used.py) * [Lfu Cache](other/lfu_cache.py) * [Linear Congruential Generator](other/linear_congruential_generator.py) * [Lru Cache](other/lru_cache.py) * [Magicdiamondpattern](other/magicdiamondpattern.py) * [Maximum Subarray](other/maximum_subarray.py) * [Nested Brackets](other/nested_brackets.py) * [Password Generator](other/password_generator.py) * [Scoring Algorithm](other/scoring_algorithm.py) * [Sdes](other/sdes.py) * [Tower Of Hanoi](other/tower_of_hanoi.py) ## Physics * [Casimir Effect](physics/casimir_effect.py) * [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py) * [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py) * [N Body Simulation](physics/n_body_simulation.py) * [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py) * [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py) ## Project Euler * Problem 001 * [Sol1](project_euler/problem_001/sol1.py) * [Sol2](project_euler/problem_001/sol2.py) * [Sol3](project_euler/problem_001/sol3.py) * [Sol4](project_euler/problem_001/sol4.py) * [Sol5](project_euler/problem_001/sol5.py) * [Sol6](project_euler/problem_001/sol6.py) * [Sol7](project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](project_euler/problem_002/sol1.py) * [Sol2](project_euler/problem_002/sol2.py) * [Sol3](project_euler/problem_002/sol3.py) * [Sol4](project_euler/problem_002/sol4.py) * [Sol5](project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](project_euler/problem_003/sol1.py) * [Sol2](project_euler/problem_003/sol2.py) * [Sol3](project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](project_euler/problem_004/sol1.py) * [Sol2](project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](project_euler/problem_005/sol1.py) * [Sol2](project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](project_euler/problem_006/sol1.py) * [Sol2](project_euler/problem_006/sol2.py) * [Sol3](project_euler/problem_006/sol3.py) * [Sol4](project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](project_euler/problem_007/sol1.py) * [Sol2](project_euler/problem_007/sol2.py) * [Sol3](project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](project_euler/problem_008/sol1.py) * [Sol2](project_euler/problem_008/sol2.py) * [Sol3](project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](project_euler/problem_009/sol1.py) * [Sol2](project_euler/problem_009/sol2.py) * [Sol3](project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](project_euler/problem_010/sol1.py) * [Sol2](project_euler/problem_010/sol2.py) * [Sol3](project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](project_euler/problem_011/sol1.py) * [Sol2](project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](project_euler/problem_012/sol1.py) * [Sol2](project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](project_euler/problem_014/sol1.py) * [Sol2](project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](project_euler/problem_016/sol1.py) * [Sol2](project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](project_euler/problem_017/sol1.py) * Problem 018 * [Solution](project_euler/problem_018/solution.py) * Problem 019 * [Sol1](project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](project_euler/problem_020/sol1.py) * [Sol2](project_euler/problem_020/sol2.py) * [Sol3](project_euler/problem_020/sol3.py) * [Sol4](project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](project_euler/problem_022/sol1.py) * [Sol2](project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](project_euler/problem_025/sol1.py) * [Sol2](project_euler/problem_025/sol2.py) * [Sol3](project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](project_euler/problem_031/sol1.py) * [Sol2](project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](project_euler/problem_054/sol1.py) * [Test Poker Hand](project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](project_euler/problem_067/sol1.py) * [Sol2](project_euler/problem_067/sol2.py) * Problem 068 * [Sol1](project_euler/problem_068/sol1.py) * Problem 069 * [Sol1](project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](project_euler/problem_072/sol1.py) * [Sol2](project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](project_euler/problem_074/sol1.py) * [Sol2](project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](project_euler/problem_077/sol1.py) * Problem 078 * [Sol1](project_euler/problem_078/sol1.py) * Problem 080 * [Sol1](project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](project_euler/problem_091/sol1.py) * Problem 092 * [Sol1](project_euler/problem_092/sol1.py) * Problem 097 * [Sol1](project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](project_euler/problem_113/sol1.py) * Problem 114 * [Sol1](project_euler/problem_114/sol1.py) * Problem 115 * [Sol1](project_euler/problem_115/sol1.py) * Problem 116 * [Sol1](project_euler/problem_116/sol1.py) * Problem 119 * [Sol1](project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](project_euler/problem_144/sol1.py) * Problem 145 * [Sol1](project_euler/problem_145/sol1.py) * Problem 173 * [Sol1](project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](project_euler/problem_203/sol1.py) * Problem 205 * [Sol1](project_euler/problem_205/sol1.py) * Problem 206 * [Sol1](project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](project_euler/problem_301/sol1.py) * Problem 493 * [Sol1](project_euler/problem_493/sol1.py) * Problem 551 * [Sol1](project_euler/problem_551/sol1.py) * Problem 587 * [Sol1](project_euler/problem_587/sol1.py) * Problem 686 * [Sol1](project_euler/problem_686/sol1.py) ## Quantum * [Deutsch Jozsa](quantum/deutsch_jozsa.py) * [Half Adder](quantum/half_adder.py) * [Not Gate](quantum/not_gate.py) * [Q Full Adder](quantum/q_full_adder.py) * [Quantum Entanglement](quantum/quantum_entanglement.py) * [Ripple Adder Classic](quantum/ripple_adder_classic.py) * [Single Qubit Measure](quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](scheduling/first_come_first_served.py) * [Highest Response Ratio Next](scheduling/highest_response_ratio_next.py) * [Job Sequencing With Deadline](scheduling/job_sequencing_with_deadline.py) * [Multi Level Feedback Queue](scheduling/multi_level_feedback_queue.py) * [Non Preemptive Shortest Job First](scheduling/non_preemptive_shortest_job_first.py) * [Round Robin](scheduling/round_robin.py) * [Shortest Job First](scheduling/shortest_job_first.py) ## Searches * [Binary Search](searches/binary_search.py) * [Binary Tree Traversal](searches/binary_tree_traversal.py) * [Double Linear Search](searches/double_linear_search.py) * [Double Linear Search Recursion](searches/double_linear_search_recursion.py) * [Fibonacci Search](searches/fibonacci_search.py) * [Hill Climbing](searches/hill_climbing.py) * [Interpolation Search](searches/interpolation_search.py) * [Jump Search](searches/jump_search.py) * [Linear Search](searches/linear_search.py) * [Quick Select](searches/quick_select.py) * [Sentinel Linear Search](searches/sentinel_linear_search.py) * [Simple Binary Search](searches/simple_binary_search.py) * [Simulated Annealing](searches/simulated_annealing.py) * [Tabu Search](searches/tabu_search.py) * [Ternary Search](searches/ternary_search.py) ## Sorts * [Bead Sort](sorts/bead_sort.py) * [Bitonic Sort](sorts/bitonic_sort.py) * [Bogo Sort](sorts/bogo_sort.py) * [Bubble Sort](sorts/bubble_sort.py) * [Bucket Sort](sorts/bucket_sort.py) * [Circle Sort](sorts/circle_sort.py) * [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py) * [Comb Sort](sorts/comb_sort.py) * [Counting Sort](sorts/counting_sort.py) * [Cycle Sort](sorts/cycle_sort.py) * [Double Sort](sorts/double_sort.py) * [Dutch National Flag Sort](sorts/dutch_national_flag_sort.py) * [Exchange Sort](sorts/exchange_sort.py) * [External Sort](sorts/external_sort.py) * [Gnome Sort](sorts/gnome_sort.py) * [Heap Sort](sorts/heap_sort.py) * [Insertion Sort](sorts/insertion_sort.py) * [Intro Sort](sorts/intro_sort.py) * [Iterative Merge Sort](sorts/iterative_merge_sort.py) * [Merge Insertion Sort](sorts/merge_insertion_sort.py) * [Merge Sort](sorts/merge_sort.py) * [Msd Radix Sort](sorts/msd_radix_sort.py) * [Natural Sort](sorts/natural_sort.py) * [Odd Even Sort](sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](sorts/pancake_sort.py) * [Patience Sort](sorts/patience_sort.py) * [Pigeon Sort](sorts/pigeon_sort.py) * [Pigeonhole Sort](sorts/pigeonhole_sort.py) * [Quick Sort](sorts/quick_sort.py) * [Quick Sort 3 Partition](sorts/quick_sort_3_partition.py) * [Radix Sort](sorts/radix_sort.py) * [Random Normal Distribution Quicksort](sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](sorts/recursive_quick_sort.py) * [Selection Sort](sorts/selection_sort.py) * [Shell Sort](sorts/shell_sort.py) * [Shrink Shell Sort](sorts/shrink_shell_sort.py) * [Slowsort](sorts/slowsort.py) * [Stooge Sort](sorts/stooge_sort.py) * [Strand Sort](sorts/strand_sort.py) * [Tim Sort](sorts/tim_sort.py) * [Topological Sort](sorts/topological_sort.py) * [Tree Sort](sorts/tree_sort.py) * [Unknown Sort](sorts/unknown_sort.py) * [Wiggle Sort](sorts/wiggle_sort.py) ## Strings * [Aho Corasick](strings/aho_corasick.py) * [Alternative String Arrange](strings/alternative_string_arrange.py) * [Anagrams](strings/anagrams.py) * [Autocomplete Using Trie](strings/autocomplete_using_trie.py) * [Barcode Validator](strings/barcode_validator.py) * [Boyer Moore Search](strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](strings/capitalize.py) * [Check Anagrams](strings/check_anagrams.py) * [Check Pangram](strings/check_pangram.py) * [Credit Card Validator](strings/credit_card_validator.py) * [Detecting English Programmatically](strings/detecting_english_programmatically.py) * [Dna](strings/dna.py) * [Frequency Finder](strings/frequency_finder.py) * [Hamming Distance](strings/hamming_distance.py) * [Indian Phone Validator](strings/indian_phone_validator.py) * [Is Contains Unique Chars](strings/is_contains_unique_chars.py) * [Is Palindrome](strings/is_palindrome.py) * [Jaro Winkler](strings/jaro_winkler.py) * [Join](strings/join.py) * [Knuth Morris Pratt](strings/knuth_morris_pratt.py) * [Levenshtein Distance](strings/levenshtein_distance.py) * [Lower](strings/lower.py) * [Manacher](strings/manacher.py) * [Min Cost String Conversion](strings/min_cost_string_conversion.py) * [Naive String Search](strings/naive_string_search.py) * [Ngram](strings/ngram.py) * [Palindrome](strings/palindrome.py) * [Prefix Function](strings/prefix_function.py) * [Rabin Karp](strings/rabin_karp.py) * [Remove Duplicate](strings/remove_duplicate.py) * [Reverse Letters](strings/reverse_letters.py) * [Reverse Long Words](strings/reverse_long_words.py) * [Reverse Words](strings/reverse_words.py) * [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py) * [Split](strings/split.py) * [Upper](strings/upper.py) * [Wave](strings/wave.py) * [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py) * [Word Occurrence](strings/word_occurrence.py) * [Word Patterns](strings/word_patterns.py) * [Z Function](strings/z_function.py) ## Web Programming * [Co2 Emission](web_programming/co2_emission.py) * [Covid Stats Via Xpath](web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](web_programming/crawl_google_scholar_citation.py) * [Currency Converter](web_programming/currency_converter.py) * [Current Stock Price](web_programming/current_stock_price.py) * [Current Weather](web_programming/current_weather.py) * [Daily Horoscope](web_programming/daily_horoscope.py) * [Download Images From Google Query](web_programming/download_images_from_google_query.py) * [Emails From Url](web_programming/emails_from_url.py) * [Fetch Anime And Play](web_programming/fetch_anime_and_play.py) * [Fetch Bbc News](web_programming/fetch_bbc_news.py) * [Fetch Github Info](web_programming/fetch_github_info.py) * [Fetch Jobs](web_programming/fetch_jobs.py) * [Fetch Quotes](web_programming/fetch_quotes.py) * [Fetch Well Rx Price](web_programming/fetch_well_rx_price.py) * [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](web_programming/get_imdbtop.py) * [Get Top Hn Posts](web_programming/get_top_hn_posts.py) * [Get User Tweets](web_programming/get_user_tweets.py) * [Giphy](web_programming/giphy.py) * [Instagram Crawler](web_programming/instagram_crawler.py) * [Instagram Pic](web_programming/instagram_pic.py) * [Instagram Video](web_programming/instagram_video.py) * [Nasa Data](web_programming/nasa_data.py) * [Open Google Results](web_programming/open_google_results.py) * [Random Anime Character](web_programming/random_anime_character.py) * [Recaptcha Verification](web_programming/recaptcha_verification.py) * [Reddit](web_programming/reddit.py) * [Search Books By Isbn](web_programming/search_books_by_isbn.py) * [Slack Message](web_programming/slack_message.py) * [Test Fetch Github Info](web_programming/test_fetch_github_info.py) * [World Covid19 Stats](web_programming/world_covid19_stats.py)
## Arithmetic Analysis * [Bisection](arithmetic_analysis/bisection.py) * [Gaussian Elimination](arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](arithmetic_analysis/in_static_equilibrium.py) * [Intersection](arithmetic_analysis/intersection.py) * [Jacobi Iteration Method](arithmetic_analysis/jacobi_iteration_method.py) * [Lu Decomposition](arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](arithmetic_analysis/newton_method.py) * [Newton Raphson](arithmetic_analysis/newton_raphson.py) * [Newton Raphson New](arithmetic_analysis/newton_raphson_new.py) * [Secant Method](arithmetic_analysis/secant_method.py) ## Audio Filters * [Butterworth Filter](audio_filters/butterworth_filter.py) * [Equal Loudness Filter](audio_filters/equal_loudness_filter.py) * [Iir Filter](audio_filters/iir_filter.py) * [Show Response](audio_filters/show_response.py) ## Backtracking * [All Combinations](backtracking/all_combinations.py) * [All Permutations](backtracking/all_permutations.py) * [All Subsequences](backtracking/all_subsequences.py) * [Coloring](backtracking/coloring.py) * [Combination Sum](backtracking/combination_sum.py) * [Hamiltonian Cycle](backtracking/hamiltonian_cycle.py) * [Knight Tour](backtracking/knight_tour.py) * [Minimax](backtracking/minimax.py) * [Minmax](backtracking/minmax.py) * [N Queens](backtracking/n_queens.py) * [N Queens Math](backtracking/n_queens_math.py) * [Rat In Maze](backtracking/rat_in_maze.py) * [Sudoku](backtracking/sudoku.py) * [Sum Of Subsets](backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](bit_manipulation/binary_or_operator.py) * [Binary Shifts](bit_manipulation/binary_shifts.py) * [Binary Twos Complement](bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](bit_manipulation/binary_xor_operator.py) * [Count 1S Brian Kernighan Method](bit_manipulation/count_1s_brian_kernighan_method.py) * [Count Number Of One Bits](bit_manipulation/count_number_of_one_bits.py) * [Gray Code Sequence](bit_manipulation/gray_code_sequence.py) * [Reverse Bits](bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](blockchain/diophantine_equation.py) * [Modular Division](blockchain/modular_division.py) ## Boolean Algebra * [Norgate](boolean_algebra/norgate.py) * [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](cellular_automata/conways_game_of_life.py) * [Game Of Life](cellular_automata/game_of_life.py) * [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py) * [One Dimensional](cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](ciphers/a1z26.py) * [Affine Cipher](ciphers/affine_cipher.py) * [Atbash](ciphers/atbash.py) * [Baconian Cipher](ciphers/baconian_cipher.py) * [Base16](ciphers/base16.py) * [Base32](ciphers/base32.py) * [Base64](ciphers/base64.py) * [Base85](ciphers/base85.py) * [Beaufort Cipher](ciphers/beaufort_cipher.py) * [Bifid](ciphers/bifid.py) * [Brute Force Caesar Cipher](ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](ciphers/caesar_cipher.py) * [Cryptomath Module](ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](ciphers/deterministic_miller_rabin.py) * [Diffie](ciphers/diffie.py) * [Diffie Hellman](ciphers/diffie_hellman.py) * [Elgamal Key Generator](ciphers/elgamal_key_generator.py) * [Enigma Machine2](ciphers/enigma_machine2.py) * [Hill Cipher](ciphers/hill_cipher.py) * [Mixed Keyword Cypher](ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](ciphers/mono_alphabetic_ciphers.py) * [Morse Code](ciphers/morse_code.py) * [Onepad Cipher](ciphers/onepad_cipher.py) * [Playfair Cipher](ciphers/playfair_cipher.py) * [Polybius](ciphers/polybius.py) * [Porta Cipher](ciphers/porta_cipher.py) * [Rabin Miller](ciphers/rabin_miller.py) * [Rail Fence Cipher](ciphers/rail_fence_cipher.py) * [Rot13](ciphers/rot13.py) * [Rsa Cipher](ciphers/rsa_cipher.py) * [Rsa Factorization](ciphers/rsa_factorization.py) * [Rsa Key Generator](ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](ciphers/simple_substitution_cipher.py) * [Trafid Cipher](ciphers/trafid_cipher.py) * [Transposition Cipher](ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](ciphers/vigenere_cipher.py) * [Xor Cipher](ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](compression/burrows_wheeler.py) * [Huffman](compression/huffman.py) * [Lempel Ziv](compression/lempel_ziv.py) * [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py) * [Run Length Encoding](compression/run_length_encoding.py) ## Computer Vision * [Cnn Classification](computer_vision/cnn_classification.py) * [Flip Augmentation](computer_vision/flip_augmentation.py) * [Harris Corner](computer_vision/harris_corner.py) * [Horn Schunck](computer_vision/horn_schunck.py) * [Mean Threshold](computer_vision/mean_threshold.py) * [Mosaic Augmentation](computer_vision/mosaic_augmentation.py) * [Pooling Functions](computer_vision/pooling_functions.py) ## Conversions * [Astronomical Length Scale Conversion](conversions/astronomical_length_scale_conversion.py) * [Binary To Decimal](conversions/binary_to_decimal.py) * [Binary To Hexadecimal](conversions/binary_to_hexadecimal.py) * [Binary To Octal](conversions/binary_to_octal.py) * [Decimal To Any](conversions/decimal_to_any.py) * [Decimal To Binary](conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](conversions/decimal_to_octal.py) * [Excel Title To Column](conversions/excel_title_to_column.py) * [Hex To Bin](conversions/hex_to_bin.py) * [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py) * [Length Conversion](conversions/length_conversion.py) * [Molecular Chemistry](conversions/molecular_chemistry.py) * [Octal To Decimal](conversions/octal_to_decimal.py) * [Prefix Conversions](conversions/prefix_conversions.py) * [Prefix Conversions String](conversions/prefix_conversions_string.py) * [Pressure Conversions](conversions/pressure_conversions.py) * [Rgb Hsv Conversion](conversions/rgb_hsv_conversion.py) * [Roman Numerals](conversions/roman_numerals.py) * [Speed Conversions](conversions/speed_conversions.py) * [Temperature Conversions](conversions/temperature_conversions.py) * [Volume Conversions](conversions/volume_conversions.py) * [Weight Conversion](conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Node Sum](data_structures/binary_tree/binary_tree_node_sum.py) * [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py) * [Diff Views Of Binary Tree](data_structures/binary_tree/diff_views_of_binary_tree.py) * [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py) * [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py) * [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py) * [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py) * [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](data_structures/binary_tree/red_black_tree.py) * [Segment Tree](data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](data_structures/binary_tree/segment_tree_other.py) * [Treap](data_structures/binary_tree/treap.py) * [Wavelet Tree](data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](data_structures/hashing/double_hash.py) * [Hash Table](data_structures/hashing/hash_table.py) * [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](data_structures/heap/binomial_heap.py) * [Heap](data_structures/heap/heap.py) * [Heap Generic](data_structures/heap/heap_generic.py) * [Max Heap](data_structures/heap/max_heap.py) * [Min Heap](data_structures/heap/min_heap.py) * [Randomized Heap](data_structures/heap/randomized_heap.py) * [Skew Heap](data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](data_structures/linked_list/from_sequence.py) * [Has Loop](data_structures/linked_list/has_loop.py) * [Is Palindrome](data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](data_structures/linked_list/print_reverse.py) * [Singly Linked List](data_structures/linked_list/singly_linked_list.py) * [Skip List](data_structures/linked_list/skip_list.py) * [Swap Nodes](data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](data_structures/queue/circular_queue.py) * [Circular Queue Linked List](data_structures/queue/circular_queue_linked_list.py) * [Double Ended Queue](data_structures/queue/double_ended_queue.py) * [Linked Queue](data_structures/queue/linked_queue.py) * [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py) * [Queue On List](data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](data_structures/stacks/infix_to_prefix_conversion.py) * [Next Greater Element](data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](data_structures/stacks/prefix_evaluation.py) * [Stack](data_structures/stacks/stack.py) * [Stack With Doubly Linked List](data_structures/stacks/stack_with_doubly_linked_list.py) * [Stack With Singly Linked List](data_structures/stacks/stack_with_singly_linked_list.py) * [Stock Span Problem](data_structures/stacks/stock_span_problem.py) * Trie * [Trie](data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](digital_image_processing/change_brightness.py) * [Change Contrast](digital_image_processing/change_contrast.py) * [Convert To Negative](digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](digital_image_processing/filters/bilateral_filter.py) * [Convolve](digital_image_processing/filters/convolve.py) * [Gabor Filter](digital_image_processing/filters/gabor_filter.py) * [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py) * [Local Binary Pattern](digital_image_processing/filters/local_binary_pattern.py) * [Median Filter](digital_image_processing/filters/median_filter.py) * [Sobel Filter](digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](digital_image_processing/index_calculation.py) * Morphological Operations * [Dilation Operation](digital_image_processing/morphological_operations/dilation_operation.py) * [Erosion Operation](digital_image_processing/morphological_operations/erosion_operation.py) * Resize * [Resize](digital_image_processing/resize/resize.py) * Rotation * [Rotation](digital_image_processing/rotation/rotation.py) * [Sepia](digital_image_processing/sepia.py) * [Test Digital Image Processing](digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](divide_and_conquer/convex_hull.py) * [Heaps Algorithm](divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](divide_and_conquer/inversions.py) * [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](divide_and_conquer/max_subarray_sum.py) * [Mergesort](divide_and_conquer/mergesort.py) * [Peak](divide_and_conquer/peak.py) * [Power](divide_and_conquer/power.py) * [Strassen Matrix Multiplication](divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](dynamic_programming/abbreviation.py) * [All Construct](dynamic_programming/all_construct.py) * [Bitmask](dynamic_programming/bitmask.py) * [Catalan Numbers](dynamic_programming/catalan_numbers.py) * [Climbing Stairs](dynamic_programming/climbing_stairs.py) * [Edit Distance](dynamic_programming/edit_distance.py) * [Factorial](dynamic_programming/factorial.py) * [Fast Fibonacci](dynamic_programming/fast_fibonacci.py) * [Fibonacci](dynamic_programming/fibonacci.py) * [Floyd Warshall](dynamic_programming/floyd_warshall.py) * [Integer Partition](dynamic_programming/integer_partition.py) * [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py) * [Knapsack](dynamic_programming/knapsack.py) * [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](dynamic_programming/minimum_cost_path.py) * [Minimum Partition](dynamic_programming/minimum_partition.py) * [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](dynamic_programming/rod_cutting.py) * [Subset Generation](dynamic_programming/subset_generation.py) * [Sum Of Subset](dynamic_programming/sum_of_subset.py) ## Electronics * [Carrier Concentration](electronics/carrier_concentration.py) * [Coulombs Law](electronics/coulombs_law.py) * [Electric Power](electronics/electric_power.py) * [Ohms Law](electronics/ohms_law.py) ## File Transfer * [Receive File](file_transfer/receive_file.py) * [Send File](file_transfer/send_file.py) * Tests * [Test Send File](file_transfer/tests/test_send_file.py) ## Financial * [Equated Monthly Installments](financial/equated_monthly_installments.py) * [Interest](financial/interest.py) ## Fractals * [Julia Sets](fractals/julia_sets.py) * [Koch Snowflake](fractals/koch_snowflake.py) * [Mandelbrot](fractals/mandelbrot.py) * [Sierpinski Triangle](fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](graphics/bezier_curve.py) * [Vector3 For 2D Rendering](graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](graphs/a_star.py) * [Articulation Points](graphs/articulation_points.py) * [Basic Graphs](graphs/basic_graphs.py) * [Bellman Ford](graphs/bellman_ford.py) * [Bfs Shortest Path](graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](graphs/bidirectional_breadth_first_search.py) * [Boruvka](graphs/boruvka.py) * [Breadth First Search](graphs/breadth_first_search.py) * [Breadth First Search 2](graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](graphs/check_bipartite_graph_dfs.py) * [Check Cycle](graphs/check_cycle.py) * [Connected Components](graphs/connected_components.py) * [Depth First Search](graphs/depth_first_search.py) * [Depth First Search 2](graphs/depth_first_search_2.py) * [Dijkstra](graphs/dijkstra.py) * [Dijkstra 2](graphs/dijkstra_2.py) * [Dijkstra Algorithm](graphs/dijkstra_algorithm.py) * [Dijkstra Alternate](graphs/dijkstra_alternate.py) * [Dinic](graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](graphs/even_tree.py) * [Finding Bridges](graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](graphs/g_topological_sort.py) * [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py) * [Graph List](graphs/graph_list.py) * [Graph Matrix](graphs/graph_matrix.py) * [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py) * [Greedy Best First](graphs/greedy_best_first.py) * [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py) * [Kahns Algorithm Long](graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py) * [Karger](graphs/karger.py) * [Markov Chain](graphs/markov_chain.py) * [Matching Min Vertex Cover](graphs/matching_min_vertex_cover.py) * [Minimum Path Sum](graphs/minimum_path_sum.py) * [Minimum Spanning Tree Boruvka](graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](graphs/multi_heuristic_astar.py) * [Page Rank](graphs/page_rank.py) * [Prim](graphs/prim.py) * [Random Graph Generator](graphs/random_graph_generator.py) * [Scc Kosaraju](graphs/scc_kosaraju.py) * [Strongly Connected Components](graphs/strongly_connected_components.py) * [Tarjans Scc](graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py) ## Greedy Methods * [Fractional Knapsack](greedy_methods/fractional_knapsack.py) * [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py) * [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py) ## Hashes * [Adler32](hashes/adler32.py) * [Chaos Machine](hashes/chaos_machine.py) * [Djb2](hashes/djb2.py) * [Enigma Machine](hashes/enigma_machine.py) * [Hamming Code](hashes/hamming_code.py) * [Luhn](hashes/luhn.py) * [Md5](hashes/md5.py) * [Sdbm](hashes/sdbm.py) * [Sha1](hashes/sha1.py) * [Sha256](hashes/sha256.py) ## Knapsack * [Greedy Knapsack](knapsack/greedy_knapsack.py) * [Knapsack](knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py) * [Lib](linear_algebra/src/lib.py) * [Polynom For Points](linear_algebra/src/polynom_for_points.py) * [Power Iteration](linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py) * [Schur Complement](linear_algebra/src/schur_complement.py) * [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](machine_learning/astar.py) * [Data Transformations](machine_learning/data_transformations.py) * [Decision Tree](machine_learning/decision_tree.py) * Forecasting * [Run](machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](machine_learning/gradient_descent.py) * [K Means Clust](machine_learning/k_means_clust.py) * [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](machine_learning/linear_discriminant_analysis.py) * [Linear Regression](machine_learning/linear_regression.py) * Local Weighted Learning * [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py) * [Logistic Regression](machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](machine_learning/polymonial_regression.py) * [Random Forest Classifier](machine_learning/random_forest_classifier.py) * [Random Forest Regressor](machine_learning/random_forest_regressor.py) * [Scoring Functions](machine_learning/scoring_functions.py) * [Self Organizing Map](machine_learning/self_organizing_map.py) * [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py) * [Similarity Search](machine_learning/similarity_search.py) * [Support Vector Machines](machine_learning/support_vector_machines.py) * [Word Frequency Functions](machine_learning/word_frequency_functions.py) * [Xgboostclassifier](machine_learning/xgboostclassifier.py) ## Maths * [3N Plus 1](maths/3n_plus_1.py) * [Abs](maths/abs.py) * [Abs Max](maths/abs_max.py) * [Abs Min](maths/abs_min.py) * [Add](maths/add.py) * [Aliquot Sum](maths/aliquot_sum.py) * [Allocation Number](maths/allocation_number.py) * [Area](maths/area.py) * [Area Under Curve](maths/area_under_curve.py) * [Armstrong Numbers](maths/armstrong_numbers.py) * [Average Absolute Deviation](maths/average_absolute_deviation.py) * [Average Mean](maths/average_mean.py) * [Average Median](maths/average_median.py) * [Average Mode](maths/average_mode.py) * [Bailey Borwein Plouffe](maths/bailey_borwein_plouffe.py) * [Basic Maths](maths/basic_maths.py) * [Binary Exp Mod](maths/binary_exp_mod.py) * [Binary Exponentiation](maths/binary_exponentiation.py) * [Binary Exponentiation 2](maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](maths/binary_exponentiation_3.py) * [Binomial Coefficient](maths/binomial_coefficient.py) * [Binomial Distribution](maths/binomial_distribution.py) * [Bisection](maths/bisection.py) * [Carmichael Number](maths/carmichael_number.py) * [Catalan Number](maths/catalan_number.py) * [Ceil](maths/ceil.py) * [Check Polygon](maths/check_polygon.py) * [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py) * [Collatz Sequence](maths/collatz_sequence.py) * [Combinations](maths/combinations.py) * [Decimal Isolate](maths/decimal_isolate.py) * [Double Factorial Iterative](maths/double_factorial_iterative.py) * [Double Factorial Recursive](maths/double_factorial_recursive.py) * [Entropy](maths/entropy.py) * [Euclidean Distance](maths/euclidean_distance.py) * [Euclidean Gcd](maths/euclidean_gcd.py) * [Euler Method](maths/euler_method.py) * [Euler Modified](maths/euler_modified.py) * [Eulers Totient](maths/eulers_totient.py) * [Extended Euclidean Algorithm](maths/extended_euclidean_algorithm.py) * [Factorial Iterative](maths/factorial_iterative.py) * [Factorial Recursive](maths/factorial_recursive.py) * [Factors](maths/factors.py) * [Fermat Little Theorem](maths/fermat_little_theorem.py) * [Fibonacci](maths/fibonacci.py) * [Find Max](maths/find_max.py) * [Find Max Recursion](maths/find_max_recursion.py) * [Find Min](maths/find_min.py) * [Find Min Recursion](maths/find_min_recursion.py) * [Floor](maths/floor.py) * [Gamma](maths/gamma.py) * [Gamma Recursive](maths/gamma_recursive.py) * [Gaussian](maths/gaussian.py) * [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py) * [Greatest Common Divisor](maths/greatest_common_divisor.py) * [Greedy Coin Change](maths/greedy_coin_change.py) * [Hamming Numbers](maths/hamming_numbers.py) * [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](maths/integration_by_simpson_approx.py) * [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py) * [Is Square Free](maths/is_square_free.py) * [Jaccard Similarity](maths/jaccard_similarity.py) * [Kadanes](maths/kadanes.py) * [Karatsuba](maths/karatsuba.py) * [Krishnamurthy Number](maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](maths/largest_subarray_sum.py) * [Least Common Multiple](maths/least_common_multiple.py) * [Line Length](maths/line_length.py) * [Lucas Lehmer Primality Test](maths/lucas_lehmer_primality_test.py) * [Lucas Series](maths/lucas_series.py) * [Maclaurin Sin](maths/maclaurin_sin.py) * [Matrix Exponentiation](maths/matrix_exponentiation.py) * [Max Sum Sliding Window](maths/max_sum_sliding_window.py) * [Median Of Two Arrays](maths/median_of_two_arrays.py) * [Miller Rabin](maths/miller_rabin.py) * [Mobius Function](maths/mobius_function.py) * [Modular Exponential](maths/modular_exponential.py) * [Monte Carlo](maths/monte_carlo.py) * [Monte Carlo Dice](maths/monte_carlo_dice.py) * [Nevilles Method](maths/nevilles_method.py) * [Newton Raphson](maths/newton_raphson.py) * [Number Of Digits](maths/number_of_digits.py) * [Numerical Integration](maths/numerical_integration.py) * [Perfect Cube](maths/perfect_cube.py) * [Perfect Number](maths/perfect_number.py) * [Perfect Square](maths/perfect_square.py) * [Persistence](maths/persistence.py) * [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py) * [Points Are Collinear 3D](maths/points_are_collinear_3d.py) * [Pollard Rho](maths/pollard_rho.py) * [Polynomial Evaluation](maths/polynomial_evaluation.py) * [Power Using Recursion](maths/power_using_recursion.py) * [Prime Check](maths/prime_check.py) * [Prime Factors](maths/prime_factors.py) * [Prime Numbers](maths/prime_numbers.py) * [Prime Sieve Eratosthenes](maths/prime_sieve_eratosthenes.py) * [Primelib](maths/primelib.py) * [Proth Number](maths/proth_number.py) * [Pythagoras](maths/pythagoras.py) * [Qr Decomposition](maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](maths/quadratic_equations_complex_numbers.py) * [Radians](maths/radians.py) * [Radix2 Fft](maths/radix2_fft.py) * [Relu](maths/relu.py) * [Runge Kutta](maths/runge_kutta.py) * [Segmented Sieve](maths/segmented_sieve.py) * Series * [Arithmetic](maths/series/arithmetic.py) * [Geometric](maths/series/geometric.py) * [Geometric Series](maths/series/geometric_series.py) * [Harmonic](maths/series/harmonic.py) * [Harmonic Series](maths/series/harmonic_series.py) * [Hexagonal Numbers](maths/series/hexagonal_numbers.py) * [P Series](maths/series/p_series.py) * [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py) * [Sigmoid](maths/sigmoid.py) * [Simpson Rule](maths/simpson_rule.py) * [Sin](maths/sin.py) * [Sock Merchant](maths/sock_merchant.py) * [Softmax](maths/softmax.py) * [Square Root](maths/square_root.py) * [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py) * [Sum Of Digits](maths/sum_of_digits.py) * [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py) * [Sylvester Sequence](maths/sylvester_sequence.py) * [Test Prime Check](maths/test_prime_check.py) * [Trapezoidal Rule](maths/trapezoidal_rule.py) * [Triplet Sum](maths/triplet_sum.py) * [Two Pointer](maths/two_pointer.py) * [Two Sum](maths/two_sum.py) * [Ugly Numbers](maths/ugly_numbers.py) * [Volume](maths/volume.py) * [Weird Number](maths/weird_number.py) * [Zellers Congruence](maths/zellers_congruence.py) ## Matrix * [Binary Search Matrix](matrix/binary_search_matrix.py) * [Count Islands In Matrix](matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](matrix/inverse_of_matrix.py) * [Matrix Class](matrix/matrix_class.py) * [Matrix Operation](matrix/matrix_operation.py) * [Max Area Of Island](matrix/max_area_of_island.py) * [Nth Fibonacci Using Matrix Exponentiation](matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](matrix/rotate_matrix.py) * [Searching In Sorted Matrix](matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](matrix/sherman_morrison.py) * [Spiral Print](matrix/spiral_print.py) * Tests * [Test Matrix Operation](matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](networking_flow/ford_fulkerson.py) * [Minimum Cut](networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](neural_network/convolution_neural_network.py) * [Perceptron](neural_network/perceptron.py) ## Other * [Activity Selection](other/activity_selection.py) * [Alternative List Arrange](other/alternative_list_arrange.py) * [Check Strong Password](other/check_strong_password.py) * [Davisb Putnamb Logemannb Loveland](other/davisb_putnamb_logemannb_loveland.py) * [Dijkstra Bankers Algorithm](other/dijkstra_bankers_algorithm.py) * [Doomsday](other/doomsday.py) * [Fischer Yates Shuffle](other/fischer_yates_shuffle.py) * [Gauss Easter](other/gauss_easter.py) * [Graham Scan](other/graham_scan.py) * [Greedy](other/greedy.py) * [Least Recently Used](other/least_recently_used.py) * [Lfu Cache](other/lfu_cache.py) * [Linear Congruential Generator](other/linear_congruential_generator.py) * [Lru Cache](other/lru_cache.py) * [Magicdiamondpattern](other/magicdiamondpattern.py) * [Maximum Subarray](other/maximum_subarray.py) * [Nested Brackets](other/nested_brackets.py) * [Password Generator](other/password_generator.py) * [Scoring Algorithm](other/scoring_algorithm.py) * [Sdes](other/sdes.py) * [Tower Of Hanoi](other/tower_of_hanoi.py) ## Physics * [Casimir Effect](physics/casimir_effect.py) * [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py) * [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py) * [N Body Simulation](physics/n_body_simulation.py) * [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py) * [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py) ## Project Euler * Problem 001 * [Sol1](project_euler/problem_001/sol1.py) * [Sol2](project_euler/problem_001/sol2.py) * [Sol3](project_euler/problem_001/sol3.py) * [Sol4](project_euler/problem_001/sol4.py) * [Sol5](project_euler/problem_001/sol5.py) * [Sol6](project_euler/problem_001/sol6.py) * [Sol7](project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](project_euler/problem_002/sol1.py) * [Sol2](project_euler/problem_002/sol2.py) * [Sol3](project_euler/problem_002/sol3.py) * [Sol4](project_euler/problem_002/sol4.py) * [Sol5](project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](project_euler/problem_003/sol1.py) * [Sol2](project_euler/problem_003/sol2.py) * [Sol3](project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](project_euler/problem_004/sol1.py) * [Sol2](project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](project_euler/problem_005/sol1.py) * [Sol2](project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](project_euler/problem_006/sol1.py) * [Sol2](project_euler/problem_006/sol2.py) * [Sol3](project_euler/problem_006/sol3.py) * [Sol4](project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](project_euler/problem_007/sol1.py) * [Sol2](project_euler/problem_007/sol2.py) * [Sol3](project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](project_euler/problem_008/sol1.py) * [Sol2](project_euler/problem_008/sol2.py) * [Sol3](project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](project_euler/problem_009/sol1.py) * [Sol2](project_euler/problem_009/sol2.py) * [Sol3](project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](project_euler/problem_010/sol1.py) * [Sol2](project_euler/problem_010/sol2.py) * [Sol3](project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](project_euler/problem_011/sol1.py) * [Sol2](project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](project_euler/problem_012/sol1.py) * [Sol2](project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](project_euler/problem_014/sol1.py) * [Sol2](project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](project_euler/problem_016/sol1.py) * [Sol2](project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](project_euler/problem_017/sol1.py) * Problem 018 * [Solution](project_euler/problem_018/solution.py) * Problem 019 * [Sol1](project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](project_euler/problem_020/sol1.py) * [Sol2](project_euler/problem_020/sol2.py) * [Sol3](project_euler/problem_020/sol3.py) * [Sol4](project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](project_euler/problem_022/sol1.py) * [Sol2](project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](project_euler/problem_025/sol1.py) * [Sol2](project_euler/problem_025/sol2.py) * [Sol3](project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](project_euler/problem_031/sol1.py) * [Sol2](project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](project_euler/problem_054/sol1.py) * [Test Poker Hand](project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](project_euler/problem_067/sol1.py) * [Sol2](project_euler/problem_067/sol2.py) * Problem 068 * [Sol1](project_euler/problem_068/sol1.py) * Problem 069 * [Sol1](project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](project_euler/problem_072/sol1.py) * [Sol2](project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](project_euler/problem_074/sol1.py) * [Sol2](project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](project_euler/problem_077/sol1.py) * Problem 078 * [Sol1](project_euler/problem_078/sol1.py) * Problem 080 * [Sol1](project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](project_euler/problem_091/sol1.py) * Problem 092 * [Sol1](project_euler/problem_092/sol1.py) * Problem 097 * [Sol1](project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](project_euler/problem_113/sol1.py) * Problem 114 * [Sol1](project_euler/problem_114/sol1.py) * Problem 115 * [Sol1](project_euler/problem_115/sol1.py) * Problem 116 * [Sol1](project_euler/problem_116/sol1.py) * Problem 119 * [Sol1](project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](project_euler/problem_135/sol1.py) * Problem 144 * [Sol1](project_euler/problem_144/sol1.py) * Problem 145 * [Sol1](project_euler/problem_145/sol1.py) * Problem 173 * [Sol1](project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](project_euler/problem_203/sol1.py) * Problem 205 * [Sol1](project_euler/problem_205/sol1.py) * Problem 206 * [Sol1](project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](project_euler/problem_301/sol1.py) * Problem 493 * [Sol1](project_euler/problem_493/sol1.py) * Problem 551 * [Sol1](project_euler/problem_551/sol1.py) * Problem 587 * [Sol1](project_euler/problem_587/sol1.py) * Problem 686 * [Sol1](project_euler/problem_686/sol1.py) ## Quantum * [Deutsch Jozsa](quantum/deutsch_jozsa.py) * [Half Adder](quantum/half_adder.py) * [Not Gate](quantum/not_gate.py) * [Q Full Adder](quantum/q_full_adder.py) * [Quantum Entanglement](quantum/quantum_entanglement.py) * [Quantum Random](quantum/quantum_random.py) * [Ripple Adder Classic](quantum/ripple_adder_classic.py) * [Single Qubit Measure](quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](scheduling/first_come_first_served.py) * [Highest Response Ratio Next](scheduling/highest_response_ratio_next.py) * [Job Sequencing With Deadline](scheduling/job_sequencing_with_deadline.py) * [Multi Level Feedback Queue](scheduling/multi_level_feedback_queue.py) * [Non Preemptive Shortest Job First](scheduling/non_preemptive_shortest_job_first.py) * [Round Robin](scheduling/round_robin.py) * [Shortest Job First](scheduling/shortest_job_first.py) ## Searches * [Binary Search](searches/binary_search.py) * [Binary Tree Traversal](searches/binary_tree_traversal.py) * [Double Linear Search](searches/double_linear_search.py) * [Double Linear Search Recursion](searches/double_linear_search_recursion.py) * [Fibonacci Search](searches/fibonacci_search.py) * [Hill Climbing](searches/hill_climbing.py) * [Interpolation Search](searches/interpolation_search.py) * [Jump Search](searches/jump_search.py) * [Linear Search](searches/linear_search.py) * [Quick Select](searches/quick_select.py) * [Sentinel Linear Search](searches/sentinel_linear_search.py) * [Simple Binary Search](searches/simple_binary_search.py) * [Simulated Annealing](searches/simulated_annealing.py) * [Tabu Search](searches/tabu_search.py) * [Ternary Search](searches/ternary_search.py) ## Sorts * [Bead Sort](sorts/bead_sort.py) * [Bitonic Sort](sorts/bitonic_sort.py) * [Bogo Sort](sorts/bogo_sort.py) * [Bubble Sort](sorts/bubble_sort.py) * [Bucket Sort](sorts/bucket_sort.py) * [Circle Sort](sorts/circle_sort.py) * [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py) * [Comb Sort](sorts/comb_sort.py) * [Counting Sort](sorts/counting_sort.py) * [Cycle Sort](sorts/cycle_sort.py) * [Double Sort](sorts/double_sort.py) * [Dutch National Flag Sort](sorts/dutch_national_flag_sort.py) * [Exchange Sort](sorts/exchange_sort.py) * [External Sort](sorts/external_sort.py) * [Gnome Sort](sorts/gnome_sort.py) * [Heap Sort](sorts/heap_sort.py) * [Insertion Sort](sorts/insertion_sort.py) * [Intro Sort](sorts/intro_sort.py) * [Iterative Merge Sort](sorts/iterative_merge_sort.py) * [Merge Insertion Sort](sorts/merge_insertion_sort.py) * [Merge Sort](sorts/merge_sort.py) * [Msd Radix Sort](sorts/msd_radix_sort.py) * [Natural Sort](sorts/natural_sort.py) * [Odd Even Sort](sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](sorts/pancake_sort.py) * [Patience Sort](sorts/patience_sort.py) * [Pigeon Sort](sorts/pigeon_sort.py) * [Pigeonhole Sort](sorts/pigeonhole_sort.py) * [Quick Sort](sorts/quick_sort.py) * [Quick Sort 3 Partition](sorts/quick_sort_3_partition.py) * [Radix Sort](sorts/radix_sort.py) * [Random Normal Distribution Quicksort](sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](sorts/recursive_quick_sort.py) * [Selection Sort](sorts/selection_sort.py) * [Shell Sort](sorts/shell_sort.py) * [Shrink Shell Sort](sorts/shrink_shell_sort.py) * [Slowsort](sorts/slowsort.py) * [Stooge Sort](sorts/stooge_sort.py) * [Strand Sort](sorts/strand_sort.py) * [Tim Sort](sorts/tim_sort.py) * [Topological Sort](sorts/topological_sort.py) * [Tree Sort](sorts/tree_sort.py) * [Unknown Sort](sorts/unknown_sort.py) * [Wiggle Sort](sorts/wiggle_sort.py) ## Strings * [Aho Corasick](strings/aho_corasick.py) * [Alternative String Arrange](strings/alternative_string_arrange.py) * [Anagrams](strings/anagrams.py) * [Autocomplete Using Trie](strings/autocomplete_using_trie.py) * [Barcode Validator](strings/barcode_validator.py) * [Boyer Moore Search](strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](strings/capitalize.py) * [Check Anagrams](strings/check_anagrams.py) * [Check Pangram](strings/check_pangram.py) * [Credit Card Validator](strings/credit_card_validator.py) * [Detecting English Programmatically](strings/detecting_english_programmatically.py) * [Dna](strings/dna.py) * [Frequency Finder](strings/frequency_finder.py) * [Hamming Distance](strings/hamming_distance.py) * [Indian Phone Validator](strings/indian_phone_validator.py) * [Is Contains Unique Chars](strings/is_contains_unique_chars.py) * [Is Palindrome](strings/is_palindrome.py) * [Jaro Winkler](strings/jaro_winkler.py) * [Join](strings/join.py) * [Knuth Morris Pratt](strings/knuth_morris_pratt.py) * [Levenshtein Distance](strings/levenshtein_distance.py) * [Lower](strings/lower.py) * [Manacher](strings/manacher.py) * [Min Cost String Conversion](strings/min_cost_string_conversion.py) * [Naive String Search](strings/naive_string_search.py) * [Ngram](strings/ngram.py) * [Palindrome](strings/palindrome.py) * [Prefix Function](strings/prefix_function.py) * [Rabin Karp](strings/rabin_karp.py) * [Remove Duplicate](strings/remove_duplicate.py) * [Reverse Letters](strings/reverse_letters.py) * [Reverse Long Words](strings/reverse_long_words.py) * [Reverse Words](strings/reverse_words.py) * [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py) * [Split](strings/split.py) * [Upper](strings/upper.py) * [Wave](strings/wave.py) * [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py) * [Word Occurrence](strings/word_occurrence.py) * [Word Patterns](strings/word_patterns.py) * [Z Function](strings/z_function.py) ## Web Programming * [Co2 Emission](web_programming/co2_emission.py) * [Covid Stats Via Xpath](web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](web_programming/crawl_google_scholar_citation.py) * [Currency Converter](web_programming/currency_converter.py) * [Current Stock Price](web_programming/current_stock_price.py) * [Current Weather](web_programming/current_weather.py) * [Daily Horoscope](web_programming/daily_horoscope.py) * [Download Images From Google Query](web_programming/download_images_from_google_query.py) * [Emails From Url](web_programming/emails_from_url.py) * [Fetch Anime And Play](web_programming/fetch_anime_and_play.py) * [Fetch Bbc News](web_programming/fetch_bbc_news.py) * [Fetch Github Info](web_programming/fetch_github_info.py) * [Fetch Jobs](web_programming/fetch_jobs.py) * [Fetch Quotes](web_programming/fetch_quotes.py) * [Fetch Well Rx Price](web_programming/fetch_well_rx_price.py) * [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](web_programming/get_imdbtop.py) * [Get Top Hn Posts](web_programming/get_top_hn_posts.py) * [Get User Tweets](web_programming/get_user_tweets.py) * [Giphy](web_programming/giphy.py) * [Instagram Crawler](web_programming/instagram_crawler.py) * [Instagram Pic](web_programming/instagram_pic.py) * [Instagram Video](web_programming/instagram_video.py) * [Nasa Data](web_programming/nasa_data.py) * [Open Google Results](web_programming/open_google_results.py) * [Random Anime Character](web_programming/random_anime_character.py) * [Recaptcha Verification](web_programming/recaptcha_verification.py) * [Reddit](web_programming/reddit.py) * [Search Books By Isbn](web_programming/search_books_by_isbn.py) * [Slack Message](web_programming/slack_message.py) * [Test Fetch Github Info](web_programming/test_fetch_github_info.py) * [World Covid19 Stats](web_programming/world_covid19_stats.py)
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Conway's Game Of Life, Author Anurag Kumar(mailto:[email protected]) Requirements: - numpy - random - time - matplotlib Python: - 3.5 Usage: - $python3 game_o_life <canvas_size:int> Game-Of-Life Rules: 1. Any live cell with fewer than two live neighbours dies, as if caused by under-population. 2. Any live cell with two or three live neighbours lives on to the next generation. 3. Any live cell with more than three live neighbours dies, as if by over-population. 4. Any dead cell with exactly three live neighbours be- comes a live cell, as if by reproduction. """ import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap usage_doc = "Usage of script: script_nama <size_of_canvas:int>" choice = [0] * 100 + [1] * 10 random.shuffle(choice) def create_canvas(size: int) -> list[list[bool]]: canvas = [[False for i in range(size)] for j in range(size)] return canvas def seed(canvas: list[list[bool]]) -> None: for i, row in enumerate(canvas): for j, _ in enumerate(row): canvas[i][j] = bool(random.getrandbits(1)) def run(canvas: list[list[bool]]) -> list[list[bool]]: """This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ current_canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(current_canvas.shape[0])) for r, row in enumerate(current_canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) next_gen_canvas[r][c] = __judge_point( pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) current_canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return_canvas: list[list[bool]] = current_canvas.tolist() return return_canvas def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool: dead = 0 alive = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. state = pt if pt: if alive < 2: state = False elif alive == 2 or alive == 3: state = True elif alive > 3: state = False else: if alive == 3: state = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) canvas_size = int(sys.argv[1]) # main working structure of this module. c = create_canvas(canvas_size) seed(c) fig, ax = plt.subplots() fig.show() cmap = ListedColormap(["w", "k"]) try: while True: c = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
"""Conway's Game Of Life, Author Anurag Kumar(mailto:[email protected]) Requirements: - numpy - random - time - matplotlib Python: - 3.5 Usage: - $python3 game_o_life <canvas_size:int> Game-Of-Life Rules: 1. Any live cell with fewer than two live neighbours dies, as if caused by under-population. 2. Any live cell with two or three live neighbours lives on to the next generation. 3. Any live cell with more than three live neighbours dies, as if by over-population. 4. Any dead cell with exactly three live neighbours be- comes a live cell, as if by reproduction. """ import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap usage_doc = "Usage of script: script_nama <size_of_canvas:int>" choice = [0] * 100 + [1] * 10 random.shuffle(choice) def create_canvas(size: int) -> list[list[bool]]: canvas = [[False for i in range(size)] for j in range(size)] return canvas def seed(canvas: list[list[bool]]) -> None: for i, row in enumerate(canvas): for j, _ in enumerate(row): canvas[i][j] = bool(random.getrandbits(1)) def run(canvas: list[list[bool]]) -> list[list[bool]]: """This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ current_canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(current_canvas.shape[0])) for r, row in enumerate(current_canvas): for c, pt in enumerate(row): next_gen_canvas[r][c] = __judge_point( pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) current_canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return_canvas: list[list[bool]] = current_canvas.tolist() return return_canvas def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool: dead = 0 alive = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. state = pt if pt: if alive < 2: state = False elif alive == 2 or alive == 3: state = True elif alive > 3: state = False else: if alive == 3: state = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) canvas_size = int(sys.argv[1]) # main working structure of this module. c = create_canvas(canvas_size) seed(c) fig, ax = plt.subplots() fig.show() cmap = ListedColormap(["w", "k"]) try: while True: c = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Author: João Gustavo A. Amorim # Author email: [email protected] # Coding date: jan 2019 # python/black: True # Imports import numpy as np # Class implemented to calculus the index class IndexCalculation: """ # Class Summary This algorithm consists in calculating vegetation indices, these indices can be used for precision agriculture for example (or remote sensing). There are functions to define the data and to calculate the implemented indices. # Vegetation index https://en.wikipedia.org/wiki/Vegetation_Index A Vegetation Index (VI) is a spectral transformation of two or more bands designed to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations # Information about channels (Wavelength range for each) * nir - near-infrared https://www.malvernpanalytical.com/br/products/technology/near-infrared-spectroscopy Wavelength Range 700 nm to 2500 nm * Red Edge https://en.wikipedia.org/wiki/Red_edge Wavelength Range 680 nm to 730 nm * red https://en.wikipedia.org/wiki/Color Wavelength Range 635 nm to 700 nm * blue https://en.wikipedia.org/wiki/Color Wavelength Range 450 nm to 490 nm * green https://en.wikipedia.org/wiki/Color Wavelength Range 520 nm to 560 nm # Implemented index list #"abbreviationOfIndexName" -- list of channels used #"ARVI2" -- red, nir #"CCCI" -- red, redEdge, nir #"CVI" -- red, green, nir #"GLI" -- red, green, blue #"NDVI" -- red, nir #"BNDVI" -- blue, nir #"redEdgeNDVI" -- red, redEdge #"GNDVI" -- green, nir #"GBNDVI" -- green, blue, nir #"GRNDVI" -- red, green, nir #"RBNDVI" -- red, blue, nir #"PNDVI" -- red, green, blue, nir #"ATSAVI" -- red, nir #"BWDRVI" -- blue, nir #"CIgreen" -- green, nir #"CIrededge" -- redEdge, nir #"CI" -- red, blue #"CTVI" -- red, nir #"GDVI" -- green, nir #"EVI" -- red, blue, nir #"GEMI" -- red, nir #"GOSAVI" -- green, nir #"GSAVI" -- green, nir #"Hue" -- red, green, blue #"IVI" -- red, nir #"IPVI" -- red, nir #"I" -- red, green, blue #"RVI" -- red, nir #"MRVI" -- red, nir #"MSAVI" -- red, nir #"NormG" -- red, green, nir #"NormNIR" -- red, green, nir #"NormR" -- red, green, nir #"NGRDI" -- red, green #"RI" -- red, green #"S" -- red, green, blue #"IF" -- red, green, blue #"DVI" -- red, nir #"TVI" -- red, nir #"NDRE" -- redEdge, nir #list of all index implemented #allIndex = ["ARVI2", "CCCI", "CVI", "GLI", "NDVI", "BNDVI", "redEdgeNDVI", "GNDVI", "GBNDVI", "GRNDVI", "RBNDVI", "PNDVI", "ATSAVI", "BWDRVI", "CIgreen", "CIrededge", "CI", "CTVI", "GDVI", "EVI", "GEMI", "GOSAVI", "GSAVI", "Hue", "IVI", "IPVI", "I", "RVI", "MRVI", "MSAVI", "NormG", "NormNIR", "NormR", "NGRDI", "RI", "S", "IF", "DVI", "TVI", "NDRE"] #list of index with not blue channel #notBlueIndex = ["ARVI2", "CCCI", "CVI", "NDVI", "redEdgeNDVI", "GNDVI", "GRNDVI", "ATSAVI", "CIgreen", "CIrededge", "CTVI", "GDVI", "GEMI", "GOSAVI", "GSAVI", "IVI", "IPVI", "RVI", "MRVI", "MSAVI", "NormG", "NormNIR", "NormR", "NGRDI", "RI", "DVI", "TVI", "NDRE"] #list of index just with RGB channels #RGBIndex = ["GLI", "CI", "Hue", "I", "NGRDI", "RI", "S", "IF"] """ def __init__(self, red=None, green=None, blue=None, red_edge=None, nir=None): # print("Numpy version: " + np.__version__) self.set_matricies(red=red, green=green, blue=blue, red_edge=red_edge, nir=nir) def set_matricies(self, red=None, green=None, blue=None, red_edge=None, nir=None): if red is not None: self.red = red if green is not None: self.green = green if blue is not None: self.blue = blue if red_edge is not None: self.redEdge = red_edge if nir is not None: self.nir = nir return True def calculation( self, index="", red=None, green=None, blue=None, red_edge=None, nir=None ): """ performs the calculation of the index with the values instantiated in the class :str index: abbreviation of index name to perform """ self.set_matricies(red=red, green=green, blue=blue, red_edge=red_edge, nir=nir) funcs = { "ARVI2": self.arv12, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!") return False def arv12(self): """ Atmospherically Resistant Vegetation Index 2 https://www.indexdatabase.de/db/i-single.php?id=396 :return: index −0.18+1.17*(self.nir−self.red)/(self.nir+self.red) """ return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def ccci(self): """ Canopy Chlorophyll Content Index https://www.indexdatabase.de/db/i-single.php?id=224 :return: index """ return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def cvi(self): """ Chlorophyll vegetation index https://www.indexdatabase.de/db/i-single.php?id=391 :return: index """ return self.nir * (self.red / (self.green**2)) def gli(self): """ self.green leaf index https://www.indexdatabase.de/db/i-single.php?id=375 :return: index """ return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def ndvi(self): """ Normalized Difference self.nir/self.red Normalized Difference Vegetation Index, Calibrated NDVI - CDVI https://www.indexdatabase.de/db/i-single.php?id=58 :return: index """ return (self.nir - self.red) / (self.nir + self.red) def bndvi(self): """ Normalized Difference self.nir/self.blue self.blue-normalized difference vegetation index https://www.indexdatabase.de/db/i-single.php?id=135 :return: index """ return (self.nir - self.blue) / (self.nir + self.blue) def red_edge_ndvi(self): """ Normalized Difference self.rededge/self.red https://www.indexdatabase.de/db/i-single.php?id=235 :return: index """ return (self.redEdge - self.red) / (self.redEdge + self.red) def gndvi(self): """ Normalized Difference self.nir/self.green self.green NDVI https://www.indexdatabase.de/db/i-single.php?id=401 :return: index """ return (self.nir - self.green) / (self.nir + self.green) def gbndvi(self): """ self.green-self.blue NDVI https://www.indexdatabase.de/db/i-single.php?id=186 :return: index """ return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def grndvi(self): """ self.green-self.red NDVI https://www.indexdatabase.de/db/i-single.php?id=185 :return: index """ return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def rbndvi(self): """ self.red-self.blue NDVI https://www.indexdatabase.de/db/i-single.php?id=187 :return: index """ return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def pndvi(self): """ Pan NDVI https://www.indexdatabase.de/db/i-single.php?id=188 :return: index """ return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def atsavi(self, x=0.08, a=1.22, b=0.03): """ Adjusted transformed soil-adjusted VI https://www.indexdatabase.de/db/i-single.php?id=209 :return: index """ return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def bwdrvi(self): """ self.blue-wide dynamic range vegetation index https://www.indexdatabase.de/db/i-single.php?id=136 :return: index """ return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def ci_green(self): """ Chlorophyll Index self.green https://www.indexdatabase.de/db/i-single.php?id=128 :return: index """ return (self.nir / self.green) - 1 def ci_rededge(self): """ Chlorophyll Index self.redEdge https://www.indexdatabase.de/db/i-single.php?id=131 :return: index """ return (self.nir / self.redEdge) - 1 def ci(self): """ Coloration Index https://www.indexdatabase.de/db/i-single.php?id=11 :return: index """ return (self.red - self.blue) / self.red def ctvi(self): """ Corrected Transformed Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=244 :return: index """ ndvi = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def gdvi(self): """ Difference self.nir/self.green self.green Difference Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=27 :return: index """ return self.nir - self.green def evi(self): """ Enhanced Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=16 :return: index """ return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def gemi(self): """ Global Environment Monitoring Index https://www.indexdatabase.de/db/i-single.php?id=25 :return: index """ n = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def gosavi(self, y=0.16): """ self.green Optimized Soil Adjusted Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=29 mit Y = 0,16 :return: index """ return (self.nir - self.green) / (self.nir + self.green + y) def gsavi(self, n=0.5): """ self.green Soil Adjusted Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=31 mit N = 0,5 :return: index """ return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def hue(self): """ Hue https://www.indexdatabase.de/db/i-single.php?id=34 :return: index """ return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def ivi(self, a=None, b=None): """ Ideal vegetation index https://www.indexdatabase.de/db/i-single.php?id=276 b=intercept of vegetation line a=soil line slope :return: index """ return (self.nir - b) / (a * self.red) def ipvi(self): """ Infraself.red percentage vegetation index https://www.indexdatabase.de/db/i-single.php?id=35 :return: index """ return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def i(self): # noqa: E741,E743 """ Intensity https://www.indexdatabase.de/db/i-single.php?id=36 :return: index """ return (self.red + self.green + self.blue) / 30.5 def rvi(self): """ Ratio-Vegetation-Index http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-s01-p01.html :return: index """ return self.nir / self.red def mrvi(self): """ Modified Normalized Difference Vegetation Index RVI https://www.indexdatabase.de/db/i-single.php?id=275 :return: index """ return (self.rvi() - 1) / (self.rvi() + 1) def m_savi(self): """ Modified Soil Adjusted Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=44 :return: index """ return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def norm_g(self): """ Norm G https://www.indexdatabase.de/db/i-single.php?id=50 :return: index """ return self.green / (self.nir + self.red + self.green) def norm_nir(self): """ Norm self.nir https://www.indexdatabase.de/db/i-single.php?id=51 :return: index """ return self.nir / (self.nir + self.red + self.green) def norm_r(self): """ Norm R https://www.indexdatabase.de/db/i-single.php?id=52 :return: index """ return self.red / (self.nir + self.red + self.green) def ngrdi(self): """ Normalized Difference self.green/self.red Normalized self.green self.red difference index, Visible Atmospherically Resistant Indices self.green (VIself.green) https://www.indexdatabase.de/db/i-single.php?id=390 :return: index """ return (self.green - self.red) / (self.green + self.red) def ri(self): """ Normalized Difference self.red/self.green self.redness Index https://www.indexdatabase.de/db/i-single.php?id=74 :return: index """ return (self.red - self.green) / (self.red + self.green) def s(self): """ Saturation https://www.indexdatabase.de/db/i-single.php?id=77 :return: index """ max_value = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) min_value = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def _if(self): """ Shape Index https://www.indexdatabase.de/db/i-single.php?id=79 :return: index """ return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def dvi(self): """ Simple Ratio self.nir/self.red Difference Vegetation Index, Vegetation Index Number (VIN) https://www.indexdatabase.de/db/i-single.php?id=12 :return: index """ return self.nir / self.red def tvi(self): """ Transformed Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=98 :return: index """ return (self.ndvi() + 0.5) ** (1 / 2) def ndre(self): return (self.nir - self.redEdge) / (self.nir + self.redEdge) """ # genering a random matrices to test this class red = np.ones((1000,1000, 1),dtype="float64") * 46787 green = np.ones((1000,1000, 1),dtype="float64") * 23487 blue = np.ones((1000,1000, 1),dtype="float64") * 14578 redEdge = np.ones((1000,1000, 1),dtype="float64") * 51045 nir = np.ones((1000,1000, 1),dtype="float64") * 52200 # Examples of how to use the class # instantiating the class cl = IndexCalculation() # instantiating the class with the values #cl = indexCalculation(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) # how set the values after instantiate the class cl, (for update the data or when don't # instantiating the class with the values) cl.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) # calculating the indices for the instantiated values in the class # Note: the CCCI index can be changed to any index implemented in the class. indexValue_form1 = cl.calculation("CCCI", red=red, green=green, blue=blue, redEdge=redEdge, nir=nir).astype(np.float64) indexValue_form2 = cl.CCCI() # calculating the index with the values directly -- you can set just the values # preferred note: the *calculation* function performs the function *setMatrices* indexValue_form3 = cl.calculation("CCCI", red=red, green=green, blue=blue, redEdge=redEdge, nir=nir).astype(np.float64) print("Form 1: "+np.array2string(indexValue_form1, precision=20, separator=', ', floatmode='maxprec_equal')) print("Form 2: "+np.array2string(indexValue_form2, precision=20, separator=', ', floatmode='maxprec_equal')) print("Form 3: "+np.array2string(indexValue_form3, precision=20, separator=', ', floatmode='maxprec_equal')) # A list of examples results for different type of data at NDVI # float16 -> 0.31567383 #NDVI (red = 50, nir = 100) # float32 -> 0.31578946 #NDVI (red = 50, nir = 100) # float64 -> 0.3157894736842105 #NDVI (red = 50, nir = 100) # longdouble -> 0.3157894736842105 #NDVI (red = 50, nir = 100) """
# Author: João Gustavo A. Amorim # Author email: [email protected] # Coding date: jan 2019 # python/black: True # Imports import numpy as np # Class implemented to calculus the index class IndexCalculation: """ # Class Summary This algorithm consists in calculating vegetation indices, these indices can be used for precision agriculture for example (or remote sensing). There are functions to define the data and to calculate the implemented indices. # Vegetation index https://en.wikipedia.org/wiki/Vegetation_Index A Vegetation Index (VI) is a spectral transformation of two or more bands designed to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations # Information about channels (Wavelength range for each) * nir - near-infrared https://www.malvernpanalytical.com/br/products/technology/near-infrared-spectroscopy Wavelength Range 700 nm to 2500 nm * Red Edge https://en.wikipedia.org/wiki/Red_edge Wavelength Range 680 nm to 730 nm * red https://en.wikipedia.org/wiki/Color Wavelength Range 635 nm to 700 nm * blue https://en.wikipedia.org/wiki/Color Wavelength Range 450 nm to 490 nm * green https://en.wikipedia.org/wiki/Color Wavelength Range 520 nm to 560 nm # Implemented index list #"abbreviationOfIndexName" -- list of channels used #"ARVI2" -- red, nir #"CCCI" -- red, redEdge, nir #"CVI" -- red, green, nir #"GLI" -- red, green, blue #"NDVI" -- red, nir #"BNDVI" -- blue, nir #"redEdgeNDVI" -- red, redEdge #"GNDVI" -- green, nir #"GBNDVI" -- green, blue, nir #"GRNDVI" -- red, green, nir #"RBNDVI" -- red, blue, nir #"PNDVI" -- red, green, blue, nir #"ATSAVI" -- red, nir #"BWDRVI" -- blue, nir #"CIgreen" -- green, nir #"CIrededge" -- redEdge, nir #"CI" -- red, blue #"CTVI" -- red, nir #"GDVI" -- green, nir #"EVI" -- red, blue, nir #"GEMI" -- red, nir #"GOSAVI" -- green, nir #"GSAVI" -- green, nir #"Hue" -- red, green, blue #"IVI" -- red, nir #"IPVI" -- red, nir #"I" -- red, green, blue #"RVI" -- red, nir #"MRVI" -- red, nir #"MSAVI" -- red, nir #"NormG" -- red, green, nir #"NormNIR" -- red, green, nir #"NormR" -- red, green, nir #"NGRDI" -- red, green #"RI" -- red, green #"S" -- red, green, blue #"IF" -- red, green, blue #"DVI" -- red, nir #"TVI" -- red, nir #"NDRE" -- redEdge, nir #list of all index implemented #allIndex = ["ARVI2", "CCCI", "CVI", "GLI", "NDVI", "BNDVI", "redEdgeNDVI", "GNDVI", "GBNDVI", "GRNDVI", "RBNDVI", "PNDVI", "ATSAVI", "BWDRVI", "CIgreen", "CIrededge", "CI", "CTVI", "GDVI", "EVI", "GEMI", "GOSAVI", "GSAVI", "Hue", "IVI", "IPVI", "I", "RVI", "MRVI", "MSAVI", "NormG", "NormNIR", "NormR", "NGRDI", "RI", "S", "IF", "DVI", "TVI", "NDRE"] #list of index with not blue channel #notBlueIndex = ["ARVI2", "CCCI", "CVI", "NDVI", "redEdgeNDVI", "GNDVI", "GRNDVI", "ATSAVI", "CIgreen", "CIrededge", "CTVI", "GDVI", "GEMI", "GOSAVI", "GSAVI", "IVI", "IPVI", "RVI", "MRVI", "MSAVI", "NormG", "NormNIR", "NormR", "NGRDI", "RI", "DVI", "TVI", "NDRE"] #list of index just with RGB channels #RGBIndex = ["GLI", "CI", "Hue", "I", "NGRDI", "RI", "S", "IF"] """ def __init__(self, red=None, green=None, blue=None, red_edge=None, nir=None): self.set_matricies(red=red, green=green, blue=blue, red_edge=red_edge, nir=nir) def set_matricies(self, red=None, green=None, blue=None, red_edge=None, nir=None): if red is not None: self.red = red if green is not None: self.green = green if blue is not None: self.blue = blue if red_edge is not None: self.redEdge = red_edge if nir is not None: self.nir = nir return True def calculation( self, index="", red=None, green=None, blue=None, red_edge=None, nir=None ): """ performs the calculation of the index with the values instantiated in the class :str index: abbreviation of index name to perform """ self.set_matricies(red=red, green=green, blue=blue, red_edge=red_edge, nir=nir) funcs = { "ARVI2": self.arv12, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!") return False def arv12(self): """ Atmospherically Resistant Vegetation Index 2 https://www.indexdatabase.de/db/i-single.php?id=396 :return: index −0.18+1.17*(self.nir−self.red)/(self.nir+self.red) """ return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def ccci(self): """ Canopy Chlorophyll Content Index https://www.indexdatabase.de/db/i-single.php?id=224 :return: index """ return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def cvi(self): """ Chlorophyll vegetation index https://www.indexdatabase.de/db/i-single.php?id=391 :return: index """ return self.nir * (self.red / (self.green**2)) def gli(self): """ self.green leaf index https://www.indexdatabase.de/db/i-single.php?id=375 :return: index """ return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def ndvi(self): """ Normalized Difference self.nir/self.red Normalized Difference Vegetation Index, Calibrated NDVI - CDVI https://www.indexdatabase.de/db/i-single.php?id=58 :return: index """ return (self.nir - self.red) / (self.nir + self.red) def bndvi(self): """ Normalized Difference self.nir/self.blue self.blue-normalized difference vegetation index https://www.indexdatabase.de/db/i-single.php?id=135 :return: index """ return (self.nir - self.blue) / (self.nir + self.blue) def red_edge_ndvi(self): """ Normalized Difference self.rededge/self.red https://www.indexdatabase.de/db/i-single.php?id=235 :return: index """ return (self.redEdge - self.red) / (self.redEdge + self.red) def gndvi(self): """ Normalized Difference self.nir/self.green self.green NDVI https://www.indexdatabase.de/db/i-single.php?id=401 :return: index """ return (self.nir - self.green) / (self.nir + self.green) def gbndvi(self): """ self.green-self.blue NDVI https://www.indexdatabase.de/db/i-single.php?id=186 :return: index """ return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def grndvi(self): """ self.green-self.red NDVI https://www.indexdatabase.de/db/i-single.php?id=185 :return: index """ return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def rbndvi(self): """ self.red-self.blue NDVI https://www.indexdatabase.de/db/i-single.php?id=187 :return: index """ return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def pndvi(self): """ Pan NDVI https://www.indexdatabase.de/db/i-single.php?id=188 :return: index """ return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def atsavi(self, x=0.08, a=1.22, b=0.03): """ Adjusted transformed soil-adjusted VI https://www.indexdatabase.de/db/i-single.php?id=209 :return: index """ return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def bwdrvi(self): """ self.blue-wide dynamic range vegetation index https://www.indexdatabase.de/db/i-single.php?id=136 :return: index """ return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def ci_green(self): """ Chlorophyll Index self.green https://www.indexdatabase.de/db/i-single.php?id=128 :return: index """ return (self.nir / self.green) - 1 def ci_rededge(self): """ Chlorophyll Index self.redEdge https://www.indexdatabase.de/db/i-single.php?id=131 :return: index """ return (self.nir / self.redEdge) - 1 def ci(self): """ Coloration Index https://www.indexdatabase.de/db/i-single.php?id=11 :return: index """ return (self.red - self.blue) / self.red def ctvi(self): """ Corrected Transformed Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=244 :return: index """ ndvi = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def gdvi(self): """ Difference self.nir/self.green self.green Difference Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=27 :return: index """ return self.nir - self.green def evi(self): """ Enhanced Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=16 :return: index """ return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def gemi(self): """ Global Environment Monitoring Index https://www.indexdatabase.de/db/i-single.php?id=25 :return: index """ n = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def gosavi(self, y=0.16): """ self.green Optimized Soil Adjusted Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=29 mit Y = 0,16 :return: index """ return (self.nir - self.green) / (self.nir + self.green + y) def gsavi(self, n=0.5): """ self.green Soil Adjusted Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=31 mit N = 0,5 :return: index """ return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def hue(self): """ Hue https://www.indexdatabase.de/db/i-single.php?id=34 :return: index """ return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def ivi(self, a=None, b=None): """ Ideal vegetation index https://www.indexdatabase.de/db/i-single.php?id=276 b=intercept of vegetation line a=soil line slope :return: index """ return (self.nir - b) / (a * self.red) def ipvi(self): """ Infraself.red percentage vegetation index https://www.indexdatabase.de/db/i-single.php?id=35 :return: index """ return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def i(self): # noqa: E741,E743 """ Intensity https://www.indexdatabase.de/db/i-single.php?id=36 :return: index """ return (self.red + self.green + self.blue) / 30.5 def rvi(self): """ Ratio-Vegetation-Index http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-s01-p01.html :return: index """ return self.nir / self.red def mrvi(self): """ Modified Normalized Difference Vegetation Index RVI https://www.indexdatabase.de/db/i-single.php?id=275 :return: index """ return (self.rvi() - 1) / (self.rvi() + 1) def m_savi(self): """ Modified Soil Adjusted Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=44 :return: index """ return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def norm_g(self): """ Norm G https://www.indexdatabase.de/db/i-single.php?id=50 :return: index """ return self.green / (self.nir + self.red + self.green) def norm_nir(self): """ Norm self.nir https://www.indexdatabase.de/db/i-single.php?id=51 :return: index """ return self.nir / (self.nir + self.red + self.green) def norm_r(self): """ Norm R https://www.indexdatabase.de/db/i-single.php?id=52 :return: index """ return self.red / (self.nir + self.red + self.green) def ngrdi(self): """ Normalized Difference self.green/self.red Normalized self.green self.red difference index, Visible Atmospherically Resistant Indices self.green (VIself.green) https://www.indexdatabase.de/db/i-single.php?id=390 :return: index """ return (self.green - self.red) / (self.green + self.red) def ri(self): """ Normalized Difference self.red/self.green self.redness Index https://www.indexdatabase.de/db/i-single.php?id=74 :return: index """ return (self.red - self.green) / (self.red + self.green) def s(self): """ Saturation https://www.indexdatabase.de/db/i-single.php?id=77 :return: index """ max_value = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) min_value = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def _if(self): """ Shape Index https://www.indexdatabase.de/db/i-single.php?id=79 :return: index """ return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def dvi(self): """ Simple Ratio self.nir/self.red Difference Vegetation Index, Vegetation Index Number (VIN) https://www.indexdatabase.de/db/i-single.php?id=12 :return: index """ return self.nir / self.red def tvi(self): """ Transformed Vegetation Index https://www.indexdatabase.de/db/i-single.php?id=98 :return: index """ return (self.ndvi() + 0.5) ** (1 / 2) def ndre(self): return (self.nir - self.redEdge) / (self.nir + self.redEdge) """ # genering a random matrices to test this class red = np.ones((1000,1000, 1),dtype="float64") * 46787 green = np.ones((1000,1000, 1),dtype="float64") * 23487 blue = np.ones((1000,1000, 1),dtype="float64") * 14578 redEdge = np.ones((1000,1000, 1),dtype="float64") * 51045 nir = np.ones((1000,1000, 1),dtype="float64") * 52200 # Examples of how to use the class # instantiating the class cl = IndexCalculation() # instantiating the class with the values #cl = indexCalculation(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) # how set the values after instantiate the class cl, (for update the data or when don't # instantiating the class with the values) cl.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir) # calculating the indices for the instantiated values in the class # Note: the CCCI index can be changed to any index implemented in the class. indexValue_form1 = cl.calculation("CCCI", red=red, green=green, blue=blue, redEdge=redEdge, nir=nir).astype(np.float64) indexValue_form2 = cl.CCCI() # calculating the index with the values directly -- you can set just the values # preferred note: the *calculation* function performs the function *setMatrices* indexValue_form3 = cl.calculation("CCCI", red=red, green=green, blue=blue, redEdge=redEdge, nir=nir).astype(np.float64) print("Form 1: "+np.array2string(indexValue_form1, precision=20, separator=', ', floatmode='maxprec_equal')) print("Form 2: "+np.array2string(indexValue_form2, precision=20, separator=', ', floatmode='maxprec_equal')) print("Form 3: "+np.array2string(indexValue_form3, precision=20, separator=', ', floatmode='maxprec_equal')) # A list of examples results for different type of data at NDVI # float16 -> 0.31567383 #NDVI (red = 50, nir = 100) # float32 -> 0.31578946 #NDVI (red = 50, nir = 100) # float64 -> 0.3157894736842105 #NDVI (red = 50, nir = 100) # longdouble -> 0.3157894736842105 #NDVI (red = 50, nir = 100) """
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Given a array of length n, max_subarray_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method. Time complexity : O(n log n) Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70) """ def max_sum_from_start(array): """This function finds the maximum contiguous sum of array from 0 index Parameters : array (list[int]) : given array Returns : max_sum (int) : maximum contiguous sum of array from 0 index """ array_sum = 0 max_sum = float("-inf") for num in array: array_sum += num if array_sum > max_sum: max_sum = array_sum return max_sum def max_cross_array_sum(array, left, mid, right): """This function finds the maximum contiguous sum of left and right arrays Parameters : array, left, mid, right (list[int], int, int, int) Returns : (int) : maximum of sum of contiguous sum of left and right arrays """ max_sum_of_left = max_sum_from_start(array[left : mid + 1][::-1]) max_sum_of_right = max_sum_from_start(array[mid + 1 : right + 1]) return max_sum_of_left + max_sum_of_right def max_subarray_sum(array, left, right): """Maximum contiguous sub-array sum, using divide and conquer method Parameters : array, left, right (list[int], int, int) : given array, current left index and current right index Returns : int : maximum of sum of contiguous sub-array """ # base case: array has only one element if left == right: return array[right] # Recursion mid = (left + right) // 2 left_half_sum = max_subarray_sum(array, left, mid) right_half_sum = max_subarray_sum(array, mid + 1, right) cross_sum = max_cross_array_sum(array, left, mid, right) return max(left_half_sum, right_half_sum, cross_sum) array = [-2, -5, 6, -2, -3, 1, 5, -6] array_length = len(array) print( "Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1) )
""" Given a array of length n, max_subarray_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method. Time complexity : O(n log n) Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70) """ def max_sum_from_start(array): """This function finds the maximum contiguous sum of array from 0 index Parameters : array (list[int]) : given array Returns : max_sum (int) : maximum contiguous sum of array from 0 index """ array_sum = 0 max_sum = float("-inf") for num in array: array_sum += num if array_sum > max_sum: max_sum = array_sum return max_sum def max_cross_array_sum(array, left, mid, right): """This function finds the maximum contiguous sum of left and right arrays Parameters : array, left, mid, right (list[int], int, int, int) Returns : (int) : maximum of sum of contiguous sum of left and right arrays """ max_sum_of_left = max_sum_from_start(array[left : mid + 1][::-1]) max_sum_of_right = max_sum_from_start(array[mid + 1 : right + 1]) return max_sum_of_left + max_sum_of_right def max_subarray_sum(array, left, right): """Maximum contiguous sub-array sum, using divide and conquer method Parameters : array, left, right (list[int], int, int) : given array, current left index and current right index Returns : int : maximum of sum of contiguous sub-array """ # base case: array has only one element if left == right: return array[right] # Recursion mid = (left + right) // 2 left_half_sum = max_subarray_sum(array, left, mid) right_half_sum = max_subarray_sum(array, mid + 1, right) cross_sum = max_cross_array_sum(array, left, mid, right) return max(left_half_sum, right_half_sum, cross_sum) if __name__ == "__main__": array = [-2, -5, 6, -2, -3, 1, 5, -6] array_length = len(array) print( "Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1), )
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations import math def default_matrix_multiplication(a: list, b: list) -> list: """ Multiplication only for 2x2 matrices """ if len(a) != 2 or len(a[0]) != 2 or len(b) != 2 or len(b[0]) != 2: raise Exception("Matrices are not 2x2") new_matrix = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def matrix_addition(matrix_a: list, matrix_b: list): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(matrix_a)) ] def matrix_subtraction(matrix_a: list, matrix_b: list): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(matrix_a)) ] def split_matrix(a: list) -> tuple[list, list, list, list]: """ Given an even length matrix, returns the top_left, top_right, bot_left, bot_right quadrant. >>> split_matrix([[4,3,2,4],[2,3,1,1],[6,5,4,3],[8,4,1,6]]) ([[4, 3], [2, 3]], [[2, 4], [1, 1]], [[6, 5], [8, 4]], [[4, 3], [1, 6]]) >>> split_matrix([ ... [4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6], ... [4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6] ... ]) # doctest: +NORMALIZE_WHITESPACE ([[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]]) """ if len(a) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception("Odd matrices are not supported!") matrix_length = len(a) mid = matrix_length // 2 top_right = [[a[i][j] for j in range(mid, matrix_length)] for i in range(mid)] bot_right = [ [a[i][j] for j in range(mid, matrix_length)] for i in range(mid, matrix_length) ] top_left = [[a[i][j] for j in range(mid)] for i in range(mid)] bot_left = [[a[i][j] for j in range(mid)] for i in range(mid, matrix_length)] return top_left, top_right, bot_left, bot_right def matrix_dimensions(matrix: list) -> tuple[int, int]: return len(matrix), len(matrix[0]) def print_matrix(matrix: list) -> None: for i in range(len(matrix)): print(matrix[i]) def actual_strassen(matrix_a: list, matrix_b: list) -> list: """ Recursive function to calculate the product of two matrices, using the Strassen Algorithm. It only supports even length matrices. """ if matrix_dimensions(matrix_a) == (2, 2): return default_matrix_multiplication(matrix_a, matrix_b) a, b, c, d = split_matrix(matrix_a) e, f, g, h = split_matrix(matrix_b) t1 = actual_strassen(a, matrix_subtraction(f, h)) t2 = actual_strassen(matrix_addition(a, b), h) t3 = actual_strassen(matrix_addition(c, d), e) t4 = actual_strassen(d, matrix_subtraction(g, e)) t5 = actual_strassen(matrix_addition(a, d), matrix_addition(e, h)) t6 = actual_strassen(matrix_subtraction(b, d), matrix_addition(g, h)) t7 = actual_strassen(matrix_subtraction(a, c), matrix_addition(e, f)) top_left = matrix_addition(matrix_subtraction(matrix_addition(t5, t4), t2), t6) top_right = matrix_addition(t1, t2) bot_left = matrix_addition(t3, t4) bot_right = matrix_subtraction(matrix_subtraction(matrix_addition(t1, t5), t3), t7) # construct the new matrix from our 4 quadrants new_matrix = [] for i in range(len(top_right)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(bot_right)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def strassen(matrix1: list, matrix2: list) -> list: """ >>> strassen([[2,1,3],[3,4,6],[1,4,2],[7,6,7]], [[4,2,3,4],[2,1,1,1],[8,6,4,2]]) [[34, 23, 19, 15], [68, 46, 37, 28], [28, 18, 15, 12], [96, 62, 55, 48]] >>> strassen([[3,7,5,6,9],[1,5,3,7,8],[1,4,4,5,7]], [[2,4],[5,2],[1,7],[5,5],[7,8]]) [[139, 163], [121, 134], [100, 121]] """ if matrix_dimensions(matrix1)[1] != matrix_dimensions(matrix2)[0]: raise Exception( "Unable to multiply these matrices, please check the dimensions. \n" f"Matrix A:{matrix1} \nMatrix B:{matrix2}" ) dimension1 = matrix_dimensions(matrix1) dimension2 = matrix_dimensions(matrix2) if dimension1[0] == dimension1[1] and dimension2[0] == dimension2[1]: return [matrix1, matrix2] maximum = max(max(dimension1), max(dimension2)) maxim = int(math.pow(2, math.ceil(math.log2(maximum)))) new_matrix1 = matrix1 new_matrix2 = matrix2 # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, maxim): if i < dimension1[0]: for _ in range(dimension1[1], maxim): new_matrix1[i].append(0) else: new_matrix1.append([0] * maxim) if i < dimension2[0]: for _ in range(dimension2[1], maxim): new_matrix2[i].append(0) else: new_matrix2.append([0] * maxim) final_matrix = actual_strassen(new_matrix1, new_matrix2) # Removing the additional zeros for i in range(0, maxim): if i < dimension1[0]: for _ in range(dimension2[1], maxim): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": matrix1 = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] matrix2 = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrix1, matrix2))
from __future__ import annotations import math def default_matrix_multiplication(a: list, b: list) -> list: """ Multiplication only for 2x2 matrices """ if len(a) != 2 or len(a[0]) != 2 or len(b) != 2 or len(b[0]) != 2: raise Exception("Matrices are not 2x2") new_matrix = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def matrix_addition(matrix_a: list, matrix_b: list): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(matrix_a)) ] def matrix_subtraction(matrix_a: list, matrix_b: list): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))] for row in range(len(matrix_a)) ] def split_matrix(a: list) -> tuple[list, list, list, list]: """ Given an even length matrix, returns the top_left, top_right, bot_left, bot_right quadrant. >>> split_matrix([[4,3,2,4],[2,3,1,1],[6,5,4,3],[8,4,1,6]]) ([[4, 3], [2, 3]], [[2, 4], [1, 1]], [[6, 5], [8, 4]], [[4, 3], [1, 6]]) >>> split_matrix([ ... [4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6], ... [4,3,2,4,4,3,2,4],[2,3,1,1,2,3,1,1],[6,5,4,3,6,5,4,3],[8,4,1,6,8,4,1,6] ... ]) # doctest: +NORMALIZE_WHITESPACE ([[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]], [[4, 3, 2, 4], [2, 3, 1, 1], [6, 5, 4, 3], [8, 4, 1, 6]]) """ if len(a) % 2 != 0 or len(a[0]) % 2 != 0: raise Exception("Odd matrices are not supported!") matrix_length = len(a) mid = matrix_length // 2 top_right = [[a[i][j] for j in range(mid, matrix_length)] for i in range(mid)] bot_right = [ [a[i][j] for j in range(mid, matrix_length)] for i in range(mid, matrix_length) ] top_left = [[a[i][j] for j in range(mid)] for i in range(mid)] bot_left = [[a[i][j] for j in range(mid)] for i in range(mid, matrix_length)] return top_left, top_right, bot_left, bot_right def matrix_dimensions(matrix: list) -> tuple[int, int]: return len(matrix), len(matrix[0]) def print_matrix(matrix: list) -> None: print("\n".join(str(line) for line in matrix)) def actual_strassen(matrix_a: list, matrix_b: list) -> list: """ Recursive function to calculate the product of two matrices, using the Strassen Algorithm. It only supports even length matrices. """ if matrix_dimensions(matrix_a) == (2, 2): return default_matrix_multiplication(matrix_a, matrix_b) a, b, c, d = split_matrix(matrix_a) e, f, g, h = split_matrix(matrix_b) t1 = actual_strassen(a, matrix_subtraction(f, h)) t2 = actual_strassen(matrix_addition(a, b), h) t3 = actual_strassen(matrix_addition(c, d), e) t4 = actual_strassen(d, matrix_subtraction(g, e)) t5 = actual_strassen(matrix_addition(a, d), matrix_addition(e, h)) t6 = actual_strassen(matrix_subtraction(b, d), matrix_addition(g, h)) t7 = actual_strassen(matrix_subtraction(a, c), matrix_addition(e, f)) top_left = matrix_addition(matrix_subtraction(matrix_addition(t5, t4), t2), t6) top_right = matrix_addition(t1, t2) bot_left = matrix_addition(t3, t4) bot_right = matrix_subtraction(matrix_subtraction(matrix_addition(t1, t5), t3), t7) # construct the new matrix from our 4 quadrants new_matrix = [] for i in range(len(top_right)): new_matrix.append(top_left[i] + top_right[i]) for i in range(len(bot_right)): new_matrix.append(bot_left[i] + bot_right[i]) return new_matrix def strassen(matrix1: list, matrix2: list) -> list: """ >>> strassen([[2,1,3],[3,4,6],[1,4,2],[7,6,7]], [[4,2,3,4],[2,1,1,1],[8,6,4,2]]) [[34, 23, 19, 15], [68, 46, 37, 28], [28, 18, 15, 12], [96, 62, 55, 48]] >>> strassen([[3,7,5,6,9],[1,5,3,7,8],[1,4,4,5,7]], [[2,4],[5,2],[1,7],[5,5],[7,8]]) [[139, 163], [121, 134], [100, 121]] """ if matrix_dimensions(matrix1)[1] != matrix_dimensions(matrix2)[0]: raise Exception( "Unable to multiply these matrices, please check the dimensions. \n" f"Matrix A:{matrix1} \nMatrix B:{matrix2}" ) dimension1 = matrix_dimensions(matrix1) dimension2 = matrix_dimensions(matrix2) if dimension1[0] == dimension1[1] and dimension2[0] == dimension2[1]: return [matrix1, matrix2] maximum = max(max(dimension1), max(dimension2)) maxim = int(math.pow(2, math.ceil(math.log2(maximum)))) new_matrix1 = matrix1 new_matrix2 = matrix2 # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, maxim): if i < dimension1[0]: for _ in range(dimension1[1], maxim): new_matrix1[i].append(0) else: new_matrix1.append([0] * maxim) if i < dimension2[0]: for _ in range(dimension2[1], maxim): new_matrix2[i].append(0) else: new_matrix2.append([0] * maxim) final_matrix = actual_strassen(new_matrix1, new_matrix2) # Removing the additional zeros for i in range(0, maxim): if i < dimension1[0]: for _ in range(dimension2[1], maxim): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": matrix1 = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] matrix2 = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrix1, matrix2))
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Author : Yvonne This is a pure Python implementation of Dynamic Programming solution to the longest_sub_array problem. The problem is : Given an array, to find the longest and continuous sub array and get the max sum of the sub array in the given array. """ class SubArray: def __init__(self, arr): # we need a list not a string, so do something to change the type self.array = arr.split(",") print(("the input array is:", self.array)) def solve_sub_array(self): rear = [int(self.array[0])] * len(self.array) sum_value = [int(self.array[0])] * len(self.array) for i in range(1, len(self.array)): sum_value[i] = max( int(self.array[i]) + sum_value[i - 1], int(self.array[i]) ) rear[i] = max(sum_value[i], rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": whole_array = input("please input some numbers:") array = SubArray(whole_array) re = array.solve_sub_array() print(("the results is:", re))
""" Author : Yvonne This is a pure Python implementation of Dynamic Programming solution to the longest_sub_array problem. The problem is : Given an array, to find the longest and continuous sub array and get the max sum of the sub array in the given array. """ class SubArray: def __init__(self, arr): # we need a list not a string, so do something to change the type self.array = arr.split(",") def solve_sub_array(self): rear = [int(self.array[0])] * len(self.array) sum_value = [int(self.array[0])] * len(self.array) for i in range(1, len(self.array)): sum_value[i] = max( int(self.array[i]) + sum_value[i - 1], int(self.array[i]) ) rear[i] = max(sum_value[i], rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": whole_array = input("please input some numbers:") array = SubArray(whole_array) re = array.solve_sub_array() print(("the results is:", re))
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo from __future__ import annotations def maximum_non_adjacent_sum(nums: list[int]) -> int: """ Find the maximum non-adjacent sum of the integers in the nums input list >>> print(maximum_non_adjacent_sum([1, 2, 3])) 4 >>> maximum_non_adjacent_sum([1, 5, 3, 7, 2, 2, 6]) 18 >>> maximum_non_adjacent_sum([-1, -5, -3, -7, -2, -2, -6]) 0 >>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6]) 500 """ if not nums: return 0 max_including = nums[0] max_excluding = 0 for num in nums[1:]: max_including, max_excluding = ( max_excluding + num, max(max_including, max_excluding), ) return max(max_excluding, max_including) if __name__ == "__main__": import doctest doctest.testmod()
# Video Explanation: https://www.youtube.com/watch?v=6w60Zi1NtL8&feature=emb_logo from __future__ import annotations def maximum_non_adjacent_sum(nums: list[int]) -> int: """ Find the maximum non-adjacent sum of the integers in the nums input list >>> maximum_non_adjacent_sum([1, 2, 3]) 4 >>> maximum_non_adjacent_sum([1, 5, 3, 7, 2, 2, 6]) 18 >>> maximum_non_adjacent_sum([-1, -5, -3, -7, -2, -2, -6]) 0 >>> maximum_non_adjacent_sum([499, 500, -3, -7, -2, -2, -6]) 500 """ if not nums: return 0 max_including = nums[0] max_excluding = 0 for num in nums[1:]: max_including, max_excluding = ( max_excluding + num, max(max_including, max_excluding), ) return max(max_excluding, max_including) if __name__ == "__main__": import doctest doctest.testmod()
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Print all subset combinations of n element in given set of r element. def combination_util(arr, n, r, index, data, i): """ Current combination is ready to be printed, print it arr[] ---> Input Array data[] ---> Temporary array to store current combination start & end ---> Staring and Ending indexes in arr[] index ---> Current index in data[] r ---> Size of a combination to be printed """ if index == r: for j in range(r): print(data[j], end=" ") print(" ") return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location data[index] = arr[i] combination_util(arr, n, r, index + 1, data, i + 1) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(arr, n, r, index, data, i + 1) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def print_combination(arr, n, r): # A temporary array to store all combination one by one data = [0] * r # Print all combination using temporary array 'data[]' combination_util(arr, n, r, 0, data, 0) # Driver function to check for above function arr = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
# Print all subset combinations of n element in given set of r element. def combination_util(arr, n, r, index, data, i): """ Current combination is ready to be printed, print it arr[] ---> Input Array data[] ---> Temporary array to store current combination start & end ---> Staring and Ending indexes in arr[] index ---> Current index in data[] r ---> Size of a combination to be printed """ if index == r: for j in range(r): print(data[j], end=" ") print(" ") return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location data[index] = arr[i] combination_util(arr, n, r, index + 1, data, i + 1) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(arr, n, r, index, data, i + 1) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def print_combination(arr, n, r): # A temporary array to store all combination one by one data = [0] * r # Print all combination using temporary array 'data[]' combination_util(arr, n, r, 0, data, 0) if __name__ == "__main__": # Driver code to check the function above arr = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def is_sum_subset(arr, arr_len, required_sum): """ >>> is_sum_subset([2, 4, 6, 8], 4, 5) False >>> is_sum_subset([2, 4, 6, 8], 4, 14) True """ # a subset value says 1 if that subset sum can be formed else 0 # initially no subsets can be formed hence False/0 subset = [[False for i in range(required_sum + 1)] for i in range(arr_len + 1)] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1): subset[i][0] = True # sum is not zero and set is empty then false for i in range(1, required_sum + 1): subset[0][i] = False for i in range(1, arr_len + 1): for j in range(1, required_sum + 1): if arr[i - 1] > j: subset[i][j] = subset[i - 1][j] if arr[i - 1] <= j: subset[i][j] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] # uncomment to print the subset # for i in range(arrLen+1): # print(subset[i]) print(subset[arr_len][required_sum]) if __name__ == "__main__": import doctest doctest.testmod()
def is_sum_subset(arr: list[int], required_sum: int) -> bool: """ >>> is_sum_subset([2, 4, 6, 8], 5) False >>> is_sum_subset([2, 4, 6, 8], 14) True """ # a subset value says 1 if that subset sum can be formed else 0 # initially no subsets can be formed hence False/0 arr_len = len(arr) subset = [[False] * (required_sum + 1) for _ in range(arr_len + 1)] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1): subset[i][0] = True # sum is not zero and set is empty then false for i in range(1, required_sum + 1): subset[0][i] = False for i in range(1, arr_len + 1): for j in range(1, required_sum + 1): if arr[i - 1] > j: subset[i][j] = subset[i - 1][j] if arr[i - 1] <= j: subset[i][j] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" this is code for forecasting but i modified it and used it for safety checker of data for ex: you have a online shop and for some reason some data are missing (the amount of data that u expected are not supposed to be) then we can use it *ps : 1. ofc we can use normal statistic method but in this case the data is quite absurd and only a little^^ 2. ofc u can use this and modified it for forecasting purpose for the next 3 months sales or something, u can just adjust it for ur own purpose """ import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def linear_regression_prediction( train_dt: list, train_usr: list, train_mtch: list, test_dt: list, test_mtch: list ) -> float: """ First method: linear regression input : training data (date, total_user, total_event) in list of float output : list of total user prediction in float >>> n = linear_regression_prediction([2,3,4,5], [5,3,4,6], [3,1,2,4], [2,1], [2,2]) >>> abs(n - 5.0) < 1e-6 # Checking precision because of floating point errors True """ x = np.array([[1, item, train_mtch[i]] for i, item in enumerate(train_dt)]) y = np.array(train_usr) beta = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), x)), x.transpose()), y) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def sarimax_predictor(train_user: list, train_match: list, test_match: list) -> float: """ second method: Sarimax sarimax is a statistic method which using previous input and learn its pattern to predict future data input : training data (total_user, with exog data = total_event) in list of float output : list of total user prediction in float >>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2]) 6.6666671111109626 """ order = (1, 2, 1) seasonal_order = (1, 1, 0, 7) model = SARIMAX( train_user, exog=train_match, order=order, seasonal_order=seasonal_order ) model_fit = model.fit(disp=False, maxiter=600, method="nm") result = model_fit.predict(1, len(test_match), exog=[test_match]) return result[0] def support_vector_regressor(x_train: list, x_test: list, train_user: list) -> float: """ Third method: Support vector regressor svr is quite the same with svm(support vector machine) it uses the same principles as the SVM for classification, with only a few minor differences and the only different is that it suits better for regression purpose input : training data (date, total_user, total_event) in list of float where x = list of set (date and total event) output : list of total user prediction in float >>> support_vector_regressor([[5,2],[1,5],[6,2]], [[3,2]], [2,1,4]) 1.634932078116079 """ regressor = SVR(kernel="rbf", C=1, gamma=0.1, epsilon=0.1) regressor.fit(x_train, train_user) y_pred = regressor.predict(x_test) return y_pred[0] def interquartile_range_checker(train_user: list) -> float: """ Optional method: interquatile range input : list of total user in float output : low limit of input in float this method can be used to check whether some data is outlier or not >>> interquartile_range_checker([1,2,3,4,5,6,7,8,9,10]) 2.8 """ train_user.sort() q1 = np.percentile(train_user, 25) q3 = np.percentile(train_user, 75) iqr = q3 - q1 low_lim = q1 - (iqr * 0.1) return low_lim def data_safety_checker(list_vote: list, actual_result: float) -> None: """ Used to review all the votes (list result prediction) and compare it to the actual result. input : list of predictions output : print whether it's safe or not >>> data_safety_checker([2,3,4],5.0) Today's data is not safe. """ safe = 0 not_safe = 0 for i in list_vote: if i > actual_result: safe = not_safe + 1 else: if abs(abs(i) - abs(actual_result)) <= 0.1: safe = safe + 1 else: not_safe = not_safe + 1 print(f"Today's data is {'not ' if safe <= not_safe else ''}safe.") # data_input_df = pd.read_csv("ex_data.csv", header=None) data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] data_input_df = pd.DataFrame(data_input, columns=["total_user", "total_even", "days"]) """ data column = total user in a day, how much online event held in one day, what day is that(sunday-saturday) """ # start normalization normalize_df = Normalizer().fit_transform(data_input_df.values) # split data total_date = normalize_df[:, 2].tolist() total_user = normalize_df[:, 0].tolist() total_match = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) x = normalize_df[:, [1, 2]].tolist() x_train = x[: len(x) - 1] x_test = x[len(x) - 1 :] # for linear reression & sarimax trn_date = total_date[: len(total_date) - 1] trn_user = total_user[: len(total_user) - 1] trn_match = total_match[: len(total_match) - 1] tst_date = total_date[len(total_date) - 1 :] tst_user = total_user[len(total_user) - 1 :] tst_match = total_match[len(total_match) - 1 :] # voting system with forecasting res_vote = [] res_vote.append( linear_regression_prediction(trn_date, trn_user, trn_match, tst_date, tst_match) ) res_vote.append(sarimax_predictor(trn_user, trn_match, tst_match)) res_vote.append(support_vector_regressor(x_train, x_test, trn_user)) # check the safety of todays'data^^ data_safety_checker(res_vote, tst_user)
""" this is code for forecasting but i modified it and used it for safety checker of data for ex: you have an online shop and for some reason some data are missing (the amount of data that u expected are not supposed to be) then we can use it *ps : 1. ofc we can use normal statistic method but in this case the data is quite absurd and only a little^^ 2. ofc u can use this and modified it for forecasting purpose for the next 3 months sales or something, u can just adjust it for ur own purpose """ import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def linear_regression_prediction( train_dt: list, train_usr: list, train_mtch: list, test_dt: list, test_mtch: list ) -> float: """ First method: linear regression input : training data (date, total_user, total_event) in list of float output : list of total user prediction in float >>> n = linear_regression_prediction([2,3,4,5], [5,3,4,6], [3,1,2,4], [2,1], [2,2]) >>> abs(n - 5.0) < 1e-6 # Checking precision because of floating point errors True """ x = np.array([[1, item, train_mtch[i]] for i, item in enumerate(train_dt)]) y = np.array(train_usr) beta = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), x)), x.transpose()), y) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2]) def sarimax_predictor(train_user: list, train_match: list, test_match: list) -> float: """ second method: Sarimax sarimax is a statistic method which using previous input and learn its pattern to predict future data input : training data (total_user, with exog data = total_event) in list of float output : list of total user prediction in float >>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2]) 6.6666671111109626 """ order = (1, 2, 1) seasonal_order = (1, 1, 0, 7) model = SARIMAX( train_user, exog=train_match, order=order, seasonal_order=seasonal_order ) model_fit = model.fit(disp=False, maxiter=600, method="nm") result = model_fit.predict(1, len(test_match), exog=[test_match]) return result[0] def support_vector_regressor(x_train: list, x_test: list, train_user: list) -> float: """ Third method: Support vector regressor svr is quite the same with svm(support vector machine) it uses the same principles as the SVM for classification, with only a few minor differences and the only different is that it suits better for regression purpose input : training data (date, total_user, total_event) in list of float where x = list of set (date and total event) output : list of total user prediction in float >>> support_vector_regressor([[5,2],[1,5],[6,2]], [[3,2]], [2,1,4]) 1.634932078116079 """ regressor = SVR(kernel="rbf", C=1, gamma=0.1, epsilon=0.1) regressor.fit(x_train, train_user) y_pred = regressor.predict(x_test) return y_pred[0] def interquartile_range_checker(train_user: list) -> float: """ Optional method: interquatile range input : list of total user in float output : low limit of input in float this method can be used to check whether some data is outlier or not >>> interquartile_range_checker([1,2,3,4,5,6,7,8,9,10]) 2.8 """ train_user.sort() q1 = np.percentile(train_user, 25) q3 = np.percentile(train_user, 75) iqr = q3 - q1 low_lim = q1 - (iqr * 0.1) return low_lim def data_safety_checker(list_vote: list, actual_result: float) -> bool: """ Used to review all the votes (list result prediction) and compare it to the actual result. input : list of predictions output : print whether it's safe or not >>> data_safety_checker([2, 3, 4], 5.0) False """ safe = 0 not_safe = 0 for i in list_vote: if i > actual_result: safe = not_safe + 1 else: if abs(abs(i) - abs(actual_result)) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] data_input_df = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) """ data column = total user in a day, how much online event held in one day, what day is that(sunday-saturday) """ # start normalization normalize_df = Normalizer().fit_transform(data_input_df.values) # split data total_date = normalize_df[:, 2].tolist() total_user = normalize_df[:, 0].tolist() total_match = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) x = normalize_df[:, [1, 2]].tolist() x_train = x[: len(x) - 1] x_test = x[len(x) - 1 :] # for linear regression & sarimax trn_date = total_date[: len(total_date) - 1] trn_user = total_user[: len(total_user) - 1] trn_match = total_match[: len(total_match) - 1] tst_date = total_date[len(total_date) - 1 :] tst_user = total_user[len(total_user) - 1 :] tst_match = total_match[len(total_match) - 1 :] # voting system with forecasting res_vote = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data not_str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# A Python implementation of the Banker's Algorithm in Operating Systems using # Processes and Resources # { # "Author: "Biney Kingsley ([email protected]), [email protected]", # "Date": 28-10-2018 # } """ The Banker's algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety by simulating the allocation of predetermined maximum possible amounts of all resources, and then makes a "s-state" check to test for possible deadlock conditions for all other pending activities, before deciding whether allocation should be allowed to continue. [Source] Wikipedia [Credit] Rosetta Code C implementation helped very much. (https://rosettacode.org/wiki/Banker%27s_algorithm) """ from __future__ import annotations import time import numpy as np test_claim_vector = [8, 5, 9, 7] test_allocated_res_table = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] test_maximum_claim_table = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class BankersAlgorithm: def __init__( self, claim_vector: list[int], allocated_resources_table: list[list[int]], maximum_claim_table: list[list[int]], ) -> None: """ :param claim_vector: A nxn/nxm list depicting the amount of each resources (eg. memory, interface, semaphores, etc.) available. :param allocated_resources_table: A nxn/nxm list depicting the amount of each resource each process is currently holding :param maximum_claim_table: A nxn/nxm list depicting how much of each resource the system currently has available """ self.__claim_vector = claim_vector self.__allocated_resources_table = allocated_resources_table self.__maximum_claim_table = maximum_claim_table def __processes_resource_summation(self) -> list[int]: """ Check for allocated resources in line with each resource in the claim vector """ return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def __available_resources(self) -> list[int]: """ Check for available resources in line with each resource in the claim vector """ return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation() ) def __need(self) -> list[list[int]]: """ Implement safety checker that calculates the needs by ensuring that max_claim[i][j] - alloc_table[i][j] <= avail[j] """ return [ list(np.array(self.__maximum_claim_table[i]) - np.array(allocated_resource)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def __need_index_manager(self) -> dict[int, list[int]]: """ This function builds an index control dictionary to track original ids/indices of processes when altered during execution of method "main" Return: {0: [a: int, b: int], 1: [c: int, d: int]} >>> (BankersAlgorithm(test_claim_vector, test_allocated_res_table, ... test_maximum_claim_table)._BankersAlgorithm__need_index_manager() ... ) # doctest: +NORMALIZE_WHITESPACE {0: [1, 2, 0, 3], 1: [0, 1, 3, 1], 2: [1, 1, 0, 2], 3: [1, 3, 2, 0], 4: [2, 0, 0, 3]} """ return {self.__need().index(i): i for i in self.__need()} def main(self, **kwargs) -> None: """ Utilize various methods in this class to simulate the Banker's algorithm Return: None >>> BankersAlgorithm(test_claim_vector, test_allocated_res_table, ... test_maximum_claim_table).main(describe=True) Allocated Resource Table P1 2 0 1 1 <BLANKLINE> P2 0 1 2 1 <BLANKLINE> P3 4 0 0 3 <BLANKLINE> P4 0 2 1 0 <BLANKLINE> P5 1 0 3 0 <BLANKLINE> System Resource Table P1 3 2 1 4 <BLANKLINE> P2 0 2 5 2 <BLANKLINE> P3 5 1 0 5 <BLANKLINE> P4 1 5 3 0 <BLANKLINE> P5 3 0 3 3 <BLANKLINE> Current Usage by Active Processes: 8 5 9 7 Initial Available Resources: 1 2 2 2 __________________________________________________ <BLANKLINE> Process 3 is executing. Updated available resource stack for processes: 5 2 2 5 The process is in a safe state. <BLANKLINE> Process 1 is executing. Updated available resource stack for processes: 7 2 3 6 The process is in a safe state. <BLANKLINE> Process 2 is executing. Updated available resource stack for processes: 7 3 5 7 The process is in a safe state. <BLANKLINE> Process 4 is executing. Updated available resource stack for processes: 7 5 6 7 The process is in a safe state. <BLANKLINE> Process 5 is executing. Updated available resource stack for processes: 8 5 9 7 The process is in a safe state. <BLANKLINE> """ need_list = self.__need() alloc_resources_table = self.__allocated_resources_table available_resources = self.__available_resources() need_index_manager = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n") while need_list: safe = False for each_need in need_list: execution = True for index, need in enumerate(each_need): if need > available_resources[index]: execution = False break if execution: safe = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: process_number = original_need_index print(f"Process {process_number + 1} is executing.") # remove the process run from stack need_list.remove(each_need) # update available/freed resources stack available_resources = np.array(available_resources) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(x) for x in available_resources]) ) break if safe: print("The process is in a safe state.\n") else: print("System in unsafe state. Aborting...\n") break def __pretty_data(self): """ Properly align display of the algorithm's solution """ print(" " * 9 + "Allocated Resource Table") for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(item) + 1}" + " ".join(f"{it:>8}" for it in item) + "\n" ) print(" " * 9 + "System Resource Table") for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(item) + 1}" + " ".join(f"{it:>8}" for it in item) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(x) for x in self.__claim_vector) ) print( "Initial Available Resources: " + " ".join(str(x) for x in self.__available_resources()) ) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
# A Python implementation of the Banker's Algorithm in Operating Systems using # Processes and Resources # { # "Author: "Biney Kingsley ([email protected]), [email protected]", # "Date": 28-10-2018 # } """ The Banker's algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety by simulating the allocation of predetermined maximum possible amounts of all resources, and then makes a "s-state" check to test for possible deadlock conditions for all other pending activities, before deciding whether allocation should be allowed to continue. [Source] Wikipedia [Credit] Rosetta Code C implementation helped very much. (https://rosettacode.org/wiki/Banker%27s_algorithm) """ from __future__ import annotations import time import numpy as np test_claim_vector = [8, 5, 9, 7] test_allocated_res_table = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] test_maximum_claim_table = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class BankersAlgorithm: def __init__( self, claim_vector: list[int], allocated_resources_table: list[list[int]], maximum_claim_table: list[list[int]], ) -> None: """ :param claim_vector: A nxn/nxm list depicting the amount of each resources (eg. memory, interface, semaphores, etc.) available. :param allocated_resources_table: A nxn/nxm list depicting the amount of each resource each process is currently holding :param maximum_claim_table: A nxn/nxm list depicting how much of each resource the system currently has available """ self.__claim_vector = claim_vector self.__allocated_resources_table = allocated_resources_table self.__maximum_claim_table = maximum_claim_table def __processes_resource_summation(self) -> list[int]: """ Check for allocated resources in line with each resource in the claim vector """ return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def __available_resources(self) -> list[int]: """ Check for available resources in line with each resource in the claim vector """ return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation() ) def __need(self) -> list[list[int]]: """ Implement safety checker that calculates the needs by ensuring that max_claim[i][j] - alloc_table[i][j] <= avail[j] """ return [ list(np.array(self.__maximum_claim_table[i]) - np.array(allocated_resource)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def __need_index_manager(self) -> dict[int, list[int]]: """ This function builds an index control dictionary to track original ids/indices of processes when altered during execution of method "main" Return: {0: [a: int, b: int], 1: [c: int, d: int]} >>> (BankersAlgorithm(test_claim_vector, test_allocated_res_table, ... test_maximum_claim_table)._BankersAlgorithm__need_index_manager() ... ) # doctest: +NORMALIZE_WHITESPACE {0: [1, 2, 0, 3], 1: [0, 1, 3, 1], 2: [1, 1, 0, 2], 3: [1, 3, 2, 0], 4: [2, 0, 0, 3]} """ return {self.__need().index(i): i for i in self.__need()} def main(self, **kwargs) -> None: """ Utilize various methods in this class to simulate the Banker's algorithm Return: None >>> BankersAlgorithm(test_claim_vector, test_allocated_res_table, ... test_maximum_claim_table).main(describe=True) Allocated Resource Table P1 2 0 1 1 <BLANKLINE> P2 0 1 2 1 <BLANKLINE> P3 4 0 0 3 <BLANKLINE> P4 0 2 1 0 <BLANKLINE> P5 1 0 3 0 <BLANKLINE> System Resource Table P1 3 2 1 4 <BLANKLINE> P2 0 2 5 2 <BLANKLINE> P3 5 1 0 5 <BLANKLINE> P4 1 5 3 0 <BLANKLINE> P5 3 0 3 3 <BLANKLINE> Current Usage by Active Processes: 8 5 9 7 Initial Available Resources: 1 2 2 2 __________________________________________________ <BLANKLINE> Process 3 is executing. Updated available resource stack for processes: 5 2 2 5 The process is in a safe state. <BLANKLINE> Process 1 is executing. Updated available resource stack for processes: 7 2 3 6 The process is in a safe state. <BLANKLINE> Process 2 is executing. Updated available resource stack for processes: 7 3 5 7 The process is in a safe state. <BLANKLINE> Process 4 is executing. Updated available resource stack for processes: 7 5 6 7 The process is in a safe state. <BLANKLINE> Process 5 is executing. Updated available resource stack for processes: 8 5 9 7 The process is in a safe state. <BLANKLINE> """ need_list = self.__need() alloc_resources_table = self.__allocated_resources_table available_resources = self.__available_resources() need_index_manager = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n") while need_list: safe = False for each_need in need_list: execution = True for index, need in enumerate(each_need): if need > available_resources[index]: execution = False break if execution: safe = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: process_number = original_need_index print(f"Process {process_number + 1} is executing.") # remove the process run from stack need_list.remove(each_need) # update available/freed resources stack available_resources = np.array(available_resources) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(x) for x in available_resources]) ) break if safe: print("The process is in a safe state.\n") else: print("System in unsafe state. Aborting...\n") break def __pretty_data(self): """ Properly align display of the algorithm's solution """ print(" " * 9 + "Allocated Resource Table") for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(item) + 1}" + " ".join(f"{it:>8}" for it in item) + "\n" ) print(" " * 9 + "System Resource Table") for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(item) + 1}" + " ".join(f"{it:>8}" for it in item) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(x) for x in self.__claim_vector) ) print( "Initial Available Resources: " + " ".join(str(x) for x in self.__available_resources()) ) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import requests from bs4 import BeautifulSoup def stock_price(symbol: str = "AAPL") -> str: url = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" soup = BeautifulSoup(requests.get(url).text, "html.parser") class_ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div", class_=class_).find("span").text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
import requests from bs4 import BeautifulSoup def stock_price(symbol: str = "AAPL") -> str: url = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" soup = BeautifulSoup(requests.get(url).text, "html.parser") class_ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div", class_=class_).find("span").text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from sklearn.neural_network import MLPClassifier X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]] y = [0, 1, 0, 0] clf = MLPClassifier( solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1 ) clf.fit(X, y) test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]] Y = clf.predict(test) def wrapper(y): """ >>> wrapper(Y) [0, 0, 1] """ return list(y) if __name__ == "__main__": import doctest doctest.testmod()
from sklearn.neural_network import MLPClassifier X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]] y = [0, 1, 0, 0] clf = MLPClassifier( solver="lbfgs", alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1 ) clf.fit(X, y) test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]] Y = clf.predict(test) def wrapper(y): """ >>> wrapper(Y) [0, 0, 1] """ return list(y) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Topological Sort.""" # a # / \ # b c # / \ # d e edges = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} vertices = ["a", "b", "c", "d", "e"] def topological_sort(start, visited, sort): """Perform topological sort on a directed acyclic graph.""" current = start # add current to visited visited.append(current) neighbors = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: sort = topological_sort(neighbor, visited, sort) # if all neighbors visited add current to sort sort.append(current) # if all vertices haven't been visited select a new one to visit if len(visited) != len(vertices): for vertice in vertices: if vertice not in visited: sort = topological_sort(vertice, visited, sort) # return sort return sort if __name__ == "__main__": sort = topological_sort("a", [], []) print(sort)
"""Topological Sort.""" # a # / \ # b c # / \ # d e edges = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} vertices = ["a", "b", "c", "d", "e"] def topological_sort(start, visited, sort): """Perform topological sort on a directed acyclic graph.""" current = start # add current to visited visited.append(current) neighbors = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: sort = topological_sort(neighbor, visited, sort) # if all neighbors visited add current to sort sort.append(current) # if all vertices haven't been visited select a new one to visit if len(visited) != len(vertices): for vertice in vertices: if vertice not in visited: sort = topological_sort(vertice, visited, sort) # return sort return sort if __name__ == "__main__": sort = topological_sort("a", [], []) print(sort)
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Implementation of gaussian filter algorithm """ from itertools import product from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uint8, zeros def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 x, y = mgrid[0 - center : k_size - center, 0 - center : k_size - center] g = 1 / (2 * pi * sigma) * exp(-(square(x) + square(y)) / (2 * square(sigma))) return g def gaussian_filter(image, k_size, sigma): height, width = image.shape[0], image.shape[1] # dst image height and width dst_height = height - k_size + 1 dst_width = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = zeros((dst_height * dst_width, k_size * k_size)) row = 0 for i, j in product(range(dst_height), range(dst_width)): window = ravel(image[i : i + k_size, j : j + k_size]) image_array[row, :] = window row += 1 # turn the kernel into shape(k*k, 1) gaussian_kernel = gen_gaussian_kernel(k_size, sigma) filter_array = ravel(gaussian_kernel) # reshape and get the dst image dst = dot(image_array, filter_array).reshape(dst_height, dst_width).astype(uint8) return dst if __name__ == "__main__": # read original image img = imread(r"../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size gaussian3x3 = gaussian_filter(gray, 3, sigma=1) gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussian3x3) imshow("gaussian filter with 5x5 mask", gaussian5x5) waitKey()
""" Implementation of gaussian filter algorithm """ from itertools import product from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uint8, zeros def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 x, y = mgrid[0 - center : k_size - center, 0 - center : k_size - center] g = 1 / (2 * pi * sigma) * exp(-(square(x) + square(y)) / (2 * square(sigma))) return g def gaussian_filter(image, k_size, sigma): height, width = image.shape[0], image.shape[1] # dst image height and width dst_height = height - k_size + 1 dst_width = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows image_array = zeros((dst_height * dst_width, k_size * k_size)) row = 0 for i, j in product(range(dst_height), range(dst_width)): window = ravel(image[i : i + k_size, j : j + k_size]) image_array[row, :] = window row += 1 # turn the kernel into shape(k*k, 1) gaussian_kernel = gen_gaussian_kernel(k_size, sigma) filter_array = ravel(gaussian_kernel) # reshape and get the dst image dst = dot(image_array, filter_array).reshape(dst_height, dst_width).astype(uint8) return dst if __name__ == "__main__": # read original image img = imread(r"../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size gaussian3x3 = gaussian_filter(gray, 3, sigma=1) gaussian5x5 = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussian3x3) imshow("gaussian filter with 5x5 mask", gaussian5x5) waitKey()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Project Euler Problems are taken from https://projecteuler.net/, the Project Euler. [Problems are licensed under CC BY-NC-SA 4.0](https://projecteuler.net/copyright). Project Euler is a series of challenging mathematical/computer programming problems that require more than just mathematical insights to solve. Project Euler is ideal for mathematicians who are learning to code. The solutions will be checked by our [automated testing on GitHub Actions](https://github.com/TheAlgorithms/Python/actions) with the help of [this script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). The efficiency of your code is also checked. You can view the top 10 slowest solutions on GitHub Actions logs (under `slowest 10 durations`) and open a pull request to improve those solutions. ## Solution Guidelines Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Before reading the solution guidelines, make sure you read the whole [Contributing Guidelines](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md) as it won't be repeated in here. If you have any doubt on the guidelines, please feel free to [state it clearly in an issue](https://github.com/TheAlgorithms/Python/issues/new) or ask the community in [Gitter](https://gitter.im/TheAlgorithms). You can use the [template](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#solution-template) we have provided below as your starting point but be sure to read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) part first. ### Coding Style * Please maintain consistency in project directory and solution file names. Keep the following points in mind: * Create a new directory only for the problems which do not exist yet. * If you create a new directory, please create an empty `__init__.py` file inside it as well. * Please name the project **directory** as `problem_<problem_number>` where `problem_number` should be filled with 0s so as to occupy 3 digits. Example: `problem_001`, `problem_002`, `problem_067`, `problem_145`, and so on. * Please provide a link to the problem and other references, if used, in the **module-level docstring**. * All imports should come ***after*** the module-level docstring. * You can have as many helper functions as you want but there should be one main function called `solution` which should satisfy the conditions as stated below: * It should contain positional argument(s) whose default value is the question input. Example: Please take a look at [Problem 1](https://projecteuler.net/problem=1) where the question is to *Find the sum of all the multiples of 3 or 5 below 1000.* In this case the main solution function will be `solution(limit: int = 1000)`. * When the `solution` function is called without any arguments like so: `solution()`, it should return the answer to the problem. * Every function, which includes all the helper functions, if any, and the main solution function, should have `doctest` in the function docstring along with a brief statement mentioning what the function is about. * There should not be a `doctest` for testing the answer as that is done by our GitHub Actions build using this [script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). Keeping in mind the above example of [Problem 1](https://projecteuler.net/problem=1): ```python def solution(limit: int = 1000): """ A brief statement mentioning what the function is about. You can have a detailed explanation about the solution method in the module-level docstring. >>> solution(1) ... >>> solution(16) ... >>> solution(100) ... """ ``` ### Solution Template You can use the below template as your starting point but please read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) first to understand how the template works. Please change the name of the helper functions accordingly, change the parameter names with a descriptive one, replace the content within `[square brackets]` (including the brackets) with the appropriate content. ```python """ Project Euler Problem [problem number]: [link to the original problem] ... [Entire problem statement] ... ... [Solution explanation - Optional] ... References [Optional]: - [Wikipedia link to the topic] - [Stackoverflow link] ... """ import module1 import module2 ... def helper1(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]: """ A brief statement explaining what the function is about. ... A more elaborate description ... [Optional] ... [Doctest] ... """ ... # calculations ... return # You can have multiple helper functions but the solution function should be # after all the helper functions ... def solution(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]: """ A brief statement mentioning what the function is about. You can have a detailed explanation about the solution in the module-level docstring. ... [Doctest as mentioned above] ... """ ... # calculations ... return answer if __name__ == "__main__": print(f"{solution() = }") ```
# Project Euler Problems are taken from https://projecteuler.net/, the Project Euler. [Problems are licensed under CC BY-NC-SA 4.0](https://projecteuler.net/copyright). Project Euler is a series of challenging mathematical/computer programming problems that require more than just mathematical insights to solve. Project Euler is ideal for mathematicians who are learning to code. The solutions will be checked by our [automated testing on GitHub Actions](https://github.com/TheAlgorithms/Python/actions) with the help of [this script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). The efficiency of your code is also checked. You can view the top 10 slowest solutions on GitHub Actions logs (under `slowest 10 durations`) and open a pull request to improve those solutions. ## Solution Guidelines Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Before reading the solution guidelines, make sure you read the whole [Contributing Guidelines](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md) as it won't be repeated in here. If you have any doubt on the guidelines, please feel free to [state it clearly in an issue](https://github.com/TheAlgorithms/Python/issues/new) or ask the community in [Gitter](https://gitter.im/TheAlgorithms). You can use the [template](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#solution-template) we have provided below as your starting point but be sure to read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) part first. ### Coding Style * Please maintain consistency in project directory and solution file names. Keep the following points in mind: * Create a new directory only for the problems which do not exist yet. * If you create a new directory, please create an empty `__init__.py` file inside it as well. * Please name the project **directory** as `problem_<problem_number>` where `problem_number` should be filled with 0s so as to occupy 3 digits. Example: `problem_001`, `problem_002`, `problem_067`, `problem_145`, and so on. * Please provide a link to the problem and other references, if used, in the **module-level docstring**. * All imports should come ***after*** the module-level docstring. * You can have as many helper functions as you want but there should be one main function called `solution` which should satisfy the conditions as stated below: * It should contain positional argument(s) whose default value is the question input. Example: Please take a look at [Problem 1](https://projecteuler.net/problem=1) where the question is to *Find the sum of all the multiples of 3 or 5 below 1000.* In this case the main solution function will be `solution(limit: int = 1000)`. * When the `solution` function is called without any arguments like so: `solution()`, it should return the answer to the problem. * Every function, which includes all the helper functions, if any, and the main solution function, should have `doctest` in the function docstring along with a brief statement mentioning what the function is about. * There should not be a `doctest` for testing the answer as that is done by our GitHub Actions build using this [script](https://github.com/TheAlgorithms/Python/blob/master/scripts/validate_solutions.py). Keeping in mind the above example of [Problem 1](https://projecteuler.net/problem=1): ```python def solution(limit: int = 1000): """ A brief statement mentioning what the function is about. You can have a detailed explanation about the solution method in the module-level docstring. >>> solution(1) ... >>> solution(16) ... >>> solution(100) ... """ ``` ### Solution Template You can use the below template as your starting point but please read the [Coding Style](https://github.com/TheAlgorithms/Python/blob/master/project_euler/README.md#coding-style) first to understand how the template works. Please change the name of the helper functions accordingly, change the parameter names with a descriptive one, replace the content within `[square brackets]` (including the brackets) with the appropriate content. ```python """ Project Euler Problem [problem number]: [link to the original problem] ... [Entire problem statement] ... ... [Solution explanation - Optional] ... References [Optional]: - [Wikipedia link to the topic] - [Stackoverflow link] ... """ import module1 import module2 ... def helper1(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]: """ A brief statement explaining what the function is about. ... A more elaborate description ... [Optional] ... [Doctest] ... """ ... # calculations ... return # You can have multiple helper functions but the solution function should be # after all the helper functions ... def solution(arg1: [type hint], arg2: [type hint], ...) -> [Return type hint]: """ A brief statement mentioning what the function is about. You can have a detailed explanation about the solution in the module-level docstring. ... [Doctest as mentioned above] ... """ ... # calculations ... return answer if __name__ == "__main__": print(f"{solution() = }") ```
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Information on 2's complement: https://en.wikipedia.org/wiki/Two%27s_complement def twos_complement(number: int) -> str: """ Take in a negative integer 'number'. Return the two's complement representation of 'number'. >>> twos_complement(0) '0b0' >>> twos_complement(-1) '0b11' >>> twos_complement(-5) '0b1011' >>> twos_complement(-17) '0b101111' >>> twos_complement(-207) '0b100110001' >>> twos_complement(1) Traceback (most recent call last): ... ValueError: input must be a negative integer """ if number > 0: raise ValueError("input must be a negative integer") binary_number_length = len(bin(number)[3:]) twos_complement_number = bin(abs(number) - (1 << binary_number_length))[3:] twos_complement_number = ( ( "1" + "0" * (binary_number_length - len(twos_complement_number)) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
# Information on 2's complement: https://en.wikipedia.org/wiki/Two%27s_complement def twos_complement(number: int) -> str: """ Take in a negative integer 'number'. Return the two's complement representation of 'number'. >>> twos_complement(0) '0b0' >>> twos_complement(-1) '0b11' >>> twos_complement(-5) '0b1011' >>> twos_complement(-17) '0b101111' >>> twos_complement(-207) '0b100110001' >>> twos_complement(1) Traceback (most recent call last): ... ValueError: input must be a negative integer """ if number > 0: raise ValueError("input must be a negative integer") binary_number_length = len(bin(number)[3:]) twos_complement_number = bin(abs(number) - (1 << binary_number_length))[3:] twos_complement_number = ( ( "1" + "0" * (binary_number_length - len(twos_complement_number)) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import requests APPID = "" # <-- Put your OpenWeatherMap appid here! URL_BASE = "https://api.openweathermap.org/data/2.5/" def current_weather(q: str = "Chicago", appid: str = APPID) -> dict: """https://openweathermap.org/api""" return requests.get(URL_BASE + "weather", params=locals()).json() def weather_forecast(q: str = "Kolkata, India", appid: str = APPID) -> dict: """https://openweathermap.org/forecast5""" return requests.get(URL_BASE + "forecast", params=locals()).json() def weather_onecall(lat: float = 55.68, lon: float = 12.57, appid: str = APPID) -> dict: """https://openweathermap.org/api/one-call-api""" return requests.get(URL_BASE + "onecall", params=locals()).json() if __name__ == "__main__": from pprint import pprint while True: location = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
import requests APPID = "" # <-- Put your OpenWeatherMap appid here! URL_BASE = "https://api.openweathermap.org/data/2.5/" def current_weather(q: str = "Chicago", appid: str = APPID) -> dict: """https://openweathermap.org/api""" return requests.get(URL_BASE + "weather", params=locals()).json() def weather_forecast(q: str = "Kolkata, India", appid: str = APPID) -> dict: """https://openweathermap.org/forecast5""" return requests.get(URL_BASE + "forecast", params=locals()).json() def weather_onecall(lat: float = 55.68, lon: float = 12.57, appid: str = APPID) -> dict: """https://openweathermap.org/api/one-call-api""" return requests.get(URL_BASE + "onecall", params=locals()).json() if __name__ == "__main__": from pprint import pprint while True: location = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Code contributed by Honey Sharma Source: https://en.wikipedia.org/wiki/Cycle_sort """ def cycle_sort(array: list) -> list: """ >>> cycle_sort([4, 3, 2, 1]) [1, 2, 3, 4] >>> cycle_sort([-4, 20, 0, -50, 100, -1]) [-50, -4, -1, 0, 20, 100] >>> cycle_sort([-.1, -.2, 1.3, -.8]) [-0.8, -0.2, -0.1, 1.3] >>> cycle_sort([]) [] """ array_len = len(array) for cycle_start in range(0, array_len - 1): item = array[cycle_start] pos = cycle_start for i in range(cycle_start + 1, array_len): if array[i] < item: pos += 1 if pos == cycle_start: continue while item == array[pos]: pos += 1 array[pos], item = item, array[pos] while pos != cycle_start: pos = cycle_start for i in range(cycle_start + 1, array_len): if array[i] < item: pos += 1 while item == array[pos]: pos += 1 array[pos], item = item, array[pos] return array if __name__ == "__main__": assert cycle_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert cycle_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
""" Code contributed by Honey Sharma Source: https://en.wikipedia.org/wiki/Cycle_sort """ def cycle_sort(array: list) -> list: """ >>> cycle_sort([4, 3, 2, 1]) [1, 2, 3, 4] >>> cycle_sort([-4, 20, 0, -50, 100, -1]) [-50, -4, -1, 0, 20, 100] >>> cycle_sort([-.1, -.2, 1.3, -.8]) [-0.8, -0.2, -0.1, 1.3] >>> cycle_sort([]) [] """ array_len = len(array) for cycle_start in range(0, array_len - 1): item = array[cycle_start] pos = cycle_start for i in range(cycle_start + 1, array_len): if array[i] < item: pos += 1 if pos == cycle_start: continue while item == array[pos]: pos += 1 array[pos], item = item, array[pos] while pos != cycle_start: pos = cycle_start for i in range(cycle_start + 1, array_len): if array[i] < item: pos += 1 while item == array[pos]: pos += 1 array[pos], item = item, array[pos] return array if __name__ == "__main__": assert cycle_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert cycle_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 7: https://projecteuler.net/problem=7 10001st prime By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? References: - https://en.wikipedia.org/wiki/Prime_number """ from math import sqrt def is_prime(number: int) -> bool: """Checks to see if a number is a prime in O(sqrt(n)). A number is prime if it has exactly two factors: 1 and itself. Returns boolean representing primality of given number (i.e., if the result is true, then the number is indeed prime else it is not). >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(2999) True >>> is_prime(0) False >>> is_prime(1) False """ if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(number) + 1), 6): if number % i == 0 or number % (i + 2) == 0: return False return True def solution(nth: int = 10001) -> int: """ Returns the n-th prime number. >>> solution(6) 13 >>> solution(1) 2 >>> solution(3) 5 >>> solution(20) 71 >>> solution(50) 229 >>> solution(100) 541 """ count = 0 number = 1 while count != nth and number < 3: number += 1 if is_prime(number): count += 1 while count != nth: number += 2 if is_prime(number): count += 1 return number if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 7: https://projecteuler.net/problem=7 10001st prime By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? References: - https://en.wikipedia.org/wiki/Prime_number """ from math import sqrt def is_prime(number: int) -> bool: """Checks to see if a number is a prime in O(sqrt(n)). A number is prime if it has exactly two factors: 1 and itself. Returns boolean representing primality of given number (i.e., if the result is true, then the number is indeed prime else it is not). >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(2999) True >>> is_prime(0) False >>> is_prime(1) False """ if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(number) + 1), 6): if number % i == 0 or number % (i + 2) == 0: return False return True def solution(nth: int = 10001) -> int: """ Returns the n-th prime number. >>> solution(6) 13 >>> solution(1) 2 >>> solution(3) 5 >>> solution(20) 71 >>> solution(50) 229 >>> solution(100) 541 """ count = 0 number = 1 while count != nth and number < 3: number += 1 if is_prime(number): count += 1 while count != nth: number += 2 if is_prime(number): count += 1 return number if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations import re def natural_sort(input_list: list[str]) -> list[str]: """ Sort the given list of strings in the way that humans expect. The normal Python sort algorithm sorts lexicographically, so you might not get the results that you expect... >>> example1 = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in'] >>> sorted(example1) ['1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '2 ft 7 in', '7 ft 6 in'] >>> # The natural sort algorithm sort based on meaning and not computer code point. >>> natural_sort(example1) ['1 ft 5 in', '2 ft 7 in', '2 ft 11 in', '7 ft 6 in', '10 ft 2 in'] >>> example2 = ['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9'] >>> sorted(example2) ['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9'] >>> natural_sort(example2) ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13'] """ def alphanum_key(key): return [int(s) if s.isdigit() else s.lower() for s in re.split("([0-9]+)", key)] return sorted(input_list, key=alphanum_key) if __name__ == "__main__": import doctest doctest.testmod()
from __future__ import annotations import re def natural_sort(input_list: list[str]) -> list[str]: """ Sort the given list of strings in the way that humans expect. The normal Python sort algorithm sorts lexicographically, so you might not get the results that you expect... >>> example1 = ['2 ft 7 in', '1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '7 ft 6 in'] >>> sorted(example1) ['1 ft 5 in', '10 ft 2 in', '2 ft 11 in', '2 ft 7 in', '7 ft 6 in'] >>> # The natural sort algorithm sort based on meaning and not computer code point. >>> natural_sort(example1) ['1 ft 5 in', '2 ft 7 in', '2 ft 11 in', '7 ft 6 in', '10 ft 2 in'] >>> example2 = ['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9'] >>> sorted(example2) ['Elm11', 'Elm12', 'Elm2', 'elm0', 'elm1', 'elm10', 'elm13', 'elm9'] >>> natural_sort(example2) ['elm0', 'elm1', 'Elm2', 'elm9', 'elm10', 'Elm11', 'Elm12', 'elm13'] """ def alphanum_key(key): return [int(s) if s.isdigit() else s.lower() for s in re.split("([0-9]+)", key)] return sorted(input_list, key=alphanum_key) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations def mean(nums: list) -> float: """ Find mean of a list of numbers. Wiki: https://en.wikipedia.org/wiki/Mean >>> mean([3, 6, 9, 12, 15, 18, 21]) 12.0 >>> mean([5, 10, 15, 20, 25, 30, 35]) 20.0 >>> mean([1, 2, 3, 4, 5, 6, 7, 8]) 4.5 >>> mean([]) Traceback (most recent call last): ... ValueError: List is empty """ if not nums: raise ValueError("List is empty") return sum(nums) / len(nums) if __name__ == "__main__": import doctest doctest.testmod()
from __future__ import annotations def mean(nums: list) -> float: """ Find mean of a list of numbers. Wiki: https://en.wikipedia.org/wiki/Mean >>> mean([3, 6, 9, 12, 15, 18, 21]) 12.0 >>> mean([5, 10, 15, 20, 25, 30, 35]) 20.0 >>> mean([1, 2, 3, 4, 5, 6, 7, 8]) 4.5 >>> mean([]) Traceback (most recent call last): ... ValueError: List is empty """ if not nums: raise ValueError("List is empty") return sum(nums) / len(nums) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations def collatz_sequence(n: int) -> list[int]: """ Collatz conjecture: start with any positive integer n. The next term is obtained as follows: If n term is even, the next term is: n / 2 . If n is odd, the next term is: 3 * n + 1. The conjecture states the sequence will always reach 1 for any starting value n. Example: >>> collatz_sequence(2.1) Traceback (most recent call last): ... Exception: Sequence only defined for natural numbers >>> collatz_sequence(0) Traceback (most recent call last): ... Exception: Sequence only defined for natural numbers >>> collatz_sequence(43) # doctest: +NORMALIZE_WHITESPACE [43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] """ if not isinstance(n, int) or n < 1: raise Exception("Sequence only defined for natural numbers") sequence = [n] while n != 1: n = 3 * n + 1 if n & 1 else n // 2 sequence.append(n) return sequence def main(): n = 43 sequence = collatz_sequence(n) print(sequence) print(f"collatz sequence from {n} took {len(sequence)} steps.") if __name__ == "__main__": main()
from __future__ import annotations def collatz_sequence(n: int) -> list[int]: """ Collatz conjecture: start with any positive integer n. The next term is obtained as follows: If n term is even, the next term is: n / 2 . If n is odd, the next term is: 3 * n + 1. The conjecture states the sequence will always reach 1 for any starting value n. Example: >>> collatz_sequence(2.1) Traceback (most recent call last): ... Exception: Sequence only defined for natural numbers >>> collatz_sequence(0) Traceback (most recent call last): ... Exception: Sequence only defined for natural numbers >>> collatz_sequence(43) # doctest: +NORMALIZE_WHITESPACE [43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1] """ if not isinstance(n, int) or n < 1: raise Exception("Sequence only defined for natural numbers") sequence = [n] while n != 1: n = 3 * n + 1 if n & 1 else n // 2 sequence.append(n) return sequence def main(): n = 43 sequence = collatz_sequence(n) print(sequence) print(f"collatz sequence from {n} took {len(sequence)} steps.") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations arr = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] expect = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def next_greatest_element_slow(arr: list[float]) -> list[float]: """ Get the Next Greatest Element (NGE) for all elements in a list. Maximum element present after the current one which is also greater than the current one. >>> next_greatest_element_slow(arr) == expect True """ result = [] arr_size = len(arr) for i in range(arr_size): next_element: float = -1 for j in range(i + 1, arr_size): if arr[i] < arr[j]: next_element = arr[j] break result.append(next_element) return result def next_greatest_element_fast(arr: list[float]) -> list[float]: """ Like next_greatest_element_slow() but changes the loops to use enumerate() instead of range(len()) for the outer loop and for in a slice of arr for the inner loop. >>> next_greatest_element_fast(arr) == expect True """ result = [] for i, outer in enumerate(arr): next_item: float = -1 for inner in arr[i + 1 :]: if outer < inner: next_item = inner break result.append(next_item) return result def next_greatest_element(arr: list[float]) -> list[float]: """ Get the Next Greatest Element (NGE) for all elements in a list. Maximum element present after the current one which is also greater than the current one. A naive way to solve this is to take two loops and check for the next bigger number but that will make the time complexity as O(n^2). The better way to solve this would be to use a stack to keep track of maximum number giving a linear time solution. >>> next_greatest_element(arr) == expect True """ arr_size = len(arr) stack: list[float] = [] result: list[float] = [-1] * arr_size for index in reversed(range(arr_size)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: result[index] = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) setup = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
from __future__ import annotations arr = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] expect = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def next_greatest_element_slow(arr: list[float]) -> list[float]: """ Get the Next Greatest Element (NGE) for all elements in a list. Maximum element present after the current one which is also greater than the current one. >>> next_greatest_element_slow(arr) == expect True """ result = [] arr_size = len(arr) for i in range(arr_size): next_element: float = -1 for j in range(i + 1, arr_size): if arr[i] < arr[j]: next_element = arr[j] break result.append(next_element) return result def next_greatest_element_fast(arr: list[float]) -> list[float]: """ Like next_greatest_element_slow() but changes the loops to use enumerate() instead of range(len()) for the outer loop and for in a slice of arr for the inner loop. >>> next_greatest_element_fast(arr) == expect True """ result = [] for i, outer in enumerate(arr): next_item: float = -1 for inner in arr[i + 1 :]: if outer < inner: next_item = inner break result.append(next_item) return result def next_greatest_element(arr: list[float]) -> list[float]: """ Get the Next Greatest Element (NGE) for all elements in a list. Maximum element present after the current one which is also greater than the current one. A naive way to solve this is to take two loops and check for the next bigger number but that will make the time complexity as O(n^2). The better way to solve this would be to use a stack to keep track of maximum number giving a linear time solution. >>> next_greatest_element(arr) == expect True """ arr_size = len(arr) stack: list[float] = [] result: list[float] = [-1] * arr_size for index in reversed(range(arr_size)): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: result[index] = stack[-1] stack.append(arr[index]) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) setup = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations class Node: def __init__(self, data=None): self.data = data self.next = None def __repr__(self): """Returns a visual representation of the node and all its following nodes.""" string_rep = [] temp = self while temp: string_rep.append(f"{temp.data}") temp = temp.next return "->".join(string_rep) def make_linked_list(elements_list: list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List. >>> make_linked_list([]) Traceback (most recent call last): ... Exception: The Elements List is empty >>> make_linked_list([7]) 7 >>> make_linked_list(['abc']) abc >>> make_linked_list([7, 25]) 7->25 """ if not elements_list: raise Exception("The Elements List is empty") current = head = Node(elements_list[0]) for i in range(1, len(elements_list)): current.next = Node(elements_list[i]) current = current.next return head def print_reverse(head_node: Node) -> None: """Prints the elements of the given Linked List in reverse order >>> print_reverse([]) >>> linked_list = make_linked_list([69, 88, 73]) >>> print_reverse(linked_list) 73 88 69 """ if head_node is not None and isinstance(head_node, Node): print_reverse(head_node.next) print(head_node.data) def main(): from doctest import testmod testmod() linked_list = make_linked_list([14, 52, 14, 12, 43]) print("Linked List:") print(linked_list) print("Elements in Reverse:") print_reverse(linked_list) if __name__ == "__main__": main()
from __future__ import annotations class Node: def __init__(self, data=None): self.data = data self.next = None def __repr__(self): """Returns a visual representation of the node and all its following nodes.""" string_rep = [] temp = self while temp: string_rep.append(f"{temp.data}") temp = temp.next return "->".join(string_rep) def make_linked_list(elements_list: list): """Creates a Linked List from the elements of the given sequence (list/tuple) and returns the head of the Linked List. >>> make_linked_list([]) Traceback (most recent call last): ... Exception: The Elements List is empty >>> make_linked_list([7]) 7 >>> make_linked_list(['abc']) abc >>> make_linked_list([7, 25]) 7->25 """ if not elements_list: raise Exception("The Elements List is empty") current = head = Node(elements_list[0]) for i in range(1, len(elements_list)): current.next = Node(elements_list[i]) current = current.next return head def print_reverse(head_node: Node) -> None: """Prints the elements of the given Linked List in reverse order >>> print_reverse([]) >>> linked_list = make_linked_list([69, 88, 73]) >>> print_reverse(linked_list) 73 88 69 """ if head_node is not None and isinstance(head_node, Node): print_reverse(head_node.next) print(head_node.data) def main(): from doctest import testmod testmod() linked_list = make_linked_list([14, 52, 14, 12, 43]) print("Linked List:") print(linked_list) print("Elements in Reverse:") print_reverse(linked_list) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import numpy as np def runge_kutta(f, y0, x0, h, x_end): """ Calculate the numeric solution at each step to the ODE f(x, y) using RK4 https://en.wikipedia.org/wiki/Runge-Kutta_methods Arguments: f -- The ode as a function of x and y y0 -- the initial value for y x0 -- the initial value for x h -- the stepsize x_end -- the end value for x >>> # the exact solution is math.exp(x) >>> def f(x, y): ... return y >>> y0 = 1 >>> y = runge_kutta(f, y0, 0.0, 0.01, 5) >>> y[-1] 148.41315904125113 """ n = int(np.ceil((x_end - x0) / h)) y = np.zeros((n + 1,)) y[0] = y0 x = x0 for k in range(n): k1 = f(x, y[k]) k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1) k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2) k4 = f(x + h, y[k] + h * k3) y[k + 1] = y[k] + (1 / 6) * h * (k1 + 2 * k2 + 2 * k3 + k4) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
import numpy as np def runge_kutta(f, y0, x0, h, x_end): """ Calculate the numeric solution at each step to the ODE f(x, y) using RK4 https://en.wikipedia.org/wiki/Runge-Kutta_methods Arguments: f -- The ode as a function of x and y y0 -- the initial value for y x0 -- the initial value for x h -- the stepsize x_end -- the end value for x >>> # the exact solution is math.exp(x) >>> def f(x, y): ... return y >>> y0 = 1 >>> y = runge_kutta(f, y0, 0.0, 0.01, 5) >>> y[-1] 148.41315904125113 """ n = int(np.ceil((x_end - x0) / h)) y = np.zeros((n + 1,)) y[0] = y0 x = x0 for k in range(n): k1 = f(x, y[k]) k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1) k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2) k4 = f(x + h, y[k] + h * k3) y[k + 1] = y[k] + (1 / 6) * h * (k1 + 2 * k2 + 2 * k3 + k4) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Multiply two numbers using Karatsuba algorithm """ def karatsuba(a, b): """ >>> karatsuba(15463, 23489) == 15463 * 23489 True >>> karatsuba(3, 9) == 3 * 9 True """ if len(str(a)) == 1 or len(str(b)) == 1: return a * b else: m1 = max(len(str(a)), len(str(b))) m2 = m1 // 2 a1, a2 = divmod(a, 10**m2) b1, b2 = divmod(b, 10**m2) x = karatsuba(a2, b2) y = karatsuba((a1 + a2), (b1 + b2)) z = karatsuba(a1, b1) return (z * 10 ** (2 * m2)) + ((y - z - x) * 10 ** (m2)) + (x) def main(): print(karatsuba(15463, 23489)) if __name__ == "__main__": main()
""" Multiply two numbers using Karatsuba algorithm """ def karatsuba(a, b): """ >>> karatsuba(15463, 23489) == 15463 * 23489 True >>> karatsuba(3, 9) == 3 * 9 True """ if len(str(a)) == 1 or len(str(b)) == 1: return a * b else: m1 = max(len(str(a)), len(str(b))) m2 = m1 // 2 a1, a2 = divmod(a, 10**m2) b1, b2 = divmod(b, 10**m2) x = karatsuba(a2, b2) y = karatsuba((a1 + a2), (b1 + b2)) z = karatsuba(a1, b1) return (z * 10 ** (2 * m2)) + ((y - z - x) * 10 ** (m2)) + (x) def main(): print(karatsuba(15463, 23489)) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Round Robin is a scheduling algorithm. In Round Robin each process is assigned a fixed time slot in a cyclic way. https://en.wikipedia.org/wiki/Round-robin_scheduling """ from __future__ import annotations from statistics import mean def calculate_waiting_times(burst_times: list[int]) -> list[int]: """ Calculate the waiting times of a list of processes that have a specified duration. Return: The waiting time for each process. >>> calculate_waiting_times([10, 5, 8]) [13, 10, 13] >>> calculate_waiting_times([4, 6, 3, 1]) [5, 8, 9, 6] >>> calculate_waiting_times([12, 2, 10]) [12, 2, 12] """ quantum = 2 rem_burst_times = list(burst_times) waiting_times = [0] * len(burst_times) t = 0 while True: done = True for i, burst_time in enumerate(burst_times): if rem_burst_times[i] > 0: done = False if rem_burst_times[i] > quantum: t += quantum rem_burst_times[i] -= quantum else: t += rem_burst_times[i] waiting_times[i] = t - burst_time rem_burst_times[i] = 0 if done is True: return waiting_times def calculate_turn_around_times( burst_times: list[int], waiting_times: list[int] ) -> list[int]: """ >>> calculate_turn_around_times([1, 2, 3, 4], [0, 1, 3]) [1, 3, 6] >>> calculate_turn_around_times([10, 3, 7], [10, 6, 11]) [20, 9, 18] """ return [burst + waiting for burst, waiting in zip(burst_times, waiting_times)] if __name__ == "__main__": burst_times = [3, 5, 7] waiting_times = calculate_waiting_times(burst_times) turn_around_times = calculate_turn_around_times(burst_times, waiting_times) print("Process ID \tBurst Time \tWaiting Time \tTurnaround Time") for i, burst_time in enumerate(burst_times): print( f" {i + 1}\t\t {burst_time}\t\t {waiting_times[i]}\t\t " f"{turn_around_times[i]}" ) print(f"\nAverage waiting time = {mean(waiting_times):.5f}") print(f"Average turn around time = {mean(turn_around_times):.5f}")
""" Round Robin is a scheduling algorithm. In Round Robin each process is assigned a fixed time slot in a cyclic way. https://en.wikipedia.org/wiki/Round-robin_scheduling """ from __future__ import annotations from statistics import mean def calculate_waiting_times(burst_times: list[int]) -> list[int]: """ Calculate the waiting times of a list of processes that have a specified duration. Return: The waiting time for each process. >>> calculate_waiting_times([10, 5, 8]) [13, 10, 13] >>> calculate_waiting_times([4, 6, 3, 1]) [5, 8, 9, 6] >>> calculate_waiting_times([12, 2, 10]) [12, 2, 12] """ quantum = 2 rem_burst_times = list(burst_times) waiting_times = [0] * len(burst_times) t = 0 while True: done = True for i, burst_time in enumerate(burst_times): if rem_burst_times[i] > 0: done = False if rem_burst_times[i] > quantum: t += quantum rem_burst_times[i] -= quantum else: t += rem_burst_times[i] waiting_times[i] = t - burst_time rem_burst_times[i] = 0 if done is True: return waiting_times def calculate_turn_around_times( burst_times: list[int], waiting_times: list[int] ) -> list[int]: """ >>> calculate_turn_around_times([1, 2, 3, 4], [0, 1, 3]) [1, 3, 6] >>> calculate_turn_around_times([10, 3, 7], [10, 6, 11]) [20, 9, 18] """ return [burst + waiting for burst, waiting in zip(burst_times, waiting_times)] if __name__ == "__main__": burst_times = [3, 5, 7] waiting_times = calculate_waiting_times(burst_times) turn_around_times = calculate_turn_around_times(burst_times, waiting_times) print("Process ID \tBurst Time \tWaiting Time \tTurnaround Time") for i, burst_time in enumerate(burst_times): print( f" {i + 1}\t\t {burst_time}\t\t {waiting_times[i]}\t\t " f"{turn_around_times[i]}" ) print(f"\nAverage waiting time = {mean(waiting_times):.5f}") print(f"Average turn around time = {mean(turn_around_times):.5f}")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def bubble_sort(list_data: list, length: int = 0) -> list: """ It is similar is bubble sort but recursive. :param list_data: mutable ordered sequence of elements :param length: length of list data :return: the same list in ascending order >>> bubble_sort([0, 5, 2, 3, 2], 5) [0, 2, 2, 3, 5] >>> bubble_sort([], 0) [] >>> bubble_sort([-2, -45, -5], 3) [-45, -5, -2] >>> bubble_sort([-23, 0, 6, -4, 34], 5) [-23, -4, 0, 6, 34] >>> bubble_sort([-23, 0, 6, -4, 34], 5) == sorted([-23, 0, 6, -4, 34]) True >>> bubble_sort(['z','a','y','b','x','c'], 6) ['a', 'b', 'c', 'x', 'y', 'z'] >>> bubble_sort([1.1, 3.3, 5.5, 7.7, 2.2, 4.4, 6.6]) [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7] """ length = length or len(list_data) swapped = False for i in range(length - 1): if list_data[i] > list_data[i + 1]: list_data[i], list_data[i + 1] = list_data[i + 1], list_data[i] swapped = True return list_data if not swapped else bubble_sort(list_data, length - 1) if __name__ == "__main__": import doctest doctest.testmod()
def bubble_sort(list_data: list, length: int = 0) -> list: """ It is similar is bubble sort but recursive. :param list_data: mutable ordered sequence of elements :param length: length of list data :return: the same list in ascending order >>> bubble_sort([0, 5, 2, 3, 2], 5) [0, 2, 2, 3, 5] >>> bubble_sort([], 0) [] >>> bubble_sort([-2, -45, -5], 3) [-45, -5, -2] >>> bubble_sort([-23, 0, 6, -4, 34], 5) [-23, -4, 0, 6, 34] >>> bubble_sort([-23, 0, 6, -4, 34], 5) == sorted([-23, 0, 6, -4, 34]) True >>> bubble_sort(['z','a','y','b','x','c'], 6) ['a', 'b', 'c', 'x', 'y', 'z'] >>> bubble_sort([1.1, 3.3, 5.5, 7.7, 2.2, 4.4, 6.6]) [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7] """ length = length or len(list_data) swapped = False for i in range(length - 1): if list_data[i] > list_data[i + 1]: list_data[i], list_data[i + 1] = list_data[i + 1], list_data[i] swapped = True return list_data if not swapped else bubble_sort(list_data, length - 1) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem. """ class Fibonacci: def __init__(self) -> None: self.sequence = [0, 1] def get(self, index: int) -> list: """ Get the Fibonacci number of `index`. If the number does not exist, calculate all missing numbers leading up to the number of `index`. >>> Fibonacci().get(10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] >>> Fibonacci().get(5) [0, 1, 1, 2, 3] """ difference = index - (len(self.sequence) - 2) if difference >= 1: for _ in range(difference): self.sequence.append(self.sequence[-1] + self.sequence[-2]) return self.sequence[:index] def main(): print( "Fibonacci Series Using Dynamic Programming\n", "Enter the index of the Fibonacci number you want to calculate ", "in the prompt below. (To exit enter exit or Ctrl-C)\n", sep="", ) fibonacci = Fibonacci() while True: prompt: str = input(">> ") if prompt in {"exit", "quit"}: break try: index: int = int(prompt) except ValueError: print("Enter a number or 'exit'") continue print(fibonacci.get(index)) if __name__ == "__main__": main()
""" This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem. """ class Fibonacci: def __init__(self) -> None: self.sequence = [0, 1] def get(self, index: int) -> list: """ Get the Fibonacci number of `index`. If the number does not exist, calculate all missing numbers leading up to the number of `index`. >>> Fibonacci().get(10) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] >>> Fibonacci().get(5) [0, 1, 1, 2, 3] """ difference = index - (len(self.sequence) - 2) if difference >= 1: for _ in range(difference): self.sequence.append(self.sequence[-1] + self.sequence[-2]) return self.sequence[:index] def main(): print( "Fibonacci Series Using Dynamic Programming\n", "Enter the index of the Fibonacci number you want to calculate ", "in the prompt below. (To exit enter exit or Ctrl-C)\n", sep="", ) fibonacci = Fibonacci() while True: prompt: str = input(">> ") if prompt in {"exit", "quit"}: break try: index: int = int(prompt) except ValueError: print("Enter a number or 'exit'") continue print(fibonacci.get(index)) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Convert a Decimal Number to a Binary Number.""" def decimal_to_binary(num: int) -> str: """ Convert an Integer Decimal Number to a Binary Number as str. >>> decimal_to_binary(0) '0b0' >>> decimal_to_binary(2) '0b10' >>> decimal_to_binary(7) '0b111' >>> decimal_to_binary(35) '0b100011' >>> # negatives work too >>> decimal_to_binary(-2) '-0b10' >>> # other floats will error >>> decimal_to_binary(16.16) # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: 'float' object cannot be interpreted as an integer >>> # strings will error as well >>> decimal_to_binary('0xfffff') # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: 'str' object cannot be interpreted as an integer """ if isinstance(num, float): raise TypeError("'float' object cannot be interpreted as an integer") if isinstance(num, str): raise TypeError("'str' object cannot be interpreted as an integer") if num == 0: return "0b0" negative = False if num < 0: negative = True num = -num binary: list[int] = [] while num > 0: binary.insert(0, num % 2) num >>= 1 if negative: return "-0b" + "".join(str(e) for e in binary) return "0b" + "".join(str(e) for e in binary) if __name__ == "__main__": import doctest doctest.testmod()
"""Convert a Decimal Number to a Binary Number.""" def decimal_to_binary(num: int) -> str: """ Convert an Integer Decimal Number to a Binary Number as str. >>> decimal_to_binary(0) '0b0' >>> decimal_to_binary(2) '0b10' >>> decimal_to_binary(7) '0b111' >>> decimal_to_binary(35) '0b100011' >>> # negatives work too >>> decimal_to_binary(-2) '-0b10' >>> # other floats will error >>> decimal_to_binary(16.16) # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: 'float' object cannot be interpreted as an integer >>> # strings will error as well >>> decimal_to_binary('0xfffff') # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: 'str' object cannot be interpreted as an integer """ if isinstance(num, float): raise TypeError("'float' object cannot be interpreted as an integer") if isinstance(num, str): raise TypeError("'str' object cannot be interpreted as an integer") if num == 0: return "0b0" negative = False if num < 0: negative = True num = -num binary: list[int] = [] while num > 0: binary.insert(0, num % 2) num >>= 1 if negative: return "-0b" + "".join(str(e) for e in binary) return "0b" + "".join(str(e) for e in binary) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def norm_squared(vector: ndarray) -> float: """ Return the squared second norm of vector norm_squared(v) = sum(x * x for x in v) Args: vector (ndarray): input vector Returns: float: squared second norm of vector >>> norm_squared([1, 2]) 5 >>> norm_squared(np.asarray([1, 2])) 5 >>> norm_squared([0, 0]) 0 """ return np.dot(vector, vector) class SVC: """ Support Vector Classifier Args: kernel (str): kernel to use. Default: linear Possible choices: - linear regularization: constraint for soft margin (data not linearly separable) Default: unbound >>> SVC(kernel="asdf") Traceback (most recent call last): ... ValueError: Unknown kernel: asdf >>> SVC(kernel="rbf") Traceback (most recent call last): ... ValueError: rbf kernel requires gamma >>> SVC(kernel="rbf", gamma=-1) Traceback (most recent call last): ... ValueError: gamma must be > 0 """ def __init__( self, *, regularization: float = np.inf, kernel: str = "linear", gamma: float = 0, ) -> None: self.regularization = regularization self.gamma = gamma if kernel == "linear": self.kernel = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma") if not (isinstance(self.gamma, float) or isinstance(self.gamma, int)): raise ValueError("gamma must be float or int") if not self.gamma > 0: raise ValueError("gamma must be > 0") self.kernel = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: raise ValueError(f"Unknown kernel: {kernel}") # kernels def __linear(self, vector1: ndarray, vector2: ndarray) -> float: """Linear kernel (as if no kernel used at all)""" return np.dot(vector1, vector2) def __rbf(self, vector1: ndarray, vector2: ndarray) -> float: """ RBF: Radial Basis Function Kernel Note: for more information see: https://en.wikipedia.org/wiki/Radial_basis_function_kernel Args: vector1 (ndarray): first vector vector2 (ndarray): second vector) Returns: float: exp(-(gamma * norm_squared(vector1 - vector2))) """ return np.exp(-(self.gamma * norm_squared(vector1 - vector2))) def fit(self, observations: list[ndarray], classes: ndarray) -> None: """ Fits the SVC with a set of observations. Args: observations (list[ndarray]): list of observations classes (ndarray): classification of each observation (in {1, -1}) """ self.observations = observations self.classes = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (n,) = np.shape(classes) def to_minimize(candidate: ndarray) -> float: """ Opposite of the function to maximize Args: candidate (ndarray): candidate array to test Return: float: Wolfe's Dual result to minimize """ s = 0 (n,) = np.shape(candidate) for i in range(n): for j in range(n): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j]) ) return 1 / 2 * s - sum(candidate) ly_contraint = LinearConstraint(classes, 0, 0) l_bounds = Bounds(0, self.regularization) l_star = minimize( to_minimize, np.ones(n), bounds=l_bounds, constraints=[ly_contraint] ).x self.optimum = l_star # calculating mean offset of separation plane to points s = 0 for i in range(n): for j in range(n): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j] ) self.offset = s / n def predict(self, observation: ndarray) -> int: """ Get the expected class of an observation Args: observation (Vector): observation Returns: int {1, -1}: expected class >>> xs = [ ... np.asarray([0, 1]), np.asarray([0, 2]), ... np.asarray([1, 1]), np.asarray([1, 2]) ... ] >>> y = np.asarray([1, 1, -1, -1]) >>> s = SVC() >>> s.fit(xs, y) >>> s.predict(np.asarray([0, 1])) 1 >>> s.predict(np.asarray([1, 1])) -1 >>> s.predict(np.asarray([2, 2])) -1 """ s = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], observation) for n in range(len(self.classes)) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def norm_squared(vector: ndarray) -> float: """ Return the squared second norm of vector norm_squared(v) = sum(x * x for x in v) Args: vector (ndarray): input vector Returns: float: squared second norm of vector >>> norm_squared([1, 2]) 5 >>> norm_squared(np.asarray([1, 2])) 5 >>> norm_squared([0, 0]) 0 """ return np.dot(vector, vector) class SVC: """ Support Vector Classifier Args: kernel (str): kernel to use. Default: linear Possible choices: - linear regularization: constraint for soft margin (data not linearly separable) Default: unbound >>> SVC(kernel="asdf") Traceback (most recent call last): ... ValueError: Unknown kernel: asdf >>> SVC(kernel="rbf") Traceback (most recent call last): ... ValueError: rbf kernel requires gamma >>> SVC(kernel="rbf", gamma=-1) Traceback (most recent call last): ... ValueError: gamma must be > 0 """ def __init__( self, *, regularization: float = np.inf, kernel: str = "linear", gamma: float = 0, ) -> None: self.regularization = regularization self.gamma = gamma if kernel == "linear": self.kernel = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma") if not (isinstance(self.gamma, float) or isinstance(self.gamma, int)): raise ValueError("gamma must be float or int") if not self.gamma > 0: raise ValueError("gamma must be > 0") self.kernel = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: raise ValueError(f"Unknown kernel: {kernel}") # kernels def __linear(self, vector1: ndarray, vector2: ndarray) -> float: """Linear kernel (as if no kernel used at all)""" return np.dot(vector1, vector2) def __rbf(self, vector1: ndarray, vector2: ndarray) -> float: """ RBF: Radial Basis Function Kernel Note: for more information see: https://en.wikipedia.org/wiki/Radial_basis_function_kernel Args: vector1 (ndarray): first vector vector2 (ndarray): second vector) Returns: float: exp(-(gamma * norm_squared(vector1 - vector2))) """ return np.exp(-(self.gamma * norm_squared(vector1 - vector2))) def fit(self, observations: list[ndarray], classes: ndarray) -> None: """ Fits the SVC with a set of observations. Args: observations (list[ndarray]): list of observations classes (ndarray): classification of each observation (in {1, -1}) """ self.observations = observations self.classes = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (n,) = np.shape(classes) def to_minimize(candidate: ndarray) -> float: """ Opposite of the function to maximize Args: candidate (ndarray): candidate array to test Return: float: Wolfe's Dual result to minimize """ s = 0 (n,) = np.shape(candidate) for i in range(n): for j in range(n): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j]) ) return 1 / 2 * s - sum(candidate) ly_contraint = LinearConstraint(classes, 0, 0) l_bounds = Bounds(0, self.regularization) l_star = minimize( to_minimize, np.ones(n), bounds=l_bounds, constraints=[ly_contraint] ).x self.optimum = l_star # calculating mean offset of separation plane to points s = 0 for i in range(n): for j in range(n): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j] ) self.offset = s / n def predict(self, observation: ndarray) -> int: """ Get the expected class of an observation Args: observation (Vector): observation Returns: int {1, -1}: expected class >>> xs = [ ... np.asarray([0, 1]), np.asarray([0, 2]), ... np.asarray([1, 1]), np.asarray([1, 2]) ... ] >>> y = np.asarray([1, 1, -1, -1]) >>> s = SVC() >>> s.fit(xs, y) >>> s.predict(np.asarray([0, 1])) 1 >>> s.predict(np.asarray([1, 1])) -1 >>> s.predict(np.asarray([2, 2])) -1 """ s = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], observation) for n in range(len(self.classes)) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from math import pi def radians(degree: float) -> float: """ Coverts the given angle from degrees to radians https://en.wikipedia.org/wiki/Radian >>> radians(180) 3.141592653589793 >>> radians(92) 1.6057029118347832 >>> radians(274) 4.782202150464463 >>> radians(109.82) 1.9167205845401725 >>> from math import radians as math_radians >>> all(abs(radians(i)-math_radians(i)) <= 0.00000001 for i in range(-2, 361)) True """ return degree / (180 / pi) if __name__ == "__main__": from doctest import testmod testmod()
from math import pi def radians(degree: float) -> float: """ Coverts the given angle from degrees to radians https://en.wikipedia.org/wiki/Radian >>> radians(180) 3.141592653589793 >>> radians(92) 1.6057029118347832 >>> radians(274) 4.782202150464463 >>> radians(109.82) 1.9167205845401725 >>> from math import radians as math_radians >>> all(abs(radians(i)-math_radians(i)) <= 0.00000001 for i in range(-2, 361)) True """ return degree / (180 / pi) if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Calculate sin function. It's not a perfect function so I am rounding the result to 10 decimal places by default. Formula: sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ... Where: x = angle in randians. Source: https://www.homeschoolmath.net/teaching/sine_calculator.php """ from math import factorial, radians def sin( angle_in_degrees: float, accuracy: int = 18, rounded_values_count: int = 10 ) -> float: """ Implement sin function. >>> sin(0.0) 0.0 >>> sin(90.0) 1.0 >>> sin(180.0) 0.0 >>> sin(270.0) -1.0 >>> sin(0.68) 0.0118679603 >>> sin(1.97) 0.0343762121 >>> sin(64.0) 0.8987940463 >>> sin(9999.0) -0.9876883406 >>> sin(-689.0) 0.5150380749 >>> sin(89.7) 0.9999862922 """ # Simplify the angle to be between 360 and -360 degrees. angle_in_degrees = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians angle_in_radians = radians(angle_in_degrees) result = angle_in_radians a = 3 b = -1 for _ in range(accuracy): result += (b * (angle_in_radians**a)) / factorial(a) b = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(result, rounded_values_count) if __name__ == "__main__": __import__("doctest").testmod()
""" Calculate sin function. It's not a perfect function so I am rounding the result to 10 decimal places by default. Formula: sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ... Where: x = angle in randians. Source: https://www.homeschoolmath.net/teaching/sine_calculator.php """ from math import factorial, radians def sin( angle_in_degrees: float, accuracy: int = 18, rounded_values_count: int = 10 ) -> float: """ Implement sin function. >>> sin(0.0) 0.0 >>> sin(90.0) 1.0 >>> sin(180.0) 0.0 >>> sin(270.0) -1.0 >>> sin(0.68) 0.0118679603 >>> sin(1.97) 0.0343762121 >>> sin(64.0) 0.8987940463 >>> sin(9999.0) -0.9876883406 >>> sin(-689.0) 0.5150380749 >>> sin(89.7) 0.9999862922 """ # Simplify the angle to be between 360 and -360 degrees. angle_in_degrees = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians angle_in_radians = radians(angle_in_degrees) result = angle_in_radians a = 3 b = -1 for _ in range(accuracy): result += (b * (angle_in_radians**a)) / factorial(a) b = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(result, rounded_values_count) if __name__ == "__main__": __import__("doctest").testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This file fetches quotes from the " ZenQuotes API ". It does not require any API key as it uses free tier. For more details and premium features visit: https://zenquotes.io/ """ import pprint import requests API_ENDPOINT_URL = "https://zenquotes.io/api" def quote_of_the_day() -> list: return requests.get(API_ENDPOINT_URL + "/today").json() def random_quotes() -> list: return requests.get(API_ENDPOINT_URL + "/random").json() if __name__ == "__main__": """ response object has all the info with the quote To retrieve the actual quote access the response.json() object as below response.json() is a list of json object response.json()[0]['q'] = actual quote. response.json()[0]['a'] = author name. response.json()[0]['h'] = in html format. """ response = random_quotes() pprint.pprint(response)
""" This file fetches quotes from the " ZenQuotes API ". It does not require any API key as it uses free tier. For more details and premium features visit: https://zenquotes.io/ """ import pprint import requests API_ENDPOINT_URL = "https://zenquotes.io/api" def quote_of_the_day() -> list: return requests.get(API_ENDPOINT_URL + "/today").json() def random_quotes() -> list: return requests.get(API_ENDPOINT_URL + "/random").json() if __name__ == "__main__": """ response object has all the info with the quote To retrieve the actual quote access the response.json() object as below response.json() is a list of json object response.json()[0]['q'] = actual quote. response.json()[0]['a'] = author name. response.json()[0]['h'] = in html format. """ response = random_quotes() pprint.pprint(response)
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 28 Url: https://projecteuler.net/problem=28 Statement: Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagonals is 101. What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way? """ from math import ceil def solution(n: int = 1001) -> int: """Returns the sum of the numbers on the diagonals in a n by n spiral formed in the same way. >>> solution(1001) 669171001 >>> solution(500) 82959497 >>> solution(100) 651897 >>> solution(50) 79697 >>> solution(10) 537 """ total = 1 for i in range(1, int(ceil(n / 2.0))): odd = 2 * i + 1 even = 2 * i total = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: n = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
""" Problem 28 Url: https://projecteuler.net/problem=28 Statement: Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagonals is 101. What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way? """ from math import ceil def solution(n: int = 1001) -> int: """Returns the sum of the numbers on the diagonals in a n by n spiral formed in the same way. >>> solution(1001) 669171001 >>> solution(500) 82959497 >>> solution(100) 651897 >>> solution(50) 79697 >>> solution(10) 537 """ total = 1 for i in range(1, int(ceil(n / 2.0))): odd = 2 * i + 1 even = 2 * i total = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: n = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" python/black : True """ from __future__ import annotations def prime_factors(n: int) -> list[int]: """ Returns prime factors of n as a list. >>> prime_factors(0) [] >>> prime_factors(100) [2, 2, 5, 5] >>> prime_factors(2560) [2, 2, 2, 2, 2, 2, 2, 2, 2, 5] >>> prime_factors(10**-2) [] >>> prime_factors(0.02) [] >>> x = prime_factors(10**241) # doctest: +NORMALIZE_WHITESPACE >>> x == [2]*241 + [5]*241 True >>> prime_factors(10**-354) [] >>> prime_factors('hello') Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'str' >>> prime_factors([1,2,'hello']) Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'list' """ i = 2 factors = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(i) if n > 1: factors.append(n) return factors if __name__ == "__main__": import doctest doctest.testmod()
""" python/black : True """ from __future__ import annotations def prime_factors(n: int) -> list[int]: """ Returns prime factors of n as a list. >>> prime_factors(0) [] >>> prime_factors(100) [2, 2, 5, 5] >>> prime_factors(2560) [2, 2, 2, 2, 2, 2, 2, 2, 2, 5] >>> prime_factors(10**-2) [] >>> prime_factors(0.02) [] >>> x = prime_factors(10**241) # doctest: +NORMALIZE_WHITESPACE >>> x == [2]*241 + [5]*241 True >>> prime_factors(10**-354) [] >>> prime_factors('hello') Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'str' >>> prime_factors([1,2,'hello']) Traceback (most recent call last): ... TypeError: '<=' not supported between instances of 'int' and 'list' """ i = 2 factors = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(i) if n > 1: factors.append(n) return factors if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from __future__ import annotations def find_min(nums: list[int | float]) -> int | float: """ Find Minimum Number in a List :param nums: contains elements :return: min number in list >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_min(nums) == min(nums) True True True True >>> find_min([0, 1, 2, 3, 4, 5, -3, 24, -56]) -56 >>> find_min([]) Traceback (most recent call last): ... ValueError: find_min() arg is an empty sequence """ if len(nums) == 0: raise ValueError("find_min() arg is an empty sequence") min_num = nums[0] for num in nums: if min_num > num: min_num = num return min_num if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
from __future__ import annotations def find_min(nums: list[int | float]) -> int | float: """ Find Minimum Number in a List :param nums: contains elements :return: min number in list >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_min(nums) == min(nums) True True True True >>> find_min([0, 1, 2, 3, 4, 5, -3, 24, -56]) -56 >>> find_min([]) Traceback (most recent call last): ... ValueError: find_min() arg is an empty sequence """ if len(nums) == 0: raise ValueError("find_min() arg is an empty sequence") min_num = nums[0] for num in nums: if min_num > num: min_num = num return min_num if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
### Describe your change: * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [ ] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [ ] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
### Describe your change: * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [ ] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [ ] This pull request is all my own work -- I have not plagiarized. * [ ] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding. More importantly, the transformation is reversible, without needing to store any additional data except the position of the first original character. The BWT is thus a "free" method of improving the efficiency of text compression algorithms, costing only some extra computation. """ from __future__ import annotations from typing import TypedDict class BWTTransformDict(TypedDict): bwt_string: str idx_original_string: int def all_rotations(s: str) -> list[str]: """ :param s: The string that will be rotated len(s) times. :return: A list with the rotations. :raises TypeError: If s is not an instance of str. Examples: >>> all_rotations("^BANANA|") # doctest: +NORMALIZE_WHITESPACE ['^BANANA|', 'BANANA|^', 'ANANA|^B', 'NANA|^BA', 'ANA|^BAN', 'NA|^BANA', 'A|^BANAN', '|^BANANA'] >>> all_rotations("a_asa_da_casa") # doctest: +NORMALIZE_WHITESPACE ['a_asa_da_casa', '_asa_da_casaa', 'asa_da_casaa_', 'sa_da_casaa_a', 'a_da_casaa_as', '_da_casaa_asa', 'da_casaa_asa_', 'a_casaa_asa_d', '_casaa_asa_da', 'casaa_asa_da_', 'asaa_asa_da_c', 'saa_asa_da_ca', 'aa_asa_da_cas'] >>> all_rotations("panamabanana") # doctest: +NORMALIZE_WHITESPACE ['panamabanana', 'anamabananap', 'namabananapa', 'amabananapan', 'mabananapana', 'abananapanam', 'bananapanama', 'ananapanamab', 'nanapanamaba', 'anapanamaban', 'napanamabana', 'apanamabanan'] >>> all_rotations(5) Traceback (most recent call last): ... TypeError: The parameter s type must be str. """ if not isinstance(s, str): raise TypeError("The parameter s type must be str.") return [s[i:] + s[:i] for i in range(len(s))] def bwt_transform(s: str) -> BWTTransformDict: """ :param s: The string that will be used at bwt algorithm :return: the string composed of the last char of each row of the ordered rotations and the index of the original string at ordered rotations list :raises TypeError: If the s parameter type is not str :raises ValueError: If the s parameter is empty Examples: >>> bwt_transform("^BANANA") {'bwt_string': 'BNN^AAA', 'idx_original_string': 6} >>> bwt_transform("a_asa_da_casa") {'bwt_string': 'aaaadss_c__aa', 'idx_original_string': 3} >>> bwt_transform("panamabanana") {'bwt_string': 'mnpbnnaaaaaa', 'idx_original_string': 11} >>> bwt_transform(4) Traceback (most recent call last): ... TypeError: The parameter s type must be str. >>> bwt_transform('') Traceback (most recent call last): ... ValueError: The parameter s must not be empty. """ if not isinstance(s, str): raise TypeError("The parameter s type must be str.") if not s: raise ValueError("The parameter s must not be empty.") rotations = all_rotations(s) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation response: BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations]), "idx_original_string": rotations.index(s), } return response def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: """ :param bwt_string: The string returned from bwt algorithm execution :param idx_original_string: A 0-based index of the string that was used to generate bwt_string at ordered rotations list :return: The string used to generate bwt_string when bwt was executed :raises TypeError: If the bwt_string parameter type is not str :raises ValueError: If the bwt_string parameter is empty :raises TypeError: If the idx_original_string type is not int or if not possible to cast it to int :raises ValueError: If the idx_original_string value is lower than 0 or greater than len(bwt_string) - 1 >>> reverse_bwt("BNN^AAA", 6) '^BANANA' >>> reverse_bwt("aaaadss_c__aa", 3) 'a_asa_da_casa' >>> reverse_bwt("mnpbnnaaaaaa", 11) 'panamabanana' >>> reverse_bwt(4, 11) Traceback (most recent call last): ... TypeError: The parameter bwt_string type must be str. >>> reverse_bwt("", 11) Traceback (most recent call last): ... ValueError: The parameter bwt_string must not be empty. >>> reverse_bwt("mnpbnnaaaaaa", "asd") # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... TypeError: The parameter idx_original_string type must be int or passive of cast to int. >>> reverse_bwt("mnpbnnaaaaaa", -1) Traceback (most recent call last): ... ValueError: The parameter idx_original_string must not be lower than 0. >>> reverse_bwt("mnpbnnaaaaaa", 12) # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: The parameter idx_original_string must be lower than len(bwt_string). >>> reverse_bwt("mnpbnnaaaaaa", 11.0) 'panamabanana' >>> reverse_bwt("mnpbnnaaaaaa", 11.4) 'panamabanana' """ if not isinstance(bwt_string, str): raise TypeError("The parameter bwt_string type must be str.") if not bwt_string: raise ValueError("The parameter bwt_string must not be empty.") try: idx_original_string = int(idx_original_string) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0.") if idx_original_string >= len(bwt_string): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) ordered_rotations = [""] * len(bwt_string) for _ in range(len(bwt_string)): for i in range(len(bwt_string)): ordered_rotations[i] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": entry_msg = "Provide a string that I will generate its BWT transform: " s = input(entry_msg).strip() result = bwt_transform(s) print( f"Burrows Wheeler transform for string '{s}' results " f"in '{result['bwt_string']}'" ) original_string = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " f"we get original string '{original_string}'" )
""" https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding. More importantly, the transformation is reversible, without needing to store any additional data except the position of the first original character. The BWT is thus a "free" method of improving the efficiency of text compression algorithms, costing only some extra computation. """ from __future__ import annotations from typing import TypedDict class BWTTransformDict(TypedDict): bwt_string: str idx_original_string: int def all_rotations(s: str) -> list[str]: """ :param s: The string that will be rotated len(s) times. :return: A list with the rotations. :raises TypeError: If s is not an instance of str. Examples: >>> all_rotations("^BANANA|") # doctest: +NORMALIZE_WHITESPACE ['^BANANA|', 'BANANA|^', 'ANANA|^B', 'NANA|^BA', 'ANA|^BAN', 'NA|^BANA', 'A|^BANAN', '|^BANANA'] >>> all_rotations("a_asa_da_casa") # doctest: +NORMALIZE_WHITESPACE ['a_asa_da_casa', '_asa_da_casaa', 'asa_da_casaa_', 'sa_da_casaa_a', 'a_da_casaa_as', '_da_casaa_asa', 'da_casaa_asa_', 'a_casaa_asa_d', '_casaa_asa_da', 'casaa_asa_da_', 'asaa_asa_da_c', 'saa_asa_da_ca', 'aa_asa_da_cas'] >>> all_rotations("panamabanana") # doctest: +NORMALIZE_WHITESPACE ['panamabanana', 'anamabananap', 'namabananapa', 'amabananapan', 'mabananapana', 'abananapanam', 'bananapanama', 'ananapanamab', 'nanapanamaba', 'anapanamaban', 'napanamabana', 'apanamabanan'] >>> all_rotations(5) Traceback (most recent call last): ... TypeError: The parameter s type must be str. """ if not isinstance(s, str): raise TypeError("The parameter s type must be str.") return [s[i:] + s[:i] for i in range(len(s))] def bwt_transform(s: str) -> BWTTransformDict: """ :param s: The string that will be used at bwt algorithm :return: the string composed of the last char of each row of the ordered rotations and the index of the original string at ordered rotations list :raises TypeError: If the s parameter type is not str :raises ValueError: If the s parameter is empty Examples: >>> bwt_transform("^BANANA") {'bwt_string': 'BNN^AAA', 'idx_original_string': 6} >>> bwt_transform("a_asa_da_casa") {'bwt_string': 'aaaadss_c__aa', 'idx_original_string': 3} >>> bwt_transform("panamabanana") {'bwt_string': 'mnpbnnaaaaaa', 'idx_original_string': 11} >>> bwt_transform(4) Traceback (most recent call last): ... TypeError: The parameter s type must be str. >>> bwt_transform('') Traceback (most recent call last): ... ValueError: The parameter s must not be empty. """ if not isinstance(s, str): raise TypeError("The parameter s type must be str.") if not s: raise ValueError("The parameter s must not be empty.") rotations = all_rotations(s) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation response: BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations]), "idx_original_string": rotations.index(s), } return response def reverse_bwt(bwt_string: str, idx_original_string: int) -> str: """ :param bwt_string: The string returned from bwt algorithm execution :param idx_original_string: A 0-based index of the string that was used to generate bwt_string at ordered rotations list :return: The string used to generate bwt_string when bwt was executed :raises TypeError: If the bwt_string parameter type is not str :raises ValueError: If the bwt_string parameter is empty :raises TypeError: If the idx_original_string type is not int or if not possible to cast it to int :raises ValueError: If the idx_original_string value is lower than 0 or greater than len(bwt_string) - 1 >>> reverse_bwt("BNN^AAA", 6) '^BANANA' >>> reverse_bwt("aaaadss_c__aa", 3) 'a_asa_da_casa' >>> reverse_bwt("mnpbnnaaaaaa", 11) 'panamabanana' >>> reverse_bwt(4, 11) Traceback (most recent call last): ... TypeError: The parameter bwt_string type must be str. >>> reverse_bwt("", 11) Traceback (most recent call last): ... ValueError: The parameter bwt_string must not be empty. >>> reverse_bwt("mnpbnnaaaaaa", "asd") # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... TypeError: The parameter idx_original_string type must be int or passive of cast to int. >>> reverse_bwt("mnpbnnaaaaaa", -1) Traceback (most recent call last): ... ValueError: The parameter idx_original_string must not be lower than 0. >>> reverse_bwt("mnpbnnaaaaaa", 12) # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: The parameter idx_original_string must be lower than len(bwt_string). >>> reverse_bwt("mnpbnnaaaaaa", 11.0) 'panamabanana' >>> reverse_bwt("mnpbnnaaaaaa", 11.4) 'panamabanana' """ if not isinstance(bwt_string, str): raise TypeError("The parameter bwt_string type must be str.") if not bwt_string: raise ValueError("The parameter bwt_string must not be empty.") try: idx_original_string = int(idx_original_string) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0.") if idx_original_string >= len(bwt_string): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) ordered_rotations = [""] * len(bwt_string) for _ in range(len(bwt_string)): for i in range(len(bwt_string)): ordered_rotations[i] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": entry_msg = "Provide a string that I will generate its BWT transform: " s = input(entry_msg).strip() result = bwt_transform(s) print( f"Burrows Wheeler transform for string '{s}' results " f"in '{result['bwt_string']}'" ) original_string = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " f"we get original string '{original_string}'" )
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 from __future__ import annotations import json import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent headers = {"UserAgent": UserAgent().random} def extract_user_profile(script) -> dict: """ May raise json.decoder.JSONDecodeError """ data = script.contents[0] info = json.loads(data[data.find('{"config"') : -1]) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class InstagramUser: """ Class Instagram crawl instagram user information Usage: (doctest failing on GitHub Actions) # >>> instagram_user = InstagramUser("github") # >>> instagram_user.is_verified True # >>> instagram_user.biography 'Built for developers.' """ def __init__(self, username): self.url = f"https://www.instagram.com/{username}/" self.user_data = self.get_json() def get_json(self) -> dict: """ Return a dict of user information """ html = requests.get(self.url, headers=headers).text scripts = BeautifulSoup(html, "html.parser").find_all("script") try: return extract_user_profile(scripts[4]) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3]) def __repr__(self) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__(self) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def username(self) -> str: return self.user_data["username"] @property def fullname(self) -> str: return self.user_data["full_name"] @property def biography(self) -> str: return self.user_data["biography"] @property def email(self) -> str: return self.user_data["business_email"] @property def website(self) -> str: return self.user_data["external_url"] @property def number_of_followers(self) -> int: return self.user_data["edge_followed_by"]["count"] @property def number_of_followings(self) -> int: return self.user_data["edge_follow"]["count"] @property def number_of_posts(self) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def profile_picture_url(self) -> str: return self.user_data["profile_pic_url_hd"] @property def is_verified(self) -> bool: return self.user_data["is_verified"] @property def is_private(self) -> bool: return self.user_data["is_private"] def test_instagram_user(username: str = "github") -> None: """ A self running doctest >>> test_instagram_user() """ import os if os.environ.get("CI"): return None # test failing on GitHub Actions instagram_user = InstagramUser(username) assert instagram_user.user_data assert isinstance(instagram_user.user_data, dict) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram.") assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() instagram_user = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
#!/usr/bin/env python3 from __future__ import annotations import json import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent headers = {"UserAgent": UserAgent().random} def extract_user_profile(script) -> dict: """ May raise json.decoder.JSONDecodeError """ data = script.contents[0] info = json.loads(data[data.find('{"config"') : -1]) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class InstagramUser: """ Class Instagram crawl instagram user information Usage: (doctest failing on GitHub Actions) # >>> instagram_user = InstagramUser("github") # >>> instagram_user.is_verified True # >>> instagram_user.biography 'Built for developers.' """ def __init__(self, username): self.url = f"https://www.instagram.com/{username}/" self.user_data = self.get_json() def get_json(self) -> dict: """ Return a dict of user information """ html = requests.get(self.url, headers=headers).text scripts = BeautifulSoup(html, "html.parser").find_all("script") try: return extract_user_profile(scripts[4]) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3]) def __repr__(self) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__(self) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def username(self) -> str: return self.user_data["username"] @property def fullname(self) -> str: return self.user_data["full_name"] @property def biography(self) -> str: return self.user_data["biography"] @property def email(self) -> str: return self.user_data["business_email"] @property def website(self) -> str: return self.user_data["external_url"] @property def number_of_followers(self) -> int: return self.user_data["edge_followed_by"]["count"] @property def number_of_followings(self) -> int: return self.user_data["edge_follow"]["count"] @property def number_of_posts(self) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def profile_picture_url(self) -> str: return self.user_data["profile_pic_url_hd"] @property def is_verified(self) -> bool: return self.user_data["is_verified"] @property def is_private(self) -> bool: return self.user_data["is_private"] def test_instagram_user(username: str = "github") -> None: """ A self running doctest >>> test_instagram_user() """ import os if os.environ.get("CI"): return None # test failing on GitHub Actions instagram_user = InstagramUser(username) assert instagram_user.user_data assert isinstance(instagram_user.user_data, dict) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram.") assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() instagram_user = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import numpy as np """ Here I implemented the scoring functions. MAE, MSE, RMSE, RMSLE are included. Those are used for calculating differences between predicted values and actual values. Metrics are slightly differentiated. Sometimes squared, rooted, even log is used. Using log and roots can be perceived as tools for penalizing big errors. However, using appropriate metrics depends on the situations, and types of data """ # Mean Absolute Error def mae(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(mae(predict,actual),decimals = 2) 0.67 >>> actual = [1,1,1];predict = [1,1,1] >>> mae(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = abs(predict - actual) score = difference.mean() return score # Mean Squared Error def mse(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(mse(predict,actual),decimals = 2) 1.33 >>> actual = [1,1,1];predict = [1,1,1] >>> mse(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) score = square_diff.mean() return score # Root Mean Squared Error def rmse(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(rmse(predict,actual),decimals = 2) 1.15 >>> actual = [1,1,1];predict = [1,1,1] >>> rmse(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score # Root Mean Square Logarithmic Error def rmsle(predict, actual): """ Examples(rounded for precision): >>> actual = [10,10,30];predict = [10,2,30] >>> np.around(rmsle(predict,actual),decimals = 2) 0.75 >>> actual = [1,1,1];predict = [1,1,1] >>> rmsle(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) log_predict = np.log(predict + 1) log_actual = np.log(actual + 1) difference = log_predict - log_actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score # Mean Bias Deviation def mbd(predict, actual): """ This value is Negative, if the model underpredicts, positive, if it overpredicts. Example(rounded for precision): Here the model overpredicts >>> actual = [1,2,3];predict = [2,3,4] >>> np.around(mbd(predict,actual),decimals = 2) 50.0 Here the model underpredicts >>> actual = [1,2,3];predict = [0,1,1] >>> np.around(mbd(predict,actual),decimals = 2) -66.67 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual numerator = np.sum(difference) / len(predict) denumerator = np.sum(actual) / len(predict) # print(numerator, denumerator) score = float(numerator) / denumerator * 100 return score def manual_accuracy(predict, actual): return np.mean(np.array(actual) == np.array(predict))
import numpy as np """ Here I implemented the scoring functions. MAE, MSE, RMSE, RMSLE are included. Those are used for calculating differences between predicted values and actual values. Metrics are slightly differentiated. Sometimes squared, rooted, even log is used. Using log and roots can be perceived as tools for penalizing big errors. However, using appropriate metrics depends on the situations, and types of data """ # Mean Absolute Error def mae(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(mae(predict,actual),decimals = 2) 0.67 >>> actual = [1,1,1];predict = [1,1,1] >>> mae(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = abs(predict - actual) score = difference.mean() return score # Mean Squared Error def mse(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(mse(predict,actual),decimals = 2) 1.33 >>> actual = [1,1,1];predict = [1,1,1] >>> mse(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) score = square_diff.mean() return score # Root Mean Squared Error def rmse(predict, actual): """ Examples(rounded for precision): >>> actual = [1,2,3];predict = [1,4,3] >>> np.around(rmse(predict,actual),decimals = 2) 1.15 >>> actual = [1,1,1];predict = [1,1,1] >>> rmse(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score # Root Mean Square Logarithmic Error def rmsle(predict, actual): """ Examples(rounded for precision): >>> actual = [10,10,30];predict = [10,2,30] >>> np.around(rmsle(predict,actual),decimals = 2) 0.75 >>> actual = [1,1,1];predict = [1,1,1] >>> rmsle(predict,actual) 0.0 """ predict = np.array(predict) actual = np.array(actual) log_predict = np.log(predict + 1) log_actual = np.log(actual + 1) difference = log_predict - log_actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score # Mean Bias Deviation def mbd(predict, actual): """ This value is Negative, if the model underpredicts, positive, if it overpredicts. Example(rounded for precision): Here the model overpredicts >>> actual = [1,2,3];predict = [2,3,4] >>> np.around(mbd(predict,actual),decimals = 2) 50.0 Here the model underpredicts >>> actual = [1,2,3];predict = [0,1,1] >>> np.around(mbd(predict,actual),decimals = 2) -66.67 """ predict = np.array(predict) actual = np.array(actual) difference = predict - actual numerator = np.sum(difference) / len(predict) denumerator = np.sum(actual) / len(predict) # print(numerator, denumerator) score = float(numerator) / denumerator * 100 return score def manual_accuracy(predict, actual): return np.mean(np.array(actual) == np.array(predict))
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def main() -> None: message = input("Enter message: ") key = input("Enter key [alphanumeric]: ") mode = input("Encrypt/Decrypt [e/d]: ") if mode.lower().startswith("e"): mode = "encrypt" translated = encrypt_message(key, message) elif mode.lower().startswith("d"): mode = "decrypt" translated = decrypt_message(key, message) print(f"\n{mode.title()}ed message:") print(translated) def encrypt_message(key: str, message: str) -> str: """ >>> encrypt_message('HDarji', 'This is Harshil Darji from Dharmaj.') 'Akij ra Odrjqqs Gaisq muod Mphumrs.' """ return translate_message(key, message, "encrypt") def decrypt_message(key: str, message: str) -> str: """ >>> decrypt_message('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.') 'This is Harshil Darji from Dharmaj.' """ return translate_message(key, message, "decrypt") def translate_message(key: str, message: str, mode: str) -> str: translated = [] key_index = 0 key = key.upper() for symbol in message: num = LETTERS.find(symbol.upper()) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index]) elif mode == "decrypt": num -= LETTERS.find(key[key_index]) num %= len(LETTERS) if symbol.isupper(): translated.append(LETTERS[num]) elif symbol.islower(): translated.append(LETTERS[num].lower()) key_index += 1 if key_index == len(key): key_index = 0 else: translated.append(symbol) return "".join(translated) if __name__ == "__main__": main()
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def main() -> None: message = input("Enter message: ") key = input("Enter key [alphanumeric]: ") mode = input("Encrypt/Decrypt [e/d]: ") if mode.lower().startswith("e"): mode = "encrypt" translated = encrypt_message(key, message) elif mode.lower().startswith("d"): mode = "decrypt" translated = decrypt_message(key, message) print(f"\n{mode.title()}ed message:") print(translated) def encrypt_message(key: str, message: str) -> str: """ >>> encrypt_message('HDarji', 'This is Harshil Darji from Dharmaj.') 'Akij ra Odrjqqs Gaisq muod Mphumrs.' """ return translate_message(key, message, "encrypt") def decrypt_message(key: str, message: str) -> str: """ >>> decrypt_message('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.') 'This is Harshil Darji from Dharmaj.' """ return translate_message(key, message, "decrypt") def translate_message(key: str, message: str, mode: str) -> str: translated = [] key_index = 0 key = key.upper() for symbol in message: num = LETTERS.find(symbol.upper()) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index]) elif mode == "decrypt": num -= LETTERS.find(key[key_index]) num %= len(LETTERS) if symbol.isupper(): translated.append(LETTERS[num]) elif symbol.islower(): translated.append(LETTERS[num].lower()) key_index += 1 if key_index == len(key): key_index = 0 else: translated.append(symbol) return "".join(translated) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# https://en.wikipedia.org/wiki/Hill_climbing import math class SearchProblem: """ An interface to define search problems. The interface will be illustrated using the example of mathematical function. """ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): """ The constructor of the search problem. x: the x coordinate of the current search state. y: the y coordinate of the current search state. step_size: size of the step to take when looking for neighbors. function_to_optimize: a function to optimize having the signature f(x, y). """ self.x = x self.y = y self.step_size = step_size self.function = function_to_optimize def score(self) -> int: """ Returns the output of the function called with current x and y coordinates. >>> def test_function(x, y): ... return x + y >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 0 >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 12 """ return self.function(self.x, self.y) def get_neighbors(self): """ Returns a list of coordinates of neighbors adjacent to the current coordinates. Neighbors: | 0 | 1 | 2 | | 3 | _ | 4 | | 5 | 6 | 7 | """ step_size = self.step_size return [ SearchProblem(x, y, step_size, self.function) for x, y in ( (self.x - step_size, self.y - step_size), (self.x - step_size, self.y), (self.x - step_size, self.y + step_size), (self.x, self.y - step_size), (self.x, self.y + step_size), (self.x + step_size, self.y - step_size), (self.x + step_size, self.y), (self.x + step_size, self.y + step_size), ) ] def __hash__(self): """ hash the string representation of the current search state. """ return hash(str(self)) def __eq__(self, obj): """ Check if the 2 objects are equal. """ if isinstance(obj, SearchProblem): return hash(str(self)) == hash(str(obj)) return False def __str__(self): """ string representation of the current search state. >>> str(SearchProblem(0, 0, 1, None)) 'x: 0 y: 0' >>> str(SearchProblem(2, 5, 1, None)) 'x: 2 y: 5' """ return f"x: {self.x} y: {self.y}" def hill_climbing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, max_iter: int = 10000, ) -> SearchProblem: """ Implementation of the hill climbling algorithm. We start with a given state, find all its neighbors, move towards the neighbor which provides the maximum (or minimum) change. We keep doing this until we are at a state where we do not have any neighbors which can improve the solution. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the maximum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. max_iter: number of times to run the iteration. Returns a search state having the maximum (or minimum) score. """ current_state = search_prob scores = [] # list to store the current score at each iteration iterations = 0 solution_found = False visited = set() while not solution_found and iterations < max_iter: visited.add(current_state) iterations += 1 current_score = current_state.score() scores.append(current_score) neighbors = current_state.get_neighbors() max_change = -math.inf min_change = math.inf next_state = None # to hold the next best neighbor for neighbor in neighbors: if neighbor in visited: continue # do not want to visit the same state again if ( neighbor.x > max_x or neighbor.x < min_x or neighbor.y > max_y or neighbor.y < min_y ): continue # neighbor outside our bounds change = neighbor.score() - current_score if find_max: # finding max # going to direction with greatest ascent if change > max_change and change > 0: max_change = change next_state = neighbor else: # finding min # to direction with greatest descent if change < min_change and change < 0: min_change = change next_state = neighbor if next_state is not None: # we found at least one neighbor which improved the current state current_state = next_state else: # since we have no neighbor that improves the solution we stop the search solution_found = True if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return current_state if __name__ == "__main__": import doctest doctest.testmod() def test_f1(x, y): return (x**2) + (y**2) # starting the problem with initial coordinates (3, 4) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=False) print( "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x**2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=True) print( "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" )
# https://en.wikipedia.org/wiki/Hill_climbing import math class SearchProblem: """ An interface to define search problems. The interface will be illustrated using the example of mathematical function. """ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): """ The constructor of the search problem. x: the x coordinate of the current search state. y: the y coordinate of the current search state. step_size: size of the step to take when looking for neighbors. function_to_optimize: a function to optimize having the signature f(x, y). """ self.x = x self.y = y self.step_size = step_size self.function = function_to_optimize def score(self) -> int: """ Returns the output of the function called with current x and y coordinates. >>> def test_function(x, y): ... return x + y >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 0 >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 12 """ return self.function(self.x, self.y) def get_neighbors(self): """ Returns a list of coordinates of neighbors adjacent to the current coordinates. Neighbors: | 0 | 1 | 2 | | 3 | _ | 4 | | 5 | 6 | 7 | """ step_size = self.step_size return [ SearchProblem(x, y, step_size, self.function) for x, y in ( (self.x - step_size, self.y - step_size), (self.x - step_size, self.y), (self.x - step_size, self.y + step_size), (self.x, self.y - step_size), (self.x, self.y + step_size), (self.x + step_size, self.y - step_size), (self.x + step_size, self.y), (self.x + step_size, self.y + step_size), ) ] def __hash__(self): """ hash the string representation of the current search state. """ return hash(str(self)) def __eq__(self, obj): """ Check if the 2 objects are equal. """ if isinstance(obj, SearchProblem): return hash(str(self)) == hash(str(obj)) return False def __str__(self): """ string representation of the current search state. >>> str(SearchProblem(0, 0, 1, None)) 'x: 0 y: 0' >>> str(SearchProblem(2, 5, 1, None)) 'x: 2 y: 5' """ return f"x: {self.x} y: {self.y}" def hill_climbing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, max_iter: int = 10000, ) -> SearchProblem: """ Implementation of the hill climbling algorithm. We start with a given state, find all its neighbors, move towards the neighbor which provides the maximum (or minimum) change. We keep doing this until we are at a state where we do not have any neighbors which can improve the solution. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the maximum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. max_iter: number of times to run the iteration. Returns a search state having the maximum (or minimum) score. """ current_state = search_prob scores = [] # list to store the current score at each iteration iterations = 0 solution_found = False visited = set() while not solution_found and iterations < max_iter: visited.add(current_state) iterations += 1 current_score = current_state.score() scores.append(current_score) neighbors = current_state.get_neighbors() max_change = -math.inf min_change = math.inf next_state = None # to hold the next best neighbor for neighbor in neighbors: if neighbor in visited: continue # do not want to visit the same state again if ( neighbor.x > max_x or neighbor.x < min_x or neighbor.y > max_y or neighbor.y < min_y ): continue # neighbor outside our bounds change = neighbor.score() - current_score if find_max: # finding max # going to direction with greatest ascent if change > max_change and change > 0: max_change = change next_state = neighbor else: # finding min # to direction with greatest descent if change < min_change and change < 0: min_change = change next_state = neighbor if next_state is not None: # we found at least one neighbor which improved the current state current_state = next_state else: # since we have no neighbor that improves the solution we stop the search solution_found = True if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return current_state if __name__ == "__main__": import doctest doctest.testmod() def test_f1(x, y): return (x**2) + (y**2) # starting the problem with initial coordinates (3, 4) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=False) print( "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x**2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=True) print( "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" )
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from typing import Any class Node: def __init__(self, data: Any): """ Create and initialize Node class instance. >>> Node(20) Node(20) >>> Node("Hello, world!") Node(Hello, world!) >>> Node(None) Node(None) >>> Node(True) Node(True) """ self.data = data self.next = None def __repr__(self) -> str: """ Get the string representation of this node. >>> Node(10).__repr__() 'Node(10)' """ return f"Node({self.data})" class LinkedList: def __init__(self): """ Create and initialize LinkedList class instance. >>> linked_list = LinkedList() """ self.head = None def __iter__(self) -> Any: """ This function is intended for iterators to access and iterate through data inside linked list. >>> linked_list = LinkedList() >>> linked_list.insert_tail("tail") >>> linked_list.insert_tail("tail_1") >>> linked_list.insert_tail("tail_2") >>> for node in linked_list: # __iter__ used here. ... node 'tail' 'tail_1' 'tail_2' """ node = self.head while node: yield node.data node = node.next def __len__(self) -> int: """ Return length of linked list i.e. number of nodes >>> linked_list = LinkedList() >>> len(linked_list) 0 >>> linked_list.insert_tail("tail") >>> len(linked_list) 1 >>> linked_list.insert_head("head") >>> len(linked_list) 2 >>> _ = linked_list.delete_tail() >>> len(linked_list) 1 >>> _ = linked_list.delete_head() >>> len(linked_list) 0 """ return len(tuple(iter(self))) def __repr__(self) -> str: """ String representation/visualization of a Linked Lists >>> linked_list = LinkedList() >>> linked_list.insert_tail(1) >>> linked_list.insert_tail(3) >>> linked_list.__repr__() '1->3' """ return "->".join([str(item) for item in self]) def __getitem__(self, index: int) -> Any: """ Indexing Support. Used to get a node at particular position >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> all(str(linked_list[i]) == str(i) for i in range(0, 10)) True >>> linked_list[-10] Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") for i, node in enumerate(self): if i == index: return node # Used to change the data of a particular node def __setitem__(self, index: int, data: Any) -> None: """ >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> linked_list[0] = 666 >>> linked_list[0] 666 >>> linked_list[5] = -666 >>> linked_list[5] -666 >>> linked_list[-10] = 666 Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] = 666 Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") current = self.head for _ in range(index): current = current.next current.data = data def insert_tail(self, data: Any) -> None: """ Insert data to the end of linked list. >>> linked_list = LinkedList() >>> linked_list.insert_tail("tail") >>> linked_list tail >>> linked_list.insert_tail("tail_2") >>> linked_list tail->tail_2 >>> linked_list.insert_tail("tail_3") >>> linked_list tail->tail_2->tail_3 """ self.insert_nth(len(self), data) def insert_head(self, data: Any) -> None: """ Insert data to the beginning of linked list. >>> linked_list = LinkedList() >>> linked_list.insert_head("head") >>> linked_list head >>> linked_list.insert_head("head_2") >>> linked_list head_2->head >>> linked_list.insert_head("head_3") >>> linked_list head_3->head_2->head """ self.insert_nth(0, data) def insert_nth(self, index: int, data: Any) -> None: """ Insert data at given index. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.insert_nth(1, "fourth") >>> linked_list first->fourth->second->third >>> linked_list.insert_nth(3, "fifth") >>> linked_list first->fourth->second->fifth->third """ if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = new_node elif index == 0: new_node.next = self.head # link new_node to head self.head = new_node else: temp = self.head for _ in range(index - 1): temp = temp.next new_node.next = temp.next temp.next = new_node def print_list(self) -> None: # print every node data """ This method prints every node data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third """ print(self) def delete_head(self) -> Any: """ Delete the first node and return the node's data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.delete_head() 'first' >>> linked_list second->third >>> linked_list.delete_head() 'second' >>> linked_list third >>> linked_list.delete_head() 'third' >>> linked_list.delete_head() Traceback (most recent call last): ... IndexError: List index out of range. """ return self.delete_nth(0) def delete_tail(self) -> Any: # delete from tail """ Delete the tail end node and return the node's data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.delete_tail() 'third' >>> linked_list first->second >>> linked_list.delete_tail() 'second' >>> linked_list first >>> linked_list.delete_tail() 'first' >>> linked_list.delete_tail() Traceback (most recent call last): ... IndexError: List index out of range. """ return self.delete_nth(len(self) - 1) def delete_nth(self, index: int = 0) -> Any: """ Delete node at given index and return the node's data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.delete_nth(1) # delete middle 'second' >>> linked_list first->third >>> linked_list.delete_nth(5) # this raises error Traceback (most recent call last): ... IndexError: List index out of range. >>> linked_list.delete_nth(-1) # this also raises error Traceback (most recent call last): ... IndexError: List index out of range. """ if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError("List index out of range.") delete_node = self.head # default first node if index == 0: self.head = self.head.next else: temp = self.head for _ in range(index - 1): temp = temp.next delete_node = temp.next temp.next = temp.next.next return delete_node.data def is_empty(self) -> bool: """ Check if linked list is empty. >>> linked_list = LinkedList() >>> linked_list.is_empty() True >>> linked_list.insert_head("first") >>> linked_list.is_empty() False """ return self.head is None def reverse(self) -> None: """ This reverses the linked list order. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.reverse() >>> linked_list third->second->first """ prev = None current = self.head while current: # Store the current node's next node. next_node = current.next # Make the current node's next point backwards current.next = prev # Make the previous node be the current node prev = current # Make the current node the next node (to progress iteration) current = next_node # Return prev in order to put the head at the end self.head = prev def test_singly_linked_list() -> None: """ >>> test_singly_linked_list() """ linked_list = LinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() raise AssertionError() # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError() # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_head(0) linked_list.insert_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) assert all(linked_list[i] == i + 1 for i in range(0, 9)) is True for i in range(0, 9): linked_list[i] = -i assert all(linked_list[i] == -i for i in range(0, 9)) is True linked_list.reverse() assert str(linked_list) == "->".join(str(i) for i in range(-8, 1)) def test_singly_linked_list_2() -> None: """ This section of the test used varying data types for input. >>> test_singly_linked_list_2() """ test_input = [ -9, 100, Node(77345112), "dlrow olleH", 7, 5555, 0, -192.55555, "Hello, world!", 77.9, Node(10), None, None, 12.20, ] linked_list = LinkedList() for i in test_input: linked_list.insert_tail(i) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(linked_list) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head result = linked_list.delete_head() assert result == -9 assert ( str(linked_list) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail result = linked_list.delete_tail() assert result == 12.2 assert ( str(linked_list) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list result = linked_list.delete_nth(10) assert result is None assert ( str(linked_list) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!")) assert ( str(linked_list) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(None) assert ( str(linked_list) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(linked_list) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def main(): from doctest import testmod testmod() linked_list = LinkedList() linked_list.insert_head(input("Inserting 1st at head ").strip()) linked_list.insert_head(input("Inserting 2nd at head ").strip()) print("\nPrint list:") linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail ").strip()) linked_list.insert_tail(input("Inserting 2nd at tail ").strip()) print("\nPrint list:") linked_list.print_list() print("\nDelete head") linked_list.delete_head() print("Delete tail") linked_list.delete_tail() print("\nPrint list:") linked_list.print_list() print("\nReverse linked list") linked_list.reverse() print("\nPrint list:") linked_list.print_list() print("\nString representation of linked list:") print(linked_list) print("\nReading/changing Node data using indexing:") print(f"Element at Position 1: {linked_list[1]}") linked_list[1] = input("Enter New Value: ").strip() print("New list:") print(linked_list) print(f"length of linked_list is : {len(linked_list)}") if __name__ == "__main__": main()
from typing import Any class Node: def __init__(self, data: Any): """ Create and initialize Node class instance. >>> Node(20) Node(20) >>> Node("Hello, world!") Node(Hello, world!) >>> Node(None) Node(None) >>> Node(True) Node(True) """ self.data = data self.next = None def __repr__(self) -> str: """ Get the string representation of this node. >>> Node(10).__repr__() 'Node(10)' """ return f"Node({self.data})" class LinkedList: def __init__(self): """ Create and initialize LinkedList class instance. >>> linked_list = LinkedList() """ self.head = None def __iter__(self) -> Any: """ This function is intended for iterators to access and iterate through data inside linked list. >>> linked_list = LinkedList() >>> linked_list.insert_tail("tail") >>> linked_list.insert_tail("tail_1") >>> linked_list.insert_tail("tail_2") >>> for node in linked_list: # __iter__ used here. ... node 'tail' 'tail_1' 'tail_2' """ node = self.head while node: yield node.data node = node.next def __len__(self) -> int: """ Return length of linked list i.e. number of nodes >>> linked_list = LinkedList() >>> len(linked_list) 0 >>> linked_list.insert_tail("tail") >>> len(linked_list) 1 >>> linked_list.insert_head("head") >>> len(linked_list) 2 >>> _ = linked_list.delete_tail() >>> len(linked_list) 1 >>> _ = linked_list.delete_head() >>> len(linked_list) 0 """ return len(tuple(iter(self))) def __repr__(self) -> str: """ String representation/visualization of a Linked Lists >>> linked_list = LinkedList() >>> linked_list.insert_tail(1) >>> linked_list.insert_tail(3) >>> linked_list.__repr__() '1->3' """ return "->".join([str(item) for item in self]) def __getitem__(self, index: int) -> Any: """ Indexing Support. Used to get a node at particular position >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> all(str(linked_list[i]) == str(i) for i in range(0, 10)) True >>> linked_list[-10] Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") for i, node in enumerate(self): if i == index: return node # Used to change the data of a particular node def __setitem__(self, index: int, data: Any) -> None: """ >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> linked_list[0] = 666 >>> linked_list[0] 666 >>> linked_list[5] = -666 >>> linked_list[5] -666 >>> linked_list[-10] = 666 Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] = 666 Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") current = self.head for _ in range(index): current = current.next current.data = data def insert_tail(self, data: Any) -> None: """ Insert data to the end of linked list. >>> linked_list = LinkedList() >>> linked_list.insert_tail("tail") >>> linked_list tail >>> linked_list.insert_tail("tail_2") >>> linked_list tail->tail_2 >>> linked_list.insert_tail("tail_3") >>> linked_list tail->tail_2->tail_3 """ self.insert_nth(len(self), data) def insert_head(self, data: Any) -> None: """ Insert data to the beginning of linked list. >>> linked_list = LinkedList() >>> linked_list.insert_head("head") >>> linked_list head >>> linked_list.insert_head("head_2") >>> linked_list head_2->head >>> linked_list.insert_head("head_3") >>> linked_list head_3->head_2->head """ self.insert_nth(0, data) def insert_nth(self, index: int, data: Any) -> None: """ Insert data at given index. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.insert_nth(1, "fourth") >>> linked_list first->fourth->second->third >>> linked_list.insert_nth(3, "fifth") >>> linked_list first->fourth->second->fifth->third """ if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = new_node elif index == 0: new_node.next = self.head # link new_node to head self.head = new_node else: temp = self.head for _ in range(index - 1): temp = temp.next new_node.next = temp.next temp.next = new_node def print_list(self) -> None: # print every node data """ This method prints every node data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third """ print(self) def delete_head(self) -> Any: """ Delete the first node and return the node's data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.delete_head() 'first' >>> linked_list second->third >>> linked_list.delete_head() 'second' >>> linked_list third >>> linked_list.delete_head() 'third' >>> linked_list.delete_head() Traceback (most recent call last): ... IndexError: List index out of range. """ return self.delete_nth(0) def delete_tail(self) -> Any: # delete from tail """ Delete the tail end node and return the node's data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.delete_tail() 'third' >>> linked_list first->second >>> linked_list.delete_tail() 'second' >>> linked_list first >>> linked_list.delete_tail() 'first' >>> linked_list.delete_tail() Traceback (most recent call last): ... IndexError: List index out of range. """ return self.delete_nth(len(self) - 1) def delete_nth(self, index: int = 0) -> Any: """ Delete node at given index and return the node's data. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.delete_nth(1) # delete middle 'second' >>> linked_list first->third >>> linked_list.delete_nth(5) # this raises error Traceback (most recent call last): ... IndexError: List index out of range. >>> linked_list.delete_nth(-1) # this also raises error Traceback (most recent call last): ... IndexError: List index out of range. """ if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError("List index out of range.") delete_node = self.head # default first node if index == 0: self.head = self.head.next else: temp = self.head for _ in range(index - 1): temp = temp.next delete_node = temp.next temp.next = temp.next.next return delete_node.data def is_empty(self) -> bool: """ Check if linked list is empty. >>> linked_list = LinkedList() >>> linked_list.is_empty() True >>> linked_list.insert_head("first") >>> linked_list.is_empty() False """ return self.head is None def reverse(self) -> None: """ This reverses the linked list order. >>> linked_list = LinkedList() >>> linked_list.insert_tail("first") >>> linked_list.insert_tail("second") >>> linked_list.insert_tail("third") >>> linked_list first->second->third >>> linked_list.reverse() >>> linked_list third->second->first """ prev = None current = self.head while current: # Store the current node's next node. next_node = current.next # Make the current node's next point backwards current.next = prev # Make the previous node be the current node prev = current # Make the current node the next node (to progress iteration) current = next_node # Return prev in order to put the head at the end self.head = prev def test_singly_linked_list() -> None: """ >>> test_singly_linked_list() """ linked_list = LinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() raise AssertionError() # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError() # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_head(0) linked_list.insert_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) assert all(linked_list[i] == i + 1 for i in range(0, 9)) is True for i in range(0, 9): linked_list[i] = -i assert all(linked_list[i] == -i for i in range(0, 9)) is True linked_list.reverse() assert str(linked_list) == "->".join(str(i) for i in range(-8, 1)) def test_singly_linked_list_2() -> None: """ This section of the test used varying data types for input. >>> test_singly_linked_list_2() """ test_input = [ -9, 100, Node(77345112), "dlrow olleH", 7, 5555, 0, -192.55555, "Hello, world!", 77.9, Node(10), None, None, 12.20, ] linked_list = LinkedList() for i in test_input: linked_list.insert_tail(i) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(linked_list) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head result = linked_list.delete_head() assert result == -9 assert ( str(linked_list) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail result = linked_list.delete_tail() assert result == 12.2 assert ( str(linked_list) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list result = linked_list.delete_nth(10) assert result is None assert ( str(linked_list) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!")) assert ( str(linked_list) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(None) assert ( str(linked_list) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(linked_list) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def main(): from doctest import testmod testmod() linked_list = LinkedList() linked_list.insert_head(input("Inserting 1st at head ").strip()) linked_list.insert_head(input("Inserting 2nd at head ").strip()) print("\nPrint list:") linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail ").strip()) linked_list.insert_tail(input("Inserting 2nd at tail ").strip()) print("\nPrint list:") linked_list.print_list() print("\nDelete head") linked_list.delete_head() print("Delete tail") linked_list.delete_tail() print("\nPrint list:") linked_list.print_list() print("\nReverse linked list") linked_list.reverse() print("\nPrint list:") linked_list.print_list() print("\nString representation of linked list:") print(linked_list) print("\nReading/changing Node data using indexing:") print(f"Element at Position 1: {linked_list[1]}") linked_list[1] = input("Enter New Value: ").strip() print("New list:") print(linked_list) print(f"length of linked_list is : {len(linked_list)}") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Implementation of double ended queue. """ from __future__ import annotations from collections.abc import Iterable from dataclasses import dataclass from typing import Any class Deque: """ Deque data structure. Operations ---------- append(val: Any) -> None appendleft(val: Any) -> None extend(iterable: Iterable) -> None extendleft(iterable: Iterable) -> None pop() -> Any popleft() -> Any Observers --------- is_empty() -> bool Attributes ---------- _front: _Node front of the deque a.k.a. the first element _back: _Node back of the element a.k.a. the last element _len: int the number of nodes """ __slots__ = ["_front", "_back", "_len"] @dataclass class _Node: """ Representation of a node. Contains a value and a pointer to the next node as well as to the previous one. """ val: Any = None next: Deque._Node | None = None prev: Deque._Node | None = None class _Iterator: """ Helper class for iteration. Will be used to implement iteration. Attributes ---------- _cur: _Node the current node of the iteration. """ __slots__ = ["_cur"] def __init__(self, cur: Deque._Node | None) -> None: self._cur = cur def __iter__(self) -> Deque._Iterator: """ >>> our_deque = Deque([1, 2, 3]) >>> iterator = iter(our_deque) """ return self def __next__(self) -> Any: """ >>> our_deque = Deque([1, 2, 3]) >>> iterator = iter(our_deque) >>> next(iterator) 1 >>> next(iterator) 2 >>> next(iterator) 3 """ if self._cur is None: # finished iterating raise StopIteration val = self._cur.val self._cur = self._cur.next return val def __init__(self, iterable: Iterable[Any] | None = None) -> None: self._front: Any = None self._back: Any = None self._len: int = 0 if iterable is not None: # append every value to the deque for val in iterable: self.append(val) def append(self, val: Any) -> None: """ Adds val to the end of the deque. Time complexity: O(1) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_1.append(4) >>> our_deque_1 [1, 2, 3, 4] >>> our_deque_2 = Deque('ab') >>> our_deque_2.append('c') >>> our_deque_2 ['a', 'b', 'c'] >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_1.append(4) >>> deque_collections_1 deque([1, 2, 3, 4]) >>> deque_collections_2 = deque('ab') >>> deque_collections_2.append('c') >>> deque_collections_2 deque(['a', 'b', 'c']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ node = self._Node(val, None, None) if self.is_empty(): # front = back self._front = self._back = node self._len = 1 else: # connect nodes self._back.next = node node.prev = self._back self._back = node # assign new back to the new node self._len += 1 # make sure there were no errors assert not self.is_empty(), "Error on appending value." def appendleft(self, val: Any) -> None: """ Adds val to the beginning of the deque. Time complexity: O(1) >>> our_deque_1 = Deque([2, 3]) >>> our_deque_1.appendleft(1) >>> our_deque_1 [1, 2, 3] >>> our_deque_2 = Deque('bc') >>> our_deque_2.appendleft('a') >>> our_deque_2 ['a', 'b', 'c'] >>> from collections import deque >>> deque_collections_1 = deque([2, 3]) >>> deque_collections_1.appendleft(1) >>> deque_collections_1 deque([1, 2, 3]) >>> deque_collections_2 = deque('bc') >>> deque_collections_2.appendleft('a') >>> deque_collections_2 deque(['a', 'b', 'c']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ node = self._Node(val, None, None) if self.is_empty(): # front = back self._front = self._back = node self._len = 1 else: # connect nodes node.next = self._front self._front.prev = node self._front = node # assign new front to the new node self._len += 1 # make sure there were no errors assert not self.is_empty(), "Error on appending value." def extend(self, iterable: Iterable[Any]) -> None: """ Appends every value of iterable to the end of the deque. Time complexity: O(n) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_1.extend([4, 5]) >>> our_deque_1 [1, 2, 3, 4, 5] >>> our_deque_2 = Deque('ab') >>> our_deque_2.extend('cd') >>> our_deque_2 ['a', 'b', 'c', 'd'] >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_1.extend([4, 5]) >>> deque_collections_1 deque([1, 2, 3, 4, 5]) >>> deque_collections_2 = deque('ab') >>> deque_collections_2.extend('cd') >>> deque_collections_2 deque(['a', 'b', 'c', 'd']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ for val in iterable: self.append(val) def extendleft(self, iterable: Iterable[Any]) -> None: """ Appends every value of iterable to the beginning of the deque. Time complexity: O(n) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_1.extendleft([0, -1]) >>> our_deque_1 [-1, 0, 1, 2, 3] >>> our_deque_2 = Deque('cd') >>> our_deque_2.extendleft('ba') >>> our_deque_2 ['a', 'b', 'c', 'd'] >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_1.extendleft([0, -1]) >>> deque_collections_1 deque([-1, 0, 1, 2, 3]) >>> deque_collections_2 = deque('cd') >>> deque_collections_2.extendleft('ba') >>> deque_collections_2 deque(['a', 'b', 'c', 'd']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ for val in iterable: self.appendleft(val) def pop(self) -> Any: """ Removes the last element of the deque and returns it. Time complexity: O(1) @returns topop.val: the value of the node to pop. >>> our_deque = Deque([1, 2, 3, 15182]) >>> our_popped = our_deque.pop() >>> our_popped 15182 >>> our_deque [1, 2, 3] >>> from collections import deque >>> deque_collections = deque([1, 2, 3, 15182]) >>> collections_popped = deque_collections.pop() >>> collections_popped 15182 >>> deque_collections deque([1, 2, 3]) >>> list(our_deque) == list(deque_collections) True >>> our_popped == collections_popped True """ # make sure the deque has elements to pop assert not self.is_empty(), "Deque is empty." topop = self._back self._back = self._back.prev # set new back self._back.next = ( None # drop the last node - python will deallocate memory automatically ) self._len -= 1 return topop.val def popleft(self) -> Any: """ Removes the first element of the deque and returns it. Time complexity: O(1) @returns topop.val: the value of the node to pop. >>> our_deque = Deque([15182, 1, 2, 3]) >>> our_popped = our_deque.popleft() >>> our_popped 15182 >>> our_deque [1, 2, 3] >>> from collections import deque >>> deque_collections = deque([15182, 1, 2, 3]) >>> collections_popped = deque_collections.popleft() >>> collections_popped 15182 >>> deque_collections deque([1, 2, 3]) >>> list(our_deque) == list(deque_collections) True >>> our_popped == collections_popped True """ # make sure the deque has elements to pop assert not self.is_empty(), "Deque is empty." topop = self._front self._front = self._front.next # set new front and drop the first node self._front.prev = None self._len -= 1 return topop.val def is_empty(self) -> bool: """ Checks if the deque is empty. Time complexity: O(1) >>> our_deque = Deque([1, 2, 3]) >>> our_deque.is_empty() False >>> our_empty_deque = Deque() >>> our_empty_deque.is_empty() True >>> from collections import deque >>> empty_deque_collections = deque() >>> list(our_empty_deque) == list(empty_deque_collections) True """ return self._front is None def __len__(self) -> int: """ Implements len() function. Returns the length of the deque. Time complexity: O(1) >>> our_deque = Deque([1, 2, 3]) >>> len(our_deque) 3 >>> our_empty_deque = Deque() >>> len(our_empty_deque) 0 >>> from collections import deque >>> deque_collections = deque([1, 2, 3]) >>> len(deque_collections) 3 >>> empty_deque_collections = deque() >>> len(empty_deque_collections) 0 >>> len(our_empty_deque) == len(empty_deque_collections) True """ return self._len def __eq__(self, other: object) -> bool: """ Implements "==" operator. Returns if *self* is equal to *other*. Time complexity: O(n) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_2 = Deque([1, 2, 3]) >>> our_deque_1 == our_deque_2 True >>> our_deque_3 = Deque([1, 2]) >>> our_deque_1 == our_deque_3 False >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_2 = deque([1, 2, 3]) >>> deque_collections_1 == deque_collections_2 True >>> deque_collections_3 = deque([1, 2]) >>> deque_collections_1 == deque_collections_3 False >>> (our_deque_1 == our_deque_2) == (deque_collections_1 == deque_collections_2) True >>> (our_deque_1 == our_deque_3) == (deque_collections_1 == deque_collections_3) True """ if not isinstance(other, Deque): return NotImplemented me = self._front oth = other._front # if the length of the dequeues are not the same, they are not equal if len(self) != len(other): return False while me is not None and oth is not None: # compare every value if me.val != oth.val: return False me = me.next oth = oth.next return True def __iter__(self) -> Deque._Iterator: """ Implements iteration. Time complexity: O(1) >>> our_deque = Deque([1, 2, 3]) >>> for v in our_deque: ... print(v) 1 2 3 >>> from collections import deque >>> deque_collections = deque([1, 2, 3]) >>> for v in deque_collections: ... print(v) 1 2 3 """ return Deque._Iterator(self._front) def __repr__(self) -> str: """ Implements representation of the deque. Represents it as a list, with its values between '[' and ']'. Time complexity: O(n) >>> our_deque = Deque([1, 2, 3]) >>> our_deque [1, 2, 3] """ values_list = [] aux = self._front while aux is not None: # append the values in a list to display values_list.append(aux.val) aux = aux.next return "[" + ", ".join(repr(val) for val in values_list) + "]" if __name__ == "__main__": import doctest doctest.testmod()
""" Implementation of double ended queue. """ from __future__ import annotations from collections.abc import Iterable from dataclasses import dataclass from typing import Any class Deque: """ Deque data structure. Operations ---------- append(val: Any) -> None appendleft(val: Any) -> None extend(iterable: Iterable) -> None extendleft(iterable: Iterable) -> None pop() -> Any popleft() -> Any Observers --------- is_empty() -> bool Attributes ---------- _front: _Node front of the deque a.k.a. the first element _back: _Node back of the element a.k.a. the last element _len: int the number of nodes """ __slots__ = ["_front", "_back", "_len"] @dataclass class _Node: """ Representation of a node. Contains a value and a pointer to the next node as well as to the previous one. """ val: Any = None next: Deque._Node | None = None prev: Deque._Node | None = None class _Iterator: """ Helper class for iteration. Will be used to implement iteration. Attributes ---------- _cur: _Node the current node of the iteration. """ __slots__ = ["_cur"] def __init__(self, cur: Deque._Node | None) -> None: self._cur = cur def __iter__(self) -> Deque._Iterator: """ >>> our_deque = Deque([1, 2, 3]) >>> iterator = iter(our_deque) """ return self def __next__(self) -> Any: """ >>> our_deque = Deque([1, 2, 3]) >>> iterator = iter(our_deque) >>> next(iterator) 1 >>> next(iterator) 2 >>> next(iterator) 3 """ if self._cur is None: # finished iterating raise StopIteration val = self._cur.val self._cur = self._cur.next return val def __init__(self, iterable: Iterable[Any] | None = None) -> None: self._front: Any = None self._back: Any = None self._len: int = 0 if iterable is not None: # append every value to the deque for val in iterable: self.append(val) def append(self, val: Any) -> None: """ Adds val to the end of the deque. Time complexity: O(1) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_1.append(4) >>> our_deque_1 [1, 2, 3, 4] >>> our_deque_2 = Deque('ab') >>> our_deque_2.append('c') >>> our_deque_2 ['a', 'b', 'c'] >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_1.append(4) >>> deque_collections_1 deque([1, 2, 3, 4]) >>> deque_collections_2 = deque('ab') >>> deque_collections_2.append('c') >>> deque_collections_2 deque(['a', 'b', 'c']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ node = self._Node(val, None, None) if self.is_empty(): # front = back self._front = self._back = node self._len = 1 else: # connect nodes self._back.next = node node.prev = self._back self._back = node # assign new back to the new node self._len += 1 # make sure there were no errors assert not self.is_empty(), "Error on appending value." def appendleft(self, val: Any) -> None: """ Adds val to the beginning of the deque. Time complexity: O(1) >>> our_deque_1 = Deque([2, 3]) >>> our_deque_1.appendleft(1) >>> our_deque_1 [1, 2, 3] >>> our_deque_2 = Deque('bc') >>> our_deque_2.appendleft('a') >>> our_deque_2 ['a', 'b', 'c'] >>> from collections import deque >>> deque_collections_1 = deque([2, 3]) >>> deque_collections_1.appendleft(1) >>> deque_collections_1 deque([1, 2, 3]) >>> deque_collections_2 = deque('bc') >>> deque_collections_2.appendleft('a') >>> deque_collections_2 deque(['a', 'b', 'c']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ node = self._Node(val, None, None) if self.is_empty(): # front = back self._front = self._back = node self._len = 1 else: # connect nodes node.next = self._front self._front.prev = node self._front = node # assign new front to the new node self._len += 1 # make sure there were no errors assert not self.is_empty(), "Error on appending value." def extend(self, iterable: Iterable[Any]) -> None: """ Appends every value of iterable to the end of the deque. Time complexity: O(n) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_1.extend([4, 5]) >>> our_deque_1 [1, 2, 3, 4, 5] >>> our_deque_2 = Deque('ab') >>> our_deque_2.extend('cd') >>> our_deque_2 ['a', 'b', 'c', 'd'] >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_1.extend([4, 5]) >>> deque_collections_1 deque([1, 2, 3, 4, 5]) >>> deque_collections_2 = deque('ab') >>> deque_collections_2.extend('cd') >>> deque_collections_2 deque(['a', 'b', 'c', 'd']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ for val in iterable: self.append(val) def extendleft(self, iterable: Iterable[Any]) -> None: """ Appends every value of iterable to the beginning of the deque. Time complexity: O(n) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_1.extendleft([0, -1]) >>> our_deque_1 [-1, 0, 1, 2, 3] >>> our_deque_2 = Deque('cd') >>> our_deque_2.extendleft('ba') >>> our_deque_2 ['a', 'b', 'c', 'd'] >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_1.extendleft([0, -1]) >>> deque_collections_1 deque([-1, 0, 1, 2, 3]) >>> deque_collections_2 = deque('cd') >>> deque_collections_2.extendleft('ba') >>> deque_collections_2 deque(['a', 'b', 'c', 'd']) >>> list(our_deque_1) == list(deque_collections_1) True >>> list(our_deque_2) == list(deque_collections_2) True """ for val in iterable: self.appendleft(val) def pop(self) -> Any: """ Removes the last element of the deque and returns it. Time complexity: O(1) @returns topop.val: the value of the node to pop. >>> our_deque = Deque([1, 2, 3, 15182]) >>> our_popped = our_deque.pop() >>> our_popped 15182 >>> our_deque [1, 2, 3] >>> from collections import deque >>> deque_collections = deque([1, 2, 3, 15182]) >>> collections_popped = deque_collections.pop() >>> collections_popped 15182 >>> deque_collections deque([1, 2, 3]) >>> list(our_deque) == list(deque_collections) True >>> our_popped == collections_popped True """ # make sure the deque has elements to pop assert not self.is_empty(), "Deque is empty." topop = self._back self._back = self._back.prev # set new back self._back.next = ( None # drop the last node - python will deallocate memory automatically ) self._len -= 1 return topop.val def popleft(self) -> Any: """ Removes the first element of the deque and returns it. Time complexity: O(1) @returns topop.val: the value of the node to pop. >>> our_deque = Deque([15182, 1, 2, 3]) >>> our_popped = our_deque.popleft() >>> our_popped 15182 >>> our_deque [1, 2, 3] >>> from collections import deque >>> deque_collections = deque([15182, 1, 2, 3]) >>> collections_popped = deque_collections.popleft() >>> collections_popped 15182 >>> deque_collections deque([1, 2, 3]) >>> list(our_deque) == list(deque_collections) True >>> our_popped == collections_popped True """ # make sure the deque has elements to pop assert not self.is_empty(), "Deque is empty." topop = self._front self._front = self._front.next # set new front and drop the first node self._front.prev = None self._len -= 1 return topop.val def is_empty(self) -> bool: """ Checks if the deque is empty. Time complexity: O(1) >>> our_deque = Deque([1, 2, 3]) >>> our_deque.is_empty() False >>> our_empty_deque = Deque() >>> our_empty_deque.is_empty() True >>> from collections import deque >>> empty_deque_collections = deque() >>> list(our_empty_deque) == list(empty_deque_collections) True """ return self._front is None def __len__(self) -> int: """ Implements len() function. Returns the length of the deque. Time complexity: O(1) >>> our_deque = Deque([1, 2, 3]) >>> len(our_deque) 3 >>> our_empty_deque = Deque() >>> len(our_empty_deque) 0 >>> from collections import deque >>> deque_collections = deque([1, 2, 3]) >>> len(deque_collections) 3 >>> empty_deque_collections = deque() >>> len(empty_deque_collections) 0 >>> len(our_empty_deque) == len(empty_deque_collections) True """ return self._len def __eq__(self, other: object) -> bool: """ Implements "==" operator. Returns if *self* is equal to *other*. Time complexity: O(n) >>> our_deque_1 = Deque([1, 2, 3]) >>> our_deque_2 = Deque([1, 2, 3]) >>> our_deque_1 == our_deque_2 True >>> our_deque_3 = Deque([1, 2]) >>> our_deque_1 == our_deque_3 False >>> from collections import deque >>> deque_collections_1 = deque([1, 2, 3]) >>> deque_collections_2 = deque([1, 2, 3]) >>> deque_collections_1 == deque_collections_2 True >>> deque_collections_3 = deque([1, 2]) >>> deque_collections_1 == deque_collections_3 False >>> (our_deque_1 == our_deque_2) == (deque_collections_1 == deque_collections_2) True >>> (our_deque_1 == our_deque_3) == (deque_collections_1 == deque_collections_3) True """ if not isinstance(other, Deque): return NotImplemented me = self._front oth = other._front # if the length of the dequeues are not the same, they are not equal if len(self) != len(other): return False while me is not None and oth is not None: # compare every value if me.val != oth.val: return False me = me.next oth = oth.next return True def __iter__(self) -> Deque._Iterator: """ Implements iteration. Time complexity: O(1) >>> our_deque = Deque([1, 2, 3]) >>> for v in our_deque: ... print(v) 1 2 3 >>> from collections import deque >>> deque_collections = deque([1, 2, 3]) >>> for v in deque_collections: ... print(v) 1 2 3 """ return Deque._Iterator(self._front) def __repr__(self) -> str: """ Implements representation of the deque. Represents it as a list, with its values between '[' and ']'. Time complexity: O(n) >>> our_deque = Deque([1, 2, 3]) >>> our_deque [1, 2, 3] """ values_list = [] aux = self._front while aux is not None: # append the values in a list to display values_list.append(aux.val) aux = aux.next return "[" + ", ".join(repr(val) for val in values_list) + "]" if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Pure Python implementation of a binary search algorithm. For doctests run following command: python3 -m doctest -v simple_binary_search.py For manual testing run: python3 simple_binary_search.py """ from __future__ import annotations def binary_search(a_list: list[int], item: int) -> bool: """ >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] >>> print(binary_search(test_list, 3)) False >>> print(binary_search(test_list, 13)) True >>> print(binary_search([4, 4, 5, 6, 7], 4)) True >>> print(binary_search([4, 4, 5, 6, 7], -10)) False >>> print(binary_search([-18, 2], -18)) True >>> print(binary_search([5], 5)) True >>> print(binary_search(['a', 'c', 'd'], 'c')) True >>> print(binary_search(['a', 'c', 'd'], 'f')) False >>> print(binary_search([], 1)) False >>> print(binary_search([-.1, .1 , .8], .1)) True >>> binary_search(range(-5000, 5000, 10), 80) True >>> binary_search(range(-5000, 5000, 10), 1255) False >>> binary_search(range(0, 10000, 5), 2) False """ if len(a_list) == 0: return False midpoint = len(a_list) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint], item) else: return binary_search(a_list[midpoint + 1 :], item) if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() sequence = [int(item.strip()) for item in user_input.split(",")] target = int(input("Enter the number to be found in the list:\n").strip()) not_str = "" if binary_search(sequence, target) else "not " print(f"{target} was {not_str}found in {sequence}")
""" Pure Python implementation of a binary search algorithm. For doctests run following command: python3 -m doctest -v simple_binary_search.py For manual testing run: python3 simple_binary_search.py """ from __future__ import annotations def binary_search(a_list: list[int], item: int) -> bool: """ >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] >>> print(binary_search(test_list, 3)) False >>> print(binary_search(test_list, 13)) True >>> print(binary_search([4, 4, 5, 6, 7], 4)) True >>> print(binary_search([4, 4, 5, 6, 7], -10)) False >>> print(binary_search([-18, 2], -18)) True >>> print(binary_search([5], 5)) True >>> print(binary_search(['a', 'c', 'd'], 'c')) True >>> print(binary_search(['a', 'c', 'd'], 'f')) False >>> print(binary_search([], 1)) False >>> print(binary_search([-.1, .1 , .8], .1)) True >>> binary_search(range(-5000, 5000, 10), 80) True >>> binary_search(range(-5000, 5000, 10), 1255) False >>> binary_search(range(0, 10000, 5), 2) False """ if len(a_list) == 0: return False midpoint = len(a_list) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint], item) else: return binary_search(a_list[midpoint + 1 :], item) if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() sequence = [int(item.strip()) for item in user_input.split(",")] target = int(input("Enter the number to be found in the list:\n").strip()) not_str = "" if binary_search(sequence, target) else "not " print(f"{target} was {not_str}found in {sequence}")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Scraping jobs given job title and location from indeed website """ from __future__ import annotations from collections.abc import Generator import requests from bs4 import BeautifulSoup url = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def fetch_jobs(location: str = "mumbai") -> Generator[tuple[str, str], None, None]: soup = BeautifulSoup(requests.get(url + location).content, "html.parser") # This attribute finds out all the specifics listed in a job for job in soup.find_all("div", attrs={"data-tn-component": "organicJob"}): job_title = job.find("a", attrs={"data-tn-element": "jobTitle"}).text.strip() company_name = job.find("span", {"class": "company"}).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
""" Scraping jobs given job title and location from indeed website """ from __future__ import annotations from collections.abc import Generator import requests from bs4 import BeautifulSoup url = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def fetch_jobs(location: str = "mumbai") -> Generator[tuple[str, str], None, None]: soup = BeautifulSoup(requests.get(url + location).content, "html.parser") # This attribute finds out all the specifics listed in a job for job in soup.find_all("div", attrs={"data-tn-component": "organicJob"}): job_title = job.find("a", attrs={"data-tn-element": "jobTitle"}).text.strip() company_name = job.find("span", {"class": "company"}).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Conversion of volume units. Available Units:- Cubic metre,Litre,KiloLitre,Gallon,Cubic yard,Cubic foot,cup USAGE : -> Import this file into their respective project. -> Use the function length_conversion() for conversion of volume units. -> Parameters : -> value : The number of from units you want to convert -> from_type : From which type you want to convert -> to_type : To which type you want to convert REFERENCES : -> Wikipedia reference: https://en.wikipedia.org/wiki/Cubic_metre -> Wikipedia reference: https://en.wikipedia.org/wiki/Litre -> Wikipedia reference: https://en.wiktionary.org/wiki/kilolitre -> Wikipedia reference: https://en.wikipedia.org/wiki/Gallon -> Wikipedia reference: https://en.wikipedia.org/wiki/Cubic_yard -> Wikipedia reference: https://en.wikipedia.org/wiki/Cubic_foot -> Wikipedia reference: https://en.wikipedia.org/wiki/Cup_(unit) """ from collections import namedtuple from_to = namedtuple("from_to", "from_ to") METRIC_CONVERSION = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def volume_conversion(value: float, from_type: str, to_type: str) -> float: """ Conversion between volume units. >>> volume_conversion(4, "cubicmeter", "litre") 4000 >>> volume_conversion(1, "litre", "gallon") 0.264172 >>> volume_conversion(1, "kilolitre", "cubicmeter") 1 >>> volume_conversion(3, "gallon", "cubicyard") 0.017814279 >>> volume_conversion(2, "cubicyard", "litre") 1529.1 >>> volume_conversion(4, "cubicfoot", "cup") 473.396 >>> volume_conversion(1, "cup", "kilolitre") 0.000236588 >>> volume_conversion(4, "wrongUnit", "litre") Traceback (most recent call last): ... ValueError: Invalid 'from_type' value: 'wrongUnit' Supported values are: cubicmeter, litre, kilolitre, gallon, cubicyard, cubicfoot, cup """ if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ", ".join(METRIC_CONVERSION) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ", ".join(METRIC_CONVERSION) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
""" Conversion of volume units. Available Units:- Cubic metre,Litre,KiloLitre,Gallon,Cubic yard,Cubic foot,cup USAGE : -> Import this file into their respective project. -> Use the function length_conversion() for conversion of volume units. -> Parameters : -> value : The number of from units you want to convert -> from_type : From which type you want to convert -> to_type : To which type you want to convert REFERENCES : -> Wikipedia reference: https://en.wikipedia.org/wiki/Cubic_metre -> Wikipedia reference: https://en.wikipedia.org/wiki/Litre -> Wikipedia reference: https://en.wiktionary.org/wiki/kilolitre -> Wikipedia reference: https://en.wikipedia.org/wiki/Gallon -> Wikipedia reference: https://en.wikipedia.org/wiki/Cubic_yard -> Wikipedia reference: https://en.wikipedia.org/wiki/Cubic_foot -> Wikipedia reference: https://en.wikipedia.org/wiki/Cup_(unit) """ from collections import namedtuple from_to = namedtuple("from_to", "from_ to") METRIC_CONVERSION = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def volume_conversion(value: float, from_type: str, to_type: str) -> float: """ Conversion between volume units. >>> volume_conversion(4, "cubicmeter", "litre") 4000 >>> volume_conversion(1, "litre", "gallon") 0.264172 >>> volume_conversion(1, "kilolitre", "cubicmeter") 1 >>> volume_conversion(3, "gallon", "cubicyard") 0.017814279 >>> volume_conversion(2, "cubicyard", "litre") 1529.1 >>> volume_conversion(4, "cubicfoot", "cup") 473.396 >>> volume_conversion(1, "cup", "kilolitre") 0.000236588 >>> volume_conversion(4, "wrongUnit", "litre") Traceback (most recent call last): ... ValueError: Invalid 'from_type' value: 'wrongUnit' Supported values are: cubicmeter, litre, kilolitre, gallon, cubicyard, cubicfoot, cup """ if from_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ", ".join(METRIC_CONVERSION) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ", ".join(METRIC_CONVERSION) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Implementing Newton Raphson method in Python # Author: Syed Haseeb Shah (github.com/QuantumNovice) # The Newton-Raphson method (also known as Newton's method) is a way to # quickly find a good approximation for the root of a real-valued function from __future__ import annotations from decimal import Decimal from math import * # noqa: F401, F403 from sympy import diff def newton_raphson( func: str, a: float | Decimal, precision: float = 10**-10 ) -> float: """Finds root from the point 'a' onwards by Newton-Raphson method >>> newton_raphson("sin(x)", 2) 3.1415926536808043 >>> newton_raphson("x**2 - 5*x +2", 0.4) 0.4384471871911695 >>> newton_raphson("x**2 - 5", 0.1) 2.23606797749979 >>> newton_raphson("log(x)- 1", 2) 2.718281828458938 """ x = a while True: x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func))))) # This number dictates the accuracy of the answer if abs(eval(func)) < precision: return float(x) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
# Implementing Newton Raphson method in Python # Author: Syed Haseeb Shah (github.com/QuantumNovice) # The Newton-Raphson method (also known as Newton's method) is a way to # quickly find a good approximation for the root of a real-valued function from __future__ import annotations from decimal import Decimal from math import * # noqa: F401, F403 from sympy import diff def newton_raphson( func: str, a: float | Decimal, precision: float = 10**-10 ) -> float: """Finds root from the point 'a' onwards by Newton-Raphson method >>> newton_raphson("sin(x)", 2) 3.1415926536808043 >>> newton_raphson("x**2 - 5*x +2", 0.4) 0.4384471871911695 >>> newton_raphson("x**2 - 5", 0.1) 2.23606797749979 >>> newton_raphson("log(x)- 1", 2) 2.718281828458938 """ x = a while True: x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func))))) # This number dictates the accuracy of the answer if abs(eval(func)) < precision: return float(x) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import numpy as np from PIL import Image def rgb2gray(rgb: np.array) -> np.array: """ Return gray image from rgb image >>> rgb2gray(np.array([[[127, 255, 0]]])) array([[187.6453]]) >>> rgb2gray(np.array([[[0, 0, 0]]])) array([[0.]]) >>> rgb2gray(np.array([[[2, 4, 1]]])) array([[3.0598]]) >>> rgb2gray(np.array([[[26, 255, 14], [5, 147, 20], [1, 200, 0]]])) array([[159.0524, 90.0635, 117.6989]]) """ r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def gray2binary(gray: np.array) -> np.array: """ Return binary image from gray image >>> gray2binary(np.array([[127, 255, 0]])) array([[False, True, False]]) >>> gray2binary(np.array([[0]])) array([[False]]) >>> gray2binary(np.array([[26.2409, 4.9315, 1.4729]])) array([[False, False, False]]) >>> gray2binary(np.array([[26, 255, 14], [5, 147, 20], [1, 200, 0]])) array([[False, True, False], [False, True, False], [False, True, False]]) """ return (127 < gray) & (gray <= 255) def erosion(image: np.array, kernel: np.array) -> np.array: """ Return eroded image >>> erosion(np.array([[True, True, False]]), np.array([[0, 1, 0]])) array([[False, False, False]]) >>> erosion(np.array([[True, False, False]]), np.array([[1, 1, 0]])) array([[False, False, False]]) """ output = np.zeros_like(image) image_padded = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image image_padded[kernel.shape[0] - 2 : -1 :, kernel.shape[1] - 2 : -1 :] = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): summation = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() output[y, x] = int(summation == 5) return output # kernel to be applied structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) if __name__ == "__main__": # read original image image = np.array(Image.open(r"..\image_data\lena.jpg")) # Apply erosion operation to a binary image output = erosion(gray2binary(rgb2gray(image)), structuring_element) # Save the output image pil_img = Image.fromarray(output).convert("RGB") pil_img.save("result_erosion.png")
import numpy as np from PIL import Image def rgb2gray(rgb: np.array) -> np.array: """ Return gray image from rgb image >>> rgb2gray(np.array([[[127, 255, 0]]])) array([[187.6453]]) >>> rgb2gray(np.array([[[0, 0, 0]]])) array([[0.]]) >>> rgb2gray(np.array([[[2, 4, 1]]])) array([[3.0598]]) >>> rgb2gray(np.array([[[26, 255, 14], [5, 147, 20], [1, 200, 0]]])) array([[159.0524, 90.0635, 117.6989]]) """ r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def gray2binary(gray: np.array) -> np.array: """ Return binary image from gray image >>> gray2binary(np.array([[127, 255, 0]])) array([[False, True, False]]) >>> gray2binary(np.array([[0]])) array([[False]]) >>> gray2binary(np.array([[26.2409, 4.9315, 1.4729]])) array([[False, False, False]]) >>> gray2binary(np.array([[26, 255, 14], [5, 147, 20], [1, 200, 0]])) array([[False, True, False], [False, True, False], [False, True, False]]) """ return (127 < gray) & (gray <= 255) def erosion(image: np.array, kernel: np.array) -> np.array: """ Return eroded image >>> erosion(np.array([[True, True, False]]), np.array([[0, 1, 0]])) array([[False, False, False]]) >>> erosion(np.array([[True, False, False]]), np.array([[1, 1, 0]])) array([[False, False, False]]) """ output = np.zeros_like(image) image_padded = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image image_padded[kernel.shape[0] - 2 : -1 :, kernel.shape[1] - 2 : -1 :] = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): summation = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() output[y, x] = int(summation == 5) return output # kernel to be applied structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) if __name__ == "__main__": # read original image image = np.array(Image.open(r"..\image_data\lena.jpg")) # Apply erosion operation to a binary image output = erosion(gray2binary(rgb2gray(image)), structuring_element) # Save the output image pil_img = Image.fromarray(output).convert("RGB") pil_img.save("result_erosion.png")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def print_dist(dist, v): print("\nVertex Distance") for i in range(v): if dist[i] != float("inf"): print(i, "\t", int(dist[i]), end="\t") else: print(i, "\t", "INF", end="\t") print() def min_dist(mdist, vset, v): min_val = float("inf") min_ind = -1 for i in range(v): if (not vset[i]) and mdist[i] < min_val: min_ind = i min_val = mdist[i] return min_ind def dijkstra(graph, v, src): mdist = [float("inf") for _ in range(v)] vset = [False for _ in range(v)] mdist[src] = 0.0 for _ in range(v - 1): u = min_dist(mdist, vset, v) vset[u] = True for i in range(v): if ( (not vset[i]) and graph[u][i] != float("inf") and mdist[u] + graph[u][i] < mdist[i] ): mdist[i] = mdist[u] + graph[u][i] print_dist(mdist, i) if __name__ == "__main__": V = int(input("Enter number of vertices: ").strip()) E = int(input("Enter number of edges: ").strip()) graph = [[float("inf") for i in range(V)] for j in range(V)] for i in range(V): graph[i][i] = 0.0 for i in range(E): print("\nEdge ", i + 1) src = int(input("Enter source:").strip()) dst = int(input("Enter destination:").strip()) weight = float(input("Enter weight:").strip()) graph[src][dst] = weight gsrc = int(input("\nEnter shortest path source:").strip()) dijkstra(graph, V, gsrc)
def print_dist(dist, v): print("\nVertex Distance") for i in range(v): if dist[i] != float("inf"): print(i, "\t", int(dist[i]), end="\t") else: print(i, "\t", "INF", end="\t") print() def min_dist(mdist, vset, v): min_val = float("inf") min_ind = -1 for i in range(v): if (not vset[i]) and mdist[i] < min_val: min_ind = i min_val = mdist[i] return min_ind def dijkstra(graph, v, src): mdist = [float("inf") for _ in range(v)] vset = [False for _ in range(v)] mdist[src] = 0.0 for _ in range(v - 1): u = min_dist(mdist, vset, v) vset[u] = True for i in range(v): if ( (not vset[i]) and graph[u][i] != float("inf") and mdist[u] + graph[u][i] < mdist[i] ): mdist[i] = mdist[u] + graph[u][i] print_dist(mdist, i) if __name__ == "__main__": V = int(input("Enter number of vertices: ").strip()) E = int(input("Enter number of edges: ").strip()) graph = [[float("inf") for i in range(V)] for j in range(V)] for i in range(V): graph[i][i] = 0.0 for i in range(E): print("\nEdge ", i + 1) src = int(input("Enter source:").strip()) dst = int(input("Enter destination:").strip()) weight = float(input("Enter weight:").strip()) graph[src][dst] = weight gsrc = int(input("\nEnter shortest path source:").strip()) dijkstra(graph, V, gsrc)
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is used to convert the currency using the Amdoren Currency API https://www.amdoren.com """ import os import requests URL_BASE = "https://www.amdoren.com/api/currency.php" TESTING = os.getenv("CI", False) API_KEY = os.getenv("AMDOREN_API_KEY", "") if not API_KEY and not TESTING: raise KeyError( "API key must be provided in the 'AMDOREN_API_KEY' environment variable." ) # Currency and their description list_of_currencies = """ AED United Arab Emirates Dirham AFN Afghan Afghani ALL Albanian Lek AMD Armenian Dram ANG Netherlands Antillean Guilder AOA Angolan Kwanza ARS Argentine Peso AUD Australian Dollar AWG Aruban Florin AZN Azerbaijani Manat BAM Bosnia & Herzegovina Convertible Mark BBD Barbadian Dollar BDT Bangladeshi Taka BGN Bulgarian Lev BHD Bahraini Dinar BIF Burundian Franc BMD Bermudian Dollar BND Brunei Dollar BOB Bolivian Boliviano BRL Brazilian Real BSD Bahamian Dollar BTN Bhutanese Ngultrum BWP Botswana Pula BYN Belarus Ruble BZD Belize Dollar CAD Canadian Dollar CDF Congolese Franc CHF Swiss Franc CLP Chilean Peso CNY Chinese Yuan COP Colombian Peso CRC Costa Rican Colon CUC Cuban Convertible Peso CVE Cape Verdean Escudo CZK Czech Republic Koruna DJF Djiboutian Franc DKK Danish Krone DOP Dominican Peso DZD Algerian Dinar EGP Egyptian Pound ERN Eritrean Nakfa ETB Ethiopian Birr EUR Euro FJD Fiji Dollar GBP British Pound Sterling GEL Georgian Lari GHS Ghanaian Cedi GIP Gibraltar Pound GMD Gambian Dalasi GNF Guinea Franc GTQ Guatemalan Quetzal GYD Guyanaese Dollar HKD Hong Kong Dollar HNL Honduran Lempira HRK Croatian Kuna HTG Haiti Gourde HUF Hungarian Forint IDR Indonesian Rupiah ILS Israeli Shekel INR Indian Rupee IQD Iraqi Dinar IRR Iranian Rial ISK Icelandic Krona JMD Jamaican Dollar JOD Jordanian Dinar JPY Japanese Yen KES Kenyan Shilling KGS Kyrgystani Som KHR Cambodian Riel KMF Comorian Franc KPW North Korean Won KRW South Korean Won KWD Kuwaiti Dinar KYD Cayman Islands Dollar KZT Kazakhstan Tenge LAK Laotian Kip LBP Lebanese Pound LKR Sri Lankan Rupee LRD Liberian Dollar LSL Lesotho Loti LYD Libyan Dinar MAD Moroccan Dirham MDL Moldovan Leu MGA Malagasy Ariary MKD Macedonian Denar MMK Myanma Kyat MNT Mongolian Tugrik MOP Macau Pataca MRO Mauritanian Ouguiya MUR Mauritian Rupee MVR Maldivian Rufiyaa MWK Malawi Kwacha MXN Mexican Peso MYR Malaysian Ringgit MZN Mozambican Metical NAD Namibian Dollar NGN Nigerian Naira NIO Nicaragua Cordoba NOK Norwegian Krone NPR Nepalese Rupee NZD New Zealand Dollar OMR Omani Rial PAB Panamanian Balboa PEN Peruvian Nuevo Sol PGK Papua New Guinean Kina PHP Philippine Peso PKR Pakistani Rupee PLN Polish Zloty PYG Paraguayan Guarani QAR Qatari Riyal RON Romanian Leu RSD Serbian Dinar RUB Russian Ruble RWF Rwanda Franc SAR Saudi Riyal SBD Solomon Islands Dollar SCR Seychellois Rupee SDG Sudanese Pound SEK Swedish Krona SGD Singapore Dollar SHP Saint Helena Pound SLL Sierra Leonean Leone SOS Somali Shilling SRD Surinamese Dollar SSP South Sudanese Pound STD Sao Tome and Principe Dobra SYP Syrian Pound SZL Swazi Lilangeni THB Thai Baht TJS Tajikistan Somoni TMT Turkmenistani Manat TND Tunisian Dinar TOP Tonga Paanga TRY Turkish Lira TTD Trinidad and Tobago Dollar TWD New Taiwan Dollar TZS Tanzanian Shilling UAH Ukrainian Hryvnia UGX Ugandan Shilling USD United States Dollar UYU Uruguayan Peso UZS Uzbekistan Som VEF Venezuelan Bolivar VND Vietnamese Dong VUV Vanuatu Vatu WST Samoan Tala XAF Central African CFA franc XCD East Caribbean Dollar XOF West African CFA franc XPF CFP Franc YER Yemeni Rial ZAR South African Rand ZMW Zambian Kwacha """ def convert_currency( from_: str = "USD", to: str = "INR", amount: float = 1.0, api_key: str = API_KEY ) -> str: """https://www.amdoren.com/currency-api/""" params = locals() params["from"] = params.pop("from_") res = requests.get(URL_BASE, params=params).json() return str(res["amount"]) if res["error"] == 0 else res["error_message"] if __name__ == "__main__": print( convert_currency( input("Enter from currency: ").strip(), input("Enter to currency: ").strip(), float(input("Enter the amount: ").strip()), ) )
""" This is used to convert the currency using the Amdoren Currency API https://www.amdoren.com """ import os import requests URL_BASE = "https://www.amdoren.com/api/currency.php" TESTING = os.getenv("CI", False) API_KEY = os.getenv("AMDOREN_API_KEY", "") if not API_KEY and not TESTING: raise KeyError( "API key must be provided in the 'AMDOREN_API_KEY' environment variable." ) # Currency and their description list_of_currencies = """ AED United Arab Emirates Dirham AFN Afghan Afghani ALL Albanian Lek AMD Armenian Dram ANG Netherlands Antillean Guilder AOA Angolan Kwanza ARS Argentine Peso AUD Australian Dollar AWG Aruban Florin AZN Azerbaijani Manat BAM Bosnia & Herzegovina Convertible Mark BBD Barbadian Dollar BDT Bangladeshi Taka BGN Bulgarian Lev BHD Bahraini Dinar BIF Burundian Franc BMD Bermudian Dollar BND Brunei Dollar BOB Bolivian Boliviano BRL Brazilian Real BSD Bahamian Dollar BTN Bhutanese Ngultrum BWP Botswana Pula BYN Belarus Ruble BZD Belize Dollar CAD Canadian Dollar CDF Congolese Franc CHF Swiss Franc CLP Chilean Peso CNY Chinese Yuan COP Colombian Peso CRC Costa Rican Colon CUC Cuban Convertible Peso CVE Cape Verdean Escudo CZK Czech Republic Koruna DJF Djiboutian Franc DKK Danish Krone DOP Dominican Peso DZD Algerian Dinar EGP Egyptian Pound ERN Eritrean Nakfa ETB Ethiopian Birr EUR Euro FJD Fiji Dollar GBP British Pound Sterling GEL Georgian Lari GHS Ghanaian Cedi GIP Gibraltar Pound GMD Gambian Dalasi GNF Guinea Franc GTQ Guatemalan Quetzal GYD Guyanaese Dollar HKD Hong Kong Dollar HNL Honduran Lempira HRK Croatian Kuna HTG Haiti Gourde HUF Hungarian Forint IDR Indonesian Rupiah ILS Israeli Shekel INR Indian Rupee IQD Iraqi Dinar IRR Iranian Rial ISK Icelandic Krona JMD Jamaican Dollar JOD Jordanian Dinar JPY Japanese Yen KES Kenyan Shilling KGS Kyrgystani Som KHR Cambodian Riel KMF Comorian Franc KPW North Korean Won KRW South Korean Won KWD Kuwaiti Dinar KYD Cayman Islands Dollar KZT Kazakhstan Tenge LAK Laotian Kip LBP Lebanese Pound LKR Sri Lankan Rupee LRD Liberian Dollar LSL Lesotho Loti LYD Libyan Dinar MAD Moroccan Dirham MDL Moldovan Leu MGA Malagasy Ariary MKD Macedonian Denar MMK Myanma Kyat MNT Mongolian Tugrik MOP Macau Pataca MRO Mauritanian Ouguiya MUR Mauritian Rupee MVR Maldivian Rufiyaa MWK Malawi Kwacha MXN Mexican Peso MYR Malaysian Ringgit MZN Mozambican Metical NAD Namibian Dollar NGN Nigerian Naira NIO Nicaragua Cordoba NOK Norwegian Krone NPR Nepalese Rupee NZD New Zealand Dollar OMR Omani Rial PAB Panamanian Balboa PEN Peruvian Nuevo Sol PGK Papua New Guinean Kina PHP Philippine Peso PKR Pakistani Rupee PLN Polish Zloty PYG Paraguayan Guarani QAR Qatari Riyal RON Romanian Leu RSD Serbian Dinar RUB Russian Ruble RWF Rwanda Franc SAR Saudi Riyal SBD Solomon Islands Dollar SCR Seychellois Rupee SDG Sudanese Pound SEK Swedish Krona SGD Singapore Dollar SHP Saint Helena Pound SLL Sierra Leonean Leone SOS Somali Shilling SRD Surinamese Dollar SSP South Sudanese Pound STD Sao Tome and Principe Dobra SYP Syrian Pound SZL Swazi Lilangeni THB Thai Baht TJS Tajikistan Somoni TMT Turkmenistani Manat TND Tunisian Dinar TOP Tonga Paanga TRY Turkish Lira TTD Trinidad and Tobago Dollar TWD New Taiwan Dollar TZS Tanzanian Shilling UAH Ukrainian Hryvnia UGX Ugandan Shilling USD United States Dollar UYU Uruguayan Peso UZS Uzbekistan Som VEF Venezuelan Bolivar VND Vietnamese Dong VUV Vanuatu Vatu WST Samoan Tala XAF Central African CFA franc XCD East Caribbean Dollar XOF West African CFA franc XPF CFP Franc YER Yemeni Rial ZAR South African Rand ZMW Zambian Kwacha """ def convert_currency( from_: str = "USD", to: str = "INR", amount: float = 1.0, api_key: str = API_KEY ) -> str: """https://www.amdoren.com/currency-api/""" params = locals() params["from"] = params.pop("from_") res = requests.get(URL_BASE, params=params).json() return str(res["amount"]) if res["error"] == 0 else res["error_message"] if __name__ == "__main__": print( convert_currency( input("Enter from currency: ").strip(), input("Enter to currency: ").strip(), float(input("Enter the amount: ").strip()), ) )
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem Statement: By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows. """ import os def solution() -> int: """ Finds the maximum total in a triangle as described by the problem statement above. >>> solution() 7273 """ script_dir = os.path.dirname(os.path.realpath(__file__)) triangle_path = os.path.join(script_dir, "triangle.txt") with open(triangle_path) as in_file: triangle = [[int(i) for i in line.split()] for line in in_file] while len(triangle) != 1: last_row = triangle.pop() curr_row = triangle[-1] for j in range(len(last_row) - 1): curr_row[j] += max(last_row[j], last_row[j + 1]) return triangle[0][0] if __name__ == "__main__": print(solution())
""" Problem Statement: By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows. """ import os def solution() -> int: """ Finds the maximum total in a triangle as described by the problem statement above. >>> solution() 7273 """ script_dir = os.path.dirname(os.path.realpath(__file__)) triangle_path = os.path.join(script_dir, "triangle.txt") with open(triangle_path) as in_file: triangle = [[int(i) for i in line.split()] for line in in_file] while len(triangle) != 1: last_row = triangle.pop() curr_row = triangle[-1] for j in range(len(last_row) - 1): curr_row[j] += max(last_row[j], last_row[j + 1]) return triangle[0][0] if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 68: https://projecteuler.net/problem=68 Magic 5-gon ring Problem Statement: Consider the following "magic" 3-gon ring, filled with the numbers 1 to 6, and each line adding to nine. 4 \ 3 / \ 1 - 2 - 6 / 5 Working clockwise, and starting from the group of three with the numerically lowest external node (4,3,2 in this example), each solution can be described uniquely. For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3. It is possible to complete the ring with four different totals: 9, 10, 11, and 12. There are eight solutions in total. Total Solution Set 9 4,2,3; 5,3,1; 6,1,2 9 4,3,2; 6,2,1; 5,1,3 10 2,3,5; 4,5,1; 6,1,3 10 2,5,3; 6,3,1; 4,1,5 11 1,4,6; 3,6,2; 5,2,4 11 1,6,4; 5,4,2; 3,2,6 12 1,5,6; 2,6,4; 3,4,5 12 1,6,5; 3,5,4; 2,4,6 By concatenating each group it is possible to form 9-digit strings; the maximum string for a 3-gon ring is 432621513. Using the numbers 1 to 10, and depending on arrangements, it is possible to form 16- and 17-digit strings. What is the maximum 16-digit string for a "magic" 5-gon ring? """ from itertools import permutations def solution(gon_side: int = 5) -> int: """ Find the maximum number for a "magic" gon_side-gon ring The gon_side parameter should be in the range [3, 5], other side numbers aren't tested >>> solution(3) 432621513 >>> solution(4) 426561813732 >>> solution() 6531031914842725 >>> solution(6) Traceback (most recent call last): ValueError: gon_side must be in the range [3, 5] """ if gon_side < 3 or gon_side > 5: raise ValueError("gon_side must be in the range [3, 5]") # Since it's 16, we know 10 is on the outer ring # Put the big numbers at the end so that they are never the first number small_numbers = list(range(gon_side + 1, 0, -1)) big_numbers = list(range(gon_side + 2, gon_side * 2 + 1)) for perm in permutations(small_numbers + big_numbers): numbers = generate_gon_ring(gon_side, list(perm)) if is_magic_gon(numbers): return int("".join(str(n) for n in numbers)) raise ValueError(f"Magic {gon_side}-gon ring is impossible") def generate_gon_ring(gon_side: int, perm: list[int]) -> list[int]: """ Generate a gon_side-gon ring from a permutation state The permutation state is the ring, but every duplicate is removed >>> generate_gon_ring(3, [4, 2, 3, 5, 1, 6]) [4, 2, 3, 5, 3, 1, 6, 1, 2] >>> generate_gon_ring(5, [6, 5, 4, 3, 2, 1, 7, 8, 9, 10]) [6, 5, 4, 3, 4, 2, 1, 2, 7, 8, 7, 9, 10, 9, 5] """ result = [0] * (gon_side * 3) result[0:3] = perm[0:3] perm.append(perm[1]) magic_number = 1 if gon_side < 5 else 2 for i in range(1, len(perm) // 3 + magic_number): result[3 * i] = perm[2 * i + 1] result[3 * i + 1] = result[3 * i - 1] result[3 * i + 2] = perm[2 * i + 2] return result def is_magic_gon(numbers: list[int]) -> bool: """ Check if the solution set is a magic n-gon ring Check that the first number is the smallest number on the outer ring Take a list, and check if the sum of each 3 numbers chunk is equal to the same total >>> is_magic_gon([4, 2, 3, 5, 3, 1, 6, 1, 2]) True >>> is_magic_gon([4, 3, 2, 6, 2, 1, 5, 1, 3]) True >>> is_magic_gon([2, 3, 5, 4, 5, 1, 6, 1, 3]) True >>> is_magic_gon([1, 2, 3, 4, 5, 6, 7, 8, 9]) False >>> is_magic_gon([1]) Traceback (most recent call last): ValueError: a gon ring should have a length that is a multiple of 3 """ if len(numbers) % 3 != 0: raise ValueError("a gon ring should have a length that is a multiple of 3") if min(numbers[::3]) != numbers[0]: return False total = sum(numbers[:3]) return all(sum(numbers[i : i + 3]) == total for i in range(3, len(numbers), 3)) if __name__ == "__main__": print(solution())
""" Project Euler Problem 68: https://projecteuler.net/problem=68 Magic 5-gon ring Problem Statement: Consider the following "magic" 3-gon ring, filled with the numbers 1 to 6, and each line adding to nine. 4 \ 3 / \ 1 - 2 - 6 / 5 Working clockwise, and starting from the group of three with the numerically lowest external node (4,3,2 in this example), each solution can be described uniquely. For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3. It is possible to complete the ring with four different totals: 9, 10, 11, and 12. There are eight solutions in total. Total Solution Set 9 4,2,3; 5,3,1; 6,1,2 9 4,3,2; 6,2,1; 5,1,3 10 2,3,5; 4,5,1; 6,1,3 10 2,5,3; 6,3,1; 4,1,5 11 1,4,6; 3,6,2; 5,2,4 11 1,6,4; 5,4,2; 3,2,6 12 1,5,6; 2,6,4; 3,4,5 12 1,6,5; 3,5,4; 2,4,6 By concatenating each group it is possible to form 9-digit strings; the maximum string for a 3-gon ring is 432621513. Using the numbers 1 to 10, and depending on arrangements, it is possible to form 16- and 17-digit strings. What is the maximum 16-digit string for a "magic" 5-gon ring? """ from itertools import permutations def solution(gon_side: int = 5) -> int: """ Find the maximum number for a "magic" gon_side-gon ring The gon_side parameter should be in the range [3, 5], other side numbers aren't tested >>> solution(3) 432621513 >>> solution(4) 426561813732 >>> solution() 6531031914842725 >>> solution(6) Traceback (most recent call last): ValueError: gon_side must be in the range [3, 5] """ if gon_side < 3 or gon_side > 5: raise ValueError("gon_side must be in the range [3, 5]") # Since it's 16, we know 10 is on the outer ring # Put the big numbers at the end so that they are never the first number small_numbers = list(range(gon_side + 1, 0, -1)) big_numbers = list(range(gon_side + 2, gon_side * 2 + 1)) for perm in permutations(small_numbers + big_numbers): numbers = generate_gon_ring(gon_side, list(perm)) if is_magic_gon(numbers): return int("".join(str(n) for n in numbers)) raise ValueError(f"Magic {gon_side}-gon ring is impossible") def generate_gon_ring(gon_side: int, perm: list[int]) -> list[int]: """ Generate a gon_side-gon ring from a permutation state The permutation state is the ring, but every duplicate is removed >>> generate_gon_ring(3, [4, 2, 3, 5, 1, 6]) [4, 2, 3, 5, 3, 1, 6, 1, 2] >>> generate_gon_ring(5, [6, 5, 4, 3, 2, 1, 7, 8, 9, 10]) [6, 5, 4, 3, 4, 2, 1, 2, 7, 8, 7, 9, 10, 9, 5] """ result = [0] * (gon_side * 3) result[0:3] = perm[0:3] perm.append(perm[1]) magic_number = 1 if gon_side < 5 else 2 for i in range(1, len(perm) // 3 + magic_number): result[3 * i] = perm[2 * i + 1] result[3 * i + 1] = result[3 * i - 1] result[3 * i + 2] = perm[2 * i + 2] return result def is_magic_gon(numbers: list[int]) -> bool: """ Check if the solution set is a magic n-gon ring Check that the first number is the smallest number on the outer ring Take a list, and check if the sum of each 3 numbers chunk is equal to the same total >>> is_magic_gon([4, 2, 3, 5, 3, 1, 6, 1, 2]) True >>> is_magic_gon([4, 3, 2, 6, 2, 1, 5, 1, 3]) True >>> is_magic_gon([2, 3, 5, 4, 5, 1, 6, 1, 3]) True >>> is_magic_gon([1, 2, 3, 4, 5, 6, 7, 8, 9]) False >>> is_magic_gon([1]) Traceback (most recent call last): ValueError: a gon ring should have a length that is a multiple of 3 """ if len(numbers) % 3 != 0: raise ValueError("a gon ring should have a length that is a multiple of 3") if min(numbers[::3]) != numbers[0]: return False total = sum(numbers[:3]) return all(sum(numbers[i : i + 3]) == total for i in range(3, len(numbers), 3)) if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import random import sys from . import cryptomath_module as cryptomath SYMBOLS = ( r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`""" r"""abcdefghijklmnopqrstuvwxyz{|}~""" ) def check_keys(key_a: int, key_b: int, mode: str) -> None: if mode == "encrypt": if key_a == 1: sys.exit( "The affine cipher becomes weak when key " "A is set to 1. Choose different key" ) if key_b == 0: sys.exit( "The affine cipher becomes weak when key " "B is set to 0. Choose different key" ) if key_a < 0 or key_b < 0 or key_b > len(SYMBOLS) - 1: sys.exit( "Key A must be greater than 0 and key B must " f"be between 0 and {len(SYMBOLS) - 1}." ) if cryptomath.gcd(key_a, len(SYMBOLS)) != 1: sys.exit( f"Key A {key_a} and the symbol set size {len(SYMBOLS)} " "are not relatively prime. Choose a different key." ) def encrypt_message(key: int, message: str) -> str: """ >>> encrypt_message(4545, 'The affine cipher is a type of monoalphabetic ' ... 'substitution cipher.') 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi' """ key_a, key_b = divmod(key, len(SYMBOLS)) check_keys(key_a, key_b, "encrypt") cipher_text = "" for symbol in message: if symbol in SYMBOLS: sym_index = SYMBOLS.find(symbol) cipher_text += SYMBOLS[(sym_index * key_a + key_b) % len(SYMBOLS)] else: cipher_text += symbol return cipher_text def decrypt_message(key: int, message: str) -> str: """ >>> decrypt_message(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF' ... '{xIp~{HL}Gi') 'The affine cipher is a type of monoalphabetic substitution cipher.' """ key_a, key_b = divmod(key, len(SYMBOLS)) check_keys(key_a, key_b, "decrypt") plain_text = "" mod_inverse_of_key_a = cryptomath.find_mod_inverse(key_a, len(SYMBOLS)) for symbol in message: if symbol in SYMBOLS: sym_index = SYMBOLS.find(symbol) plain_text += SYMBOLS[ (sym_index - key_b) * mod_inverse_of_key_a % len(SYMBOLS) ] else: plain_text += symbol return plain_text def get_random_key() -> int: while True: key_b = random.randint(2, len(SYMBOLS)) key_b = random.randint(2, len(SYMBOLS)) if cryptomath.gcd(key_b, len(SYMBOLS)) == 1 and key_b % len(SYMBOLS) != 0: return key_b * len(SYMBOLS) + key_b def main() -> None: """ >>> key = get_random_key() >>> msg = "This is a test!" >>> decrypt_message(key, encrypt_message(key, msg)) == msg True """ message = input("Enter message: ").strip() key = int(input("Enter key [2000 - 9000]: ").strip()) mode = input("Encrypt/Decrypt [E/D]: ").strip().lower() if mode.startswith("e"): mode = "encrypt" translated = encrypt_message(key, message) elif mode.startswith("d"): mode = "decrypt" translated = decrypt_message(key, message) print(f"\n{mode.title()}ed text: \n{translated}") if __name__ == "__main__": import doctest doctest.testmod() # main()
import random import sys from . import cryptomath_module as cryptomath SYMBOLS = ( r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`""" r"""abcdefghijklmnopqrstuvwxyz{|}~""" ) def check_keys(key_a: int, key_b: int, mode: str) -> None: if mode == "encrypt": if key_a == 1: sys.exit( "The affine cipher becomes weak when key " "A is set to 1. Choose different key" ) if key_b == 0: sys.exit( "The affine cipher becomes weak when key " "B is set to 0. Choose different key" ) if key_a < 0 or key_b < 0 or key_b > len(SYMBOLS) - 1: sys.exit( "Key A must be greater than 0 and key B must " f"be between 0 and {len(SYMBOLS) - 1}." ) if cryptomath.gcd(key_a, len(SYMBOLS)) != 1: sys.exit( f"Key A {key_a} and the symbol set size {len(SYMBOLS)} " "are not relatively prime. Choose a different key." ) def encrypt_message(key: int, message: str) -> str: """ >>> encrypt_message(4545, 'The affine cipher is a type of monoalphabetic ' ... 'substitution cipher.') 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi' """ key_a, key_b = divmod(key, len(SYMBOLS)) check_keys(key_a, key_b, "encrypt") cipher_text = "" for symbol in message: if symbol in SYMBOLS: sym_index = SYMBOLS.find(symbol) cipher_text += SYMBOLS[(sym_index * key_a + key_b) % len(SYMBOLS)] else: cipher_text += symbol return cipher_text def decrypt_message(key: int, message: str) -> str: """ >>> decrypt_message(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF' ... '{xIp~{HL}Gi') 'The affine cipher is a type of monoalphabetic substitution cipher.' """ key_a, key_b = divmod(key, len(SYMBOLS)) check_keys(key_a, key_b, "decrypt") plain_text = "" mod_inverse_of_key_a = cryptomath.find_mod_inverse(key_a, len(SYMBOLS)) for symbol in message: if symbol in SYMBOLS: sym_index = SYMBOLS.find(symbol) plain_text += SYMBOLS[ (sym_index - key_b) * mod_inverse_of_key_a % len(SYMBOLS) ] else: plain_text += symbol return plain_text def get_random_key() -> int: while True: key_b = random.randint(2, len(SYMBOLS)) key_b = random.randint(2, len(SYMBOLS)) if cryptomath.gcd(key_b, len(SYMBOLS)) == 1 and key_b % len(SYMBOLS) != 0: return key_b * len(SYMBOLS) + key_b def main() -> None: """ >>> key = get_random_key() >>> msg = "This is a test!" >>> decrypt_message(key, encrypt_message(key, msg)) == msg True """ message = input("Enter message: ").strip() key = int(input("Enter key [2000 - 9000]: ").strip()) mode = input("Encrypt/Decrypt [E/D]: ").strip().lower() if mode.startswith("e"): mode = "encrypt" translated = encrypt_message(key, message) elif mode.startswith("d"): mode = "decrypt" translated = decrypt_message(key, message) print(f"\n{mode.title()}ed text: \n{translated}") if __name__ == "__main__": import doctest doctest.testmod() # main()
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Created by sarathkaul on 17/11/19 # Modified by Arkadip Bhattacharya(@darkmatter18) on 20/04/2020 from collections import defaultdict from typing import DefaultDict def word_occurrence(sentence: str) -> dict: """ >>> from collections import Counter >>> SENTENCE = "a b A b c b d b d e f e g e h e i e j e 0" >>> occurence_dict = word_occurrence(SENTENCE) >>> all(occurence_dict[word] == count for word, count ... in Counter(SENTENCE.split()).items()) True >>> dict(word_occurrence("Two spaces")) {'Two': 1, 'spaces': 1} """ occurrence: DefaultDict[str, int] = defaultdict(int) # Creating a dictionary containing count of each word for word in sentence.split(): occurrence[word] += 1 return occurrence if __name__ == "__main__": for word, count in word_occurrence("INPUT STRING").items(): print(f"{word}: {count}")
# Created by sarathkaul on 17/11/19 # Modified by Arkadip Bhattacharya(@darkmatter18) on 20/04/2020 from collections import defaultdict from typing import DefaultDict def word_occurrence(sentence: str) -> dict: """ >>> from collections import Counter >>> SENTENCE = "a b A b c b d b d e f e g e h e i e j e 0" >>> occurence_dict = word_occurrence(SENTENCE) >>> all(occurence_dict[word] == count for word, count ... in Counter(SENTENCE.split()).items()) True >>> dict(word_occurrence("Two spaces")) {'Two': 1, 'spaces': 1} """ occurrence: DefaultDict[str, int] = defaultdict(int) # Creating a dictionary containing count of each word for word in sentence.split(): occurrence[word] += 1 return occurrence if __name__ == "__main__": for word, count in word_occurrence("INPUT STRING").items(): print(f"{word}: {count}")
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Adler-32 is a checksum algorithm which was invented by Mark Adler in 1995. Compared to a cyclic redundancy check of the same length, it trades reliability for speed (preferring the latter). Adler-32 is more reliable than Fletcher-16, and slightly less reliable than Fletcher-32.[2] source: https://en.wikipedia.org/wiki/Adler-32 """ MOD_ADLER = 65521 def adler32(plain_text: str) -> int: """ Function implements adler-32 hash. Iterates and evaluates a new value for each character >>> adler32('Algorithms') 363791387 >>> adler32('go adler em all') 708642122 """ a = 1 b = 0 for plain_chr in plain_text: a = (a + ord(plain_chr)) % MOD_ADLER b = (b + a) % MOD_ADLER return (b << 16) | a
""" Adler-32 is a checksum algorithm which was invented by Mark Adler in 1995. Compared to a cyclic redundancy check of the same length, it trades reliability for speed (preferring the latter). Adler-32 is more reliable than Fletcher-16, and slightly less reliable than Fletcher-32.[2] source: https://en.wikipedia.org/wiki/Adler-32 """ MOD_ADLER = 65521 def adler32(plain_text: str) -> int: """ Function implements adler-32 hash. Iterates and evaluates a new value for each character >>> adler32('Algorithms') 363791387 >>> adler32('go adler em all') 708642122 """ a = 1 b = 0 for plain_chr in plain_text: a = (a + ord(plain_chr)) % MOD_ADLER b = (b + a) % MOD_ADLER return (b << 16) | a
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/perl use strict; use warnings; use IPC::Open2; # An example hook script to integrate Watchman # (https://facebook.github.io/watchman/) with git to speed up detecting # new and modified files. # # The hook is passed a version (currently 1) and a time in nanoseconds # formatted as a string and outputs to stdout all files that have been # modified since the given time. Paths must be relative to the root of # the working tree and separated by a single NUL. # # To enable this hook, rename this file to "query-watchman" and set # 'git config core.fsmonitor .git/hooks/query-watchman' # my ($version, $time) = @ARGV; # Check the hook interface version if ($version == 1) { # convert nanoseconds to seconds # subtract one second to make sure watchman will return all changes $time = int ($time / 1000000000) - 1; } else { die "Unsupported query-fsmonitor hook version '$version'.\n" . "Falling back to scanning...\n"; } my $git_work_tree; if ($^O =~ 'msys' || $^O =~ 'cygwin') { $git_work_tree = Win32::GetCwd(); $git_work_tree =~ tr/\\/\//; } else { require Cwd; $git_work_tree = Cwd::cwd(); } my $retry = 1; launch_watchman(); sub launch_watchman { my $pid = open2(\*CHLD_OUT, \*CHLD_IN, 'watchman -j --no-pretty') or die "open2() failed: $!\n" . "Falling back to scanning...\n"; # In the query expression below we're asking for names of files that # changed since $time but were not transient (ie created after # $time but no longer exist). # # To accomplish this, we're using the "since" generator to use the # recency index to select candidate nodes and "fields" to limit the # output to file names only. my $query = <<" END"; ["query", "$git_work_tree", { "since": $time, "fields": ["name"] }] END print CHLD_IN $query; close CHLD_IN; my $response = do {local $/; <CHLD_OUT>}; die "Watchman: command returned no output.\n" . "Falling back to scanning...\n" if $response eq ""; die "Watchman: command returned invalid output: $response\n" . "Falling back to scanning...\n" unless $response =~ /^\{/; my $json_pkg; eval { require JSON::XS; $json_pkg = "JSON::XS"; 1; } or do { require JSON::PP; $json_pkg = "JSON::PP"; }; my $o = $json_pkg->new->utf8->decode($response); if ($retry > 0 and $o->{error} and $o->{error} =~ m/unable to resolve root .* directory (.*) is not watched/) { print STDERR "Adding '$git_work_tree' to watchman's watch list.\n"; $retry--; qx/watchman watch "$git_work_tree"/; die "Failed to make watchman watch '$git_work_tree'.\n" . "Falling back to scanning...\n" if $? != 0; # Watchman will always return all files on the first query so # return the fast "everything is dirty" flag to git and do the # Watchman query just to get it over with now so we won't pay # the cost in git to look up each individual file. print "/\0"; eval { launch_watchman() }; exit 0; } die "Watchman: $o->{error}.\n" . "Falling back to scanning...\n" if $o->{error}; binmode STDOUT, ":utf8"; local $, = "\0"; print @{$o->{files}}; }
#!/usr/bin/perl use strict; use warnings; use IPC::Open2; # An example hook script to integrate Watchman # (https://facebook.github.io/watchman/) with git to speed up detecting # new and modified files. # # The hook is passed a version (currently 1) and a time in nanoseconds # formatted as a string and outputs to stdout all files that have been # modified since the given time. Paths must be relative to the root of # the working tree and separated by a single NUL. # # To enable this hook, rename this file to "query-watchman" and set # 'git config core.fsmonitor .git/hooks/query-watchman' # my ($version, $time) = @ARGV; # Check the hook interface version if ($version == 1) { # convert nanoseconds to seconds # subtract one second to make sure watchman will return all changes $time = int ($time / 1000000000) - 1; } else { die "Unsupported query-fsmonitor hook version '$version'.\n" . "Falling back to scanning...\n"; } my $git_work_tree; if ($^O =~ 'msys' || $^O =~ 'cygwin') { $git_work_tree = Win32::GetCwd(); $git_work_tree =~ tr/\\/\//; } else { require Cwd; $git_work_tree = Cwd::cwd(); } my $retry = 1; launch_watchman(); sub launch_watchman { my $pid = open2(\*CHLD_OUT, \*CHLD_IN, 'watchman -j --no-pretty') or die "open2() failed: $!\n" . "Falling back to scanning...\n"; # In the query expression below we're asking for names of files that # changed since $time but were not transient (ie created after # $time but no longer exist). # # To accomplish this, we're using the "since" generator to use the # recency index to select candidate nodes and "fields" to limit the # output to file names only. my $query = <<" END"; ["query", "$git_work_tree", { "since": $time, "fields": ["name"] }] END print CHLD_IN $query; close CHLD_IN; my $response = do {local $/; <CHLD_OUT>}; die "Watchman: command returned no output.\n" . "Falling back to scanning...\n" if $response eq ""; die "Watchman: command returned invalid output: $response\n" . "Falling back to scanning...\n" unless $response =~ /^\{/; my $json_pkg; eval { require JSON::XS; $json_pkg = "JSON::XS"; 1; } or do { require JSON::PP; $json_pkg = "JSON::PP"; }; my $o = $json_pkg->new->utf8->decode($response); if ($retry > 0 and $o->{error} and $o->{error} =~ m/unable to resolve root .* directory (.*) is not watched/) { print STDERR "Adding '$git_work_tree' to watchman's watch list.\n"; $retry--; qx/watchman watch "$git_work_tree"/; die "Failed to make watchman watch '$git_work_tree'.\n" . "Falling back to scanning...\n" if $? != 0; # Watchman will always return all files on the first query so # return the fast "everything is dirty" flag to git and do the # Watchman query just to get it over with now so we won't pay # the cost in git to look up each individual file. print "/\0"; eval { launch_watchman() }; exit 0; } die "Watchman: $o->{error}.\n" . "Falling back to scanning...\n" if $o->{error}; binmode STDOUT, ":utf8"; local $, = "\0"; print @{$o->{files}}; }
-1
TheAlgorithms/Python
7,499
Remove some print statements within algorithmic functions
### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
tianyizheng02
"2022-10-22T02:13:09Z"
"2022-10-22T11:33:52Z"
717f0e46d950060f2147f022f65b7e44e72cfdd8
cc10b20beb8f0b10b50c84bd523bf41095fe9f37
Remove some print statements within algorithmic functions. ### Describe your change: Removed some print statements within algorithmic functions (i.e., code that's not within a `__main__`, a`main` function, or a utility function). Encapsulated some test/demo code that wasn't within `__main__`s. This PR contributes to #7337 but is not a complete fix. * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### Checklist: * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import math from timeit import timeit def num_digits(n: int) -> int: """ Find the number of digits in a number. >>> num_digits(12345) 5 >>> num_digits(123) 3 >>> num_digits(0) 1 >>> num_digits(-1) 1 >>> num_digits(-123456) 6 """ digits = 0 n = abs(n) while True: n = n // 10 digits += 1 if n == 0: break return digits def num_digits_fast(n: int) -> int: """ Find the number of digits in a number. abs() is used as logarithm for negative numbers is not defined. >>> num_digits_fast(12345) 5 >>> num_digits_fast(123) 3 >>> num_digits_fast(0) 1 >>> num_digits_fast(-1) 1 >>> num_digits_fast(-123456) 6 """ return 1 if n == 0 else math.floor(math.log(abs(n), 10) + 1) def num_digits_faster(n: int) -> int: """ Find the number of digits in a number. abs() is used for negative numbers >>> num_digits_faster(12345) 5 >>> num_digits_faster(123) 3 >>> num_digits_faster(0) 1 >>> num_digits_faster(-1) 1 >>> num_digits_faster(-123456) 6 """ return len(str(abs(n))) def benchmark() -> None: """ Benchmark code for comparing 3 functions, with 3 different length int values. """ print("\nFor small_num = ", small_num, ":") print( "> num_digits()", "\t\tans =", num_digits(small_num), "\ttime =", timeit("z.num_digits(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(small_num), "\ttime =", timeit("z.num_digits_fast(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(small_num), "\ttime =", timeit("z.num_digits_faster(z.small_num)", setup="import __main__ as z"), "seconds", ) print("\nFor medium_num = ", medium_num, ":") print( "> num_digits()", "\t\tans =", num_digits(medium_num), "\ttime =", timeit("z.num_digits(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(medium_num), "\ttime =", timeit("z.num_digits_fast(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(medium_num), "\ttime =", timeit("z.num_digits_faster(z.medium_num)", setup="import __main__ as z"), "seconds", ) print("\nFor large_num = ", large_num, ":") print( "> num_digits()", "\t\tans =", num_digits(large_num), "\ttime =", timeit("z.num_digits(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(large_num), "\ttime =", timeit("z.num_digits_fast(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(large_num), "\ttime =", timeit("z.num_digits_faster(z.large_num)", setup="import __main__ as z"), "seconds", ) if __name__ == "__main__": small_num = 262144 medium_num = 1125899906842624 large_num = 1267650600228229401496703205376 benchmark() import doctest doctest.testmod()
import math from timeit import timeit def num_digits(n: int) -> int: """ Find the number of digits in a number. >>> num_digits(12345) 5 >>> num_digits(123) 3 >>> num_digits(0) 1 >>> num_digits(-1) 1 >>> num_digits(-123456) 6 """ digits = 0 n = abs(n) while True: n = n // 10 digits += 1 if n == 0: break return digits def num_digits_fast(n: int) -> int: """ Find the number of digits in a number. abs() is used as logarithm for negative numbers is not defined. >>> num_digits_fast(12345) 5 >>> num_digits_fast(123) 3 >>> num_digits_fast(0) 1 >>> num_digits_fast(-1) 1 >>> num_digits_fast(-123456) 6 """ return 1 if n == 0 else math.floor(math.log(abs(n), 10) + 1) def num_digits_faster(n: int) -> int: """ Find the number of digits in a number. abs() is used for negative numbers >>> num_digits_faster(12345) 5 >>> num_digits_faster(123) 3 >>> num_digits_faster(0) 1 >>> num_digits_faster(-1) 1 >>> num_digits_faster(-123456) 6 """ return len(str(abs(n))) def benchmark() -> None: """ Benchmark code for comparing 3 functions, with 3 different length int values. """ print("\nFor small_num = ", small_num, ":") print( "> num_digits()", "\t\tans =", num_digits(small_num), "\ttime =", timeit("z.num_digits(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(small_num), "\ttime =", timeit("z.num_digits_fast(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(small_num), "\ttime =", timeit("z.num_digits_faster(z.small_num)", setup="import __main__ as z"), "seconds", ) print("\nFor medium_num = ", medium_num, ":") print( "> num_digits()", "\t\tans =", num_digits(medium_num), "\ttime =", timeit("z.num_digits(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(medium_num), "\ttime =", timeit("z.num_digits_fast(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(medium_num), "\ttime =", timeit("z.num_digits_faster(z.medium_num)", setup="import __main__ as z"), "seconds", ) print("\nFor large_num = ", large_num, ":") print( "> num_digits()", "\t\tans =", num_digits(large_num), "\ttime =", timeit("z.num_digits(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(large_num), "\ttime =", timeit("z.num_digits_fast(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(large_num), "\ttime =", timeit("z.num_digits_faster(z.large_num)", setup="import __main__ as z"), "seconds", ) if __name__ == "__main__": small_num = 262144 medium_num = 1125899906842624 large_num = 1267650600228229401496703205376 benchmark() import doctest doctest.testmod()
-1