File size: 8,886 Bytes
e519ebc e94d379 e519ebc a26fe88 e519ebc a26fe88 e519ebc c234022 4c00250 c234022 e519ebc c234022 e519ebc c234022 89d1ce3 e07d22d 987975b e07d22d c234022 3245c60 e519ebc 03a290e aed8f9a 091a450 2f4d7a8 e94d379 f09c5f7 4cf5b77 6d27e87 2ac1197 9436ec3 059c443 a26fe88 5a5f71e 7856d6a 505cbc9 5f04a45 6478542 fec9ca5 ef310ba 6c33d1f 56ff5bc 32a1d72 f8284f1 4c2a96a 51a7f57 5ba5c55 2d95457 8a53d37 c6cd905 4ac26a2 8fca7bb f39b71b b77bd84 51c66bb c4f8392 8073971 ee23af8 fa902d6 afcf308 f9928d5 eb45433 5f8603c d408481 6a67552 5e7d2b5 2cbfbac dd4cae6 ff0a382 2a317fe 8cc8979 dec3ab9 497ca98 9319e77 b5e87ad fd47b6b a014982 d3e5716 4d87107 47d988c 1b2d249 282bc07 0666f37 6b5c652 89d1ce3 1417ed7 c9bace6 9d11186 987975b 1071fa8 2d38c40 b470832 e07d22d de477ea 9054b19 3cea654 4c00250 c234022 e519ebc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** suul999922/x_dataset_71
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5FA9GTvGdN2CB2jRmRKMaczcoXiNRYuHwYaHABaW5y65o7ae
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{suul9999222025datauniversex_dataset_71,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={suul999922},
year={2025},
url={https://huggingface.co/datasets/suul999922/x_dataset_71},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 639260341
- **Date Range:** 2024-10-31T12:00:00Z to 2025-03-09T22:53:38Z
- **Last Updated:** 2025-03-10T19:48:59Z
### Data Distribution
- Tweets with hashtags: 100.00%
- Tweets without hashtags: 0.00%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
1. #riyadh (3285363)
2. #tiktok (1070308)
3. #zelena (1066201)
4. #perfect10linersep16 (464265)
5. #2024mamavote (458694)
6. #superbowl (429139)
7. #ad (418655)
8. #superbowllix (393223)
9. #bbb25 (352100)
10. #trump (279189)
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2024-11-03T18:32:47Z | 956803 | 1913606 |
| 2024-11-03T18:37:38Z | 4784671 | 10526145 |
| 2024-11-03T18:47:29Z | 7385348 | 20512170 |
| 2024-11-04T02:58:12Z | 11977633 | 37082088 |
| 2024-11-05T01:23:59Z | 9516325 | 44137105 |
| 2024-11-05T07:54:55Z | 6679024 | 47978828 |
| 2024-11-06T10:14:23Z | 7415656 | 56131116 |
| 2024-11-06T10:29:42Z | 8810915 | 66337290 |
| 2024-11-07T19:00:29Z | 6144244 | 69814863 |
| 2024-11-08T18:23:36Z | 6986112 | 77642843 |
| 2024-11-10T00:04:31Z | 7744335 | 86145401 |
| 2025-01-23T04:36:53Z | 5915772 | 90232610 |
| 2025-01-23T05:10:41Z | 9159060 | 102634958 |
| 2025-01-23T05:35:57Z | 7224927 | 107925752 |
| 2025-01-23T07:25:25Z | 5986812 | 112674449 |
| 2025-01-24T17:09:04Z | 8263919 | 123215475 |
| 2025-01-25T21:12:18Z | 6934408 | 128820372 |
| 2025-01-29T22:01:23Z | 8182430 | 138250824 |
| 2025-01-29T22:25:32Z | 5273282 | 140614958 |
| 2025-01-29T22:42:06Z | 5880527 | 147102730 |
| 2025-01-29T23:03:53Z | 6178889 | 153579981 |
| 2025-01-30T01:14:03Z | 8549240 | 164499572 |
| 2025-01-30T01:51:57Z | 7893478 | 171737288 |
| 2025-01-30T02:37:23Z | 9689930 | 183223670 |
| 2025-01-30T03:16:10Z | 6473435 | 186480610 |
| 2025-01-30T03:41:35Z | 4584599 | 189176373 |
| 2025-01-30T04:04:44Z | 5608231 | 195808236 |
| 2025-01-30T04:27:24Z | 7677395 | 205554795 |
| 2025-01-30T05:14:18Z | 8855337 | 215588074 |
| 2025-01-30T05:47:27Z | 6888883 | 220510503 |
| 2025-01-30T06:20:20Z | 6236334 | 226094288 |
| 2025-01-30T12:29:25Z | 7228723 | 234315400 |
| 2025-02-01T05:05:10Z | 4482548 | 236051773 |
| 2025-02-01T11:51:53Z | 5664640 | 242898505 |
| 2025-02-01T22:01:06Z | 5388375 | 248010615 |
| 2025-02-03T06:11:49Z | 7417971 | 257458182 |
| 2025-02-05T04:25:18Z | 5735752 | 261511715 |
| 2025-02-05T13:17:01Z | 6296407 | 268368777 |
| 2025-02-06T06:32:09Z | 7431766 | 276935902 |
| 2025-02-07T22:59:04Z | 6982158 | 283468452 |
| 2025-02-08T08:21:02Z | 5076074 | 286638442 |
| 2025-02-09T11:44:35Z | 7633538 | 296829444 |
| 2025-02-10T01:26:38Z | 6180090 | 301556086 |
| 2025-02-10T14:42:11Z | 6306612 | 307989220 |
| 2025-02-11T02:12:59Z | 7418084 | 316518776 |
| 2025-02-12T07:16:59Z | 4648263 | 318397218 |
| 2025-02-13T10:41:26Z | 6601618 | 326952191 |
| 2025-02-13T15:52:57Z | 6564615 | 333479803 |
| 2025-02-14T09:22:12Z | 6096613 | 339108414 |
| 2025-02-14T15:07:28Z | 4798178 | 342608157 |
| 2025-02-18T00:39:15Z | 6773375 | 351356729 |
| 2025-02-18T07:39:23Z | 6243448 | 357070250 |
| 2025-02-18T15:26:23Z | 7459393 | 365745588 |
| 2025-02-19T08:49:33Z | 14642615 | 387571425 |
| 2025-02-19T14:07:04Z | 12844134 | 398617078 |
| 2025-02-20T09:14:18Z | 16921761 | 419616466 |
| 2025-02-22T04:09:29Z | 17064134 | 436822973 |
| 2025-02-22T13:27:34Z | 13479208 | 446717255 |
| 2025-02-23T06:34:25Z | 16934377 | 467106801 |
| 2025-02-24T19:53:25Z | 14928193 | 480028810 |
| 2025-02-27T04:57:54Z | 20115072 | 505330761 |
| 2025-02-28T09:42:44Z | 16690326 | 518596341 |
| 2025-03-01T17:17:47Z | 11085857 | 524077729 |
| 2025-03-02T08:10:17Z | 17450064 | 547892000 |
| 2025-03-02T09:49:18Z | 6187006 | 542815948 |
| 2025-03-02T12:46:00Z | 4393428 | 545415798 |
| 2025-03-03T15:18:14Z | 9471203 | 559964776 |
| 2025-03-04T22:33:27Z | 13248994 | 576991561 |
| 2025-03-06T16:16:24Z | 9258335 | 582259237 |
| 2025-03-06T20:48:32Z | 10812374 | 594625650 |
| 2025-03-07T08:55:29Z | 8646751 | 601106778 |
| 2025-03-07T19:47:27Z | 6808197 | 606076421 |
| 2025-03-09T07:25:34Z | 8094599 | 615457422 |
| 2025-03-09T09:18:58Z | 8266465 | 623895753 |
| 2025-03-09T23:02:15Z | 6389372 | 628408032 |
| 2025-03-10T10:01:25Z | 8268001 | 638554662 |
| 2025-03-10T19:48:57Z | 8973680 | 648234021 |
|