File size: 8,886 Bytes
e519ebc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94d379
e519ebc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26fe88
e519ebc
 
a26fe88
e519ebc
 
 
 
 
 
 
 
 
 
 
 
c234022
4c00250
c234022
e519ebc
 
 
c234022
 
e519ebc
 
 
 
 
c234022
 
 
89d1ce3
 
 
e07d22d
987975b
e07d22d
c234022
3245c60
e519ebc
 
 
 
 
03a290e
aed8f9a
091a450
2f4d7a8
e94d379
f09c5f7
4cf5b77
6d27e87
2ac1197
9436ec3
059c443
a26fe88
5a5f71e
7856d6a
505cbc9
5f04a45
6478542
fec9ca5
ef310ba
6c33d1f
56ff5bc
32a1d72
f8284f1
4c2a96a
51a7f57
5ba5c55
2d95457
8a53d37
c6cd905
4ac26a2
8fca7bb
f39b71b
b77bd84
51c66bb
c4f8392
8073971
ee23af8
fa902d6
afcf308
f9928d5
eb45433
5f8603c
d408481
6a67552
5e7d2b5
2cbfbac
dd4cae6
ff0a382
2a317fe
8cc8979
dec3ab9
497ca98
9319e77
b5e87ad
fd47b6b
a014982
d3e5716
4d87107
47d988c
1b2d249
282bc07
0666f37
6b5c652
89d1ce3
1417ed7
c9bace6
9d11186
987975b
1071fa8
2d38c40
b470832
e07d22d
de477ea
9054b19
3cea654
4c00250
c234022
e519ebc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 X (Twitter) Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>



## Dataset Description

- **Repository:** suul999922/x_dataset_71
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5FA9GTvGdN2CB2jRmRKMaczcoXiNRYuHwYaHABaW5y65o7ae

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single tweet with the following fields:


### Data Fields

- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{suul9999222025datauniversex_dataset_71,
    title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
    author={suul999922},
    year={2025},
    url={https://huggingface.co/datasets/suul999922/x_dataset_71},
}
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 639260341
- **Date Range:** 2024-10-31T12:00:00Z to 2025-03-09T22:53:38Z
- **Last Updated:** 2025-03-10T19:48:59Z

### Data Distribution

- Tweets with hashtags: 100.00%
- Tweets without hashtags: 0.00%

### Top 10 Hashtags

For full statistics, please refer to the `stats.json` file in the repository.

1. #riyadh (3285363)
2. #tiktok (1070308)
3. #zelena (1066201)
4. #perfect10linersep16 (464265)
5. #2024mamavote (458694)
6. #superbowl (429139)
7. #ad (418655)
8. #superbowllix (393223)
9. #bbb25 (352100)
10. #trump (279189)


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2024-11-03T18:32:47Z | 956803 | 1913606 |
| 2024-11-03T18:37:38Z | 4784671 | 10526145 |
| 2024-11-03T18:47:29Z | 7385348 | 20512170 |
| 2024-11-04T02:58:12Z | 11977633 | 37082088 |
| 2024-11-05T01:23:59Z | 9516325 | 44137105 |
| 2024-11-05T07:54:55Z | 6679024 | 47978828 |
| 2024-11-06T10:14:23Z | 7415656 | 56131116 |
| 2024-11-06T10:29:42Z | 8810915 | 66337290 |
| 2024-11-07T19:00:29Z | 6144244 | 69814863 |
| 2024-11-08T18:23:36Z | 6986112 | 77642843 |
| 2024-11-10T00:04:31Z | 7744335 | 86145401 |
| 2025-01-23T04:36:53Z | 5915772 | 90232610 |
| 2025-01-23T05:10:41Z | 9159060 | 102634958 |
| 2025-01-23T05:35:57Z | 7224927 | 107925752 |
| 2025-01-23T07:25:25Z | 5986812 | 112674449 |
| 2025-01-24T17:09:04Z | 8263919 | 123215475 |
| 2025-01-25T21:12:18Z | 6934408 | 128820372 |
| 2025-01-29T22:01:23Z | 8182430 | 138250824 |
| 2025-01-29T22:25:32Z | 5273282 | 140614958 |
| 2025-01-29T22:42:06Z | 5880527 | 147102730 |
| 2025-01-29T23:03:53Z | 6178889 | 153579981 |
| 2025-01-30T01:14:03Z | 8549240 | 164499572 |
| 2025-01-30T01:51:57Z | 7893478 | 171737288 |
| 2025-01-30T02:37:23Z | 9689930 | 183223670 |
| 2025-01-30T03:16:10Z | 6473435 | 186480610 |
| 2025-01-30T03:41:35Z | 4584599 | 189176373 |
| 2025-01-30T04:04:44Z | 5608231 | 195808236 |
| 2025-01-30T04:27:24Z | 7677395 | 205554795 |
| 2025-01-30T05:14:18Z | 8855337 | 215588074 |
| 2025-01-30T05:47:27Z | 6888883 | 220510503 |
| 2025-01-30T06:20:20Z | 6236334 | 226094288 |
| 2025-01-30T12:29:25Z | 7228723 | 234315400 |
| 2025-02-01T05:05:10Z | 4482548 | 236051773 |
| 2025-02-01T11:51:53Z | 5664640 | 242898505 |
| 2025-02-01T22:01:06Z | 5388375 | 248010615 |
| 2025-02-03T06:11:49Z | 7417971 | 257458182 |
| 2025-02-05T04:25:18Z | 5735752 | 261511715 |
| 2025-02-05T13:17:01Z | 6296407 | 268368777 |
| 2025-02-06T06:32:09Z | 7431766 | 276935902 |
| 2025-02-07T22:59:04Z | 6982158 | 283468452 |
| 2025-02-08T08:21:02Z | 5076074 | 286638442 |
| 2025-02-09T11:44:35Z | 7633538 | 296829444 |
| 2025-02-10T01:26:38Z | 6180090 | 301556086 |
| 2025-02-10T14:42:11Z | 6306612 | 307989220 |
| 2025-02-11T02:12:59Z | 7418084 | 316518776 |
| 2025-02-12T07:16:59Z | 4648263 | 318397218 |
| 2025-02-13T10:41:26Z | 6601618 | 326952191 |
| 2025-02-13T15:52:57Z | 6564615 | 333479803 |
| 2025-02-14T09:22:12Z | 6096613 | 339108414 |
| 2025-02-14T15:07:28Z | 4798178 | 342608157 |
| 2025-02-18T00:39:15Z | 6773375 | 351356729 |
| 2025-02-18T07:39:23Z | 6243448 | 357070250 |
| 2025-02-18T15:26:23Z | 7459393 | 365745588 |
| 2025-02-19T08:49:33Z | 14642615 | 387571425 |
| 2025-02-19T14:07:04Z | 12844134 | 398617078 |
| 2025-02-20T09:14:18Z | 16921761 | 419616466 |
| 2025-02-22T04:09:29Z | 17064134 | 436822973 |
| 2025-02-22T13:27:34Z | 13479208 | 446717255 |
| 2025-02-23T06:34:25Z | 16934377 | 467106801 |
| 2025-02-24T19:53:25Z | 14928193 | 480028810 |
| 2025-02-27T04:57:54Z | 20115072 | 505330761 |
| 2025-02-28T09:42:44Z | 16690326 | 518596341 |
| 2025-03-01T17:17:47Z | 11085857 | 524077729 |
| 2025-03-02T08:10:17Z | 17450064 | 547892000 |
| 2025-03-02T09:49:18Z | 6187006 | 542815948 |
| 2025-03-02T12:46:00Z | 4393428 | 545415798 |
| 2025-03-03T15:18:14Z | 9471203 | 559964776 |
| 2025-03-04T22:33:27Z | 13248994 | 576991561 |
| 2025-03-06T16:16:24Z | 9258335 | 582259237 |
| 2025-03-06T20:48:32Z | 10812374 | 594625650 |
| 2025-03-07T08:55:29Z | 8646751 | 601106778 |
| 2025-03-07T19:47:27Z | 6808197 | 606076421 |
| 2025-03-09T07:25:34Z | 8094599 | 615457422 |
| 2025-03-09T09:18:58Z | 8266465 | 623895753 |
| 2025-03-09T23:02:15Z | 6389372 | 628408032 |
| 2025-03-10T10:01:25Z | 8268001 | 638554662 |
| 2025-03-10T19:48:57Z | 8973680 | 648234021 |