suzuki-2001 commited on
Commit
7a6642c
·
verified ·
1 Parent(s): e861cd3

Update multi-model-plant-genome-corpus.py

Browse files
Files changed (1) hide show
  1. multi-model-plant-genome-corpus.py +121 -173
multi-model-plant-genome-corpus.py CHANGED
@@ -1,14 +1,4 @@
1
- """
2
- Script for the plant multi-species genomes dataset.
3
- This dataset contains the genomes from 11 different species.
4
-
5
- Added functionality:
6
- - `split_mode` argument in load_dataset.
7
- "chromosome" (default): Original splitting by chromosome records.
8
- "genome": Split by genome size (smallest 2 -> val, next 2 -> test, rest -> train).
9
- """
10
-
11
- from typing import List
12
  import datasets
13
  from Bio import SeqIO
14
  import os
@@ -57,12 +47,11 @@ def clean_sequence(seq: str) -> str:
57
 
58
  class PlantMultiSpeciesGenomesConfig(datasets.BuilderConfig):
59
  """BuilderConfig for the Plant Multi Species Pre-training Dataset."""
60
- def __init__(self, *args, chunk_length: int, overlap: int = 100, split_mode: str = "chromosome", **kwargs):
61
  """
62
  Args:
63
  chunk_length (int): length of each chunk
64
  overlap (int): overlap size (defaults to 100)
65
- split_mode (str): "chromosome" or "genome"
66
  """
67
  num_kbp = int(chunk_length/1000)
68
  super().__init__(
@@ -72,24 +61,20 @@ class PlantMultiSpeciesGenomesConfig(datasets.BuilderConfig):
72
  )
73
  self.chunk_length = chunk_length
74
  self.overlap = overlap
75
- self.split_mode = split_mode
76
 
77
  class PlantMultiSpeciesGenomes(datasets.GeneratorBasedBuilder):
78
  VERSION = datasets.Version("1.1.0")
79
  BUILDER_CONFIG_CLASS = PlantMultiSpeciesGenomesConfig
80
- # Allow user to specify split_mode via load_dataset(..., split_mode="chromosome" or "genome")
81
  BUILDER_CONFIGS = [
82
- PlantMultiSpeciesGenomesConfig(chunk_length=chunk_length, split_mode="chromosome") for chunk_length in _CHUNK_LENGTHS
83
  ]
84
-
85
  DEFAULT_CONFIG_NAME = "1kbp"
86
 
87
  @classmethod
88
- def from_config(cls, chunk_length=1000, overlap=100, split_mode="chromosome", **kwargs):
89
  return cls(PlantMultiSpeciesGenomesConfig(
90
  chunk_length=chunk_length,
91
  overlap=overlap,
92
- split_mode=split_mode,
93
  **kwargs
94
  ))
95
 
@@ -110,6 +95,51 @@ class PlantMultiSpeciesGenomes(datasets.GeneratorBasedBuilder):
110
  citation=_CITATION,
111
  )
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
114
  # Download filepaths
115
  filepaths_txt = dl_manager.download_and_extract('plant_genome_file_names.txt')
@@ -117,160 +147,78 @@ class PlantMultiSpeciesGenomes(datasets.GeneratorBasedBuilder):
117
  filepaths = [os.path.join("plant_genomes", filepath.rstrip()) for filepath in f]
118
 
119
  genome_files = [dl_manager.download_and_extract(f) for f in filepaths]
120
-
121
- if self.config.split_mode == "chromosome":
122
- # Chromosome-based splitting as before
123
- genome_chromos = []
124
- for file in genome_files:
125
- with open(file, 'rt') as f:
126
- records = list(SeqIO.parse(f, 'fasta'))
127
- n_val = max(1, len(records) // 10)
128
- n_test = max(1, len(records) // 10)
129
-
130
- genome_chromos.append({
131
- 'val': records[-n_val:],
132
- 'test': records[-(n_val+n_test):-n_val],
133
- 'train': records[:-(n_val+n_test)]
134
- })
135
-
136
- splits = {'train': [], 'val': [], 'test': []}
137
- for i, file in enumerate(genome_files):
138
  for split_type in ['train', 'val', 'test']:
139
- if len(genome_chromos[i][split_type]) > 0:
140
- splits[split_type].append(file)
141
-
142
- return [
143
- datasets.SplitGenerator(
144
- name=datasets.Split.TRAIN,
145
- gen_kwargs={
146
- "files": splits['train'],
147
- "chunk_length": self.config.chunk_length,
148
- "chromo_splits": genome_chromos,
149
- "split_type": "train"
150
- }
151
- ),
152
- datasets.SplitGenerator(
153
- name=datasets.Split.VALIDATION,
154
- gen_kwargs={
155
- "files": splits['val'],
156
- "chunk_length": self.config.chunk_length,
157
- "chromo_splits": genome_chromos,
158
- "split_type": "val"
159
- }
160
- ),
161
- datasets.SplitGenerator(
162
- name=datasets.Split.TEST,
163
- gen_kwargs={
164
- "files": splits['test'],
165
- "chunk_length": self.config.chunk_length,
166
- "chromo_splits": genome_chromos,
167
- "split_type": "test"
168
- }
169
- ),
170
- ]
171
- else:
172
- file_lengths = []
173
- for file in genome_files:
174
- with open(file, 'rt') as f:
175
- length_sum = 0
176
- for rec in SeqIO.parse(f, 'fasta'):
177
- length_sum += len(rec.seq)
178
- file_lengths.append((file, length_sum))
179
-
180
- file_lengths.sort(key=lambda x: x[1]) # smallest first
181
-
182
- val_files = [fl[0] for fl in file_lengths[:1]]
183
- test_files = [fl[0] for fl in file_lengths[1:2]]
184
- train_files = [fl[0] for fl in file_lengths[2:]]
185
-
186
- return [
187
- datasets.SplitGenerator(
188
- name=datasets.Split.TRAIN,
189
- gen_kwargs={
190
- "files": train_files,
191
- "chunk_length": self.config.chunk_length,
192
- "chromo_splits": None, # not used
193
- "split_type": "train"
194
- }
195
- ),
196
- datasets.SplitGenerator(
197
- name=datasets.Split.VALIDATION,
198
- gen_kwargs={
199
- "files": val_files,
200
- "chunk_length": self.config.chunk_length,
201
- "chromo_splits": None,
202
- "split_type": "val"
203
- }
204
- ),
205
- datasets.SplitGenerator(
206
- name=datasets.Split.TEST,
207
- gen_kwargs={
208
- "files": test_files,
209
- "chunk_length": self.config.chunk_length,
210
- "chromo_splits": None,
211
- "split_type": "test"
212
- }
213
- ),
214
- ]
215
-
216
-
217
- def _generate_examples(self, files, chunk_length, chromo_splits, split_type):
218
  key = 0
219
- if self.config.split_mode == "chromosome":
220
- for file_idx, file in enumerate(files):
221
- with open(file, 'rt') as f:
222
- records = list(SeqIO.parse(f, 'fasta'))
223
- target_chromos = chromo_splits[file_idx][split_type]
 
 
 
224
 
225
- for record in records:
226
- if any(record.id == target.id for target in target_chromos):
227
- sequence = clean_sequence(str(record.seq))
228
- seq_length = len(sequence)
229
- num_chunks = (seq_length - 2 * self.config.overlap) // chunk_length
230
-
231
- if num_chunks < 1:
232
- continue
233
-
234
- sequence = sequence[:(chunk_length * num_chunks + 2 * self.config.overlap)]
235
- seq_length = len(sequence)
236
-
237
- for i in range(num_chunks):
238
- start_pos = i * chunk_length
239
- end_pos = min(seq_length, (i+1) * chunk_length + 2 * self.config.overlap)
240
- chunk_sequence = sequence[start_pos:end_pos]
241
-
242
- yield key, {
243
- 'sequence': chunk_sequence,
244
- 'description': record.description,
245
- 'start_pos': start_pos,
246
- 'end_pos': end_pos,
247
- }
248
- key += 1
249
- else:
250
- for file in files:
251
- with open(file, 'rt') as f:
252
- fasta_sequences = SeqIO.parse(f, 'fasta')
253
-
254
- for record in fasta_sequences:
255
- sequence = clean_sequence(str(record.seq))
256
- seq_length = len(sequence)
257
- num_chunks = (seq_length - 2 * self.config.overlap) // chunk_length
258
-
259
- if num_chunks < 1:
260
- continue
261
-
262
- sequence = sequence[:(chunk_length * num_chunks + 2 * self.config.overlap)]
263
- seq_length = len(sequence)
264
-
265
- for i in range(num_chunks):
266
- start_pos = i * chunk_length
267
- end_pos = min(seq_length, (i+1) * chunk_length + 2 * self.config.overlap)
268
- chunk_sequence = sequence[start_pos:end_pos]
269
-
270
- yield key, {
271
- 'sequence': chunk_sequence,
272
- 'description': record.description,
273
- 'start_pos': start_pos,
274
- 'end_pos': end_pos,
275
- }
276
- key += 1
 
1
+ from typing import List, Dict
 
 
 
 
 
 
 
 
 
 
2
  import datasets
3
  from Bio import SeqIO
4
  import os
 
47
 
48
  class PlantMultiSpeciesGenomesConfig(datasets.BuilderConfig):
49
  """BuilderConfig for the Plant Multi Species Pre-training Dataset."""
50
+ def __init__(self, *args, chunk_length: int, overlap: int = 100, **kwargs):
51
  """
52
  Args:
53
  chunk_length (int): length of each chunk
54
  overlap (int): overlap size (defaults to 100)
 
55
  """
56
  num_kbp = int(chunk_length/1000)
57
  super().__init__(
 
61
  )
62
  self.chunk_length = chunk_length
63
  self.overlap = overlap
 
64
 
65
  class PlantMultiSpeciesGenomes(datasets.GeneratorBasedBuilder):
66
  VERSION = datasets.Version("1.1.0")
67
  BUILDER_CONFIG_CLASS = PlantMultiSpeciesGenomesConfig
 
68
  BUILDER_CONFIGS = [
69
+ PlantMultiSpeciesGenomesConfig(chunk_length=chunk_length) for chunk_length in _CHUNK_LENGTHS
70
  ]
 
71
  DEFAULT_CONFIG_NAME = "1kbp"
72
 
73
  @classmethod
74
+ def from_config(cls, chunk_length=1000, overlap=100, **kwargs):
75
  return cls(PlantMultiSpeciesGenomesConfig(
76
  chunk_length=chunk_length,
77
  overlap=overlap,
 
78
  **kwargs
79
  ))
80
 
 
95
  citation=_CITATION,
96
  )
97
 
98
+ def _calculate_split_ratio(self, size: int, total_size: int) -> float:
99
+ """
100
+ Calculate the split ratio for validation and test sets based on genome size.
101
+ Args:
102
+ size: Size of the current genome
103
+ total_size: Total size of all genomes
104
+ Returns:
105
+ float: Ratio to use for validation and test sets
106
+ """
107
+ size_ratio = size / total_size
108
+
109
+ if size_ratio > 0.2: # Very large genomes (>20% of total)
110
+ return 0.002 # 0.2%
111
+ elif size_ratio > 0.1: # Large genomes (10-20% of total)
112
+ return 0.005 # 0.5%
113
+ elif size_ratio > 0.05: # Medium genomes (5-10% of total)
114
+ return 0.01 # 1%
115
+ else: # Small genomes (<5% of total)
116
+ return 0.02 # 2%
117
+
118
+ def _split_genome(self, records: List, ratio: float) -> Dict[str, List]:
119
+ """
120
+ Split a genome's records into train, validation, and test sets.
121
+ Args:
122
+ records: List of genome records
123
+ ratio: Ratio to use for validation and test sets
124
+ Returns:
125
+ Dict containing split records
126
+ """
127
+ total_records = len(records)
128
+ n_val = max(1, int(total_records * ratio))
129
+ n_test = max(1, int(total_records * ratio))
130
+
131
+ # Cap at total 10% for validation + test
132
+ if n_val + n_test > total_records * 0.1:
133
+ scale = total_records * 0.1 / (n_val + n_test)
134
+ n_val = int(n_val * scale)
135
+ n_test = int(n_test * scale)
136
+
137
+ return {
138
+ 'val': records[:n_val],
139
+ 'test': records[n_val:n_val+n_test],
140
+ 'train': records[n_val+n_test:]
141
+ }
142
+
143
  def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
144
  # Download filepaths
145
  filepaths_txt = dl_manager.download_and_extract('plant_genome_file_names.txt')
 
147
  filepaths = [os.path.join("plant_genomes", filepath.rstrip()) for filepath in f]
148
 
149
  genome_files = [dl_manager.download_and_extract(f) for f in filepaths]
150
+
151
+ # Calculate total genome size and individual sizes
152
+ genome_sizes = {}
153
+ total_size = 0
154
+ for file in genome_files:
155
+ with open(file, 'rt') as f:
156
+ size = sum(len(str(record.seq)) for record in SeqIO.parse(f, 'fasta'))
157
+ genome_sizes[file] = size
158
+ total_size += size
159
+
160
+ # Split each genome and store records
161
+ split_records = {'train': [], 'val': [], 'test': []}
162
+ for file in genome_files:
163
+ with open(file, 'rt') as f:
164
+ records = list(SeqIO.parse(f, 'fasta'))
165
+ ratio = self._calculate_split_ratio(genome_sizes[file], total_size)
166
+ splits = self._split_genome(records, ratio)
167
+
168
  for split_type in ['train', 'val', 'test']:
169
+ if len(splits[split_type]) > 0:
170
+ split_records[split_type].append((file, splits[split_type]))
171
+
172
+ return [
173
+ datasets.SplitGenerator(
174
+ name=datasets.Split.TRAIN,
175
+ gen_kwargs={
176
+ "split_records": split_records['train'],
177
+ "chunk_length": self.config.chunk_length,
178
+ "overlap": self.config.overlap
179
+ }
180
+ ),
181
+ datasets.SplitGenerator(
182
+ name=datasets.Split.VALIDATION,
183
+ gen_kwargs={
184
+ "split_records": split_records['val'],
185
+ "chunk_length": self.config.chunk_length,
186
+ "overlap": self.config.overlap
187
+ }
188
+ ),
189
+ datasets.SplitGenerator(
190
+ name=datasets.Split.TEST,
191
+ gen_kwargs={
192
+ "split_records": split_records['test'],
193
+ "chunk_length": self.config.chunk_length,
194
+ "overlap": self.config.overlap
195
+ }
196
+ ),
197
+ ]
198
+
199
+ def _generate_examples(self, split_records, chunk_length, overlap):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
  key = 0
201
+ for file, records in split_records:
202
+ for record in records:
203
+ sequence = clean_sequence(str(record.seq))
204
+ seq_length = len(sequence)
205
+ num_chunks = (seq_length - 2 * overlap) // chunk_length
206
+
207
+ if num_chunks < 1:
208
+ continue
209
 
210
+ sequence = sequence[:(chunk_length * num_chunks + 2 * overlap)]
211
+ seq_length = len(sequence)
212
+
213
+ for i in range(num_chunks):
214
+ start_pos = i * chunk_length
215
+ end_pos = min(seq_length, (i+1) * chunk_length + 2 * overlap)
216
+ chunk_sequence = sequence[start_pos:end_pos]
217
+
218
+ yield key, {
219
+ 'sequence': chunk_sequence,
220
+ 'description': record.description,
221
+ 'start_pos': start_pos,
222
+ 'end_pos': end_pos,
223
+ }
224
+ key += 1