|
from typing import Dict, Optional |
|
import datasets |
|
from Bio import SeqIO |
|
import os |
|
import gzip |
|
import wget |
|
import logging |
|
import tqdm |
|
from collections import defaultdict |
|
import tempfile |
|
|
|
class RNACentralDownloader: |
|
"""Helper class to manage RNAcentral downloads""" |
|
BASE_URL = "https://ftp.ebi.ac.uk/pub/databases/RNAcentral/current_release" |
|
|
|
@staticmethod |
|
def download_file(url: str, output_dir: str) -> str: |
|
"""Download a file with progress bar and return local path""" |
|
os.makedirs(output_dir, exist_ok=True) |
|
output_path = os.path.join(output_dir, os.path.basename(url)) |
|
|
|
if os.path.exists(output_path): |
|
logging.info(f"File already exists: {output_path}") |
|
return output_path |
|
|
|
logging.info(f"Downloading {url} to {output_path}") |
|
wget.download(url, output_path) |
|
print() |
|
return output_path |
|
|
|
class RNACentralMinimalConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for RNAcentral minimal corpus.""" |
|
def __init__( |
|
self, |
|
*args, |
|
min_length: int = 10, |
|
max_length: int = 10000, |
|
max_sequences: Optional[int] = None, |
|
include_metadata: bool = True, |
|
cache_dir: Optional[str] = None, |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
self.min_length = min_length |
|
self.max_length = max_length |
|
self.max_sequences = max_sequences |
|
self.include_metadata = include_metadata |
|
self.cache_dir = cache_dir or tempfile.gettempdir() |
|
|
|
class RNACentralMinimalCorpus(datasets.GeneratorBasedBuilder): |
|
"""Minimal RNAcentral corpus for pre-training.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIG_CLASS = RNACentralMinimalConfig |
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.config = self.config or self.BUILDER_CONFIG_CLASS( |
|
name=self.DEFAULT_CONFIG_NAME, |
|
min_length=10, |
|
max_length=1000, |
|
max_sequences=1000000, |
|
include_metadata=True |
|
) |
|
self.downloader = RNACentralDownloader() |
|
|
|
def _info(self): |
|
features = { |
|
"id": datasets.Value("string"), |
|
"sequence": datasets.Value("string"), |
|
"length": datasets.Value("int32"), |
|
} |
|
|
|
if self.config.include_metadata: |
|
features.update({ |
|
"rna_type": datasets.Value("string"), |
|
"rfam_family": datasets.Value("string"), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
homepage="https://rnacentral.org/", |
|
license="CC0", |
|
citation=_CITATION, |
|
) |
|
|
|
def _load_minimal_rfam(self, filepath: str) -> Dict[str, str]: |
|
"""Load minimal Rfam annotations (family only).""" |
|
rfam_families = {} |
|
with gzip.open(filepath, 'rt') as f: |
|
next(f) |
|
for line in f: |
|
fields = line.strip().split('\t') |
|
if len(fields) >= 3: |
|
rna_id = fields[0] |
|
family = fields[2] |
|
rfam_families[rna_id] = family |
|
return rfam_families |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
|
|
sequences_url = f"{self.downloader.BASE_URL}/sequences/rnacentral_active.fasta.gz" |
|
sequences_path = self.downloader.download_file(sequences_url, self.config.cache_dir) |
|
|
|
rfam_families = {} |
|
if self.config.include_metadata: |
|
rfam_url = f"{self.downloader.BASE_URL}/rfam/rfam_annotations.tsv.gz" |
|
rfam_path = self.downloader.download_file(rfam_url, self.config.cache_dir) |
|
rfam_families = self._load_minimal_rfam(rfam_path) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": sequences_path, |
|
"rfam_families": rfam_families, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": sequences_path, |
|
"rfam_families": rfam_families, |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: str, rfam_families: Dict[str, str], split: str): |
|
"""Generate examples with size and content restrictions.""" |
|
processed_count = 0 |
|
split_start = 0.0 if split == "train" else 0.9 |
|
split_end = 0.9 if split == "train" else 1.0 |
|
|
|
with gzip.open(filepath, 'rt') as handle: |
|
for idx, record in enumerate(SeqIO.parse(handle, 'fasta')): |
|
if self.config.max_sequences and processed_count >= self.config.max_sequences: |
|
break |
|
|
|
if not (split_start <= (idx % 10) / 10 < split_end): |
|
continue |
|
|
|
sequence = str(record.seq) |
|
length = len(sequence) |
|
|
|
if length < self.config.min_length or length > self.config.max_length: |
|
continue |
|
|
|
rna_id = record.id.split('|')[0] |
|
|
|
example = { |
|
"id": rna_id, |
|
"sequence": sequence, |
|
"length": length, |
|
} |
|
|
|
if self.config.include_metadata: |
|
description_parts = record.description.split('|') |
|
rna_type = "unknown" |
|
for part in description_parts: |
|
if "RNA_type:" in part: |
|
rna_type = part.split(':')[1].strip() |
|
break |
|
|
|
example.update({ |
|
"rna_type": rna_type, |
|
"rfam_family": rfam_families.get(rna_id, "unknown"), |
|
}) |
|
|
|
yield processed_count, example |
|
processed_count += 1 |