from typing import Dict, Optional import datasets from Bio import SeqIO import os import gzip import wget import logging import tqdm from collections import defaultdict import tempfile _CITATION = """\ @article{the2019rnacentral, title={RNAcentral: a hub of information for non-coding RNA sequences}, author={The RNAcentral Consortium}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D221--D229}, year={2019}, publisher={Oxford University Press} } """ _DESCRIPTION = """\ RNAcentral corpus for pre-training, containing sequences and basic metadata. """ class RNACentralDownloader: """Helper class to manage RNAcentral downloads""" BASE_URL = "https://ftp.ebi.ac.uk/pub/databases/RNAcentral/current_release" @staticmethod def download_file(url: str, output_dir: str) -> str: """Download a file with progress bar and return local path""" os.makedirs(output_dir, exist_ok=True) output_path = os.path.join(output_dir, os.path.basename(url)) if os.path.exists(output_path): logging.info(f"File already exists: {output_path}") return output_path logging.info(f"Downloading {url} to {output_path}") wget.download(url, output_path) print() # New line after wget progress bar return output_path class RNACentralMinimalConfig(datasets.BuilderConfig): """BuilderConfig for RNAcentral minimal corpus.""" def __init__( self, *args, min_length: int = 10, max_length: int = 10000, max_sequences: Optional[int] = None, include_metadata: bool = True, cache_dir: Optional[str] = None, **kwargs, ): super().__init__(*args, **kwargs) self.min_length = min_length self.max_length = max_length self.max_sequences = max_sequences self.include_metadata = include_metadata self.cache_dir = cache_dir or tempfile.gettempdir() class RNACentralMinimalCorpus(datasets.GeneratorBasedBuilder): """Minimal RNAcentral corpus for pre-training.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIG_CLASS = RNACentralMinimalConfig DEFAULT_CONFIG_NAME = "default" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.config = self.config or self.BUILDER_CONFIG_CLASS( name=self.DEFAULT_CONFIG_NAME, min_length=10, max_length=1000, max_sequences=1000000, include_metadata=True ) self.downloader = RNACentralDownloader() def _info(self): features = { "id": datasets.Value("string"), "sequence": datasets.Value("string"), "length": datasets.Value("int32"), } if self.config.include_metadata: features.update({ "rna_type": datasets.Value("string"), "rfam_family": datasets.Value("string"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), homepage="https://rnacentral.org/", license="CC0", citation=_CITATION, ) def _load_minimal_rfam(self, filepath: str) -> Dict[str, str]: """Load minimal Rfam annotations (family only).""" rfam_families = {} with gzip.open(filepath, 'rt') as f: next(f) for line in f: fields = line.strip().split('\t') if len(fields) >= 3: rna_id = fields[0] family = fields[2] rfam_families[rna_id] = family return rfam_families def _split_generators(self, dl_manager: datasets.DownloadManager): # Direct download using wget instead of datasets downloader sequences_url = f"{self.downloader.BASE_URL}/sequences/rnacentral_active.fasta.gz" sequences_path = self.downloader.download_file(sequences_url, self.config.cache_dir) rfam_families = {} if self.config.include_metadata: rfam_url = f"{self.downloader.BASE_URL}/rfam/rfam_annotations.tsv.gz" rfam_path = self.downloader.download_file(rfam_url, self.config.cache_dir) rfam_families = self._load_minimal_rfam(rfam_path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": sequences_path, "rfam_families": rfam_families, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": sequences_path, "rfam_families": rfam_families, "split": "validation", }, ), ] def _generate_examples(self, filepath: str, rfam_families: Dict[str, str], split: str): """Generate examples with size and content restrictions.""" processed_count = 0 split_start = 0.0 if split == "train" else 0.9 split_end = 0.9 if split == "train" else 1.0 with gzip.open(filepath, 'rt') as handle: for idx, record in enumerate(SeqIO.parse(handle, 'fasta')): if self.config.max_sequences and processed_count >= self.config.max_sequences: break if not (split_start <= (idx % 10) / 10 < split_end): continue sequence = str(record.seq) length = len(sequence) if length < self.config.min_length or length > self.config.max_length: continue rna_id = record.id.split('|')[0] example = { "id": rna_id, "sequence": sequence, "length": length, } if self.config.include_metadata: description_parts = record.description.split('|') rna_type = "unknown" for part in description_parts: if "RNA_type:" in part: rna_type = part.split(':')[1].strip() break example.update({ "rna_type": rna_type, "rfam_family": rfam_families.get(rna_id, "unknown"), }) yield processed_count, example processed_count += 1