Upload 3 files
Browse files- .gitattributes +1 -0
- asr.py +23 -11
- speech_recognition_results.csv +2 -2
- speech_recognition_results_sorted.csv +0 -0
.gitattributes
CHANGED
@@ -58,3 +58,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
speech_recognition_results.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
speech_recognition_results.csv filter=lfs diff=lfs merge=lfs -text
|
61 |
+
speech_recognition_results_sorted.csv filter=lfs diff=lfs merge=lfs -text
|
asr.py
CHANGED
@@ -3,8 +3,9 @@ import csv
|
|
3 |
from datasets import load_dataset
|
4 |
from transformers import pipeline
|
5 |
import os
|
|
|
6 |
|
7 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "
|
8 |
|
9 |
# 音声認識のための generate_kwargs を定義
|
10 |
generate_kwargs = {
|
@@ -26,15 +27,27 @@ pipe = pipeline(
|
|
26 |
# データセットをロード
|
27 |
dataset = load_dataset("litagin/Galgame_Speech_ASR_16kHz", streaming=True)
|
28 |
|
29 |
-
# CSV
|
30 |
csv_file = "speech_recognition_results.csv"
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
writer = csv.writer(file)
|
33 |
-
writer.writerow(["True", "ASR"])
|
34 |
|
35 |
-
#
|
36 |
-
|
|
|
37 |
|
|
|
|
|
38 |
# ASR パイプラインを使って音声データを文字起こし
|
39 |
result = pipe(example["ogg"]["array"], generate_kwargs=generate_kwargs)
|
40 |
|
@@ -43,10 +56,9 @@ with open(csv_file, mode="w", newline="", encoding="utf-8") as file:
|
|
43 |
asr_result = result["text"]
|
44 |
|
45 |
# 結果をCSVファイルに書き込み
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
print()
|
51 |
|
52 |
print(f"結果は {csv_file} に保存されました。")
|
|
|
3 |
from datasets import load_dataset
|
4 |
from transformers import pipeline
|
5 |
import os
|
6 |
+
from itertools import islice
|
7 |
|
8 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
9 |
|
10 |
# 音声認識のための generate_kwargs を定義
|
11 |
generate_kwargs = {
|
|
|
27 |
# データセットをロード
|
28 |
dataset = load_dataset("litagin/Galgame_Speech_ASR_16kHz", streaming=True)
|
29 |
|
30 |
+
# CSVファイルの準備
|
31 |
csv_file = "speech_recognition_results.csv"
|
32 |
+
|
33 |
+
# 既存の行数を確認
|
34 |
+
start_index = 0
|
35 |
+
if os.path.exists(csv_file):
|
36 |
+
with open(csv_file, mode="r", encoding="utf-8") as file:
|
37 |
+
reader = csv.reader(file)
|
38 |
+
next(reader, None) # ヘッダーをスキップ
|
39 |
+
start_index = sum(1 for _ in reader) # 行数をカウント
|
40 |
+
|
41 |
+
# CSVファイルを開く(追記モード)
|
42 |
+
with open(csv_file, mode="a", newline="", encoding="utf-8") as file:
|
43 |
writer = csv.writer(file)
|
|
|
44 |
|
45 |
+
# ヘッダーが存在しない場合のみ書き込む
|
46 |
+
if start_index == 0:
|
47 |
+
writer.writerow(["True", "ASR"])
|
48 |
|
49 |
+
# トレーニングデータを一括でスキップして処理を再開
|
50 |
+
for index, example in islice(enumerate(dataset["train"]), start_index, None):
|
51 |
# ASR パイプラインを使って音声データを文字起こし
|
52 |
result = pipe(example["ogg"]["array"], generate_kwargs=generate_kwargs)
|
53 |
|
|
|
56 |
asr_result = result["text"]
|
57 |
|
58 |
# 結果をCSVファイルに書き込み
|
59 |
+
writer.writerow([true_text, asr_result])
|
60 |
+
print("True:", true_text)
|
61 |
+
print("ASR :", asr_result)
|
62 |
+
print()
|
|
|
63 |
|
64 |
print(f"結果は {csv_file} に保存されました。")
|
speech_recognition_results.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:184b07e62535056b1050bb96fb49768f03e1db0d1c0d79aef210dfc206dbedd5
|
3 |
+
size 60985441
|
speech_recognition_results_sorted.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|