File size: 8,686 Bytes
64323cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c28506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64323cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MERLIN Written Learner Corpus for Czech, German, Italian 1.1."""


import csv
import json
import os

import datasets

_CITATION = """\
@inproceedings{boyd-etal-2014-merlin,
    title = "The {MERLIN} corpus: Learner language and the {CEFR}",
    author = {Boyd, Adriane  and
      Hana, Jirka  and
      Nicolas, Lionel  and
      Meurers, Detmar  and
      Wisniewski, Katrin  and
      Abel, Andrea  and
      Sch{\"o}ne, Karin  and
      {\v{S}}tindlov{\'a}, Barbora  and
      Vettori, Chiara},
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Declerck, Thierry  and
      Loftsson, Hrafn  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Moreno, Asuncion  and
      Odijk, Jan  and
      Piperidis, Stelios",
    booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
    month = may,
    year = "2014",
    address = "Reykjavik, Iceland",
    publisher = "European Language Resources Association (ELRA)",
    url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/606_Paper.pdf",
    pages = "1281--1288",
    abstract = "The MERLIN corpus is a written learner corpus for Czech, German,and Italian that has been designed to illustrate the Common European Framework of Reference for Languages (CEFR) with authentic learner data. The corpus contains 2,290 learner texts produced in standardized language certifications covering CEFR levels A1-C1. The MERLIN annotation scheme includes a wide range of language characteristics that enable research into the empirical foundations of the CEFR scales and provide language teachers, test developers, and Second Language Acquisition researchers with concrete examples of learner performance and progress across multiple proficiency levels. For computational linguistics, it provide a range of authentic learner data for three target languages, supporting a broadening of the scope of research in areas such as automatic proficiency classification or native language identification. The annotated corpus and related information will be freely available as a corpus resource and through a freely accessible, didactically-oriented online platform.",
}
"""

_DESCRIPTION = """\
The MERLIN corpus is a written learner corpus for Czech, German, and Italian that has been
designed to illustrate the Common European Framework of Reference for Languages (CEFR) with
authentic learner data. The corpus contains learner texts produced in standardized language
certifications covering CEFR levels A1-C1. The MERLIN annotation scheme includes a wide
range of language characteristics that provide researchers with concrete examples of learner
performance and progress across multiple proficiency levels.
"""

_HOMEPAGE = "https://merlin-platform.eu/"

_LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"

_URLS = {
    "multilingual": "https://clarin.eurac.edu/repository/xmlui/bitstream/handle/20.500.12124/6/merlin-text-v1.1.zip",
    "german": "https://clarin.eurac.edu/repository/xmlui/bitstream/handle/20.500.12124/6/merlin-text-v1.1.zip",
    "italian": "https://clarin.eurac.edu/repository/xmlui/bitstream/handle/20.500.12124/6/merlin-text-v1.1.zip",
    "czech": "https://clarin.eurac.edu/repository/xmlui/bitstream/handle/20.500.12124/6/merlin-text-v1.1.zip",
}

class MerlinDataset(datasets.GeneratorBasedBuilder):
    """Merlin dataset including three languages."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="multilingual", version=VERSION, description="Merlin dataset including three languages."),
        datasets.BuilderConfig(name="german", version=VERSION, description="Merlin dataset German."),
        datasets.BuilderConfig(name="italian", version=VERSION, description="Merlin dataset Italian."),
        datasets.BuilderConfig(name="czech", version=VERSION, description="Merlin dataset Czech."),
    ]


    def _info(self):
        features = datasets.Features(
            {
                "author": datasets.Value("string"),
                "language": datasets.ClassLabel(num_classes=3, names=["Czech", "German", "Italian"]),
                "level": datasets.ClassLabel(num_classes=6, names=['A1', 'A2', 'B1', 'B2', 'C1', 'C2']),
                "level_grammar": datasets.ClassLabel(num_classes=6, names=['A1', 'A2', 'B1', 'B2', 'C1', 'C2']),
                "level_ortography":  datasets.ClassLabel(num_classes=6, names=['A1', 'A2', 'B1', 'B2', 'C1', 'C2']),
                "level_vocabulary_range": datasets.ClassLabel(num_classes=6, names=['A1', 'A2', 'B1', 'B2', 'C1', 'C2']),
                "level_vocabulary_control": datasets.ClassLabel(num_classes=6, names=['A1', 'A2', 'B1', 'B2', 'C1', 'C2']),
                "level_coherence":  datasets.ClassLabel(num_classes=6, names=['A1', 'A2', 'B1', 'B2', 'C1', 'C2']),
                "level_appropriateness": datasets.ClassLabel(num_classes=6, names=['A1', 'A2', 'B1', 'B2', 'C1', 'C2']),
                "text": datasets.Value("string"),
                "text_target": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        filepath = os.path.join(data_dir, "merlin-text-v1.1/meta_ltext_THs")
        if self.config.name != "multilingual":
            filepath = os.path.join(filepath, self.config.name)
        print(f"Genereting split from {filepath}")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": filepath,
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        import re

        file_list = []
        for path, _, files in os.walk(filepath):
            for file in files:
                file_list.append(os.path.join(path, file))

        print(f"Reading {len(file_list)} files")
        # Transform the data
        for f in file_list:
            raw_text = open(f, "r").read()

            language = re.findall(r'(Test language: )(.*?)(\n)', raw_text)[0][1]
            author_id = re.findall(r'(Author ID: )(.*?)(\n)', raw_text)[0][1]
            level = re.findall(r'(CEFR level of test: )(.*?)(\n)', raw_text)[0][1]
            level_grammar = re.findall(r'(Grammatical accuracy: )(.*?)(\n)', raw_text)[0][1]
            level_ortography = re.findall(r'(Orthography: )(.*?)(\n)', raw_text)[0][1]
            level_vocabulary_range = re.findall(r'(Vocabulary range: )(.*?)(\n)', raw_text)[0][1]
            level_vocabulary_control = re.findall(r'(Vocabulary control: )(.*?)(\n)', raw_text)[0][1]
            level_coherence = re.findall(r'(Coherence/Cohesion: )(.*?)(\n)', raw_text)[0][1]
            level_appropriateness = re.findall(r'(Sociolinguistic appropriateness: )(.*?)(\n)', raw_text)[0][1]
            text = re.findall(r'(Learner text: \n\n)(.*?)(\n\n----------------\n\n)', raw_text, re.DOTALL)[0][1]
            text_target = re.findall(r'(Target hypothesis 1: \n\n)(.*?)(\n\n----------------\n\n)', raw_text, re.DOTALL)[0][1]

            id_ = f'{language}_{author_id}'
            yield id_, {
                "author": author_id,
                "language": language,
                "level": level,
                "level_grammar": level_grammar,
                "level_ortography":  level_ortography,
                "level_vocabulary_range": level_vocabulary_range,
                "level_vocabulary_control": level_vocabulary_control,
                "level_coherence": level_coherence,
                "level_appropriateness": level_appropriateness,
                "text": text,
                "text_target": text_target,
            }