theblackcat102 commited on
Commit
4be16a1
·
verified ·
1 Parent(s): 78e8d41

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -39
README.md CHANGED
@@ -2252,46 +2252,47 @@ We present TMMLU+, a traditional Chinese massive multitask language understandin
2252
 
2253
  The TMMLU+ dataset is six times larger and contains more balanced subjects compared to its predecessor, [TMMLU](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval/data/TMMLU). We have included benchmark results in TMMLU+ from closed-source models and 20 open-weight Chinese large language models, with parameters ranging from 1.8B to 72B. The benchmark results show that Traditional Chinese variants still lag behind those trained on major Simplified Chinese models.
2254
 
2255
- ## Leaderboard ( Last Updated : 2025/04/05 )
2256
-
2257
- Model | humanities | social sciences | STEM | Others | Average
2258
- -----------------------------------------------------------------------------------------------------------
2259
- openrouter/quasar-alpha | 70.38 | 83.07 | 87.89 | 76.42 | 79.44
2260
- deepseek-v3 | 73.19 | 81.93 | 82.93 | 74.41 | 78.11
2261
- Qwen/Qwen2.5-72B-Instruct-Turbo | 67.59 | 79.36 | 82.57 | 72.65 | 75.54
2262
- gpt-4o-2024-08-06 | 65.48 | 78.23 | 81.39 | 71.24 | 74.08
2263
- claude-3-5-sonnet-20240620 | 73.23 | 78.27 | 68.50 | 69.35 | 72.34
2264
- gemini-2.0-flash-001 | 67.81 | 75.24 | 74.79 | 65.92 | 70.94
2265
- gemini-2.0-flash-lite-001 | 65.26 | 75.12 | 72.73 | 65.50 | 69.65
2266
- gemini-2.0-flash-lite-preview-02-05 | 64.66 | 73.48 | 70.00 | 63.90 | 68.01
2267
- meta-llama/llama-3.2-90b-vision-instruct | 68.93 | 75.77 | 67.19 | 59.79 | 67.92
2268
- qwen/qwen2.5-vl-32b-instruct | 62.93 | 79.24 | 63.61 | 65.16 | 67.73
2269
- Qwen/QwQ-32B-Preview | 57.98 | 70.94 | 72.87 | 63.59 | 66.35
2270
- claude-3-opus-20240229 | 60.34 | 70.12 | 67.43 | 62.32 | 65.05
2271
- gemini-1.5-pro | 61.84 | 70.29 | 66.18 | 60.30 | 64.65
2272
- gpt-4o-mini-2024-07-18 | 55.01 | 67.09 | 73.16 | 61.36 | 64.15
2273
- mistralai/Mistral-Small-24B-Instruct-2501 | 54.56 | 68.32 | 73.25 | 59.25 | 63.85
2274
- llama-3.1-70b-versatile | 64.94 | 70.14 | 58.63 | 61.33 | 63.76
2275
- Qwen/Qwen2.5-7B-Instruct-Turbo | 54.42 | 64.51 | 68.01 | 58.83 | 61.44
2276
- yentinglin/Llama-3-Taiwan-8B-Instruct | 61.51 | 67.61 | 52.05 | 58.60 | 59.94
2277
- meta-llama/llama-4-scout | 53.86 | 61.83 | 60.76 | 57.78 | 58.56
2278
- google/gemma-3-27b-it | 59.75 | 58.32 | 55.65 | 49.21 | 55.73
2279
- claude-3-sonnet-20240229 | 52.06 | 59.38 | 49.87 | 51.64 | 53.24
2280
- meta-llama/llama-4-maverick | 52.53 | 49.88 | 54.82 | 51.41 | 52.16
2281
- Qwen2-7B-Instruct | 55.66 | 66.40 | 27.18 | 55.32 | 51.14
2282
- gemma2-9b-it | 45.38 | 55.76 | 49.89 | 48.92 | 49.99
2283
- claude-3-haiku-20240307 | 47.48 | 54.48 | 48.47 | 48.77 | 49.80
2284
- gemini-1.5-flash | 42.99 | 53.42 | 53.47 | 46.56 | 49.11
2285
- reka-flash | 44.07 | 52.68 | 46.04 | 43.43 | 46.56
2286
- meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo | 44.03 | 50.95 | 42.75 | 45.19 | 45.73
2287
- mixtral-8x7b-32768 | 44.75 | 50.34 | 32.60 | 43.76 | 42.86
2288
- meta-llama/Llama-3-70b-chat-hf | 37.50 | 47.02 | 34.44 | 39.51 | 39.62
2289
- RekaAI/reka-flash-3 | 34.76 | 40.70 | 42.98 | 35.37 | 38.45
2290
- google/gemma-7b-it | 34.00 | 35.70 | 31.89 | 33.79 | 33.84
2291
- reka-edge | 31.84 | 39.40 | 30.02 | 32.36 | 33.41
2292
- meta-llama/Llama-3-8b-chat-hf | 28.91 | 34.19 | 31.52 | 31.79 | 31.60
2293
- taide/Llama3-TAIDE-LX-8B-Chat-Alpha1 | 27.02 | 36.64 | 25.33 | 27.96 | 29.24
2294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
 
2296
 
2297
  ## How to use
 
2252
 
2253
  The TMMLU+ dataset is six times larger and contains more balanced subjects compared to its predecessor, [TMMLU](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval/data/TMMLU). We have included benchmark results in TMMLU+ from closed-source models and 20 open-weight Chinese large language models, with parameters ranging from 1.8B to 72B. The benchmark results show that Traditional Chinese variants still lag behind those trained on major Simplified Chinese models.
2254
 
2255
+ ## Leaderboard ( Last Updated : 2025/04/06 )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256
 
2257
+ | Model | humanities | social sciences | STEM | Others | Average |
2258
+ | ----- | ---: | ---: | ---: | ---: | ---: |
2259
+ | openrouter/quasar-alpha | 70.38 | 83.07 | 87.89 | 76.42 | 79.44 |
2260
+ | deepseek-v3 | 73.19 | 81.93 | 82.93 | 74.41 | 78.11 |
2261
+ | Qwen/Qwen2.5-72B-Instruct-Turbo | 67.59 | 79.36 | 82.57 | 72.65 | 75.54 |
2262
+ | gpt-4o-2024-08-06 | 65.48 | 78.23 | 81.39 | 71.24 | 74.08 |
2263
+ | claude-3-5-sonnet-20240620 | 73.23 | 78.27 | 68.50 | 69.35 | 72.34 |
2264
+ | gemini-2.0-flash-001 | 67.81 | 75.24 | 74.79 | 65.92 | 70.94 |
2265
+ | gemini-2.0-flash-lite-001 | 65.26 | 75.12 | 72.73 | 65.50 | 69.65 |
2266
+ | gemini-2.0-flash-lite-preview-02-05 | 64.66 | 73.48 | 70.00 | 63.90 | 68.01 |
2267
+ | meta-llama/llama-3.2-90b-vision-instruct | 68.93 | 75.77 | 67.19 | 59.79 | 67.92 |
2268
+ | qwen/qwen2.5-vl-32b-instruct | 62.93 | 79.24 | 63.61 | 65.16 | 67.73 |
2269
+ | Qwen/QwQ-32B-Preview | 57.98 | 70.94 | 72.87 | 63.59 | 66.35 |
2270
+ | claude-3-opus-20240229 | 60.34 | 70.12 | 67.43 | 62.32 | 65.05 |
2271
+ | gemini-1.5-pro | 61.84 | 70.29 | 66.18 | 60.30 | 64.65 |
2272
+ | gpt-4o-mini-2024-07-18 | 55.01 | 67.09 | 73.16 | 61.36 | 64.15 |
2273
+ | mistralai/Mistral-Small-24B-Instruct-2501 | 54.56 | 68.32 | 73.25 | 59.25 | 63.85 |
2274
+ | llama-3.1-70b-versatile | 64.94 | 70.14 | 58.63 | 61.33 | 63.76 |
2275
+ | Qwen/Qwen2.5-7B-Instruct-Turbo | 54.42 | 64.51 | 68.01 | 58.83 | 61.44 |
2276
+ | yentinglin/Llama-3-Taiwan-8B-Instruct | 61.51 | 67.61 | 52.05 | 58.60 | 59.94 |
2277
+ | meta-llama/llama-4-scout | 53.86 | 61.83 | 60.76 | 57.78 | 58.56 |
2278
+ | google/gemma-3-27b-it | 59.75 | 58.32 | 55.65 | 49.21 | 55.73 |
2279
+ | claude-3-sonnet-20240229 | 52.06 | 59.38 | 49.87 | 51.64 | 53.24 |
2280
+ | meta-llama/llama-4-maverick | 52.53 | 49.88 | 54.82 | 51.41 | 52.16 |
2281
+ | Qwen2-7B-Instruct | 55.66 | 66.40 | 27.18 | 55.32 | 51.14 |
2282
+ | gemma2-9b-it | 45.38 | 55.76 | 49.89 | 48.92 | 49.99 |
2283
+ | claude-3-haiku-20240307 | 47.48 | 54.48 | 48.47 | 48.77 | 49.80 |
2284
+ | gemini-1.5-flash | 42.99 | 53.42 | 53.47 | 46.56 | 49.11 |
2285
+ | reka-flash | 44.07 | 52.68 | 46.04 | 43.43 | 46.56 |
2286
+ | meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo | 44.03 | 50.95 | 42.75 | 45.19 | 45.73 |
2287
+ | deepseek-reasoner | 0.00 | 0.00 | 89.94 | 84.71 | 43.66 |
2288
+ | mixtral-8x7b-32768 | 44.75 | 50.34 | 32.60 | 43.76 | 42.86 |
2289
+ | meta-llama/Llama-3-70b-chat-hf | 37.50 | 47.02 | 34.44 | 39.51 | 39.62 |
2290
+ | gemini-2.0-pro-exp-02-05 | 0.00 | 0.00 | 78.25 | 77.20 | 38.86 |
2291
+ | RekaAI/reka-flash-3 | 34.76 | 40.70 | 42.98 | 35.37 | 38.45 |
2292
+ | google/gemma-7b-it | 34.00 | 35.70 | 31.89 | 33.79 | 33.84 |
2293
+ | reka-edge | 31.84 | 39.40 | 30.02 | 32.36 | 33.41 |
2294
+ | meta-llama/Llama-3-8b-chat-hf | 28.91 | 34.19 | 31.52 | 31.79 | 31.60 |
2295
+ | taide/Llama3-TAIDE-LX-8B-Chat-Alpha1 | 27.02 | 36.64 | 25.33 | 27.96 | 29.24 |
2296
 
2297
 
2298
  ## How to use