File size: 16,398 Bytes
8453f96
03bcb43
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d59b4
59a70ca
8453f96
 
 
d262e6f
 
 
 
 
 
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
5377ed8
8453f96
 
 
 
 
be8b808
8453f96
 
 
 
 
be8b808
 
6a23009
 
d262e6f
be8b808
 
 
 
5377ed8
8453f96
 
 
0a3368a
 
8453f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d59b4
e572ba6
87d59b4
8453f96
 
0a3368a
 
8453f96
 
 
 
470476a
 
 
 
 
8453f96
470476a
 
 
 
8453f96
470476a
 
 
8453f96
470476a
 
 
c0d4681
470476a
 
6a23009
470476a
 
 
 
 
8453f96
470476a
 
8453f96
470476a
 
 
 
c0d4681
470476a
6a23009
 
8453f96
470476a
 
d262e6f
470476a
 
 
 
 
 
d262e6f
470476a
 
 
 
 
8453f96
470476a
 
8453f96
470476a
 
 
 
8453f96
d262e6f
 
 
 
 
6a23009
 
 
 
 
 
d262e6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a23009
 
 
 
 
3555211
 
6a23009
 
 
 
 
 
 
 
 
 
 
 
d262e6f
 
 
 
 
 
 
 
 
 
 
 
 
470476a
6a23009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470476a
6a23009
c0d4681
 
 
6a23009
 
 
 
 
 
d262e6f
8453f96
c0124b2
6a23009
 
 
8453f96
6a23009
 
 
 
 
 
8453f96
6a23009
 
 
 
 
 
8453f96
6a23009
 
470476a
 
6a23009
 
 
 
c0d4681
470476a
6a23009
470476a
6a23009
 
8453f96
 
59a70ca
470476a
59a70ca
aca0f6d
470476a
59a70ca
aca0f6d
 
 
 
 
59a70ca
aca0f6d
 
 
 
d262e6f
aca0f6d
 
59a70ca
 
 
 
 
 
 
 
 
 
 
 
 
 
470476a
 
59a70ca
 
 
 
 
 
 
 
 
 
470476a
59a70ca
 
 
 
 
 
 
 
 
 
 
 
 
3555211
 
aca0f6d
 
 
 
 
 
 
 
 
 
 
 
59a70ca
 
aca0f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a23009
 
 
 
 
59a70ca
 
6a23009
 
 
59a70ca
 
 
 
 
 
aca0f6d
59a70ca
aca0f6d
59a70ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca0f6d
 
 
 
470476a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c741c
 
 
 
 
 
 
470476a
 
2c440d1
470476a
 
 
 
 
 
 
 
aca0f6d
8453f96
6a23009
59a70ca
470476a
c0124b2
470476a
d262e6f
aca0f6d
8453f96
aca0f6d
470476a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Copyright 2020 The HuggingFace Datasets Authors.
# Copyright 2023 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv
import json
import os
import itertools
from sympy.combinatorics.permutations import Permutation

import datasets
import numpy as np
from copy import copy

# check python version
import sys
major, minor = sys.version_info[:2]
version = major + 0.1*minor
OLD_PY_VERSION = 1 if version < 3.8 else 0

_CITATION = """\
"""

_DESCRIPTION = """\
Online dataset mockup.
"""

_HOMEPAGE = ""

_LICENSE = ""

_URLS = {}

class SyntheticAutomataDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("0.0.0")
    BUILDER_CONFIGS = []
    
    def __init__(self, config={}, **kwargs):
        super().__init__(**kwargs)
        
        """
        Set default configs
        """
        if 'name' not in config:
            config['name'] = 'parity'
        # if 'length' not in config: # sequence length
        #     config['length'] = 20
        if 'size' not in config: # number of sequences
            config['size'] = -1

        self.data_config = config
        self.sampler = dataset_map[config['name']](config)

    def _info(self):
        features = datasets.Features(
            {
                "input_ids": datasets.Sequence(datasets.Value("int32"), length=-1),
                "label_ids": datasets.Sequence(datasets.Value("int32"), length=-1)
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, split):
        for i in itertools.count(start=0):
            if i == self.data_config['size']:
                break
            x, y = self.sampler.sample()
            yield i, {
                "input_ids": x,
                "label_ids": y
            }


class AutomatonSampler:
  """
  This is a parent class that must be inherited.
  """
  def __init__(self, data_config):
      self.data_config = data_config

      if 'seed' in self.data_config:
          self.np_rng = np.random.default_rng(self.data_config['seed'])
      else:
          self.np_rng = np.random.default_rng()

      if 'length' not in data_config: # sequence length
          data_config['length'] = 20
      self.T = self.data_config['length']

      if 'random_length' not in data_config:
          data_config['random_length'] = 0
      self.random_length = data_config['random_length']

      self.__info__ = "  - T (int): sequence length.\n" \
          + "  - random_length (int in {0, 1}): whether to randomly sample a length per sample.\n"

  def f(self, x):
      """
      Get output sequence given an input seq
      """
      raise NotImplementedError()

  def sample(self):
      raise NotImplementedError()

  def sample_length(self):
      if self.random_length:
        return self.np_rng.choice(range(1, self.T+1))
      return self.T

  def help(self):
        print(self.__info__)




class BinaryInputSampler(AutomatonSampler):
  """
  This is a parent class that must be inherited.
  Subclasses: ParitySampler, GridworldSampler, ABABSampler
  """
  def __init__(self, data_config):
    super().__init__(data_config)

    if 'prob1' not in data_config:
      data_config['prob1'] = 0.5
    self.prob1 = data_config['prob1']
    self.__info__ = "  - prob1 (float in [0,1]): probability of token 1\n" \
         + self.__info__

  def f(self, x):
    raise NotImplementedError()

  def sample(self):
    T = self.sample_length()
    x = self.np_rng.binomial(1, self.prob1, size=T)
    return x, self.f(x)

class ParitySampler(BinaryInputSampler):
  def __init__(self, data_config):
    super().__init__(data_config)
    self.name = 'parity'

    self.__info__ = "Parity machine with 2 states: \n" \
        + "- Inputs: binary strings\n" \
        + "- Labels: binary strings of the partial parity\n" \
        + "- Config: \n" \
        + self.__info__

  def f(self, x):
    return np.cumsum(x) % 2

class GridworldSampler(BinaryInputSampler):
  """
  Note: gridworld currently doesn't include a no-op.
  """
  def __init__(self, data_config):
    super().__init__(data_config)

    if 'n' not in data_config:
      data_config['n'] = 9
    """
    NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state.
          i.e. the states are 0,1,2,...,S, where S=n-1.
    """
    self.n = data_config['n'] 
    self.S = self.n - 1

    if 'label_type' not in data_config:
      # Options: state, parity, boundary
      data_config['label_type'] = 'state'
    self.label_type = data_config['label_type']

    self.name = f'Grid{self.n}'

    self.__info__ = f"1d Gridworld of n={self.n} states:\n" \
        + "- Inputs: binary strings, i.e. move left(0) or right(1)\n" \
        + "- Labels: depending on 'label_type'. \n" \
        + "- Config: \n" \
        + "  - n (int): number of states; i.e. the states are 0,1,2,...,n-1.\n" \
        + "  - label_type (str): choosing from the following options:\n" \
        + "    - 'state' (default): the state id, i.e. 0 to n-1.\n" \
        + "    - 'parity': the state id mod 2.\n" \
        + "    - 'boundary': whether the current state is in {0, n-1} or not.\n" \
        + self.__info__


  def f(self, x):
    x = copy(x)
    x[x == 0] = -1
    if OLD_PY_VERSION:
      # NOTE: for Python 3.7 or below, accumulate doesn't have the 'initial' argument.
      x = np.concatenate([np.array([0]), x]).astype(np.int64)
      states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0)))
      states = states[1:]
    else:
      states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0))
      states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
    return np.array(states).astype(np.int64)


class ABABSampler(BinaryInputSampler):
  def __init__(self, data_config):
    super().__init__(data_config)
    self.name = 'abab'

    if 'prob_abab_pos_sample' not in data_config:
      # The probability of having a positive sequence, i.e. 010101010101...
      data_config['prob_abab_pos_sample'] = 0.25
    if 'label_type' not in data_config:
      # Options: 'state', 'boundary'
      data_config['label_type'] = 'state'

    self.prob_abab_pos_sample = data_config['prob_abab_pos_sample']
    self.label_type = data_config['label_type']

    self.transition = np.array(
      [[4, 1], # state 0
       [2, 4], # state 1
       [4, 3], # state 2
       [0, 4], # state 3
       [4, 4], # state 4
       ])

    self.__info__ = "abab: an automaton with 4 states + 1 absorbing state:\n" \
        + "- Inputs: binary strings\n" \
        + "- Labels: depending on 'label_type'.\n" \
        + "- Config:\n" \
        + "  - prob_abab_pos_sample (float in [0,1]): probability of having a 'positive' sequence, i.e. 01010101010...\n" \
        + "  - label_type (str): choosing from the following options:\n" \
        + "    - 'state' (default): the state id.\n" \
        + "    - 'boundary': whether the state is in state 3 (the states are 0,1,2,3).\n" \
        + self.__info__ 

  def f(self, x):
    labels = []
    curr_state = 3
    for each in x:
      curr_state = self.transition[curr_state, each]
      labels += curr_state,
    labels = np.array(labels).astype(np.int64)
    if self.label_type == 'boundary':
      labels = (labels == 3).astype(np.int64)
    return labels

  def sample(self):
    pos_sample = self.np_rng.random() < self.prob_abab_pos_sample
    if pos_sample:
      T = self.sample_length()
      x = [0,1,0,1] * (T//4)
      x += [0,1,0,1][:(T%4)]
      x = np.array(x)
      return x, self.f(x)
    else:
      return super().sample()




class FlipFlopSampler(AutomatonSampler):
  def __init__(self, data_config):
    super().__init__(data_config)
    self.name = 'flipflop'

    if 'n' not in data_config:
        data_config['n'] = 2
    
    self.n_states = data_config['n'] 
    self.n_actions = self.n_states + 1
    self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T

    self.__info__ = f"Flipflop with n={self.n_states} states:\n" \
        +f"- Inputs: tokens are either 0 (read) or 1:{self.n} (write).\n" \
        + "- Labels: depending on 'label_type'.\n" \
        + "- Config:\n" \
        + "  - n (int): number of write states; i.e. the states are 1,2,...,n, plus a default start state 0.\n" \
        + self.__info__ 

  def f(self, x):
    state, states = 0, []
    for action_id in x:
        state = self.transition[state, action_id]
        states += state,
    return np.array(states)

  def sample(self):
    T = self.sample_length()
    rand = self.np_rng.uniform(size=T)
    nonzero_pos = (rand < 0.5).astype(np.int64)
    writes = self.np_rng.choice(range(1, self.n_states+1), size=T)
    x = writes * nonzero_pos
    return x, self.f(x)




class PermutationSampler(AutomatonSampler):
  """
  This is a parent class that must be inherited.
  Subclasses: SymmetricSampler, AlternatingSampler
  """
  def __init__(self, data_config):
    super().__init__(data_config)

    if 'n' not in data_config:
      data_config['n'] = 5
    if 'label_type' not in data_config:
      # Options: 'state', 'first_chair'
      data_config['label_type'] = 'state'
    
    self.n = data_config['n'] # the symmetric group Sn
    self.label_type = data_config['label_type']

    self.__info__ = \
          "  - label_type (str): choosing from the following options:\n" \
        + "    - 'state' (default): the state id.\n" \
        + "    - 'first_chair': the element in the first position of the permutation.\n" \
        + "          e.g. if the current permutation is [2,1,4,3], then 'first_chair' is 2.\n" \
        + self.__info__

  def get_state_label(self, state):
    enc = self.state_encode(state)
    return self.state_label_map[enc]

  def f(self, x):
    curr_state = np.arange(self.n)
    labels = []
    for action_id in x:
      curr_state = self.actions[action_id].dot(curr_state)

      if self.label_type == 'state':
        labels += self.get_state_label(curr_state),
      elif self.label_type == 'first_chair':
        labels += curr_state[0],

    return np.array(labels)

  def sample(self):
    T = self.sample_length()
    x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)

    return x, self.f(x)


class SymmetricSampler(PermutationSampler):
  """
  TODO: add options for labels as functions of states
  - parity (whether a state is even): this may need packages (e.g. Permutation from sympy)
  - position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups.
  """
  def __init__(self, data_config):
    super().__init__(data_config)

    self.name = f'S{self.n}'

    """
    Get states
    """
    self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
    self.state_label_map = {}
    for si, state in enumerate(itertools.permutations(range(self.n))):
      enc = self.state_encode(state)
      self.state_label_map[enc] = si

    """
    Get actions (3 defaults: id, shift-by-1, swap-first-two)
    """
    if 'n_actions' not in data_config:
      data_config['n_actions'] = 3
    self.n_actions = data_config['n_actions']
    self.actions = {0: np.eye(self.n)}
    # shift all elements to the right by 1
    shift_idx = list(range(1, self.n)) + [0]
    self.actions[1] = np.eye(self.n)[shift_idx]
    # swap the first 2 elements
    shift_idx = [1, 0] + list(range(2, self.n))
    self.actions[2] = np.eye(self.n)[shift_idx]

    if self.n_actions > 3:
      # add permutations in the order given by itertools.permutations
      self.all_permutations = list(itertools.permutations(range(self.n)))[1:]
      cnt = 2
      for each in self.all_permutations:
        action = np.eye(self.n)[list(each)]
        if np.linalg.norm(action - self.actions[0]) == 0:
          continue
        elif np.linalg.norm(action - self.actions[1]) == 0:
          continue
        self.actions[cnt] = action
        cnt += 1
        if cnt == self.n_actions: break

    self.__info__ = f"Symmetric group on n={self.n} objects:\n" \
        +f"- Inputs: tokens are either 0 (no-op), or 1:{self.n_actions} (corresponding to {self.n_actions} permutations).\n" \
        + "- Labels: depending on 'label_type'.\n" \
        + "- Config:\n" \
        + "  - n (int): number of objects, i.e. there are n! states.\n" \
        + "  - n_actions (int): number of permutations to include in the generator set;\n" \
        + "        the ordering is given by itertools.permutations, and the first 'n_actions' permutations will be included.\n" \
        + self.__info__ 


class AlternatingSampler(PermutationSampler):
  """
  TODO: other choices of generators (currently using (12x))?
  """
  def __init__(self, data_config):
    super().__init__(data_config)

    self.name = f'A{self.n}'

    """
    Get states
    """
    self.state_label_map = {}
    self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
    cnt = 0
    for si, state in enumerate(itertools.permutations(range(self.n))):
      if not Permutation(state).is_even:
        continue
      enc = self.state_encode(state)
      self.state_label_map[enc] = cnt
      cnt += 1

    """
    Get actions: all 3 cycles of the form (12x)
    """
    self.actions = {0: np.eye(self.n)}
    for idx in range(2, self.n):
      # (1, 2, idx) 
      shift_idx = list(range(self.n))
      shift_idx[0],shift_idx[1], shift_idx[idx] = shift_idx[1], shift_idx[idx], shift_idx[0]
      self.actions[idx-1] = np.eye(self.n)[shift_idx]
    self.n_actions = len(self.actions)

    self.__info__ = f"Alternating group on n={self.n} objects:\n" \
        +f"- Inputs: tokens from 0 to n-3, corresponding to all 3-cycles of the form (12x).\n" \
        + "- Labels: depending on 'label_type'.\n" \
        + "- Config:\n" \
        + "  - n (int): number of objects, i.e. there are n!/2 states.\n" \
        + self.__info__ 




class CyclicSampler(AutomatonSampler):
  def __init__(self, data_config):
    super().__init__(data_config)

    if 'n' not in data_config:
      data_config['n'] = 5
    self.n = data_config['n']

    """
    Get actions: shift by i positions, for i = 0 to n_actions-1
    """
    if 'n_actions' not in data_config:
      data_config['n_actions'] = 2
    self.n_actions = data_config['n_actions']
    shift_idx = list(range(1, self.n)) + [0]
    self.actions = {}
    for i in range(self.n_actions):
      shift_idx = list(range(i, self.n)) + list(range(0, i))
      self.actions[i] = np.eye(self.n)[shift_idx]

    self.__info__ = 'Cyclic group of n={self.n} states:\n' \
        +f"- Inputs: tokens from 0 to n_actions-1\n" \
        + "- Labels: the current state.\n" \
        + "- Config:\n" \
        + "  - n (int): number of states.\n" \
        + "  - n_actions (int): number of actions/generators, which are 0, 1, ..., n_actions-1.\n" \
        + self.__info__

  def f(self, x):
    return np.cumsum(x) % self.n

  def sample(self):
    T = self.sample_length()
    x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)

    return x, self.f(x)



dataset_map = {
  'abab': ABABSampler,
  'alternating': AlternatingSampler,
  'cyclic': CyclicSampler,
  'flipflop': FlipFlopSampler,
  'gridworld': GridworldSampler,
  'parity': ParitySampler,
  'symmetric': SymmetricSampler,
  # TODO: more datasets
  }