--- license: apache-2.0 task_categories: - question-answering language: - ru pretty_name: T-math size_categories: - n<1K dataset_info: features: - name: question dtype: string - name: verifiable_answer dtype: string - name: year dtype: string - name: grade dtype: string - name: full_answer dtype: string - name: solutions list: string - name: task_complexity dtype: string - name: olympiad dtype: string splits: - name: train num_bytes: 510955 num_examples: 331 download_size: 228445 dataset_size: 510955 configs: - config_name: default data_files: - split: train path: data/train-* --- # 🧮 T-Math **T-Math** is a dataset of Russian math olympiad problems created to assess the reasoning capabilities of large language models (LLMs) in mathematics. It includes 331 problems from the [All-Russian School Olympiad](https://vos.olimpiada.ru/) and the [Moscow Olympiad](https://mos.olimpiada.ru) for high school students, covering the period from 1998 to 2025. The tasks and their ground-truth answers were extracted automatically and subsequently verified by human assessors. Key features: - Challenging problems that require multi-step reasoning (median completion length for Qwen3-32B is 16K tokens), sourced from top-tier Russian olympiads - Easily verifiable: answers are numeric-only and checked using the `math_verify` library to compare mathematical expressions - Not yet saturated, even by frontier reasoning models such as Gemini 2.5 Pro and DeepSeek R1 - Contains 331 samples — the largest Russian math olympiad-level benchmark — making it more statistically robust compared to smaller datasets like the 30-sample AIME benchmark ## 📊 Evaluation Results |Model|pass@1| |--|--| |o4-mini-high|**0.73**| |DeepSeek-R1-0528|0.71| |Gemini-2.5-Pro|0.70| |Claude Sonnet 4|0.56| |T-pro-it-2.0|0.54| |Qwen3-32B|0.53| ## 🗂️ Filtering procedure The text was extracted from PDFs using [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct). Tasks, along with their ground-truth and verifiable (numeric) answers, were extracted via LLM calls. We filtered out invalid questions using an LLM based on the following criteria: - Tasks requiring multiple answers - Tasks without a single correct answer - Theorem-like tasks where the main goal is proving a statement, making automatic verification non-trivial - Tasks with non-numeric answers, to simplify answer comparison - Tasks that cannot be solved without access to an accompanying image Next, we removed tasks of moderate difficulty where Qwen3-8B achieved a 100% pass@16 rate, as they offer limited value for benchmarking reasoning. Finally, both the questions and the verifiable answers were manually reviewed by assessors to ensure consistency with the original sources. ## 🛠️ How to use Add the following system prompt to guide the model to return the final answer in a \boxed{} tag, making it easier to parse: ``` Решите следующую математическую задачу эффективно и ясно. Последняя строка вашего ответа должна иметь следующий формат: 'Таким образом, окончательный ответ: $\boxed{ОТВЕТ}$.' (без кавычек), где ОТВЕТ - это просто окончательное число или выражение, решающее задачу. Думайте шаг за шагом перед ответом. ``` You can then use the following code snippet with the math_verify library to compare mathematical expressions: ```python from math_verify import LatexExtractionConfig, parse, verify from latex2sympy2_extended import NormalizationConfig def accuracy_reward(completion: str, solution: str) -> float: """Reward function that checks if the completion matches the ground truth.""" # parse the gold solution (assumed to always succeed) gold_parsed = parse(solution, extraction_mode="first_match") # parse the model’s completion with the same LaTeX extraction settings answer_parsed = parse( completion, extraction_config=[ LatexExtractionConfig( normalization_config=NormalizationConfig( nits=False, malformed_operators=False, basic_latex=True, equations=True, boxed="all", units=True, ) ) ], extraction_mode="first_match", ) # verify and return binary reward; on error, print and give 0.0 try: return float(verify(gold_parsed, answer_parsed)) except Exception as e: print(f"verify failed: {e}, answer: {answer_parsed}, gold: {gold_parsed}") return 0.0 ```