Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -11,11 +11,15 @@ tags:
|
|
11 |
- cross-sensor
|
12 |
- temporal
|
13 |
pretty_name: sen2naipv2
|
|
|
14 |
---
|
15 |
|
16 |
-
<center>
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
# sen2naipv2
|
@@ -25,32 +29,39 @@ pretty_name: sen2naipv2
|
|
25 |
|
26 |
The SEN2NAIPv2 dataset is an extension of [SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP),
|
27 |
containing 62,242 LR and HR image pairs, about 76% more images than the first version. The dataset files
|
28 |
-
are named
|
29 |
degraded to corresponding Sentinel-2 images and a potential x4 factor. The degradation model to generate
|
30 |
the LR pair comprises three sequential steps: (1) Gaussian blurring and bilinear downsampling, (2) reflectance
|
31 |
harmonization, and (3) adding noise. Reflectance harmonization is the most critical of these steps. In version
|
32 |
1, the harmonization model used a U-Net architecture to convert Gaussian-blurred NAIP images into
|
33 |
-
reflectance-correct Sentinel-2-like imagery. This initial U-Net model was trained on just 2,851
|
34 |
Sentinel-2 and NAIP imagery. In version 2, the U-Net model was retrained. The temporal threshold was expanded
|
35 |
-
from one day to a
|
36 |
-
USA, increasing the cross-sensor dataset size to
|
37 |
components remain consistent between the two versions.
|
38 |
-
|
|
|
39 |
SEN2NAIPv2:
|
40 |
-
|
|
|
41 |
style transfer for reflectance harmonization using the closest Sentinel-2 image. We report the
|
42 |
time difference between the NAIP and Sentinel-2 images used for harmonization.
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
<center>
|
@@ -58,25 +69,31 @@ generated synthetically using the same degradation model as the `sen2naipv2-unet
|
|
58 |
<sup>
|
59 |
The spatial coverage of the datasets `sen2naipv2-histmatch` and `sen2naipv2-unet` is illustrated. The low-resolution (LR) patches
|
60 |
measure 130 × 130 pixels, while the high-resolution (HR) patches measure 520 × 520 pixels. Blue stars indicate the spatial locations
|
61 |
-
of the cross-sensor subset.
|
62 |
-
|
63 |
</center>
|
64 |
|
65 |
|
66 |
-
##
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
Load this dataset using the `tacoreader` library.
|
|
|
70 |
```python
|
71 |
import tacoreader
|
72 |
import rasterio as rio
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
# Read a sample
|
79 |
-
sample_idx =
|
80 |
lr = dataset.read(sample_idx).read(0)
|
81 |
hr = dataset.read(sample_idx).read(1)
|
82 |
|
@@ -84,15 +101,21 @@ hr = dataset.read(sample_idx).read(1)
|
|
84 |
with rio.open(lr) as src, rio.open(hr) as dst:
|
85 |
lr_data = src.read(window=rio.windows.Window(0, 0, 256//4, 256//4))
|
86 |
hr_data = dst.read(window=rio.windows.Window(0, 0, 256, 256))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
```
|
88 |
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
-
```r
|
92 |
-
library(tacoreader)
|
93 |
-
file <- "https://huggingface.co/datasets/tacofoundation/tortilla_demo/resolve/main/sen2naipv2_real.tortilla"
|
94 |
-
dataset <- tacoreader::load(file)
|
95 |
-
```
|
96 |
## 🛰️ Sensor Information
|
97 |
|
98 |
|
@@ -119,42 +142,41 @@ How the dataset is divided for training, validation, and testing: **stratified**
|
|
119 |
Publications that reference or describe the dataset.
|
120 |
|
121 |
### Publication 01
|
122 |
-
- **DOI**: [10.
|
123 |
-
- **Summary**:
|
124 |
- **BibTeX Citation**:
|
125 |
```bibtex
|
126 |
-
@article{
|
127 |
-
|
128 |
-
|
129 |
-
journal={
|
130 |
-
year={2024},
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
}
|
133 |
```
|
134 |
|
135 |
-
|
136 |
-
|
137 |
### Publication 02
|
138 |
- **DOI**: [10.1109/LGRS.2024.3401394](10.1109/LGRS.2024.3401394)
|
139 |
-
- **Summary**:
|
140 |
- **BibTeX Citation**:
|
141 |
```bibtex
|
142 |
-
@article{
|
143 |
-
title={
|
144 |
author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
|
145 |
-
journal={
|
146 |
-
|
147 |
-
|
148 |
-
pages={782},
|
149 |
-
year={2022},
|
150 |
-
publisher={Nature Publishing Group UK London}
|
151 |
}
|
152 |
```
|
153 |
|
154 |
-
|
155 |
## 🤝 Data Providers
|
156 |
|
157 |
-
|
158 |
Organizations or individuals responsible for the dataset.
|
159 |
|**Name**|**Role**|**URL**|
|
160 |
| :--- | :--- | :--- |
|
@@ -164,7 +186,6 @@ Organizations or individuals responsible for the dataset.
|
|
164 |
|
165 |
## 🧑🔬 Curators
|
166 |
|
167 |
-
|
168 |
Responsible for structuring the dataset in the TACO format.
|
169 |
|**Name**|**Organization**|**URL**|
|
170 |
| :--- | :--- | :--- |
|
@@ -176,7 +197,7 @@ Responsible for structuring the dataset in the TACO format.
|
|
176 |
Spectral bands related to the sensor.
|
177 |
|**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
|
178 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|
179 |
-
|
|
180 |
|B03|green|Band 3 - Green - 10m|560.0|34.0|1|
|
181 |
-
|
|
182 |
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|3|
|
|
|
11 |
- cross-sensor
|
12 |
- temporal
|
13 |
pretty_name: sen2naipv2
|
14 |
+
viewer: false
|
15 |
---
|
16 |
|
17 |
+
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
|
18 |
+
|
19 |
+

|
20 |
+
|
21 |
+
<p>This dataset follows the TACO specification.</p>
|
22 |
+
</div>
|
23 |
|
24 |
|
25 |
# sen2naipv2
|
|
|
29 |
|
30 |
The SEN2NAIPv2 dataset is an extension of [SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP),
|
31 |
containing 62,242 LR and HR image pairs, about 76% more images than the first version. The dataset files
|
32 |
+
are named **`sen2naipv2-unet-000{1..3}.part.taco`**. This dataset comprises synthetic RGBN NAIP bands at 2.5 and 10 meters,
|
33 |
degraded to corresponding Sentinel-2 images and a potential x4 factor. The degradation model to generate
|
34 |
the LR pair comprises three sequential steps: (1) Gaussian blurring and bilinear downsampling, (2) reflectance
|
35 |
harmonization, and (3) adding noise. Reflectance harmonization is the most critical of these steps. In version
|
36 |
1, the harmonization model used a U-Net architecture to convert Gaussian-blurred NAIP images into
|
37 |
+
reflectance-correct Sentinel-2-like imagery. This initial U-Net model was trained on just 2,851 same-day
|
38 |
Sentinel-2 and NAIP imagery. In version 2, the U-Net model was retrained. The temporal threshold was expanded
|
39 |
+
from one day to a 2-day range, and the search included the full Sentinel-2 archive available for the
|
40 |
+
USA, increasing the cross-sensor dataset size to 34,640 images. The kernel degradation and noise model
|
41 |
components remain consistent between the two versions.
|
42 |
+
|
43 |
+
In addition to the synthetic dataset (`sen2naipv2-unet`), three new variants are introduced in
|
44 |
SEN2NAIPv2:
|
45 |
+
|
46 |
+
1. **`sen2naipv2-histmatch:`** (61282 samples) - Identical to `sen2naipv2-unet` but uses histogram matching instead of
|
47 |
style transfer for reflectance harmonization using the closest Sentinel-2 image. We report the
|
48 |
time difference between the NAIP and Sentinel-2 images used for harmonization.
|
49 |
+
|
50 |
+
2. **`sen2naipv2-crosssensor:`** (8000 samples) – This variant of the SEN2NAIPv2 dataset is smaller than
|
51 |
+
its synthetic counterparts and includes only **real Sentinel-2**. The dataset is restricted to those captured within
|
52 |
+
**a one-day interval** between Sentinel-2 and NAIP sensors. To ensure cloud-free Sentinel-2 images, any with
|
53 |
+
cloud cover exceeding 0 \%, as determined by the [UnetMob-V2 cloud detector](https://cloudsen12.github.io/),
|
54 |
+
were excluded. The dataset reports the 2nd percentile of Pearson correlations calculated within 16x16 kernels
|
55 |
+
(see `correlation` field) between Sentinel-2 images and a Sentinel-2-like version derived from
|
56 |
+
degraded NAIP imagery. This degradation followed a process similar to the **`sen2naipv2-histmatch`**. This
|
57 |
+
metric provides insight into the quality of the match between Sentinel-2 and the low-frequency components
|
58 |
+
of NAIP. Additionally, a strict constraint was applied to the high-resolution images, using real Sentinel-2 data as
|
59 |
+
a reference to further enhance harmonization.
|
60 |
+
|
61 |
+
4. **sen2naipv2-temporal:** A temporal variant of the SEN2NAIPv2 dataset, where the LR are real Sentinel-2
|
62 |
+
ages and the HR image has been normalized with the closest Sentinel-2 images using only histogram matching.
|
63 |
+
The temporal LR sequences **always** consist of 16 images, with the nearest image captured **always** within
|
64 |
+
0–10 days.
|
65 |
|
66 |
|
67 |
<center>
|
|
|
69 |
<sup>
|
70 |
The spatial coverage of the datasets `sen2naipv2-histmatch` and `sen2naipv2-unet` is illustrated. The low-resolution (LR) patches
|
71 |
measure 130 × 130 pixels, while the high-resolution (HR) patches measure 520 × 520 pixels. Blue stars indicate the spatial locations
|
72 |
+
of the cross-sensor subset.
|
73 |
+
</sup>
|
74 |
</center>
|
75 |
|
76 |
|
77 |
+
## 🔄 Reproducible Example
|
78 |
+
|
79 |
+
<a target="_blank" href="https://colab.research.google.com/drive/1HpirWWZvcZlS2LU9uGc1yIzG04Cu1L33">
|
80 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
81 |
+
</a>
|
82 |
|
83 |
|
84 |
Load this dataset using the `tacoreader` library.
|
85 |
+
|
86 |
```python
|
87 |
import tacoreader
|
88 |
import rasterio as rio
|
89 |
|
90 |
+
print(tacoreader.__version__) # 0.4.5
|
91 |
+
|
92 |
+
# Remotely load the Cloud-Optimized Dataset
|
93 |
+
dataset = tacoreader.load("tacofoundation:sen2naipv2-unet")
|
94 |
|
95 |
# Read a sample
|
96 |
+
sample_idx = 4000
|
97 |
lr = dataset.read(sample_idx).read(0)
|
98 |
hr = dataset.read(sample_idx).read(1)
|
99 |
|
|
|
101 |
with rio.open(lr) as src, rio.open(hr) as dst:
|
102 |
lr_data = src.read(window=rio.windows.Window(0, 0, 256//4, 256//4))
|
103 |
hr_data = dst.read(window=rio.windows.Window(0, 0, 256, 256))
|
104 |
+
|
105 |
+
# Display
|
106 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
107 |
+
ax[0].imshow(lr_data.transpose(1, 2, 0) / 3000)
|
108 |
+
ax[0].set_title("Low Resolution - Sentinel 2")
|
109 |
+
ax[1].imshow(hr_data.transpose(1, 2, 0) / 3000)
|
110 |
+
ax[1].set_title("High Resolution - NAIP")
|
111 |
+
plt.show()
|
112 |
```
|
113 |
|
114 |
+
<center>
|
115 |
+
<img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/0QDq0EttQxwF6f-VCLrIo.png' alt='drawing' width='70%'/>
|
116 |
+
</center>
|
117 |
+
|
118 |
|
|
|
|
|
|
|
|
|
|
|
119 |
## 🛰️ Sensor Information
|
120 |
|
121 |
|
|
|
142 |
Publications that reference or describe the dataset.
|
143 |
|
144 |
### Publication 01
|
145 |
+
- **DOI**: [10.1038/s41597-024-04214-y](10.1038/s41597-024-04214-y)
|
146 |
+
- **Summary**: Version 1 of the SEN2NAIPv2 dataset.
|
147 |
- **BibTeX Citation**:
|
148 |
```bibtex
|
149 |
+
@article{aybar2025sen2naipv2,
|
150 |
+
author = {Aybar, Cesar and Montero, David and Contreras, Julio and Donike, Simon and Kalaitzis, Freddie and Gómez-Chova, Luis},
|
151 |
+
title = {SEN2NAIP: A large-scale dataset for Sentinel-2 Image Super-Resolution},
|
152 |
+
journal = {Scientific Data},
|
153 |
+
year = {2024},
|
154 |
+
volume = {11},
|
155 |
+
number = {1},
|
156 |
+
pages = {1389},
|
157 |
+
doi = {10.1038/s41597-024-04214-y},
|
158 |
+
url = {https://doi.org/10.1038/s41597-024-04214-y},
|
159 |
+
abstract = {The increasing demand for high spatial resolution in remote sensing has underscored the need for super-resolution (SR) algorithms that can upscale low-resolution (LR) images to high-resolution (HR) ones. To address this, we present SEN2NAIP, a novel and extensive dataset explicitly developed to support SR model training. SEN2NAIP comprises two main components. The first is a set of 2,851 LR-HR image pairs, each covering 1.46 square kilometers. These pairs are produced using LR images from Sentinel-2 (S2) and corresponding HR images from the National Agriculture Imagery Program (NAIP). Using this cross-sensor dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of S2 imagery ($S_{2-like}$). This led to the creation of a second subset, consisting of 35,314 NAIP images and their corresponding $S_{2-like}$ counterparts, generated using the degradation model. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 imagery.},
|
160 |
+
issn = {2052-4463}
|
161 |
}
|
162 |
```
|
163 |
|
|
|
|
|
164 |
### Publication 02
|
165 |
- **DOI**: [10.1109/LGRS.2024.3401394](10.1109/LGRS.2024.3401394)
|
166 |
+
- **Summary**: Set of tools to evaluate super-resolution models in the context of Sentinel-2 imagery.
|
167 |
- **BibTeX Citation**:
|
168 |
```bibtex
|
169 |
+
@article{aybar2024comprehensive,
|
170 |
+
title={A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution},
|
171 |
author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
|
172 |
+
journal={IEEE Geoscience and Remote Sensing Letters},
|
173 |
+
year={2024},
|
174 |
+
publisher={IEEE}
|
|
|
|
|
|
|
175 |
}
|
176 |
```
|
177 |
|
|
|
178 |
## 🤝 Data Providers
|
179 |
|
|
|
180 |
Organizations or individuals responsible for the dataset.
|
181 |
|**Name**|**Role**|**URL**|
|
182 |
| :--- | :--- | :--- |
|
|
|
186 |
|
187 |
## 🧑🔬 Curators
|
188 |
|
|
|
189 |
Responsible for structuring the dataset in the TACO format.
|
190 |
|**Name**|**Organization**|**URL**|
|
191 |
| :--- | :--- | :--- |
|
|
|
197 |
Spectral bands related to the sensor.
|
198 |
|**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
|
199 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|
200 |
+
|B04|red|Band 4 - Red - 10m|664.5|29.0|0|
|
201 |
|B03|green|Band 3 - Green - 10m|560.0|34.0|1|
|
202 |
+
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|2|
|
203 |
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|3|
|