csaybar commited on
Commit
f8485b0
·
verified ·
1 Parent(s): 3eb249c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -57
README.md CHANGED
@@ -11,11 +11,15 @@ tags:
11
  - cross-sensor
12
  - temporal
13
  pretty_name: sen2naipv2
 
14
  ---
15
 
16
- <center>
17
- <img src='taco.png' alt='drawing' width='20%'/>
18
- </center>
 
 
 
19
 
20
 
21
  # sen2naipv2
@@ -25,32 +29,39 @@ pretty_name: sen2naipv2
25
 
26
  The SEN2NAIPv2 dataset is an extension of [SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP),
27
  containing 62,242 LR and HR image pairs, about 76% more images than the first version. The dataset files
28
- are named `sen2naipv2-unet-000{1..3}.part.taco`. This dataset comprises synthetic RGBN NAIP bands at 2.5 and 10 meters,
29
  degraded to corresponding Sentinel-2 images and a potential x4 factor. The degradation model to generate
30
  the LR pair comprises three sequential steps: (1) Gaussian blurring and bilinear downsampling, (2) reflectance
31
  harmonization, and (3) adding noise. Reflectance harmonization is the most critical of these steps. In version
32
  1, the harmonization model used a U-Net architecture to convert Gaussian-blurred NAIP images into
33
- reflectance-correct Sentinel-2-like imagery. This initial U-Net model was trained on just 2,851 % same-day
34
  Sentinel-2 and NAIP imagery. In version 2, the U-Net model was retrained. The temporal threshold was expanded
35
- from one day to a 3-day range, and the search included the full Sentinel-2 archive available for the
36
- USA, increasing the cross-sensor dataset size to 35,217 images. The kernel degradation and noise model
37
  components remain consistent between the two versions.
38
- In addition to the synthetic dataset (`sen2naipv2-unet`), two new variants are introduced in
 
39
  SEN2NAIPv2:
40
- 1. **sen2naipv2-histmatch:** Identical to `sen2naipv2-unet` but uses histogram matching instead of
 
41
  style transfer for reflectance harmonization using the closest Sentinel-2 image. We report the
42
  time difference between the NAIP and Sentinel-2 images used for harmonization.
43
- 2. **sen2naipv2-crosssensor:** – In contrast to synthetic SEN2NAIPv2 datasets, the cross-sensor
44
- SEN2NAIPv2 dataset is comparatively smaller, comprising only images captured within a one-day timeframe
45
- between Sentinel-2 and NAIP. To guarantee that the Sentinel-2 images are cloud-free, we exclude any
46
- images with a cloud cover greater than 0 % as reported by the [UnetMob-V2 cloud detector](https://cloudsen12.github.io/).
47
- To ensure the reliability of the dataset, we first calculated the Pearson correlation in 16 x 16 kernels
48
- between the Sentinel-2 images and a Sentinel-2-like version (see correlation field) obtained by degrading NAIP imagery. The
49
- degradation process was similar to the one described in the synthetic SEN2NAIPv2 paper but employed histogram matching
50
- instead of the U-Net-style transfer model, as a reliable LR reference exists. In addition, we applied a hard
51
- constraint to the HR images using as a reference the real Sentinel-2 to further improve harmonization.
52
- 3. **sen2naipv2-temporal:** A temporal variant of the SEN2NAIPv2 dataset, where the LR and HR image pairs are
53
- generated synthetically using the same degradation model as the `sen2naipv2-unet` dataset.
 
 
 
 
 
54
 
55
 
56
  <center>
@@ -58,25 +69,31 @@ generated synthetically using the same degradation model as the `sen2naipv2-unet
58
  <sup>
59
  The spatial coverage of the datasets `sen2naipv2-histmatch` and `sen2naipv2-unet` is illustrated. The low-resolution (LR) patches
60
  measure 130 × 130 pixels, while the high-resolution (HR) patches measure 520 × 520 pixels. Blue stars indicate the spatial locations
61
- of the cross-sensor subset.
62
- </sup>
63
  </center>
64
 
65
 
66
- ## 🌮 TACO Snippet
 
 
 
 
67
 
68
 
69
  Load this dataset using the `tacoreader` library.
 
70
  ```python
71
  import tacoreader
72
  import rasterio as rio
73
 
74
- # Load the Cloud-Optimized Dataset
75
- file = "https://huggingface.co/datasets/tacofoundation/tortilla_demo/resolve/main/sen2naipv2_real.tortilla"
76
- dataset = tacoreader.load(file)
 
77
 
78
  # Read a sample
79
- sample_idx = 2000
80
  lr = dataset.read(sample_idx).read(0)
81
  hr = dataset.read(sample_idx).read(1)
82
 
@@ -84,15 +101,21 @@ hr = dataset.read(sample_idx).read(1)
84
  with rio.open(lr) as src, rio.open(hr) as dst:
85
  lr_data = src.read(window=rio.windows.Window(0, 0, 256//4, 256//4))
86
  hr_data = dst.read(window=rio.windows.Window(0, 0, 256, 256))
 
 
 
 
 
 
 
 
87
  ```
88
 
89
- Or in R:
 
 
 
90
 
91
- ```r
92
- library(tacoreader)
93
- file <- "https://huggingface.co/datasets/tacofoundation/tortilla_demo/resolve/main/sen2naipv2_real.tortilla"
94
- dataset <- tacoreader::load(file)
95
- ```
96
  ## 🛰️ Sensor Information
97
 
98
 
@@ -119,42 +142,41 @@ How the dataset is divided for training, validation, and testing: **stratified**
119
  Publications that reference or describe the dataset.
120
 
121
  ### Publication 01
122
- - **DOI**: [10.1109/LGRS.2024.3401394](10.1109/LGRS.2024.3401394)
123
- - **Summary**: Set of tools to evaluate super-resolution models in the context of Sentinel-2 imagery.
124
  - **BibTeX Citation**:
125
  ```bibtex
126
- @article{aybar2024comprehensive,
127
- title={A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution},
128
- author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
129
- journal={IEEE Geoscience and Remote Sensing Letters},
130
- year={2024},
131
- publisher={IEEE}
 
 
 
 
 
 
132
  }
133
  ```
134
 
135
-
136
-
137
  ### Publication 02
138
  - **DOI**: [10.1109/LGRS.2024.3401394](10.1109/LGRS.2024.3401394)
139
- - **Summary**: Version 1 of the SEN2NAIPv2 dataset.
140
  - **BibTeX Citation**:
141
  ```bibtex
142
- @article{aybar2024sen2naip,
143
- title={SEN2NAIP \: A large-scale dataset for Sentinel-2 Image Super-Resolution},
144
  author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
145
- journal={Scientific Data},
146
- volume={9},
147
- number={1},
148
- pages={782},
149
- year={2022},
150
- publisher={Nature Publishing Group UK London}
151
  }
152
  ```
153
 
154
-
155
  ## 🤝 Data Providers
156
 
157
-
158
  Organizations or individuals responsible for the dataset.
159
  |**Name**|**Role**|**URL**|
160
  | :--- | :--- | :--- |
@@ -164,7 +186,6 @@ Organizations or individuals responsible for the dataset.
164
 
165
  ## 🧑‍🔬 Curators
166
 
167
-
168
  Responsible for structuring the dataset in the TACO format.
169
  |**Name**|**Organization**|**URL**|
170
  | :--- | :--- | :--- |
@@ -176,7 +197,7 @@ Responsible for structuring the dataset in the TACO format.
176
  Spectral bands related to the sensor.
177
  |**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
178
  | :--- | :--- | :--- | :--- | :--- | :--- |
179
- |B02|blue|Band 2 - Blue - 10m|496.5|53.0|0|
180
  |B03|green|Band 3 - Green - 10m|560.0|34.0|1|
181
- |B04|red|Band 4 - Red - 10m|664.5|29.0|2|
182
  |B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|3|
 
11
  - cross-sensor
12
  - temporal
13
  pretty_name: sen2naipv2
14
+ viewer: false
15
  ---
16
 
17
+ <div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
18
+
19
+ ![Dataset Image](taco.png)
20
+
21
+ <p>This dataset follows the TACO specification.</p>
22
+ </div>
23
 
24
 
25
  # sen2naipv2
 
29
 
30
  The SEN2NAIPv2 dataset is an extension of [SEN2NAIP](https://huggingface.co/datasets/isp-uv-es/SEN2NAIP),
31
  containing 62,242 LR and HR image pairs, about 76% more images than the first version. The dataset files
32
+ are named **`sen2naipv2-unet-000{1..3}.part.taco`**. This dataset comprises synthetic RGBN NAIP bands at 2.5 and 10 meters,
33
  degraded to corresponding Sentinel-2 images and a potential x4 factor. The degradation model to generate
34
  the LR pair comprises three sequential steps: (1) Gaussian blurring and bilinear downsampling, (2) reflectance
35
  harmonization, and (3) adding noise. Reflectance harmonization is the most critical of these steps. In version
36
  1, the harmonization model used a U-Net architecture to convert Gaussian-blurred NAIP images into
37
+ reflectance-correct Sentinel-2-like imagery. This initial U-Net model was trained on just 2,851 same-day
38
  Sentinel-2 and NAIP imagery. In version 2, the U-Net model was retrained. The temporal threshold was expanded
39
+ from one day to a 2-day range, and the search included the full Sentinel-2 archive available for the
40
+ USA, increasing the cross-sensor dataset size to 34,640 images. The kernel degradation and noise model
41
  components remain consistent between the two versions.
42
+
43
+ In addition to the synthetic dataset (`sen2naipv2-unet`), three new variants are introduced in
44
  SEN2NAIPv2:
45
+
46
+ 1. **`sen2naipv2-histmatch:`** (61282 samples) - Identical to `sen2naipv2-unet` but uses histogram matching instead of
47
  style transfer for reflectance harmonization using the closest Sentinel-2 image. We report the
48
  time difference between the NAIP and Sentinel-2 images used for harmonization.
49
+
50
+ 2. **`sen2naipv2-crosssensor:`** (8000 samples) This variant of the SEN2NAIPv2 dataset is smaller than
51
+ its synthetic counterparts and includes only **real Sentinel-2**. The dataset is restricted to those captured within
52
+ **a one-day interval** between Sentinel-2 and NAIP sensors. To ensure cloud-free Sentinel-2 images, any with
53
+ cloud cover exceeding 0 \%, as determined by the [UnetMob-V2 cloud detector](https://cloudsen12.github.io/),
54
+ were excluded. The dataset reports the 2nd percentile of Pearson correlations calculated within 16x16 kernels
55
+ (see `correlation` field) between Sentinel-2 images and a Sentinel-2-like version derived from
56
+ degraded NAIP imagery. This degradation followed a process similar to the **`sen2naipv2-histmatch`**. This
57
+ metric provides insight into the quality of the match between Sentinel-2 and the low-frequency components
58
+ of NAIP. Additionally, a strict constraint was applied to the high-resolution images, using real Sentinel-2 data as
59
+ a reference to further enhance harmonization.
60
+
61
+ 4. **sen2naipv2-temporal:** A temporal variant of the SEN2NAIPv2 dataset, where the LR are real Sentinel-2
62
+ ages and the HR image has been normalized with the closest Sentinel-2 images using only histogram matching.
63
+ The temporal LR sequences **always** consist of 16 images, with the nearest image captured **always** within
64
+ 0–10 days.
65
 
66
 
67
  <center>
 
69
  <sup>
70
  The spatial coverage of the datasets `sen2naipv2-histmatch` and `sen2naipv2-unet` is illustrated. The low-resolution (LR) patches
71
  measure 130 × 130 pixels, while the high-resolution (HR) patches measure 520 × 520 pixels. Blue stars indicate the spatial locations
72
+ of the cross-sensor subset.
73
+ </sup>
74
  </center>
75
 
76
 
77
+ ## 🔄 Reproducible Example
78
+
79
+ <a target="_blank" href="https://colab.research.google.com/drive/1HpirWWZvcZlS2LU9uGc1yIzG04Cu1L33">
80
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
81
+ </a>
82
 
83
 
84
  Load this dataset using the `tacoreader` library.
85
+
86
  ```python
87
  import tacoreader
88
  import rasterio as rio
89
 
90
+ print(tacoreader.__version__) # 0.4.5
91
+
92
+ # Remotely load the Cloud-Optimized Dataset
93
+ dataset = tacoreader.load("tacofoundation:sen2naipv2-unet")
94
 
95
  # Read a sample
96
+ sample_idx = 4000
97
  lr = dataset.read(sample_idx).read(0)
98
  hr = dataset.read(sample_idx).read(1)
99
 
 
101
  with rio.open(lr) as src, rio.open(hr) as dst:
102
  lr_data = src.read(window=rio.windows.Window(0, 0, 256//4, 256//4))
103
  hr_data = dst.read(window=rio.windows.Window(0, 0, 256, 256))
104
+
105
+ # Display
106
+ fig, ax = plt.subplots(1, 2, figsize=(10, 5))
107
+ ax[0].imshow(lr_data.transpose(1, 2, 0) / 3000)
108
+ ax[0].set_title("Low Resolution - Sentinel 2")
109
+ ax[1].imshow(hr_data.transpose(1, 2, 0) / 3000)
110
+ ax[1].set_title("High Resolution - NAIP")
111
+ plt.show()
112
  ```
113
 
114
+ <center>
115
+ <img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/0QDq0EttQxwF6f-VCLrIo.png' alt='drawing' width='70%'/>
116
+ </center>
117
+
118
 
 
 
 
 
 
119
  ## 🛰️ Sensor Information
120
 
121
 
 
142
  Publications that reference or describe the dataset.
143
 
144
  ### Publication 01
145
+ - **DOI**: [10.1038/s41597-024-04214-y](10.1038/s41597-024-04214-y)
146
+ - **Summary**: Version 1 of the SEN2NAIPv2 dataset.
147
  - **BibTeX Citation**:
148
  ```bibtex
149
+ @article{aybar2025sen2naipv2,
150
+ author = {Aybar, Cesar and Montero, David and Contreras, Julio and Donike, Simon and Kalaitzis, Freddie and Gómez-Chova, Luis},
151
+ title = {SEN2NAIP: A large-scale dataset for Sentinel-2 Image Super-Resolution},
152
+ journal = {Scientific Data},
153
+ year = {2024},
154
+ volume = {11},
155
+ number = {1},
156
+ pages = {1389},
157
+ doi = {10.1038/s41597-024-04214-y},
158
+ url = {https://doi.org/10.1038/s41597-024-04214-y},
159
+ abstract = {The increasing demand for high spatial resolution in remote sensing has underscored the need for super-resolution (SR) algorithms that can upscale low-resolution (LR) images to high-resolution (HR) ones. To address this, we present SEN2NAIP, a novel and extensive dataset explicitly developed to support SR model training. SEN2NAIP comprises two main components. The first is a set of 2,851 LR-HR image pairs, each covering 1.46 square kilometers. These pairs are produced using LR images from Sentinel-2 (S2) and corresponding HR images from the National Agriculture Imagery Program (NAIP). Using this cross-sensor dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of S2 imagery ($S_{2-like}$). This led to the creation of a second subset, consisting of 35,314 NAIP images and their corresponding $S_{2-like}$ counterparts, generated using the degradation model. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 imagery.},
160
+ issn = {2052-4463}
161
  }
162
  ```
163
 
 
 
164
  ### Publication 02
165
  - **DOI**: [10.1109/LGRS.2024.3401394](10.1109/LGRS.2024.3401394)
166
+ - **Summary**: Set of tools to evaluate super-resolution models in the context of Sentinel-2 imagery.
167
  - **BibTeX Citation**:
168
  ```bibtex
169
+ @article{aybar2024comprehensive,
170
+ title={A Comprehensive Benchmark for Optical Remote Sensing Image Super-Resolution},
171
  author={Aybar, Cesar and Montero, David and Donike, Simon and Kalaitzis, Freddie and G{'o}mez-Chova, Luis},
172
+ journal={IEEE Geoscience and Remote Sensing Letters},
173
+ year={2024},
174
+ publisher={IEEE}
 
 
 
175
  }
176
  ```
177
 
 
178
  ## 🤝 Data Providers
179
 
 
180
  Organizations or individuals responsible for the dataset.
181
  |**Name**|**Role**|**URL**|
182
  | :--- | :--- | :--- |
 
186
 
187
  ## 🧑‍🔬 Curators
188
 
 
189
  Responsible for structuring the dataset in the TACO format.
190
  |**Name**|**Organization**|**URL**|
191
  | :--- | :--- | :--- |
 
197
  Spectral bands related to the sensor.
198
  |**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
199
  | :--- | :--- | :--- | :--- | :--- | :--- |
200
+ |B04|red|Band 4 - Red - 10m|664.5|29.0|0|
201
  |B03|green|Band 3 - Green - 10m|560.0|34.0|1|
202
+ |B02|blue|Band 2 - Blue - 10m|496.5|53.0|2|
203
  |B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|3|