path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
tensorflow_privacy/privacy/membership_inference_attack/codelab.ipynb
###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Assess privacy risks with TensorFlow Privacy Membership Inference Attacks Run in Google Colab View source on GitHub OverviewIn this codelab we'll train a simple image classification model on the CIFAR10 dataset, and then use the "membership inference attack" against this model to assess if the attacker is able to "guess" whether a particular sample was present in the training set. SetupFirst, set this notebook's runtime to use a GPU, under Runtime > Change runtime type > Hardware accelerator. Then, begin importing the necessary libraries. ###Code #@title Import statements. import numpy as np from typing import Tuple, Text from scipy import special import tensorflow as tf import tensorflow_datasets as tfds # Set verbosity. tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from warnings import simplefilter from sklearn.exceptions import ConvergenceWarning simplefilter(action="ignore", category=ConvergenceWarning) simplefilter(action="ignore", category=FutureWarning) ###Output _____no_output_____ ###Markdown Install TensorFlow Privacy. ###Code !pip3 install git+https://github.com/tensorflow/privacy from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack as mia ###Output _____no_output_____ ###Markdown Train a simple model on CIFAR10 with Keras. ###Code dataset = 'cifar10' num_classes = 10 num_conv = 3 activation = 'relu' optimizer = 'adam' lr = 0.02 momentum = 0.9 batch_size = 250 epochs = 100 # Privacy risks are especially visible with lots of epochs. def small_cnn(input_shape: Tuple[int], num_classes: int, num_conv: int, activation: Text = 'relu') -> tf.keras.models.Sequential: """Setup a small CNN for image classification. Args: input_shape: Integer tuple for the shape of the images. num_classes: Number of prediction classes. num_conv: Number of convolutional layers. activation: The activation function to use for conv and dense layers. Returns: The Keras model. """ model = tf.keras.models.Sequential() model.add(tf.keras.layers.Input(shape=input_shape)) # Conv layers for _ in range(num_conv): model.add(tf.keras.layers.Conv2D(32, (3, 3), activation=activation)) model.add(tf.keras.layers.MaxPooling2D()) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(64, activation=activation)) model.add(tf.keras.layers.Dense(num_classes)) return model print('Loading the dataset.') train_ds = tfds.as_numpy( tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1)) test_ds = tfds.as_numpy( tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1)) x_train = train_ds['image'].astype('float32') / 255. y_train_indices = train_ds['label'][:, np.newaxis] x_test = test_ds['image'].astype('float32') / 255. y_test_indices = test_ds['label'][:, np.newaxis] # Convert class vectors to binary class matrices. y_train = tf.keras.utils.to_categorical(y_train_indices, num_classes) y_test = tf.keras.utils.to_categorical(y_test_indices, num_classes) input_shape = x_train.shape[1:] model = small_cnn( input_shape, num_classes, num_conv=num_conv, activation=activation) print('Optimizer ', optimizer) print('learning rate %f', lr) optimizer = tf.keras.optimizers.SGD(lr=lr, momentum=momentum) loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True) model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy']) model.summary() model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) print('Finished training.') #@title Calculate logits, probabilities and loss values for training and test sets. #@markdown We will use these values later in the membership inference attack to #@markdown separate training and test samples. print('Predict on train...') logits_train = model.predict(x_train, batch_size=batch_size) print('Predict on test...') logits_test = model.predict(x_test, batch_size=batch_size) print('Apply softmax to get probabilities from logits...') prob_train = special.softmax(logits_train) prob_test = special.softmax(logits_test) print('Compute losses...') cce = tf.keras.backend.categorical_crossentropy constant = tf.keras.backend.constant loss_train = cce(constant(y_train), constant(prob_train), from_logits=False).numpy() loss_test = cce(constant(y_test), constant(prob_test), from_logits=False).numpy() ###Output _____no_output_____ ###Markdown Run membership inference attacks. ###Code #@markdown We will now execute membership inference attack against the #@markdown previously trained CIFAR10 model. This will generate a number of #@markdown scores (most notably, attacker advantage and AUC for the membership #@markdown inference classifier). An AUC of close to 0.5 means that the attack #@markdown isn't able to identify training samples, which means that the model #@markdown doesn't have privacy issues according to this test. Higher values, #@markdown on the contrary, indicate potential privacy issues. labels_train = np.argmax(y_train, axis=1) labels_test = np.argmax(y_test, axis=1) results_without_classifiers = mia.run_all_attacks( loss_train, loss_test, logits_train, logits_test, labels_train, labels_test, attack_classifiers=[], ) print(results_without_classifiers) # Note: This will take a while, since it also trains ML models to # separate train/test examples. If it's taking too looking, use # the `run_all_attacks` function instead. attack_result_summary = mia.run_all_attacks_and_create_summary( loss_train, loss_test, logits_train, logits_test, labels_train, labels_test, )[0] print(attack_result_summary) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Assess privacy risks with TensorFlow Privacy Membership Inference Attacks Run in Google Colab View source on GitHub OverviewIn this codelab we'll train a simple image classification model on the CIFAR10 dataset, and then use the "membership inference attack" against this model to assess if the attacker is able to "guess" whether a particular sample was present in the training set. SetupFirst, set this notebook's runtime to use a GPU, under Runtime > Change runtime type > Hardware accelerator. Then, begin importing the necessary libraries. ###Code #@title Import statements. import numpy as np from typing import Tuple, Text from scipy import special import tensorflow as tf import tensorflow_datasets as tfds # Set verbosity. tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from warnings import simplefilter from sklearn.exceptions import ConvergenceWarning simplefilter(action="ignore", category=ConvergenceWarning) simplefilter(action="ignore", category=FutureWarning) ###Output _____no_output_____ ###Markdown Install TensorFlow Privacy. ###Code !pip3 install git+https://github.com/tensorflow/privacy from tensorflow_privacy.privacy.membership_inference_attack import membership_inference_attack as mia ###Output _____no_output_____ ###Markdown Train a model ###Code #@markdown Train a simple model on CIFAR10 with Keras. dataset = 'cifar10' num_classes = 10 num_conv = 3 activation = 'relu' lr = 0.02 momentum = 0.9 batch_size = 250 epochs = 100 # Privacy risks are especially visible with lots of epochs. def small_cnn(input_shape: Tuple[int], num_classes: int, num_conv: int, activation: Text = 'relu') -> tf.keras.models.Sequential: """Setup a small CNN for image classification. Args: input_shape: Integer tuple for the shape of the images. num_classes: Number of prediction classes. num_conv: Number of convolutional layers. activation: The activation function to use for conv and dense layers. Returns: The Keras model. """ model = tf.keras.models.Sequential() model.add(tf.keras.layers.Input(shape=input_shape)) # Conv layers for _ in range(num_conv): model.add(tf.keras.layers.Conv2D(32, (3, 3), activation=activation)) model.add(tf.keras.layers.MaxPooling2D()) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(64, activation=activation)) model.add(tf.keras.layers.Dense(num_classes)) return model print('Loading the dataset.') train_ds = tfds.as_numpy( tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1)) test_ds = tfds.as_numpy( tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1)) x_train = train_ds['image'].astype('float32') / 255. y_train_indices = train_ds['label'][:, np.newaxis] x_test = test_ds['image'].astype('float32') / 255. y_test_indices = test_ds['label'][:, np.newaxis] # Convert class vectors to binary class matrices. y_train = tf.keras.utils.to_categorical(y_train_indices, num_classes) y_test = tf.keras.utils.to_categorical(y_test_indices, num_classes) input_shape = x_train.shape[1:] model = small_cnn( input_shape, num_classes, num_conv=num_conv, activation=activation) print('learning rate %f', lr) optimizer = tf.keras.optimizers.SGD(lr=lr, momentum=momentum) loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True) model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy']) model.summary() model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) print('Finished training.') ###Output _____no_output_____ ###Markdown Calculate logits, probabilities and loss values for training and test sets.We will use these values later in the membership inference attack to separate training and test samples. ###Code print('Predict on train...') logits_train = model.predict(x_train, batch_size=batch_size) print('Predict on test...') logits_test = model.predict(x_test, batch_size=batch_size) print('Apply softmax to get probabilities from logits...') prob_train = special.softmax(logits_train, axis=1) prob_test = special.softmax(logits_test, axis=1) print('Compute losses...') cce = tf.keras.backend.categorical_crossentropy constant = tf.keras.backend.constant loss_train = cce(constant(y_train), constant(prob_train), from_logits=False).numpy() loss_test = cce(constant(y_test), constant(prob_test), from_logits=False).numpy() ###Output _____no_output_____ ###Markdown Run membership inference attacks.We will now execute a membership inference attack against the previously trained CIFAR10 model. This will generate a number of scores, most notably, attacker advantage and AUC for the membership inference classifier.An AUC of close to 0.5 means that the attack wasn't able to identify training samples, which means that the model doesn't have privacy issues according to this test. Higher values, on the contrary, indicate potential privacy issues. ###Code from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData from tensorflow_privacy.privacy.membership_inference_attack.data_structures import SlicingSpec from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType import tensorflow_privacy.privacy.membership_inference_attack.plotting as plotting labels_train = np.argmax(y_train, axis=1) labels_test = np.argmax(y_test, axis=1) input = AttackInputData( logits_train = logits_train, logits_test = logits_test, loss_train = loss_train, loss_test = loss_test, labels_train = labels_train, labels_test = labels_test ) # Run several attacks for different data slices attacks_result = mia.run_attacks(input, SlicingSpec( entire_dataset = True, by_class = True, by_classification_correctness = True ), attack_types = [ AttackType.THRESHOLD_ATTACK, AttackType.LOGISTIC_REGRESSION]) # Plot the ROC curve of the best classifier fig = plotting.plot_roc_curve( attacks_result.get_result_with_max_auc().roc_curve) # Print a user-friendly summary of the attacks print(attacks_result.summary(by_slices = True)) ###Output _____no_output_____
notebooks/demo_Hangul.ipynb
###Markdown "data/nine_dreams/ninedreams.txt" IS REQUIRED SPECIFY FILE ENCODING TYOE IN PYTHON ###Code # -*- coding: utf-8 -*- print ("UTF-8 ENCODING") ###Output UTF-8 ENCODING ###Markdown LOAD PACKAGES ###Code import chardet # https://github.com/chardet/chardet import glob import codecs import sys import os from TextLoader import * from Hangulpy3 import * print ("PACKAGES LOADED") ###Output PACKAGES LOADED ###Markdown CONVERT UTF8-ENCODED TXT FILE ###Code def conv_file(fromfile, tofile): with open(fromfile, "rb") as f: sample_text=f.read(10240) pred = chardet.detect(sample_text) if not pred['encoding'] in ('EUC-KR', 'UTF-8', 'CP949', 'UTF-16LE'): print ("WARNING! Unknown encoding! : %s = %s") % (fromfile, pred['encoding']) pred['encoding'] = "CP949" # 못찾으면 기본이 CP949 formfile = fromfile + ".unknown" elif pred['confidence'] < 0.9: print ("WARNING! Unsured encofing! : %s = %s / %s") % (fromfile, pred['confidence'], pred['encoding']) formfile = fromfile + ".notsure" with codecs.open(fromfile, "r", encoding=pred['encoding'], errors="ignore") as f: with codecs.open(tofile, "w+", encoding="utf8") as t: all_text = f.read() t.write(all_text) ###Output _____no_output_____ ###Markdown "data/nine_dreams/ninedreams_utf8.txt" IS GENERATED ###Code # SOURCE TXT FILE fromfile = "data/nine_dreams/ninedreams.txt" # TARGET TXT FILE tofile = "data/nine_dreams/ninedreams_utf8.txt" conv_file(fromfile, tofile) print ("UTF8-CONVERTING DONE") print (" [%s] IS GENERATED" % (tofile)) ###Output UTF8-CONVERTING DONE [data/nine_dreams/ninedreams_utf8.txt] IS GENERATED ###Markdown DECOMPOSE HANGUL (THIS PART IS IMPORTANT!) ###Code def dump_file(filename): result=u"" # <= UNICODE STRING with codecs.open(filename,"r", encoding="UTF8") as f: for line in f.readlines(): line = tuple(line) result = result + decompose_text(line) return result print ("FUNCTION READY") ###Output FUNCTION READY ###Markdown PYTHON 2 AND 3 COMPATIBILITY ###Code if sys.version_info.major == 2: parsed_txt = dump_file(tofile).encode("utf8") else: parsed_txt = dump_file(tofile) print ("Parsing %s done" % (tofile)) # PRINT FIRST 100 CHARACTERS print (parsed_txt[:100]) ###Output Parsing data/nine_dreams/ninedreams_utf8.txt done ㅎㅏㄴᴥㄱㅜㄱᴥ ㄱㅜㄱᴥㅁㅜㄴᴥㅎㅏㄱᴥㅅㅏᴥㅅㅏㅇᴥ ㅇㅕㅇᴥ� ###Markdown "data/nine_dreams/input.txt" IS GENERATED ###Code with open("data/nine_dreams/input.txt", "w") as text_file: text_file.write(parsed_txt) print ("Saved to a txt file") print (text_file) ###Output Saved to a txt file <closed file 'data/nine_dreams/input.txt', mode 'w' at 0x7f62ae9a58a0> ###Markdown COMPOSE HANGUL CHARACTER FROM PHONEME ###Code data=[u'\u3147', u'\u3157', u'\u1d25', u'\u3134', u'\u3161', u'\u3139', u'\u1d25' , u' ', u'\u314f', u'\u3147', u'\u3145', u'\u314f', u'\u1d25', u'\u1d25' , u'\u3163', u'\u1d25', u' ', u'\u3147', u'\u1d25', u'\u3155', u'\u1d25' , u'\u3134', u'\u314f', u'\u1d25', u'\u3155', u'\u3147', u'\u1d25' , u'\u315b', u'\u3131', u'\u1d25', u'\u3147', u'\u3139', u'\u3146' , u'\u1d25', u'\u3137', u'\u314f', u'\u314e', u'\u3139', u'\u1d25' , u'\u3134', u'\u1d25', u'\u3145', u'\u3163', u'\u1d25', u'\u1d25' , u'\u314f', u'\u1d25', u'\u314e', u'\u314f', u'\u3147', u'\u3131' , u'\u3157', u'\u3134', u'\u1d25', u'\u1d25', u'\u315b', u'\u1d25' , u'\u3148', u'\u3153', u'\u3136', u'\u1d25', u' ', u'\u3145', u'\u3150' , u'\u3141', u'\u3136', u'\u3161', u'\u3134', u'\u3163', u'\u1d25', u'.' , u'\u3148', u'\u3153', u'\u3134', u'\u314e', u'\u3153', u'\u1d25', u'\u1d25' , u'\u3147', u'\u314f', u'\u3134', u'\u3148', u'\u314f', u'\u3139', u'\u315d' , u'\u314c', u'\u1d25', u'\u3161', u'\u3134', u'\u3148', u'\u3163', u'\u313a' , u'\u1d25', u' ', u'\u3147', u'\u3161', u'\u3146', u'\u1d25', u'?', u'\u3134' , u'\u1d25', u'\u314e', u'\u3163', u'\u1d25', u'\u3147', u'\u3148', u'\u314f' ] print automata("".join(data)) ###Output 오늘 ㅏㅇ사ㅣ ㅇㅕ나ㅕㅇㅛㄱㅇㄹㅆ닿ㄹㄴ시ㅏ항곤ㅛ젆 샘ㄶㅡ니.젆ㅓ앉ㅏ뤝ㅡㄴ짉 읐?ㄴ히ㅇ ###Markdown GENERATE "vocab.pkl" and "data.npy" in "data/nine_dreams/" FROM "data/nine_dreams/input.txt" ###Code data_dir = "data/nine_dreams" batch_size = 50 seq_length = 50 data_loader = TextLoader(data_dir, batch_size, seq_length) ###Output loading preprocessed files ###Markdown DATA_LOADER IS: ###Code print ( "type of 'data_loader' is %s, length is %d" % (type(data_loader.vocab), len(data_loader.vocab)) ) ###Output type of 'data_loader' is <type 'dict'>, length is 76 ###Markdown DATA_LOADER.VOCAB IS: ###Code print ("data_loader.vocab looks like \n%s " % (data_loader.vocab,)) ###Output data_loader.vocab looks like {u'_': 69, u'6': 59, u':': 57, u'\n': 19, u'4': 67, u'5': 63, u'>': 75, u'!': 52, u' ': 1, u'"': 28, u'\u1d25': 0, u"'": 49, u')': 46, u'(': 45, u'-': 65, u',': 27, u'.': 24, u'\u3131': 7, u'0': 73, u'\u3133': 60, u'\u3132': 29, u'\u3135': 50, u'\u3134': 4, u'\u3137': 13, u'\u3136': 44, u'\u3139': 5, u'\u3138': 32, u'\u313b': 55, u'\u313a': 48, u'\u313c': 54, u'?': 41, u'3': 66, u'\u3141': 12, u'\u3140': 51, u'\u3143': 47, u'\u3142': 17, u'\u3145': 10, u'\u3144': 43, u'\u3147': 2, u'\u3146': 22, u'\u3149': 40, u'\u3148': 15, u'\u314b': 42, u'\u314a': 23, u'\u314d': 31, u'\u314c': 30, u'\u314f': 3, u'\u314e': 14, u'\u3151': 34, u'\u3150': 21, u'\u3153': 11, u'\u3152': 74, u'\u3155': 18, u'\u3154': 20, u'\u3157': 9, u'\u3156': 39, u'\u3159': 53, u'\u3158': 26, u'\u315b': 38, u'\u315a': 33, u'\u315d': 36, u'\u315c': 16, u'\u315f': 35, u'\u315e': 61, u'\u3161': 8, u'\u3160': 37, u'\u3163': 6, u'\u3162': 25, u'\x1a': 72, u'9': 64, u'7': 71, u'2': 62, u'1': 58, u'\u313f': 56, u'\u313e': 70, u'8': 68} ###Markdown DATA_LOADER.CHARS IS: ###Code print ( "type of 'data_loader.chars' is %s, length is %d" % (type(data_loader.chars), len(data_loader.chars)) ) ###Output type of 'data_loader.chars' is <type 'tuple'>, length is 76 ###Markdown CHARS CONVERTS INDEX -> CHAR ###Code print ("data_loader.chars looks like \n%s " % (data_loader.chars,)) for i, char in enumerate(data_loader.chars): # GET INDEX OF THE CHARACTER idx = data_loader.vocab[char] print ("[%02d] %03s (%02d)" % (i, automata("".join(char)), idx)) ###Output [00] (00) [01] (01) [02] (02) [03] ㅏ (03) [04] (04) [05] (05) [06] ㅣ (06) [07] (07) [08] ㅡ (08) [09] ㅗ (09) [10] (10) [11] ㅓ (11) [12] (12) [13] (13) [14] (14) [15] (15) [16] ㅜ (16) [17] (17) [18] ㅕ (18) [19] (19) [20] ㅔ (20) [21] ㅐ (21) [22] (22) [23] (23) [24] . (24) [25] ㅢ (25) [26] ㅘ (26) [27] , (27) [28] " (28) [29] (29) [30] (30) [31] (31) [32] (32) [33] ㅚ (33) [34] ㅑ (34) [35] ㅟ (35) [36] ㅝ (36) [37] ㅠ (37) [38] ㅛ (38) [39] ㅖ (39) [40] (40) [41] ? (41) [42] (42) [43] ㅄ (43) [44] ㄶ (44) [45] ( (45) [46] ) (46) [47] (47) [48] ㄺ (48) [49] ' (49) [50] ㄵ (50) [51] ㅀ (51) [52] ! (52) [53] ㅙ (53) [54] ㄼ (54) [55] ㄻ (55) [56] ㄿ (56) [57] : (57) [58] 1 (58) [59] 6 (59) [60] ㄳ (60) [61] ㅞ (61) [62] 2 (62) [63] 5 (63) [64] 9 (64) [65] - (65) [66] 3 (66) [67] 4 (67) [68] 8 (68) [69] _ (69) [70] ㄾ (70) [71] 7 (71) [72]  (72) [73] 0 (73) [74] ㅒ (74) [75] > (75)
lecture02.ingestion/lecture02.ingestion.ipynb
###Markdown Lecture 01 : intro, inputs, numpy, pandas 1. Inputs: CSV / Text We will start by ingesting plain text. ###Code from __future__ import print_function import csv my_reader = csv.DictReader(open('data/eu_revolving_loans.csv', 'r')) ###Output _____no_output_____ ###Markdown DicReader returns a "generator" -- which means that we only have 1 chance to read the returning row dictionaries.Let's just print out line by line to see what we are reading in: ###Code for line in my_reader: print(line) ###Output _____no_output_____ ###Markdown Since the data is tabular format, pandas is ideally suited for such data. There are convenient pandas import functions for reading in tabular data.Pandas provides direct csv ingestion into "data frames": ###Code import pandas as pd df = pd.read_csv('data/eu_revolving_loans.csv') df.head() ###Output _____no_output_____ ###Markdown As we briefly discussed last week, simply reading in without any configuration generates a fairly message data frame. We should try to specify some helping hints to pandas as to where the header rows are and which is the index colum: ###Code df = pd.read_csv('data/eu_revolving_loans.csv', header=[1,2,4], index_col=0) df.head() ###Output _____no_output_____ ###Markdown 2. Inputs: Excel Many organizations still use Excel as the common medium for communicating data and analysis. We will look quickly at how to ingest Excel data. There are many packages available to read Excel files. We will use one popular one here. ###Code from __future__ import print_function from openpyxl import load_workbook ###Output _____no_output_____ ###Markdown Let's take a look at the excel file that want to read into Jupyter ###Code !open 'data/climate_change_download_0.xlsx' ###Output _____no_output_____ ###Markdown Here is how we can read the Excel file into the Jupyter environment. ###Code wb = load_workbook(filename='data/climate_change_download_0.xlsx') ###Output _____no_output_____ ###Markdown What are the "sheets" in this workbook? ###Code wb.get_sheet_names()` ###Output _____no_output_____ ###Markdown We will focus on the sheet 'Data': ###Code ws = wb.get_sheet_by_name('Data') ###Output _____no_output_____ ###Markdown For the sheet "Data", let's print out the content cell-by-cell to view the content. ###Code for row in ws.rows: for cell in row: print(cell.value) ###Output _____no_output_____ ###Markdown Pandas also provides direct Excel data ingest: ###Code import pandas as pd df = pd.read_excel('data/climate_change_download_0.xlsx') df.head() ###Output _____no_output_____ ###Markdown Here is another example with multiple sheets: ###Code df = pd.read_excel('data/GHE_DALY_Global_2000_2012.xls', sheetname='Global2012', header=[4,5]) ###Output _____no_output_____ ###Markdown This dataframe has a "multi-level" index: ###Code df.columns ###Output _____no_output_____ ###Markdown How do we export a dataframe back to Excel? ###Code df.to_excel('data/my_excel.xlsx') !open 'data/my_excel.xlsx' ###Output _____no_output_____ ###Markdown 3. Inputs: PDF PDF is also a common communication medium about data and analysis. Let's look at how one can read data from PDF into Python. ###Code import pdftables my_pdf = open('data/WEF_GlobalCompetitivenessReport_2014-15.pdf', 'rb') chart_page = pdftables.get_pdf_page(my_pdf, 29) ###Output _____no_output_____ ###Markdown PDF is a proprietary file format with specific tagging that has been reverse engineered. Let's take a look at some structures in this file. ###Code table = pdftables.page_to_tables(chart_page) titles = zip(table[0][0], table[0][1])[:5] titles = [''.join([title[0], title[1]]) for title in titles] print(titles) ###Output _____no_output_____ ###Markdown There is a table with structured data that we can peel out: ###Code all_rows = [] for row_data in table[0][2:]: all_rows.extend([row_data[:5], row_data[5:]]) print(all_rows) ###Output _____no_output_____ ###Markdown 4. Configurations ###Code from ConfigParser import ConfigParser config = ConfigParser() config.read('../cfg/sample.cfg') config.sections() ###Output _____no_output_____ ###Markdown 5. APIs Getting Twitter data from APIRelevant links to the exercise here:- Twitter Streaming: https://dev/twitter.com/streaming/overview- API client: https://github.com/tweepy/tweepy- Twitter app: https://apps.twitter.com Create an authentication handler ###Code import tweepy auth = tweepy.OAuthHandler(config.get('twitter', 'consumer_key'), config.get('twitter', 'consumer_secret')) auth.set_access_token(config.get('twitter','access_token'), config.get('twitter','access_token_secret')) auth ###Output _____no_output_____ ###Markdown Create an API endpoint ###Code api = tweepy.API(auth) ###Output _____no_output_____ ###Markdown Try REST-ful API call to Twitter ###Code python_tweets = api.search('turkey') for tweet in python_tweets: print(tweet.text) ###Output _____no_output_____ ###Markdown For streaming API call, we should run a standalone python program: tweetering.py Input & Output to OpenWeatherMap APIRelevant links to the exercise here:- http://openweathermap.org/- http://openweathermap.org/currentAPI call:```api.openweathermap.org/data/2.5/weather?q={city name}api.openweathermap.org/data/2.5/weather?q={city name},{country code}```Parameters:> q city name and country code divided by comma, use ISO 3166 country codesExamples of API calls:```api.openweathermap.org/data/2.5/weather?q=Londonapi.openweathermap.org/data/2.5/weather?q=London,uk``` ###Code from pprint import pprint import requests weather_key = config.get('openweathermap', 'api_key') res = requests.get("http://api.openweathermap.org/data/2.5/weather", params={"q": "San Francisco", "appid": weather_key, "units": "metric"}) pprint(res.json()) ###Output _____no_output_____ ###Markdown 6. Python requests "requests" is a wonderful HTTP library for Python, with the right level of abstraction to avoid lots of tedious plumbing (manually add query strings to your URLs, or to form-encode your POST data). Keep-alive and HTTP connection pooling are 100% automatic, powered by urllib3, which is embedded within Requests)```>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))>>> r.status_code200>>> r.headers['content-type']'application/json; charset=utf8'>>> r.encoding'utf-8'>>> r.textu'{"type":"User"...'>>> r.json(){u'private_gists': 419, u'total_private_repos': 77, ...}```There is a lot of great documentation at the python-requests [site](http://docs.python-requests.org/en/master/) -- we are extracting selected highlights from there for your convenience here. Making a requestMaking a request with Requests is very simple.Begin by importing the Requests module: ###Code import requests ###Output _____no_output_____ ###Markdown Now, let's try to get a webpage. For this example, let's get GitHub's public timeline ###Code r = requests.get('https://api.github.com/events') ###Output _____no_output_____ ###Markdown Now, we have a Response object called r. We can get all the information we need from this object.Requests' simple API means that all forms of HTTP request are as obvious. For example, this is how you make an HTTP POST request: ###Code r = requests.post('http://httpbin.org/post', data = {'key':'value'}) ###Output _____no_output_____ ###Markdown What about the other HTTP request types: PUT, DELETE, HEAD and OPTIONS? These are all just as simple: ###Code r = requests.put('http://httpbin.org/put', data = {'key':'value'}) r = requests.delete('http://httpbin.org/delete') r = requests.head('http://httpbin.org/get') r = requests.options('http://httpbin.org/get') ###Output _____no_output_____ ###Markdown Passing Parameters In URLsYou often want to send some sort of data in the URL's query string. If you were constructing the URL by hand, this data would be given as key/value pairs in the URL after a question mark, e.g. httpbin.org/get?key=val. Requests allows you to provide these arguments as a dictionary, using the params keyword argument. As an example, if you wanted to pass key1=value1 and key2=value2 to httpbin.org/get, you would use the following code: ###Code payload = {'key1': 'value1', 'key2': 'value2'} r = requests.get('http://httpbin.org/get', params=payload) ###Output _____no_output_____ ###Markdown You can see that the URL has been correctly encoded by printing the URL: ###Code print(r.url) ###Output _____no_output_____ ###Markdown Note that any dictionary key whose value is None will not be added to the URL's query string.You can also pass a list of items as a value: ###Code payload = {'key1': 'value1', 'key2': ['value2', 'value3']} r = requests.get('http://httpbin.org/get', params=payload) print(r.url) ###Output _____no_output_____ ###Markdown Response ContentWe can read the content of the server's response. Consider the GitHub timeline again: ###Code import requests r = requests.get('https://api.github.com/events') r.text ###Output _____no_output_____ ###Markdown Requests will automatically decode content from the server. Most unicode charsets are seamlessly decoded.When you make a request, Requests makes educated guesses about the encoding of the response based on the HTTP headers. The text encoding guessed by Requests is used when you access r.text. You can find out what encoding Requests is using, and change it, using the r.encoding property: ###Code r.encoding r.encoding = 'ISO-8859-1' ###Output _____no_output_____ ###Markdown If you change the encoding, Requests will use the new value of r.encoding whenever you call r.text. You might want to do this in any situation where you can apply special logic to work out what the encoding of the content will be. For example, HTTP and XML have the ability to specify their encoding in their body. In situations like this, you should use r.content to find the encoding, and then set r.encoding. This will let you use r.text with the correct encoding.Requests will also use custom encodings in the event that you need them. If you have created your own encoding and registered it with the codecs module, you can simply use the codec name as the value of r.encoding and Requests will handle the decoding for you. JSON Response ContentThere's also a builtin JSON decoder, in case you're dealing with JSON data: ###Code import requests r = requests.get('https://api.github.com/events') r.json() ###Output _____no_output_____ ###Markdown In case the JSON decoding fails, r.json raises an exception. For example, if the response gets a 204 (No Content), or if the response contains invalid JSON, attempting r.json raises ValueError: No JSON object could be decoded.It should be noted that the success of the call to r.json does not indicate the success of the response. Some servers may return a JSON object in a failed response (e.g. error details with HTTP 500). Such JSON will be decoded and returned. To check that a request is successful, use r.raise_for_status() or check r.status_code is what you expect. ###Code r.status_code ###Output _____no_output_____ ###Markdown Custom HeadersIf you'd like to add HTTP headers to a request, simply pass in a dict to the headers parameter.For example, we didn't specify our user-agent in the previous example: ###Code url = 'https://api.github.com/some/endpoint' headers = {'user-agent': 'my-app/0.0.1'} r = requests.get(url, headers=headers) ###Output _____no_output_____ ###Markdown Note: Custom headers are given less precedence than more specific sources of information. For instance:- Authorization headers set with headers= will be overridden if credentials are specified in .netrc, which in turn will be overridden by the auth= parameter.- Authorization headers will be removed if you get redirected off-host.- Proxy-Authorization headers will be overridden by proxy credentials provided in the URL.- Content-Length headers will be overridden when we can determine the length of the content. Response HeadersWe can view the server's response headers using a Python dictionary: ###Code r.headers ###Output _____no_output_____ ###Markdown The dictionary is special, though: it's made just for HTTP headers. According to RFC 7230, HTTP Header names are case-insensitive.So, we can access the headers using any capitalization we want: ###Code r.headers['Content-Type'] r.headers.get('content-type') ###Output _____no_output_____ ###Markdown CookiesIf a response contains some Cookies, you can quickly access them: ###Code url = 'http://www.cnn.com' r = requests.get(url) print(r.cookies.items()) ###Output _____no_output_____ ###Markdown To send your own cookies to the server, you can use the cookies parameter: ###Code url = 'http://httpbin.org/cookies' cookies = dict(cookies_are='working') r = requests.get(url, cookies=cookies) r.text ###Output _____no_output_____ ###Markdown Redirection and HistoryBy default Requests will perform location redirection for all verbs except HEAD.We can use the history property of the Response object to track redirection.The Response.history list contains the Response objects that were created in order to complete the request. The list is sorted from the oldest to the most recent response.For example, GitHub redirects all HTTP requests to HTTPS: ###Code r = requests.get('http://github.com') r.url r.status_code r.history ###Output _____no_output_____ ###Markdown If you're using GET, OPTIONS, POST, PUT, PATCH or DELETE, you can disable redirection handling with the allow_redirects parameter: ###Code r = requests.get('http://github.com', allow_redirects=False) r.status_code r.history ###Output _____no_output_____ ###Markdown If you're using HEAD, you can enable redirection as well: ###Code r = requests.head('http://github.com', allow_redirects=True) r.url r.history ###Output _____no_output_____ ###Markdown TimeoutsYou can tell Requests to stop waiting for a response after a given number of seconds with the timeout parameter: ###Code requests.get('http://github.com', timeout=1) ###Output _____no_output_____
07 NLP/kaggle hw/solution.ipynb
###Markdown ###Code # !pip3 install kaggle from google.colab import files files.upload() !mkdir ~/.kaggle !cp kaggle.json ~/.kaggle/ !chmod 600 ~/.kaggle/kaggle.json !kaggle competitions download -c toxic-comments-classification-apdl-2021 !ls import pandas as pd import numpy as np from sklearn.metrics import * from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline train = pd.read_csv('train_data.csv.zip', compression='zip') test = pd.read_csv('test_data.csv.zip', compression='zip') train.toxic.describe() train.sample(5) test.sample(5) x_train, x_test, y_train, y_test = train_test_split(train.comment, train.toxic, random_state=0, stratify=train.toxic) y_train.describe() y_test.describe() ###Output _____no_output_____ ###Markdown Bag of words ###Code from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import CountVectorizer from nltk import ngrams vec = CountVectorizer(ngram_range=(1, 2)) # строим BoW для слов bow = vec.fit_transform(x_train) vec2 = CountVectorizer(ngram_range=(1, 2)) # строим BoW для слов bow2 = vec2.fit_transform(train.comment) list(vec2.vocabulary_.items())[:10] bow.mean() clf = LogisticRegression(random_state=0, max_iter=500, class_weight='balanced') clf.fit(bow, y_train) clf2 = LogisticRegression(random_state=0, max_iter=500, class_weight='balanced') clf2.fit(bow2, train.toxic) pred = clf.predict(vec.transform(x_test)) print(classification_report(pred, y_test)) test bow_test_pred = test.copy() bow_test_pred['toxic'] = clf.predict(vec.transform(test.comment)) bow_test_pred['toxic'] = bow_test_pred['toxic'].astype(int) bow_test_pred.drop('comment', axis=1, inplace=True) bow_test_pred bow_test_pred2 = test.copy() bow_test_pred2['toxic'] = clf2.predict(vec2.transform(test.comment)) bow_test_pred2['toxic'] = bow_test_pred2['toxic'].astype(int) bow_test_pred2.drop('comment', axis=1, inplace=True) bow_test_pred2 bow_test_pred.to_csv('bow_v1.csv', index=False) bow_test_pred2.to_csv('bow_v2.csv', index=False) confusion_matrix(bow_test_pred.toxic, bow_test_pred2.toxic) # !kaggle competitions submit -c toxic-comments-classification-apdl-2021 -f bow_v2.csv -m "kirill_setdekov first bow v2 submission all data" ###Output Warning: Looks like you're using an outdated API Version, please consider updating (server 1.5.12 / client 1.5.4) 100% 23.6k/23.6k [00:09<00:00, 2.45kB/s] Successfully submitted to Toxic comments classification ###Markdown TF-IDF ###Code from sklearn.feature_extraction.text import TfidfVectorizer vec = TfidfVectorizer(ngram_range=(1, 1)) bow = vec.fit_transform(x_train) clf2 = LogisticRegression(random_state=1, max_iter = 500) clf2.fit(bow, y_train) pred = clf2.predict(vec.transform(x_test)) print(classification_report(pred, y_test)) tf_idf = test.copy() tf_idf['toxic'] = clf2.predict(vec.transform(test.comment)) tf_idf['toxic'] = tf_idf['toxic'].astype(int) tf_idf.drop('comment', axis=1, inplace=True) tf_idf tf_idf.to_csv('tf_idf_v1.csv', index=False) # !kaggle competitions submit -c toxic-comments-classification-apdl-2021 -f tf_idf_v1.csv -m "kirill_setdekov tfidf v1 submission" ###Output _____no_output_____ ###Markdown Symbol n-Grams ###Code vec = CountVectorizer(analyzer='char', ngram_range=(1, 5)) bowsimb = vec.fit_transform(x_train) from sklearn.preprocessing import MaxAbsScaler scaler = MaxAbsScaler() scaler.fit(bowsimb) bowsimb = scaler.transform(bowsimb) clf3 = LogisticRegression(random_state=0, max_iter=1000) clf3.fit(bowsimb, y_train) pred = clf3.predict(scaler.transform(vec.transform(x_test))) print(classification_report(pred, y_test)) importances = list(zip(vec.vocabulary_, clf.coef_[0])) importances[0] sorted_importances = sorted(importances, key = lambda x: -abs(x[1])) sorted_importances[:20] symbol_ngrams = test.copy() symbol_ngrams['toxic'] = clf3.predict(scaler. transform(vec.transform(test.comment))) symbol_ngrams['toxic'] = tf_idf['toxic'].astype(int) symbol_ngrams.drop('comment', axis=1, inplace=True) symbol_ngrams symbol_ngrams.to_csv('symbol_ngrams_v1.csv', index=False) from sklearn.metrics import confusion_matrix confusion_matrix(symbol_ngrams.toxic, tf_idf.toxic) # !kaggle competitions submit -c toxic-comments-classification-apdl-2021 -f symbol_ngrams_v1.csv -m "kirill_setdekov symbol_ngrams_v1 v1 submission" ###Output _____no_output_____ ###Markdown FastText ###Code !pip3 install fasttext import fasttext with open('ft_train_data.txt', 'w') as f: for pair in list(zip(x_train, y_train)): text, label = pair f.write(f'__label__{int(label)} {text.lower()}\n') with open('ft_test_data.txt', 'w') as f: for pair in list(zip(x_test, y_test)): text, label = pair f.write(f'__label__{int(label)} {text.lower()}\n') with open('ft_all.txt', 'w') as f: for pair in list(zip(train.comment, train.toxic)): text, label = pair f.write(f'__label__{int(label)} {text.lower()}\n') classifier = fasttext.train_supervised('ft_train_data.txt')#, 'model') result = classifier.test('ft_test_data.txt') print('P@1:', result[1])#.precision) print('R@1:', result[2])#.recall) print('Number of examples:', result[0])#.nexamples) classifier2 = fasttext.train_supervised('ft_all.txt')#, 'model') k = 0 for item in [i.lower() for i in test.comment]: item = item.replace("\n"," ") k +=1 k prediction = [] for item in [i.lower() for i in test.comment]: item = item.replace("\n"," ") prediction.append(classifier.predict(item)) prediction2 = [] for item in [i.lower() for i in test.comment]: item = item.replace("\n"," ") prediction2.append(classifier2.predict(item)) pred = [int(label[0][0].split('__')[2][0]) for label in prediction] pred2 = [int(label[0][0].split('__')[2][0]) for label in prediction2] fasttext_pred = test.copy() fasttext_pred['toxic'] = pred fasttext_pred.drop('comment', axis=1, inplace=True) fasttext_pred fasttext_pred2 = test.copy() fasttext_pred2['toxic'] = pred2 fasttext_pred2.drop('comment', axis=1, inplace=True) fasttext_pred2 confusion_matrix(symbol_ngrams.toxic, fasttext_pred.toxic) confusion_matrix(fasttext_pred2.toxic, fasttext_pred.toxic) fasttext_pred.to_csv('fasttext_pred_v1.csv', index=False) fasttext_pred2.to_csv('fasttext_pred_v2.csv', index=False) !kaggle competitions submit -c toxic-comments-classification-apdl-2021 -f fasttext_pred_v2.csv -m "kirill_setdekov fasttext_pred v2 submission" ###Output Warning: Looks like you're using an outdated API Version, please consider updating (server 1.5.12 / client 1.5.4) 100% 23.6k/23.6k [00:07<00:00, 3.36kB/s] Successfully submitted to Toxic comments classification ###Markdown CNN ###Code from torchtext.legacy import data pd.read_csv('train_data.csv.zip', compression='zip') !unzip train_data.csv.zip !unzip test_data.csv.zip # классы Field и LabelField отвечают за то, как данные будут храниться и обрабатываться при считывании TEXT = data.Field(tokenize='spacy') # spacy -- значит, токенизацию будет делать модуль LABEL = data.LabelField() ds = data.TabularDataset( path='train_data.csv', format='csv', skip_header=True, fields=[('comment', TEXT), ('toxic', LABEL)] ) pd.read_csv('test_data.csv') test = data.TabularDataset( path='test_data.csv', format='csv', skip_header=True, fields=[('id', TEXT), ('comment', TEXT)] ) next(ds.comment) next(ds.toxic) TEXT.build_vocab(ds, max_size=25000, vectors="glove.6B.100d") LABEL.build_vocab(ds) TEXT.vocab.itos[:20] len(TEXT.vocab.itos) train, val = ds.split(split_ratio=0.9, stratified=True, strata_field='toxic') # дефолтное соотношение 0.7 print(len(train)) print(len(val)) print(len(test)) BATCH_SIZE = 64 train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train, val, test), batch_size=BATCH_SIZE, sort=True, sort_key=lambda x: len(x.comment), # сорируем тексты по длине, чтобы рядом оказывались предложения с одинаковой длиной и добавлялось меньше паддинга repeat=False) for i, batch in enumerate(valid_iterator): print(batch.batch_size) # pass batch.fields batch.batch_size batch.comment batch.toxic len(batch.toxic) import torch.nn as nn class CNN(nn.Module): def __init__(self, vocab_size, embedding_dim, n_filters, filter_sizes, output_dim, dropout_proba): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.conv_0 = nn.Conv2d(in_channels=1, out_channels=n_filters, kernel_size=(filter_sizes[0], embedding_dim)) self.conv_1 = nn.Conv2d(in_channels=1, out_channels=n_filters, kernel_size=(filter_sizes[1], embedding_dim)) self.conv_2 = nn.Conv2d(in_channels=1, out_channels=n_filters, kernel_size=(filter_sizes[2], embedding_dim)) self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim) self.dropout = nn.Dropout(dropout_proba) def forward(self, x): #x = [sent len, batch size] # print(x.shape) x = x.permute(1, 0) #x = [batch size, sent len] embedded = self.embedding(x) #print(embedded.shape) #embedded = [batch size, sent len, emb dim] embedded = embedded.unsqueeze(1) #embedded = [batch size, 1, sent len, emb dim] conv_0 = self.conv_0(embedded) #print(conv_0.shape) conv_0 = conv_0.squeeze(3) #print(conv_0.shape) conved_0 = F.relu(conv_0) conved_1 = F.relu(self.conv_1(embedded).squeeze(3)) conved_2 = F.relu(self.conv_2(embedded).squeeze(3)) #conv_n = [batch size, n_filters, sent len - filter_sizes[n]] # print(conved_0.shape) pool_0 = F.max_pool1d(conved_0, conved_0.shape[2]) # print(pool_0.shape) pooled_0 = pool_0.squeeze(2) # print(pooled_0.shape) pooled_1 = F.max_pool1d(conved_1, conved_1.shape[2]).squeeze(2) pooled_2 = F.max_pool1d(conved_2, conved_2.shape[2]).squeeze(2) #pooled_n = [batch size, n_filters] cat = self.dropout(torch.cat((pooled_0, pooled_1, pooled_2), dim=1)) #cat = [batch size, n_filters * len(filter_sizes)] return self.fc(cat) import torch.nn.functional as F def binary_accuracy(preds, y): rounded_preds = torch.round(F.sigmoid(preds)) correct = (rounded_preds == y).float() acc = correct.sum() / len(correct) return acc def train_func(model, iterator, optimizer, criterion): epoch_loss = 0 epoch_acc = 0 model.train() for batch in iterator: optimizer.zero_grad() predictions = model(batch.comment.cuda()).squeeze(1) loss = criterion(predictions.float(), batch.toxic.float().cuda()) acc = binary_accuracy(predictions.float(), batch.toxic.float().cuda()) loss.backward() optimizer.step() epoch_loss += loss epoch_acc += acc return epoch_loss / len(iterator), epoch_acc / len(iterator) def evaluate_func(model, iterator, criterion): epoch_loss = 0 epoch_acc = 0 model.eval() with torch.no_grad(): for batch in iterator: predictions = model(batch.comment.cuda()).squeeze(1) loss = criterion(predictions.float(), batch.toxic.float().cuda()) acc = binary_accuracy(predictions.float(), batch.toxic.float().cuda()) epoch_loss += loss epoch_acc += acc return epoch_loss / len(iterator), epoch_acc / len(iterator) INPUT_DIM = len(TEXT.vocab) EMBEDDING_DIM = 100 N_FILTERS = 100 FILTER_SIZES = [2,3,4] OUTPUT_DIM = 1 DROPOUT_PROBA = 0.5 model = CNN(INPUT_DIM, EMBEDDING_DIM, N_FILTERS, FILTER_SIZES, OUTPUT_DIM, DROPOUT_PROBA) INPUT_DIM model pretrained_embeddings = TEXT.vocab.vectors model.embedding.weight.data.copy_(pretrained_embeddings) import torch.optim as optim optimizer = optim.Adam(model.parameters()) # мы подали оптимизатору все параметры -- значит, эмбеддиги тоже будут дообучаться criterion = nn.BCEWithLogitsLoss() # бинарная кросс-энтропия с логитами model = model.cuda() # будем учить на gpu! =) model.embedding from torchsummary import summary # summary(model, (14)) import torch N_EPOCHS = 8 for epoch in range(N_EPOCHS): train_loss, train_acc = train_func(model, train_iterator, optimizer, criterion) valid_loss, valid_acc = evaluate_func(model, valid_iterator, criterion) print(f'Epoch: {epoch+1:02}, Train Loss: {train_loss:.3f}, Train Acc: {train_acc*100:.2f}%, Val. Loss: {valid_loss:.3f}, Val. Acc: {valid_acc*100:.2f}%') test.examples model.eval() cnn_res = [] with torch.no_grad(): for batch in test_iterator: predictions = model(batch.comment.cuda()) cnn_res.append(predictions) testout = pd.read_csv('test_data.csv.zip', compression='zip') cnnpred = testout.copy() cnnpred['toxic'] = [float(item) for sublist in cnn_res for item in sublist] cnnpred.drop('comment', axis=1, inplace=True) cnnpred cnnpred['toxic'] = (cnnpred['toxic'] > 0).astype(int) cnnpred cnnpred.to_csv('cnnpred_v4.csv', index=False) !kaggle competitions submit -c toxic-comments-classification-apdl-2021 -f cnnpred_v4.csv -m "kirill_setdekov cnn v4 with threshold 0" ###Output _____no_output_____ ###Markdown word2vec> not done, skip this model ###Code ! wget https://nlp.stanford.edu/data/glove.6B.zip with open("alice.txt", 'r', encoding='utf-8') as f: text = f.read() text = re.sub('\n', ' ', text) sents = sent_tokenize(text) punct = '!"#$%&()*+,-./:;<=>?@[\]^_`{|}~„“«»†*—/\-‘’' clean_sents = [] for sent in sents: s = [w.lower().strip(punct) for w in sent.split()] clean_sents.append(s) print(clean_sents[:2]) model_path = "movie_reviews.model" print("Saving model...") model_en.save(model_path) model = word2vec.Word2Vec.load(model_path) model.build_vocab(clean_sents, update=True) model.train(clean_sents, total_examples=model.corpus_count, epochs=5) ###Output _____no_output_____ ###Markdown bow on random forest![photo_2021-10-24_13-09-26.jpg]() ###Code ! pip install pymystem3 ! pip install --force-reinstall pymorphy2 !pip install pymorphy2-dicts-ru import pymorphy2 import re morph = pymorphy2.MorphAnalyzer() # убираем все небуквенные символы regex = re.compile("[А-Яа-яA-z]+") def words_only(text, regex=regex): try: return regex.findall(text.lower()) except: return [] for i in train.comment[10].split(): lemmas = morph.parse(i) print(lemmas[0]) from functools import lru_cache @lru_cache(maxsize=128) def lemmatize_word(token, pymorphy=morph): return pymorphy.parse(token)[0].normal_form def lemmatize_text(text): return [lemmatize_word(w) for w in text] tokens = words_only(train.comment[10]) print(lemmatize_text(tokens)) from nltk.corpus import stopwords import nltk nltk.download('stopwords') mystopwords = stopwords.words('russian') def remove_stopwords(lemmas, stopwords = mystopwords): return [w for w in lemmas if not w in stopwords] lemmas = lemmatize_text(tokens) print(*remove_stopwords(lemmas)) def remove_stopwords(lemmas, stopwords = mystopwords): return [w for w in lemmas if not w in stopwords and len(w) > 3] print(*remove_stopwords(lemmas)) def clean_text(text): tokens = words_only(text) lemmas = lemmatize_text(tokens) return remove_stopwords(lemmas) for i in range(20): print(* clean_text(train.comment[i])) from tqdm.auto import trange new_comments = [] for i in trange(len(train.comment), desc='loop'): new_comments.append(" ".join(clean_text(train.comment[i]))) new_comments[:10] vec3 = CountVectorizer(ngram_range=(1, 2)) # строим BoW для слов bow3 = vec3.fit_transform(new_comments) list(vec3.vocabulary_.items())[100:120] bow3 clf3 = LogisticRegression(random_state=0, max_iter=500, class_weight='balanced') clf3.fit(bow3, train.toxic) pred = clf3.predict(bow3) print(classification_report(pred, train.toxic)) test new_commentstest = [] for i in trange(len(test.comment), desc='loop'): new_commentstest.append(" ".join(clean_text(test.comment[i]))) bow_test_pred3 = test.copy() bow_test_pred3['newcomment'] = new_commentstest bow_test_pred3.tail() bow_test_pred3['toxic'] = clf3.predict(vec3.transform(bow_test_pred3.newcomment)) bow_test_pred3['toxic'] = bow_test_pred3['toxic'].astype(int) bow_test_pred3.drop('comment', axis=1, inplace=True) bow_test_pred3.drop('newcomment', axis=1, inplace=True) bow_test_pred3 confusion_matrix(bow_test_pred2.toxic, bow_test_pred3.toxic) bow_test_pred3.to_csv('bow_v3.csv', index=False) # !kaggle competitions submit -c toxic-comments-classification-apdl-2021 -f bow_v3.csv -m "kirill_setdekov bow3 with preprocessing" !pip install scikit-learn==0.24 from sklearn.ensemble import RandomForestClassifier from sklearn.experimental import enable_halving_search_cv # noqa from sklearn.model_selection import HalvingGridSearchCV ###Output _____no_output_____ ###Markdown nor run -too slow ###Code # rnd_reg = RandomForestClassifier( ) # # hyper-parameter space # param_grid_RF = { # 'n_estimators' : [10,20,50,100,200,500,1000], # 'max_features' : [0.6,0.8,"auto","sqrt"], # } # search_two = HalvingGridSearchCV(rnd_reg, param_grid_RF, factor=5, scoring='accuracy', # n_jobs=-1, random_state=0, verbose=2).fit(bow3, train.toxic) # search_two.best_params_ rnd_reg_2 = RandomForestClassifier(n_estimators=1000, verbose=5, n_jobs=-1) search_no = rnd_reg_2.fit(bow3, train.toxic) bow_test_pred4 = test.copy() bow_test_pred4['newcomment'] = new_commentstest bow_test_pred4.tail() bow_test_pred4['toxic'] = search_no.predict(vec3.transform(bow_test_pred4.newcomment)) bow_test_pred4['toxic'] = bow_test_pred4['toxic'].astype(int) bow_test_pred4.drop('comment', axis=1, inplace=True) bow_test_pred4.drop('newcomment', axis=1, inplace=True) bow_test_pred4 confusion_matrix(bow_test_pred4.toxic, bow_test_pred3.toxic) bow_test_pred4.to_csv('bow_v4.csv', index=False) !kaggle competitions submit -c toxic-comments-classification-apdl-2021 -f bow_v4.csv -m "kirill_setdekov bow4 with preprocessing and RF" ###Output _____no_output_____
sst_science/West_Coast_HeatWave.ipynb
###Markdown Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat waveIn 2016 we published a [paper](https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2016GL071039) on the heat wave in the ocean off the California coastThis analysis was the last time I used Matlab to process scientific data. To make Figure 1, here are the following steps:- Download 4 TB of data from NASA PO.DAAC data archive via FTP- Go through each day of data and subset to the West Coast Region to reduce size and save each subsetted day- Go through 2002-2012 and create a daily climatology and save all 365 days of the climatology- Go through each day of data and calculate the anomaly and save each day's anomalyThis whole process took about 1 month. Once the anomalies were calculated, then I could start to do analyses and explore the data.Below we will do this using MUR SST data on AWS Open Data Program in a few minutes using Python. ###Code import warnings import numpy as np import pandas as pd import xarray as xr import fsspec import matplotlib.pyplot as plt warnings.simplefilter('ignore') # filter some warning messages xr.set_options(display_style="html") #display dataset nicely dir_out = './../../data/zarr_testing/' file_aws = 'https://mur-sst.s3.us-west-2.amazonaws.com/zarr-v1' file_aws_time = 'https://mur-sst.s3.us-west-2.amazonaws.com/zarr' %%time ds_sst = xr.open_zarr(file_aws,consolidated=True) ds_sst #region for figure 1 xlat1,xlat2 = 33,48 xlon1,xlon2 = -132, -118, date1,date2 = '2002-01-01','2013-01-01' subset = ds_sst.sel(lat=slice(xlat1,xlat2),lon=slice(xlon1,xlon2)) subset ###Output _____no_output_____ ###Markdown Just plot a random day to make sure it looks correct ###Code subset.analysed_sst[0,:,:].plot() ###Output _____no_output_____ ###Markdown How big is this dataset?- Because xarray uses lazy loading, we have access to this entire dataset but it only loads what it needs to for calculations ###Code print('GB data = ',subset.nbytes/(1024 * 1024 * 1024)) ###Output GB data = 201.89575985074043 ###Markdown Caluculate the Monthly Sea Surface Temperature Anomalies ###Code sst_monthly = subset.resample(time='1MS').mean('time',keep_attrs=True,skipna=False) climatology_mean_monthly = sst_monthly.sel(time=slice(date1,date2)).groupby('time.month').mean('time',keep_attrs=True,skipna=False) sst_anomaly_monthly = sst_monthly.groupby('time.month')-climatology_mean_monthly #take out annual mean to remove trends sst_anomaly_monthly sst_anomaly_monthly.analysed_sst[0,:,:].plot(vmin=-3,vmax=3,cmap='RdYlBu_r') sst_anomaly_monthly.analysed_sst.sel(time='2015-03').plot(vmin=-3,vmax=3,cmap='RdYlBu_r') #plt.pcolormesh(tem.lon,tem.lat,tem.analysed_sst,transform=ccrs.PlateCarree(),cmap=vik_map,vmin=-2,vmax=2) #ax.coastlines(resolution='50m', color='black', linewidth=1) #ax.add_feature(cfeature.LAND) #ax.add_feature(cfeature.STATES.with_scale('10m')) #ax.set_extent([-132.27,-117,32,48]) #plt.colorbar(ax=ax,label='SST Anomaly (K)') #tt=plt.text(-122,47,tstr,fontsize=16) ###Output _____no_output_____ ###Markdown Let's try and re-do figure 2 which uses 5-day average SST anomalies ###Code sst_5day = subset.resample(time='5D').mean('time',keep_attrs=True,skipna=False) climatology_mean_5day = sst_5day.sel(time=slice(date1,date2)).groupby('time.day').mean('time',keep_attrs=True,skipna=False) sst_anomaly_5day = sst_5day.groupby('time.day')-climatology_mean_5day #take out annual mean to remove trends sst_anomaly_5day %%time max_5day = sst_anomaly_5day.analysed_sst.sel(time=slice('2012','2016')).max("time") max_5day #running out of memory right now. maybe need to breakdown into yearly bits or something. could try using time arranged zarr file store #max_5day.plot(vmin=0,vmax=5,cmap='jet') ###Output _____no_output_____ ###Markdown Switch to same data, but it is chunked differently- it is optimized for timeseries rather than spatial analysis ###Code ds_sst = xr.open_zarr(file_aws_time,consolidated=True) ds_sst %%time sst_newport_nearshore = ds_sst.analysed_sst.sel(lat=44.6,lon=-124.11,method='nearest').rolling(time=30, center=True).mean().load() sst_newport_offshore = ds_sst.analysed_sst.sel(lat=44.6,lon=-134.11,method='nearest').rolling(time=30, center=True).mean().load() plt.plot(sst_newport_nearshore.time.dt.dayofyear,sst_newport_nearshore) ###Output _____no_output_____
bayes-opt.ipynb
###Markdown Based on this: * https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.htmlsphx-glr-auto-examples-bayesian-optimization-py ###Code import numpy as np np.random.seed(1234) import matplotlib.pyplot as plt from skopt.plots import plot_gaussian_process from skopt import Optimizer import matplotlib.pyplot as plt import matplotlib.image as mpimg from skopt import gp_minimize import numpy as np %matplotlib inline from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern noise_level = 0.1 # Our 1D toy problem, this is the function we are trying to # minimize def objective(x, noise_level=noise_level): return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2))\ + np.random.randn() * noise_level def objective_wo_noise(x): return objective(x, noise_level=0) opt_gp = Optimizer([(-2.0, 2.0)], base_estimator="GP", n_initial_points=5, acq_optimizer="sampling", random_state=42) # let's do this by hand first... X = np.linspace(-2, 2, 100) y = np.vectorize(lambda x: objective_wo_noise([x]))(X) plt.plot(X, y) # Generate data and fit GP rng = np.random.RandomState(4) kernel = Matern(length_scale=1.0, nu=2.5) gp = GaussianProcessRegressor(kernel=kernel, alpha=0.0) # take 5 points... X = rng.uniform(-2, 2, 5) X = np.sort(X) y = np.vectorize(lambda x: objective_wo_noise([x]))(X) gp.fit(X.reshape(-1, 1), y) # how should we approach this? One curve? X_ = np.linspace(-2, 2, 100) y_mean, y_std = gp.predict(X_.reshape(-1, 1), return_std=True) y_samples = gp.sample_y(X_.reshape(-1, 1), 1) plt.plot(X_, y_samples, 'r') plt.plot(X_, np.vectorize(lambda x: objective_wo_noise([x]))(X_)) plt.plot(X, y, 'ro') # if we add some noise... X_ = np.linspace(-2, 2, 100) y_mean, y_std = gp.predict(X_.reshape(-1, 1), return_std=True) y_samples = gp.sample_y(X_.reshape(-1, 1), 100) plt.plot(X_, y_samples) # plt.plot(X_, np.vectorize(lambda x: objective_wo_noise([x]))(X_)) plt.plot(X, y, 'ro') ###Output _____no_output_____ ###Markdown How do we pick the next point to evaluate?From here there are several way to pick the next point. Two common approaches are around:* Upper confidence bound (exploration vs exploitation)* Expected improvement ###Code plt.plot(X_, y_mean, 'r', X, y, 'ro') plt.grid(True) plt.fill_between(X_, y_mean - y_std, y_mean + y_std, alpha=0.5, color='k') # for example, let's just consider the lower bound # kappa controls the exploration/exploitation. kappa = 0.5 plt.plot(X_, y_mean, 'r', X, y, 'ro', X_, y_mean - y_std, 'b', X_, y_mean - kappa*y_std, 'k') plt.grid(True) # expected improvement from scipy.stats import norm best_y = np.min(y) z = (y_mean - best_y + X_)/y_std ei = (y_mean - best_y+X_)*norm.cdf(z) + y_std*norm.pdf(z) plt.plot(X_, y_mean, 'r', X, y, 'ro', X_, y_mean - y_std, 'b', X_, ei, 'k') plt.grid(True) ###Output _____no_output_____ ###Markdown Let's use scikit optimise instead... ###Code res = gp_minimize(objective_wo_noise, # the function to minimize [(-2.0, 2.0)], # the bounds on each dimension of x acq_func="EI", # the acquisition function n_calls=10, # the number of evaluations of f n_random_starts=1, # the number of random initialization points x0 = [[x] for x in X], random_state=1234) # the random seed from skopt.plots import plot_convergence plot_convergence(res); plot_gaussian_process(res, n_calls=0, objective=objective_wo_noise, show_title=False) plot_gaussian_process(res, n_calls=0, show_legend=True, show_title=False, show_mu=False, show_acq_func=True, show_observations=False, show_next_point=True) plot_gaussian_process(res, n_calls=1, objective=objective_wo_noise, show_title=False) plot_gaussian_process(res, n_calls=1, show_legend=True, show_title=False, show_mu=False, show_acq_func=True, show_observations=False, show_next_point=True) plt.figure plt.figure(figsize=(20,20)) for n_iter in range(5): # Plot true function. plt.subplot(5, 2, 2*n_iter+1) if n_iter == 0: show_legend = True else: show_legend = False ax = plot_gaussian_process(res, n_calls=n_iter, objective=objective_wo_noise, noise_level=noise_level, show_legend=show_legend, show_title=False, show_next_point=False, show_acq_func=False) ax.set_ylabel("") ax.set_xlabel("") # Plot EI(x) plt.subplot(5, 2, 2*n_iter+2) ax = plot_gaussian_process(res, n_calls=n_iter, show_legend=show_legend, show_title=False, show_mu=False, show_acq_func=True, show_observations=False, show_next_point=True) ax.set_ylabel("") ax.set_xlabel("") plt.show() ###Output _____no_output_____
NG_LDA.ipynb
###Markdown Import Packages ###Code import re import numpy as np import pandas as pd from pprint import pprint # Gensim import gensim import gensim.corpora as corpora from gensim.utils import simple_preprocess from gensim.models import CoherenceModel # spacy for lemmatization import spacy # Plotting tools import pyLDAvis import pyLDAvis.gensim # don't skip this import matplotlib.pyplot as plt %matplotlib inline # Enable logging for gensim - optional import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.ERROR) import warnings warnings.filterwarnings("ignore",category=DeprecationWarning) # NLTK Stop words from nltk.corpus import stopwords stop_words = stopwords.words('english') stop_words.extend(['from', 'subject', 're', 'edu', 'use']) ###Output _____no_output_____ ###Markdown Importing Lyrics data ###Code # Import Dataset df = pd.read_csv('') df1.head() # df = df1.head(10) print(df.genre.unique()) print(df.artist.unique()) print(df.year.unique()) ###Output [2007 2008 2006 2016 2004] ###Markdown Remove newline characters ###Code # Convert to list # data = df.lyrics.values.tolist() # data = [re.sub('[^a-zA-Z ]' ,'', str(sent)) for sent in data] # pprint(data[:1]) # def sent_to_words(sentences): # for sentence in sentences: # yield(gensim.utils.simple_preprocess(str(sentence), deacc=True)) # deacc=True removes punctuations # data_words = list(sent_to_words(data)) # print(data_words[:1]) ###Output [['mother', 'dear', 'motherits', 'cold', 'tonightlike', 'every', 'otherevery', 'other', 'nightbut', 'never', 'feelfeel', 'it', 'anywayim', 'gonna', 'need', 'sooni', 'can', 'feel', 'itfeel', 'it', 'beginbut', 'dont', 'knowhow', 'im', 'gonna', 'payit', 'must', 'be', 'aboutmid', 'december', 'right', 'nowand', 'think', 'im', 'not', 'real', 'surehow', 'old', 'feeli', 'lost', 'my', 'thoughtsin', 'some', 'dreamoh', 'mother', 'dontknow', 'howi', 'got', 'where', 'ambut', 'ill', 'try', 'to', 'explain', 'anyhowsee', 'graduallyyou', 'get', 'sucked', 'ininto', 'itwithout', 'ever', 'whats', 'happeningand', 'that', 'is', 'whenthe', 'downward', 'spiral', 'beginsanyway', 'back', 'to', 'how', 'it', 'all', 'startedit', 'started', 'with', 'dopewhy', 'not', 'after', 'all', 'it', 'was', 'just', 'the', 'once', 'told', 'myselfi', 'didnt', 'even', 'like', 'it', 'very', 'muchbut', 'the', 'people', 'was', 'with', 'all', 'did', 'itthen', 'tried', 'speedwhy', 'not', 'after', 'all', 'it', 'was', 'just', 'the', 'once', 'told', 'myselfthe', 'next', 'thing', 'knew', 'was', 'doing', 'couple', 'of', 'grams', 'weekthen', 'friend', 'introduced', 'me', 'to', 'smack', 'chasing', 'the', 'dragonwhy', 'not', 'after', 'all', 'it', 'was', 'just', 'the', 'once', 'told', 'myselfwhy', 'not', 'after', 'all', 'it', 'wasnt', 'using', 'needlethen', 'started', 'doing', 'what', 'said', 'id', 'never', 'do']] ###Markdown Creating Bigram and Trigram ModelsBigrams are two words frequently occurring together in the document. Trigrams are 3 words frequently occurring.Some examples in our example are: ‘front_bumper’, ‘oil_leak’, ‘maryland_college_park’ etc.Gensim’s Phrases model can build and implement the bigrams, trigrams, quadgrams and more. The two important arguments to Phrases are min_count and threshold. The higher the values of these param, the harder it is for words to be combined to bigrams. ###Code # Build the bigram and trigram models bigram = gensim.models.Phrases(data_words, min_count=5, threshold=100) # higher threshold fewer phrases. trigram = gensim.models.Phrases(bigram[data_words], threshold=100) # Faster way to get a sentence clubbed as a trigram/bigram bigram_mod = gensim.models.phrases.Phraser(bigram) trigram_mod = gensim.models.phrases.Phraser(trigram) # See trigram example print(bigram_mod[data_words[0]]) ###Output ['mother', 'dear', 'motherits', 'cold', 'tonightlike', 'every', 'otherevery', 'other', 'nightbut', 'never', 'feelfeel', 'it', 'anywayim', 'gonna', 'need', 'sooni', 'can', 'feel', 'itfeel', 'it', 'beginbut', 'dont', 'knowhow', 'im', 'gonna', 'payit', 'must', 'be', 'aboutmid', 'december', 'right', 'nowand', 'think', 'im', 'not', 'real', 'surehow', 'old', 'feeli', 'lost', 'my', 'thoughtsin', 'some', 'dreamoh', 'mother', 'dontknow', 'howi', 'got', 'where', 'ambut', 'ill', 'try', 'to', 'explain', 'anyhowsee', 'graduallyyou', 'get', 'sucked', 'ininto', 'itwithout', 'ever', 'whats', 'happeningand', 'that', 'is', 'whenthe', 'downward', 'spiral', 'beginsanyway', 'back', 'to', 'how', 'it', 'all', 'startedit', 'started', 'with', 'dopewhy', 'not', 'after', 'all', 'it', 'was', 'just', 'the', 'once', 'told', 'myselfi', 'didnt', 'even', 'like', 'it', 'very', 'muchbut', 'the', 'people', 'was', 'with', 'all', 'did', 'itthen', 'tried', 'speedwhy', 'not', 'after', 'all', 'it', 'was', 'just', 'the', 'once', 'told', 'myselfthe', 'next', 'thing', 'knew', 'was', 'doing', 'couple', 'of', 'grams', 'weekthen', 'friend', 'introduced', 'me', 'to', 'smack', 'chasing', 'the', 'dragonwhy', 'not', 'after', 'all', 'it', 'was', 'just', 'the', 'once', 'told', 'myselfwhy', 'not', 'after', 'all', 'it', 'wasnt', 'using', 'needlethen', 'started', 'doing', 'what', 'said', 'id', 'never', 'do'] ###Markdown Remove Stopwords, Make Bigrams and LemmatizeThe bigrams model is ready. Let’s define the functions to remove the stopwords, make bigrams and lemmatization and call them sequentially. ###Code # Define functions for stopwords, bigrams, trigrams and lemmatization def remove_stopwords(texts): return [[word for word in simple_preprocess(str(doc)) if word not in stop_words] for doc in texts] def make_bigrams(texts): return [bigram_mod[doc] for doc in texts] def make_trigrams(texts): return [trigram_mod[bigram_mod[doc]] for doc in texts] def lemmatization(texts, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']): """https://spacy.io/api/annotation""" texts_out = [] for sent in texts: doc = nlp(" ".join(sent)) texts_out.append([token.lemma_ for token in doc if token.pos_ in allowed_postags]) return texts_out ###Output _____no_output_____ ###Markdown Let’s call the functions in order. ###Code # Remove Stop Words data_words_nostops = remove_stopwords(data_words) # Form Bigrams data_words_bigrams = make_bigrams(data_words_nostops) # Initialize spacy 'en' model, keeping only tagger component (for efficiency) # python3 -m spacy download en nlp = spacy.load('en', disable=['parser', 'ner']) # Do lemmatization keeping only noun, adj, vb, adv data_lemmatized = lemmatization(data_words_bigrams, allowed_postags=['NOUN', 'ADJ', 'VERB', 'ADV']) print(data_lemmatized[:1]) ###Output [['mother', 'dear', 'motherit', 'cold', 'tonightlike', 'otherevery', 'nightbut', 'never', 'feelfeel', 'anywayim', 'go', 'need', 'sooni', 'feel', 'itfeel', 'beginbut', 'do', 'not', 'knowhow', 'be', 'go', 'payit', 'must', 'aboutmid', 'december', 'right', 'nowand', 'think', 'be', 'real', 'surehow', 'old', 'feeli', 'lose', 'thoughtsin', 'dreamoh', 'mother', 'dontknow', 'howi', 'get', 'ambut', 'ill', 'try', 'explain', 'anyhowsee', 'graduallyyou', 'get', 'suck', 'ininto', 'itwithout', 'ever', 's', 'happeningand', 'downward', 'spiral', 'beginsanyway', 'back', 'startedit', 'start', 'dopewhy', 'tell', 'myselfi', 'do', 'not', 'even', 'like', 'muchbut', 'people', 'itthen', 'try', 'speedwhy', 'tell', 'myselfthe', 'next', 'thing', 'know', 'couple', 'gram', 'weekthen', 'friend', 'introduce', 'smack', 'chase', 'dragonwhy', 'tell', 'myselfwhy', 'be', 'not', 'use', 'needlethen', 'start', 'say', 'never']] ###Markdown Create the Dictionary and Corpus needed for Topic ModelingThe two main inputs to the LDA topic model are the dictionary(id2word) and the corpus. Let’s create them. ###Code # Create Dictionary id2word = corpora.Dictionary(data_lemmatized) # Create Corpus texts = data_lemmatized # Term Document Frequency corpus = [id2word.doc2bow(text) for text in texts] # View print(corpus[:1]) ###Output [[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 3), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 2), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 2), (27, 2), (28, 1), (29, 1), (30, 1), (31, 1), (32, 1), (33, 1), (34, 1), (35, 1), (36, 1), (37, 1), (38, 1), (39, 1), (40, 1), (41, 1), (42, 2), (43, 1), (44, 1), (45, 1), (46, 1), (47, 1), (48, 1), (49, 1), (50, 1), (51, 2), (52, 1), (53, 1), (54, 3), (55, 1), (56, 1), (57, 1), (58, 1), (59, 1), (60, 1), (61, 1), (62, 1), (63, 1), (64, 1), (65, 1), (66, 1), (67, 1), (68, 2), (69, 1), (70, 1), (71, 1), (72, 3), (73, 1), (74, 1), (75, 1), (76, 1), (77, 2), (78, 1), (79, 1)]] ###Markdown Gensim creates a unique id for each word in the document. The produced corpus shown above is a mapping of (word_id, word_frequency).For example, (0, 1) above implies, word id 0 occurs once in the first document. Likewise, word id 1 occurs twice and so on.This is used as the input by the LDA model.If you want to see what word a given id corresponds to, pass the id as a key to the dictionary. ###Code id2word[10] # Human readable format of corpus (term-frequency) [[(id2word[id], freq) for id, freq in cp] for cp in corpus[:1]] ###Output _____no_output_____ ###Markdown Building the Topic ModelWe have everything required to train the LDA model. In addition to the corpus and dictionary, you need to provide the number of topics as well.Apart from that, alpha and eta are hyperparameters that affect sparsity of the topics. According to the Gensim docs, both defaults to 1.0/num_topics prior.chunksize is the number of documents to be used in each training chunk. update_every determines how often the model parameters should be updated and passes is the total number of training passes. ###Code # Build LDA model lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=id2word, num_topics=20, random_state=100, update_every=1, chunksize=100, passes=10, alpha='auto', per_word_topics=True) # Print the Keyword in the 10 topics pprint(lda_model.print_topics()) doc_lda = lda_model[corpus] # Compute Perplexity print('\nPerplexity: ', lda_model.log_perplexity(corpus)) # a measure of how good the model is. lower the better. # Compute Coherence Score coherence_model_lda = CoherenceModel(model=lda_model, texts=data_lemmatized, dictionary=id2word, coherence='c_v') coherence_lda = coherence_model_lda.get_coherence() print('\nCoherence Score: ', coherence_lda) # Visualize the topics pyLDAvis.enable_notebook() vis = pyLDAvis.gensim.prepare(lda_model, corpus, id2word) vis mallet_path = '/Users/neha/Downloads/mallet-2.0.8/bin/mallet' # update this path ldamallet = gensim.models.wrappers.LdaMallet(mallet_path, corpus=corpus, num_topics=20, id2word=id2word) # Show Topics pprint(ldamallet.show_topics(formatted=False)) # Compute Coherence Score coherence_model_ldamallet = CoherenceModel(model=ldamallet, texts=data_lemmatized, dictionary=id2word, coherence='c_v') coherence_ldamallet = coherence_model_ldamallet.get_coherence() print('\nCoherence Score: ', coherence_ldamallet) ###Output [(8, [('stand', 0.14285714285714285), ('betterpull', 0.08571428571428572), ('cry', 0.08571428571428572), ('youbaby', 0.05714285714285714), ('town', 0.02857142857142857), ('magazinewhen', 0.02857142857142857), ('pageantive', 0.02857142857142857), ('saywont', 0.02857142857142857), ('make', 0.02857142857142857), ('graduallyyou', 0.02857142857142857)]), (7, [('shiti', 0.1111111111111111), ('wallplatinum', 0.07407407407407407), ('meoh', 0.07407407407407407), ('trust', 0.037037037037037035), ('wanna', 0.037037037037037035), ('perdere', 0.037037037037037035), ('heartyou', 0.037037037037037035), ('porqueseh', 0.037037037037037035), ('howi', 0.037037037037037035), ('soand', 0.037037037037037035)]), (6, [('back', 0.2608695652173913), ('stop', 0.043478260869565216), ('friend', 0.043478260869565216), ('sonare', 0.043478260869565216), ('trace', 0.043478260869565216), ('payit', 0.043478260869565216), ('ancho', 0.043478260869565216), ('dad', 0.043478260869565216), ('coquettesmister', 0.043478260869565216), ('slick', 0.043478260869565216)]), (9, [('ill', 0.125), ('youdont', 0.09375), ('putnobody', 0.09375), ('care', 0.03125), ('heart', 0.03125), ('bite', 0.03125), ('herall', 0.03125), ('bridge', 0.03125), ('tuxedo', 0.03125), ('bybut', 0.03125)]), (10, [('start', 0.08), ('amissin', 0.08), ('nowand', 0.04), ('knowi', 0.04), ('hairgotta', 0.04), ('happeningand', 0.04), ('guess', 0.04), ('nightbut', 0.04), ('wrongso', 0.04), ('drink', 0.04)]), (2, [('watch', 0.15), ('open', 0.1), ('life', 0.1), ('people', 0.05), ('mei', 0.05), ('marshall', 0.05), ('knowif', 0.05), ('sighfor', 0.05), ('bell', 0.05), ('kissagainst', 0.05)]), (5, [('mother', 0.09523809523809523), ('create', 0.047619047619047616), ('youfriend', 0.047619047619047616), ('itwithout', 0.047619047619047616), ('watch', 0.047619047619047616), ('didyou', 0.047619047619047616), ('hide', 0.047619047619047616), ('time', 0.047619047619047616), ('youand', 0.047619047619047616), ('wait', 0.047619047619047616)]), (17, [('sit', 0.07352941176470588), ('electriclay', 0.04411764705882353), ('careful', 0.04411764705882353), ('pence', 0.04411764705882353), ('street', 0.04411764705882353), ('work', 0.04411764705882353), ('mount', 0.04411764705882353), ('boot', 0.04411764705882353), ('metricyou', 0.04411764705882353), ('bad', 0.04411764705882353)]), (1, [('kiss', 0.3), ('yanever', 0.075), ('realize', 0.05), ('uhhuhi', 0.05), ('yanow', 0.05), ('startedit', 0.025), ('insidei', 0.025), ('good', 0.025), ('awake', 0.025), ('introduce', 0.025)]), (13, [('rocknroll', 0.08955223880597014), ('famous', 0.08955223880597014), ('record', 0.05970149253731343), ('dollar', 0.05970149253731343), ('allyeah', 0.04477611940298507), ('beverlywe', 0.04477611940298507), ('alla', 0.04477611940298507), ('place', 0.04477611940298507), ('allwe', 0.04477611940298507), ('maserati', 0.04477611940298507)])] Coherence Score: 0.612603937086269 ###Markdown How to find the optimal number of topics for LDA?My approach to finding the optimal number of topics is to build many LDA models with different values of number of topics (k) and pick the one that gives the highest coherence value.Choosing a ‘k’ that marks the end of a rapid growth of topic coherence usually offers meaningful and interpretable topics. Picking an even higher value can sometimes provide more granular sub-topics.If you see the same keywords being repeated in multiple topics, it’s probably a sign that the ‘k’ is too large.The compute_coherence_values() (see below) trains multiple LDA models and provides the models and their corresponding coherence scores. ###Code def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=3): """ Compute c_v coherence for various number of topics Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics Returns: ------- model_list : List of LDA topic models coherence_values : Coherence values corresponding to the LDA model with respective number of topics """ coherence_values = [] model_list = [] for num_topics in range(start, limit, step): model = gensim.models.wrappers.LdaMallet(mallet_path, corpus=corpus, num_topics=num_topics, id2word=id2word) model_list.append(model) coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') coherence_values.append(coherencemodel.get_coherence()) return model_list, coherence_values # Can take a long time to run. model_list, coherence_values = compute_coherence_values(dictionary=id2word, corpus=corpus, texts=data_lemmatized, start=2, limit=40, step=6) # Show graph limit=40; start=2; step=6; x = range(start, limit, step) plt.plot(x, coherence_values) plt.xlabel("Num Topics") plt.ylabel("Coherence score") plt.legend(("coherence_values"), loc='best') plt.show() # Print the coherence scores for m, cv in zip(x, coherence_values): print("Num Topics =", m, " has Coherence Value of", round(cv, 4)) # Select the model and print the topics optimal_model = model_list[3] model_topics = optimal_model.show_topics(formatted=False) pprint(optimal_model.print_topics(num_words=10)) def format_topics_sentences(ldamodel=lda_model, corpus=corpus, texts=data): # Init output sent_topics_df = pd.DataFrame() # Get main topic in each document for i, row in enumerate(ldamodel[corpus]): row = sorted(row, key=lambda x: (x[1]), reverse=True) # Get the Dominant topic, Perc Contribution and Keywords for each document for j, (topic_num, prop_topic) in enumerate(row): if j == 0: # => dominant topic wp = ldamodel.show_topic(topic_num) topic_keywords = ", ".join([word for word, prop in wp]) sent_topics_df = sent_topics_df.append(pd.Series([int(topic_num), round(prop_topic,4), topic_keywords]), ignore_index=True) else: break sent_topics_df.columns = ['Dominant_Topic', 'Perc_Contribution', 'Topic_Keywords'] # Add original text to the end of the output contents = pd.Series(texts) sent_topics_df = pd.concat([sent_topics_df, contents], axis=1) return(sent_topics_df) df_topic_sents_keywords = format_topics_sentences(ldamodel=optimal_model, corpus=corpus, texts=data) # Format df_dominant_topic = df_topic_sents_keywords.reset_index() df_dominant_topic.columns = ['Document_No', 'Dominant_Topic', 'Topic_Perc_Contrib', 'Keywords', 'Text'] # Show df_dominant_topic.head(10) ###Output _____no_output_____ ###Markdown Find the most representative document for each topicSometimes just the topic keywords may not be enough to make sense of what a topic is about. So, to help with understanding the topic, you can find the documents a given topic has contributed to the most and infer the topic by reading that document. Whew!! ###Code # Group top 5 sentences under each topic sent_topics_sorteddf_mallet = pd.DataFrame() sent_topics_outdf_grpd = df_topic_sents_keywords.groupby('Dominant_Topic') for i, grp in sent_topics_outdf_grpd: sent_topics_sorteddf_mallet = pd.concat([sent_topics_sorteddf_mallet, grp.sort_values(['Perc_Contribution'], ascending=[0]).head(1)], axis=0) # Reset Index sent_topics_sorteddf_mallet.reset_index(drop=True, inplace=True) # Format sent_topics_sorteddf_mallet.columns = ['Topic_Num', "Topic_Perc_Contrib", "Keywords", "Text"] # Show sent_topics_sorteddf_mallet.head() ###Output _____no_output_____
notebooks/12/12_vibrating_building.ipynb
###Markdown Modes of a Vibrating BuildingIn this notebook we will find the vibrational modes of a simple model of a building. We will assume that the mass of the floors are much more than the mass of the walls and that the lateral stiffness of the walls can be modeled by a simple linear spring. We will investigate how the building may vibrate under initial conditions that could be caused by a gust of wind and during ground vibration. ###Code from IPython.display import YouTubeVideo YouTubeVideo('g0cz-oDfUg0', width=600) YouTubeVideo('hSwjkG3nv1c', width=600) YouTubeVideo('kzVvd4Dk6sw', width=600) import numpy as np import matplotlib.pyplot as plt from resonance.linear_systems import FourStoryBuildingSystem ###Output _____no_output_____ ###Markdown This gives a bit nicer printing of large NumPy arrays. ###Code np.set_printoptions(precision=5, linewidth=100, suppress=True) %matplotlib notebook ###Output _____no_output_____ ###Markdown Simulate the four story building ###Code sys = FourStoryBuildingSystem() sys.constants sys.coordinates sys.plot_configuration(); traj = sys.free_response(30, sample_rate=10) traj[list(sys.coordinates.keys())].plot(subplots=True); sys.animate_configuration(fps=10) M, C, K = sys.canonical_coefficients() M C K ###Output _____no_output_____ ###Markdown ExerciseThe system can be normalized by the mass matrix and transformed into a symmetric eigenvalue problem by introducing the new coordinate vector:$$\mathbf{q}=\mathbf{L}^T\mathbf{x}$$$\mathbf{L}$ is the Cholesky decomposition of the symmetric mass matrix, i.e. $\mathbf{M}=\mathbf{L}\mathbf{L}^T$.The equation of motion becomes:$$\ddot{\mathbf{q}} + \tilde{\mathbf{K}} \mathbf{q} = 0$$Compute $\tilde{\mathbf{K}}$. ###Code L = np.linalg.cholesky(M) L M**0.5 import numpy.linalg as la from numpy.linalg import inv K_tilde = inv(L) @ K @ inv(L.T) K_tilde ###Output _____no_output_____ ###Markdown Notice that $\tilde{\mathbf{K}}$ is symmetric, so we are guaranteed to get real eigenvalues and orthogonal eigenvectors when solving this system. ExerciseFind the eigenvalues and eigenvectors. Create the spectral matrix $\mathbf{\Lambda}$ and the matrix $P$ which contains the orthonormal eigenvectors of $\tilde{\mathbf{K}}$.$$\mathbf{P} = \left[ \mathbf{v}_1, \ldots, \mathbf{v}_4 \right]$$ ###Code evals, evecs = np.linalg.eig(K_tilde) evals evecs Lambda = np.diag(evals) Lambda P = evecs ###Output _____no_output_____ ###Markdown ExerciseProve that the eigenvectors in $\mathbf{P}$ are orthonormal. ###Code np.dot(P[:, 0], P[:, 1]) np.linalg.norm(P[:, 0]) P[:, 0].T @ P[:, 1] P[:, 0].T @ P[:, 0] ###Output _____no_output_____ ###Markdown An orthonormal matrix has the property that its transpose multiplied by itself is the identity matrix. ###Code P.T @ P ###Output _____no_output_____ ###Markdown ExerciseFind the natural freqencies of the system in both radians per second and Hertz, store them in an array in the order of the eigenvalues with names `ws` and `fs`. ###Code ws = np.sqrt(evals) ws fs = ws / 2 / np.pi fs ###Output _____no_output_____ ###Markdown ExerciseTransform the eigenvectors back into the coordinate system associated with $\mathbf{x}$. $$\mathbf{S} = \left[ \mathbf{u}_1, \ldots, \mathbf{u}_4 \right]$$ ###Code S = np.linalg.inv(L.T) @ P S sys.coordinates ###Output _____no_output_____ ###Markdown Exercise: visualize the modeshapesThe eigenmodes (mode shapes) are contained in each column of $\mathbf{S}$. Create a plot for each mode shape with these specifications:- The title of each plot should be the frequency of the corresponding modeshape in Hz.- The y axis should be made up of the values [0, 3, 6, 9, 12] meters.- The x axis should plot the five values. The first should be zero and the remaining values should be the components of the mode shape in order of the component associated with the lowest floor to the highest.- Plot lines with small circles at each data point. ###Code S[:, 0] np.hstack((0, S[:, 0])) u1 = S[:, 0] u1 u1[::-1] S[:, 2] fig, axes = plt.subplots(1, 4) for i in range(4): axes[i].plot(np.hstack((0, S[:, i])), [0, 3, 6, 9, 12], marker='o') axes[i].set_title('{:1.2f} Hz'.format(fs[i])) plt.tight_layout() fs[0] S[:, 0] sys.coordinates['x1'] = S[0, 2] sys.coordinates['x2'] = S[1, 2] sys.coordinates['x3'] = S[2, 2] sys.coordinates['x4'] = S[3, 2] traj = sys.free_response(30, sample_rate=10) traj[list(sys.coordinates.keys())].plot(subplots=True) sys.animate_configuration(fps=10) ###Output _____no_output_____ ###Markdown Simulating the trajectoryThe trajectory of building's coordinates can be found with:$$\mathbf{x}(t) = \sum_{i=1}^n c_i \sin(\omega_i t + \phi_i) \mathbf{u}_i$$where$$\phi_i = \arctan \frac{\omega_i \mathbf{v}_i^T \mathbf{q}_0}{\mathbf{v}_i^T \dot{\mathbf{q}}_0}$$and$$c_i = \frac{\mathbf{v}^T_i \mathbf{q}_0}{\sin\phi_i}$$$c_i$ are the modal participation factors and reflect what proportion of each mode is excited given specific initial conditions. If the initial conditions are the eigenmode, $\mathbf{u}_i$, the all but the $i$th $c_i$ will be zero. ExerciseShow that if $\mathbf{q}_0 = \mathbf{v}_i$ then $c_i = 1$ all other modal participation factors are 0. Also, report all of the phase angles, $\phi_i$, in degrees. ###Code for i in range(4): x0 = S[:, i] xd0 = np.zeros(4) print(x0) q0 = L.T @ x0 qd0 = L.T @ xd0 phis = np.arctan2(ws * P.T @ q0, P.T @ xd0) print(np.rad2deg(phis)) cs = P.T @ q0 / np.sin(phis) print(cs) print('=' * 40) ###Output _____no_output_____ ###Markdown ExerciseCreate a function called `simulate()` that returns the trajectories of the coordinates given an array of monotonically increasing time values and the initial conditions of the system.It should look like:```pythondef simulate(t, x0, xd0): """Returns the state trajectory. Parameters ========== t : ndarray, shape(m,) Monotonic values of time. x0 : ndarray, shape(n,) The initial conditions of each coordinate. xd0 : ndarray, shape(n,) The initial conditions of each speed. Returns ======= x : ndarray, shape(m, n) The trajectories of each state. """ your code here return x``` ###Code def simulate(t, x0, xd0): q0 = L.T @ x0 qd0 = L.T @ xd0 phis = np.arctan2(ws * P.T @ q0, P.T @ xd0) cs = P.T @ q0 / np.sin(phis) x = np.zeros((len(x0), len(t))) for ci, wi, phii, ui in zip(cs, ws, phis, S.T): x += ci * np.sin(wi * t + phii) * np.tile(ui, (len(t), 1)).T return x ###Output _____no_output_____ ###Markdown ExerciseUsing the plotting function below, show that the results found here are the same as the simulations from the `FourStoryBuildingSystem` given the same initial conditions. ###Code def plot_trajectories(t, x): fig, axes = plt.subplots(4, 1) for i, ax in enumerate(axes.flatten()): ax.plot(t, x[i]) ax.set_ylabel(r'$x_{}$ [m]'.format(i + 1)) ax.set_xlabel('Time [s]') plt.tight_layout() t = np.linspace(0, 50, num=50 * 60) x0 = np.array([0.001, 0.010, 0.020, 0.025]) xd0 = np.zeros(4) x = simulate(t, x0, xd0) plot_trajectories(t, x) ###Output _____no_output_____ ###Markdown This shows the plot of a single mode: ###Code x = simulate(t, S[:, 0], np.zeros(4)) plot_trajectories(t, x) ###Output _____no_output_____
docs/documentation/utilities/friction_factor.ipynb
###Markdown `friction_factor` ###Code from particula.util import friction_factor help(friction_factor) ###Output _____no_output_____
notebooks/hacker_news_demo.ipynb
###Markdown Hacker News aitextgenA demo on how aitextgen can be used to create bespoke Hacker News submission titles.**NOTE**: This is released as a proof of concept for mini-GPT-2 models; quality of titles may vary. ###Code from aitextgen import aitextgen ###Output _____no_output_____ ###Markdown Loading the Hacker News ModelThe `minimaxir/hacker-news` model was finetuned on HN submissions up until May 12th with atleast 5 points.It uses a custom GPT-2 architecture that is only 30 MB on disk (compared to 124M GPT-2's 500MB on disk.)Running the cell will download the model and cache it into `/aitextgen`. ###Code ai = aitextgen(model="minimaxir/hacker-news") ###Output INFO:aitextgen:Loading minimaxir/hacker-news model from /aitextgen. ###Markdown GenerationSince the model is so small, generation happens almost immediately, even in bulk. ###Code ai.generate() ai.generate(5) ###Output Ask HN: Should I start writing a blog post in Python? ========== The Psychology of Human Misjudgment (2012) ========== New York' New Year: $99 Linux PC ========== C++11/12 Released ========== Dynamic types in Go ###Markdown Prompted InputYou can seed input with a `prompt` to get specific types of HN posts. The prompt will be **bolded** in the output. ###Code ai.generate(5, prompt="Ask HN") ai.generate(5, prompt="Show HN") ai.generate(5, prompt="Elon Musk") ai.generate(5, prompt="Google says") ###Output Google says its employees are working with Amazon and Apple ========== Google says it’s peaked ========== Google says it is flea banning visible to people who worked in U.S. ========== Google says it will not allow enemy mine to secure sensitive information ========== Google says no to Google for Java ###Markdown Bulk Generation to FileYou can use `generate_to_file()` to create many HN titles. ###Code ai.generate_to_file(1000, batch_size=20) ###Output INFO:aitextgen:Generating 1,000 texts to ATG_20200517_235441_14821584.txt
3.2_Simple-Scatter-Plots.ipynb
###Markdown Simple Scatter Plots Another commonly used plot type is the simple scatter plot, a close cousin of the line plot.Instead of points being joined by line segments, here the points are represented individually with a dot, circle, or other shape.We’ll start by setting up the notebook for plotting and importing the functions we will use: ###Code %matplotlib inline import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') import numpy as np ###Output _____no_output_____ ###Markdown Scatter Plots with ``plt.plot``In the previous section we looked at ``plt.plot``/``ax.plot`` to produce line plots.It turns out that this same function can produce scatter plots as well: ###Code x = np.linspace(0, 10, 30) y = np.sin(x) plt.plot(x, y, 'o', color='black'); ###Output _____no_output_____ ###Markdown The third argument in the function call is a character that represents the type of symbol used for the plotting. Just as you can specify options such as ``'-'``, ``'--'`` to control the line style, the marker style has its own set of short string codes. The full list of available symbols can be seen in the documentation of ``plt.plot``, or in Matplotlib's online documentation. Most of the possibilities are fairly intuitive, and we'll show a number of the more common ones here: ###Code rng = np.random.RandomState(0) for marker in ['o', '.', ',', 'x', '+', 'v', '^', '<', '>', 's', 'd']: plt.plot(rng.rand(5), rng.rand(5), marker, label="marker='{0}'".format(marker)) plt.legend(numpoints=1) plt.xlim(0, 1.8); ###Output _____no_output_____ ###Markdown For even more possibilities, these character codes can be used together with line and color codes to plot points along with a line connecting them: ###Code plt.plot(x, y, '-ok'); ###Output _____no_output_____ ###Markdown Additional keyword arguments to ``plt.plot`` specify a wide range of properties of the lines and markers: ###Code plt.plot(x, y, '-p', color='gray', markersize=15, linewidth=4, markerfacecolor='white', markeredgecolor='gray', markeredgewidth=2) plt.ylim(-1.2, 1.2); ###Output _____no_output_____ ###Markdown This type of flexibility in the ``plt.plot`` function allows for a wide variety of possible visualization options.For a full description of the options available, refer to the ``plt.plot`` documentation. Scatter Plots with ``plt.scatter``A second, more powerful method of creating scatter plots is the ``plt.scatter`` function, which can be used very similarly to the ``plt.plot`` function: ###Code plt.scatter(x, y, marker='o'); ###Output _____no_output_____ ###Markdown The primary difference of ``plt.scatter`` from ``plt.plot`` is that it can be used to create scatter plots where the properties of each individual point (size, face color, edge color, etc.) can be individually controlled or mapped to data.Let's show this by creating a random scatter plot with points of many colors and sizes.In order to better see the overlapping results, we'll also use the ``alpha`` keyword to adjust the transparency level: ###Code rng = np.random.RandomState(0) x = rng.randn(100) y = rng.randn(100) colors = rng.rand(100) sizes = 1000 * rng.rand(100) plt.scatter(x, y, c=colors, s=sizes, alpha=0.3, cmap='viridis') plt.colorbar(); # show color scale ###Output _____no_output_____ ###Markdown Notice that the color argument is automatically mapped to a color scale (shown here by the ``colorbar()`` command), and that the size argument is given in pixels.In this way, the color and size of points can be used to convey information in the visualization, in order to visualize multidimensional data.For example, we might use the Iris data from Scikit-Learn, where each sample is one of three types of flowers that has had the size of its petals and sepals carefully measured: ###Code from sklearn.datasets import load_iris iris = load_iris() features = iris.data.T plt.scatter(features[0], features[1], alpha=0.2, s=100*features[3], c=iris.target, cmap='viridis') plt.xlabel(iris.feature_names[0]) plt.ylabel(iris.feature_names[1]); ###Output _____no_output_____
notebooks/03_categorical_pipeline_sol_01.ipynb
###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The generalization performance of the pipeline can beevaluated by cross-validation and then compared to the score obtained whenusing `OneHotEncoder` or to some other baseline score.First, we load the dataset. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown In the previous notebook, we used `sklearn.compose.make_column_selector` toautomatically select columns with a specific data type (also called `dtype`).Here, we will use this selector to get only the columns containing strings(column with `object` dtype) that correspond to categorical features in ourdataset. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown We filter our dataset that it contains only categorical features.Define a scikit-learn pipeline comBecause `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown="use_encoded_value"` and`unknown_value` parameters. You can refer to the[scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)for more details regarding these parameters. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) ###Output _____no_output_____ ###Markdown Your model is now defined. Evaluate it using a cross-validation using`sklearn.model_selection.cross_validate`. ###Code from sklearn.model_selection import cross_validate cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Now, we would like to compare the generalization performance of our previousmodel with a new model where instead of using an `OrdinalEncoder`, we willuse a `OneHotEncoder`. Repeat the model evaluation using cross-validation.Compare the score of both models and conclude on the impact of choosing aspecific encoding strategy when using a linear model. ###Code from sklearn.preprocessing import OneHotEncoder model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The statistical performance of the pipeline can beevaluated as usual by cross-validation and then compared to the scoreobtained when using `OneHotEncoder` or to some other baseline score.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown` and `unknown_value`parameters. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown We can select the categorical based on the `object` dtype. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Now, let's make our predictive pipeline by encoding categories with anordinal encoder before to feed a logistic regression. ###Code from sklearn.model_selection import cross_validate from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown By comparison, a categorical encoding that does not assume any ordering inthe categories can lead to a significantly higher score: ###Code from sklearn.preprocessing import OneHotEncoder model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise 01The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The statistical performance of the pipeline can beevaluated as usual by cross-validation and then compared to the scoreobtained when using `OneHotEncoder` or to some other baseline score.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown` and `unknown_value`parameters. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "fnlwgt", "education-num"]) ###Output _____no_output_____ ###Markdown We can select the categorical based on the `object` dtype. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Now, let's make our predictive pipeline by encoding categories with anordinal encoder before to feed a logistic regression. ###Code from sklearn.model_selection import cross_validate from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print(f"The different scores obtained are: \n{scores}") print(f"The accuracy is: {scores.mean():.3f} +- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print(f"The different scores obtained are: \n{scores}") print(f"The accuracy is: {scores.mean():.3f} +- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown By comparison, a categorical encoding that does not assume any ordering inthe categories can lead to a significantly higher score: ###Code from sklearn.preprocessing import OneHotEncoder model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print(f"The different scores obtained are: \n{scores}") print(f"The accuracy is: {scores.mean():.3f} +- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The generalization performance of the pipeline can beevaluated by cross-validation and then compared to the score obtained whenusing `OneHotEncoder` or to some other baseline score.First, we load the dataset. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown In the previous notebook, we used `sklearn.compose.make_column_selector` toautomatically select columns with a specific data type (also called `dtype`).Here, we will use this selector to get only the columns containing strings(column with `object` dtype) that correspond to categorical features in ourdataset. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Define a scikit-learn pipeline composed of an `OrdinalEncoder` and a`LogisticRegression` classifier.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown="use_encoded_value"` and`unknown_value` parameters. You can refer to the[scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)for more details regarding these parameters. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression # solution model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) ###Output _____no_output_____ ###Markdown Your model is now defined. Evaluate it using a cross-validation using`sklearn.model_selection.cross_validate`. ###Code from sklearn.model_selection import cross_validate # solution cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Now, we would like to compare the generalization performance of our previousmodel with a new model where instead of using an `OrdinalEncoder`, we willuse a `OneHotEncoder`. Repeat the model evaluation using cross-validation.Compare the score of both models and conclude on the impact of choosing aspecific encoding strategy when using a linear model. ###Code from sklearn.preprocessing import OneHotEncoder # solution model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The generalization performance of the pipeline can beevaluated by cross-validation and then compared to the score obtained whenusing `OneHotEncoder` or to some other baseline score.First, we load the dataset. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown In the previous notebook, we used `sklearn.compose.make_column_selector` toautomatically select columns with a specific data type (also called `dtype`).Here, we will use this selector to get only the columns containing strings(column with `object` dtype) that correspond to categorical features in ourdataset. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Define a scikit-learn pipeline composed of an `OrdinalEncoder` and a`LogisticRegression` classifier.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown="use_encoded_value"` and`unknown_value` parameters. You can refer to the[scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)for more details regarding these parameters. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression # solution model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) ###Output _____no_output_____ ###Markdown Your model is now defined. Evaluate it using a cross-validation using`sklearn.model_selection.cross_validate`.NoteBe aware that if an error happened during the cross-validation,cross_validate will raise a warning and return NaN (Not a Number)as scores. To make it raise a standard Python exception with a traceback,you can pass the error_score="raise" argument in the call tocross_validate. An exception will be raised instead of a warning at the firstencountered problem and cross_validate will stop right away instead ofreturning NaN values. This is particularly handy when developingcomplex machine learning pipelines. ###Code from sklearn.model_selection import cross_validate # solution cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Now, we would like to compare the generalization performance of our previousmodel with a new model where instead of using an `OrdinalEncoder`, we willuse a `OneHotEncoder`. Repeat the model evaluation using cross-validation.Compare the score of both models and conclude on the impact of choosing aspecific encoding strategy when using a linear model. ###Code from sklearn.preprocessing import OneHotEncoder # solution model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The statistical performance of the pipeline can beevaluated by cross-validation and then compared to the score obtained whenusing `OneHotEncoder` or to some other baseline score.First, we load the dataset. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown In the previous notebook, we used `sklearn.compose.make_column_selector` toautomatically select columns with a specific data type (also called `dtype`).Here, we will use this selector to get only the columns containing strings(column with `object` dtype) that correspond to categorical features in ourdataset. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown We filter our dataset that it contains only categorical features.Define a scikit-learn pipeline comBecause `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown="use_encoded_value"` and`unknown_value` parameters. You can refer to the[scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)for more details regarding these parameters. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) ###Output _____no_output_____ ###Markdown Your model is now defined. Evaluate it using a cross-validation using`sklearn.model_selection.cross_validate`. ###Code from sklearn.model_selection import cross_validate cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output The mean cross-validation accuracy is: 0.755 +/- 0.002 ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output The mean cross-validation accuracy is: 0.761 +/- 0.000 ###Markdown Now, we would like to compare the statistical performance of our previousmodel with a new model where instead of using an `OrdinalEncoder`, we willuse a `OneHotEncoder`. Repeat the model evaluation using cross-validation.Compare the score of both models and conclude on the impact of choosing aspecific encoding strategy when using a linear model. ###Code from sklearn.preprocessing import OneHotEncoder model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output The mean cross-validation accuracy is: 0.833 +/- 0.002 ###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The statistical performance of the pipeline can beevaluated by cross-validation and then compared to the score obtained whenusing `OneHotEncoder` or to some other baseline score.First, we load the dataset. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown In the previous notebook, we used `sklearn.compose.make_column_selector` toautomatically select columns with a specific data type (also called `dtype`).Here, we will use this selector to get only the columns containing strings(column with `object` dtype) that correspond to categorical features in ourdataset. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown We filter our dataset that it contains only categorical features.Define a scikit-learn pipeline comBecause `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown="use_encoded_value"` and`unknown_value` parameters. You can refer to the[scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)for more details regarding these parameters. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) ###Output _____no_output_____ ###Markdown Your model is now defined. Evaluate it using a cross-validation using`sklearn.model_selection.cross_validate`. ###Code from sklearn.model_selection import cross_validate cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Now, we would like to compare the statistical performance of our previousmodel with a new model where instead of using an `OrdinalEncoder`, we willuse a `OneHotEncoder`. Repeat the model evaluation using cross-validation.Compare the score of both models and conclude on the impact of choosing aspecific encoding strategy when using a linear model. ###Code from sklearn.preprocessing import OneHotEncoder model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise 01The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The statistical performance of the pipeline can beevaluated as usual by cross-validation and then compared to the scoreobtained when using `OneHotEncoder` or to some other baseline score.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown` and `unknown_value`parameters. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "fnlwgt", "education-num"]) ###Output _____no_output_____ ###Markdown We can select the categorical based on the `object` dtype. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Now, let's make our predictive pipeline by encoding categories with anordinal encoder before to feed a logistic regression. ###Code from sklearn.model_selection import cross_validate from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print(f"The different scores obtained are: \n{scores}") print(f"The accuracy is: {scores.mean():.3f} +- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print(f"The different scores obtained are: \n{scores}") print(f"The accuracy is: {scores.mean():.3f} +- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown By comparison, a categorical encoding that does not assume any ordering inthe categories can lead to a significantly higher score: ###Code from sklearn.preprocessing import OneHotEncoder model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print(f"The different scores obtained are: \n{scores}") print(f"The accuracy is: {scores.mean():.3f} +- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise 01The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The statistical performance of the pipeline can beevaluated as usual by cross-validation and then compared to the scoreobtained when using `OneHotEncoder` or to some other baseline score.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown` and `unknown_value`parameters. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown We can select the categorical based on the `object` dtype. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Now, let's make our predictive pipeline by encoding categories with anordinal encoder before to feed a logistic regression. ###Code from sklearn.model_selection import cross_validate from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown By comparison, a categorical encoding that does not assume any ordering inthe categories can lead to a significantly higher score: ###Code from sklearn.preprocessing import OneHotEncoder model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The generalization performance of the pipeline can beevaluated by cross-validation and then compared to the score obtained whenusing `OneHotEncoder` or to some other baseline score.First, we load the dataset. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown In the previous notebook, we used `sklearn.compose.make_column_selector` toautomatically select columns with a specific data type (also called `dtype`).Here, we will use this selector to get only the columns containing strings(column with `object` dtype) that correspond to categorical features in ourdataset. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Define a scikit-learn pipeline composed of an `OrdinalEncoder` and a`LogisticRegression` classifier.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown="use_encoded_value"` and`unknown_value` parameters. You can refer to the[scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)for more details regarding these parameters. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression # solution model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) ###Output _____no_output_____ ###Markdown Your model is now defined. Evaluate it using a cross-validation using`sklearn.model_selection.cross_validate`. ###Code from sklearn.model_selection import cross_validate # solution cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Now, we would like to compare the generalization performance of our previousmodel with a new model where instead of using an `OrdinalEncoder`, we willuse a `OneHotEncoder`. Repeat the model evaluation using cross-validation.Compare the score of both models and conclude on the impact of choosing aspecific encoding strategy when using a linear model. ###Code from sklearn.preprocessing import OneHotEncoder # solution model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown 📃 Solution for Exercise M1.04The goal of this exercise is to evaluate the impact of using an arbitraryinteger encoding for categorical variables along with a linearclassification model such as Logistic Regression.To do so, let's try to use `OrdinalEncoder` to preprocess the categoricalvariables. This preprocessor is assembled in a pipeline with`LogisticRegression`. The generalization performance of the pipeline can beevaluated by cross-validation and then compared to the score obtained whenusing `OneHotEncoder` or to some other baseline score.First, we load the dataset. ###Code import pandas as pd adult_census = pd.read_csv("../datasets/adult-census.csv") target_name = "class" target = adult_census[target_name] data = adult_census.drop(columns=[target_name, "education-num"]) ###Output _____no_output_____ ###Markdown In the previous notebook, we used `sklearn.compose.make_column_selector` toautomatically select columns with a specific data type (also called `dtype`).Here, we will use this selector to get only the columns containing strings(column with `object` dtype) that correspond to categorical features in ourdataset. ###Code from sklearn.compose import make_column_selector as selector categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(data) data_categorical = data[categorical_columns] ###Output _____no_output_____ ###Markdown Define a scikit-learn pipeline composed of an `OrdinalEncoder` and a`LogisticRegression` classifier.Because `OrdinalEncoder` can raise errors if it sees an unknown category atprediction time, you can set the `handle_unknown="use_encoded_value"` and`unknown_value` parameters. You can refer to the[scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html)for more details regarding these parameters. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression # solution model = make_pipeline( OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1), LogisticRegression(max_iter=500)) ###Output _____no_output_____ ###Markdown Your model is now defined. Evaluate it using a cross-validation using`sklearn.model_selection.cross_validate`.NoteBe aware that if an error happened during the cross-validation,cross_validate will raise a warning and return NaN (Not a Number)as scores. To make it raise a standard Python exception with a traceback,you can pass the error_score="raise" argument in the call tocross_validate. An exception will be raised instead of a warning at the firstencountered problem and cross_validate will stop right away instead ofreturning NaN values. This is particularly handy when developingcomplex machine learning pipelines. ###Code from sklearn.model_selection import cross_validate # solution cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Using an arbitrary mapping from string labels to integers as done here causesthe linear model to make bad assumptions on the relative ordering ofcategories.This prevents the model from learning anything predictive enough and thecross-validated score is even lower than the baseline we obtained by ignoringthe input data and just constantly predicting the most frequent class: ###Code from sklearn.dummy import DummyClassifier cv_results = cross_validate(DummyClassifier(strategy="most_frequent"), data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____ ###Markdown Now, we would like to compare the generalization performance of our previousmodel with a new model where instead of using an `OrdinalEncoder`, we willuse a `OneHotEncoder`. Repeat the model evaluation using cross-validation.Compare the score of both models and conclude on the impact of choosing aspecific encoding strategy when using a linear model. ###Code from sklearn.preprocessing import OneHotEncoder # solution model = make_pipeline( OneHotEncoder(handle_unknown="ignore"), LogisticRegression(max_iter=500)) cv_results = cross_validate(model, data_categorical, target) scores = cv_results["test_score"] print("The mean cross-validation accuracy is: " f"{scores.mean():.3f} +/- {scores.std():.3f}") ###Output _____no_output_____
Data Analysis/Clean and Analyze Employee Exit Surveys/Clean and Analyze Employee Exit Surveys.ipynb
###Markdown Clean and Analyze Employee Exit SurveysIn this project, we'll clean and analyze exit surveys from employees of the Department of Education, Training and Employment (DETE)}) and the Technical and Further Education (TAFE) body of the Queensland government in Australia. The TAFE exit survey can be found here and the survey for the DETE can be found here.We'll pretend our stakeholders want us to combine the results for both surveys to answer the following question:- Are employees who only worked for the institutes for a short period of time resigning due to some kind of dissatisfaction? What about employees who have been there longer? IntroductionFirst, we'll read in the datasets and do some initial exploration. ###Code #Read in the data import pandas as pd import numpy as np dete_survey = pd.read_csv('dete_survey.csv') #Quick exploration of the data pd.options.display.max_columns = 150 # to avoid truncated output dete_survey.head() dete_survey.info() #Read in the data tafe_survey = pd.read_csv("tafe_survey.csv") #Quick exploration of the data tafe_survey.head() tafe_survey.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 702 entries, 0 to 701 Data columns (total 72 columns): Record ID 702 non-null float64 Institute 702 non-null object WorkArea 702 non-null object CESSATION YEAR 695 non-null float64 Reason for ceasing employment 701 non-null object Contributing Factors. Career Move - Public Sector 437 non-null object Contributing Factors. Career Move - Private Sector 437 non-null object Contributing Factors. Career Move - Self-employment 437 non-null object Contributing Factors. Ill Health 437 non-null object Contributing Factors. Maternity/Family 437 non-null object Contributing Factors. Dissatisfaction 437 non-null object Contributing Factors. Job Dissatisfaction 437 non-null object Contributing Factors. Interpersonal Conflict 437 non-null object Contributing Factors. Study 437 non-null object Contributing Factors. Travel 437 non-null object Contributing Factors. Other 437 non-null object Contributing Factors. NONE 437 non-null object Main Factor. Which of these was the main factor for leaving? 113 non-null object InstituteViews. Topic:1. I feel the senior leadership had a clear vision and direction 608 non-null object InstituteViews. Topic:2. I was given access to skills training to help me do my job better 613 non-null object InstituteViews. Topic:3. I was given adequate opportunities for personal development 610 non-null object InstituteViews. Topic:4. I was given adequate opportunities for promotion within %Institute]Q25LBL% 608 non-null object InstituteViews. Topic:5. I felt the salary for the job was right for the responsibilities I had 615 non-null object InstituteViews. Topic:6. The organisation recognised when staff did good work 607 non-null object InstituteViews. Topic:7. Management was generally supportive of me 614 non-null object InstituteViews. Topic:8. Management was generally supportive of my team 608 non-null object InstituteViews. Topic:9. I was kept informed of the changes in the organisation which would affect me 610 non-null object InstituteViews. Topic:10. Staff morale was positive within the Institute 602 non-null object InstituteViews. Topic:11. If I had a workplace issue it was dealt with quickly 601 non-null object InstituteViews. Topic:12. If I had a workplace issue it was dealt with efficiently 597 non-null object InstituteViews. Topic:13. If I had a workplace issue it was dealt with discreetly 601 non-null object WorkUnitViews. Topic:14. I was satisfied with the quality of the management and supervision within my work unit 609 non-null object WorkUnitViews. Topic:15. I worked well with my colleagues 605 non-null object WorkUnitViews. Topic:16. My job was challenging and interesting 607 non-null object WorkUnitViews. Topic:17. I was encouraged to use my initiative in the course of my work 610 non-null object WorkUnitViews. Topic:18. I had sufficient contact with other people in my job 613 non-null object WorkUnitViews. Topic:19. I was given adequate support and co-operation by my peers to enable me to do my job 609 non-null object WorkUnitViews. Topic:20. I was able to use the full range of my skills in my job 609 non-null object WorkUnitViews. Topic:21. I was able to use the full range of my abilities in my job. ; Category:Level of Agreement; Question:YOUR VIEWS ABOUT YOUR WORK UNIT] 608 non-null object WorkUnitViews. Topic:22. I was able to use the full range of my knowledge in my job 608 non-null object WorkUnitViews. Topic:23. My job provided sufficient variety 611 non-null object WorkUnitViews. Topic:24. I was able to cope with the level of stress and pressure in my job 610 non-null object WorkUnitViews. Topic:25. My job allowed me to balance the demands of work and family to my satisfaction 611 non-null object WorkUnitViews. Topic:26. My supervisor gave me adequate personal recognition and feedback on my performance 606 non-null object WorkUnitViews. Topic:27. My working environment was satisfactory e.g. sufficient space, good lighting, suitable seating and working area 610 non-null object WorkUnitViews. Topic:28. I was given the opportunity to mentor and coach others in order for me to pass on my skills and knowledge prior to my cessation date 609 non-null object WorkUnitViews. Topic:29. There was adequate communication between staff in my unit 603 non-null object WorkUnitViews. Topic:30. Staff morale was positive within my work unit 606 non-null object Induction. Did you undertake Workplace Induction? 619 non-null object InductionInfo. Topic:Did you undertake a Corporate Induction? 432 non-null object InductionInfo. Topic:Did you undertake a Institute Induction? 483 non-null object InductionInfo. Topic: Did you undertake Team Induction? 440 non-null object InductionInfo. Face to Face Topic:Did you undertake a Corporate Induction; Category:How it was conducted? 555 non-null object InductionInfo. On-line Topic:Did you undertake a Corporate Induction; Category:How it was conducted? 555 non-null object InductionInfo. Induction Manual Topic:Did you undertake a Corporate Induction? 555 non-null object InductionInfo. Face to Face Topic:Did you undertake a Institute Induction? 530 non-null object InductionInfo. On-line Topic:Did you undertake a Institute Induction? 555 non-null object InductionInfo. Induction Manual Topic:Did you undertake a Institute Induction? 553 non-null object InductionInfo. Face to Face Topic: Did you undertake Team Induction; Category? 555 non-null object InductionInfo. On-line Topic: Did you undertake Team Induction?process you undertook and how it was conducted.] 555 non-null object InductionInfo. Induction Manual Topic: Did you undertake Team Induction? 555 non-null object Workplace. Topic:Did you and your Manager develop a Performance and Professional Development Plan (PPDP)? 608 non-null object Workplace. Topic:Does your workplace promote a work culture free from all forms of unlawful discrimination? 594 non-null object Workplace. Topic:Does your workplace promote and practice the principles of employment equity? 587 non-null object Workplace. Topic:Does your workplace value the diversity of its employees? 586 non-null object Workplace. Topic:Would you recommend the Institute as an employer to others? 581 non-null object Gender. What is your Gender? 596 non-null object CurrentAge. Current Age 596 non-null object Employment Type. Employment Type 596 non-null object Classification. Classification 596 non-null object LengthofServiceOverall. Overall Length of Service at Institute (in years) 596 non-null object LengthofServiceCurrent. Length of Service at current workplace (in years) 596 non-null object dtypes: float64(2), object(70) memory usage: 395.0+ KB ###Markdown We can make the following observations based on the work above:* The dete_survey dataframe contains 'Not Stated' values that indicate values are missing, but they aren't represented as NaN.* Both the dete_survey and tafe_survey contain many columns that we don't need to complete our analysis.* Each dataframe contains many of the same columns, but the column names are different.* There are multiple columns/answers that indicate an employee resigned because they were dissatisfied. Identify Missing Values and Drop Unneccessary ColumnsFirst, we'll correct the Not Stated values and drop some of the columns we don't need for our analysis. ###Code # Read in the data again, but this time read 'Not Stated' values as 'NaN' dete_survey = pd.read_csv('dete_survey.csv', na_values='Not Stated') #Quick exploration of the data dete_survey.head() # Remove columns we don't need for our analysis dete_survey_updated = dete_survey.drop(dete_survey.columns[28:49], axis=1) tafe_survey_updated = tafe_survey.drop(tafe_survey.columns[17:66], axis=1) #Check that the columns were dropped print(dete_survey_updated.columns) print(tafe_survey_updated.columns) ###Output Index(['ID', 'SeparationType', 'Cease Date', 'DETE Start Date', 'Role Start Date', 'Position', 'Classification', 'Region', 'Business Unit', 'Employment Status', 'Career move to public sector', 'Career move to private sector', 'Interpersonal conflicts', 'Job dissatisfaction', 'Dissatisfaction with the department', 'Physical work environment', 'Lack of recognition', 'Lack of job security', 'Work location', 'Employment conditions', 'Maternity/family', 'Relocation', 'Study/Travel', 'Ill Health', 'Traumatic incident', 'Work life balance', 'Workload', 'None of the above', 'Gender', 'Age', 'Aboriginal', 'Torres Strait', 'South Sea', 'Disability', 'NESB'], dtype='object') Index(['Record ID', 'Institute', 'WorkArea', 'CESSATION YEAR', 'Reason for ceasing employment', 'Contributing Factors. Career Move - Public Sector ', 'Contributing Factors. Career Move - Private Sector ', 'Contributing Factors. Career Move - Self-employment', 'Contributing Factors. Ill Health', 'Contributing Factors. Maternity/Family', 'Contributing Factors. Dissatisfaction', 'Contributing Factors. Job Dissatisfaction', 'Contributing Factors. Interpersonal Conflict', 'Contributing Factors. Study', 'Contributing Factors. Travel', 'Contributing Factors. Other', 'Contributing Factors. NONE', 'Gender. What is your Gender?', 'CurrentAge. Current Age', 'Employment Type. Employment Type', 'Classification. Classification', 'LengthofServiceOverall. Overall Length of Service at Institute (in years)', 'LengthofServiceCurrent. Length of Service at current workplace (in years)'], dtype='object') ###Markdown Rename ColumnsNext, we'll standardize the names of the columns we want to work with, because we eventually want to combine the dataframes. ###Code # Clean the column names dete_survey_updated.columns = dete_survey_updated.columns.str.lower().str.strip().str.replace(' ', '_') # Check that the column names were updated correctly dete_survey_updated.columns # Update column names to match the names in dete_survey_updated mapping = {'Record ID': 'id', 'CESSATION YEAR': 'cease_date', 'Reason for ceasing employment': 'separationtype', 'Gender. What is your Gender?': 'gender', 'CurrentAge. Current Age': 'age', 'Employment Type. Employment Type': 'employment_status', 'Classification. Classification': 'position', 'LengthofServiceOverall. Overall Length of Service at Institute (in years)': 'institute_service', 'LengthofServiceCurrent. Length of Service at current workplace (in years)': 'role_service'} tafe_survey_updated = tafe_survey_updated.rename(mapping, axis = 1) # Check that the specified column names were updated correctly tafe_survey_updated.columns ###Output _____no_output_____ ###Markdown Filter the DataFor this project, we'll only analyze survey respondents who resigned, so we'll only select separation types containing the string 'Resignation'. ###Code # Check the unique values for the separationtype column tafe_survey_updated['separationtype'].value_counts() # Check the unique values for the separationtype column dete_survey_updated['separationtype'].value_counts() # Check the unique values for the separationtype column dete_survey_updated['separationtype'].value_counts() # Update all separation types containing the word "resignation" to 'Resignation' dete_survey_updated['separationtype'] = dete_survey_updated['separationtype'].str.split('-').str[0] # Check the values in the separationtype column were updated correctly dete_survey_updated['separationtype'].value_counts() # Select only the resignation separation types from each dataframe dete_resignations = dete_survey_updated[dete_survey_updated['separationtype'] == 'Resignation'].copy() tafe_resignations = tafe_survey_updated[tafe_survey_updated['separationtype'] == 'Resignation'].copy() ###Output _____no_output_____ ###Markdown Verify the DataBelow, we clean and explore the cease_date and dete_start_date columns to make sure all of the years make sense. We'll use the following criteria:* Since the cease_date is the last year of the person's employment and the dete_start_date is the person's first year of employment, it wouldn't make sense to have years after the current date.* Given that most people in this field start working in their 20s, it's also unlikely that the dete_start_date was before the year 1940. ###Code # Check the unique values dete_resignations['cease_date'].value_counts() # Extract the years and convert them to a float type dete_resignations['cease_date'] = dete_resignations['cease_date'].str.split('/').str[-1] dete_resignations['cease_date'] = dete_resignations['cease_date'].astype("float") # Check the values again and look for outliers dete_resignations['cease_date'].value_counts() # Check the unique values and look for outliers dete_resignations['dete_start_date'].value_counts().sort_values() # Check the unique values tafe_resignations['cease_date'].value_counts().sort_values() ###Output _____no_output_____ ###Markdown Below are our findings:* The years in both dataframes don't completely align. The tafe_survey_updated dataframe contains some cease dates in 2009, but the dete_survey_updated dataframe does not. The tafe_survey_updated dataframe also contains many more cease dates in 2010 than the dete_survey_updaed dataframe. Since we aren't concerned with analyzing the results by year, we'll leave them as is. Create a New Column¶Since our end goal is to answer the question below, we need a column containing the length of time an employee spent in their workplace, or years of service, in both dataframes.* End goal: Are employees who have only worked for the institutes for a short period of time resigning due to some kind of dissatisfaction? What about employees who have been at the job longer?The tafe_resignations dataframe already contains a "service" column, which we renamed to institute_service.Below, we calculate the years of service in the dete_survey_updated dataframe by subtracting the dete_start_date from the cease_date and create a new column named institute_service. ###Code # Calculate the length of time an employee spent in their respective workplace and create a new column dete_resignations['institute_service'] = dete_resignations['cease_date'] - dete_resignations['dete_start_date'] # Quick check of the result dete_resignations['institute_service'].head() ###Output _____no_output_____ ###Markdown Identify Dissatisfied Employees¶Next, we'll identify any employees who resigned because they were dissatisfied. Below are the columns we'll use to categorize employees as "dissatisfied" from each dataframe:1. tafe_survey_updated:* Contributing Factors. Dissatisfaction* Contributing Factors. Job Dissatisfaction2. dafe_survey_updated:* job_dissatisfaction* dissatisfaction_with_the_department* physical_work_environment* lack_of_recognition* lack_of_job_security* work_location* employment_conditions* work_life_balance* workloadIf the employee indicated any of the factors above caused them to resign, we'll mark them as dissatisfied in a new column. After our changes, the new dissatisfied column will contain just the following values:* True: indicates a person resigned because they were dissatisfied in some way* False: indicates a person resigned because of a reason other than dissatisfaction with the job* NaN: indicates the value is missing ###Code # Check the unique values tafe_resignations['Contributing Factors. Dissatisfaction'].value_counts() # Check the unique values tafe_resignations['Contributing Factors. Job Dissatisfaction'].value_counts() # Update the values in the contributing factors columns to be either True, False, or NaN def update_vals(x): if x == '-': return False elif pd.isnull(x): return np.nan else: return True tafe_resignations['dissatisfied'] = tafe_resignations[['Contributing Factors. Dissatisfaction', 'Contributing Factors. Job Dissatisfaction']].applymap(update_vals).any(1, skipna=False) tafe_resignations_up = tafe_resignations.copy() # Check the unique values after the updates tafe_resignations_up['dissatisfied'].value_counts(dropna=False) # Update the values in columns related to dissatisfaction to be either True, False, or NaN dete_resignations['dissatisfied'] = dete_resignations[['job_dissatisfaction', 'dissatisfaction_with_the_department', 'physical_work_environment', 'lack_of_recognition', 'lack_of_job_security', 'work_location', 'employment_conditions', 'work_life_balance', 'workload']].any(1, skipna=False) dete_resignations_up = dete_resignations.copy() dete_resignations_up['dissatisfied'].value_counts(dropna=False) ###Output _____no_output_____ ###Markdown Combining the Data¶Below, we'll add an institute column so that we can differentiate the data from each survey after we combine them. Then, we'll combine the dataframes and drop any remaining columns we don't need. ###Code # Add an institute column dete_resignations_up['institute'] = 'DETE' tafe_resignations_up['institute'] = 'TAFE' # Combine the dataframes combined = pd.concat([dete_resignations_up, tafe_resignations_up], ignore_index=True) # Verify the number of non null values in each column combined.notnull().sum().sort_values() # Drop columns with less than 500 non null values combined_updated = combined.dropna(thresh = 500, axis =1).copy() ###Output _____no_output_____ ###Markdown Clean the Service Column¶Next, we'll clean the institute_service column and categorize employees according to the following definitions:* New: Less than 3 years in the workplace* Experienced: 3-6 years in the workplace* Established: 7-10 years in the workplace* Veteran: 11 or more years in the workplaceOur analysis is based on this article, which makes the argument that understanding employee's needs according to career stage instead of age is more effective. ###Code # Check the unique values combined_updated['institute_service'].value_counts(dropna=False) # Extract the years of service and convert the type to float combined_updated['institute_service_up'] = combined_updated['institute_service'].astype('str').str.extract(r'(\d+)') combined_updated['institute_service_up'] = combined_updated['institute_service_up'].astype('float') # Check the years extracted are correct combined_updated['institute_service_up'].value_counts() # Convert years of service to categories def transform_service(val): if val >= 11: return "Veteran" elif 7 <= val < 11: return "Established" elif 3 <= val < 7: return "Experienced" elif pd.isnull(val): return np.nan else: return "New" combined_updated['service_cat'] = combined_updated['institute_service_up'].apply(transform_service) # Quick check of the update combined_updated['service_cat'].value_counts() ###Output _____no_output_____ ###Markdown Perform Some Initial Analysis¶Finally, we'll replace the missing values in the dissatisfied column with the most frequent value, False. Then, we'll calculate the percentage of employees who resigned due to dissatisfaction in each service_cat group and plot the results.Note that since we still have additional missing values left to deal with, this is meant to be an initial introduction to the analysis, not the final analysis. ###Code # Verify the unique values combined_updated['dissatisfied'].value_counts(dropna=False) # Replace missing values with the most frequent value, False combined_updated['dissatisfied'] = combined_updated['dissatisfied'].fillna(False) # Calculate the percentage of employees who resigned due to dissatisfaction in each category dis_pct = combined_updated.pivot_table(index='service_cat', values='dissatisfied') # Plot the results %matplotlib inline dis_pct.plot(kind='bar', rot=30) ###Output _____no_output_____
Week 3/numpy.ipynb
###Markdown NumPyNumpy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. Official NumPy Documentation: https://numpy.org/doc/stable/reference/ ###Code # Install NumPy # ! pip install numpy ###Output _____no_output_____ ###Markdown Since NumPy is not a default thing in Python. We import this library. When we import a library we allow all the functions and types with the initial of that library. ###Code # Import NumPy import numpy as np ###Output _____no_output_____ ###Markdown NumPy ArraysA grid of values, all of the same type. **Rank:** number of dimensions of the array **Shape:** an array of tuple of integers giving the size of the array along each dimension. ###Code # Rank 1 array a = np.array([1, 2, 3]) print(type(a)) # Prints data type print(a.shape) print(a[0], a[1], a[2]) # Indexing a[0] = 5 # Assigning print(a) # Rank 2 array b = np.array([ [1,2,3], [4,5,6] ]) ''' # of elements in first 3rd bracket => 2 # of elements in second 3rd bracket => 3 ''' print(b.shape) print(b[0, 0], b[0, 1], b[1, 0], b[1,2]) ###Output (2, 3) 1 2 4 6 ###Markdown Special Arrays ###Code a = np.zeros((6,4)) # Create an array of all zeros a np.zeros_like(b,dtype=float) b = np.ones((3,2)) # Create an array of all ones b c = np.full((6,4), 7) # Create a constant array c d = np.eye(5) # Create a 2x2 identity matrix d e = np.random.random((4,3)) # Create an array filled with random values e ###Output _____no_output_____ ###Markdown Indexing ###Code a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) a a[:2,:3] b = a[:2, 1:3] b print(a[0, 1]) # Prints "2" b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1] print(a[0, 1]) # Prints "77" a[1, :] a[1:2, :] a[:, 1] a[:, 1:2] np.arange(2,10,2) ###Output _____no_output_____ ###Markdown Boolean array indexing ###Code a bool_idx = (a>10) bool_idx a[bool_idx] a [ a>10 ] ###Output _____no_output_____ ###Markdown Data Types ###Code x = np.array([1, 2]) print(x.dtype) x = np.array([1.0, 2.0]) print(x.dtype) x = np.array([1, 2], dtype=np.float64) # Foring a particular datatype print(x,x.dtype) x.dtype ###Output _____no_output_____ ###Markdown Operations ###Code x = np.array([[1,2],[3,4]], dtype=np.float64) y = np.array([[5,6],[7,8]], dtype=np.float64) x,y # Adding two arrays element-wise print(x + y) print(np.add(x, y)) # Substracting two arrays element-wise print(x - y) print(np.subtract(x, y)) # Mutiplication Element-wise print(x * y) print(np.multiply(x, y)) # Elementwise division print(x / y) print(np.divide(x, y)) # Elementwise square root print(np.sqrt(x)) # Matrix Multiplication print(x.dot(y)) print(np.dot(x, y)) x # Sum of all elements in the array np.sum(x) print(np.sum(x, axis=0)) # Compute sum of each column print(np.sum(x, axis=1)) # Compute sum of each row a # Transpose a.T ###Output _____no_output_____ ###Markdown Broadcasting ###Code x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) v = np.array([1, 0, 1]) y = x + v # Add v to each row of x using broadcasting print(y) x = np.array([[1,2,3], [4,5,6]]) y = np.array([4,5]) (x.T+y).T x, x.shape x.T, x.T.shape y, y.shape x.T+y (x.T+y).T x*2 x+2 ###Output _____no_output_____
notebooks/computer_science/Algorithms_and_data_structures_in_python/maps_and_dictionaries/example_1.ipynb
###Markdown Hash CodesConsider the challenges associated with the 16-bit hashcode for a character string `s` that sums the Unicode values of the characters in `s`.For example, let `s = "stop"`. It's unicode character representation is: ###Code for char in "stop": print(char + ': ' + str(ord(char))) sum([ord(x) for x in "stop"]) ###Output _____no_output_____ ###Markdown If we then sum these unicode values, we arrive as the following hash code:```stop -----------> 454```The problem is, the following strings will all map to the same value!```stop -----------> 454pots -----------> 454tops -----------> 454spot -----------> 454```A better hash code would take into account the _position_ of our characters. Polynomial Hash codeIf we refer to the characters of our string as $x_0, x_1, \dots, x_n$, we can then chose a non-zero constant, $a \neq 1$, and use a hash code:$$a^{n-1} x_0 + a^{n-2} x_1 + \dots + a^1 x_{n-1} + a^0 x_{n}$$This is simply a polynomial in $a$ that has our $x_i$ values as it's coefficients. This is known as a **polynomial** hash code. ###Code 1 << 32 2**32 2 << 2 ###Output _____no_output_____ ###Markdown Investigate hash map uniformity ###Code import random import numpy as np import matplotlib.pyplot as plt %config InlineBackend.figure_format='retina' n = 0 prime = 109345121 scale = 1 + random.randrange(prime - 1) shift = random.randrange(prime) def my_hash_func(k, upper): table = upper * [None] hash_code = hash(k) compressed_code = (hash_code * scale + shift) % prime % len(table) return compressed_code upper = 1000 inputs = list(range(0, upper)) hash_results = [] for i in inputs: hash_results.append(my_hash_func(i, upper)) plt.figure(figsize=(15,10)) plt.plot(inputs, hash_results) plt.figure(figsize=(15,10)) plt.scatter(inputs, hash_results) def moving_average(x, w): return np.convolve(x, np.ones(w), 'valid') / w averages_over_window_size_5 = moving_average(hash_results, 5) plt.hist(averages_over_window_size_5) l = [4, 7, 9, 13, 1, 3, 7] l1 = [1, 4, 7]; l2 = [3, 9, 13] def merge_sort(l): size = len(l) midway = size // 2 first_half = l[:midway] second_half = l[midway:] if len(first_half) > 1 or len(second_half) > 1: sorted_first_half = merge_sort(first_half) sorted_second_half = merge_sort(second_half) else: sorted_first_half = first_half sorted_second_half = second_half sorted_l = merge(sorted_first_half, sorted_second_half) return sorted_l def merge(l1, l2): """Merge two sorted lists.""" i = 0 j = 0 lmerged = [] while (i <= len(l1) - 1) or (j <= len(l2) - 1): if i == len(l1): lmerged.extend(l2[j:]) break if j == len(l2): lmerged.extend(l1[i:]) break if (i < len(l1)) and (l1[i] < l2[j]): lmerged.append(l1[i]) i += 1 else: lmerged.append(l2[j]) j += 1 return lmerged merge_sort(l) l = [random.choice(list(range(1000))) for x in range(1000)] %%time res = sorted(l) %%time res = merge_sort(l) ###Output CPU times: user 6.33 ms, sys: 413 µs, total: 6.74 ms Wall time: 6.4 ms
pymc3/examples/gaussian_mixture_model.ipynb
###Markdown Mixture Model in PyMC3Original NB by Abe Flaxman, modified by Thomas Wiecki ###Code import pymc3 as pm, theano.tensor as tt # simulate data from a known mixture distribution np.random.seed(12345) # set random seed for reproducibility k = 3 ndata = 500 spread = 5 centers = np.array([-spread, 0, spread]) # simulate data from mixture distribution v = np.random.randint(0, k, ndata) data = centers[v] + np.random.randn(ndata) plt.hist(data); # setup model model = pm.Model() with model: # cluster sizes a = pm.constant(np.array([1., 1., 1.])) p = pm.Dirichlet('p', a=a, shape=k) # ensure all clusters have some points p_min_potential = pm.Potential('p_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0)) # cluster centers means = pm.Normal('means', mu=[0, 0, 0], sd=15, shape=k) # break symmetry order_means_potential = pm.Potential('order_means_potential', tt.switch(means[1]-means[0] < 0, -np.inf, 0) + tt.switch(means[2]-means[1] < 0, -np.inf, 0)) # measurement error sd = pm.Uniform('sd', lower=0, upper=20) # latent cluster of each observation category = pm.Categorical('category', p=p, shape=ndata) # likelihood for each observed value points = pm.Normal('obs', mu=means[category], sd=sd, observed=data) # fit model with model: step1 = pm.Metropolis(vars=[p, sd, means]) step2 = pm.ElemwiseCategoricalStep(var=category, values=[0, 1, 2]) tr = pm.sample(10000, step=[step1, step2]) ###Output [-----------------100%-----------------] 10000 of 10000 complete in 93.9 sec ###Markdown Full trace ###Code pm.plots.traceplot(tr, ['p', 'sd', 'means']); ###Output _____no_output_____ ###Markdown After convergence ###Code # take a look at traceplot for some model parameters # (with some burn-in and thinning) pm.plots.traceplot(tr[5000::5], ['p', 'sd', 'means']); # I prefer autocorrelation plots for serious confirmation of MCMC convergence pm.autocorrplot(tr[5000::5], ['sd']) ###Output _____no_output_____ ###Markdown Sampling of cluster for individual data point ###Code i=0 plt.plot(tr['category'][5000::5, i], drawstyle='steps-mid') plt.axis(ymin=-.1, ymax=2.1) def cluster_posterior(i=0): print('true cluster:', v[i]) print(' data value:', np.round(data[i],2)) plt.hist(tr['category'][5000::5,i], bins=[-.5,.5,1.5,2.5,], rwidth=.9) plt.axis(xmin=-.5, xmax=2.5) plt.xticks([0,1,2]) cluster_posterior(i) ###Output true cluster: 2 data value: 3.29 ###Markdown Mixture Model in PyMC3Original NB by Abe Flaxman, modified by Thomas Wiecki ###Code import pymc3 as pm, theano.tensor as tt # simulate data from a known mixture distribution np.random.seed(12345) # set random seed for reproducibility k = 3 ndata = 500 spread = 5 centers = np.array([-spread, 0, spread]) # simulate data from mixture distribution v = np.random.randint(0, k, ndata) data = centers[v] + np.random.randn(ndata) plt.hist(data); # setup model model = pm.Model() with model: # cluster sizes a = pm.constant(np.array([1., 1., 1.])) p = pm.Dirichlet('p', a=a, shape=k) # ensure all clusters have some points p_min_potential = pm.Potential('p_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0)) # cluster centers means = pm.Normal('means', mu=[0, 0, 0], sd=15, shape=k) # break symmetry order_means_potential = pm.Potential('order_means_potential', tt.switch(means[1]-means[0] < 0, -np.inf, 0) + tt.switch(means[2]-means[1] < 0, -np.inf, 0)) # measurement error sd = pm.Uniform('sd', lower=0, upper=20) # latent cluster of each observation category = pm.Categorical('category', p=p, shape=ndata) # likelihood for each observed value points = pm.Normal('obs', mu=means[category], sd=sd, observed=data) # fit model with model: step1 = pm.Metropolis(vars=[p, sd, means]) step2 = pm.ElemwiseCategoricalStep(vars=[category], values=[0, 1, 2]) tr = pm.sample(10000, step=[step1, step2]) ###Output [-----------------100%-----------------] 10000 of 10000 complete in 93.9 sec ###Markdown Full trace ###Code pm.plots.traceplot(tr, ['p', 'sd', 'means']); ###Output _____no_output_____ ###Markdown After convergence ###Code # take a look at traceplot for some model parameters # (with some burn-in and thinning) pm.plots.traceplot(tr[5000::5], ['p', 'sd', 'means']); # I prefer autocorrelation plots for serious confirmation of MCMC convergence pm.autocorrplot(tr[5000::5], varnames=['sd']) ###Output _____no_output_____ ###Markdown Sampling of cluster for individual data point ###Code i=0 plt.plot(tr['category'][5000::5, i], drawstyle='steps-mid') plt.axis(ymin=-.1, ymax=2.1) def cluster_posterior(i=0): print('true cluster:', v[i]) print(' data value:', np.round(data[i],2)) plt.hist(tr['category'][5000::5,i], bins=[-.5,.5,1.5,2.5,], rwidth=.9) plt.axis(xmin=-.5, xmax=2.5) plt.xticks([0,1,2]) cluster_posterior(i) ###Output true cluster: 2 data value: 3.29
gather/gather_report.ipynb
###Markdown Figures 2 and 5 for gather paper ###Code %matplotlib inline import pylab import pandas as pd ###Output _____no_output_____ ###Markdown Preparation: load genome-grist summary CSVs ###Code class SampleDFs: def __init__(self, name, all_df, left_df, gather_df, names_df): self.name = name self.all_df = all_df self.left_df = left_df self.gather_df = gather_df self.names_df = names_df def load_sample_dfs(name, sample_id, subsample_to=None, debug=False): print(f'loading sample {sample_id}') # load mapping CSVs all_df = pd.read_csv(f'inputs/mapping/{sample_id}.summary.csv') left_df = pd.read_csv(f'inputs/leftover/{sample_id}.summary.csv') # load gather CSV gather_df = pd.read_csv(f'inputs/gather/{sample_id}.gather.csv') # names! names_df = pd.read_csv(f'inputs/gather/{sample_id}.genomes.info.csv') # connect gather_df to all_df and left_df using 'genome_id' def fix_name(x): return "_".join(x.split('_')[:2]).split('.')[0] gather_df['genome_id'] = gather_df['name'].apply(fix_name) names_df['genome_id'] = names_df['ident'].apply(fix_name) # this ensures that only rows that share genome_id are in all the dataframes in_gather = set(gather_df.genome_id) if debug: print(f'{len(in_gather)} in gather results') in_left = set(left_df.genome_id) if debug: print(f'{len(in_left)} in leftover results') in_both = in_left.intersection(in_gather) if debug: print(f'{len(in_both)} in both') print('diff gather example:', list(in_gather - in_both)[:5]) print('diff left example:', list(in_left - in_both)[:5]) assert not in_gather - in_both assert not in_left - in_both all_df = all_df[all_df.genome_id.isin(in_both)] left_df = left_df[left_df.genome_id.isin(in_both)] gather_df = gather_df[gather_df.genome_id.isin(in_both)] names_df = names_df[names_df.genome_id.isin(in_both)] # reassign index now that we've maybe dropped rows all_df.index = range(len(all_df)) left_df.index = range(len(left_df)) gather_df.index = range(len(gather_df)) names_df.index = range(len(names_df)) assert len(all_df) == len(gather_df) assert len(left_df) == len(gather_df) assert len(names_df) == len(gather_df) assert len(names_df) == len(in_both) #in_left # re-sort left_df and all_df to match gather_df order, using matching genome_id column all_df = all_df.set_index("genome_id") all_df = all_df.reindex(index=gather_df["genome_id"]) all_df = all_df.reset_index() left_df = left_df.set_index("genome_id") left_df = left_df.reindex(index=gather_df["genome_id"]) left_df = left_df.reset_index() #left_df["mapped_bp"] = (1 - left_df["percent missed"]/100) * left_df["genome bp"] #left_df["unique_mapped_coverage"] = left_df.coverage / (1 - left_df["percent missed"] / 100.0) names_df = names_df.set_index("genome_id") names_df = names_df.reindex(index=gather_df["genome_id"]) names_df = names_df.reset_index() # subsample? take top N... if subsample_to: left_df = left_df[:subsample_to] all_df = all_df[:subsample_to] gather_df = gather_df[:subsample_to] names_df = names_df[:subsample_to] sample_df = SampleDFs(name, all_df, left_df, gather_df, names_df) return sample_df SUBSAMPLE_TO = 36 podar_mock = load_sample_dfs('(A) podar mock', 'SRR606249', subsample_to=SUBSAMPLE_TO,) oil_well = load_sample_dfs('(D) oil well', 'SRR1976948', subsample_to=SUBSAMPLE_TO) gut = load_sample_dfs('(C) gut', 'p8808mo11', subsample_to=SUBSAMPLE_TO) zymo_mock = load_sample_dfs('(B) zymo mock', 'SRR12324253', subsample_to=SUBSAMPLE_TO) ###Output loading sample SRR606249 loading sample SRR1976948 loading sample p8808mo11 loading sample SRR12324253 ###Markdown Figure 2: K-mer decomposition of a metagenome into constituent genomes. ###Code fig, (ax1, ax2) = pylab.subplots(1, 2, figsize=(10, 8), constrained_layout=True) #pylab.plot(left_df.covered_bp / 1e6, left_df.iloc[::-1].index, 'b.', label='mapped bp to this genome') ax1.plot(podar_mock.gather_df.intersect_bp / 1e6, podar_mock.gather_df.iloc[::-1].index, 'g<', label='total k-mers matched') ax1.plot(podar_mock.gather_df.unique_intersect_bp / 1e6, podar_mock.gather_df.iloc[::-1].index, 'ro', label='remaining k-mers matched') positions = list(podar_mock.gather_df.index) labels = list(reversed(podar_mock.names_df.display_name)) ax1.set_yticks(positions) ax1.set_yticklabels(labels, fontsize='small') ax1.set_xlabel('millions of k-mers') ax1.axis(ymin=-1, ymax=SUBSAMPLE_TO) ax1.legend(loc='lower right') ax1.grid(True, axis='both') ax2.plot(podar_mock.gather_df.f_match_orig * 100, podar_mock.gather_df.iloc[::-1].index, 'g<', label='total k-mer cover') ax2.plot(podar_mock.gather_df.f_match * 100, podar_mock.gather_df.iloc[::-1].index, 'ro', label='remaining k-mer cover') ax2.set_yticks(positions) ax2.set_yticklabels([]) ax2.set_xlabel('% of genome covered') ax2.legend(loc='lower left') ax2.axis(xmin=40, xmax=102) ax2.axis(ymin=-1, ymax=SUBSAMPLE_TO) ax2.grid(True) #fig.tight_layout() None fig.savefig('fig2.svg') ###Output _____no_output_____ ###Markdown Figure 5: Hash-based k-mer decomposition of a metagenome into constituent genomes compares well to bases covered by read mapping. ###Code import matplotlib.pyplot as plt fig, axes = plt.subplots(figsize=(20, 12), nrows=2, ncols=2) samples = (podar_mock, zymo_mock, gut, oil_well) for n, (ax, sample) in enumerate(zip(axes.flat, samples)): ax.plot(sample.left_df.index, sample.left_df.covered_bp / 1e6, 'b*', label='genome bases covered by mapped reads') ax.plot(sample.gather_df.index, sample.gather_df.unique_intersect_bp / 1e6, 'ro', label='remaining genome hashes in metagenome') ax.plot(sample.gather_df.index, (sample.gather_df.unique_intersect_bp - sample.left_df.covered_bp) / 1e6, '-', label='difference b/t covered bp and hashes') ax.plot(sample.gather_df.index, [0]*len(sample.gather_df), '--') ax.axis(xmin=-0.5, xmax=len(sample.gather_df.index) - 0.5) positions = list(sample.gather_df.index) labels = [ i + 1 for i in positions ] ax.set_xticks(positions) ax.set_xticklabels(labels) #print(sample.name, positions) ax.set_xlabel('genome rank (ordered by gather results)') ax.set_ylabel('number per genome (million)') if n == 0: ax.legend(loc='upper right') ax.set_title(sample.name) #ax.label_outer() fig.tight_layout() pylab.savefig('fig5.svg') ###Output _____no_output_____
S_GAN_image.ipynb
###Markdown Check a sample from validation dataset ###Code # to see one image cover,*rest = next(iter(valid_set)) _, H, W = cover.size() cover = cover[None].to(device) text = "We are busy in Neural Networks project. Anyhow, how is your day going?" payload = make_payload(W, H, data_depth, text) payload = payload.to(device) #generated = encoder.forward(cover, payload) generated = test(encoder,decoder,data_depth,epochs,cover,payload) text_return = make_message(generated) print(text_return) ###Output Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). ###Markdown Testing begins (from a loaded model) Test1 - Save steganographic images ###Code ##Take all images from test folder (one by one) and message requested by user to encode from imageio import imread, imwrite epochs = 64 data_depth = 4 test_folder = "div2k/myval/_" save_dir = os.mkdir(os.path.join("div2k/myval",str(data_depth)+"_"+str(epochs))) for filename in os.listdir(test_folder): print(os.path.join(test_folder,filename)) cover_im = imread(os.path.join(test_folder,filename), pilmode='RGB') / 127.5 - 1.0 cover = torch.FloatTensor(cover_im).permute(2, 1, 0).unsqueeze(0) cover_size = cover.size() # _, _, height, width = cover.size() text = "We are busy in Neural Networks project. The deadline is near. Anyhow, how is your day going?" payload = make_payload(cover_size[3], cover_size[2], data_depth, text) cover = cover.to(device) payload = payload.to(device) generated = encoder.forward(cover, payload)[0].clamp(-1.0, 1.0) #print(generated.size()) generated = (generated.permute(2, 1, 0).detach().cpu().numpy() + 1.0) * 127.5 imwrite(os.path.join("div2k/myval/",str(data_depth)+"_"+str(epochs),(str(data_depth)+"_"+str(epochs)+"_"+filename)), generated.astype('uint8')) ###Output div2k/myval/_/0805.png div2k/myval/_/0804.png div2k/myval/_/0833.png div2k/myval/_/0855.png div2k/myval/_/0874.png div2k/myval/_/0894.png ###Markdown Test2 - Take a steganographic image from a folder and decode ###Code ##[Individual]Take an image requested by user to decode from imageio import imread, imwrite steg_folder = "div2k/myval/4_64" filename = "4_64_0855.png" image = imread(os.path.join(steg_folder,filename), pilmode='RGB') / 127.5 - 1.0 plt.imshow(image) image = torch.FloatTensor(image).permute(2, 1, 0).unsqueeze(0) text_return = make_message(image) print(text_return) #f = open(steg_folder+".csv", "a") #f.write("\n" + filename + "\t" + str(text_return)) ###Output WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:22: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). ###Markdown Test3 - Encode to decode in one cell ###Code ##Input to outut (both encode decode in one cell) from imageio import imread, imwrite cover_im = imread("div2k/myval/_/0805.png", pilmode='RGB') / 127.5 - 1.0 plt.imshow(cover_im) cover = torch.FloatTensor(cover_im).permute(2, 1, 0).unsqueeze(0) cover_size = cover.size() # _, _, height, width = cover.size() text = "We are busy in Neural Networks project. Anyhow, how is your day going?" payload = make_payload(cover_size[3], cover_size[2], data_depth, text) cover = cover.to(device) payload = payload.to(device) generated = encoder.forward(cover, payload) text_return = make_message(generated) print(text_return) ###Output Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:22: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). ###Markdown Generate Difference Image ###Code from skimage.metrics import structural_similarity as ssim from imageio import imread, imwrite diff_epochs = 64 diff_data_depth = 4 cover_folder = "div2k/myval/_" steg_folder = "div2k/myval/"+str(diff_data_depth)+"_"+str(diff_epochs) for filename in os.listdir(cover_folder): print(os.path.join(cover_folder,filename)) cover = imread(os.path.join(cover_folder,filename), as_gray=True) gen = imread(os.path.join(steg_folder,str(diff_data_depth)+"_"+str(diff_epochs)+"_"+filename), as_gray=True) (score, diff) = ssim(cover, gen, full=True) imwrite("div2k/myval/"+str(diff_data_depth)+"_"+str(diff_epochs)+"/"+"%d_%d_diff_%s"%(diff_data_depth,diff_epochs,filename),diff) print("Score: ",score) ###Output div2k/myval/_/0805.png
lab7/LogisticRegression-Tweets.ipynb
###Markdown Aim:* Extract features for logistic regression given some text* Implement logistic regression from scratch* Apply logistic regression on a natural language processing task* Test logistic regressionWe will be using a data set of tweets. Import functions and data ###Code import nltk from nltk.corpus import twitter_samples import pandas as pd nltk.download('twitter_samples') nltk.download('stopwords') import re import string import numpy as np from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import TweetTokenizer #process_tweet(): cleans the text, tokenizes it into separate words, removes stopwords, and converts words to stems. def process_tweet(tweet): """Process tweet function. Input: tweet: a string containing a tweet Output: tweets_clean: a list of words containing the processed tweet """ stemmer = PorterStemmer() stopwords_english = stopwords.words('english') # remove stock market tickers like $GE tweet = re.sub(r'\$\w*', '', tweet) # remove old style retweet text "RT" tweet = re.sub(r'^RT[\s]+', '', tweet) # remove hyperlinks tweet = re.sub(r'https?:\/\/.*[\r\n]*', '', tweet) # remove hashtags # only removing the hash # sign from the word tweet = re.sub(r'#', '', tweet) # tokenize tweets tokenizer = TweetTokenizer(preserve_case=False, strip_handles=True, reduce_len=True) tweet_tokens = tokenizer.tokenize(tweet) tweets_clean = [] for word in tweet_tokens: if(word not in stopwords_english and word not in string.punctuation): stem_word = stemmer.stem(word) tweets_clean.append(stem_word) ############################################################# # 1 remove stopwords # 2 remove punctuation # 3 stemming word # 4 Add it to tweets_clean return tweets_clean #build_freqs counts how often a word in the 'corpus' (the entire set of tweets) was associated with # a positive label '1' or # a negative label '0', #then builds the freqs dictionary, where each key is a (word,label) tuple, #and the value is the count of its frequency within the corpus of tweets. def build_freqs(tweets, ys): """Build frequencies. Input: tweets: a list of tweets ys: an m x 1 array with the sentiment label of each tweet (either 0 or 1) Output: freqs: a dictionary mapping each (word, sentiment) pair to its frequency """ # Convert np array to list since zip needs an iterable. # The squeeze is necessary or the list ends up with one element. # Also note that this is just a NOP if ys is already a list. yslist = np.squeeze(ys).tolist() # Start with an empty dictionary and populate it by looping over all tweets # and over all processed words in each tweet. freqs = {} for y, tweet in zip(yslist, tweets): for word in process_tweet(tweet): pair = (word, y) ############################################################# #Update the count of pair if present, set it to 1 otherwise if pair in freqs: freqs[pair] += 1 else: freqs[pair] = 1 return freqs ###Output _____no_output_____ ###Markdown Prepare the data* The `twitter_samples` contains subsets of 5,000 positive tweets, 5,000 negative tweets, and the full set of 10,000 tweets. ###Code # select the set of positive and negative tweets all_positive_tweets = twitter_samples.strings('positive_tweets.json') all_negative_tweets = twitter_samples.strings('negative_tweets.json') ###Output _____no_output_____ ###Markdown * Train test split: 20% will be in the test set, and 80% in the training set. ###Code # split the data into two pieces, one for training and one for testing ############################################################# test_pos = all_positive_tweets[4000:] train_pos = all_positive_tweets[:4000] test_neg = all_negative_tweets[4000:] train_neg = all_negative_tweets[:4000] train_x = train_pos + train_neg test_x = test_pos + test_neg ###Output _____no_output_____ ###Markdown * Create the numpy array of positive labels and negative labels. ###Code # combine positive and negative labels train_y = np.append(np.ones((len(train_pos), 1)), np.zeros((len(train_neg), 1)), axis=0) test_y = np.append(np.ones((len(test_pos), 1)), np.zeros((len(test_neg), 1)), axis=0) ###Output _____no_output_____ ###Markdown * Create the frequency dictionary using the `build_freqs()` function. ###Code # create frequency dictionary ############################################################# freqs = build_freqs(train_x,train_y) # check the output print("type(freqs) = " + str(type(freqs))) print("len(freqs) = " + str(len(freqs.keys()))) ###Output type(freqs) = <class 'dict'> len(freqs) = 11339 ###Markdown * HERE, The `freqs` dictionary is the frequency dictionary that's being built. * The key is the tuple (word, label), such as ("happy",1) or ("happy",0). The value stored for each key is the count of how many times the word "happy" was associated with a positive label, or how many times "happy" was associated with a negative label. Process tweet ###Code # Example print('This is an example of a positive tweet: \n', train_x[0]) print('\nThis is an example of the processed version of the tweet: \n', process_tweet(train_x[0])) ###Output This is an example of a positive tweet: #FollowFriday @France_Inte @PKuchly57 @Milipol_Paris for being top engaged members in my community this week :) This is an example of the processed version of the tweet: ['followfriday', 'top', 'engag', 'member', 'commun', 'week', ':)'] ###Markdown Logistic regression : Sigmoid$$ h(z) = \frac{1}{1+\exp^{-z}} $$It maps the input 'x' to a value that ranges between 0 and 1, and so it can be treated as a probability. ###Code def sigmoid(z): # calculate the sigmoid of z ############################################################# h = 1/(1+np.exp(-z)) return h ###Output _____no_output_____ ###Markdown Logistic regression: regression and a sigmoidLogistic regression takes a regular linear regression, and applies a sigmoid to the output of the linear regression.Logistic regression$$ h(z) = \frac{1}{1+\exp^{-z}}$$$$z = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + ... \theta_N x_N$$ Update the weights:Gradient Descent$$\nabla_{\theta_j}J(\theta) = \frac{1}{m} \sum_{i=1}^m(h^{(i)}-y^{(i)})x_j $$* To update the weight $\theta_j$, we adjust it by subtracting a fraction of the gradient determined by $\alpha$:$$\theta_j = \theta_j - \alpha \times \nabla_{\theta_j}J(\theta) $$* The learning rate $\alpha$ is a value that we choose to control how big a single update will be. ###Code def gradientDescent(x, y, theta, alpha, num_iters): # get 'm', the number of rows in matrix x m = len(x) for i in range(0, num_iters): # get z, the dot product of x and theta ############################################################# z = np.dot(x,theta) # get the sigmoid of z ############################################################# h = sigmoid(z) # calculate the cost function J = (-1/m)*(y.T @ np.log(h) + (1-y).T @ np.log(1-h)) # update the weights theta ############################################################# grad = (1/m) * np.dot(x.T, h-y) theta -= (alpha * grad) J = float(J) return J, theta ###Output _____no_output_____ ###Markdown Extracting the features* Given a list of tweets, extract the features and store them in a matrix. You will extract two features. * The first feature is the number of positive words in a tweet. * The second feature is the number of negative words in a tweet. * Then train your logistic regression classifier on these features.* Test the classifier on a validation set. ###Code def extract_features(tweet, freqs): ''' Input: tweet: a list of words for one tweet freqs: a dictionary corresponding to the frequencies of each tuple (word, label) Output: x: a feature vector of dimension (1,3) ''' # tokenizes, stems, and removes stopwords ############################################################# word_l = process_tweet(tweet) # 3 elements in the form of a 1 x 3 vector x = np.zeros((1, 3)) #bias term is set to 1 x[0,0] = 1 # loop through each word in the list of words for word in word_l: # increment the word count for the positive label 1 ############################################################# x[0,1] += freqs.get((word,1.0),0) # increment the word count for the negative label 0 ############################################################# x[0,2] += freqs.get((word,0.0),0) assert(x.shape == (1, 3)) return x # Check the function # test 1 # test on training data tmp1 = extract_features(train_x[0], freqs) print(tmp1) # test 2: # check for when the words are not in the freqs dictionary tmp2 = extract_features('Hariom pandya', freqs) print(tmp2) ###Output [[1. 0. 0.]] ###Markdown Training Your ModelTo train the model:* Stack the features for all training examples into a matrix `X`. * Call `gradientDescent` ###Code # collect the features 'x' and stack them into a matrix 'X' X = np.zeros((len(train_x), 3)) for i in range(len(train_x)): X[i, :]= extract_features(train_x[i], freqs) # training labels corresponding to X Y = train_y # Apply gradient descent J, theta = gradientDescent(X, Y, np.zeros((3, 1)), 1e-9, 1500) print(f"The cost after training is {J:.8f}.") ###Output The cost after training is 0.24215613. ###Markdown Test logistic regressionPredict whether a tweet is positive or negative.* Given a tweet, process it, then extract the features.* Apply the model's learned weights on the features to get the logits.* Apply the sigmoid to the logits to get the prediction (a value between 0 and 1).$$y_{pred} = sigmoid(\mathbf{x} \cdot \theta)$$ ###Code def predict_tweet(tweet, freqs, theta): ''' Input: tweet: a string freqs: a dictionary corresponding to the frequencies of each tuple (word, label) theta: (3,1) vector of weights Output: y_pred: the probability of a tweet being positive or negative ''' # extract the features of the tweet and store it into x ############################################################# x = extract_features(tweet,freqs) # make the prediction using x and theta ############################################################# z = np.dot(x,theta) y_pred = sigmoid(z) return y_pred # Run this cell to test your function for tweet in ['I am happy', 'I am bad', 'this movie should have been great.', 'great', 'great great', 'great great great', 'great great great great']: print( '%s -> %f' % (tweet, predict_tweet(tweet, freqs, theta))) ###Output I am happy -> 0.518581 I am bad -> 0.494339 this movie should have been great. -> 0.515331 great -> 0.515464 great great -> 0.530899 great great great -> 0.546275 great great great great -> 0.561562 ###Markdown Check performance using the test set ###Code def test_logistic_regression(test_x, test_y, freqs, theta): """ Input: test_x: a list of tweets test_y: (m, 1) vector with the corresponding labels for the list of tweets freqs: a dictionary with the frequency of each pair (or tuple) theta: weight vector of dimension (3, 1) Output: accuracy: (# of tweets classified correctly) / (total # of tweets) """ # the list for storing predictions y_hat = [] for tweet in test_x: # get the label prediction for the tweet y_pred = predict_tweet(tweet, freqs, theta) if y_pred > 0.5: # append 1.0 to the list y_hat.append(1) else: # append 0 to the list y_hat.append(0) # With the above implementation, y_hat is a list, but test_y is (m,1) array # convert both to one-dimensional arrays in order to compare them using the '==' operator count=0 y_hat=np.array(y_hat) m=len(test_y) print(m) test_y=np.reshape(test_y,m) print(y_hat.shape) print(test_y.shape) accuracy = ((test_y == y_hat).sum())/m return accuracy tmp_accuracy = test_logistic_regression(test_x, test_y, freqs, theta) print(f"Logistic regression model's accuracy = {tmp_accuracy:.4f}") ###Output 2000 (2000,) (2000,) Logistic regression model's accuracy = 0.9950
Jupyter Notebook Examples/Python/HPDS/4) BMI-Age Plot by Gender.ipynb
###Markdown Import the needed libraries ###Code import PicSureHpdsLib import pandas import matplotlib ###Output _____no_output_____ ###Markdown Create an instance of the datasource adapter and get a reference to the data resource ###Code adapter = PicSureHpdsLib.BypassAdapter("http://pic-sure-hpds-nhanes:8080/PIC-SURE") resource = adapter.useResource() ###Output _____no_output_____ ###Markdown Get a listing of all "demographics" entries in the data dictionary. Show what actions can be done with the "demographic_results" object ###Code demographic_entries = resource.dictionary().find("\\demographics\\") demographic_entries.help() ###Output [HELP] PicSureHpdsLib.Client(connection).useResource(uuid).dictionary().find(term) .count() Returns the number of entries in the dictionary that match the given term .keys() Return the keys of the matching entries .entries() Return a list of matching dictionary entries .DataFrame() Return the entries in a Pandas-compatible format [Examples] results = PicSureHpdsLib.Client(connection).useResource(uuid).dictionary().find("asthma") df = results.DataFrame() ###Markdown Examine the demographic_entries results by converting it into a pandas DataFrame ###Code demographic_entries.DataFrame() resource.query().help() resource.query().filter().help() query_male = resource.query() query_male.filter().add("\\demographics\\SEX\\", ["male"]) query_female = resource.query() query_female.filter().add("\\demographics\\SEX\\", ["female"]) field_age = resource.dictionary().find("\\AGE\\") field_BMI = resource.dictionary().find("\\Body Mass Index") query_male.require().add(field_age.keys()) query_male.require().add(field_BMI.keys()) query_female.require().add(field_age.keys()) query_female.require().add(field_BMI.keys()) query_female.show() ###Output .__________[ Query.Select() has NO SELECTIONS ]____________________________________________________________________________________________________________ .__________[ Query.Require() Settings ]_________________________________________________________________________________________ | _key__________________________________________________________________________________________________________________________ | \\demographics\\AGE\\ | | \\examination\\body measures\\Body Mass Index (kg per m**2)\\ | .__________[ Query.Filter() Settings ]_____________________________________________________________________________________________________________________ | _restriction_type_ | _key__________________________________________________________________________________________________________ | _restriction_values_ | categorical | \\demographics\\SEX\\ | ['female'] | ###Markdown Convert the query results for females into a DataFrame and plot it by BMI and Age ###Code df_f = query_female.getResultsDataFrame() plot_f = df_f.plot.scatter(x="\\demographics\\AGE\\", y="\\examination\\body measures\\Body Mass Index (kg per m**2)\\", c="#ffbabb40") # ____ Uncomment if graphs are not displaying ____ #plot_f.plot() #matplotlib.pyplot.show() ###Output _____no_output_____ ###Markdown Convert the query results for males into a DataFrame and plot it by BMI and Age ###Code df_m = query_male.getResultsDataFrame() plot_m = df_m.plot.scatter(x="\\demographics\\AGE\\", y="\\examination\\body measures\\Body Mass Index (kg per m**2)\\", c="#5a7dd040") # ____ Uncomment if graphs are not displaying ____ #plot_m.plot() #matplotlib.pyplot.show() ###Output _____no_output_____ ###Markdown Replot the results using a single DataFrame containing both male and female ###Code d = resource.dictionary() criteria = [] criteria.extend(d.find("\\SEX\\").keys()) criteria.extend(d.find("\\Body Mass Index").keys()) criteria.extend(d.find("\\AGE\\").keys()) query_unified = resource.query() query_unified.require().add(criteria) df_mf = query_unified.getResultsDataFrame() # map a color field for the plot to use sex_colors = {'male':'#5a7dd040', 'female':'#ffbabb40'} df_mf['\\sex_color\\'] = df_mf['\\demographics\\SEX\\'].map(sex_colors) # plot data plot_mf = df_mf.plot.scatter(x="\\demographics\\AGE\\", y="\\examination\\body measures\\Body Mass Index (kg per m**2)\\", c=df_mf['\\sex_color\\']) # ____ Uncomment if graphs are not displaying ____ #plot_mf.plot() #matplotlib.pyplot.show() ###Output _____no_output_____ ###Markdown Replot data but trim outliers ###Code q = df_mf["\\examination\\body measures\\Body Mass Index (kg per m**2)\\"].quantile(0.9999) # create a masked array to remove outliers test = df_mf.mask(df_mf["\\examination\\body measures\\Body Mass Index (kg per m**2)\\"] > q) # plot data plot_mf = test.plot.scatter(x="\\demographics\\AGE\\", y="\\examination\\body measures\\Body Mass Index (kg per m**2)\\", c=df_mf['\\sex_color\\']) # ____ Uncomment if graphs are not displaying ____ #plot_mf.plot() #matplotlib.pyplot.show() ###Output _____no_output_____
Natural Language Processing with Attention Models/Week 4 - Chatbot/C4_W4_Ungraded_Lab_Revnet.ipynb
###Markdown Putting the "Re" in Reformer: Ungraded LabThis ungraded lab will explore Reversible Residual Networks. You will use these networks in this week's assignment that utilizes the Reformer model. It is based on on the Transformer model you already know, but with two unique features.* Locality Sensitive Hashing (LSH) Attention to reduce the compute cost of the dot product attention and* Reversible Residual Networks (RevNets) organization to reduce the storage requirements when doing backpropagation in training.In this ungraded lab we'll start with a quick review of Residual Networks and their implementation in Trax. Then we will discuss the Revnet architecture and its use in Reformer. Outline- [Part 1: Residual Networks](1) - [1.1 Branch](1.1) - [1.2 Residual Model](1.2)- [Part 2: Reversible Residual Networks](2) - [2.1 Trax Reversible Layers](2.1) - [2.2 Residual Model](2.2) ###Code import trax from trax import layers as tl # core building block import numpy as np # regular ol' numpy from trax.models.reformer.reformer import ( ReversibleHalfResidualV2 as ReversibleHalfResidual, ) # unique spot from trax import fastmath # uses jax, offers numpy on steroids from trax import shapes # data signatures: dimensionality and type from trax.fastmath import numpy as jnp # For use in defining new layer types. from trax.shapes import ShapeDtype from trax.shapes import signature ###Output _____no_output_____ ###Markdown Part 1.0 Residual Networks[Deep Residual Networks ](https://arxiv.org/abs/1512.03385) (Resnets) were introduced to improve convergence in deep networks. Residual Networks introduce a shortcut connection around one or more layers in a deep network as shown in the diagram below from the original paper.Figure 1: Residual Network diagram from original paperThe [Trax documentation](https://trax-ml.readthedocs.io/en/latest/notebooks/layers_intro.html2.-Inputs-and-Outputs) describes an implementation of Resnets using `branch`. We'll explore that here by implementing a simple resnet built from simple function based layers. Specifically, we'll build a 4 layer network based on two functions, 'F' and 'G'.Figure 2: 4 stage Residual networkDon't worry about the lengthy equations. Those are simply there to be referenced later in the notebook. Part 1.1 BranchTrax `branch` figures prominently in the residual network layer so we will first examine it. You can see from the figure above that we will need a function that will copy an input and send it down multiple paths. This is accomplished with a [branch layer](https://trax-ml.readthedocs.io/en/latest/trax.layers.htmlmodule-trax.layers.combinators), one of the Trax 'combinators'. Branch is a combinator that applies a list of layers in parallel to copies of inputs. Lets try it out! First we will need some layers to play with. Let's build some from functions. ###Code # simple function taking one input and one output bl_add1 = tl.Fn("add1", lambda x0: (x0 + 1), n_out=1) bl_add2 = tl.Fn("add2", lambda x0: (x0 + 2), n_out=1) bl_add3 = tl.Fn("add3", lambda x0: (x0 + 3), n_out=1) # try them out x = np.array([1]) print(bl_add1(x), bl_add2(x), bl_add3(x)) # some information about our new layers print( "name:", bl_add1.name, "number of inputs:", bl_add1.n_in, "number of outputs:", bl_add1.n_out, ) bl_3add1s = tl.Branch(bl_add1, bl_add2, bl_add3) bl_3add1s ###Output _____no_output_____ ###Markdown Trax uses the concept of a 'stack' to transfer data between layers.For Branch, for each of its layer arguments, it copies the `n_in` inputs from the stack and provides them to the layer, tracking the max_n_in, or the largest n_in required. It then pops the max_n_in elements from the stack.Figure 3: One in, one out BranchOn output, each layer, in succession pushes its results onto the stack. Note that the push/pull operations impact the top of the stack. Elements that are not part of the operation (n, and m in the diagram) remain intact. ###Code # n_in = 1, Each bl_addx pushes n_out = 1 elements onto the stack bl_3add1s(x) # n = np.array([10]); m = np.array([20]) # n, m will remain on the stack n = "n" m = "m" # n, m will remain on the stack bl_3add1s([x, n, m]) ###Output _____no_output_____ ###Markdown Each layer in the input list copies as many inputs from the stack as it needs, and their outputs are successively combined on stack. Put another way, each element of the branch can have differing numbers of inputs and outputs. Let's try a more complex example. ###Code bl_addab = tl.Fn( "addab", lambda x0, x1: (x0 + x1), n_out=1 ) # Trax figures out how many inputs there are bl_rep3x = tl.Fn( "add2x", lambda x0: (x0, x0, x0), n_out=3 ) # but you have to tell it how many outputs there are bl_3ops = tl.Branch(bl_add1, bl_addab, bl_rep3x) ###Output _____no_output_____ ###Markdown In this case, the number if inputs being copied from the stack varies with the layerFigure 4: variable in, variable out BranchThe stack when the operation is finished is 5 entries reflecting the total from each layer. ###Code # Before Running this cell, what is the output you are expecting? y = np.array([3]) bl_3ops([x, y, n, m]) ###Output _____no_output_____ ###Markdown Branch has a special feature to support Residual Network. If an argument is 'None', it will pull the top of stack and push it (at its location in the sequence) onto the output stackFigure 5: Branch for Residual ###Code bl_2ops = tl.Branch(bl_add1, None) bl_2ops([x, n, m]) ###Output _____no_output_____ ###Markdown Part 1.2 Residual ModelOK, your turn. Write a function 'MyResidual', that uses `tl.Branch` and `tl.Add` to build a residual layer. If you are curious about the Trax implementation, you can see the code [here](https://github.com/google/trax/blob/190ec6c3d941d8a9f30422f27ef0c95dc16d2ab1/trax/layers/combinators.py). ###Code def MyResidual(layer): return tl.Serial( ### START CODE HERE ### # tl.----, # tl.----, ### END CODE HERE ### ) # Lets Try it mr = MyResidual(bl_add1) x = np.array([1]) mr([x, n, m]) ###Output _____no_output_____ ###Markdown **Expected Result**(array([3]), 'n', 'm') Great! Now, let's build the 4 layer residual Network in Figure 2. You can use `MyResidual`, or if you prefer, the tl.Residual in Trax, or a combination! ###Code Fl = tl.Fn("F", lambda x0: (2 * x0), n_out=1) Gl = tl.Fn("G", lambda x0: (10 * x0), n_out=1) x1 = np.array([1]) resfg = tl.Serial( ### START CODE HERE ### # None, #Fl # x + F(x) # None, #Gl # x + F(x) + G(x + F(x)) etc # None, #Fl # None, #Gl ### END CODE HERE ### ) # Lets try it resfg([x1, n, m]) ###Output _____no_output_____ ###Markdown **Expected Results**(array([1089]), 'n', 'm') Part 2.0 Reversible Residual NetworksThe Reformer utilized RevNets to reduce the storage requirements for performing backpropagation.Figure 6: Reversible Residual Networks The standard approach on the left above requires one to store the outputs of each stage for use during backprop. By using the organization to the right, one need only store the outputs of the last stage, y1, y2 in the diagram. Using those values and running the algorithm in reverse, one can reproduce the values required for backprop. This trades additional computation for memory space which is at a premium with the current generation of GPU's/TPU's.One thing to note is that the forward functions produced by two networks are similar, but they are not equivalent. Note for example the asymmetry in the output equations after two stages of operation.Figure 7: 'Normal' Residual network (Top) vs REversible Residual Network Part 2.1 Trax Reversible LayersLet's take a look at how this is used in the Reformer. ###Code refm = trax.models.reformer.ReformerLM( vocab_size=33000, n_layers=2, mode="train" # Add more options. ) refm ###Output _____no_output_____ ###Markdown Eliminating some of the detail, we can see the structure of the network.Figure 8: Key Structure of Reformer Reversible Network Layers in Trax We'll review the Trax layers used to implement the Reversible section of the Reformer. First we can note that not all of the reformer is reversible. Only the section in the ReversibleSerial layer is reversible. In a large Reformer model, that section is repeated many times making up the majority of the model.Figure 9: Functional Diagram of Trax elements in Reformer The implementation starts by duplicating the input to allow the two paths that are part of the reversible residual organization with [Dup](https://github.com/google/trax/blob/190ec6c3d941d8a9f30422f27ef0c95dc16d2ab1/trax/layers/combinators.pyL666). Note that this is accomplished by copying the top of stack and pushing two copies of it onto the stack. This then feeds into the ReversibleHalfResidual layer which we'll review in more detail below. This is followed by [ReversibleSwap](https://github.com/google/trax/blob/190ec6c3d941d8a9f30422f27ef0c95dc16d2ab1/trax/layers/reversible.pyL83). As the name implies, this performs a swap, in this case, the two topmost entries in the stack. This pattern is repeated until we reach the end of the ReversibleSerial section. At that point, the topmost 2 entries of the stack represent the two paths through the network. These are concatenated and pushed onto the stack. The result is an entry that is twice the size of the non-reversible version.Let's look more closely at the [ReversibleHalfResidual](https://github.com/google/trax/blob/190ec6c3d941d8a9f30422f27ef0c95dc16d2ab1/trax/layers/reversible.pyL154). This layer is responsible for executing the layer or layers provided as arguments and adding the output of those layers, the 'residual', to the top of the stack. Below is the 'forward' routine which implements this.Figure 10: ReversibleHalfResidual code and diagram Unlike the previous residual function, the value that is added is from the second path rather than the input to the set of sublayers in this layer. Note that the Layers called by the ReversibleHalfResidual forward function are not modified to support reverse functionality. This layer provides them a 'normal' view of the stack and takes care of reverse operation.Let's try out some of these layers! We'll start with the ones that just operate on the stack, Dup() and Swap(). ###Code x1 = np.array([1]) x2 = np.array([5]) # Dup() duplicates the Top of Stack and returns the stack dl = tl.Dup() dl(x1) # ReversibleSwap() duplicates the Top of Stack and returns the stack sl = tl.ReversibleSwap() sl([x1, x2]) ###Output _____no_output_____ ###Markdown You are no doubt wondering "How is ReversibleSwap different from Swap?". Good question! Lets look:Figure 11: Two versions of Swap() The ReverseXYZ functions include a "reverse" compliment to their "forward" function that provides the functionality to run in reverse when doing backpropagation. It can also be run in reverse by simply calling 'reverse'. ###Code # Demonstrate reverse swap print(x1, x2, sl.reverse([x1, x2])) ###Output _____no_output_____ ###Markdown Let's try ReversibleHalfResidual, First we'll need some layers.. ###Code Fl = tl.Fn("F", lambda x0: (2 * x0), n_out=1) Gl = tl.Fn("G", lambda x0: (10 * x0), n_out=1) ###Output _____no_output_____ ###Markdown Just a note about ReversibleHalfResidual. As this is written, it resides in the Reformer model and is a layer. It is invoked a bit differently that other layers. Rather than tl.XYZ, it is just ReversibleHalfResidual(layers..) as shown below. This may change in the future. ###Code half_res_F = ReversibleHalfResidual(Fl) print(type(half_res_F), "\n", half_res_F) half_res_F([x1, x1]) # this is going to produce an error - why? # we have to initialize the ReversibleHalfResidual layer to let it know what the input is going to look like half_res_F.init(shapes.signature([x1, x1])) half_res_F([x1, x1]) ###Output _____no_output_____ ###Markdown Notice the output: (DeviceArray([3], dtype=int32), array([1])). The first value, (DeviceArray([3], dtype=int32) is the output of the "Fl" layer and has been converted to a 'Jax' DeviceArray. The second array([1]) is just passed through (recall the diagram of ReversibleHalfResidual above). The final layer we need is the ReversibleSerial Layer. This is the reversible equivalent of the Serial layer and is used in the same manner to build a sequence of layers. Part 2.2 Build a reversible modelWe now have all the layers we need to build the model shown below. Let's build it in two parts. First we'll build 'blk' and then a list of blk's. And then 'mod'. Figure 12: Reversible Model we will build using Trax components ###Code blk = [ # a list of the 4 layers shown above ### START CODE HERE ### None, None, None, None, ] blks = [None, None] ### END CODE HERE ### mod = tl.Serial( ### START CODE HERE ### None, None, None, ### END CODE HERE ### ) mod ###Output _____no_output_____ ###Markdown **Expected Output**```Serial[ Dup_out2 ReversibleSerial_in2_out2[ ReversibleHalfResidualV2_in2_out2[ Serial[ F ] ] ReversibleSwap_in2_out2 ReversibleHalfResidualV2_in2_out2[ Serial[ G ] ] ReversibleSwap_in2_out2 ReversibleHalfResidualV2_in2_out2[ Serial[ F ] ] ReversibleSwap_in2_out2 ReversibleHalfResidualV2_in2_out2[ Serial[ G ] ] ReversibleSwap_in2_out2 ] Concatenate_in2]``` ###Code mod.init(shapes.signature(x1)) out = mod(x1) out ###Output _____no_output_____
notebooks/4_ica_dimensionality.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;Load Data2&nbsp;&nbsp;Compare dimensionalities3&nbsp;&nbsp;Find "single-gene" iModulons4&nbsp;&nbsp;Plot Components ###Code from pymodulon.core import IcaData import os import pandas as pd import matplotlib.pyplot as plt from scipy import stats import numpy as np from tqdm.notebook import tqdm # Directory containing ICA outputs DATA_DIR = '../data/interim/ica_runs' ###Output _____no_output_____ ###Markdown Load Data ###Code def load_M(dim): return pd.read_csv(os.path.join(DATA_DIR,str(dim),'S.csv'),index_col=0) def load_A(dim): return pd.read_csv(os.path.join(DATA_DIR,str(dim),'A.csv'),index_col=0) dims = sorted([int(x) for x in os.listdir(DATA_DIR)]) M_data = [load_M(dim) for dim in dims] A_data = [load_A(dim) for dim in dims] n_components = [m.shape[1] for m in M_data] ###Output _____no_output_____ ###Markdown Compare dimensionalities ###Code final_m = M_data[-1] thresh = 0.7 n_final_mods = [] for m in tqdm(M_data): corrs = pd.DataFrame(index=final_m.columns,columns=m.columns) for col1 in final_m.columns: for col2 in m.columns: corrs.loc[col1,col2] = abs(stats.pearsonr(final_m[col1],m[col2])[0]) n_final_mods.append(len(np.where(corrs > thresh)[0])) ###Output _____no_output_____ ###Markdown Find "single-gene" iModulonsAt a high enough dimensionality, some iModulons track the expression trajectory of a single iModulon ###Code n_single_genes = [] for m in tqdm(M_data): counter = 0 for col in m.columns: sorted_genes = abs(m[col]).sort_values(ascending=False) if sorted_genes.iloc[0] > 2 * sorted_genes.iloc[1]: counter += 1 n_single_genes.append(counter) ###Output _____no_output_____ ###Markdown Plot Components ###Code non_single_components = np.array(n_components) - np.array(n_single_genes) DF_stats = pd.DataFrame([n_components,n_final_mods,non_single_components,n_single_genes], index=['Robust Components','Final Components','Multi-gene Components', 'Single Gene Components'], columns=dims).T DF_stats.sort_index(inplace=True) dimensionality = DF_stats[DF_stats['Final Components'] >= DF_stats['Multi-gene Components']].iloc[0].name print('Optimal Dimensionality:',dimensionality) plt.plot(dims,n_components,label='Robust Components') plt.plot(dims,n_final_mods,label='Final Components') plt.plot(dims,non_single_components,label='Non-single-gene Components') plt.plot(dims,n_single_genes,label='Single Gene Components') plt.vlines(dimensionality,0,max(n_components),linestyle='dashed') plt.xlabel('Dimensionality') plt.ylabel('# Components') plt.legend(bbox_to_anchor=(1,1)) DF_stats ###Output _____no_output_____ ###Markdown Table of Contents1&nbsp;&nbsp;Load Data2&nbsp;&nbsp;Compare dimensionalities3&nbsp;&nbsp;Find "single-gene" iModulons4&nbsp;&nbsp;Plot Components ###Code from pymodulon.core import IcaData import os import pandas as pd import matplotlib.pyplot as plt from scipy import stats import numpy as np from tqdm.notebook import tqdm # Directory containing ICA outputs DATA_DIR = '../data/ica_runs' ###Output _____no_output_____ ###Markdown Load Data ###Code def load_M(dim): return pd.read_csv(os.path.join(DATA_DIR,str(dim),'S.csv'),index_col=0) def load_A(dim): return pd.read_csv(os.path.join(DATA_DIR,str(dim),'A.csv'),index_col=0) dims = sorted([int(x) for x in os.listdir(DATA_DIR) if x != '.DS_Store']) M_data = [load_M(dim) for dim in dims] A_data = [load_A(dim) for dim in dims] n_components = [m.shape[1] for m in M_data] ###Output _____no_output_____ ###Markdown Compare dimensionalities ###Code final_m = M_data[-1] thresh = 0.7 n_final_mods = [] for m in tqdm(M_data): corrs = pd.DataFrame(index=final_m.columns,columns=m.columns) for col1 in final_m.columns: for col2 in m.columns: corrs.loc[col1,col2] = abs(stats.pearsonr(final_m[col1],m[col2])[0]) n_final_mods.append(len(np.where(corrs > thresh)[0])) ###Output _____no_output_____ ###Markdown Find "single-gene" iModulonsAt a high enough dimensionality, some iModulons track the expression trajectory of a single iModulon ###Code n_single_genes = [] for m in tqdm(M_data): counter = 0 for col in m.columns: sorted_genes = abs(m[col]).sort_values(ascending=False) if sorted_genes.iloc[0] > 2 * sorted_genes.iloc[1]: counter += 1 n_single_genes.append(counter) ###Output _____no_output_____ ###Markdown Plot Components ###Code non_single_components = np.array(n_components) - np.array(n_single_genes) DF_stats = pd.DataFrame([n_components,n_final_mods,non_single_components,n_single_genes], index=['Robust Components','Final Components','Multi-gene Components', 'Single Gene Components'], columns=dims).T DF_stats.sort_index(inplace=True) dimensionality = DF_stats[DF_stats['Final Components'] >= DF_stats['Multi-gene Components']].iloc[0].name print('Optimal Dimensionality:',dimensionality) plt.plot(dims,n_components,label='Robust Components') plt.plot(dims,n_final_mods,label='Final Components') plt.plot(dims,non_single_components,label='Non-single-gene Components') plt.plot(dims,n_single_genes,label='Single Gene Components') plt.vlines(dimensionality,0,max(n_components),linestyle='dashed') plt.xlabel('Dimensionality') plt.ylabel('# Components') plt.legend(bbox_to_anchor=(1,1)) plt.savefig('../data/figures/dimensionality.svg') ###Output _____no_output_____
2019/lecture-code/lecture 8 - Multiple Comparisons.ipynb
###Markdown Lecture 8: p-hacking and Multiple Comparisons[J. Nathan Matias](https://github.com/natematias)[SOC412](https://natematias.com/courses/soc412/), February 2019In Lecture 8, we discussed Stephanie Lee's story about [Brian Wansink](https://www.buzzfeednews.com/article/stephaniemlee/brian-wansink-cornell-p-hacking.btypwrDwe5), a food researcher who was found guilty of multiple kinds of research misconduct, including "p-hacking," where researchers keep looking for an answer until they find one. In this lecture, we will discuss what p-hacking is and what researchers can do to protect against it in our own work. This example uses the [DeclareDesign](http://declaredesign.org/) library, which supports the simulation and evaluation of experiment designs. We will be using DeclareDesign to help with designing experiments in this class.What can you do in your research to protect yourself against the risk of p-hacking or against reductions in the credibility of your research if people accuse you of p-hacking?* Conduct a **power analysis** to choose a sample size that is large enough to observe the effect you're looking for (see below)* If you have multiple statistical tests in each experiment, [adjust your analysis for multiple comparisons](https://egap.org/methods-guides/10-things-you-need-know-about-multiple-comparisons).* [Pre-register](https://cos.io/prereg/) your study, being clear about whether your research is exploratory or confirmatory, and committing in advance to the statistical tests you're using to analyze the results* Use cross-validation with training and holdout samples to take an exploratory + confirmatory approach (requires a much larger sample size, typically greater than 2x) Load Libraries ###Code options("scipen"=9, "digits"=4) library(dplyr) library(MASS) library(ggplot2) library(rlang) library(corrplot) library(Hmisc) library(tidyverse) library(viridis) library(fabricatr) library(DeclareDesign) ## Installed DeclareDesign 0.13 using the following command: # install.packages("DeclareDesign", dependencies = TRUE, # repos = c("http://R.declaredesign.org", "https://cloud.r-project.org")) options(repr.plot.width=7, repr.plot.height=4) set.seed(03456920) sessionInfo() ###Output _____no_output_____ ###Markdown What is a p-value? A p-value (which can be calculated differently for different kinds of statistical tests) is an estimate of the probability of rejecting a null hypothesis. When testing differences in means, we are usually testing the null hypothesis of no difference between the two distributions. In those cases, the p-value is the probability of observing a difference between the distributions that is at least as extreme as the one observed.You can think of the p-value as the probability represented by the area under the following t distribution of all of the possible outcomes for a given difference between means if the null hypothesis is true:![title](images/null-hypothesis-test.png) Illustrating The Null HypothesisIn the following case, I generate 100 sets of normal distributions with exactly the same mean and standard deviation, and then plot the differences between those means: ###Code ### GENERATE n.samples simulations at n.sample.size observations ### using normal distributions at the specified means ### and record the difference in means and the p value of the observations # # `@diff.df: the dataframe to pass in # `@n.sample.size: the sample sizes to draw from a normal distribution generate.n.samples <- function(diff.df, n.sample.size = 500){ for(i in seq(nrow(diff.df))){ row = diff.df[i,] a.dist = rnorm(n.sample.size, mean = row$a.mean, sd = row$a.sd) b.dist = rnorm(n.sample.size, mean = row$b.mean, sd = row$a.sd) t <- t.test(a.dist, b.dist) diff.df[i,]$p.value <- t$p.value diff.df[i,]$mean.diff <- mean(b.dist) - mean(a.dist) } diff.df } #expand.grid n.samples = 1000 null.hypothesis.df = data.frame(a.mean = 1, a.sd = 1, b.mean = 1, b.sd = 1, id=seq(n.samples), mean.diff = NA, p.value = NA) null.hypothesis.df <- generate.n.samples(null.hypothesis.df, 200) ggplot(null.hypothesis.df, aes(mean.diff)) + geom_histogram(binwidth=0.01) + xlim(-1.2,1.2) + ggtitle("Simulated Differences in means under the null hypothesis") ggplot(null.hypothesis.df, aes(mean.diff, p.value, color=factor(p.value < 0.05))) + geom_point() + geom_hline(yintercept = 0.05) + ggtitle("Simulated p values under the null hypothesis") print("How often is the p-value < 0.05?") summary(null.hypothesis.df$p.value > 0.05) ###Output [1] "How often is the p-value < 0.05?" ###Markdown Illustrating A Difference in Means (first with a small sample size) ###Code #expand.grid small.sample.diff.df = data.frame(a.mean = 1, a.sd = 1, b.mean = 1.2, b.sd = 1, id=seq(n.samples), mean.diff = NA, p.value = NA) small.sample.diff.df <- generate.n.samples(small.sample.diff.df, 20) ggplot(small.sample.diff.df, aes(mean.diff)) + geom_histogram(binwidth=0.01) + xlim(-1.2,1.2) + ggtitle("Simulated Differences in means under the a diff in means of 1 (n=20)") ggplot(small.sample.diff.df, aes(mean.diff, p.value, color=factor(p.value < 0.05))) + geom_point() + geom_hline(yintercept = 0.05) + ggtitle("Simulated p values under a diff in means of 0.2 (n = 20)") print("How often is the p-value < 0.05?") summary(small.sample.diff.df$p.value > 0.05) print("How often is the p-value < 0.05? when the estimate is < 0 (false positive)?") nrow(subset(small.sample.diff.df, mean.diff<0 &p.value < 0.05)) print("How often is the p-value >= 0.05 when the estimate is 0.2 or greater (false negative)?") print(sprintf("%1.2f precent", nrow(subset(small.sample.diff.df, mean.diff>=0.2 &p.value >= 0.05)) / nrow(small.sample.diff.df)*100)) print("What is the smallest positive, statistically-significant result?") sprintf("%1.2f, which is greater than the true difference of 0.2", min(subset(small.sample.diff.df, mean.diff>0 & p.value < 0.05)$mean.diff)) print("If we only published statistically-significant results, what we would we think the true effect would be?") sprintf("%1.2f, which is greater than the true difference of 0.2", mean(subset(small.sample.diff.df, p.value < 0.05)$mean.diff)) print("If we published all experiment results, what we would we think the true effect would be?") sprintf("%1.2f, which is very close to the true difference of 0.2", mean(small.sample.diff.df$mean.diff)) ###Output [1] "If we published all experiment results, what we would we think the true effect would be?" ###Markdown Illustrating A Difference in Means (with a larger sample size) ###Code #expand.grid larger.sample.diff.df = data.frame(a.mean = 1, a.sd = 1, b.mean = 1.2, b.sd = 1, id=seq(n.samples), mean.diff = NA, p.value = NA) larger.sample.diff.df <- generate.n.samples(larger.sample.diff.df, 200) ggplot(larger.sample.diff.df, aes(mean.diff)) + geom_histogram(binwidth=0.01) + xlim(-1.2,1.2) + ggtitle("Simulated Differences in means under the a diff in means of 1 (n=200)") ggplot(larger.sample.diff.df, aes(mean.diff, p.value, color=factor(p.value < 0.05))) + geom_point() + geom_hline(yintercept = 0.05) + ggtitle("Simulated p values under a diff in means of 0.2 (n = 200)") print("If we only published statistically-significant results, what we would we think the true effect would be?") sprintf("%1.2f, which is greater than the true difference of 0.2", mean(subset(larger.sample.diff.df, p.value < 0.05)$mean.diff)) print("How often is the p-value < 0.05?") sprintf("%1.2f percent", nrow(subset(larger.sample.diff.df,p.value < 0.05)) / nrow(larger.sample.diff.df)*100) ###Output [1] "How often is the p-value < 0.05?" ###Markdown Illustrating a Difference in Means (with an adequately large sample size) ###Code adequate.sample.diff.df = data.frame(a.mean = 1, a.sd = 1, b.mean = 1.2, b.sd = 1, id=seq(n.samples), mean.diff = NA, p.value = NA) adequate.sample.diff.df <- generate.n.samples(larger.sample.diff.df, 400) ggplot(adequate.sample.diff.df, aes(mean.diff, p.value, color=factor(p.value < 0.05))) + geom_point() + geom_hline(yintercept = 0.05) + ggtitle("Simulated p values under a diff in means of 0.2 (n = 400)") print("How often is the p-value < 0.05?") sprintf("%1.2f percent", nrow(subset(adequate.sample.diff.df,p.value < 0.05)) / nrow(adequate.sample.diff.df)*100) print("If we only published statistically-significant results, what we would we think the true effect would be?") sprintf("%1.2f, which is greater than the true difference of 0.2", mean(subset(adequate.sample.diff.df, p.value < 0.05)$mean.diff)) ###Output [1] "If we only published statistically-significant results, what we would we think the true effect would be?" ###Markdown The Problem of Multiple ComparisonsIn the above example, I demonstrated that across 100 samples under the null hypothesis and a decision rule of p = 0.05, roughly 5% of the results are statistically significant. This is similarly true for a single experiment with multiple outcome variables. ###Code ## Generate n normally distributed outcome variables with no difference on average # #` @num.samples: sample size for the dataframe #` @num.columns: how many outcome variables to observe #` @common.mean: the mean of the outcomes #` @common.sd: the standard deviation of the outcomes generate.n.outcomes.null <- function( num.samples, num.columns, common.mean, common.sd){ df <- data.frame(id = seq(num.samples)) for(i in seq(num.columns)){ df[paste('row.',i,sep="")] <- rnorm(num.samples, mean=common.mean, sd=common.sd) } df } ###Output _____no_output_____ ###Markdown With 10 outcome variables, if we look for correlations between every outcomes, we expect to see 5% false positives on average under the null hypothesis. ###Code set.seed(487) ## generate the data null.10.obs <- generate.n.outcomes.null(100, 10, 1, 3) null.10.obs$id <- NULL null.correlations <- cor(null.10.obs, method="pearson") null.pvalues <- cor.mtest(null.10.obs, conf.level = 0.95, method="pearson")$p corrplot(cor(null.10.obs, method="pearson"), sig.level = 0.05, p.mat = null.pvalues) ###Output _____no_output_____ ###Markdown With multiple comparisons, increasing the sample size does not make the problem go away. Here, we use a sample of 10000 instead of 100 ###Code null.10.obs.large <- generate.n.outcomes.null(10000, 10, 1, 3) null.10.obs.large$id <- NULL null.correlations <- cor(null.10.obs.large, method="pearson") null.pvalues <- cor.mtest(null.10.obs.large, conf.level = 0.95, method="pearson")$p corrplot(cor(null.10.obs.large, method="pearson"), sig.level = 0.05, p.mat = null.pvalues) ###Output _____no_output_____ ###Markdown Power AnalysisA power analysis is a process for deciding what sample size to use based on the chance of observing the minimum effect you are looking for in your study. This power analysis uses [DeclareDesign](http://declaredesign.org/). Another option is the [egap Power Analysis page.](https://egap.org/content/power-analysis-simulations-r)(we will discuss this in further detail in a subsequent class) ###Code mean.a <- 0 effect.b <- 0.1 sample.size <- 500 design <- declare_population( N = sample.size ) + declare_potential_outcomes( YA_Z_0 = rnorm(n=N, mean = mean.a, sd=1), YA_Z_1 = rnorm(n=N, mean = mean.a + effect.b, sd=1) ) + declare_assignment(num_arms = 2, conditions = (c("0", "1"))) + declare_estimand(ate_YA_1_0 = effect.b) + declare_reveal(outcome_variables = c("YA")) + declare_estimator(YA ~ Z, estimand="ate_YA_1_0") design diagnose_design(design, sims=500, bootstrap_sims=500) ###Output _____no_output_____
ML1 - Scikit Learn Methods (Complete).ipynb
###Markdown ClassificationWe'll take a tour of the methods for classification in sklearn. First let's load a toy dataset to use: ###Code from sklearn.datasets import load_breast_cancer breast = load_breast_cancer() ###Output _____no_output_____ ###Markdown Let's take a look ###Code # Convert it to a dataframe for better visuals df = pd.DataFrame(breast.data) df.columns = breast.feature_names df ###Output _____no_output_____ ###Markdown And now look at the targets ###Code print(breast.target_names) breast.target ###Output ['malignant' 'benign'] ###Markdown Classification Trees Using the scikit learn models is basically the same as in Julia's ScikitLearn.jl ###Code from sklearn.tree import DecisionTreeClassifier cart = DecisionTreeClassifier(max_depth=2, min_samples_leaf=140) cart.fit(breast.data, breast.target) ###Output _____no_output_____ ###Markdown Here's a helper function to plot the trees. Installing Graphviz (tedious) Windows1. Download graphviz from https://graphviz.gitlab.io/_pages/Download/Download_windows.html2. Install it by running the .msi file3. Set the pat variable: (a) Go to Control Panel > System and Security > System > Advanced System Settings > Environment Variables > Path > Edit (b) Add 'C:\Program Files (x86)\Graphviz2.38\bin'4. Run `conda install graphviz`5. Run `conda install python-graphviz` macOS and Linux1. Run `brew install graphviz` (install `brew` from https://docs.brew.sh/Installation if you don't have it)2. Run `conda install graphviz`3. Run `conda install python-graphviz` ###Code import graphviz import sklearn.tree def visualize_tree(sktree): dot_data = sklearn.tree.export_graphviz(sktree, out_file=None, filled=True, rounded=True, special_characters=False, feature_names=df.columns) return graphviz.Source(dot_data) visualize_tree(cart) ###Output _____no_output_____ ###Markdown We can get the label predictions with the `.predict` method ###Code labels = cart.predict(breast.data) labels ###Output _____no_output_____ ###Markdown And similarly the predicted probabilities with `.predict_proba` ###Code probs = cart.predict_proba(breast.data) probs ###Output _____no_output_____ ###Markdown Just like in Julia, the probabilities are returned for each class ###Code probs.shape ###Output _____no_output_____ ###Markdown We can extract the second column of the probs by slicing, just like how we did it in Julia ###Code probs = cart.predict_proba(breast.data)[:,1] probs ###Output _____no_output_____ ###Markdown To evaluate the model, we can use functions from `sklearn.metrics` ###Code from sklearn.metrics import roc_auc_score, accuracy_score, confusion_matrix roc_auc_score(breast.target, probs) accuracy_score(breast.target, labels) confusion_matrix(breast.target, labels) from lazypredict.Supervised import LazyClassifier from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split data = load_breast_cancer() X = data.data y= data.target X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123) clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None) models,predictions = clf.fit(X_train, X_test, y_train, y_test) models ###Output C:\Users\omars\AppData\Roaming\Python\Python37\site-packages\sklearn\utils\deprecation.py:143: FutureWarning: The sklearn.utils.testing module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.utils. Anything that cannot be imported from sklearn.utils is now part of the private API. warnings.warn(message, FutureWarning) 100%|██████████████████████████████████████████████████████████████████████████████████| 30/30 [00:03<00:00, 8.91it/s] ###Markdown Random Forests and BoostingWe use random forests and boosting in the same way as CART ###Code from sklearn.ensemble import RandomForestClassifier forest = RandomForestClassifier(n_estimators=100) forest.fit(breast.data, breast.target) labels = forest.predict(breast.data) probs = forest.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) from sklearn.ensemble import GradientBoostingClassifier boost = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) boost.fit(breast.data, breast.target) labels = boost.predict(breast.data) probs = boost.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) #!pip install xgboost from xgboost import XGBClassifier boost2 = XGBClassifier() boost2.fit(breast.data, breast.target) labels = boost2.predict(breast.data) probs = boost2.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) ###Output 1.0 1.0 ###Markdown Neural Networks ###Code from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(max_iter=1000) mlp.fit(breast.data, breast.target) labels = mlp.predict(breast.data) probs = mlp.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline # load dataset X = breast.data Y = breast.target # convert integers to dummy variables (i.e. one hot encoded) dummy_y = np_utils.to_categorical(Y) # define baseline model def baseline_model(): # create model model = Sequential() model.add(Dense(8, input_dim=30, activation='relu')) model.add(Dense(2, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model estimator = KerasClassifier(build_fn=baseline_model, epochs=10, batch_size=16, verbose=1) kfold = KFold(n_splits=5, shuffle=True) results = cross_val_score(estimator, X, dummy_y, cv=kfold) print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100)) ###Output Epoch 1/10 29/29 [==============================] - 0s 6ms/step - loss: 36.4088 - accuracy: 0.3516 Epoch 2/10 29/29 [==============================] - 0s 3ms/step - loss: 17.8082 - accuracy: 0.3758 Epoch 3/10 29/29 [==============================] - 0s 4ms/step - loss: 15.4570 - accuracy: 0.4352 Epoch 4/10 29/29 [==============================] - 0s 4ms/step - loss: 12.8511 - accuracy: 0.4769 Epoch 5/10 29/29 [==============================] - 0s 4ms/step - loss: 10.6894 - accuracy: 0.5319 Epoch 6/10 29/29 [==============================] - 0s 5ms/step - loss: 9.3079 - accuracy: 0.5670 Epoch 7/10 29/29 [==============================] - 0s 4ms/step - loss: 8.3241 - accuracy: 0.5824 Epoch 8/10 29/29 [==============================] - 0s 5ms/step - loss: 7.3370 - accuracy: 0.6264 Epoch 9/10 29/29 [==============================] - 0s 4ms/step - loss: 6.6161 - accuracy: 0.6154 Epoch 10/10 29/29 [==============================] - 0s 4ms/step - loss: 5.6886 - accuracy: 0.6374 8/8 [==============================] - 0s 2ms/step - loss: 5.7604 - accuracy: 0.6491 Epoch 1/10 29/29 [==============================] - 0s 5ms/step - loss: 25.0130 - accuracy: 0.4593 Epoch 2/10 29/29 [==============================] - 0s 5ms/step - loss: 9.2743 - accuracy: 0.2923 Epoch 3/10 29/29 [==============================] - 0s 5ms/step - loss: 6.6822 - accuracy: 0.3385 Epoch 4/10 29/29 [==============================] - 0s 4ms/step - loss: 4.5664 - accuracy: 0.4198 Epoch 5/10 29/29 [==============================] - 0s 5ms/step - loss: 3.2452 - accuracy: 0.5253 Epoch 6/10 29/29 [==============================] - 0s 5ms/step - loss: 2.2986 - accuracy: 0.6000 Epoch 7/10 29/29 [==============================] - 0s 4ms/step - loss: 1.7611 - accuracy: 0.6923 Epoch 8/10 29/29 [==============================] - 0s 5ms/step - loss: 1.3770 - accuracy: 0.7231 Epoch 9/10 29/29 [==============================] - 0s 5ms/step - loss: 1.2754 - accuracy: 0.7407 Epoch 10/10 29/29 [==============================] - 0s 5ms/step - loss: 1.1074 - accuracy: 0.7912 8/8 [==============================] - 0s 1ms/step - loss: 0.8304 - accuracy: 0.7544 Epoch 1/10 29/29 [==============================] - 0s 2ms/step - loss: 19.6493 - accuracy: 0.5560 Epoch 2/10 29/29 [==============================] - 0s 4ms/step - loss: 2.1954 - accuracy: 0.9033 Epoch 3/10 29/29 [==============================] - 0s 4ms/step - loss: 1.7177 - accuracy: 0.8593 Epoch 4/10 29/29 [==============================] - 0s 4ms/step - loss: 1.5284 - accuracy: 0.8901 Epoch 5/10 29/29 [==============================] - 0s 3ms/step - loss: 1.5605 - accuracy: 0.9033 Epoch 6/10 29/29 [==============================] - 0s 3ms/step - loss: 1.4026 - accuracy: 0.8901 Epoch 7/10 29/29 [==============================] - 0s 3ms/step - loss: 1.3803 - accuracy: 0.8923: 0s - loss: 1.4837 - accuracy: 0.89 Epoch 8/10 29/29 [==============================] - 0s 3ms/step - loss: 1.2817 - accuracy: 0.9011 Epoch 9/10 29/29 [==============================] - 0s 3ms/step - loss: 1.4488 - accuracy: 0.8835 Epoch 10/10 29/29 [==============================] - 0s 2ms/step - loss: 1.2524 - accuracy: 0.8923 8/8 [==============================] - 0s 2ms/step - loss: 1.6985 - accuracy: 0.8684 Epoch 1/10 29/29 [==============================] - 0s 1ms/step - loss: 69.7143 - accuracy: 0.3714 Epoch 2/10 29/29 [==============================] - 0s 3ms/step - loss: 25.4033 - accuracy: 0.3912 Epoch 3/10 29/29 [==============================] - 0s 3ms/step - loss: 2.2258 - accuracy: 0.8725 Epoch 4/10 29/29 [==============================] - 0s 3ms/step - loss: 1.8741 - accuracy: 0.8637 Epoch 5/10 29/29 [==============================] - 0s 3ms/step - loss: 1.7284 - accuracy: 0.8813 Epoch 6/10 29/29 [==============================] - 0s 3ms/step - loss: 1.7166 - accuracy: 0.8747 Epoch 7/10 29/29 [==============================] - 0s 2ms/step - loss: 1.6775 - accuracy: 0.8923 Epoch 8/10 29/29 [==============================] - 0s 3ms/step - loss: 1.6431 - accuracy: 0.8923 Epoch 9/10 29/29 [==============================] - 0s 2ms/step - loss: 1.6271 - accuracy: 0.8703 Epoch 10/10 29/29 [==============================] - 0s 2ms/step - loss: 1.5868 - accuracy: 0.8879 8/8 [==============================] - 0s 2ms/step - loss: 1.1058 - accuracy: 0.8684 Epoch 1/10 29/29 [==============================] - 0s 2ms/step - loss: 9.9503 - accuracy: 0.3838 Epoch 2/10 29/29 [==============================] - 0s 2ms/step - loss: 6.8765 - accuracy: 0.3816 Epoch 3/10 29/29 [==============================] - 0s 2ms/step - loss: 5.1510 - accuracy: 0.4561 Epoch 4/10 29/29 [==============================] - 0s 3ms/step - loss: 3.8095 - accuracy: 0.5592 Epoch 5/10 29/29 [==============================] - 0s 3ms/step - loss: 3.1159 - accuracy: 0.6623 Epoch 6/10 29/29 [==============================] - 0s 2ms/step - loss: 2.6108 - accuracy: 0.6820 Epoch 7/10 29/29 [==============================] - 0s 3ms/step - loss: 2.1609 - accuracy: 0.7259 Epoch 8/10 29/29 [==============================] - 0s 2ms/step - loss: 1.9964 - accuracy: 0.7456 Epoch 9/10 29/29 [==============================] - 0s 2ms/step - loss: 1.7422 - accuracy: 0.7763 Epoch 10/10 29/29 [==============================] - 0s 2ms/step - loss: 1.6857 - accuracy: 0.7500 8/8 [==============================] - 0s 5ms/step - loss: 1.4334 - accuracy: 0.8319 Baseline: 79.44% (8.37%) ###Markdown Logistic RegressionWe can also access logistic regression from sklearn ###Code from sklearn.linear_model import LogisticRegression logit = LogisticRegression(solver='liblinear') logit.fit(breast.data, breast.target) labels = logit.predict(breast.data) probs = logit.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) ###Output 0.9945298874266688 0.9578207381370826 ###Markdown The sklearn implementation has options for regularization in logistic regression. You can choose between L1 and L2 regularization:![](http://scikit-learn.org/stable/_images/math/6a0bcf21baaeb0c2b879ab74fe333c0aab0d6ae6.png)![](http://scikit-learn.org/stable/_images/math/760c999ccbc78b72d2a91186ba55ce37f0d2cf37.png)Note that this regularization is adhoc and **not equivalent to robustness**. For a robust logistic regression, follow the approach from 15.680.You control the regularization with the `penalty` and `C` hyperparameters. We can see that our model above used L2 regularization with $C=1$. ExerciseTry out unregularized logistic regression as well as L1 regularization. Which of the three options seems best? What if you try changing $C$? ###Code # No regularization logit = LogisticRegression(C=1e10, solver='liblinear') logit.fit(breast.data, breast.target) labels = logit.predict(breast.data) probs = logit.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) # L1 regularization logit = LogisticRegression(C=100, penalty='l1', solver='liblinear') logit.fit(breast.data, breast.target) labels = logit.predict(breast.data) probs = logit.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) ###Output 0.9985201627820939 0.9876977152899824 ###Markdown RegressionNow let's take a look at regression in sklearn. Again we can start by loading up a dataset. ###Code from sklearn.datasets import load_boston boston = load_boston() print(boston.DESCR) ###Output .. _boston_dataset: Boston house prices dataset --------------------------- **Data Set Characteristics:** :Number of Instances: 506 :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target. :Attribute Information (in order): - CRIM per capita crime rate by town - ZN proportion of residential land zoned for lots over 25,000 sq.ft. - INDUS proportion of non-retail business acres per town - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) - NOX nitric oxides concentration (parts per 10 million) - RM average number of rooms per dwelling - AGE proportion of owner-occupied units built prior to 1940 - DIS weighted distances to five Boston employment centres - RAD index of accessibility to radial highways - TAX full-value property-tax rate per $10,000 - PTRATIO pupil-teacher ratio by town - B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town - LSTAT % lower status of the population - MEDV Median value of owner-occupied homes in $1000's :Missing Attribute Values: None :Creator: Harrison, D. and Rubinfeld, D.L. This is a copy of UCI ML housing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University. The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter. The Boston house-price data has been used in many machine learning papers that address regression problems. .. topic:: References - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261. - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann. ###Markdown Take a look at the X ###Code df = pd.DataFrame(boston.data) df.columns = boston.feature_names df boston.target ###Output _____no_output_____ ###Markdown Regression TreesWe use regression trees in the same way as classification ###Code from sklearn.tree import DecisionTreeRegressor cart = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5) cart.fit(boston.data, boston.target) visualize_tree(cart) ###Output _____no_output_____ ###Markdown Like for classification, we get the predicted labels out with the `.predict` method ###Code preds = cart.predict(boston.data) preds ###Output _____no_output_____ ###Markdown There are functions provided by `sklearn.metrics` to evaluate the predictions ###Code from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ###Output 3.5736909785051676 25.69946745212606 0.695574477973027 ###Markdown Random Forests and BoostingRandom forests and boosting for regression work the same as in classification, except we use the `Regressor` version rather than `Classifier`. ExerciseTest and compare the (in-sample) performance of random forests and boosting on the Boston data with some sensible parameters. ###Code from sklearn.ensemble import RandomForestRegressor forest = RandomForestRegressor(n_estimators=100) forest.fit(boston.data, boston.target) preds = forest.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) from sklearn.ensemble import GradientBoostingRegressor boost = GradientBoostingRegressor(n_estimators=100, learning_rate=0.2) boost.fit(boston.data, boston.target) preds = boost.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) from xgboost import XGBRegressor boost2 = XGBRegressor() boost2.fit(boston.data, boston.target) preds = boost2.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ###Output 0.026413507235379965 0.0014430003436840648 0.9999829068001611 ###Markdown Neural Networks ###Code from sklearn.neural_network import MLPRegressor mlp = MLPRegressor(max_iter=1000) mlp.fit(boston.data, boston.target) preds = mlp.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasRegressor from keras.utils import np_utils from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline # load dataset X = boston.data Y = boston.target # define baseline model def baseline_model(): # create model model = Sequential() model.add(Dense(13, input_dim=X.shape[1], kernel_initializer='normal', activation='relu')) model.add(Dense(1, kernel_initializer='normal')) # Compile model model.compile(loss='mean_squared_error', optimizer='adam') return model estimator = KerasRegressor(build_fn=baseline_model, epochs=10, batch_size=16, verbose=1) kfold = KFold(n_splits=5, shuffle=True) results = cross_val_score(estimator, X, Y, cv=kfold) print("Mean Squared Error: %.2f (%.2f)" % (abs(results.mean()), results.std())) ###Output Epoch 1/10 26/26 [==============================] - 0s 2ms/step - loss: 416.3250 Epoch 2/10 26/26 [==============================] - 0s 4ms/step - loss: 189.9820 Epoch 3/10 26/26 [==============================] - 0s 5ms/step - loss: 147.3391 Epoch 4/10 26/26 [==============================] - 0s 4ms/step - loss: 123.4213 Epoch 5/10 26/26 [==============================] - 0s 4ms/step - loss: 101.8594 Epoch 6/10 26/26 [==============================] - 0s 4ms/step - loss: 86.1179 Epoch 7/10 26/26 [==============================] - 0s 4ms/step - loss: 76.7525: 0s - loss: 74. Epoch 8/10 26/26 [==============================] - 0s 5ms/step - loss: 71.9598 Epoch 9/10 26/26 [==============================] - 0s 5ms/step - loss: 68.5318 Epoch 10/10 26/26 [==============================] - 0s 5ms/step - loss: 66.7393 7/7 [==============================] - 0s 4ms/step - loss: 68.3569 Epoch 1/10 26/26 [==============================] - 0s 4ms/step - loss: 229.8424 Epoch 2/10 26/26 [==============================] - 0s 5ms/step - loss: 152.8784 Epoch 3/10 26/26 [==============================] - 0s 5ms/step - loss: 124.9488 Epoch 4/10 26/26 [==============================] - 0s 5ms/step - loss: 101.3086A: 0s - loss: 103.713 Epoch 5/10 26/26 [==============================] - 0s 5ms/step - loss: 83.7563 Epoch 6/10 26/26 [==============================] - 0s 6ms/step - loss: 72.4537 Epoch 7/10 26/26 [==============================] - 0s 5ms/step - loss: 68.8848 Epoch 8/10 26/26 [==============================] - 0s 5ms/step - loss: 65.2835 Epoch 9/10 26/26 [==============================] - 0s 5ms/step - loss: 63.0682 Epoch 10/10 26/26 [==============================] - 0s 5ms/step - loss: 61.2580 7/7 [==============================] - 0s 4ms/step - loss: 78.1588 Epoch 1/10 26/26 [==============================] - 0s 3ms/step - loss: 394.2870 Epoch 2/10 26/26 [==============================] - 0s 4ms/step - loss: 154.2006 Epoch 3/10 26/26 [==============================] - 0s 4ms/step - loss: 121.5101 Epoch 4/10 26/26 [==============================] - 0s 5ms/step - loss: 96.5747 Epoch 5/10 26/26 [==============================] - 0s 5ms/step - loss: 79.6176 Epoch 6/10 26/26 [==============================] - 0s 5ms/step - loss: 71.7972 Epoch 7/10 26/26 [==============================] - 0s 6ms/step - loss: 67.3771 Epoch 8/10 26/26 [==============================] - 0s 6ms/step - loss: 65.3503 Epoch 9/10 26/26 [==============================] - 0s 5ms/step - loss: 63.4878 Epoch 10/10 26/26 [==============================] - 0s 5ms/step - loss: 62.6430 7/7 [==============================] - 0s 3ms/step - loss: 72.4628 Epoch 1/10 26/26 [==============================] - 0s 4ms/step - loss: 457.5549 Epoch 2/10 26/26 [==============================] - 0s 4ms/step - loss: 213.4543 Epoch 3/10 26/26 [==============================] - 0s 3ms/step - loss: 137.6380 Epoch 4/10 26/26 [==============================] - 0s 5ms/step - loss: 123.8971 Epoch 5/10 26/26 [==============================] - 0s 6ms/step - loss: 111.1874 Epoch 6/10 26/26 [==============================] - 0s 4ms/step - loss: 101.2769 Epoch 7/10 26/26 [==============================] - 0s 5ms/step - loss: 91.2895 Epoch 8/10 26/26 [==============================] - 0s 5ms/step - loss: 84.0696 Epoch 9/10 26/26 [==============================] - 0s 4ms/step - loss: 79.6263 Epoch 10/10 26/26 [==============================] - 0s 4ms/step - loss: 76.9124 7/7 [==============================] - 0s 1ms/step - loss: 49.1916 Epoch 1/10 26/26 [==============================] - 0s 1ms/step - loss: 337.1278 Epoch 2/10 26/26 [==============================] - 0s 2ms/step - loss: 109.4944 Epoch 3/10 26/26 [==============================] - 0s 3ms/step - loss: 95.3181 Epoch 4/10 26/26 [==============================] - 0s 3ms/step - loss: 88.5550 Epoch 5/10 26/26 [==============================] - 0s 3ms/step - loss: 83.2130 Epoch 6/10 26/26 [==============================] - 0s 2ms/step - loss: 79.5414 Epoch 7/10 26/26 [==============================] - 0s 4ms/step - loss: 76.1562 Epoch 8/10 26/26 [==============================] - 0s 4ms/step - loss: 74.1669 Epoch 9/10 26/26 [==============================] - 0s 5ms/step - loss: 73.5261 Epoch 10/10 26/26 [==============================] - 0s 5ms/step - loss: 74.5165 7/7 [==============================] - 0s 854us/step - loss: 74.1472 Mean Squared Error: 68.46 (10.14) ###Markdown Linear Regression Models There are a large collection of linear regression models in sklearn. Let's start with a simple ordinary linear regression ###Code from sklearn.linear_model import LinearRegression linear = LinearRegression() linear.fit(boston.data, boston.target) preds = linear.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ###Output 3.270862810900317 21.894831181729206 0.7406426641094094 ###Markdown We can also take a look at the betas: ###Code linear.coef_ ###Output _____no_output_____ ###Markdown We can use regularized models as well. Here is ridge regression: ###Code from sklearn.linear_model import Ridge ridge = Ridge(alpha=10) ridge.fit(boston.data, boston.target) preds = ridge.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ridge.coef_ ###Output 3.315169248123664 22.660363555639318 0.7315744764907257 ###Markdown And here is lasso ###Code from sklearn.linear_model import Lasso lasso = Lasso(alpha=1) lasso.fit(boston.data, boston.target) preds = lasso.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) lasso.coef_ ###Output 3.6117102456478434 26.79609915726647 0.6825842212709925 ###Markdown There are many other linear regression models available. See the [linear model documentation](http://scikit-learn.org/stable/modules/linear_model.html) for more. ExerciseThe elastic net is another linear regression method that combines ridge and lasso regularization. Try running it on this dataset, referring to the documentation as needed to learn how to use it and control the hyperparameters. ###Code from sklearn.linear_model import ElasticNet elastic = ElasticNet(alpha=1, l1_ratio=.7) elastic.fit(boston.data, boston.target) preds = elastic.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) elastic.coef_ ?DecisionTreeClassifier ###Output _____no_output_____ ###Markdown ClassificationWe'll take a tour of the methods for classification in sklearn. First let's load a toy dataset to use: ###Code from sklearn.datasets import load_breast_cancer breast = load_breast_cancer() ###Output _____no_output_____ ###Markdown Let's take a look ###Code # Convert it to a dataframe for better visuals df = pd.DataFrame(breast.data) df.columns = breast.feature_names df ###Output _____no_output_____ ###Markdown And now look at the targets ###Code print(breast.target_names) breast.target ###Output _____no_output_____ ###Markdown Classification Trees Using the scikit learn models is basically the same as in Julia's ScikitLearn.jl ###Code from sklearn.tree import DecisionTreeClassifier cart = DecisionTreeClassifier(max_depth=2, min_samples_leaf=140) cart.fit(breast.data, breast.target) ###Output _____no_output_____ ###Markdown Here's a helper function to plot the trees. Installing Graphviz (tedious) Windows1. Download graphviz from https://graphviz.gitlab.io/_pages/Download/Download_windows.html2. Install it by running the .msi file3. Set the pat variable: (a) Go to Control Panel > System and Security > System > Advanced System Settings > Environment Variables > Path > Edit (b) Add 'C:\Program Files (x86)\Graphviz2.38\bin'4. Run `conda install graphviz`5. Run `conda install python-graphviz` macOS and Linux1. Run `brew install graphviz` (install `brew` from https://docs.brew.sh/Installation if you don't have it)2. Run `conda install graphviz`3. Run `conda install python-graphviz` ###Code import graphviz import sklearn.tree def visualize_tree(sktree): dot_data = sklearn.tree.export_graphviz(sktree, out_file=None, filled=True, rounded=True, special_characters=False, feature_names=df.columns) return graphviz.Source(dot_data) visualize_tree(cart) ###Output _____no_output_____ ###Markdown We can get the label predictions with the `.predict` method ###Code labels = cart.predict(breast.data) labels ###Output _____no_output_____ ###Markdown And similarly the predicted probabilities with `.predict_proba` ###Code probs = cart.predict_proba(breast.data) probs ###Output _____no_output_____ ###Markdown Just like in Julia, the probabilities are returned for each class ###Code probs.shape ###Output _____no_output_____ ###Markdown We can extract the second column of the probs by slicing, just like how we did it in Julia ###Code probs = cart.predict_proba(breast.data)[:,1] probs ###Output _____no_output_____ ###Markdown To evaluate the model, we can use functions from `sklearn.metrics` ###Code from sklearn.metrics import roc_auc_score, accuracy_score, confusion_matrix roc_auc_score(breast.target, probs) accuracy_score(breast.target, labels) confusion_matrix(breast.target, labels) ###Output _____no_output_____ ###Markdown Random Forests and BoostingWe use random forests and boosting in the same way as CART ###Code from sklearn.ensemble import RandomForestClassifier forest = RandomForestClassifier(n_estimators=100) forest.fit(breast.data, breast.target) labels = forest.predict(breast.data) probs = forest.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) from sklearn.ensemble import GradientBoostingClassifier boost = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1) boost.fit(breast.data, breast.target) labels = boost.predict(breast.data) probs = boost.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) ###Output _____no_output_____ ###Markdown Logistic RegressionWe can also access logistic regression from sklearn ###Code from sklearn.linear_model import LogisticRegression logit = LogisticRegression() logit.fit(breast.data, breast.target) labels = logit.predict(breast.data) probs = logit.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) ###Output _____no_output_____ ###Markdown The sklearn implementation has options for regularization in logistic regression. You can choose between L1 and L2 regularization:![](http://scikit-learn.org/stable/_images/math/6a0bcf21baaeb0c2b879ab74fe333c0aab0d6ae6.png)![](http://scikit-learn.org/stable/_images/math/760c999ccbc78b72d2a91186ba55ce37f0d2cf37.png)Note that this regularization is adhoc and **not equivalent to robustness**. For a robust logistic regression, follow the approach from 15.680.You control the regularization with the `penalty` and `C` hyperparameters. We can see that our model above used L2 regularization with $C=1$. ExerciseTry out unregularized logistic regression as well as L1 regularization. Which of the three options seems best? What if you try changing $C$? ###Code # No regularization logit = LogisticRegression(C=1e10) logit.fit(breast.data, breast.target) labels = logit.predict(breast.data) probs = logit.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) # L1 regularization logit = LogisticRegression(C=100, penalty='l1') logit.fit(breast.data, breast.target) labels = logit.predict(breast.data) probs = logit.predict_proba(breast.data)[:,1] print(roc_auc_score(breast.target, probs)) print(accuracy_score(breast.target, labels)) confusion_matrix(breast.target, labels) ###Output _____no_output_____ ###Markdown RegressionNow let's take a look at regression in sklearn. Again we can start by loading up a dataset. ###Code from sklearn.datasets import load_boston boston = load_boston() print(boston.DESCR) ###Output _____no_output_____ ###Markdown Take a look at the X ###Code df = pd.DataFrame(boston.data) df.columns = boston.feature_names df boston.target ###Output _____no_output_____ ###Markdown Regression TreesWe use regression trees in the same way as classification ###Code from sklearn.tree import DecisionTreeRegressor cart = DecisionTreeRegressor(max_depth=2, min_samples_leaf=5) cart.fit(boston.data, boston.target) visualize_tree(cart) ###Output _____no_output_____ ###Markdown Like for classification, we get the predicted labels out with the `.predict` method ###Code preds = cart.predict(boston.data) preds ###Output _____no_output_____ ###Markdown There are functions provided by `sklearn.metrics` to evaluate the predictions ###Code from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ###Output _____no_output_____ ###Markdown Random Forests and BoostingRandom forests and boosting for regression work the same as in classification, except we use the `Regressor` version rather than `Classifier`. ExerciseTest and compare the (in-sample) performance of random forests and boosting on the Boston data with some sensible parameters. ###Code from sklearn.ensemble import RandomForestRegressor forest = RandomForestRegressor(n_estimators=100) forest.fit(boston.data, boston.target) preds = forest.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) from sklearn.ensemble import GradientBoostingRegressor boost = GradientBoostingRegressor(n_estimators=100, learning_rate=0.2) boost.fit(boston.data, boston.target) preds = boost.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ###Output _____no_output_____ ###Markdown Linear Regression Models There are a large collection of linear regression models in sklearn. Let's start with a simple ordinary linear regression ###Code from sklearn.linear_model import LinearRegression linear = LinearRegression() linear.fit(boston.data, boston.target) preds = linear.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ###Output _____no_output_____ ###Markdown We can also take a look at the betas: ###Code linear.coef_ ###Output _____no_output_____ ###Markdown We can use regularized models as well. Here is ridge regression: ###Code from sklearn.linear_model import Ridge ridge = Ridge(alpha=10) ridge.fit(boston.data, boston.target) preds = ridge.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) ridge.coef_ ###Output _____no_output_____ ###Markdown And here is lasso ###Code from sklearn.linear_model import Lasso lasso = Lasso(alpha=1) lasso.fit(boston.data, boston.target) preds = lasso.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) lasso.coef_ ###Output _____no_output_____ ###Markdown There are many other linear regression models available. See the [linear model documentation](http://scikit-learn.org/stable/modules/linear_model.html) for more. ExerciseThe elastic net is another linear regression method that combines ridge and lasso regularization. Try running it on this dataset, referring to the documentation as needed to learn how to use it and control the hyperparameters. ###Code from sklearn.linear_model import ElasticNet net = ElasticNet(l1_ratio=0.3, alpha=1) net.fit(boston.data, boston.target) preds = net.predict(boston.data) print(mean_absolute_error(boston.target, preds)) print(mean_squared_error(boston.target, preds)) print(r2_score(boston.target, preds)) net.coef_ ###Output _____no_output_____
Resources/Data-Science/Machine-Learning/Multiple-Linear-Regression/sklearn - Multiple Linear Regression_.ipynb
###Markdown Multiple Linear Regression with sklearn - Exercise Solution You are given a real estate dataset. Real estate is one of those examples that every regression course goes through as it is extremely easy to understand and there is a (almost always) certain causal relationship to be found.The data is located in the file: 'real_estate_price_size_year.csv'. You are expected to create a multiple linear regression (similar to the one in the lecture), using the new data. Apart from that, please:- Display the intercept and coefficient(s)- Find the R-squared and Adjusted R-squared- Compare the R-squared and the Adjusted R-squared- Compare the R-squared of this regression and the simple linear regression where only 'size' was used- Using the model make a prediction about an apartment with size 750 sq.ft. from 2009- Find the univariate (or multivariate if you wish - see the article) p-values of the two variables. What can you say about them?- Create a summary table with your findingsIn this exercise, the dependent variable is 'price', while the independent variables are 'size' and 'year'.Good luck! Import the relevant libraries ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() from sklearn.linear_model import LinearRegression ###Output _____no_output_____ ###Markdown Load the data ###Code data = pd.read_csv('real_estate_price_size_year.csv') data.head() data.describe() ###Output _____no_output_____ ###Markdown Create the regression Declare the dependent and the independent variables ###Code x = data[['size','year']] y = data['price'] ###Output _____no_output_____ ###Markdown Regression ###Code reg = LinearRegression() reg.fit(x,y) ###Output _____no_output_____ ###Markdown Find the intercept ###Code reg.intercept_ ###Output _____no_output_____ ###Markdown Find the coefficients ###Code reg.coef_ ###Output _____no_output_____ ###Markdown Calculate the R-squared ###Code reg.score(x,y) ###Output _____no_output_____ ###Markdown Calculate the Adjusted R-squared ###Code # Let's use the handy function we created def adj_r2(x,y): r2 = reg.score(x,y) n = x.shape[0] p = x.shape[1] adjusted_r2 = 1-(1-r2)*(n-1)/(n-p-1) return adjusted_r2 adj_r2(x,y) ###Output _____no_output_____ ###Markdown Compare the R-squared and the Adjusted R-squared It seems the the R-squared is only slightly larger than the Adjusted R-squared, implying that we were not penalized a lot for the inclusion of 2 independent variables. Compare the Adjusted R-squared with the R-squared of the simple linear regression Comparing the Adjusted R-squared with the R-squared of the simple linear regression (when only 'size' was used - a couple of lectures ago), we realize that 'Year' is not bringing too much value to the result. Making predictionsFind the predicted price of an apartment that has a size of 750 sq.ft. from 2009. ###Code reg.predict([[750,2009]]) ###Output _____no_output_____ ###Markdown Calculate the univariate p-values of the variables ###Code from sklearn.feature_selection import f_regression f_regression(x,y) p_values = f_regression(x,y)[1] p_values p_values.round(3) ###Output _____no_output_____ ###Markdown Create a summary table with your findings ###Code reg_summary = pd.DataFrame(data = x.columns.values, columns=['Features']) reg_summary ['Coefficients'] = reg.coef_ reg_summary ['p-values'] = p_values.round(3) reg_summary ###Output _____no_output_____
examples/cevae_example.ipynb
###Markdown IHDP semi-synthetic datasetHill introduced a semi-synthetic dataset constructed from the Infant Healthand Development Program (IHDP). This dataset is based on a randomized experimentinvestigating the effect of home visits by specialists on future cognitive scores. The IHDP simulation is considered the de-facto standard benchmark for neural network treatment effectestimation methods. ###Code # load all ihadp data df = pd.DataFrame() for i in range(1, 10): data = pd.read_csv('./data/ihdp_npci_' + str(i) + '.csv', header=None) df = pd.concat([data, df]) cols = ["treatment", "y_factual", "y_cfactual", "mu0", "mu1"] + [i for i in range(25)] df.columns = cols print(df.shape) # replicate the data 100 times replications = 100 df = pd.concat([df]*replications, ignore_index=True) print(df.shape) # set which features are binary binfeats = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] # set which features are continuous contfeats = [i for i in range(25) if i not in binfeats] # reorder features with binary first and continuous after perm = binfeats + contfeats df = df.reset_index(drop=True) df.head() X = df[perm].values treatment = df['treatment'].values y = df['y_factual'].values y_cf = df['y_cfactual'].values tau = df.apply(lambda d: d['y_factual'] - d['y_cfactual'] if d['treatment']==1 else d['y_cfactual'] - d['y_factual'], axis=1) mu_0 = df['mu0'].values mu_1 = df['mu1'].values # seperate for train and test itr, ite = train_test_split(np.arange(X.shape[0]), test_size=0.2, random_state=1) X_train, treatment_train, y_train, y_cf_train, tau_train, mu_0_train, mu_1_train = X[itr], treatment[itr], y[itr], y_cf[itr], tau[itr], mu_0[itr], mu_1[itr] X_val, treatment_val, y_val, y_cf_val, tau_val, mu_0_val, mu_1_val = X[ite], treatment[ite], y[ite], y_cf[ite], tau[ite], mu_0[ite], mu_1[ite] ###Output _____no_output_____ ###Markdown CEVAE Model ###Code # cevae model settings outcome_dist = "normal" latent_dim = 20 hidden_dim = 200 num_epochs = 5 batch_size = 1000 learning_rate = 0.001 learning_rate_decay = 0.01 num_layers = 2 cevae = CEVAE(outcome_dist=outcome_dist, latent_dim=latent_dim, hidden_dim=hidden_dim, num_epochs=num_epochs, batch_size=batch_size, learning_rate=learning_rate, learning_rate_decay=learning_rate_decay, num_layers=num_layers) # fit losses = cevae.fit(X=torch.tensor(X_train, dtype=torch.float), treatment=torch.tensor(treatment_train, dtype=torch.float), y=torch.tensor(y_train, dtype=torch.float)) # predict ite_train = cevae.predict(X_train) ite_val = cevae.predict(X_val) ate_train = ite_train.mean() ate_val = ite_val.mean() print(ate_train, ate_val) ###Output 0.58953923 0.5956359 ###Markdown Meta Learners ###Code # fit propensity model p_model = ElasticNetPropensityModel() p_train = p_model.fit_predict(X_train, treatment_train) p_val = p_model.fit_predict(X_val, treatment_val) s_learner = BaseSRegressor(LGBMRegressor()) s_ate = s_learner.estimate_ate(X_train, treatment_train, y_train)[0] s_ite_train = s_learner.fit_predict(X_train, treatment_train, y_train) s_ite_val = s_learner.predict(X_val) t_learner = BaseTRegressor(LGBMRegressor()) t_ate = t_learner.estimate_ate(X_train, treatment_train, y_train)[0][0] t_ite_train = t_learner.fit_predict(X_train, treatment_train, y_train) t_ite_val = t_learner.predict(X_val, treatment_val, y_val) x_learner = BaseXRegressor(LGBMRegressor()) x_ate = x_learner.estimate_ate(X_train, treatment_train, y_train, p_train)[0][0] x_ite_train = x_learner.fit_predict(X_train, treatment_train, y_train, p_train) x_ite_val = x_learner.predict(X_val, treatment_val, y_val, p_val) r_learner = BaseRRegressor(LGBMRegressor()) r_ate = r_learner.estimate_ate(X_train, treatment_train, y_train, p_train)[0][0] r_ite_train = r_learner.fit_predict(X_train, treatment_train, y_train, p_train) r_ite_val = r_learner.predict(X_val) ###Output _____no_output_____ ###Markdown Model Results Comparsion Training ###Code df_preds_train = pd.DataFrame([s_ite_train.ravel(), t_ite_train.ravel(), x_ite_train.ravel(), r_ite_train.ravel(), ite_train.ravel(), tau_train.ravel(), treatment_train.ravel(), y_train.ravel()], index=['S','T','X','R','CEVAE','tau','w','y']).T df_cumgain_train = get_cumgain(df_preds_train) df_result_train = pd.DataFrame([s_ate, t_ate, x_ate, r_ate, ate_train, tau_train.mean()], index=['S','T','X','R','CEVAE','actual'], columns=['ATE']) df_result_train['MAE'] = [mean_absolute_error(t,p) for t,p in zip([s_ite_train, t_ite_train, x_ite_train, r_ite_train, ite_train], [tau_train.values.reshape(-1,1)]*5 ) ] + [None] df_result_train['AUUC'] = auuc_score(df_preds_train) df_result_train plot_gain(df_preds_train) ###Output _____no_output_____ ###Markdown Validation ###Code df_preds_val = pd.DataFrame([s_ite_val.ravel(), t_ite_val.ravel(), x_ite_val.ravel(), r_ite_val.ravel(), ite_val.ravel(), tau_val.ravel(), treatment_val.ravel(), y_val.ravel()], index=['S','T','X','R','CEVAE','tau','w','y']).T df_cumgain_val = get_cumgain(df_preds_val) df_result_val = pd.DataFrame([s_ite_val.mean(), t_ite_val.mean(), x_ite_val.mean(), r_ite_val.mean(), ate_val, tau_val.mean()], index=['S','T','X','R','CEVAE','actual'], columns=['ATE']) df_result_val['MAE'] = [mean_absolute_error(t,p) for t,p in zip([s_ite_val, t_ite_val, x_ite_val, r_ite_val, ite_val], [tau_val.values.reshape(-1,1)]*5 ) ] + [None] df_result_val['AUUC'] = auuc_score(df_preds_val) df_result_val plot_gain(df_preds_val) ###Output _____no_output_____ ###Markdown Synthetic Data ###Code y, X, w, tau, b, e = simulate_hidden_confounder(n=100000, p=5, sigma=1.0, adj=0.) X_train, X_val, y_train, y_val, w_train, w_val, tau_train, tau_val, b_train, b_val, e_train, e_val = \ train_test_split(X, y, w, tau, b, e, test_size=0.2, random_state=123, shuffle=True) preds_dict_train = {} preds_dict_valid = {} preds_dict_train['Actuals'] = tau_train preds_dict_valid['Actuals'] = tau_val preds_dict_train['generated_data'] = { 'y': y_train, 'X': X_train, 'w': w_train, 'tau': tau_train, 'b': b_train, 'e': e_train} preds_dict_valid['generated_data'] = { 'y': y_val, 'X': X_val, 'w': w_val, 'tau': tau_val, 'b': b_val, 'e': e_val} # Predict p_hat because e would not be directly observed in real-life p_model = ElasticNetPropensityModel() p_hat_train = p_model.fit_predict(X_train, w_train) p_hat_val = p_model.fit_predict(X_val, w_val) for base_learner, label_l in zip([BaseSRegressor, BaseTRegressor, BaseXRegressor, BaseRRegressor], ['S', 'T', 'X', 'R']): for model, label_m in zip([LinearRegression, XGBRegressor], ['LR', 'XGB']): # RLearner will need to fit on the p_hat if label_l != 'R': learner = base_learner(model()) # fit the model on training data only learner.fit(X=X_train, treatment=w_train, y=y_train) try: preds_dict_train['{} Learner ({})'.format( label_l, label_m)] = learner.predict(X=X_train, p=p_hat_train).flatten() preds_dict_valid['{} Learner ({})'.format( label_l, label_m)] = learner.predict(X=X_val, p=p_hat_val).flatten() except TypeError: preds_dict_train['{} Learner ({})'.format( label_l, label_m)] = learner.predict(X=X_train, treatment=w_train, y=y_train).flatten() preds_dict_valid['{} Learner ({})'.format( label_l, label_m)] = learner.predict(X=X_val, treatment=w_val, y=y_val).flatten() else: learner = base_learner(model()) learner.fit(X=X_train, p=p_hat_train, treatment=w_train, y=y_train) preds_dict_train['{} Learner ({})'.format( label_l, label_m)] = learner.predict(X=X_train).flatten() preds_dict_valid['{} Learner ({})'.format( label_l, label_m)] = learner.predict(X=X_val).flatten() # cevae model settings outcome_dist = "normal" latent_dim = 20 hidden_dim = 200 num_epochs = 5 batch_size = 1000 learning_rate = 1e-3 learning_rate_decay = 0.1 num_layers = 3 num_samples = 10 cevae = CEVAE(outcome_dist=outcome_dist, latent_dim=latent_dim, hidden_dim=hidden_dim, num_epochs=num_epochs, batch_size=batch_size, learning_rate=learning_rate, learning_rate_decay=learning_rate_decay, num_layers=num_layers, num_samples=num_samples) # fit losses = cevae.fit(X=torch.tensor(X_train, dtype=torch.float), treatment=torch.tensor(w_train, dtype=torch.float), y=torch.tensor(y_train, dtype=torch.float)) preds_dict_train['CEVAE'] = cevae.predict(X_train).flatten() preds_dict_valid['CEVAE'] = cevae.predict(X_val).flatten() actuals_train = preds_dict_train['Actuals'] actuals_validation = preds_dict_valid['Actuals'] synthetic_summary_train = pd.DataFrame({label: [preds.mean(), mse(preds, actuals_train)] for label, preds in preds_dict_train.items() if 'generated' not in label.lower()}, index=['ATE', 'MSE']).T synthetic_summary_train['Abs % Error of ATE'] = np.abs( (synthetic_summary_train['ATE']/synthetic_summary_train.loc['Actuals', 'ATE']) - 1) synthetic_summary_validation = pd.DataFrame({label: [preds.mean(), mse(preds, actuals_validation)] for label, preds in preds_dict_valid.items() if 'generated' not in label.lower()}, index=['ATE', 'MSE']).T synthetic_summary_validation['Abs % Error of ATE'] = np.abs( (synthetic_summary_validation['ATE']/synthetic_summary_validation.loc['Actuals', 'ATE']) - 1) # calculate kl divergence for training for label in synthetic_summary_train.index: stacked_values = np.hstack((preds_dict_train[label], actuals_train)) stacked_low = np.percentile(stacked_values, 0.1) stacked_high = np.percentile(stacked_values, 99.9) bins = np.linspace(stacked_low, stacked_high, 100) distr = np.histogram(preds_dict_train[label], bins=bins)[0] distr = np.clip(distr/distr.sum(), 0.001, 0.999) true_distr = np.histogram(actuals_train, bins=bins)[0] true_distr = np.clip(true_distr/true_distr.sum(), 0.001, 0.999) kl = entropy(distr, true_distr) synthetic_summary_train.loc[label, 'KL Divergence'] = kl # calculate kl divergence for validation for label in synthetic_summary_validation.index: stacked_values = np.hstack((preds_dict_valid[label], actuals_validation)) stacked_low = np.percentile(stacked_values, 0.1) stacked_high = np.percentile(stacked_values, 99.9) bins = np.linspace(stacked_low, stacked_high, 100) distr = np.histogram(preds_dict_valid[label], bins=bins)[0] distr = np.clip(distr/distr.sum(), 0.001, 0.999) true_distr = np.histogram(actuals_validation, bins=bins)[0] true_distr = np.clip(true_distr/true_distr.sum(), 0.001, 0.999) kl = entropy(distr, true_distr) synthetic_summary_validation.loc[label, 'KL Divergence'] = kl df_preds_train = pd.DataFrame([preds_dict_train['S Learner (LR)'].ravel(), preds_dict_train['S Learner (XGB)'].ravel(), preds_dict_train['T Learner (LR)'].ravel(), preds_dict_train['T Learner (XGB)'].ravel(), preds_dict_train['X Learner (LR)'].ravel(), preds_dict_train['X Learner (XGB)'].ravel(), preds_dict_train['R Learner (LR)'].ravel(), preds_dict_train['R Learner (XGB)'].ravel(), preds_dict_train['CEVAE'].ravel(), preds_dict_train['generated_data']['tau'].ravel(), preds_dict_train['generated_data']['w'].ravel(), preds_dict_train['generated_data']['y'].ravel()], index=['S Learner (LR)','S Learner (XGB)', 'T Learner (LR)','T Learner (XGB)', 'X Learner (LR)','X Learner (XGB)', 'R Learner (LR)','R Learner (XGB)', 'CEVAE','tau','w','y']).T synthetic_summary_train['AUUC'] = auuc_score(df_preds_train).iloc[:-1] df_preds_validation = pd.DataFrame([preds_dict_valid['S Learner (LR)'].ravel(), preds_dict_valid['S Learner (XGB)'].ravel(), preds_dict_valid['T Learner (LR)'].ravel(), preds_dict_valid['T Learner (XGB)'].ravel(), preds_dict_valid['X Learner (LR)'].ravel(), preds_dict_valid['X Learner (XGB)'].ravel(), preds_dict_valid['R Learner (LR)'].ravel(), preds_dict_valid['R Learner (XGB)'].ravel(), preds_dict_valid['CEVAE'].ravel(), preds_dict_valid['generated_data']['tau'].ravel(), preds_dict_valid['generated_data']['w'].ravel(), preds_dict_valid['generated_data']['y'].ravel()], index=['S Learner (LR)','S Learner (XGB)', 'T Learner (LR)','T Learner (XGB)', 'X Learner (LR)','X Learner (XGB)', 'R Learner (LR)','R Learner (XGB)', 'CEVAE','tau','w','y']).T synthetic_summary_validation['AUUC'] = auuc_score(df_preds_validation).iloc[:-1] synthetic_summary_train synthetic_summary_validation plot_gain(df_preds_train) plot_gain(df_preds_validation) ###Output _____no_output_____
src/imjoy_viewer.ipynb
###Markdown Modify the url to point to the correct location of the zarr file ###Code z_url = r"/mnt/KOMP_C8565_1.zarr" z = zarr.open(z_url, mode="r") # open the zarr created above in jupyter kernel ###Output _____no_output_____ ###Markdown Set up the ImJoy viewer extension ###Code from imjoy import api import zarr def encode_zarr_store(zobj): path_prefix = f"{zobj.path}/" if zobj.path else "" def getItem(key, options = None): return zobj.store[path_prefix + key] def setItem(key, value): zobj.store[path_prefix + key] = value def containsItem(key, options = None): if path_prefix + key in zobj.store: return True return { "_rintf": True, "_rtype": "zarr-array" if isinstance(zobj, zarr.Array) else "zarr-group", "getItem": getItem, "setItem": setItem, "containsItem": containsItem, } api.registerCodec( {"name": "zarr-array", "type": zarr.Array, "encoder": encode_zarr_store} ) api.registerCodec( {"name": "zarr-group", "type": zarr.Group, "encoder": encode_zarr_store} ) class Plugin: def __init__(self, images, view_state=None): if not isinstance(images, list): images = [images] self.images = images self.view_state = view_state async def setup(self): pass async def run(self, ctx): viewer = await api.createWindow( type="vizarr", src="https://hms-dbmi.github.io/vizarr" ) if self.view_state: await viewer.set_view_state(self.view_state) for img in self.images: await viewer.add_image(img) def run_vizarr(images, view_state=None): api.export(Plugin(images, view_state)) ###Output _____no_output_____ ###Markdown Access to the group '0' of the zarr file an visualize it ###Code # Create Zarr img = { "source": z['0'], "name": "KOMP_test_1" } # Run vizarr run_vizarr(img) ###Output _____no_output_____
archived/MBZ-XML-TO-EXCEL-v0004.ipynb
###Markdown MBZ-XML-TO-EXCELFirst pubished version May 22, 2019. This is version 0.0004 (revision July 26, 2019)Licensed under the NCSA Open source licenseCopyright (c) 2019 Lawrence AngraveAll rights reserved.Developed by: Lawrence Angrave Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal with the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimers in the documentation and/or other materials provided with the distribution. Neither the names of Lawrence Angrave, University of Illinois nor the names of its contributors may be used to endorse or promote products derived from this Software without specific prior written permission. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE. Citations and acknowledgements welcomed!In a presentation, report or paper please recognise and acknowledge the the use of this software.Please contact [email protected] for a Bibliography citation. For presentations, the following is sufficientMBZ-XML-TO-EXCEL (https://github.com/angrave/Moodle-mbz-to-excel) by Lawrence Angrave.MBZ-XML-TO-EXCEL is an iLearn project, supported by an Institute of Education Sciences Award R305A180211If also using Geo-IP data, please cite IP2Location. For example,"This report uses geo-ip location data from IP2Location.com" Known limitations and issuesThe assessment sheet (generated from workshop.xml) may generate URLs that are longer than 255 characters, the largested supported by Excel. These very long URLs will be excludedNo verification of the data has been performed. It is unknown if the inferred timestamps based on the Unix Epoch timestamp require a timezone adjustment. RequirementsThis project uses Python3, Jupiter notebooks and Pandas. Set up ###Code #import xml.etree.ElementTree as ET #lxml supports line numbers import lxml.etree as ET from collections import OrderedDict import pandas as pd import numpy as np import re import os import urllib import datetime import glob import tarfile import tempfile import base64 # geoip support import bisect import ipaddress # timestamp support from datetime import datetime # Extract text from html messages from bs4 import BeautifulSoup import uuid import traceback import xlsxwriter excelengine = 'xlsxwriter' # 'xlsxwriter' is currently recommended though it did not improve the write speed using generic pandas interface) # Todo Perhaps using workbook interface directly will be faster? (https://xlsxwriter.readthedocs.io/) # io.excel.xlsx.writer' (default, allegedly slow), # 'pyexcelerate' (untested) ###Output _____no_output_____ ###Markdown Load GeoIP data (optional) ###Code def load_geoip_data(geoip_datadir): global geoip_all_colnames, geoip_geo_columns,geoipv4_df,geoipv4_ipvalues geoip_all_colnames = ['geoip_ipfrom' ,'geoip_ipto' ,'geoip_country_code' ,'geoip_country_name' ,'geoip_region_name' ,'geoip_city_name' ,'geoip_latitude' ,'geoip_longitude' ,'geoip_zip_code' ,'geoip_time_zone'] geoip_geo_columns = geoip_all_colnames[2:] #geoip_datadir = 'geoip' #change to your local directory of where the downloaded zip has been unpacked geoipv4_csv = os.path.join(geoip_datadir,'IP2LOCATION-LITE-DB11.CSV') if os.path.exists(geoipv4_csv): print("Reading geoip csv",geoipv4_csv) geoipv4_df = pd.read_csv(geoipv4_csv, names= geoip_all_colnames) geoipv4_ipvalues = geoipv4_df['geoip_ipfrom'].values # bisect searching assumes geoipv4_ipvalues are in increasing order else: geoipv4_df = None geoipv4_ipvalues = None print("No GeoIP csv data at ",geoipv4_csv) print("IP addresses will not be converted into geographic locations") print("Free Geo-IP data can be downloaded from IP2LOCATION.com") ###Output _____no_output_____ ###Markdown Phase 1 - Extract XMLs from mbz file and create hundreds of Excel files ###Code # Each file can generate a list of tables (dataframes) # Recursively process each element. # For each non-leaf element we build an ordered dictionary of key-value pairs and attach this to an array for the particular element name # <foo id='1' j='a'> becomes data['foo'] = [ {'id':'1', j:'a'} ] # The exception is for leaf elements (no-child elements) in the form e.g. <blah>123</blah> # We treat these equivalently to attributes on the surrounding (parent) xml element # <foo id='1'><blah>123</blah></foo> becomes data['foo'] = [ {'id':'1', 'blah':'123'} ] # and no data['blah'] is created AUTOMATIC_IMPLICIT_XML_COLUMNS = 4 #SOURCE_LINE,PARENT_SHEET,PARENT_INDEX def process_element(data,dest_basedir, tablename_list, context, e): #deprecated has_no_children = len(e.getchildren()) == 0 has_no_children = len(e) == 0 has_no_attribs = len(e.attrib.keys()) == 0 text = e.text has_text = text is not None if has_text: text = text.strip() has_text = len(text) > 0 # Is this a leaf element e.g. <blah>123</blah> # For the datasets we care about, leaves should not be tables; we only want their value ignore_attribs_on_leaves = True # This could be refactored to return a dictionary, so multiple attributes can be attached to the parent if has_no_children and (has_no_attribs or ignore_attribs_on_leaves): if not has_no_attribs: print() print("Warning: Ignoring attributes on leaf element:" + e.tag+ ":"+ str(e.attrib)) print() return [e.tag,e.text] # Early return, attach the value to the parent (using the tag as the attribute name) table_name = e.tag if table_name not in data: tablename_list.append(table_name) data[table_name] = [] key_value_pairs = OrderedDict() key_value_pairs['SOURCE_LINE'] = e.sourceline key_value_pairs['PARENT_SHEET'] = context[0] key_value_pairs['PARENT_ROW_INDEX'] = context[1] key_value_pairs['PARENT_ID'] = context[2] #print(e.sourceline) # For correctness child_context needs to be after this line and before recursion data[table_name].append(key_value_pairs) myid = '' if 'id' in e.attrib: myid = e.attrib['id'] child_context = [table_name, len(data[table_name])-1, myid] # Used above context[0] during recursive call for key in sorted(e.attrib.keys()): key_value_pairs[key] = e.attrib[key] for child in e.iterchildren(): # Could refactor here to use dictionary to enable multiple key-values from a discarded leaf key,value = process_element(data,dest_basedir, tablename_list, child_context, child) if value: if key in key_value_pairs: key_value_pairs[key] += ',' + str(value) else: key_value_pairs[key] = str(value) if has_text: key_value_pairs['TEXT'] = e.text # If at least some non-whitespace text, then use original text return [e.tag,None] def tablename_to_sheetname(elided_sheetnames, tablename): sheetname = tablename # Future: There may be characters that are invalid. If so, remove them here.. #Excel sheetnames are limited to 31 characters. max_excel_sheetname_length = 31 if len(sheetname) <= max_excel_sheetname_length: return sheetname sheetname = sheetname[0:5] + '...' + sheetname[-20:] elided_sheetnames.append(sheetname) if elided_sheetnames.count(sheetname)>1: sheetname += str( elided_sheetnames.count(sheetname) + 1) return sheetname def decode_base64_to_latin1(encoded_val): try: return str(base64.b64decode(encoded_val) , 'latin-1') except Exception as e: traceback.print_exc() print("Not base64 latin1?", e) return '??Not-latin1 text' def decode_geoip(ip): try: ip = ip.strip() if not ip or geoipv4_df is None: return pd.Series(None, index=geoip_geo_columns) ipv4 = int(ipaddress.IPv4Address(ip)) index = bisect.bisect(geoipv4_ipvalues, ipv4) - 1 entry = geoipv4_df.iloc[index] assert entry.geoip_ipfrom <= ipv4 and entry.geoip_ipto >= ipv4 return entry[2:] # [geoip_geo_columns] # Drop ip_from and ip_to except Exception as e: traceback.print_exc() print("Bad ip?",ip, e) return pd.Series(None, index=geoip_geo_columns) def decode_unixtimestamp_to_UTC(seconds): if seconds == '': return '' try: return datetime.utcfromtimestamp(int(seconds)).strftime('%Y-%m-%d %H:%M:%S') except Exception as e: traceback.print_exc() print("Bad unix timestamp?", seconds , e) return '' def decode_html_to_text(html): if html is np.nan: return '' try: soup = BeautifulSoup(html,"lxml") return soup.get_text() except Exception as e: traceback.print_exc() print('Bad html?',html, e) return '???' def validate_anonid_data(anonid_df): #Expected columns for c in ['anonid','userid']: if c not in anonid_df.columns: raise ('anonid_csv_file\'' + anonid_csv_file + '\'should have a column named '+c) # No duplicate userid entries check_for_duplicates = anonid_df['userid'].duplicated(keep=False) if check_for_duplicates.any(): print(anonid_df[check_for_duplicates]) raise Exception('See above - fix the duplicates userid entries found in \'' + anonid_csv_file +'\'') anonid_df['userid'] = anonid_df['userid'].astype(str) def userid_to_anonid(userid): global anonid_df, generate_missing_anonid if userid is np.nan or len(userid) == 0: return '' row = anonid_df[ anonid_df['userid'] == userid ] if len( row ) == 1: return row['anonid'].values[0] if generate_missing_anonid: result = uuid.uuid4().hex anonid_df = anonid_df.append({ 'userid':userid, 'anonid':result}, ignore_index=True) else: result = '' return result def to_dataframe(table_name, table_data): df = pd.DataFrame(table_data) # Moodle dumps use $@NULL@$ for nulls df.replace('$@NULL@$','',inplace = True) # We found two base64 encoded columns in Moodle data- for col in df.columns & ['other','configdata']: df[ str(col) + '_base64'] = df[str(col)].map(decode_base64_to_latin1) for col in df.columns & ['timestart','timefinish','added','backup_date','original_course_startdate','original_course_enddate','timeadded','firstaccess','lastaccess','lastlogin','currentlogin','timecreated','timemodified','created','modified']: df[ str(col) + '_utc'] = df[str(col)].map(decode_unixtimestamp_to_UTC) # Extract text from html content for col in df.columns & ['message', 'description','commenttext','intro','conclusion','summary','feedbacktext','content','feedback','info', 'questiontext' , 'answertext']: df[ str(col) + '_text'] = df[str(col)].map(decode_html_to_text) # Moodle data has 'ip' and 'lastip' that are ipv4 dotted # Currently only ipv4 is implemented. geoipv4_df is None if the cvs file was not found if geoipv4_df is None: for col in df.columns & ['ip','lastip']: df = df.join( df[str(col)].apply(decode_geoip) ) for col in df.columns & ['userid','relateduserid' , 'realuserid']: col=str(col) if col == 'userid': out = 'anondid' else: out = col[0:-6] + '_anonid' df[ out ] = df[col].map(userid_to_anonid) if delete_userids: df.drop(columns=[col],inplace=True) if table_name == 'user': df['anonid'] = df['id'].map(userid_to_anonid) # Can add more MOODLE PROCESSING HERE :-) return df def to_absolute_file_url(filepath): return urllib.parse.urljoin( 'file:', urllib.request.pathname2url(os.path.abspath(filepath))) def write_excel_sheets(source_file, excelwriter, data, tablename_list): elided_sheetnames = [] table_sheet_mapping = dict() table_sheet_mapping[''] = '' # Top level parents have empty PARENT_SHEET for tablename in tablename_list: sheetname = tablename_to_sheetname(elided_sheetnames, tablename) table_sheet_mapping[tablename] = sheetname for tablename in tablename_list: df = to_dataframe(tablename, data[tablename]) #Convert table (=original xml tag) into real sheet name (not tag name) if 'PARENT_SHEET' in df.columns: df['PARENT_SHEET'] = df['PARENT_SHEET'].apply(lambda x: table_sheet_mapping[x]) df.index.rename(tablename, inplace=True) df.insert(0, 'SOURCE_FILE',source_file ,allow_duplicates=True) df.insert(1, 'SOURCE_TAG', tablename, allow_duplicates=True) sheetname = table_sheet_mapping[tablename] if sheetname != tablename: print("Writing "+ tablename + " as sheet "+ sheetname) else: print("Writing sheet "+ sheetname) df.to_excel(excelwriter, sheet_name=sheetname, index_label=tablename) return table_sheet_mapping def re_adopt_child_table(data, parent_tablename, parent_table, child_tablename): child_table = data[child_tablename] for row in child_table: if 'PARENT_SHEET' not in row.keys(): continue if row['PARENT_SHEET'] == parent_tablename: idx = row['PARENT_ROW_INDEX'] # Time to follow the pointer parent_row = parent_table[idx] #row['PARENT_TAG'] = parent_row['PARENT_TAG'] row['PARENT_ROW_INDEX'] = parent_row['PARENT_ROW_INDEX'] row['PARENT_ID'] = parent_row['PARENT_ID'] row['PARENT_SHEET'] = parent_row['PARENT_SHEET'] def discard_empty_tables(data,tablename_list): nonempty_tables = [] for tablename in tablename_list: table = data[tablename] # print(tablename, len(table),'rows') if len(table) == 0: # print("Skipping empty table",tablename) continue include = False for row in table: if len(row) > AUTOMATIC_IMPLICIT_XML_COLUMNS: # Found more than just PARENT_TAG,... columns include = True break if include: # print("Including",tablename) nonempty_tables.append(tablename) else: # print("Skipping unnecessary table",tablename) # Will need to fixup child items that still think this is their container # More efficient if we kept a mapping of child tables, rather than iterate over tables for childname in tablename_list: re_adopt_child_table(data, tablename, table, childname) pass return nonempty_tables def process_one_file(dest_basedir, relative_sub_dir, xml_filename, dry_run): print('process_one_file(\''+dest_basedir+'\',\''+relative_sub_dir+'\',\''+xml_filename+'\')') #print("Reading XML " + xml_filename) #Original parser xmlroot = ET.parse(xml_filename).getroot() # Use lxml #xmlroot = etree.parse(xml_filename) #print("Processing...") data = dict() tablename_list = [] initial_context = ['','',''] # Todo : Consider missing integer index e.g. ['',None,''] process_element(data, dest_basedir ,tablename_list, initial_context, xmlroot) nonempty_tables = discard_empty_tables(data,tablename_list) if len(nonempty_tables) == 0: #print("no tables left to write") return # We use underscore to collate source subdirectories basename = os.path.basename(xml_filename).replace('.xml','').replace('_','') use_sub_dirs = False if use_sub_dirs: output_dir = os.path.join(dest_basedir, relative_sub_dir) if not os.path.exists(output_dir): os.mkdirs(output_dir) output_filename = os.path.join(output_dir, basename + '.xlsx') else: sub = relative_sub_dir.replace(os.sep,'_').replace('.','') if (len(sub) > 0) and sub[-1] != '_': sub = sub + '_' output_filename = os.path.join(dest_basedir, sub + basename + '.xlsx') if dry_run: # For debugging return print("** Writing ", output_filename) if os.path.exists(output_filename): os.remove(output_filename) excelwriter = pd.ExcelWriter(output_filename, engine= excelengine) # absolute path is useful to open original files on local machine if(False): source_file = to_absolute_file_url(xml_filename) else: source_file = os.path.normpath(xml_filename) try: write_excel_sheets(source_file, excelwriter, data,nonempty_tables) excelwriter.close() except Exception as ex: traceback.print_exc() print(type(ex)) print(ex) pass finally: excelwriter = None print() def process_directory(xml_basedir, out_basedir, relative_sub_dir,toplevel_xml_only, dry_run): xml_dir = os.path.join(xml_basedir, relative_sub_dir) file_list = sorted(os.listdir(xml_dir)) for filename in file_list: if filename.endswith('.xml'): print("Processing", filename) process_one_file(out_basedir, relative_sub_dir, os.path.join(xml_dir,filename), dry_run) if toplevel_xml_only: return # No recursion into subdirs(e.g. for testing) # Recurse for filename in file_list: candidate_sub_dir = os.path.join(relative_sub_dir, filename) if os.path.isdir( os.path.join(xml_basedir, candidate_sub_dir)) : process_directory(xml_basedir, out_basedir, candidate_sub_dir,toplevel_xml_only, dry_run) def extract_xml_files_in_tar(tar_file, extract_dir): os.makedirs(extract_dir) extract_count = 0 for tarinfo in tar_file: if os.path.splitext(tarinfo.name)[1] == ".xml": #print(extract_dir, tarinfo.name) tar_file.extract( tarinfo, path = extract_dir) extract_count = extract_count + 1 return extract_count def archive_file_to_output_dir(archive_file): return os.path.splitext(archive_file)[0] + '-out' def archive_file_to_xml_dir(archive_file): return os.path.splitext(archive_file)[0] + '-xml' def lazy_extract_mbz(archive_source_file,expanded_archive_directory,skip_expanding_if_xml_files_found): has_xml_files = len( glob.glob( os.path.join(expanded_archive_directory,'*.xml') ) ) > 0 if has_xml_files and skip_expanding_if_xml_files_found: print("*** Reusing existing xml files in", expanded_archive_directory) return if os.path.isdir(expanded_archive_directory): print("*** Deleting existing files in", expanded_archive_directory) raise "Comment out this line if it is going to delete the correct directory" shutil.rmtree(expanded_archive_directory) with tarfile.open(archive_source_file, mode='r|*') as tf: print("*** Expanding",archive_source_file, "to", expanded_archive_directory) extract_count = extract_xml_files_in_tar(tf, expanded_archive_directory) print('***',extract_count,' xml files extracted') def process_xml_files(expanded_archive_directory,out_basedir,toplevel_xml_only,dry_run, anonid_output_csv): global anonid_df print("*** Source xml directory :", expanded_archive_directory) print("*** Output directory:", out_basedir) if not os.path.isdir(out_basedir): os.makedirs(out_basedir) process_directory(expanded_archive_directory, out_basedir,'.',toplevel_xml_only,dry_run) if anonid_output_csv: filepath = os.path.join(out_basedir,anonid_output_csv) print("Writing ",filepath,len(anonid_df.index),'rows') anonid_df.to_csv( filepath, index = None, header=True) print("*** Finished processing XML") ###Output _____no_output_____ ###Markdown Phase 2 - Aggregate Excel documents ###Code def list_xlsx_files_in_dir(xlsx_dir): xlsx_files = sorted(glob.glob(os.path.join(xlsx_dir,'*.xlsx'))) xlsx_files = [file for file in xlsx_files if os.path.basename(file)[0] != '~' ] return xlsx_files # Phase 2 - Aggregate multiple xlsx that are split across multiple course sections into a single Excel file def create_aggregate_sections_map(xlsx_dir): xlsx_files = list_xlsx_files_in_dir(xlsx_dir) sections_map = dict() for source_file in xlsx_files: path = source_file.split(os.path.sep) # TODO os.path.sep nameparts = path[-1].split('_') target = nameparts[:] subnumber = None if len(nameparts)>3 and nameparts[-3].isdigit(): subnumber = -3 # probably unnecessary as _ are removed from basename if len(nameparts)>2 and nameparts[-2].isdigit(): subnumber = -2 if not subnumber: continue target[subnumber] = 'ALLSECTIONS' key = (os.path.sep.join(path[:-1])) + os.path.sep+ ( '_'.join(target)) if key not in sections_map.keys(): sections_map[key] = [] sections_map[key].append(source_file) return sections_map # Phase 3 - Aggregate over common objects def create_aggregate_common_objects_map(xlsx_dir): xlsx_files = list_xlsx_files_in_dir(xlsx_dir) combined_map = dict() # path/_activities_workshop_ALLSECTIONS_logstores.xlsx will map to key=logstores.xlsx for source_file in xlsx_files: path = source_file.split(os.path.sep) # TODO os.path.sep nameparts = path[-1].split('_') target = nameparts[-1] if 'ALL_' == path[-1][:4]: continue # Guard against restarts key = (os.path.sep.join(path[:-1])) + os.path.sep+ ('ALL_' + target) if key not in combined_map.keys(): combined_map[key] = [] combined_map[key].append(source_file) return combined_map def rebase_row(row,rebase_map): if isinstance(row['PARENT_SHEET'] , str): return str(int(row['PARENT_ROW_INDEX']) + int(rebase_map[ row['XLSX_SOURCEFILE'] + '#' + row['PARENT_SHEET'] ])) else: return '' def check_no_open_Excel_documents_in_Excel(dir): # Excel creates temporary backup files that start with tilde when an Excel file is open in Excel if not os.path.isdir(dir): return open_files = glob.glob(os.path.join(dir,'~*.xlsx')) if len(open_files): print( 'Please close ' + '\n'.join(open_files) + '\nin directory\n'+dir) raise IOError('Excel files '+('\n'.join(open_files))+' are currently open in Excel') def aggregate_multiple_excel_files(source_filenames): allsheets = OrderedDict() rebase_map = {} # !! Poor sort - it assumes the integers are the same char length. Todo improve so that filename_5_ < filename_10_ for filename in sorted(source_filenames): print('Reading and aggregating sheets in' , filename) xl = pd.ExcelFile(filename) for sheet in xl.sheet_names: df = xl.parse(sheet) df['XLSX_SOURCEFILE'] = filename if sheet not in allsheets.keys(): allsheets[sheet] = df rebase_map[filename+'#'+sheet] = 0 else: row_offset = len(allsheets[sheet]) rebase_map[filename+'#'+sheet] = row_offset # We will need this to rebase parent values df[ df.columns[0] ] += row_offset allsheets[sheet] = allsheets[sheet].append(df, ignore_index =True, sort = False) xl.close() # print('rebase_map',rebase_map) # The row index of the parent no longer starts at zero print('Rebasing parent index entries in all sheets') for sheet in xl.sheet_names: df = allsheets[sheet] df['PARENT_ROW_INDEX'] = df.apply( lambda row: rebase_row( row,rebase_map), axis = 1) df.drop('XLSX_SOURCEFILE', axis = 1, inplace = True) return allsheets def write_aggregated_model(output_filename, allsheets, dry_run): print("Writing",output_filename) if dry_run: print("Dry run. Skipping ", allsheets.keys()) return excelwriter = pd.ExcelWriter(output_filename, engine = excelengine) try: print("Writing Sheets ", allsheets.keys()) for sheetname,df in allsheets.items(): df.to_excel(excelwriter, sheet_name = sheetname, index = 'INDEX') excelwriter.close() except Exception as ex: print(type(ex)) print(ex) pass finally: excelwriter.close() print('Writing finished\n') def move_old_files(xlsx_dir, filemap, subdirname,dry_run): xlsxpartsdir = os.path.join(xlsx_dir,subdirname) if dry_run: print('Dry run. Skipping move_old_files', filemap.items(),' to ', subdirname) return if not os.path.isdir(xlsxpartsdir): os.mkdir(xlsxpartsdir) for targetfile,sources in filemap.items(): for file in sources: dest=os.path.join(xlsxpartsdir, os.path.basename(file)) print(dest) os.rename(file, dest) def aggreate_over_sections(xlsx_dir,dry_run): sections_map= create_aggregate_sections_map(xlsx_dir) for targetfile,sources in sections_map.items(): allsheets = aggregate_multiple_excel_files(sources) write_aggregated_model(targetfile, allsheets, dry_run) move_old_files(xlsx_dir, sections_map,'_EACH_SECTION_', dry_run) def aggreate_over_common_objects(xlsx_dir,dry_run): combined_map = create_aggregate_common_objects_map(xlsx_dir) for targetfile,sources in combined_map.items(): allsheets = aggregate_multiple_excel_files(sources) write_aggregated_model(targetfile, allsheets, dry_run) move_old_files(xlsx_dir, combined_map, '_ALL_SECTIONS_', dry_run) def create_column_metalist(xlsx_dir,dry_run): xlsx_files = list_xlsx_files_in_dir(xlsx_dir) metalist = [] for filename in xlsx_files: print(filename) xl = pd.ExcelFile(filename) filename_local = os.path.basename(filename) for sheet in xl.sheet_names: df = xl.parse(sheet,nrows=1) for column_name in df.columns: metalist.append([filename_local,sheet,column_name]) xl.close() meta_df = pd.DataFrame(metalist, columns=['file','sheet','column']) meta_filename = os.path.join(xlsx_dir,'__All_COLUMNS.csv') if dry_run: print('Dry run. Skipping',meta_filename) else: meta_df.to_csv(meta_filename,sep='\t',index=False) ###Output _____no_output_____ ###Markdown Run ###Code # Configuration / settings here archive_source_file = None expanded_archive_directory = None skip_expanding_if_xml_files_found = True output_directory = None generate_missing_anonid = True geoip_datadir = None anonid_csv_file = None # A simple csv file with header 'userid','anonid' anonid_output_filename='userids_anonids.csv' # None if mapping should not be written delete_userids = False # User table will still have an 'id' column #relateduserids,realuserid andu userid columns in other tables are dropped # Internal testing options toplevel_xml_only = False # Don't process subdirectories. Occasionally useful for internal testing dry_run = False # Don't write Excel files. Occasionally useful for internal testing # Override the above here with the path to your mbz file (or expanded contents) archive_source_file = os.path.join('..','example.mbz') # ... or use expanded_archive_directory to point to an mbz file that has already been expanded into XML files anonid_csv_file = None # os.path.join('..', 'example-userid-to-anonid.csv') generate_missing_anonid = True delete_userids = True geoip_datadir= './geoip' # Some typical numbers: # A 400 student 15 week course with 16 sections # Created a 4GB mbz which expanded to 367 MB of xml. (the non-xml files were not extracted) # 30 total minutes processing time: 15 minutes to process xml, # 6 minutes for each aggegration step, 2 minutes for the column summary # Final output: 60MB of 'ALL_' Excel 29 files (largest: ALL_quiz.xlsx 35MB, ALL_logstores 10MB, ALL_forum 5MB) # The initial section output (moved to _EACH_SECTION_/) has 334 xlsx files, # which is futher reduced (see _ALL_SECTIONS_ ) 67 files. if not archive_source_file and not expanded_archive_directory: raise ValueError('Nothing to do: No mbz archive file or archive directory (with .xml files) specified') if archive_source_file and not os.path.isfile(archive_source_file) : raise ValueError('archive_source_file (' + os.path.abspath(archive_source_file) + ") does not refer to an existing archive") if not expanded_archive_directory: expanded_archive_directory = archive_file_to_xml_dir(archive_source_file) if not output_directory: if archive_source_file: output_directory = archive_file_to_output_dir(archive_source_file) else: raise ValueError('Please specify output_directory') if anonid_csv_file: print ('Using ' + anonid_csv_file + ' mapping') anonid_df = pd.read_csv(anonid_csv_file) validate_anonid_data(anonid_df) else: anonid_df = pd.DataFrame([{'userid':'-1','anonid':'example1234'}]) start_time = datetime.now() print(start_time) if(geoip_datadir and 'geoipv4_df' not in globals()): load_geoip_data(geoip_datadir) if archive_source_file: lazy_extract_mbz(archive_source_file,expanded_archive_directory,skip_expanding_if_xml_files_found) check_no_open_Excel_documents_in_Excel(output_directory) # Now the actual processing can begin process_xml_files(expanded_archive_directory,output_directory, toplevel_xml_only, dry_run, anonid_output_filename) # At this point we have 100s of Excel documents (one per xml file), each with several sheets (~ one per xml tag)! # We can aggregate over all of the course sections aggreate_over_sections(output_directory, dry_run) # Workshops, assignments etc have a similar structure, so we also aggregate over similar top-level objects aggreate_over_common_objects(output_directory, dry_run) create_column_metalist(output_directory, dry_run) end_time = datetime.now() print(end_time) print(end_time-start_time) ###Output _____no_output_____
analysis/histograms.ipynb
###Markdown HistogramsThis notebook demonstrates simple use of histograms in wn. Set up libraries and load exemplar dataset ###Code # load libraries import os import opendp.whitenoise.core as wn import numpy as np import math import statistics # establish data information data_path = os.path.join('.', 'data', 'PUMS_california_demographics_1000', 'data.csv') var_names = ["age", "sex", "educ", "race", "income", "married"] data = np.genfromtxt(data_path, delimiter=',', names=True) age = list(data[:]['age']) print("Dimension of dataset: " + str(data.shape)) print("Names of variables: " + str(data.dtype.names)) ###Output Dimension of dataset: (1000,) Names of variables: ('age', 'sex', 'educ', 'race', 'income', 'married') ###Markdown Creating DP Releases of HistogramsThe default method for generating a histogram in WhiteNoise is by releasing counts of each bin or category using the geometric mechanism. The geometric mechanism only returns integer values for any query, so resists some vulnerabilities of DP releases from floating point approximations (see Mironov 2012). It is also possible, however, to generate histograms from the more typical Laplace mechanism. We show both approaches below.Here we generate histograms on three types of variables:* A continuous variable, here `income`, where the set of numbers have to be divided into bins,* A boolean or dichotomous variable, here `sex`, that can only take on two values,* A categorical variable, here `education`, where there are distinct categories enumerated as strings.Note the education variable is coded in the data on a scale from 1 to 16, but we're leaving the coded values as strings throughout this notebook. ###Code income_edges = list(range(0, 100000, 10000)) education_categories = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16"] with wn.Analysis() as analysis: data = wn.Dataset(path = data_path, column_names = var_names) nsize = 1000 income_histogram = wn.dp_histogram( wn.to_int(data['income'], lower=0, upper=100), edges = income_edges, upper = nsize, null_value = 150, privacy_usage = {'epsilon': 0.5} ) income_prep = wn.histogram(wn.to_int(data['income'], lower=0, upper=100000), edges=income_edges, null_value =-1) income_histogram2 = wn.laplace_mechanism(income_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) sex_histogram = wn.dp_histogram( wn.to_bool(data['sex'], true_label="0"), upper = nsize, privacy_usage = {'epsilon': 0.5} ) sex_prep = wn.histogram(wn.to_bool(data['sex'], true_label="0"), null_value = True) sex_histogram2 = wn.laplace_mechanism(sex_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) education_histogram = wn.dp_histogram( data['educ'], categories = education_categories, null_value = "-1", privacy_usage = {'epsilon': 0.5} ) education_prep = wn.histogram(data['educ'], categories = education_categories, null_value = "-1") education_histogram2 = wn.laplace_mechanism(education_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) analysis.release() print("Income histogram Geometric DP release: " + str(income_histogram.value)) print("Income histogram Laplace DP release: " + str(income_histogram2.value)) print("Sex histogram Geometric DP release: " + str(sex_histogram.value)) print("Sex histogram Laplace DP release: " + str(sex_histogram2.value)) print("Education histogram Geometric DP release:" + str(education_histogram.value)) print("Education histogram Laplace DP release: " + str(education_histogram2.value)) ###Output Income histogram Geometric DP release: [278 196 96 103 65 62 53 104 39 85] Income histogram Laplace DP release: [295.3052913 186.53526817 123.29567384 100.85650317 60.21639407 47.01726179 40.39806265 19.93649819 16.99358144 75.37529966] Sex histogram Geometric DP release: [485 514] Sex histogram Laplace DP release: [486.63588064 539.19028398] Education histogram Geometric DP release:[ 24 9 25 5 40 53 53 37 207 19 167 59 178 23 32 18 6] Education histogram Laplace DP release: [ 32.99434939 18.3283286 41.24380174 10.64177579 17.71485788 16.44570654 35.4852772 54.55488846 197.43218538 59.72384568 169.34338544 75.37139662 179.65393207 57.39920629 19.23223424 5.08898451 9.42213613] ###Markdown We can see most obviously that the releases from the Geometric mechanism are integer counts, while the Laplace releases are floating point numbers.Below, we will quickly create histograms of the actual private data, for a point of comparison to our differentially private releases: ###Code import matplotlib.pyplot as plt data = np.genfromtxt(data_path, delimiter=',', names=True) income = list(data[:]['income']) sex = list(data[:]['sex']) education = list(data[:]['educ']) # An "interface" to matplotlib.axes.Axes.hist() method n_income, bins, patches = plt.hist(income, bins=list(range(0,110000,10000)), color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Income') plt.ylabel('Frequency') plt.title('True Dataset Income Distribution') plt.show() n_sex, bins, patches = plt.hist(sex, bins=[-0.5,0.5,1.5], color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Sex') plt.ylabel('Frequency') plt.title('True Dataset Sex Distribution') plt.show() n_educ, bins, patches = plt.hist(education, bins=list(range(1,19,1)), color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Education') plt.ylabel('Frequency') plt.title('True Dataset Education Distribution') plt.show() ###Output _____no_output_____ ###Markdown Below we can see the differentially private releases of these variables in shades of red, against the "true" private counts in green. ###Code import matplotlib.pyplot as plt colorseq = ["forestgreen", "indianred", "orange", "orangered", "orchid"] fig = plt.figure() ax = fig.add_axes([0,0,1,1]) plt.ylim([-100,500]) #inccat = ["10k","20k","30k","40k","50k","60k","70k","80k","90k","100k"] inccat = [10,20,30,40,50,60,70,80,90,100] width=3 inccat_left = [x + width for x in inccat] inccat_right = [x + 2*width for x in inccat] ax.bar(inccat, n_income, width=width, color=colorseq[0], label='True Value') ax.bar(inccat_left, income_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(inccat_right, income_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Income') plt.xlabel('Income, in thousands') plt.ylabel('Count') plt.show() fig = plt.figure() ax = fig.add_axes([0,0,1,1]) plt.ylim([0,800]) sexcat = [0,1] width = 0.2 sexcat_left = [x + width for x in sexcat] sexcat_right = [x + 2*width for x in sexcat] ax.bar(sexcat, n_sex, width=width, color=colorseq[0], label='True Value') ax.bar(sexcat_left, sex_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(sexcat_right, sex_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Sex') plt.ylabel('Count') plt.show() fig = plt.figure() ax = fig.add_axes([0,0,1,1]) edcat = list(range(1,18)) width = 0.25 edcat_left = [x + width for x in edcat] edcat_right = [x + 2*width for x in edcat] ax.bar(edcat, n_educ, width=width, color=colorseq[0], label='True Value') ax.bar(edcat_left, education_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(edcat_right, education_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Education') plt.xlabel('Educational Attainment Category') plt.ylabel('Count') plt.show() ###Output _____no_output_____ ###Markdown HistogramsThis notebook demonstrates simple use of histograms in sn. Set up libraries and load exemplar dataset ###Code # load libraries import os import opendp.smartnoise.core as sn import numpy as np import math import statistics # establish data information data_path = os.path.join('.', 'data', 'PUMS_california_demographics_1000', 'data.csv') var_names = ["age", "sex", "educ", "race", "income", "married"] data = np.genfromtxt(data_path, delimiter=',', names=True) age = list(data[:]['age']) print("Dimension of dataset: " + str(data.shape)) print("Names of variables: " + str(data.dtype.names)) ###Output Dimension of dataset: (1000,) Names of variables: ('age', 'sex', 'educ', 'race', 'income', 'married') ###Markdown Creating DP Releases of HistogramsThe default method for generating a histogram in SmartNoise is by releasing counts of each bin or category using the geometric mechanism. The geometric mechanism only returns integer values for any query, so resists some vulnerabilities of DP releases from floating point approximations (see Mironov 2012). It is also possible, however, to generate histograms from the more typical Laplace mechanism, if `protect_floating_point` is disabled. We show both approaches below.Here we generate histograms on three types of variables:* A continuous variable, here `income`, where the set of numbers have to be divided into bins,* A boolean or dichotomous variable, here `sex`, that can only take on two values,* A categorical variable, here `education`, where there are distinct categories enumerated as strings.Note the education variable is coded in the data on a scale from 1 to 16, but we're leaving the coded values as strings throughout this notebook. ###Code income_edges = list(range(0, 100000, 10000)) education_categories = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16"] with sn.Analysis(protect_floating_point=False) as analysis: data = sn.Dataset(path = data_path, column_names = var_names) nsize = 1000 income_histogram = sn.dp_histogram( sn.to_int(data['income'], lower=0, upper=100), edges = income_edges, upper = nsize, null_value = 150, privacy_usage = {'epsilon': 0.5} ) income_prep = sn.histogram(sn.to_int(data['income'], lower=0, upper=100000), edges=income_edges, null_value =-1) income_histogram2 = sn.laplace_mechanism(income_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) sex_histogram = sn.dp_histogram( sn.to_bool(data['sex'], true_label="0"), upper = nsize, privacy_usage = {'epsilon': 0.5} ) sex_prep = sn.histogram(sn.to_bool(data['sex'], true_label="0"), null_value = True) sex_histogram2 = sn.laplace_mechanism(sex_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) education_histogram = sn.dp_histogram( data['educ'], categories = education_categories, null_value = "-1", privacy_usage = {'epsilon': 0.5} ) education_prep = sn.histogram(data['educ'], categories = education_categories, null_value = "-1") education_histogram2 = sn.laplace_mechanism(education_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) analysis.release() print("Income histogram Geometric DP release: " + str(income_histogram.value)) print("Income histogram Laplace DP release: " + str(income_histogram2.value)) print("Sex histogram Geometric DP release: " + str(sex_histogram.value)) print("Sex histogram Laplace DP release: " + str(sex_histogram2.value)) print("Education histogram Geometric DP release:" + str(education_histogram.value)) print("Education histogram Laplace DP release: " + str(education_histogram2.value)) ###Output Income histogram Geometric DP release: [328 183 125 105 51 44 50 20 28 81] Income histogram Laplace DP release: [328.43439275 179.14630012 128.92510327 100.32336682 57.80148524 45.24249663 44.09401206 19.1875304 21.75572722 73.4805747 ] Sex histogram Geometric DP release: [490 517] Sex histogram Laplace DP release: [485.21478911 518.7216044 ] Education histogram Geometric DP release:[ 36 12 38 12 14 25 31 54 202 52 181 71 174 51 28 19 7] Education histogram Laplace DP release: [ 32.86182951 15.89411893 33.02623805 16.02961592 9.07691342 28.04433679 31.6049838 48.61812995 200.63166861 59.07016954 158.95639487 80.70888165 177.9660686 56.21650881 20.67678776 14.14151341 2.37179348] ###Markdown We can see most obviously that the releases from the Geometric mechanism are integer counts, while the Laplace releases are floating point numbers.Below, we will quickly create histograms of the actual private data, for a point of comparison to our differentially private releases: ###Code import matplotlib.pyplot as plt data = np.genfromtxt(data_path, delimiter=',', names=True) income = list(data[:]['income']) sex = list(data[:]['sex']) education = list(data[:]['educ']) # An "interface" to matplotlib.axes.Axes.hist() method n_income, bins, patches = plt.hist(income, bins=list(range(0,110000,10000)), color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Income') plt.ylabel('Frequency') plt.title('True Dataset Income Distribution') plt.show() n_sex, bins, patches = plt.hist(sex, bins=[-0.5,0.5,1.5], color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Sex') plt.ylabel('Frequency') plt.title('True Dataset Sex Distribution') plt.show() n_educ, bins, patches = plt.hist(education, bins=list(range(1,19,1)), color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Education') plt.ylabel('Frequency') plt.title('True Dataset Education Distribution') plt.show() ###Output _____no_output_____ ###Markdown Below we can see the differentially private releases of these variables in shades of red, against the "true" private counts in green. ###Code import matplotlib.pyplot as plt colorseq = ["forestgreen", "indianred", "orange", "orangered", "orchid"] fig = plt.figure() ax = fig.add_axes([0,0,1,1]) plt.ylim([-100,500]) #inccat = ["10k","20k","30k","40k","50k","60k","70k","80k","90k","100k"] inccat = [10,20,30,40,50,60,70,80,90,100] width=3 inccat_left = [x + width for x in inccat] inccat_right = [x + 2*width for x in inccat] ax.bar(inccat, n_income, width=width, color=colorseq[0], label='True Value') ax.bar(inccat_left, income_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(inccat_right, income_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Income') plt.xlabel('Income, in thousands') plt.ylabel('Count') plt.show() fig = plt.figure() ax = fig.add_axes([0,0,1,1]) plt.ylim([0,800]) sexcat = [0,1] width = 0.2 sexcat_left = [x + width for x in sexcat] sexcat_right = [x + 2*width for x in sexcat] ax.bar(sexcat, n_sex, width=width, color=colorseq[0], label='True Value') ax.bar(sexcat_left, sex_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(sexcat_right, sex_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Sex') plt.ylabel('Count') plt.show() fig = plt.figure() ax = fig.add_axes([0,0,1,1]) edcat = list(range(1,18)) width = 0.25 edcat_left = [x + width for x in edcat] edcat_right = [x + 2*width for x in edcat] ax.bar(edcat, n_educ, width=width, color=colorseq[0], label='True Value') ax.bar(edcat_left, education_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(edcat_right, education_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Education') plt.xlabel('Educational Attainment Category') plt.ylabel('Count') plt.show() ###Output _____no_output_____ ###Markdown Plot histograms ###Code import os import math import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import stats from IPython.display import display, HTML %matplotlib inline def parse_if_number(s): try: return float(s) except: return True if s=="true" else False if s=="false" else s if s else None def parse_ndarray(s): return np.fromstring(s, sep=' ') if s else None def get_file_name(name): return name.replace(':', '-') ###Output _____no_output_____ ###Markdown Config ###Code inputFile = 'data.csv' repetitionsCount = -1 # -1 = auto-detect factors = ['R', 'T', 'm', 'D'] # Plots histBinNum = 30 # Histograms histCenter = True # Center distribution plotSize = (10, 10) plotStyle = 'seaborn-whitegrid' # Save saveFigures = False # Filter scalars scalarsFilter = ['Floorplan.userCount'] # Filter histograms histFilter = ['Floorplan.copies:histogram', 'Floorplan.collisions:histogram', 'Floorplan.totalCollisions:histogram', 'Floorplan.msgsPerSlot:histogram'] histNames = [ ('Floorplan.copies:histogram', 'Number of copies received by each user in an hear window', 1), ('Floorplan.collisions:histogram', 'Number of collisions received by the users', 1), ('Floorplan.totalCollisions:histogram', 'Number of colliding messages received by the users in each slot', 1), ('Floorplan.msgsPerSlot:histogram', 'Number of messages sent in each slot', 1), ] ###Output _____no_output_____ ###Markdown Load scalars ###Code df = pd.read_csv('exported_data/' + inputFile, converters = { 'attrvalue': parse_if_number, 'binedges': parse_ndarray, 'binvalues': parse_ndarray, 'vectime': parse_ndarray, 'vecvalue': parse_ndarray, }) if repetitionsCount <= 0: # auto-detect repetitionsCount = int(df[df.attrname == 'repetition']['attrvalue'].max()) + 1 print('Repetitions:', repetitionsCount) scalars = df[(df.type == 'scalar') | ((df.type == 'itervar') & (df.attrname != 'TO')) | ((df.type == 'param') & (df.attrname == 'Floorplan.userCount')) | ((df.type == 'runattr') & (df.attrname == 'repetition'))] scalars = scalars.assign(qname = scalars.attrname.combine_first(scalars.module + '.' + scalars.name)) for index, row in scalars[scalars.type == 'itervar'].iterrows(): val = scalars.loc[index, 'attrvalue'] if isinstance(val, str) and not all(c.isdigit() for c in val): scalars.loc[index, 'attrvalue'] = eval(val) scalars.value = scalars.value.combine_first(scalars.attrvalue.astype('float64')) scalars_wide = scalars.pivot_table(index=['run'], columns='qname', values='value') scalars_wide.sort_values([*factors, 'repetition'], inplace=True) count = 0 for index in scalars_wide.index: config = count // repetitionsCount scalars_wide.loc[index, 'config'] = config count += 1 scalars_wide = scalars_wide[['config', 'repetition', *factors, *scalarsFilter]] # Computed factorsCount = len(factors) configsCount = len(scalars_wide)//repetitionsCount print('Configs:', configsCount) totalSims = configsCount*repetitionsCount display(HTML("<style>div.output_scroll { height: auto; max-height: 48em; }</style>")) pd.set_option('display.max_rows', totalSims) pd.set_option('display.max_columns', 100) if saveFigures: os.makedirs('figures', exist_ok=True) ###Output Configs: 16 ###Markdown Load histograms ###Code histograms = df[df.type == 'histogram'] histograms = histograms.assign(qname = histograms.module + '.' + histograms.name) histograms = histograms[histograms.qname.isin(histFilter)] for index in scalars_wide.index: r = index cfg = scalars_wide.loc[index, 'config'] rep = scalars_wide.loc[index, 'repetition'] histograms.loc[histograms.run == r, 'config'] = cfg histograms.loc[histograms.run == r, 'repetition'] = rep for histname, _, _ in histNames: histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binsize'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0][1] - histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0][0] histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binmin'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0].min() histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binmax'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0].max() histograms.sort_values(['config', 'repetition', 'qname'], inplace=True) for cfg in range(0, configsCount): for histname, _, _ in histNames: histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsizelcm'] = np.lcm.reduce(list(map(int, histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsize'].values.tolist()))) histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binminall'] = histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmin'].min() histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmaxall'] = histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmax'].max() histograms = histograms[['config', 'repetition', 'qname', 'binmin', 'binmax', 'binsize', 'binedges', 'binvalues', 'binminall', 'binmaxall', 'binsizelcm']] ###Output _____no_output_____ ###Markdown Compute means and ranges ###Code def get_values_for_bin(hist, low, high): edges = hist['binedges'].values[0] values = hist['binvalues'].values[0] inbin = [] lowidx = 0 highidx = 0 for edge in edges: if edge < low: lowidx += 1 if edge < high: highidx += 1 continue break minval = math.inf maxval = -math.inf for i in range(lowidx, highidx): if i > len(values) - 1: break inbin.append(values[i]) if values[i] < minval: minval = values[i] if values[i] > maxval: maxval = values[i] if len(inbin) == 0: return (minval, 0, maxval) return (minval, sum(inbin) / len(inbin), maxval) cols = ['config'] for histname, _, _ in histNames: name = histname[histname.index('.')+1:histname.index(':')] cols.append(name + 'Bins') cols.append(name + 'MeanValues') cols.append(name + 'LowValues') cols.append(name + 'HighValues') data = [] for cfg in range(0, configsCount): curdata = [cfg] for histname, _, stepMultiplier in histNames: binmin = int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binminall'].values[0]) binstep = int(stepMultiplier) * int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsizelcm'].values[0]) binmax = 1 + int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmaxall'].values[0]) bins = np.arange(binmin, binmax, binstep) totalSize = (binmax - binmin - 1)//binstep meanValues = np.zeros(totalSize) lowValues = np.full(totalSize, math.inf) highValues = np.full(totalSize, -math.inf) for rep in range(0, repetitionsCount): curHist = histograms[(histograms.config == cfg) & (histograms.qname == histname) & (histograms.repetition == rep)] num = 0 for binlow, binhigh in zip(range(binmin, binmax - 1, binstep), range(binmin + binstep, binmax + binstep, binstep)): values = get_values_for_bin(curHist, binlow, binhigh) if lowValues[num] > values[0]: lowValues[num] = values[0] meanValues[num] += values[1] if highValues[num] < values[2]: highValues[num] = values[2] num += 1 for i in range(0, len(meanValues)): meanValues[i] = meanValues[i] / repetitionsCount curdata.append(bins) curdata.append(meanValues) curdata.append(lowValues) curdata.append(highValues) data.append(curdata) plotdf = pd.DataFrame.from_records(data, columns=cols, index='config') ###Output _____no_output_____ ###Markdown Plots ###Code for cfg, hist in plotdf.iterrows(): print('Config ' + str(cfg)) display(scalars_wide.loc[(scalars_wide.repetition == 0) & (scalars_wide.config == cfg)][['config', *factors]]) for histName, histDesc, _ in histNames: name = histName[histName.index('.')+1:histName.index(':')] bins = hist[name + 'Bins'] means = hist[name + 'MeanValues'] lows = hist[name + 'LowValues'] highs = hist[name + 'HighValues'] bincenters = 0.5*(bins[1:]+bins[:-1]) ranges = [x for x in zip(lows, highs)] ranges = np.array(ranges).T plt.bar(bincenters, means, width=1, yerr=ranges, error_kw={'capsize': 3}) plt.title('Histogram for the ' + histDesc) plt.xlabel(name) if saveFigures: fig = plt.gcf() fig.savefig('figures/' + get_file_name(histName) + '-' + str(cfg) + '-perfplot.png') plt.show() print('#######################') print() ###Output Config 0 ###Markdown HistogramsThis notebook demonstrates simple use of histograms in sn. Set up libraries and load exemplar dataset ###Code # load libraries import os import opendp.smartnoise.core as sn import numpy as np import math import statistics # establish data information data_path = os.path.join('.', 'data', 'PUMS_california_demographics_1000', 'data.csv') var_names = ["age", "sex", "educ", "race", "income", "married"] data = np.genfromtxt(data_path, delimiter=',', names=True) age = list(data[:]['age']) print("Dimension of dataset: " + str(data.shape)) print("Names of variables: " + str(data.dtype.names)) ###Output Dimension of dataset: (1000,) Names of variables: ('age', 'sex', 'educ', 'race', 'income', 'married') ###Markdown Creating DP Releases of HistogramsThe default method for generating a histogram in SmartNoise is by releasing counts of each bin or category using the geometric mechanism. The geometric mechanism only returns integer values for any query, so resists some vulnerabilities of DP releases from floating point approximations (see Mironov 2012). It is also possible, however, to generate histograms from the more typical Laplace mechanism, if `protect_floating_point` is disabled. We show both approaches below.Here we generate histograms on three types of variables:* A continuous variable, here `income`, where the set of numbers have to be divided into bins,* A boolean or dichotomous variable, here `sex`, that can only take on two values,* A categorical variable, here `education`, where there are distinct categories enumerated as strings.Note the education variable is coded in the data on a scale from 1 to 16, but we're leaving the coded values as strings throughout this notebook. ###Code income_edges = list(range(0, 100000, 10000)) education_categories = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16"] with sn.Analysis(protect_floating_point=False) as analysis: data = sn.Dataset(path = data_path, column_names = var_names) nsize = 1000 income_histogram = sn.dp_histogram( sn.to_int(data['income'], lower=0, upper=100), edges = income_edges, upper = nsize, null_value = 150, privacy_usage = {'epsilon': 0.5} ) income_prep = sn.histogram(sn.to_int(data['income'], lower=0, upper=100000), edges=income_edges, null_value =-1) income_histogram2 = sn.laplace_mechanism(income_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) sex_histogram = sn.dp_histogram( sn.to_bool(data['sex'], true_label="0"), upper = nsize, privacy_usage = {'epsilon': 0.5} ) sex_prep = sn.histogram(sn.to_bool(data['sex'], true_label="0"), null_value = True) sex_histogram2 = sn.laplace_mechanism(sex_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) education_histogram = sn.dp_histogram( data['educ'], categories = education_categories, null_value = "-1", privacy_usage = {'epsilon': 0.5} ) education_prep = sn.histogram(data['educ'], categories = education_categories, null_value = "-1") education_histogram2 = sn.laplace_mechanism(education_prep, privacy_usage={"epsilon": 0.5, "delta": .000001}) analysis.release() print("Income histogram Geometric DP release: " + str(income_histogram.value)) print("Income histogram Laplace DP release: " + str(income_histogram2.value)) print("Sex histogram Geometric DP release: " + str(sex_histogram.value)) print("Sex histogram Laplace DP release: " + str(sex_histogram2.value)) print("Education histogram Geometric DP release:" + str(education_histogram.value)) print("Education histogram Laplace DP release: " + str(education_histogram2.value)) ###Output Income histogram Geometric DP release: [328 183 125 105 51 44 50 20 28 81] Income histogram Laplace DP release: [328.43439275 179.14630012 128.92510327 100.32336682 57.80148524 45.24249663 44.09401206 19.1875304 21.75572722 73.4805747 ] Sex histogram Geometric DP release: [490 517] Sex histogram Laplace DP release: [485.21478911 518.7216044 ] Education histogram Geometric DP release:[ 36 12 38 12 14 25 31 54 202 52 181 71 174 51 28 19 7] Education histogram Laplace DP release: [ 32.86182951 15.89411893 33.02623805 16.02961592 9.07691342 28.04433679 31.6049838 48.61812995 200.63166861 59.07016954 158.95639487 80.70888165 177.9660686 56.21650881 20.67678776 14.14151341 2.37179348] ###Markdown We can see most obviously that the releases from the Geometric mechanism are integer counts, while the Laplace releases are floating point numbers.Below, we will quickly create histograms of the actual private data, for a point of comparison to our differentially private releases: ###Code import matplotlib.pyplot as plt data = np.genfromtxt(data_path, delimiter=',', names=True) income = list(data[:]['income']) sex = list(data[:]['sex']) education = list(data[:]['educ']) # An "interface" to matplotlib.axes.Axes.hist() method n_income, bins, patches = plt.hist(income, bins=list(range(0,110000,10000)), color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Income') plt.ylabel('Frequency') plt.title('True Dataset Income Distribution') plt.show() n_sex, bins, patches = plt.hist(sex, bins=[-0.5,0.5,1.5], color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Sex') plt.ylabel('Frequency') plt.title('True Dataset Sex Distribution') plt.show() n_educ, bins, patches = plt.hist(education, bins=list(range(1,19,1)), color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y', alpha=0.75) plt.xlabel('Education') plt.ylabel('Frequency') plt.title('True Dataset Education Distribution') plt.show() ###Output _____no_output_____ ###Markdown Below we can see the differentially private releases of these variables in shades of red, against the "true" private counts in green. ###Code import matplotlib.pyplot as plt colorseq = ["forestgreen", "indianred", "orange", "orangered", "orchid"] fig = plt.figure() ax = fig.add_axes([0,0,1,1]) plt.ylim([-100,500]) #inccat = ["10k","20k","30k","40k","50k","60k","70k","80k","90k","100k"] inccat = [10,20,30,40,50,60,70,80,90,100] width=3 inccat_left = [x + width for x in inccat] inccat_right = [x + 2*width for x in inccat] ax.bar(inccat, n_income, width=width, color=colorseq[0], label='True Value') ax.bar(inccat_left, income_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(inccat_right, income_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Income') plt.xlabel('Income, in thousands') plt.ylabel('Count') plt.show() fig = plt.figure() ax = fig.add_axes([0,0,1,1]) plt.ylim([0,800]) sexcat = [0,1] width = 0.2 sexcat_left = [x + width for x in sexcat] sexcat_right = [x + 2*width for x in sexcat] ax.bar(sexcat, n_sex, width=width, color=colorseq[0], label='True Value') ax.bar(sexcat_left, sex_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(sexcat_right, sex_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Sex') plt.ylabel('Count') plt.show() fig = plt.figure() ax = fig.add_axes([0,0,1,1]) edcat = list(range(1,18)) width = 0.25 edcat_left = [x + width for x in edcat] edcat_right = [x + 2*width for x in edcat] ax.bar(edcat, n_educ, width=width, color=colorseq[0], label='True Value') ax.bar(edcat_left, education_histogram.value, width=width, color=colorseq[1], label='DP Geometric') ax.bar(edcat_right, education_histogram2.value, width=width, color=colorseq[2], label='DP Laplace') ax.legend() plt.title('Histogram of Education') plt.xlabel('Educational Attainment Category') plt.ylabel('Count') plt.show() ###Output _____no_output_____
qiskit/advanced/aqua/finance/data_providers/time_series.ipynb
###Markdown ![qiskit_header.png](attachment:qiskit_header.png) _*Qiskit Finance: Loading and Processing Stock-Market Time-Series Data*_The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.*** ContributorsJakub Marecek[1] Affiliation- [1]IBMQ IntroductionAcross many problems in finance, one starts with time series. Here, we showcase how to generate pseudo-random time-series, download actual stock-market time series from a number of common providers, and how to compute time-series similarity measures. ###Code %matplotlib inline from qiskit.finance.data_providers import * import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider(tickers=["TICKER1", "TICKER2"], start = datetime.datetime(2016, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can run a variety of algorithms on those to aggregate the data. Notably, you can compute the covariance matrix or a variant, which would consider alternative time-series similarity measures based on dynamic time warping (DTW). In DTW, changes that vary in speed, e.g., one stock's price following another stock's price with a small delay, can be accommodated. ###Code means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output Means: [16.66722941 72.03026566] A time-series similarity measure: [[1.0000000e+00 6.2284804e-04] [6.2284804e-04 1.0000000e+00]] ###Markdown If you wish, you can look into the underlying pseudo-random time-series using. Please note that the private class members (starting with underscore) may change in future releases of Qiskit. ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) ###Output The underlying evolution of stock prices: ###Markdown Clearly, you can adapt the number and names of tickers and the range of dates: ###Code data = RandomDataProvider(tickers=["CompanyA", "CompanyB", "CompanyC"], start = datetime.datetime(2015, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown Access to closing-price time-seriesWhile the access to real-time data usually requires a payment, it is possible to access historical (adjusted) closing prices via Wikipedia and Quandlfree of charge, following registration at:https://www.quandl.com/?modal=registerIn the code below, one needs to specify actual tickers of actual NASDAQissues and the access token you obtain from Quandl; by running the code below, you agree to the Quandl terms and conditions, including a liability waiver.Notice that at least two tickers are required for the computationof covariance and time-series matrices, but hundreds of tickers may go beyond the fair usage limits of Quandl. ###Code stocks = ["REPLACEME1", "REPLACEME2"] wiki = WikipediaDataProvider( token = "REPLACEME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,30)) wiki.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can again compute the covariance matrix or its DTW variants. ###Code if wiki._n <= 1: raise Exception("Not enough data to plot covariance or time-series similarity. Please use at least two tickers.") rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output _____no_output_____ ###Markdown If you wish, you can look into the underlying time-series using: ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) ###Output _____no_output_____ ###Markdown [Optional] Setup token to access recent, fine-grained time-seriesIf you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues. If you don't have NASDAQ Data on Demand license, you can contact NASDAQ (cf. https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html) to obtain a trial or paid license.If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. To assure the security of the connection, you should also have your own means of validating NASDAQ's certificates. The DataOnDemandProvider constructor has an optional argument `verify`, which can be `None` or a string or a boolean. If it is `None`, certify certificates will be used (default). If verify is a string, it should be pointing to a certificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look. ###Code from qiskit.finance.data_providers.data_on_demand_provider import StockMarket try: nasdaq = DataOnDemandProvider(token = "REPLACE-ME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,2)) nasdaq.run() nasdaq.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown Another major vendor of stock market data is Exchange Data International (EDI), whose API can be used to query over 100 emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. See:https://www.exchange-data.com/pricing-data/adjusted-prices.phpexchange-coveragefor an overview of the coverage.The access again requires a valid access token to replace REPLACE-ME below. The token can be obtained on a trial or paid-for basis at:https://www.quandl.com/In the following example, you need to replace TICKER1 and TICKER2 with valid tickers at the London Stock Exchange. ###Code from qiskit.finance.data_providers.exchangedataprovider import StockMarket try: lse = ExchangeDataProvider(token = "REPLACE-ME", tickers = ["TICKER1", "TICKER2"], stockmarket = StockMarket.LONDON, start = datetime.datetime(2019,1,1), end = datetime.datetime(2019,1,30)) lse.run() lse.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown For the actual use of the data, please see the portfolio_optimization or portfolio_diversification notebooks. ###Code import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____ ###Markdown Trusted Notebook" align="middle"> _*Qiskit Finance: Loading and Processing Stock-Market Time-Series Data*_The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.*** ContributorsJakub Marecek[1] Affiliation- [1]IBMQ IntroductionAcross many problems in finance, one starts with time series. Here, we showcase how to generate pseudo-random time-series, download actual stock-market time series from a number of common providers, and how to compute time-series similarity measures. ###Code %matplotlib inline from qiskit.aqua.translators.data_providers import * import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider(tickers=["TICKER1", "TICKER2"], start = datetime.datetime(2016, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can run a variety of algorithms on those to aggregate the data. Notably, you can compute the covariance matrix or a variant, which would consider alternative time-series similarity measures based on dynamic time warping (DTW). In DTW, changes that vary in speed, e.g., one stock's price following another stock's price with a small delay, can be accommodated. ###Code means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output Means: [16.66722941 72.03026566] A time-series similarity measure: [[1.0000000e+00 6.2284804e-04] [6.2284804e-04 1.0000000e+00]] ###Markdown If you wish, you can look into the underlying pseudo-random time-series using. Please note that the private class members (starting with underscore) may change in future releases of Qiskit. ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) ###Output The underlying evolution of stock prices: ###Markdown Clearly, you can adapt the number and names of tickers and the range of dates: ###Code data = RandomDataProvider(tickers=["CompanyA", "CompanyB", "CompanyC"], start = datetime.datetime(2015, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown Access to closing-price time-seriesWhile the access to real-time data usually requires a payment, it is possible to access historical (adjusted) closing prices via Wikipedia and Quandlfree of charge, following registration at:https://www.quandl.com/?modal=registerIn the code below, one needs to specify actual tickers of actual NASDAQissues and the access token you obtain from Quandl; by running the code below, you agree to the Quandl terms and conditions, including a liability waiver.Notice that at least two tickers are required for the computationof covariance and time-series matrices, but hundreds of tickers may go beyond the fair usage limits of Quandl. ###Code stocks = ["REPLACEME1", "REPLACEME2"] wiki = WikipediaDataProvider( token = "REPLACEME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,30)) wiki.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can again compute the covariance matrix or its DTW variants. ###Code if wiki._n <= 1: raise Exception("Not enough data to plot covariance or time-series similarity. Please use at least two tickers.") rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output _____no_output_____ ###Markdown If you wish, you can look into the underlying time-series using: ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) ###Output _____no_output_____ ###Markdown [Optional] Setup token to access recent, fine-grained time-seriesIf you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues. If you don't have NASDAQ Data on Demand license, you can contact NASDAQ (cf. https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html) to obtain a trial or paid license.If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. To assure the security of the connection, you should also have your own means of validating NASDAQ's certificates. The DataOnDemandProvider constructor has an optional argument `verify`, which can be `None` or a string or a boolean. If it is `None`, certify certificates will be used (default). If verify is a string, it should be pointing to a certificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look. ###Code from qiskit.aqua.translators.data_providers.data_on_demand_provider import StockMarket try: nasdaq = DataOnDemandProvider(token = "REPLACE-ME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,2)) nasdaq.run() nasdaq.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown Another major vendor of stock market data is Exchange Data International (EDI), whose API can be used to query over 100 emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. See:https://www.exchange-data.com/pricing-data/adjusted-prices.phpexchange-coveragefor an overview of the coverage.The access again requires a valid access token to replace REPLACE-ME below. The token can be obtained on a trial or paid-for basis at:https://www.quandl.com/In the following example, you need to replace TICKER1 and TICKER2 with valid tickers at the London Stock Exchange. ###Code from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket try: lse = ExchangeDataProvider(token = "REPLACE-ME", tickers = ["TICKER1", "TICKER2"], stockmarket = StockMarket.LONDON, start = datetime.datetime(2019,1,1), end = datetime.datetime(2019,1,30)) lse.run() lse.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown For the actual use of the data, please see the portfolio_optimization or portfolio_diversification notebooks. ###Code import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____ ###Markdown Trusted Notebook" align="middle"> _*Qiskit Finance: Loading and Processing Stock-Market Time-Series Data*_The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.*** ContributorsJakub Marecek[1] Affiliation- [1]IBMQ IntroductionAcross many problems in finance, one starts with time series. Here, we showcase how to generate pseudo-random time-series, download actual stock-market time series from a number of common providers, and how to compute time-series similarity measures. ###Code %matplotlib inline from qiskit.aqua.translators.data_providers import * import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider(tickers=["TICKER1", "TICKER2"], start = datetime.datetime(2016, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can run a variety of algorithms on those to aggregate the data. Notably, you can compute the covariance matrix or a variant, which would consider alternative time-series similarity measures based on dynamic time warping (DTW). In DTW, changes that vary in speed, e.g., one stock's price following another stock's price with a small delay, can be accommodated. ###Code means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output Means: [16.66722941 72.03026566] A time-series similarity measure: [[1.0000000e+00 6.2284804e-04] [6.2284804e-04 1.0000000e+00]] ###Markdown If you wish, you can look into the underlying pseudo-random time-series using. Please note that the private class members (starting with underscore) may change in future releases of Qiskit. ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) ###Output The underlying evolution of stock prices: ###Markdown Clearly, you can adapt the number and names of tickers and the range of dates: ###Code data = RandomDataProvider(tickers=["CompanyA", "CompanyB", "CompanyC"], start = datetime.datetime(2015, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown Access to closing-price time-seriesWhile the access to real-time data usually requires a payment, it is possible to access historical (adjusted) closing prices via Wikipedia and Quandlfree of charge, following registration at:https://www.quandl.com/?modal=registerIn the code below, one needs to specify actual tickers of actual NASDAQissues and the access token you obtain from Quandl; by running the code below, you agree to the Quandl terms and conditions, including a liability waiver.Notice that at least two tickers are required for the computationof covariance and time-series matrices, but hundreds of tickers may go beyond the fair usage limits of Quandl. ###Code stocks = ["REPLACEME1", "REPLACEME2"] wiki = WikipediaDataProvider( token = "REPLACEME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,30)) wiki.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can again compute the covariance matrix or its DTW variants. ###Code if wiki._n <= 1: raise Exception("Not enough data to plot covariance or time-series similarity. Please use at least two tickers.") rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output _____no_output_____ ###Markdown If you wish, you can look into the underlying time-series using: ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) ###Output _____no_output_____ ###Markdown [Optional] Setup token to access recent, fine-grained time-seriesIf you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues. If you don't have NASDAQ Data on Demand license, you can contact NASDAQ (cf. https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html) to obtain a trial or paid license.If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. To assure the security of the connection, you should also have your own means of validating NASDAQ's certificates. DataOnDemandProvider constructor has an optional argument verify, which can be None or a string or a boolean. If it is None, certifi certificates will be used (default). If verify is a string, it should be poiting to a cerfificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look. ###Code from qiskit.aqua.translators.data_providers.data_on_demand_provider import StockMarket try: nasdaq = DataOnDemandProvider(token = "REPLACE-ME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,2)) nasdaq.run() nasdaq.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown Another major vendor of stock market data is Exchange Data International (EDI), whose API can be used to query over 100 emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. See:https://www.exchange-data.com/pricing-data/adjusted-prices.phpexchange-coveragefor an overview of the coverage.The access again requires a valid access token to replace REPLACE-ME below. The token can be obtained on a trial or paid-for basis at:https://www.quandl.com/In the following example, you need to replace TICKER1 and TICKER2 with valid tickers at the London Stock Exchange. ###Code from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket try: lse = ExchangeDataProvider(token = "REPLACE-ME", tickers = ["TICKER1", "TICKER2"], stockmarket = StockMarket.LONDON, start = datetime.datetime(2019,1,1), end = datetime.datetime(2019,1,30)) lse.run() lse.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown For the actual use of the data, please see the portfolio_optimization or portfolio_diversification notebooks. ###Code import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____ ###Markdown Trusted Notebook" align="middle"> _*Qiskit Finance: Loading and Processing Stock-Market Time-Series Data*_The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.*** ContributorsJakub Marecek[1] Affiliation- [1]IBMQ IntroductionAcross many problems in finance, one starts with time series. Here, we showcase how to generate pseudo-random time-series, download actual stock-market time series from a number of common providers, and how to compute time-series similarity measures. ###Code %matplotlib inline from qiskit.aqua.translators.data_providers import * import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider(tickers=["TICKER1", "TICKER2"], start = datetime.datetime(2016, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can run a variety of algorithms on those to aggregate the data. Notably, you can compute the covariance matrix or a variant, which would consider alternative time-series similarity measures based on dynamic time warping (DTW). In DTW, changes that vary in speed, e.g., one stock's price following another stock's price with a small delay, can be accommodated. ###Code means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output Means: [16.66722941 72.03026566] A time-series similarity measure: [[1.0000000e+00 6.2284804e-04] [6.2284804e-04 1.0000000e+00]] ###Markdown If you wish, you can look into the underlying pseudo-random time-series using. Please note that the private class members (starting with underscore) may change in future releases of Qiskit. ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) ###Output The underlying evolution of stock prices: ###Markdown Clearly, you can adapt the number and names of tickers and the range of dates: ###Code data = RandomDataProvider(tickers=["CompanyA", "CompanyB", "CompanyC"], start = datetime.datetime(2015, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown Access to closing-price time-seriesWhile the access to real-time data usually requires a payment, it is possible to access historical (adjusted) closing prices via Wikipedia and Quandlfree of charge, following registration at:https://www.quandl.com/?modal=registerIn the code below, one needs to specify actual tickers of actual NASDAQissues and the access token you obtain from Quandl; by running the code below, you agree to the Quandl terms and conditions, including a liability waiver.Notice that at least two tickers are required for the computationof covariance and time-series matrices, but hundreds of tickers may go beyond the fair usage limits of Quandl. ###Code stocks = ["REPLACEME1", "REPLACEME2"] wiki = WikipediaDataProvider( token = "REPLACEME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,30)) wiki.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can again compute the covariance matrix or its DTW variants. ###Code if wiki._n <= 1: raise Exception("Not enough data to plot covariance or time-series similarity. Please use at least two tickers.") rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output _____no_output_____ ###Markdown If you wish, you can look into the underlying time-series using: ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) ###Output _____no_output_____ ###Markdown [Optional] Setup token to access recent, fine-grained time-seriesIf you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues. If you don't have NASDAQ Data on Demand license, you can contact NASDAQ (cf. https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html) to obtain a trial or paid license.If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. To assure the security of the connection, you should also have your own means of validating NASDAQ's certificates. DataOnDemandProvider constructor has an optional argument verify, which can be None or a string or a boolean. If it is None, certifi certificates will be used (default). If verify is a string, it should be poiting to a cerfificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look. ###Code from qiskit.aqua.translators.data_providers.data_on_demand_provider import StockMarket try: nasdaq = DataOnDemandProvider(token = "REPLACE-ME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,2)) nasdaq.run() nasdaq.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown Another major vendor of stock market data is Exchange Data International (EDI), whose API can be used to query over 100 emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. See:https://www.exchange-data.com/pricing-data/adjusted-prices.phpexchange-coveragefor an overview of the coverage.The access again requires a valid access token to replace REPLACE-ME below. The token can be obtained on a trial or paid-for basis at:https://www.quandl.com/In the following example, you need to replace TICKER1 and TICKER2 with valid tickers at the London Stock Exchange. ###Code from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket try: lse = ExchangeDataProvider(token = "REPLACE-ME", tickers = ["TICKER1", "TICKER2"], stockmarket = StockMarket.LONDON, start = datetime.datetime(2019,1,1), end = datetime.datetime(2019,1,30)) lse.run() lse.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown ![qiskit_header.png](attachment:qiskit_header.png) Qiskit Finance: Loading and Processing Stock-Market Time-Series Data IntroductionAcross many problems in finance, one starts with time series. Here, we showcase how to generate pseudo-random time-series, download actual stock-market time series from a number of common providers, and how to compute time-series similarity measures. ###Code %matplotlib inline from qiskit.aqua.translators.data_providers import * import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import datetime import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() data = RandomDataProvider(tickers=["TICKER1", "TICKER2"], start = datetime.datetime(2016, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can run a variety of algorithms on those to aggregate the data. Notably, you can compute the covariance matrix or a variant, which would consider alternative time-series similarity measures based on dynamic time warping (DTW). In DTW, changes that vary in speed, e.g., one stock's price following another stock's price with a small delay, can be accommodated. ###Code means = data.get_mean_vector() print("Means:") print(means) rho = data.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = data.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output Means: [16.66722941 72.03026566] A time-series similarity measure: [[1.0000000e+00 6.2284804e-04] [6.2284804e-04 1.0000000e+00]] ###Markdown If you wish, you can look into the underlying pseudo-random time-series using. Please note that the private class members (starting with underscore) may change in future releases of Qiskit. ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(data._tickers): print(s) print(data._data[cnt]) ###Output The underlying evolution of stock prices: ###Markdown Clearly, you can adapt the number and names of tickers and the range of dates: ###Code data = RandomDataProvider(tickers=["CompanyA", "CompanyB", "CompanyC"], start = datetime.datetime(2015, 1, 1), end = datetime.datetime(2016, 1, 30), seed = 1) data.run() for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown Access to closing-price time-seriesWhile the access to real-time data usually requires a payment, it is possible to access historical (adjusted) closing prices via Wikipedia and Quandlfree of charge, following registration at:https://www.quandl.com/?modal=registerIn the code below, one needs to specify actual tickers of actual NASDAQissues and the access token you obtain from Quandl; by running the code below, you agree to the Quandl terms and conditions, including a liability waiver.Notice that at least two tickers are required for the computationof covariance and time-series matrices, but hundreds of tickers may go beyond the fair usage limits of Quandl. ###Code stocks = ["REPLACEME1", "REPLACEME2"] wiki = WikipediaDataProvider( token = "REPLACEME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,30)) wiki.run() ###Output _____no_output_____ ###Markdown Once the data are loaded, you can again compute the covariance matrix or its DTW variants. ###Code if wiki._n <= 1: raise Exception("Not enough data to plot covariance or time-series similarity. Please use at least two tickers.") rho = wiki.get_similarity_matrix() print("A time-series similarity measure:") print(rho) plt.imshow(rho) plt.show() cov = wiki.get_covariance_matrix() print("A covariance matrix:") print(cov) plt.imshow(cov) plt.show() ###Output _____no_output_____ ###Markdown If you wish, you can look into the underlying time-series using: ###Code print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): plt.plot(wiki._data[cnt], label=s) plt.legend() plt.xticks(rotation=90) plt.show() for (cnt, s) in enumerate(stocks): print(s) print(wiki._data[cnt]) ###Output _____no_output_____ ###Markdown [Optional] Setup token to access recent, fine-grained time-seriesIf you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues. If you don't have NASDAQ Data on Demand license, you can contact NASDAQ (cf. https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html) to obtain a trial or paid license.If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. To assure the security of the connection, you should also have your own means of validating NASDAQ's certificates. The DataOnDemandProvider constructor has an optional argument `verify`, which can be `None` or a string or a boolean. If it is `None`, certify certificates will be used (default). If verify is a string, it should be pointing to a certificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look. ###Code from qiskit.aqua.translators.data_providers.data_on_demand_provider import StockMarket try: nasdaq = DataOnDemandProvider(token = "REPLACE-ME", tickers = stocks, stockmarket = StockMarket.NASDAQ, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,2)) nasdaq.run() nasdaq.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown Another major vendor of stock market data is Exchange Data International (EDI), whose API can be used to query over 100 emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. See:https://www.exchange-data.com/pricing-data/adjusted-prices.phpexchange-coveragefor an overview of the coverage.The access again requires a valid access token to replace REPLACE-ME below. The token can be obtained on a trial or paid-for basis at:https://www.quandl.com/In the following example, you need to replace TICKER1 and TICKER2 with valid tickers at the London Stock Exchange. ###Code from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket try: lse = ExchangeDataProvider(token = "REPLACE-ME", tickers = ["TICKER1", "TICKER2"], stockmarket = StockMarket.LONDON, start = datetime.datetime(2019,1,1), end = datetime.datetime(2019,1,30)) lse.run() lse.plot() except QiskitFinanceError as e: print(e) print("You need to replace REPLACE-ME with a valid token.") ###Output _____no_output_____ ###Markdown For the actual use of the data, please see the portfolio_optimization or portfolio_diversification notebooks. ###Code import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____
week_5/LSTM.ipynb
###Markdown В чем заключаются недостатки полносвязных сетей?* невозможность улавливать временные закономерности в контексте предыдущих точек (архитектурное ограничение)* фиксированный размер входных данных* фиксированный размер выходных данных Область применимости рекуретных сетей для задачи анализа временных рядов* большое количество экзогенных признаков, имеющих сложную нелинейную зависимость с целевым рядом* очень сложная временная структура имеющая наложение разных сезонных и цикличных паттернов* ряды с часто меняющимся паттерном, или большим количеством аномалий* когда есть необходимость в нефиксированной длине входных и выходных данных (например многомерные ряды, где для разных компонент хочется предоставить разное количество лагов) Особенности подготовки данных - необходима нормализация данных, иначе сеть будет плохо сходиться и медленно обучаться. ###Code import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler data = np.array(range(0, 100, 10)).reshape(-1, 1) scaler = MinMaxScaler((0, 1)) scaler.fit(data) transformed = scaler.transform(data) transformed inverse = scaler.inverse_transform(transformed) inverse ###Output _____no_output_____ ###Markdown Особенность подготвки данных - обработка последовательностей разной длины. ###Code from keras.preprocessing.sequence import pad_sequences sequences = [ [1, 2, 3, 4], [3, 4, 5], [5, 6], [3] ] pad_sequences(sequences, padding='pre') pad_sequences(sequences, padding='post') pad_sequences(sequences, maxlen=2) pad_sequences(sequences, maxlen=2, truncating='post') ###Output _____no_output_____ ###Markdown Какие архитектуры lstm нас интересуют в контексте временных рядов?* one-to-one - предсказание следующей точки по предыдущей - нет* one-to-many - предсказание следующих N точeк про предыдущей - нет* many-to-one - one-step-ahead предсказание - в некоторой степени* many-to-many - предсказание вектора из следующих m точек по предыдущим n точкам - наибольший интерес Простая LSTM сеть ###Code from keras.models import Sequential from keras.layers import LSTM, Dense ts = dataset['daily-min-temperatures.csv'] ts.plot(figsize=(15, 5)) def transform_into_matrix(ts: pd.Series, num_lags: int) -> Tuple[np.array]: """ Transforms time series into lags matrix to allow applying supervised learning algorithms Parameters ------------ ts Time series to transform num_lags Number of lags to use Returns -------- train, test: np.arrays of shapes (ts-num_lags, num_lags), (num_lags,) """ ts_values = ts.values data = {} for i in range(num_lags + 1): data[f'lag_{num_lags - i}'] = np.roll(ts_values, -i) lags_matrix = pd.DataFrame(data)[:-num_lags] lags_matrix.index = ts.index[num_lags:] return lags_matrix.drop('lag_0', axis=1).values, lags_matrix['lag_0'].values NUM_LAGS = 14 X, y = transform_into_matrix(ts, NUM_LAGS) X[0] X = X.reshape((X.shape[0], X.shape[1], 1)) X[0] split_idx = int(len(X)*0.8) X_train, X_test = X[:split_idx], X[split_idx:] y_train, y_test = y[:split_idx], y[split_idx:] model = Sequential() model.add(LSTM(50, activation='relu', input_shape=(NUM_LAGS, 1))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') model.fit(X, y, epochs=100) y_pred = model.predict(X_test) pd.Series(y_test.flatten())[-50:].plot() pd.Series(y_pred.flatten())[-50:].plot() ### данный результат на самом деле не сильно лучше наивного предсказания from sklearn.metrics import mean_squared_error as mse mse(y_test.flatten(), y_pred.flatten()) ###Output _____no_output_____ ###Markdown Stacked LSTM Добавьте дополнительные скрытые слои в сеть (используйте return_sequences=True) и сравните качество ###Code model = Sequential() # your code here model.compile(optimizer='adam', loss='mse') model.fit(X_train, y_train, epochs=100, verbose=0) y_pred = model.predict(X_test) pd.Series(y_test.flatten())[-50:].plot() pd.Series(y_pred.flatten())[-50:].plot() ###Output _____no_output_____ ###Markdown Bidirectional LSTM Сделаем LSTM слой сети Bidirectional при помощи доп слоя Biderectional и сравним качество ###Code from keras.layers import Bidirectional model = Sequential() # your code here model.compile(optimizer='adam', loss='mse') model.fit(X_train, y_train, epochs=10, verbose=0) y_pred = model.predict(X_test) ###Output _____no_output_____ ###Markdown Seq2Seq LSTM - когда нужно сделать предсказание на несколько точек вперед Подготовим данные ###Code from typing import Tuple def transform_ts_into_matrix(ts: pd.Series, num_lags_in: int, num_lags_out: int) -> Tuple[np.array, np.array]: """ Данная функция должна пройтись скользящим окном по временному ряду и для каждых num_lags_in точек в качестве признаков собрать num_lags_out следующих точек в качестве таргета. Вернуть два np.array массива из X_train и y_train соответственно """ sequence = ts.values X, y = list(), list() i = 0 outer_idx = num_lags_out while outer_idx < len(sequence): inner_idx = i + num_lags_in outer_idx = inner_idx + num_lags_out X_, y_ = sequence[i:inner_idx], sequence[inner_idx:outer_idx] X.append(X_) y.append(y_) i += 1 return np.array(X), np.array(y) # получим X и y при помощи предыдущей функции и разбейте на трейн и тест NUM_LAGS_IN = 28 NUM_LAGS_OUT = 7 X, y = transform_ts_into_matrix(ts, NUM_LAGS_IN, NUM_LAGS_OUT) X = X.reshape((X.shape[0], X.shape[1], 1)) split_idx = int(len(X)*0.8) X_train, X_test = X[:split_idx], X[split_idx:] y_train, y_test = y[:split_idx], y[split_idx:] # объявим енкодер model = Sequential() model.add(LSTM(100, activation='relu', input_shape=(NUM_LAGS_IN, 1))) # добавим промежуточный слой, преобразующий выход с енкодера для входного слоя в декодер from keras.layers import RepeatVector model.add(RepeatVector(NUM_LAGS_OUT)) # обьявим декодер model.add(LSTM(50, activation='relu', return_sequences=True)) # обьявим выходной слой - размерность на выходе получается при помощи дополнительного слоя TimeDistributed from keras.layers import TimeDistributed model.add(TimeDistributed(Dense(1))) ###Output _____no_output_____ ###Markdown Обучим модель и получим предсказание на тесте ###Code model.compile(optimizer='adam', loss='mse') model.fit(X_train, y_train, epochs=10, verbose=0) y_pred = model.predict(X_test) ###Output _____no_output_____ ###Markdown Пример с многомерным рядом. ###Code ts_multi = pd.read_csv('../data/stability_index.csv', index_col='timestamp', parse_dates=True) ts_multi.fillna(ts_multi.mean(), axis=0, inplace=True) def transform_multi_ts_into_matrix(ts: pd.DataFrame, num_lags: int): """ Данная функция должна пройтись скользящим окном по временному ряду и собрать в качестве признаков X np.array размерности (len(ts)-num_lags, n_dims, num_lags), а в качестве y np.array размерности (len(ts)-num_lags, n_dims), где n_dims - размерность многомерного ряда. То есть для всех компонент временного ряда мы должны взять num_lags предыдущих точек каждой компонент в качестве признаков и все компоненты текущей точки в качестве target """ sequence = ts.values X, y = list(), list() i = 0 end_i = num_lags while end_i < len(sequence): seq_x, seq_y = sequence[i:end_i], sequence[end_i] X.append(seq_x) y.append(seq_y) i += 1 end_i = i + num_lags return np.array(X), np.array(y) NUM_LAGS = 14 N_DIMS = ts_multi.shape[1] X, y = transform_multi_ts_into_matrix(ts_multi, NUM_LAGS) X[0].shape # объявим енкодер model = Sequential() model.add(LSTM(100, activation='relu', input_shape=(NUM_LAGS, N_DIMS))) # добавим промежуточный слой, преобразующий выход с енкодера для входного слоя в декодер from keras.layers import RepeatVector model.add(RepeatVector(N_DIMS)) # обьявим декодер model.add(LSTM(50, activation='relu', return_sequences=True)) # обьявим выходной слой - размерность на выходе получается при помощи дополнительного слоя TimeDistributed from keras.layers import TimeDistributed model.add(TimeDistributed(Dense(1))) model.compile(optimizer='adam', loss='mse') model.fit(X, y, epochs=50) ###Output Epoch 1/50 130/130 [==============================] - 1s 9ms/step - loss: 4337.5293 Epoch 2/50 130/130 [==============================] - 1s 10ms/step - loss: 3359.5718 Epoch 3/50 130/130 [==============================] - 1s 11ms/step - loss: 2346.5215 Epoch 4/50 130/130 [==============================] - 1s 11ms/step - loss: 1834.7770 Epoch 5/50 130/130 [==============================] - 1s 9ms/step - loss: 1693.2955 Epoch 6/50 130/130 [==============================] - 1s 10ms/step - loss: 1496.0602 Epoch 7/50 130/130 [==============================] - 1s 10ms/step - loss: 1387.5758 Epoch 8/50 130/130 [==============================] - 1s 11ms/step - loss: 1265.3087 Epoch 9/50 130/130 [==============================] - 1s 9ms/step - loss: 1505.0157 Epoch 10/50 130/130 [==============================] - 1s 9ms/step - loss: 1514.8870 Epoch 11/50 130/130 [==============================] - 1s 8ms/step - loss: 1301.9706 Epoch 12/50 130/130 [==============================] - 1s 9ms/step - loss: 1278.9486 Epoch 13/50 130/130 [==============================] - 1s 9ms/step - loss: 1309.2554 Epoch 14/50 130/130 [==============================] - 1s 9ms/step - loss: 1628.4979 Epoch 15/50 130/130 [==============================] - 1s 9ms/step - loss: 1819.9342 Epoch 16/50 130/130 [==============================] - 1s 9ms/step - loss: 1520.2660 Epoch 17/50 130/130 [==============================] - 1s 9ms/step - loss: 1324.4885 Epoch 18/50 130/130 [==============================] - 1s 9ms/step - loss: 1299.3295 Epoch 19/50 130/130 [==============================] - 1s 9ms/step - loss: 1186.3156 Epoch 20/50 130/130 [==============================] - 1s 10ms/step - loss: 1122.8571 Epoch 21/50 130/130 [==============================] - 1s 9ms/step - loss: 1125.4316 Epoch 22/50 130/130 [==============================] - 1s 10ms/step - loss: 1119.9897 Epoch 23/50 130/130 [==============================] - 1s 9ms/step - loss: 1101.6624 Epoch 24/50 130/130 [==============================] - 1s 9ms/step - loss: 1097.9153 Epoch 25/50 130/130 [==============================] - 1s 9ms/step - loss: 1144.5050 Epoch 26/50 130/130 [==============================] - 1s 9ms/step - loss: 1181.8234 Epoch 27/50 130/130 [==============================] - 1s 10ms/step - loss: 1165.9486 Epoch 28/50 130/130 [==============================] - 1s 10ms/step - loss: 1132.3014 Epoch 29/50 130/130 [==============================] - 1s 10ms/step - loss: 1069.6210 Epoch 30/50 130/130 [==============================] - 1s 9ms/step - loss: 1028.5364 Epoch 31/50 130/130 [==============================] - 1s 9ms/step - loss: 1086.3086 Epoch 32/50 130/130 [==============================] - 1s 9ms/step - loss: 1303.5736 Epoch 33/50 130/130 [==============================] - 1s 9ms/step - loss: 1373.5681 Epoch 34/50 130/130 [==============================] - 1s 9ms/step - loss: 1222.9882 Epoch 35/50 130/130 [==============================] - 1s 9ms/step - loss: 1151.4961 Epoch 36/50 130/130 [==============================] - 1s 9ms/step - loss: 1116.9482 Epoch 37/50 130/130 [==============================] - 1s 11ms/step - loss: 1094.3457 Epoch 38/50 130/130 [==============================] - 1s 10ms/step - loss: 1046.0753 Epoch 39/50 130/130 [==============================] - 1s 9ms/step - loss: 1030.7870 Epoch 40/50 130/130 [==============================] - 1s 9ms/step - loss: 1446.4260 Epoch 41/50 130/130 [==============================] - 1s 9ms/step - loss: 1158.3619 Epoch 42/50 130/130 [==============================] - 1s 10ms/step - loss: 1058.0692 Epoch 43/50 130/130 [==============================] - 1s 10ms/step - loss: 1028.4990 Epoch 44/50 130/130 [==============================] - 1s 10ms/step - loss: 1020.4298 Epoch 45/50 130/130 [==============================] - 1s 10ms/step - loss: 1017.2426 Epoch 46/50 130/130 [==============================] - 1s 10ms/step - loss: 995.0058 Epoch 47/50 130/130 [==============================] - 1s 10ms/step - loss: 979.2719 Epoch 48/50 130/130 [==============================] - 1s 10ms/step - loss: 965.5411 Epoch 49/50 130/130 [==============================] - 1s 10ms/step - loss: 982.8457 Epoch 50/50 130/130 [==============================] - 1s 10ms/step - loss: 954.3374
Machine learning/Heart Diseases - Classification with Random Forest Classifier.ipynb
###Markdown Intro to Scikit-learn ###Code # import packages import numpy as np import pandas as pd import matplotlib.pyplot as plt import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, accuracy_score # Get the data ready heart = pd.read_csv('../Data/heart.csv') heart.head() # create features matrix X = heart.drop('target', axis =1) # create labels y = heart.target # choose the right model and hyperparameters clf = RandomForestClassifier() # keep the default hyperparameters clf.get_params() # fit the model to the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=49) # fit it clf.fit(X_train, y_train); # make a predition y_pred = clf.predict(X_test) y_pred # Evaluate the model on the training and test data clf.score(X_train, y_train), clf.score(X_test, y_test) print(classification_report(y_test, y_pred)) confusion_matrix(y_test, y_pred) accuracy_score(y_test, y_pred) # Improve the performance of the model # Try different amount of n-estimators np.random.seed(42) for i in range(10, 140, 20): print(f'Trying model with {i} estimators') clf = RandomForestClassifier(i) clf.fit(X_train, y_train) print(f'Model accuracy on test set: {clf.score(X_test, y_test)*100:.2f}%\n') # redo the model and save it clf = RandomForestClassifier(110) clf.fit(X_train, y_train) pickle.dump(clf, open('random_forest_model_1.pkl', 'wb')) # reload the model loaded_model = pickle.load(open('random_forest_model_1.pkl', 'rb')) print(f'Model accuracy on test set: {loaded_model.score(X_test, y_test)*100:.2f}%\n') ###Output Model accuracy on test set: 85.25%
notebooks/3.0-fb-gas_stations_along_route.ipynb
###Markdown Bounding Box Approach ###Code def get_gas_stations_in_area(bounding_box): """ bounding box is a (minx, miny, maxx, maxy) tuple""" # x = long, y = lat min_long, min_lat, max_long, max_lat = bounding_box assert min_long < max_long assert min_lat < max_lat return set(positions.cx[min_long:max_long,min_lat:max_lat].index) def get_gas_stations_in_boxes(bounding_boxes): ids = [get_gas_stations_in_area(box) for box in bounding_boxes] return list(set.union(*ids)) boxes_potsdam_berlin = [((52.34416775186111, 13.092272842330203), (52.35864093016666, 13.187254280776756)),((52.35864093016666, 13.044782123106984), (52.37311410847222, 13.187254280776756)),((52.37311410847222, 13.021036763495317), (52.38758728677778, 13.210999640388309)),((52.38758728677778, 13.021036763495317), (52.41653364338889, 13.234744999999975)),((52.41653364338889, 13.139763561553536), (52.431006821694446, 13.234744999999975)),((52.431006821694446, 13.16350892116509), (52.44548, 13.258490359611642)),((52.44548, 13.16350892116509), (52.459953178305554, 13.282235719223195)),((52.459953178305554, 13.16350892116509), (52.474426356611126, 13.305981078834861)),((52.474426356611126, 13.187254280776756), (52.48889953491667, 13.305981078834861)),((52.48889953491667, 13.210999640388309), (52.503372713222234, 13.424707876892967)),((52.503372713222234, 13.234744999999975), (52.53231906983335, 13.448453236504633)),((52.53231906983335, 13.35347179805808), (52.5467922481389, 13.448453236504633))] boxes_small_potsdam_berlin = [((52.380350697625, 13.044782123106984), (52.40206046508334, 13.068527482718537)),((52.37311410847222, 13.068527482718537), (52.40206046508334, 13.080400162524484)),((52.36587751931945, 13.080400162524484), (52.40206046508334, 13.104145522136037)),((52.35864093016666, 13.104145522136037), (52.394823875930555, 13.11601820194187)),((52.35864093016666, 13.11601820194187), (52.38758728677778, 13.127890881747703)),((52.35864093016666, 13.127890881747703), (52.394823875930555, 13.139763561553536)),((52.35864093016666, 13.139763561553536), (52.40206046508334, 13.16350892116509)),((52.35864093016666, 13.16350892116509), (52.41653364338889, 13.175381600970923)),((52.380350697625, 13.175381600970923), (52.45271658915278, 13.187254280776756)),((52.380350697625, 13.187254280776756), (52.459953178305554, 13.19912696058259)),((52.394823875930555, 13.19912696058259), (52.467189767458336, 13.210999640388309)),((52.431006821694446, 13.210999640388309), (52.4816629457639, 13.222872320194142)),((52.43824341084722, 13.222872320194142), (52.48889953491667, 13.234744999999975)),((52.44548, 13.234744999999975), (52.49613612406946, 13.246617679805809)),((52.459953178305554, 13.246617679805809), (52.51060930237501, 13.258490359611642)),((52.467189767458336, 13.258490359611642), (52.517845891527784, 13.270363039417362)),((52.474426356611126, 13.270363039417362), (52.52508248068057, 13.282235719223195)),((52.48889953491667, 13.282235719223195), (52.52508248068057, 13.294108399029028)),((52.49613612406946, 13.294108399029028), (52.52508248068057, 13.305981078834861)),((52.503372713222234, 13.305981078834861), (52.52508248068057, 13.377217157669747)),((52.503372713222234, 13.377217157669747), (52.53231906983335, 13.412835197087134)),((52.51060930237501, 13.412835197087134), (52.53231906983335, 13.424707876892967))] def js_box_2_python_box(js_boxes): return [(min_long, min_lat, max_long, max_lat) for ((min_lat,min_long),(max_lat,max_long)) in js_boxes] boxes_potsdam_berlin_nice = js_box_2_python_box(boxes_potsdam_berlin) res = get_gas_stations_in_boxes(boxes_potsdam_berlin_nice) gpd.GeoSeries(gas_stations_df.loc[res]['Position']).plot() boxes_potsdam_berlin_nice = js_box_2_python_box(boxes_small_potsdam_berlin) res = get_gas_stations_in_boxes(boxes_potsdam_berlin_nice) gpd.GeoSeries(gas_stations_df.loc[res]['Position']).plot(); ###Output _____no_output_____ ###Markdown Buffer Approach ###Code path_potsdam_berlin = [(52.390530000000005, 13.064540000000001),(52.39041, 13.065890000000001),(52.39025, 13.06723),(52.39002000000001, 13.068810000000001),(52.389970000000005, 13.069350000000002),(52.38998, 13.06948),(52.389860000000006, 13.07028),(52.38973000000001, 13.07103),(52.38935000000001, 13.07352),(52.3892, 13.07463),(52.38918, 13.075120000000002),(52.389210000000006, 13.07553),(52.389300000000006, 13.0759),(52.3894, 13.076130000000001),(52.389520000000005, 13.07624),(52.38965, 13.07638),(52.389880000000005, 13.0767),(52.390100000000004, 13.077110000000001),(52.390330000000006, 13.077770000000001),(52.390440000000005, 13.078660000000001),(52.39052, 13.079400000000001),(52.390570000000004, 13.08004),(52.39056000000001, 13.08037),(52.390550000000005, 13.0806),(52.390530000000005, 13.080990000000002),(52.390420000000006, 13.083100000000002),(52.390440000000005, 13.083400000000001),(52.39038000000001, 13.083430000000002),(52.39011000000001, 13.0836),(52.38853, 13.084660000000001),(52.38801, 13.0851),(52.38774, 13.085410000000001),(52.38754, 13.085730000000002),(52.38729000000001, 13.086300000000001),(52.38689, 13.087610000000002),(52.386500000000005, 13.088960000000002),(52.38611, 13.09026),(52.38602, 13.090700000000002),(52.3858, 13.09121),(52.385290000000005, 13.092300000000002),(52.38477, 13.09331),(52.384040000000006, 13.094650000000001),(52.383500000000005, 13.095670000000002),(52.38302, 13.096580000000001),(52.37538000000001, 13.110970000000002),(52.37485, 13.112020000000001),(52.37471000000001, 13.112340000000001),(52.37436, 13.113220000000002),(52.373990000000006, 13.114300000000002),(52.37379000000001, 13.11494),(52.373580000000004, 13.11578),(52.37304, 13.11809),(52.37266, 13.119740000000002),(52.37252, 13.120540000000002),(52.37238000000001, 13.121540000000001),(52.37227000000001, 13.122710000000001),(52.37225, 13.12311),(52.372220000000006, 13.12376),(52.372220000000006, 13.124830000000001),(52.372260000000004, 13.128100000000002),(52.37229000000001, 13.131340000000002),(52.37234, 13.1369),(52.37232, 13.13785),(52.37228, 13.13859),(52.37220000000001, 13.13958),(52.37216, 13.140500000000001),(52.372150000000005, 13.141950000000001),(52.37218000000001, 13.14399),(52.37228, 13.147120000000001),(52.3723, 13.14906),(52.37232, 13.151140000000002),(52.37228, 13.15149),(52.37225, 13.151850000000001),(52.37219, 13.152070000000002),(52.372130000000006, 13.152210000000002),(52.372040000000005, 13.152360000000002),(52.371930000000006, 13.15248),(52.37181, 13.152560000000001),(52.37167, 13.152600000000001),(52.37153000000001, 13.152600000000001),(52.3714, 13.152550000000002),(52.371300000000005, 13.15248),(52.3712, 13.152370000000001),(52.37106000000001, 13.152130000000001),(52.37098, 13.151840000000002),(52.37095000000001, 13.151560000000002),(52.370960000000004, 13.15136),(52.371, 13.151090000000002),(52.37109, 13.150830000000001),(52.3712, 13.15066),(52.37129, 13.15056),(52.371460000000006, 13.15046),(52.37163, 13.150430000000002),(52.37181, 13.150400000000001),(52.37322, 13.150360000000001),(52.373670000000004, 13.150350000000001),(52.37375, 13.15032),(52.37451, 13.150310000000001),(52.375710000000005, 13.15028),(52.37670000000001, 13.150250000000002),(52.376960000000004, 13.150250000000002),(52.37715000000001, 13.150220000000001),(52.37742, 13.150160000000001),(52.377720000000004, 13.15013),(52.378040000000006, 13.150120000000001),(52.37812, 13.15009),(52.37825, 13.15004),(52.378800000000005, 13.15004),(52.379270000000005, 13.15009),(52.37962, 13.150150000000002),(52.380010000000006, 13.150240000000002),(52.380370000000006, 13.150360000000001),(52.380990000000004, 13.150620000000002),(52.38165000000001, 13.15098),(52.383500000000005, 13.152170000000002),(52.38440000000001, 13.15277),(52.3858, 13.153670000000002),(52.387080000000005, 13.1545),(52.38745, 13.154760000000001),(52.38768, 13.15496),(52.38794000000001, 13.155190000000001),(52.388380000000005, 13.155660000000001),(52.38891, 13.156350000000002),(52.38927, 13.156920000000001),(52.38965, 13.15755),(52.38984000000001, 13.15792),(52.39011000000001, 13.158520000000001),(52.390460000000004, 13.15943),(52.39074, 13.160380000000002),(52.392900000000004, 13.169300000000002),(52.39408, 13.1742),(52.39439, 13.175370000000001),(52.394830000000006, 13.176800000000002),(52.395320000000005, 13.17805),(52.39578, 13.179070000000001),(52.39621, 13.17993),(52.39678000000001, 13.18092),(52.39714000000001, 13.18148),(52.3975, 13.181970000000002),(52.398340000000005, 13.183000000000002),(52.39922000000001, 13.184000000000001),(52.399530000000006, 13.18438),(52.40012, 13.18504),(52.400940000000006, 13.185910000000002),(52.40171, 13.186750000000002),(52.402260000000005, 13.187420000000001),(52.403830000000006, 13.18917),(52.407830000000004, 13.193690000000002),(52.40982, 13.19593),(52.410230000000006, 13.19631),(52.41085, 13.19678),(52.411280000000005, 13.197030000000002),(52.41158000000001, 13.197180000000001),(52.41223, 13.197420000000001),(52.412620000000004, 13.197510000000001),(52.413030000000006, 13.19757),(52.413880000000006, 13.19757),(52.41407, 13.197560000000001),(52.41452, 13.197470000000001),(52.41536000000001, 13.19729),(52.41561, 13.197210000000002),(52.416720000000005, 13.19697),(52.417570000000005, 13.196760000000001),(52.41827000000001, 13.196610000000002),(52.42042000000001, 13.196130000000002),(52.4217, 13.195850000000002),(52.422740000000005, 13.19561),(52.423030000000004, 13.195500000000001),(52.42322000000001, 13.195390000000002),(52.423410000000004, 13.195260000000001),(52.42360000000001, 13.195120000000001),(52.42381, 13.194930000000001),(52.42409000000001, 13.194640000000001),(52.42443, 13.194170000000002),(52.424820000000004, 13.1935),(52.425160000000005, 13.19293),(52.42549, 13.192450000000001),(52.425720000000005, 13.192160000000001),(52.42607, 13.191820000000002),(52.426300000000005, 13.191640000000001),(52.42649, 13.19152),(52.42685, 13.191350000000002),(52.427310000000006, 13.191230000000001),(52.427530000000004, 13.191210000000002),(52.427890000000005, 13.191230000000001),(52.42887, 13.191460000000001),(52.43121000000001, 13.19204),(52.43244000000001, 13.192340000000002),(52.43292, 13.19246),(52.433400000000006, 13.1926),(52.43365000000001, 13.19269),(52.43403000000001, 13.192870000000001),(52.434470000000005, 13.193150000000001),(52.43478, 13.19339),(52.43506000000001, 13.193650000000002),(52.435340000000004, 13.19396),(52.43573000000001, 13.194440000000002),(52.43797000000001, 13.197270000000001),(52.438610000000004, 13.198080000000001),(52.44021000000001, 13.2001),(52.44169, 13.20198),(52.44489, 13.206010000000001),(52.446180000000005, 13.207640000000001),(52.45031, 13.212860000000001),(52.47092000000001, 13.238930000000002),(52.472350000000006, 13.240730000000001),(52.47289000000001, 13.24136),(52.474680000000006, 13.243440000000001),(52.47838, 13.247610000000002),(52.48109, 13.250670000000001),(52.48225000000001, 13.25201),(52.482800000000005, 13.2527),(52.48602, 13.25679),(52.48906, 13.260610000000002),(52.491670000000006, 13.26392),(52.49271, 13.26524),(52.49497, 13.268040000000001),(52.495160000000006, 13.268360000000001),(52.495760000000004, 13.26917),(52.496280000000006, 13.26984),(52.497170000000004, 13.27105),(52.497840000000004, 13.27194),(52.49857, 13.272870000000001),(52.49895000000001, 13.273460000000002),(52.49916, 13.273930000000002),(52.49929, 13.27434),(52.499390000000005, 13.274840000000001),(52.499460000000006, 13.275440000000001),(52.49949, 13.275970000000001),(52.49956, 13.277550000000002),(52.49963, 13.27838),(52.49969, 13.278830000000001),(52.499770000000005, 13.27918),(52.499900000000004, 13.279630000000001),(52.500060000000005, 13.28002),(52.500220000000006, 13.280330000000001),(52.50027000000001, 13.28035),(52.500370000000004, 13.28049),(52.50054, 13.280690000000002),(52.5007, 13.28082),(52.50085000000001, 13.280880000000002),(52.501020000000004, 13.2809),(52.50117, 13.280880000000002),(52.50155, 13.280740000000002),(52.50173, 13.280690000000002),(52.501960000000004, 13.28068),(52.502210000000005, 13.280780000000002),(52.502390000000005, 13.28086),(52.503310000000006, 13.28194),(52.50368, 13.282330000000002),(52.503930000000004, 13.282520000000002),(52.50423000000001, 13.28269),(52.504560000000005, 13.28279),(52.50522, 13.282820000000001),(52.50553000000001, 13.28284),(52.50583, 13.282890000000002),(52.50598, 13.282940000000002),(52.506350000000005, 13.283100000000001),(52.506620000000005, 13.28326),(52.508250000000004, 13.284370000000001),(52.509620000000005, 13.28527),(52.51070000000001, 13.28592),(52.511100000000006, 13.286100000000001),(52.511210000000005, 13.286150000000001),(52.51158, 13.286230000000002),(52.511700000000005, 13.286380000000001),(52.511810000000004, 13.286420000000001),(52.51239, 13.28658),(52.512570000000004, 13.28668),(52.512800000000006, 13.28687),(52.5129, 13.286890000000001),(52.51297, 13.286890000000001),(52.51299, 13.28706),(52.51301, 13.28738),(52.51308, 13.28842),(52.51274, 13.288520000000002),(52.51194, 13.288760000000002),(52.511300000000006, 13.288960000000001),(52.510560000000005, 13.289200000000001),(52.510380000000005, 13.289240000000001),(52.51043000000001, 13.289950000000001),(52.510510000000004, 13.291240000000002),(52.51066, 13.293750000000001),(52.51122, 13.30202),(52.51147, 13.30563),(52.51184000000001, 13.31169),(52.512080000000005, 13.315150000000001),(52.51239, 13.320010000000002),(52.51241, 13.320640000000001),(52.51234, 13.32089),(52.512280000000004, 13.320950000000002),(52.51218, 13.321090000000002),(52.51207, 13.32136),(52.51203, 13.3215),(52.51202000000001, 13.321800000000001),(52.51203, 13.322030000000002),(52.512060000000005, 13.322260000000002),(52.512150000000005, 13.322560000000001),(52.512280000000004, 13.32277),(52.512350000000005, 13.322840000000001),(52.51240000000001, 13.322880000000001),(52.51249000000001, 13.323070000000001),(52.512530000000005, 13.32314),(52.512550000000005, 13.32319),(52.512600000000006, 13.32333),(52.51263, 13.32342),(52.51265000000001, 13.323550000000001),(52.512950000000004, 13.32801),(52.513180000000006, 13.33182),(52.513470000000005, 13.33604),(52.5142, 13.346560000000002),(52.51433, 13.348690000000001),(52.51429, 13.34889),(52.51415, 13.349290000000002),(52.51404, 13.349480000000002),(52.513960000000004, 13.349680000000001),(52.51393, 13.349810000000002),(52.51391, 13.350100000000001),(52.51393, 13.35035),(52.513980000000004, 13.350570000000001),(52.514050000000005, 13.350740000000002),(52.514190000000006, 13.350950000000001),(52.51424, 13.350990000000001),(52.51444000000001, 13.351400000000002),(52.51453000000001, 13.351650000000001),(52.5146, 13.352200000000002),(52.51512, 13.36029),(52.51549000000001, 13.36617),(52.51567000000001, 13.369250000000001),(52.515950000000004, 13.37339),(52.51612, 13.376000000000001),(52.51615, 13.376740000000002),(52.51603000000001, 13.37682),(52.51596000000001, 13.376920000000002),(52.51585000000001, 13.37719),(52.51578000000001, 13.37733),(52.515710000000006, 13.37742),(52.515600000000006, 13.37747),(52.515480000000004, 13.37747),(52.51491000000001, 13.37738),(52.51458, 13.377360000000001),(52.514630000000004, 13.378250000000001),(52.514680000000006, 13.379040000000002),(52.51485, 13.379980000000002),(52.515150000000006, 13.381620000000002),(52.51521, 13.3823),(52.515350000000005, 13.38447),(52.515460000000004, 13.386030000000002),(52.51586, 13.38597),(52.51628, 13.385900000000001),(52.51668, 13.385860000000001),(52.51675, 13.38733),(52.51682, 13.388470000000002),(52.51688000000001, 13.3892),(52.51690000000001, 13.389650000000001),(52.51699000000001, 13.39024),(52.517010000000006, 13.3907),(52.51711, 13.392230000000001),(52.51717000000001, 13.392970000000002),(52.51724, 13.39333),(52.51731, 13.39413),(52.517340000000004, 13.394860000000001),(52.517430000000004, 13.39628),(52.517500000000005, 13.397430000000002),(52.51762, 13.398850000000001),(52.517720000000004, 13.39943),(52.517790000000005, 13.39971),(52.517900000000004, 13.400020000000001),(52.51796, 13.400260000000001),(52.51803, 13.400490000000001),(52.518640000000005, 13.4021),(52.51887000000001, 13.40262),(52.519000000000005, 13.40295),(52.51939, 13.4037),(52.519890000000004, 13.404660000000002),(52.520010000000006, 13.404950000000001)] pb = LineString([(x,y) for y,x in path_potsdam_berlin]) # 1 grad sind ca 111km => entfernung von 1km = 0.01 pb.buffer(.02) m = MultiPoint(list(zip(gas_stations_df['Long'],gas_stations_df['Lat']))) pb.buffer(.02).intersection(m) ###Output _____no_output_____ ###Markdown Keep a data set that is indexed by postion ###Code def hash_pos(lat,long): return str(lat) + ':' + str(long) gas_station_pos_index = gas_stations_df.copy() gas_station_pos_index['str_pos'] = gas_station_pos_index.apply(lambda row: hash_pos(row.Lat,row.Long), axis=1) gas_station_pos_index = gas_station_pos_index.reset_index().set_index('str_pos') gas_stations_near_path = [hash_pos(point.y,point.x) for point in pb.buffer(.02).intersection(m) ] gas_station_pos_index.loc[gas_stations_near_path]['id'] ###Output _____no_output_____ ###Markdown Find the point on the path closest to a gas station ###Code gas_stations = pb.buffer(.02).intersection(m) gas_stations[0].union(pb) def closest_point_on_path(path,point): return path.interpolate(path.project(point)) def length_on_line(path,point): return path.project(point,normalized=True) closest_point_on_path(pb,gas_stations[0]) length_on_line(pb,gas_stations[0]) gas_stations[-1].union(pb) MultiPoint([closest_point_on_path(pb,p) for p in gas_stations]) pb.length * 111 [length_on_line(pb,p) for p in gas_stations] ###Output _____no_output_____
2019-02-13-Wine-Dataset.ipynb
###Markdown Welcome to PyData Special Interest Group @ SF Python Project Night-----The goal is to have a sample dataset to explore together. We are going to explore the Wine recognition dataset 🍷It is a choose-your-own-adventure. If you are interested in visualization, do that. If you are interested in statistical modeling, explore that. If you are interested in machine learning or deep learning, try that. ###Code # Here are common imports to get you started import keras import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import sklearn %matplotlib inline # Let's load the data from sklearn.datasets import load_wine data = load_wine() print(data.DESCR) ###Output .. _wine_dataset: Wine recognition dataset ------------------------ **Data Set Characteristics:** :Number of Instances: 178 (50 in each of three classes) :Number of Attributes: 13 numeric, predictive attributes and the class :Attribute Information: - Alcohol - Malic acid - Ash - Alcalinity of ash - Magnesium - Total phenols - Flavanoids - Nonflavanoid phenols - Proanthocyanins - Color intensity - Hue - OD280/OD315 of diluted wines - Proline - class: - class_0 - class_1 - class_2 :Summary Statistics: ============================= ==== ===== ======= ===== Min Max Mean SD ============================= ==== ===== ======= ===== Alcohol: 11.0 14.8 13.0 0.8 Malic Acid: 0.74 5.80 2.34 1.12 Ash: 1.36 3.23 2.36 0.27 Alcalinity of Ash: 10.6 30.0 19.5 3.3 Magnesium: 70.0 162.0 99.7 14.3 Total Phenols: 0.98 3.88 2.29 0.63 Flavanoids: 0.34 5.08 2.03 1.00 Nonflavanoid Phenols: 0.13 0.66 0.36 0.12 Proanthocyanins: 0.41 3.58 1.59 0.57 Colour Intensity: 1.3 13.0 5.1 2.3 Hue: 0.48 1.71 0.96 0.23 OD280/OD315 of diluted wines: 1.27 4.00 2.61 0.71 Proline: 278 1680 746 315 ============================= ==== ===== ======= ===== :Missing Attribute Values: None :Class Distribution: class_0 (59), class_1 (71), class_2 (48) :Creator: R.A. Fisher :Donor: Michael Marshall (MARSHALL%[email protected]) :Date: July, 1988 This is a copy of UCI ML Wine recognition datasets. https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data The data is the results of a chemical analysis of wines grown in the same region in Italy by three different cultivators. There are thirteen different measurements taken for different constituents found in the three types of wine. Original Owners: Forina, M. et al, PARVUS - An Extendible Package for Data Exploration, Classification and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy. Citation: Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. .. topic:: References (1) S. Aeberhard, D. Coomans and O. de Vel, Comparison of Classifiers in High Dimensional Settings, Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. (Also submitted to Technometrics). The data was used with many others for comparing various classifiers. The classes are separable, though only RDA has achieved 100% correct classification. (RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data)) (All results using the leave-one-out technique) (2) S. Aeberhard, D. Coomans and O. de Vel, "THE CLASSIFICATION PERFORMANCE OF RDA" Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. (Also submitted to Journal of Chemometrics). ###Markdown You can also learn more [here](https://archive.ics.uci.edu/ml/datasets/wine). ###Code # This is a classification problem. Try to predict one of these categories. list(data.target_names) # Use these features / columns data.feature_names # Here is the raw data data.data # Now it is your turn to find something interesting ###Output _____no_output_____
01_sargassum_detection_coast.ipynb
###Markdown Detection of Sargassum on the coast and coastal waters Notebook for classifying and analyzing Sargassum in Bonaire with Sentinel-2 images* Decision Tree Classifier (DTC) and Maximum Likelihood Classifier (MLC) are employed* Training sites covering 8 different classes are used to extract pixel values (training samples) over all Sentinel-2 bands* 12 Sentinel bands and 8 spectral indices evaluated using Jeffries-Matusita distance (selected: NDVI, REP, B05 and B11) * 80:20 train-test ratio for splitting the training samples* K-Fold cross-validation performed for tuning the DTC model* MLC model developed with 4 different chi-square thresholds: 0% (base), 10%,20%,50% ###Code import os import re import pandas as pd import numpy as np import rasterio as rio from rasterio import Affine from rasterio.mask import mask import matplotlib.pyplot as plt import seaborn as sns from glob import glob import geopandas as gpd from joblib import dump,load from rasterstats import zonal_stats from tqdm import tqdm,tqdm_notebook #custom functions from Python.prep_raster import stack_bands,clip_raster,pixel_sample,computeIndexStack from Python.data_treat import balance_sample,down_sample from Python.spec_analysis import transpose_df,jmd2df from Python.data_viz import specsign_plot,jmd_heatmap,ridgePlot,validation_curve_plot from Python.mlc import mlClassifier from Python.calc_acc import calc_acc from Python.pred_raster import stack2pred, dtc_pred_stack from Python.misc import get_feat_layer_order #sklearn functions from sklearn.model_selection import train_test_split,validation_curve from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier #setup IO directories parent_dir = os.path.join(os.path.abspath('..'),'objective1') #change according to preference sub_dirs = ['fullstack','clippedstack','indexstack','predicted','stack2pred'] make_dirs = [os.makedirs(os.path.join(parent_dir,name),exist_ok=True) for name in sub_dirs] ###Output _____no_output_____ ###Markdown Sentinel-2 data preparation* Resample coarse bands to 10m resolution* Stack multiband images * Calculate spectral indices ###Code #dates considered for classification and analysis dates = [20180304,20180309,20180314,20180319,20190108,20190128,20190212,20190304,20190309, 20190314,20190319,20190508,20190513,20190518,20190523,20190821,20191129] #band names bands = ['B01_60m','B02_10m','B03_10m','B04_10m','B05_20m','B06_20m', 'B07_20m','B08_10m','B8A_20m','B09_60m','B11_20m','B12_20m'] #get product file paths according to dates and tile ID T19PEP (covers Bonaire) level2_dir = '...' #change according to preference level2_files = glob(level2_dir+"/*.SAFE") scene_paths=[file for date in dates for file in level2_files if str(date) in file and 'T19PEP' in file] #sort multiband image paths according to date image_collection ={} for scene in scene_paths: date = re.findall(r"(\d{8})T", scene)[0] #collect all .jp2 band images in SAFE directory all_images = [f for f in glob(scene + "*/**/*.jp2", recursive=True)] img_paths = [img_path for band in bands for img_path in all_images if band in img_path] image_collection[date] = img_paths #check nr. of images per date for key in image_collection.keys():print(f'Date: {key} Images: {len(image_collection[key])}') #stack multiband images to a geotiff (!computationaly intensive) for date in tqdm(image_collection.keys(),position=0, leave=True): ref10m= image_collection[date][1] #use band B02 (10m) as reference metadata outfile = os.path.join(parent_dir,'fullstack',f'stack_{date}.tif') stack_bands(image_collection[date],ref10m,outfile) #crop multiband image stack and compute spectral indices roi_file = './data/boundaries/coastline_lacbay.geojson' #polygon for cropping image indices = ['NDVI','REP','FAI','GNDVI','NDVI_B8A','VB_FAH','SEI','SABI'] #list of indices used in the study stack_files = glob(parent_dir + "/fullstack/*.tif") for stack_file in tqdm(stack_files,position=0, leave=True): filename = os.path.basename(stack_file).split('.')[0] #cropping clip_outfile = os.path.join(parent_dir,'clippedstack',filename+"_clipped.tif") clip_raster(stack_file,roi_file,clip_outfile,fill=True,nodat=0) #compute spectral indices index_outfile = os.path.join(index_dir,filename+"_index.tif") computeIndexStack(clip_outfile,indices,index_outfile) ###Output _____no_output_____ ###Markdown Sample pixel values from multiband images based on training sites * Training scenes from 4,9,14 and 19 March 2019 ###Code #get training sites and corresponding images train_sites = [f for f in glob(r".\data\training_input\objective1\*_coast.geojson")] dates = [20190304,20190309,20190314,20190319] stack_bands = [f for date in dates for f in glob(parent_dir+'/clipped*/*_clipped.tif') if str(date) in f] index_bands = [f for date in dates for f in glob(parent_dir+'/index*/*_index.tif') if str(date) in f] #bands and indices to be sampled band_names = ['B01','B02','B03','B04','B05','B06','B07','B08','B8A','B09','B11','B12'] indices = ['NDVI','REP','FAI','GNDVI','NDVI-B8A','VB-FAH','SEI','SABI'] dataset = [] for i in range(len(train_sites)): #sample multibands and spectral indices df_bands= pixel_sample(stack_bands[i],train_sites[i],band_names) df_indices= pixel_sample(index_bands[i],train_sites[i],indices) df_sample = pd.concat([df_bands,df_indices],axis=1) df_sample = df_sample.loc[:,~df_sample.columns.duplicated()] #downsample based on floating Sargassum (Sf) df_downsampled = down_sample(df_sample,'C','Sf') dataset.append(df_downsampled) #final dataset dataset=pd.concat(dataset,sort=False).reset_index(drop=True) dataset.to_csv(r'./data/training_input/csv/training_samples_20190304_20190319_sargassum.csv',index=False) ###Output _____no_output_____ ###Markdown Expore spectral signature * Jeffries-Matusita distance (JMD) used for feature selection ([reference](https://books.google.nl/books?id=RxHbb3enITYC&pg=PA52&lpg=PA52&dq=for+one+feature+and+two+classes+the+Bhattacharyya+distance+is+given+by&source=bl&ots=sTKLGl1POo&sig=ACfU3U2s7tv0LT9vfSUat98l4L9_dyUgeg&hl=nl&sa=X&ved=2ahUKEwiKgeHYwI7lAhWIIlAKHZfJAC0Q6AEwBnoECAkQAQv=onepage&q&f=false))* NDVI, REP, B05 and B11 are selected as input features for the classifiers ###Code #load training sample df = pd.read_csv('./data/training_input/csv/training_samples_20190304_20190319_sargassum.csv') #plot spectral signature focused on 4 subclasses specsign_plot(df,df.columns[4:16],classtype='C') #plot JMD heatmap for each band jmd_bands = [jmd2df(transpose_df(df,'C',band)) for band in df.columns[4:16]] jmd_heatmap(jmd_bands) #plot JMD heatmap for each spectral index jmd_indices = [jmd2df(transpose_df(df,'C',band)) for band in df.columns[16:]] jmd_heatmap(jmd_indices) #plot distribution of selected input features sns.set_style('white') ridgePlot(df[['C','NDVI','REP','B05','B11']],'C') ###Output _____no_output_____ ###Markdown Build classifiers ###Code #load training sample df = pd.read_csv('./data/training_input/csv/training_samples_20190304_20190319_sargassum.csv') predictors = ['NDVI','REP','B05','B11'] subset_df = df[['C']+predictors] #split into train and test datasets 80:20 train,test = train_test_split(subset_df, train_size = 0.8,random_state=1,shuffle=True,stratify=np.array(subset_df['C'])) train = train.sort_values(by='C',ascending=True) #sort labels #split pedictors from labels (for DTC) le = LabelEncoder() X_train,y_train = train[predictors],le.fit_transform(train['C']) X_test,y_test = test[predictors],le.fit_transform(test['C']) ###Output _____no_output_____ ###Markdown * Decision Tree Classifier ###Code #perform k-fold (=10) cross-validation #parameters considered in this step max_depth = np.arange(1,40,2) min_samples_split = list(range(2, 100,10)) max_leaf_nodes= list(range(2, 50,5)) min_samples_leaf= list(range(1, 100,10)) min_impurity_decrease=[0,0.00005,0.0001,0.0002,0.0005,0.001,0.0015,0.002,0.005,0.01,0.02,0.05,0.08] criterion = ['gini','entropy'] #assign parameters to a dictionary params = {'max_depth':max_depth,'min_samples_split':min_samples_split, 'max_leaf_nodes':max_leaf_nodes,'min_samples_leaf':min_samples_leaf, 'min_impurity_decrease':min_impurity_decrease,'criterion':criterion} #plot validation curve fig,axs = plt.subplots(3,2,figsize=(10,8)) axs = axs.ravel() dtc = DecisionTreeClassifier(random_state=1,criterion='entropy') #default model for (param_name,param_range),i in zip(params.items(),range(len(params.items()))): train_scores,test_scores = validation_curve(dtc,X_train.values,y_train,cv=10,scoring='accuracy', n_jobs=-1,param_range=param_range,param_name=param_name) validation_curve_plot(train_scores,test_scores,param_range,param_name,axs[i]) plt.show() #train dtc model based on best parameters dtc = DecisionTreeClassifier(max_depth=5,random_state=2,criterion='entropy',min_samples_split=70, max_leaf_nodes=15,min_samples_leaf=40,min_impurity_decrease=0.01,max_features=4) dtc = dtc.fit(X_train,y_train) #export model as joblib file dump(dtc,r".\data\models\dtc_model_sargassum.joblib") ###Output _____no_output_____ ###Markdown * Maximum Likelihood Classifier ###Code #train mlc model mlc = mlClassifier(train,'C') #export model as joblib file dump(mlc,r".\data\models\mlc_model_sargassum.joblib") ###Output _____no_output_____ ###Markdown * Compute model accuracies (based on test split) ###Code #load models dtc = load(r".\data\models\dtc_model_sargassum.joblib") mlc = load(r".\data\models\mlc_model_sargassum.joblib") #DTC model accuracy dtc_y_pred = dtc.predict(X_test) con_mat_dtc = calc_acc(le.inverse_transform(y_test),le.inverse_transform(dtc_y_pred)) con_mat_dtc['classifier'] = 'DTC' #MLC model accuracies with chi-square threshold chi_table = {'MLC base':None,'MLC 10%':7.78,'MLC 20%':5.99,'MLC 50%':3.36} mlc_conmats = [] for key,value in chi_table.items(): con_mat_mlc = mlc.classify_testdata(test,'C',threshold=value) con_mat_mlc['classifier'] = key mlc_conmats.append(con_mat_mlc) #export model accuracies mlc_conmats = pd.concat(mlc_conmats) model_acc = pd.concat([con_mat_dtc,mlc_conmats]) model_acc.to_csv('./data/output/objective1/dtc_mlc_model_acc_obj1.csv') ###Output _____no_output_____ ###Markdown Classification * create an image stack for prediction (stack2pred) for all scenes in objective1 folder* classify each stack2pred image with the DTC and MLC models ###Code #get all multiband and spectral index images stack_bands = glob(parent_dir+'/clipped*/*_clipped.tif') index_bands = glob(parent_dir+'/index*/*_index.tif') #get the order of the selected predictors in the multiband and spectral index images predictors = ['NDVI','REP','B05','B11'] used_indices, used_bands = get_feat_layer_order(predictors) stack2pred_paths = [] #create stack2pred rasters for band_image,index_image in zip(stack_bands,index_bands): date = re.findall(r"(\d{8})", band_image)[0] outfile = os.path.join(f'{parent_dir}\stack2pred',f'stack2pred_{date}.tif') stack2pred_paths.append(outfile) stack2pred(index_image,band_image,used_indices,used_bands,outfile) #load models dtc = load(r".\data\models\dtc_model_sargassum.joblib") mlc = load(r".\data\models\mlc_model_sargassum.joblib") #stack2pred image paths stack2pred_paths = glob(parent_dir+'*/stack2pred/stack2pred_*.tif') #classify all stack2pred images for path in stack2pred_paths: date = re.findall(r"(\d{8})", path)[0] #predict multiple mlc with thresholds mlc_out = f'{parent_dir}/predicted/mlc/mlc_{date}_multi.tif' os.makedirs(os.path.dirname(mlc_out),exist_ok=True) if not os.path.exists(mlc_out): chi_probs = [None,7.78,5.99,3.36] mlc_preds = np.array([mlc.classify_raster_gx(path,out_file=None,threshold=prob) for prob in chi_probs]) #export multilayer mlc image with rio.open(path) as src: profile = src.profile.copy() profile.update({'dtype': rio.uint16}) with rio.open(mlc_out ,'w',**profile) as dst: dst.write(mlc_preds.astype(rio.uint16)) #predict and export DTC raster dtc_out = f'{parent_dir}/predicted/dtc/dtc_{date}.tif' os.makedirs(os.path.dirname(dtc_out),exist_ok=True) if not os.path.exists(dtc_out): dtc_pred_stack(dtc,path,dtc_out) ###Output _____no_output_____ ###Markdown * MLC class posterior probability raster ###Code #stack2pred image paths stack2pred_paths = glob(parent_dir+'*/stack2pred/stack2pred_*.tif') #compute probabality raster for path in stack2pred_paths: mlc_prob_out = f'{parent_dir}/predicted/mlc/mlc_{date}_prob.tif' os.makedirs(os.path.dirname(mlc_out),exist_ok=True) mlc.prob_rasters(path,mlc_prob_out) ###Output _____no_output_____ ###Markdown External validity * Classify DTC and MLC results for a scene taken on 2019-05-18* Validation samples only covers Non-Floating Sargassum (Non-Sf) and Floating Sargassum (Sf)* Floating Sargassum (Sf) pixel value = 3 in the DTC and MLC rasters ###Code #get file paths val_samples = gpd.read_file(r'./data/training_input/objective1/sf_validation_20190518.geojson') dtc_file = glob(parent_dir+'/predicted*/dtc/dtc*20190518*.tif')[0] mlc_file = glob(parent_dir+'/predicted*/mlc/mlc*20190518*.tif')[0] coords = [(val_samples.geometry[i][0].x,val_samples.geometry[i][0].y) for i in range(len(val_samples))] with rio.open(dtc_file) as dtc_src, rio.open(mlc_file) as mlc_src: #sample from dtc raster val_samples['DTC'] = [pt[0] for pt in dtc_src.sample(coords)] #sample from multilayer mlc raster mlc_multi = pd.concat([pd.DataFrame(pt).T for pt in mlc_src.sample(coords)],ignore_index=True) val_samples[['MLC base','MLC 10%','MLC 20%','MLC 50%']] = mlc_multi #convert pixel values to 1 if Sf, else to 0 for others val_samples[val_samples.columns[-5:]] = (val_samples[val_samples.columns[-5:]]==3).astype(int) #compute classification (validation) accuracy df_val = pd.DataFrame(val_samples.drop(columns='geometry')) acc_val_dfs = [] for pred in df_val.columns[df_val.columns!='label']: acc = calc_acc(df_val['label'].values, df_val[pred].values) acc['classifier'] = pred acc_val_dfs.append(acc) acc_val_dfs = pd.concat(acc_val_dfs) acc_val_dfs.to_csv('./data/output/objective1/dtc_mlc_external_val_obj1.csv') ###Output _____no_output_____ ###Markdown * Plot model and validation accuracies ###Code model_df = pd.read_csv('./data/output/objective1/dtc_mlc_model_acc_obj1.csv').set_index('Model') val_df = pd.read_csv('./data/output/objective1/dtc_mlc_external_val_obj1.csv').set_index('Observed') acc2plot = {'Model accuracy (8 classes)':model_df.loc['PA','UA'].str[:4].astype(float), 'Model F1-score (Sf)':model_df.loc['Sf','F1-score'].astype(float), 'Validation accuracy (2 classes)':val_df.loc['PA','UA'].str[:4].astype(float), 'Validation F1-score (Sf)':val_df.loc['1','F1-score'].astype(float)} [plt.plot(val_df['classifier'].unique(),value,label=key) for key,value in acc2plot.items()] plt.legend() ###Output _____no_output_____ ###Markdown Comparative analysis * Compare Sargassum (Sf and Sl) classified area across different scenes for each model* Persisting missclassification occur between the two Sargassum classes and other coastal features, hence a mask was applied. ###Code #get classification result paths dtc_paths = glob(parent_dir+'/predicted*/dtc/dtc*.tif') mlc_paths = glob(parent_dir+'/predicted*/mlc/mlc*.tif') #load mask sl_mask = [gpd.read_file('./data/boundaries/sf_sl_mask.geojson').__geo_interface__['features'][0]['geometry']] sf_mask = [gpd.read_file('./data/boundaries/sf_sl_mask.geojson').__geo_interface__['features'][1]['geometry']] #collection of Sargassum classification results data = dict.fromkeys(['Date','Sl MLC Base','Sl MLC 10%','Sl MLC 20%','Sl MLC 50%','Sl DTC', 'Sf MLC Base','Sf MLC 10%','Sf MLC 20%','Sf MLC 50%','Sf DTC'], []) for i in range(len(mlc_paths)): date = re.findall(r"(\d{8})", mlc_paths[i]) data['Date'] = data['Date']+ [str(pd.to_datetime(date)[0].date())] with rio.open(dtc_paths[i]) as dtc_src, rio.open(mlc_paths[i]) as mlc_src: #sf pixel count dtc_img= mask(dataset=dtc_src,shapes=sf_mask,nodata=dtc_src.nodata,invert=True)[0] data['Sf DTC'] = data['Sf DTC']+[np.unique(dtc_img, return_counts=True)[1][2]] mlc_imgs= mask(dataset=mlc_src,shapes=sf_mask,nodata=mlc_src.nodata,invert=True)[0] for k,sf_mlc_key in enumerate(list(data.keys())[6:-1]): data[sf_mlc_key] = data[sf_mlc_key]+ [[np.unique(mlc_img, return_counts=True)[1][2] for mlc_img in mlc_imgs][k]] #sl pixel count dtc_img= mask(dataset=dtc_src,shapes=sl_mask,nodata=dtc_src.nodata,invert=False)[0] data['Sl DTC'] = data['Sl DTC']+[np.unique(dtc_img, return_counts=True)[1][3]] mlc_imgs= mask(dataset=mlc_src,shapes=sl_mask,nodata=mlc_src.nodata,invert=False)[0] for j,sl_mlc_key in enumerate(list(data.keys())[1:5]): data[sl_mlc_key] = data[sl_mlc_key]+[[np.unique(mlc_img, return_counts=True)[1][3] for mlc_img in mlc_imgs][j]] #export data data = pd.DataFrame(data) data.to_csv('./data/output/objective1/classified_area_obj1.csv',index=False) ###Output _____no_output_____ ###Markdown * Plot Sargassum classified area in 2019 ###Code #load data and subset only the 2019 results data = pd.read_csv('./data/output/objective1/classified_area_obj1.csv',index_col='Date')[4:] #plot Floating Sargassum (Sf) and Sargassum on land (Sl) fig,axs = plt.subplots(1,2,figsize=(20,8)) axs[0].set_ylabel('Classified area (ha)') plt.tight_layout() fig.autofmt_xdate() plots = [axs[0].plot(data[col]/100) if 'Sf' in col else axs[1].plot(data[col]/100) for col in data.columns] legends = axs[0].legend(data.columns[:5],loc='upper right'),axs[1].legend(data.columns[5:],loc='upper right') ###Output _____no_output_____ ###Markdown Sargassum coverage maps * Compute Sargassum coverage maps for the invasions in March and May 2019 and March 2018* A 20mx20m grid was used to calculate the coverage for each scene* MLC 20% results were used for Floating Sargassum (Sf) coverage map* MLC 50% results were used for Sargassum on land (Sl) coverage map* Note that code below takes about 10 minutes to run (due to small grid tile size) ###Code #get classification result paths mlc_paths = glob(parent_dir+'/predicted*/mlc/mlc*03*.tif')+glob(parent_dir+'/predicted*/mlc/mlc*05*.tif') #load mask and grid data mask_data = gpd.read_file('./data/boundaries/objective1/sf_sl_mask.geojson').__geo_interface__['features'] grid_file = gpd.read_file(r'./data/boundaries/objective1/20mgrid.geojson') #collect geodataframes data = [] for mlc_file in mlc_paths: date = re.findall(r"(\d{8})", mlc_file)[0] with rio.open(mlc_file) as src: #iterate according to mask data (first item = sl, second item = sf) #count number of pixel in each grid tile (computationaly intensive!) for feat,label,val,inv,model in zip(mask_data,['sl','sf'],[4,3],[False,True],[3,2]): img = mask(dataset=src,shapes=[feat['geometry']],nodata=src.nodata,invert=inv)[0][model] zs = zonal_stats(grid_file,np.where(img==val,1,0),affine=src.transform, prefix=f'{label}_{date}_',stats='count',geojson_out=True,nodata=0) zs_filter = list(filter(lambda x: x['properties'][f'{label}_{date}_count']!=0, zs)) data.append(gpd.GeoDataFrame.from_features(zs_filter,crs=grid_file.crs)) #merge with grid file based on id grid_file_copy = grid_file.copy() for i in range(len(data)): grid_file_copy = gpd.GeoDataFrame(grid_file_copy.merge(data[i][data[i].columns[1:]],on='id',how='outer'), crs=grid_file.crs,geometry=grid_file.geometry).replace(np.nan,0) #calculate coverage for each grid tile sf_split = np.array_split(grid_file_copy[[i for i in grid_file_copy.columns if 'sf' in i ]],3,axis=1) sl_split = np.array_split(grid_file_copy[[i for i in grid_file_copy.columns if 'sl' in i ]],3,axis=1) scale_factor = (100/4/400) #(relative coverage of Sentinel-2 pixels in a 20x20m tile over 4 dates) sf_covr = [sf_split[i].sum(1)*scale_factor for i in range(len(sf_split))] sl_covr = [sl_split[i].sum(1)*scale_factor for i in range(len(sl_split))] #export coverage maps gdf_out = pd.concat([grid_file_copy[['geometry']]]+sf_covr+sl_covr,axis=1) gdf_out.columns = ['geometry','sf_mar2018','sf_mar2019','sf_may2019','sl_mar2018','sl_mar2019','sl_may2019'] gdf_out = gdf_out[gdf_out[gdf_out.columns[1:]].sum(1)!=0] gdf_out.to_file(r'./data/output/objective1/sargassum_coverage_coast.geojson',driver='GeoJSON') ###Output _____no_output_____
CMA-ES/lambda/lambda.ipynb
###Markdown $\lambda$对CMA性能影响研究 hljs.initHighlightingOnLoad(); $(document).ready(function(){ $("h2,h3,h4,h5,h6").each(function(i,item){ var tag = $(item).get(0).localName; $(item).attr("id","wow"+i); $("category").append(''+$(this).text()+''); $(".newh2").css("margin-left",0); $(".newh3").css("margin-left",20); $(".newh4").css("margin-left",40); $(".newh5").css("margin-left",60); $(".newh6").css("margin-left",80); }); }); **摘要**: $\lambda$大小影响单次计算时间,根据文档合理的$\lambda$在[5,2n+10]之间,Hansen给出的推荐值为$4+3\times \lfloor ln(N) \rfloor$,本文固定mu=0.5,sigma=0.3,根据不同的$\lambda$对不同函数绘图分析. 第一阶段测试* 函数:[rosen,bukin,griewank]* 最小值:[0,6.82,0]* 维度:[130]* $\lambda$:[5,18,20,50,80,110,140] ###Code %pylab inline import pandas as pd from pandas import Series, DataFrame import pickle plt.rc('figure', figsize=(12, 8)) with open("data.tl",'r') as f: result_list=pickle.load(f) def convertdic(result_list): res=[{}] for row in result_list: for i,d in enumerate(res): if row[-1] not in d.keys(): d[row[-1]]=row[:-1] break if i==len(res)-1: res.append({row[-1]:row[:-1]}) break return res def draw(title,tail): bs=[row[:tail] for row in result_list if row[tail]==title] bs=np.array(bs) lmax=max(bs[:,-1]) bs=bs/bs.max(0) bs=bs*[1,1,1,1,lmax] bs=convertdic(bs) df=DataFrame(bs[0],index=['countiter','countevals','result','time(s)']) df=df.stack().unstack(0) df.columns.name='values' df.index.name='lambda' df.plot(kind='bar',stacked=False,colormap='jet',alpha=0.9,title=title,figsize=(12,8)); df.plot(kind='area',stacked=False,colormap='jet',alpha=0.5,title=title,figsize=(12,8),xticks=np.arange(5,lmax,10)); def drawSigmaLines(t,xl): sigmas=[[row[-3],row[-1]] for row in result_list if row[-2]==t] ss=map(list,zip(*sigmas))[1] M=max(map(len,ss)) for s in sigmas: for i in range(M-len(s[1])): s[1].append(None) df1=DataFrame({s[0]:s[1] for s in sigmas}) df1.columns.name='sigma' df1.index.name='lambda' df1.plot(title=t,fontsize=10,linewidth=2,alpha=0.8,colormap='rainbow',xlim=(0,xl)) #bukin函数 draw('bukin',-1) #rosen函数 draw('rosen',-1) #griwank函数 draw('griewank',-1) ###Output _____no_output_____ ###Markdown 第二阶段测试* 函数:[sphere,cigar,elli]* 最小值:[0,0,0]* 维度:[208]* $\lambda$:[5,10,14,18,20,22,26,60,100,140,180,220] ###Code with open("data1.tl",'r') as f: result_list=pickle.load(f) #sphere函数 draw('sphere',-2) drawSigmaLines('sphere',300) #cigar函数 draw('cigar',-2) drawSigmaLines('cigar',300) #elli函数 draw('elli',-2) drawSigmaLines('elli',300) ###Output _____no_output_____
model/MNIST_NN_Model.ipynb
###Markdown MNIST digit recognition Neural Network--- 1. Imports--- ###Code import pandas as pd import matplotlib.pyplot as plt from keras.datasets import mnist from keras.models import Sequential from keras.utils import np_utils from keras.layers import Dense ###Output _____no_output_____ ###Markdown 2. Understanding the data--- 2.1. Load the dataset and split into train and test set ###Code (X_train, y_train), (X_test, y_test) = mnist.load_data() ###Output _____no_output_____ ###Markdown 2.2. Data visualization ###Code X_train.shape ###Output _____no_output_____ ###Markdown - 60,000 training images- Each image is 28 x 28 pixels ###Code y_train.shape ###Output _____no_output_____ ###Markdown - 60,000 arrays- Each of size 10 (from 0-9)- For example, 1 is represented as [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ###Code X_test.shape ###Output _____no_output_____ ###Markdown - 10,000 test images- Each image is 28 x 28 pixels ###Code y_test.shape ###Output _____no_output_____ ###Markdown - 10,000 arrays similar to __y_train__ 2.3. Images ###Code plt.imshow(X_train[0], cmap=plt.get_cmap('gray')) plt.imshow(X_train[1], cmap=plt.get_cmap('gray')) plt.imshow(X_train[2], cmap=plt.get_cmap('gray')) ###Output _____no_output_____ ###Markdown 3. Data manipulation--- 3.1. Flatten 28 X 28 images into a 1 X 784 vector for each image ###Code # X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)).astype('float32') # X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)).astype('float32') X_train = X_train.reshape((60000, 784)) X_train.shape X_test = X_test.reshape((10000, 784)) X_test.shape y_train.shape y_test.shape ###Output _____no_output_____ ###Markdown - y_train and y_test are of the required shape and don't need to be changed. 3.2. Normalize inputs from 0-255 in images to 0-1 ###Code X_train = X_train / 255 X_test = X_test / 255 ###Output _____no_output_____ ###Markdown 3.3. One hot encode outputs ###Code y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) ###Output _____no_output_____ ###Markdown 4. Build the model--- 4.1. Define model type (Neural Network) ###Code model = Sequential() ###Output _____no_output_____ ###Markdown 4.2. Define architecture ###Code model.add(Dense(784, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(10, activation='softmax')) ###Output _____no_output_____ ###Markdown This is a dense nueral network with architecture:| Layer | Activation function | Neurons || --- | --- | --- || 1 | ReLU | 784 || 2 | ReLU | 10 || 3 | Softmax | 10 | 4.3 Compile model ###Code model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown 4.4. Training model ###Code model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=30, batch_size=200, verbose=2) ###Output Epoch 1/30 300/300 - 2s - loss: 0.4241 - accuracy: 0.8706 - val_loss: 0.1698 - val_accuracy: 0.9487 Epoch 2/30 300/300 - 2s - loss: 0.1324 - accuracy: 0.9619 - val_loss: 0.1176 - val_accuracy: 0.9662 Epoch 3/30 300/300 - 2s - loss: 0.0876 - accuracy: 0.9752 - val_loss: 0.1005 - val_accuracy: 0.9703 Epoch 4/30 300/300 - 2s - loss: 0.0625 - accuracy: 0.9817 - val_loss: 0.0811 - val_accuracy: 0.9753 Epoch 5/30 300/300 - 2s - loss: 0.0478 - accuracy: 0.9860 - val_loss: 0.0748 - val_accuracy: 0.9784 Epoch 6/30 300/300 - 2s - loss: 0.0360 - accuracy: 0.9898 - val_loss: 0.0737 - val_accuracy: 0.9801 Epoch 7/30 300/300 - 2s - loss: 0.0269 - accuracy: 0.9930 - val_loss: 0.0707 - val_accuracy: 0.9801 Epoch 8/30 300/300 - 2s - loss: 0.0203 - accuracy: 0.9947 - val_loss: 0.0703 - val_accuracy: 0.9810 Epoch 9/30 300/300 - 2s - loss: 0.0157 - accuracy: 0.9958 - val_loss: 0.0760 - val_accuracy: 0.9783 Epoch 10/30 300/300 - 2s - loss: 0.0132 - accuracy: 0.9967 - val_loss: 0.0861 - val_accuracy: 0.9769 Epoch 11/30 300/300 - 2s - loss: 0.0100 - accuracy: 0.9976 - val_loss: 0.0756 - val_accuracy: 0.9792 Epoch 12/30 300/300 - 2s - loss: 0.0074 - accuracy: 0.9985 - val_loss: 0.0770 - val_accuracy: 0.9795 Epoch 13/30 300/300 - 2s - loss: 0.0059 - accuracy: 0.9987 - val_loss: 0.0878 - val_accuracy: 0.9774 Epoch 14/30 300/300 - 2s - loss: 0.0078 - accuracy: 0.9980 - val_loss: 0.0913 - val_accuracy: 0.9791 Epoch 15/30 300/300 - 2s - loss: 0.0109 - accuracy: 0.9967 - val_loss: 0.1055 - val_accuracy: 0.9739 Epoch 16/30 300/300 - 2s - loss: 0.0062 - accuracy: 0.9984 - val_loss: 0.0879 - val_accuracy: 0.9796 Epoch 17/30 300/300 - 2s - loss: 0.0053 - accuracy: 0.9985 - val_loss: 0.0923 - val_accuracy: 0.9788 Epoch 18/30 300/300 - 2s - loss: 0.0033 - accuracy: 0.9992 - val_loss: 0.0833 - val_accuracy: 0.9813 Epoch 19/30 300/300 - 2s - loss: 8.4615e-04 - accuracy: 1.0000 - val_loss: 0.0830 - val_accuracy: 0.9826 Epoch 20/30 300/300 - 2s - loss: 3.8904e-04 - accuracy: 1.0000 - val_loss: 0.0846 - val_accuracy: 0.9820 Epoch 21/30 300/300 - 2s - loss: 2.9610e-04 - accuracy: 1.0000 - val_loss: 0.0868 - val_accuracy: 0.9816 Epoch 22/30 300/300 - 2s - loss: 2.5191e-04 - accuracy: 1.0000 - val_loss: 0.0869 - val_accuracy: 0.9816 Epoch 23/30 300/300 - 2s - loss: 2.1611e-04 - accuracy: 1.0000 - val_loss: 0.0884 - val_accuracy: 0.9818 Epoch 24/30 300/300 - 2s - loss: 1.8979e-04 - accuracy: 1.0000 - val_loss: 0.0892 - val_accuracy: 0.9823 Epoch 25/30 300/300 - 2s - loss: 1.6380e-04 - accuracy: 1.0000 - val_loss: 0.0904 - val_accuracy: 0.9819 Epoch 26/30 300/300 - 2s - loss: 1.4503e-04 - accuracy: 1.0000 - val_loss: 0.0902 - val_accuracy: 0.9830 Epoch 27/30 300/300 - 2s - loss: 1.2713e-04 - accuracy: 1.0000 - val_loss: 0.0929 - val_accuracy: 0.9816 Epoch 28/30 300/300 - 2s - loss: 1.0971e-04 - accuracy: 1.0000 - val_loss: 0.0926 - val_accuracy: 0.9822 Epoch 29/30 300/300 - 2s - loss: 1.0372e-04 - accuracy: 1.0000 - val_loss: 0.0931 - val_accuracy: 0.9823 Epoch 30/30 300/300 - 2s - loss: 8.4501e-05 - accuracy: 1.0000 - val_loss: 0.0950 - val_accuracy: 0.9815 ###Markdown 4.5. Evaluate the model ###Code scores = model.evaluate(X_test, y_test, verbose=0) print("Test loss: ", scores[0]) print("Test Accuracy: ", (scores[1])) print("Baseline Error: ", (100-scores[1]*100)) ###Output Test loss: 0.09502233564853668 Test Accuracy: 0.9815000295639038 Baseline Error: 1.8499970436096191 ###Markdown 4.6. Save the model in a h5 file ###Code model.save("model.h5") ###Output _____no_output_____ ###Markdown 5. Convert the model to a web friendly format--- ###Code !tensorflowjs_converter --input_format keras './model.h5' '../UI/model' ###Output 2021-03-21 17:58:11.637568: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2021-03-21 17:58:11.637600: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
Python_Stock/Technical_Indicators/ADL.ipynb
###Markdown Accumulation Distribution Line (ADL) https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:accumulation_distribution_line ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # yfinance is used to fetch data import yfinance as yf yf.pdr_override() # input symbol = 'AAPL' start = '2018-06-01' end = '2019-01-01' # Read data df = yf.download(symbol,start,end) # View Columns df.head() df['MF Multiplier'] = (2*df['Adj Close'] - df['Low'] - df['High'])/(df['High']-df['Low']) df['MF Volume'] = df['MF Multiplier']*df['Volume'] df['ADL'] = df['MF Volume'].cumsum() df = df.drop(['MF Multiplier','MF Volume'],axis=1) df['VolumePositive'] = df['Open'] < df['Adj Close'] fig = plt.figure(figsize=(14,10)) ax1 = plt.subplot(3, 1, 1) ax1.plot(df['Adj Close']) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ax1.legend(loc='best') ax2 = plt.subplot(3, 1, 2) ax2.plot(df['ADL'], label='Accumulation Distribution Line') ax2.grid() ax2.legend(loc='best') ax2.set_ylabel('Accumulation Distribution Line') ax3 = plt.subplot(3, 1, 3) ax3v = ax3.twinx() colors = df.VolumePositive.map({True: 'g', False: 'r'}) ax3v.bar(df.index, df['Volume'], color=colors, alpha=0.4) ax3.set_ylabel('Volume') ax3.grid() ax3.set_xlabel('Date') ###Output _____no_output_____ ###Markdown Candlestick with ADL ###Code from matplotlib import dates as mdates import datetime as dt dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] #dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = mdates.date2num(dfc['Date'].astype(dt.date)) dfc.head() from mpl_finance import candlestick_ohlc fig = plt.figure(figsize=(14,10)) ax1 = plt.subplot(3, 1, 1) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ax2 = plt.subplot(3, 1, 2) ax2.plot(df['ADL'], label='Accumulation Distribution Line') ax2.grid() ax2.legend(loc='best') ax2.set_ylabel('Accumulation Distribution Line') ax3 = plt.subplot(3, 1, 3) ax3v = ax3.twinx() colors = df.VolumePositive.map({True: 'g', False: 'r'}) ax3v.bar(df.index, df['Volume'], color=colors, alpha=0.4) ax3.set_ylabel('Volume') ax3.grid() ax3.set_xlabel('Date') ###Output _____no_output_____ ###Markdown Accumulation Distribution Line (ADL) https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:accumulation_distribution_line ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # fix_yahoo_finance is used to fetch data import fix_yahoo_finance as yf yf.pdr_override() # input symbol = 'AAPL' start = '2018-06-01' end = '2019-01-01' # Read data df = yf.download(symbol,start,end) # View Columns df.head() df['MF Multiplier'] = (2*df['Adj Close'] - df['Low'] - df['High'])/(df['High']-df['Low']) df['MF Volume'] = df['MF Multiplier']*df['Volume'] df['ADL'] = df['MF Volume'].cumsum() df = df.drop(['MF Multiplier','MF Volume'],axis=1) df['VolumePositive'] = df['Open'] < df['Adj Close'] fig = plt.figure(figsize=(14,10)) ax1 = plt.subplot(3, 1, 1) ax1.plot(df['Adj Close']) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ax1.legend(loc='best') ax2 = plt.subplot(3, 1, 2) ax2.plot(df['ADL'], label='Accumulation Distribution Line') ax2.grid() ax2.legend(loc='best') ax2.set_ylabel('Accumulation Distribution Line') ax3 = plt.subplot(3, 1, 3) ax3v = ax3.twinx() colors = df.VolumePositive.map({True: 'g', False: 'r'}) ax3v.bar(df.index, df['Volume'], color=colors, alpha=0.4) ax3.set_ylabel('Volume') ax3.grid() ax3.set_xlabel('Date') ###Output _____no_output_____ ###Markdown Candlestick with ADL ###Code from matplotlib import dates as mdates import datetime as dt dfc = df.copy() dfc['VolumePositive'] = dfc['Open'] < dfc['Adj Close'] #dfc = dfc.dropna() dfc = dfc.reset_index() dfc['Date'] = mdates.date2num(dfc['Date'].astype(dt.date)) dfc.head() from mpl_finance import candlestick_ohlc fig = plt.figure(figsize=(14,10)) ax1 = plt.subplot(3, 1, 1) candlestick_ohlc(ax1,dfc.values, width=0.5, colorup='g', colordown='r', alpha=1.0) ax1.xaxis_date() ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) ax1.grid(True, which='both') ax1.minorticks_on() ax1v = ax1.twinx() colors = dfc.VolumePositive.map({True: 'g', False: 'r'}) ax1v.bar(dfc.Date, dfc['Volume'], color=colors, alpha=0.4) ax1v.axes.yaxis.set_ticklabels([]) ax1v.set_ylim(0, 3*df.Volume.max()) ax1.set_title('Stock '+ symbol +' Closing Price') ax1.set_ylabel('Price') ax2 = plt.subplot(3, 1, 2) ax2.plot(df['ADL'], label='Accumulation Distribution Line') ax2.grid() ax2.legend(loc='best') ax2.set_ylabel('Accumulation Distribution Line') ax3 = plt.subplot(3, 1, 3) ax3v = ax3.twinx() colors = df.VolumePositive.map({True: 'g', False: 'r'}) ax3v.bar(df.index, df['Volume'], color=colors, alpha=0.4) ax3.set_ylabel('Volume') ax3.grid() ax3.set_xlabel('Date') ###Output _____no_output_____
notebooks/bnn_hmc_gaussian.ipynb
###Markdown (SG)HMC for inferring params of a 2d GaussianBased on https://github.com/google-research/google-research/blob/master/bnn_hmc/notebooks/mcmc_gaussian_test.ipynb ###Code import jax print(jax.devices()) !git clone https://github.com/google-research/google-research.git %cd /content/google-research !ls bnn_hmc !pip install optax ###Output Collecting optax Downloading optax-0.0.9-py3-none-any.whl (118 kB) [?25l  |██▊ | 10 kB 28.6 MB/s eta 0:00:01  |█████▌ | 20 kB 30.6 MB/s eta 0:00:01  |████████▎ | 30 kB 24.3 MB/s eta 0:00:01  |███████████ | 40 kB 19.8 MB/s eta 0:00:01  |█████████████▊ | 51 kB 14.1 MB/s eta 0:00:01  |████████████████▌ | 61 kB 10.6 MB/s eta 0:00:01  |███████████████████▎ | 71 kB 11.5 MB/s eta 0:00:01  |██████████████████████ | 81 kB 12.7 MB/s eta 0:00:01  |████████████████████████▉ | 92 kB 11.2 MB/s eta 0:00:01  |███████████████████████████▌ | 102 kB 12.1 MB/s eta 0:00:01  |██████████████████████████████▎ | 112 kB 12.1 MB/s eta 0:00:01  |████████████████████████████████| 118 kB 12.1 MB/s [?25hRequirement already satisfied: absl-py>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from optax) (0.12.0) Requirement already satisfied: numpy>=1.18.0 in /usr/local/lib/python3.7/dist-packages (from optax) (1.19.5) Collecting chex>=0.0.4 Downloading chex-0.0.8-py3-none-any.whl (57 kB) [?25l  |█████▋ | 10 kB 46.9 MB/s eta 0:00:01  |███████████▎ | 20 kB 49.0 MB/s eta 0:00:01  |█████████████████ | 30 kB 51.8 MB/s eta 0:00:01  |██████████████████████▋ | 40 kB 52.8 MB/s eta 0:00:01  |████████████████████████████▎ | 51 kB 52.8 MB/s eta 0:00:01  |████████████████████████████████| 57 kB 5.7 MB/s [?25hRequirement already satisfied: jax>=0.1.55 in /usr/local/lib/python3.7/dist-packages (from optax) (0.2.19) Requirement already satisfied: jaxlib>=0.1.37 in /usr/local/lib/python3.7/dist-packages (from optax) (0.1.70+cuda110) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from absl-py>=0.7.1->optax) (1.15.0) Requirement already satisfied: dm-tree>=0.1.5 in /usr/local/lib/python3.7/dist-packages (from chex>=0.0.4->optax) (0.1.6) Requirement already satisfied: toolz>=0.9.0 in /usr/local/lib/python3.7/dist-packages (from chex>=0.0.4->optax) (0.11.1) Requirement already satisfied: opt-einsum in /usr/local/lib/python3.7/dist-packages (from jax>=0.1.55->optax) (3.3.0) Requirement already satisfied: flatbuffers<3.0,>=1.12 in /usr/local/lib/python3.7/dist-packages (from jaxlib>=0.1.37->optax) (1.12) Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from jaxlib>=0.1.37->optax) (1.4.1) Installing collected packages: chex, optax Successfully installed chex-0.0.8 optax-0.0.9 ###Markdown Setup ###Code from jax.config import config import jax from jax import numpy as jnp import numpy as onp import numpy as np import os import sys import time import tqdm import optax import functools from matplotlib import pyplot as plt from bnn_hmc.utils import losses from bnn_hmc.utils import train_utils from bnn_hmc.utils import tree_utils %matplotlib inline %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Data and model ###Code mu = jnp.zeros([2,]) # sigma = jnp.array([[1., .5], [.5, 1.]]) sigma = jnp.array([[1.e-4, 0], [0., 1.]]) sigma_l = jnp.linalg.cholesky(sigma) sigma_inv = jnp.linalg.inv(sigma) sigma_det = jnp.linalg.det(sigma) onp.random.seed(0) samples = onp.random.multivariate_normal(onp.asarray(mu), onp.asarray(sigma), size=1000) plt.scatter(samples[:, 0], samples[:, 1], alpha=0.3) plt.grid() def log_density_fn(params): assert params.shape == mu.shape, "Shape error" diff = params - mu k = mu.size log_density = -jnp.log(2 * jnp.pi) * k / 2 log_density -= jnp.log(sigma_det) / 2 log_density -= diff.T @ sigma_inv @ diff / 2 return log_density def log_likelihood_fn(_, params, *args, **kwargs): return log_density_fn(params), jnp.array(jnp.nan) def log_prior_fn(_): return 0. def log_prior_diff_fn(*args): return 0. fake_net_apply = None fake_data = jnp.array([[jnp.nan,],]), jnp.array([[jnp.nan,],]) fake_net_state = jnp.array([jnp.nan,]) ###Output _____no_output_____ ###Markdown HMC ###Code step_size = 1e-1 trajectory_len = jnp.pi / 2 max_num_leapfrog_steps = int(trajectory_len // step_size + 1) print("Leapfrog steps per iteration:", max_num_leapfrog_steps) update, get_log_prob_and_grad = train_utils.make_hmc_update( fake_net_apply, log_likelihood_fn, log_prior_fn, log_prior_diff_fn, max_num_leapfrog_steps, 1., 0.) # Initial log-prob and grad values # params = jnp.ones_like(mu)[None, :] params = jnp.ones_like(mu) log_prob, state_grad, log_likelihood, net_state = ( get_log_prob_and_grad(fake_data, params, fake_net_state)) %%time num_iterations = 500 all_samples = [] key = jax.random.PRNGKey(0) for iteration in tqdm.tqdm(range(num_iterations)): (params, net_state, log_likelihood, state_grad, step_size, key, accept_prob, accepted) = ( update(fake_data, params, net_state, log_likelihood, state_grad, key, step_size, trajectory_len, True)) if accepted: all_samples.append(onp.asarray(params).copy()) # print("It: {} \t Accept P: {} \t Accepted {} \t Log-likelihood: {}".format( # iteration, accept_prob, accepted, log_likelihood)) len(all_samples) log_prob, state_grad, log_likelihood, net_state all_samples_cat = onp.stack(all_samples) plt.scatter(all_samples_cat[:, 0], all_samples_cat[:, 1], alpha=0.3) plt.grid() ###Output _____no_output_____ ###Markdown Blackjax ###Code !pip install blackjax import jax import jax.numpy as jnp import jax.scipy.stats as stats import matplotlib.pyplot as plt import numpy as np import blackjax.hmc as hmc import blackjax.nuts as nuts import blackjax.stan_warmup as stan_warmup print(jax.devices()) potential = lambda x: -log_density_fn(**x) num_integration_steps = 30 kernel_generator = lambda step_size, inverse_mass_matrix: hmc.kernel( potential, step_size, inverse_mass_matrix, num_integration_steps ) rng_key = jax.random.PRNGKey(0) initial_position = {"params": np.zeros(2)} initial_state = hmc.new_state(initial_position, potential) print(initial_state) %%time nsteps = 500 final_state, (step_size, inverse_mass_matrix), info = stan_warmup.run( rng_key, kernel_generator, initial_state, nsteps, ) %%time kernel = nuts.kernel(potential, step_size, inverse_mass_matrix) kernel = jax.jit(kernel) def inference_loop(rng_key, kernel, initial_state, num_samples): def one_step(state, rng_key): state, _ = kernel(rng_key, state) return state, state keys = jax.random.split(rng_key, num_samples) _, states = jax.lax.scan(one_step, initial_state, keys) return states %%time nsamples = 500 states = inference_loop(rng_key, kernel, initial_state, nsamples) samples = states.position["params"].block_until_ready() print(samples.shape) plt.scatter(samples[:, 0], samples[:, 1], alpha=0.3) plt.grid() ###Output _____no_output_____
mnist test.ipynb
###Markdown Filters ###Code fig = plt.figure(figsize=(20, 20)) num_cols = 10 gs = fig.add_gridspec(num_filters //num_cols, num_cols, hspace=0, wspace=0) axs = gs.subplots(sharex='col', sharey='row') for i in range(num_filters): axs[i // num_cols][i % num_cols].imshow(sparse_model.dictionary.w[:, i].reshape([14, 14]).cpu()) plt.show() num_reconstructions = 10 fig = plt.figure(figsize=(20, 20)) gs = fig.add_gridspec(num_reconstructions, 2, hspace=0, wspace=0) axs = gs.subplots(sharex='col', sharey='row') for i in range(num_reconstructions): axs[i][0].imshow(X.values[i].reshape([28, 28])) reconstructions = sparse_model.forward(torch.from_numpy(X.values[i].reshape([-1, dict_filter_size]))) axs[i][1].imshow(reconstructions.reshape([28, 28]).cpu()) plt.show() ###Output _____no_output_____
nodec_experiments/ct_lti/multi_sample/table_2.ipynb
###Markdown CT-LTI: Multiple Sample Performance Evaluation TableThis table is found in the appendix section A.4. and summarizes the performance comparison between NODEC and OC in relative terms of error and energy. Without extensive hyperparameter optimization we see that NODEC is competitive to OC for all graphs and intial-target state settings.Furthermore, please make sure that the required data folder is available at the paths used by the script.You may generate the required data by running the python script```nodec_experiments/ct_lti/gen_parameters.py```.Please also make sure that a trainingproceedure has produced results in the corresponding paths used below.Running ```nodec_experiments/ct_lti/multi_sample/train.ipynb``` with default paths is expected to generate at the requiered location.As neural network intialization is stochastic, please make sure that appropriate seeds are used or expect some variance to paper results. ###Code %load_ext autoreload %autoreload 2 import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Gather data from filesBelow we gather the data from files generated by the ```train_and_eval.ipynb``` file. Please run this first if the data files are not present! ###Code data_folder = '../../../../data/results/ct_lti/multi_sample/' graphs = ['lattice', 'ba', 'tree'] graph_name = {'lattice' : 'Square Lattice', 'ba' : 'Barabasi Albert', 'tree' : 'Random Tree'} resulting_rows = [] for graph in graphs: graph_folder = data_folder + graph + '/' interactions = [50, 500, 5000] for interaction in interactions: mse_diffs = [] energy_diffs = [] for i in range(100): nnres = pd.read_csv(graph_folder+'nn_sample_'+str(i)+'_train_'+str(interaction)+'/epoch_metadata.csv') ocres = pd.read_csv(graph_folder+'oc_sample'+str(i)+'_ninter_'+str(interaction)+'/epoch_metadata.csv') nn_en = nnres['total_energy'].item() oc_en = ocres['total_energy'].item() nn_fl = nnres['final_loss'].item() oc_fl = ocres['final_loss'].item() mse_diffs.append((nn_fl-oc_fl)/oc_fl) energy_diffs.append((nn_en-oc_en)/oc_en) row = {'Graph' : graph_name[graph], 'Interaction Interval': 5.0/interaction, 'Median Energy' : round(np.quantile(energy_diffs, 0.5), 2), 'IQR Energy' : round(np.quantile(energy_diffs, 0.75)-np.quantile(energy_diffs,0.25), 2), 'Median MSE' : round(np.quantile(mse_diffs, 0.5), 2), 'IQR MSE' : round(np.quantile(mse_diffs, 0.75)-np.quantile(mse_diffs, 0.25), 2), 'Numerical Instabilities' : round((np.array(mse_diffs) > 10).mean(), 2) } resulting_rows.append(row) ###Output _____no_output_____ ###Markdown Resulting Table ###Code df = pd.DataFrame(resulting_rows).groupby(['Graph', 'Interaction Interval']).first() styler = df.style.apply(lambda x: ["background: lightblue" if v <= 0.1 and i in [0,2] else "" for i,v in enumerate(x)], axis = 1) styler ###Output _____no_output_____
matplotlibteste.ipynb
###Markdown quero usar matplotlib para ilustrar permutaçõesA primeira coisa é fazer circulos numerados ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np circle1=plt.Circle((0,0),.1,color='r', alpha=0.2, clip_on=False) plt.axes(aspect="equal") fig = plt.gcf() fig.gca().add_artist(circle1) plt.axis("off") circle1=plt.Circle((0,0),.1,color='r', alpha=0.2, clip_on=False) circle2=plt.Circle((0,0.2),.1,color='y', alpha=0.2, clip_on=False) circle3=plt.Circle((0,0.4),.1,color='b', alpha=0.2, clip_on=False) circle4=plt.Circle((0,0.6),.1,color='g', alpha=0.2, clip_on=False) circle5=plt.Circle((0,0.8),.1,color=(0.2,0.6,0.7), alpha=0.2, clip_on=False) plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") fig1.gca().add_artist(circle1) fig1.gca().add_artist(circle2) fig1.gca().add_artist(circle3) fig1.gca().add_artist(circle4) fig1.gca().add_artist(circle5) circle1=plt.Circle((0,0),.1,color='r', alpha=0.2, clip_on=False) circle2=plt.Circle((0,0.2),.1,color='y', alpha=0.2, clip_on=False) circle3=plt.Circle((0,0.4),.1,color='b', alpha=0.2, clip_on=False) circle4=plt.Circle((0,0.6),.1,color='g', alpha=0.2, clip_on=False) circle5=plt.Circle((0,0.8),.1,color=(0.2,0.6,0.7), alpha=0.2, clip_on=False) circled1=plt.Circle((1,0),.1,color='r', alpha=0.2, clip_on=False) circled2=plt.Circle((1,0.2),.1,color='y', alpha=0.2, clip_on=False) circled3=plt.Circle((1,0.4),.1,color='b', alpha=0.2, clip_on=False) circled4=plt.Circle((1,0.6),.1,color='g', alpha=0.2, clip_on=False) circled5=plt.Circle((1,0.8),.1,color=(0.2,0.6,0.7), alpha=0.2, clip_on=False) plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") fig1.gca().add_artist(circle1) fig1.gca().add_artist(circle2) fig1.gca().add_artist(circle3) fig1.gca().add_artist(circle4) fig1.gca().add_artist(circle5) fig1.gca().add_artist(circled1) fig1.gca().add_artist(circled2) fig1.gca().add_artist(circled3) fig1.gca().add_artist(circled4) fig1.gca().add_artist(circled5) circle1=plt.Circle((0,0),.1,color='r', alpha=0.2, clip_on=False) circle2=plt.Circle((0,0.2),.1,color='y', alpha=0.2, clip_on=False) circle3=plt.Circle((0,0.4),.1,color='b', alpha=0.2, clip_on=False) circle4=plt.Circle((0,0.6),.1,color='g', alpha=0.2, clip_on=False) circle5=plt.Circle((0,0.8),.1,color=(0.2,0.6,0.7), alpha=0.2, clip_on=False) circled1=plt.Circle((1,0),.1,color='r', alpha=0.2, clip_on=False) circled2=plt.Circle((1,0.2),.1,color='y', alpha=0.2, clip_on=False) circled3=plt.Circle((1,0.4),.1,color='b', alpha=0.2, clip_on=False) circled4=plt.Circle((1,0.6),.1,color='g', alpha=0.2, clip_on=False) circled5=plt.Circle((1,0.8),.1,color=(0.2,0.6,0.7), alpha=0.2, clip_on=False) plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") fig1.gca().add_artist(circle1) fig1.gca().add_artist(circle2) fig1.gca().add_artist(circle3) fig1.gca().add_artist(circle4) fig1.gca().add_artist(circle5) fig1.gca().add_artist(circled1) fig1.gca().add_artist(circled2) fig1.gca().add_artist(circled3) fig1.gca().add_artist(circled4) fig1.gca().add_artist(circled5) # as arestas fig1.gca().plot([0.15,0.85],[0,0.8], color="red", alpha=0.6 ) fig1.gca().text(0.,0.,r'$5$', fontsize=20,verticalalignment='center', horizontalalignment='center') fig1.gca().text(1,0,r'$5$', fontsize=20, verticalalignment='center', horizontalalignment='center') fig1.gca().text(1,0.8,r'$1$', fontsize=20, verticalalignment='center', horizontalalignment='center') fig1.gca().text(0,0.8,r'$1$', fontsize=20, verticalalignment='center', horizontalalignment='center') fig1.gca().plot([0.15,0.85],[0.8,0.4], color=(.2,.6,.7), alpha=0.6 ) # agora faremos as funções. primeiro a cor de um inteiro def cor(n): ''' Dado um inteiro n designa uma cor''' return (n/(n+1), 1- n/(n+1), 1-(n+2)/(n+5)) #teste circle1=plt.Circle((0,0),.1,color=cor(1), alpha=0.2, clip_on=False) circle2=plt.Circle((0,0.2),.1,color=cor(3), alpha=0.2, clip_on=False) plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") fig1.gca().add_artist(circle1) fig1.gca().add_artist(circle2) def circulo(x,n): '''Define um circulo de centro (x,0.2*n) de raio 0.1 e cor n''' return plt.Circle((x,0.2*n), .1, color=cor(n), alpha=0.3, clip_on=False ) #teste plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") fig1.gca().add_artist(circulo(0,3)) fig1.gca().add_artist(circulo(0,4)) # função pilha de circulos def pilha_de_circulos(x,n): '''Faz uma pilha de n circulos sobre a abcissa x''' for k in range(n): fig1.gca().add_artist(circulo(x,k)) fig1.gca().text(x,0.2*k,r'$'+str(k+1)+'$', fontsize=20,verticalalignment='center', horizontalalignment='center') return # teste desta função: plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") pilha_de_circulos(0,3) pilha_de_circulos(1,3) pilha_de_circulos(2,3) # agora a função mapa_permu def mapa_permu(x,p): ''' desenha a permutação p (uma lista) na posição x''' l=len(p) x1= x+.15 x2= x+.85 for y in range(l): fig1.gca().plot([x1,x2],[0.2*y,0.2*(p[y]-1)], color=cor(y), alpha=0.6 ) return # teste plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") pilha_de_circulos(0,3) pilha_de_circulos(1,3) pilha_de_circulos(2,3) mapa_permu(0,[2,1,3]) mapa_permu(1.0, [3,1,2]) plt.axes(aspect="equal") fig1 = plt.gcf() plt.axis("off") pilha_de_circulos(0,5) pilha_de_circulos(1,5) mapa_permu(0,[3,2,1,5,4]) def pgrafico(x,p): '''Faz o grafico da permutação p começando em x''' n=len(p) fig1= plt.gcf() plt.axis("off") pilha_de_circulos(x,n) pilha_de_circulos(x+1,n) return mapa_permu(x,p) #teste plt.axes(aspect="equal") fig1= plt.gcf() plt.axis("off") pgrafico(0,[3,1,2]) ###Output _____no_output_____
homework/Homework07_Boyao.ipynb
###Markdown Homework03: Topic Modeling with Latent Semantic Analysis Latent Semantic Analysis (LSA) is a method for finding latent similarities between documents treated as a bag of words by using a low rank approximation. It is used for document classification, clustering and retrieval. For example, LSA can be used to search for prior art given a new patent application. In this homework, we will implement a small library for simple latent semantic analysis as a practical example of the application of SVD. The ideas are very similar to PCA. SVD is also used in recommender systems in an similar fashion (for an SVD-based recommender system library, see [Surpise](http://surpriselib.com). We will implement a toy example of LSA to get familiar with the ideas. If you want to use LSA or similar methods for statistical language analysis, the most efficient Python libraries are probably [gensim](https://radimrehurek.com/gensim/) and [spaCy](https://spacy.io) - these also provide an online algorithm - i.e. the training information can be continuously updated. Other useful functions for processing natural language can be found in the [Natural Language Toolkit](http://www.nltk.org/). **Note**: The SVD from scipy.linalg performs a full decomposition, which is inefficient since we only need to decompose until we get the first k singluar values. If the SVD from `scipy.linalg` is too slow, please use the `sparsesvd` function from the [sparsesvd](https://pypi.python.org/pypi/sparsesvd/) package to perform SVD instead. You can install in the usual way with ```!pip install sparsesvd```Then import the following```pythonfrom sparsesvd import sparsesvd from scipy.sparse import csc_matrix ```and use as follows```pythonsparsesvd(csc_matrix(M), k=10)``` **Exercise 1 (20 points)**. Calculating pairwise distance matrices.Suppose we want to construct a distance matrix between the rows of a matrix. For example, given the matrix ```pythonM = np.array([[1,2,3],[4,5,6]])```the distance matrix using Euclidean distance as the measure would be```python[[ 0.000 1.414 2.828] [ 1.414 0.000 1.414] [ 2.828 1.414 0.000]] ```if $M$ was a collection of column vectors.Write a function to calculate the pairwise-distance matrix given the matrix $M$ and some arbitrary distance function. Your functions should have the following signature:```def func_name(M, distance_func): pass```0. Write a distance function for the Euclidean, squared Euclidean and cosine measures.1. Write the function using looping for M as a collection of row vectors.2. Write the function using looping for M as a collection of column vectors.3. Wrtie the function using broadcasting for M as a collection of row vectors.4. Write the function using broadcasting for M as a collection of column vectors. For 3 and 4, try to avoid using transposition (but if you get stuck, there will be no penalty for using transposition). Check that all four functions give the same result when applied to the given matrix $M$. ###Code import numpy as np import scipy.linalg as la import string import pandas as pd from scipy import stats np.set_printoptions(precision=4) def Euc(x, y): return np.sqrt(np.sum((x - y) ** 2)) def sqEuc(x, y): return np.sum((x - y) ** 2) def Cos(x, y): return np.dot(x.T, y)/(np.linalg.norm(x) * np.linalg.norm(y)) M = np.array([[1,2,3],[4,5,6]]) def loop_row(M, distance_func): n = M.shape[0] dist = np.zeros((n, n)) for i in range(n): for j in range(i + 1, n): dist[i, j] = dist[j, i] = distance_func(M[i, :], M[j, :]) return dist def loop_col(M, distance_func): return loop_row(M.T, distance_func) def broadcast_row(M, distance_func): dist = np.sum(M ** 2, axis = 1) + np.sum(M ** 2, axis = 1)[:, np.newaxis] - 2 * np.dot(M, M.T) return dist broadcast_row(M, Euc) ###Output _____no_output_____ ###Markdown **Exercise 2 (20 points)**. **Exercise 2 (20 points)**. Write 3 functions to calculate the term frequency (tf), the inverse document frequency (idf) and the product (tf-idf). Each function should take a single argument `docs`, which is a dictionary of (key=identifier, value=document text) pairs, and return an appropriately sized array. Convert '-' to ' ' (space), remove punctuation, convert text to lowercase and split on whitespace to generate a collection of terms from the document text.- tf = the number of occurrences of term $i$ in document $j$- idf = $\log \frac{n}{1 + \text{df}_i}$ where $n$ is the total number of documents and $\text{df}_i$ is the number of documents in which term $i$ occurs.Print the table of tf-idf values for the following document collection```s1 = "The quick brown fox"s2 = "Brown fox jumps over the jumps jumps jumps"s3 = "The the the lazy dog elephant."s4 = "The the the the the dog peacock lion tiger elephant"docs = {'s1': s1, 's2': s2, 's3': s3, 's4': s4}``` ###Code def tf(docs): doc_words = [doc.strip().lower().translate(str.maketrans('-', ' ', string.punctuation)).split() for key, doc in docs.items()] words = [word for words in doc_words for word in words] terms = set(words) table = np.zeros((len(terms), len(docs)), dtype = 'int') for i, term in enumerate(terms): for j, doc in enumerate(doc_words): table[i, j] = doc.count(term) df = pd.DataFrame(table, columns = docs.keys(), index=terms) return df def idf(docs): doc_words = [doc.strip().lower().translate(str.maketrans('-', ' ', string.punctuation)).split() for key, doc in docs.items()] words = [word for words in doc_words for word in words] terms = set(words) table = np.zeros((len(terms)), dtype = 'int') for i, term in enumerate(terms): for doc in doc_words: table[i] += int(term in doc) table = np.log(len(docs) / (1 + table)) df = pd.DataFrame(table, columns=['idf'], index = terms) return df def tfidf(docs): tf_tbl = tf(docs) idf_tbl = idf(docs) tfidf_tbl = pd.DataFrame(np.array(tf_tbl) * np.array(idf_tbl),columns = docs.keys(), index = idf_tbl.index) return tfidf_tbl s1 = "The quick brown fox" s2 = "Brown fox jumps over the jumps jumps jumps" s3 = "The the the lazy dog elephant." s4 = "The the the the the dog peacock lion tiger elephant" docs = {'s1': s1, 's2': s2, 's3': s3, 's4': s4} print(tf(docs)) print(idf(docs)) print(tfidf(docs)) ###Output s1 s2 s3 s4 lion 0 0 0 1 the 1 1 3 5 dog 0 0 1 1 elephant 0 0 1 1 tiger 0 0 0 1 lazy 0 0 1 0 peacock 0 0 0 1 over 0 1 0 0 quick 1 0 0 0 brown 1 1 0 0 fox 1 1 0 0 jumps 0 4 0 0 idf lion 0.693147 the -0.223144 dog 0.287682 elephant 0.287682 tiger 0.693147 lazy 0.693147 peacock 0.693147 over 0.693147 quick 0.693147 brown 0.287682 fox 0.287682 jumps 0.693147 s1 s2 s3 s4 lion 0.000000 0.000000 0.000000 0.693147 the -0.223144 -0.223144 -0.669431 -1.115718 dog 0.000000 0.000000 0.287682 0.287682 elephant 0.000000 0.000000 0.287682 0.287682 tiger 0.000000 0.000000 0.000000 0.693147 lazy 0.000000 0.000000 0.693147 0.000000 peacock 0.000000 0.000000 0.000000 0.693147 over 0.000000 0.693147 0.000000 0.000000 quick 0.693147 0.000000 0.000000 0.000000 brown 0.287682 0.287682 0.000000 0.000000 fox 0.287682 0.287682 0.000000 0.000000 jumps 0.000000 2.772589 0.000000 0.000000 ###Markdown **Exercise 3 (20 points)**. 1. Write a function that takes a matrix $M$ and an integer $k$ as arguments, and reconstructs a reduced matrix using only the $k$ largest singular values. Use the `scipy.linagl.svd` function to perform the decomposition. This is the least squares approximation to the matrix $M$ in $k$ dimensions.2. Apply the function you just wrote to the following term-frequency matrix for a set of $9$ documents using $k=2$ and print the reconstructed matrix $M'$.```M = np.array([[1, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 2, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1]])```3. Calculate the pairwise correlation matrix for the original matrix M and the reconstructed matrix using $k=2$ singular values (you may use [scipy.stats.spearmanr](http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html) to do the calculations). Consider the fist 5 sets of documents as one group $G1$ and the last 4 as another group $G2$ (i.e. first 5 and last 4 columns). What is the average within group correlation for $G1$, $G2$ and the average cross-group correlation for G1-G2 using either $M$ or $M'$. (Do not include self-correlation in the within-group calculations.). ###Code def reconstruct(M, k): U, s, Vt = la.svd(M, full_matrices = False) M_reduced = U[:, :k] @ np.diag(s[:k]) @ Vt[:k, :] return M_reduced M = np.array([[1, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 2, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1]]) k = 2 Mp = reconstruct(M, k) Mp M_cor = stats.spearmanr(M).correlation Mp_cor = stats.spearmanr(Mp).correlation print(M_cor) print(Mp_cor) G1 = M[:, :5] G2 = M[:, 5:] G1_cor = stats.spearmanr(G1).correlation G1_cor_mean = G1_cor[0, 1:].mean() print(G1_cor_mean) G2_cor = stats.spearmanr(G2).correlation G2_cor_mean = G2_cor[0, 1:].mean() print(G2_cor_mean) G1_G2_cor = stats.spearmanr(G1, G2).correlation G1_G2_cor_mean = G1_G2_cor[0, :].mean() print(G1_G2_cor_mean) ###Output -0.11309645968036279 0.3407850581248793 -0.06125878345455297 ###Markdown **Exercise 4 (40 points)**. Clustering with LSA1. Begin by loading a PubMed database of selected article titles using 'pickle'. With the following:```import pickledocs = pickle.load(open('pubmed.pic', 'rb'))``` Create a tf-idf matrix for every term that appears at least once in any of the documents. What is the shape of the tf-idf matrix? 2. Perform SVD on the tf-idf matrix to obtain $U \Sigma V^T$ (often written as $T \Sigma D^T$ in this context with $T$ representing the terms and $D$ representing the documents). If we set all but the top $k$ singular values to 0, the reconstructed matrix is essentially $U_k \Sigma_k V_k^T$, where $U_k$ is $m \times k$, $\Sigma_k$ is $k \times k$ and $V_k^T$ is $k \times n$. Terms in this reduced space are represented by $U_k \Sigma_k$ and documents by $\Sigma_k V^T_k$. Reconstruct the matrix using the first $k=10$ singular values.3. Use agglomerative hierarchical clustering with complete linkage to plot a dendrogram and comment on the likely number of document clusters with $k = 100$. Use the dendrogram function from [SciPy ](https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.cluster.hierarchy.dendrogram.html).4. Determine how similar each of the original documents is to the new document `data/mystery.txt`. Since $A = U \Sigma V^T$, we also have $V = A^T U S^{-1}$ using orthogonality and the rule for transposing matrix products. This suggests that in order to map the new document to the same concept space, first find the tf-idf vector $v$ for the new document - this must contain all (and only) the terms present in the existing tf-idx matrix. Then the query vector $q$ is given by $v^T U_k \Sigma_k^{-1}$. Find the 10 documents most similar to the new document and the 10 most dissimilar. ###Code import pickle docs = pickle.load(open('pubmed.pic', 'rb')) tfidf_df = tfidf(docs) tfidf_m = np.array(tfidf_df) tfidf_m.shape tfidf_mp = reconstruct(tfidf_m, 10) tfidf_mp from matplotlib import pyplot as plt from scipy.cluster.hierarchy import dendrogram, linkage k = 100 Z = linkage(reconstruct(tfidf_m, k), 'complete') plt.figure(figsize=(25, 10)) plt.title('Hierarchical Clustering Dendrogram') plt.xlabel('index') plt.ylabel('distance') dendrogram( Z, truncate_mode = 'level', p = 15, leaf_font_size=15., # font size for the x axis labels ) plt.show() U, s, Vt = la.svd(tfidf_m, full_matrices = False) with open("mystery.txt") as f: newtext = f.read() idf_df = idf(docs) newtext_words = newtext.strip().lower().translate(str.maketrans('-', ' ', string.punctuation)).split() terms = [term for term in idf_df.index] tf_new = np.zeros((len(terms)), dtype = 'int') for i, term in enumerate(terms): tf_new[i] = newtext_words.count(term) tfidf_new = np.array(idf_df) * tf_new.reshape((-1,1)) tfidf_new.T @ U[:, :k] @ la.inv(np.diag(s[:k])) ###Output _____no_output_____
Notebooks/.ipynb_checkpoints/Capo-checkpoint.ipynb
###Markdown Visualizzare i 6 grafici ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy import sklearn import seaborn as sns import xlrd import funzioni as fn import statsmodels.api as sm ###Output _____no_output_____ ###Markdown Per il sesso M=0 e F=1 ###Code data=pd.read_excel('Data/Mini Project EFSA.xlsx') data.rename(columns={'sex \n(0=M, 1=F)':'sex'}, inplace=True) data ###Output _____no_output_____ ###Markdown Grafici maschili ###Code male_data=data[data.sex==0] male_data ###Output _____no_output_____ ###Markdown Endpoint 1 ###Code male_data_1=male_data[male_data.endpoint==1] male_data_1.plot(x='dose',y='response',yerr='SD',kind='bar',figsize=(12,6)) ###Output _____no_output_____ ###Markdown Endpoint 2 ###Code male_data_2=male_data[male_data.endpoint==2] male_data_2.plot(x='dose',y='response',yerr='SD',kind='bar',figsize=(12,6)) ###Output _____no_output_____ ###Markdown Endpoint 3 ###Code male_data_3=male_data[male_data.endpoint==3] male_data_3.plot(x='dose',y='response',yerr='SD',kind='bar',figsize=(12,6)) ###Output _____no_output_____ ###Markdown Grafici femminili ###Code female_data=data[data.sex==1] female_data ###Output _____no_output_____ ###Markdown Endpoint 1 ###Code female_data_1=female_data[female_data.endpoint==1] female_data_1.plot(x='dose',y='response',yerr='SD',kind='bar',figsize=(12,6)) ###Output _____no_output_____ ###Markdown Endpoint 2 ###Code female_data_2=female_data[female_data.endpoint==2] female_data_2.plot(x='dose',y='response',yerr='SD',kind='bar',figsize=(12,6)) ###Output _____no_output_____ ###Markdown Endpoint 3 ###Code female_data_3=female_data[female_data.endpoint==3] female_data_3.plot(x='dose',y='response',yerr='SD',kind='bar',figsize=(12,6)) ###Output _____no_output_____ ###Markdown prove plot ###Code data_Endpoint1 = data[data.endpoint == 1] data_Endpoint2 = data[data.endpoint == 2] data_Endpoint3 = data[data.endpoint == 3] Y = data_Endpoint1.response weights = data.SD X = data_Endpoint1.drop(columns=["response", "SD", "endpoint"]) group_of_models_endpoint1 = fn.mainForward(X, Y, weights) display(group_of_models_endpoint1) pred=pd.DataFrame([data_Endpoint1['number of animals'],group_of_models_endpoint1.Y_pred[1]],index=["noa","y_pred"]) pred1=pred.T pred=pd.DataFrame([data_Endpoint1['number of animals'],data_Endpoint1['sex'],group_of_models_endpoint1.Y_pred[2]],index=["noa","sex","y_pred"]) pred2=pred.T pred=pd.DataFrame([data_Endpoint1['number of animals'],data_Endpoint1['sex'],data_Endpoint1['dose'],group_of_models_endpoint1.Y_pred[3]],index=["noa","sex","dose","y_pred"]) pred3=pred.T pred3 fig, axs = plt.subplots(figsize=(15,20),nrows=3) data_Endpoint1.plot(x='number of animals', y='response',s=100,marker='x', ax=axs[0],kind='scatter') pred1.plot(x='noa', y='y_pred',color='r', ax=axs[0]) data_Endpoint1.plot(x=data_Endpoint1[['number of animals','sex']], y='response',s=100,marker='x', ax=axs[1],kind='scatter') pred1.plot(x='noa', y='y_pred',color='r', ax=axs[0]) p = model1.params() #Plot x = np.arange(0,40) ax = data_Endpoint1.plot(kind='scatter', x='number of animals', y='response') ax.plot(x, p.) ax.set_xlim([0,30]) #Seaborn sns.lmplot(x='Xvalue', y='Yvalue', data=data) group_of_models_endpoint1.plot(x = 'number_of_predictors', y = 'RSS') #print(model1.summary()) #fig, ax = plt.subplots() #fig = sm.graphics.plot_fit(model1, 0, ax=ax) ###Output _____no_output_____
notebooks/ProductClassificationSoftmax[Training].ipynb
###Markdown Shopee-Product-Matching![Shopee](https://cdn.lynda.com/course/563030/563030-636270778700233910-16x9.jpg) 1. If you want to learn more about this amazing competition hosted by [Shopee](https://www.kaggle.com/c/shopee-product-matching), Please visit following [Shopee EDA Image AutoEncoder](https://www.kaggle.com/code/chiragtagadiya/shopee-basic-autoencoder).2. This Notebook contains EDA and Image AutoEncoder solution. ###Code %config Completer.use_jedi = False ###Output _____no_output_____ ###Markdown Import Packages ###Code import sys sys.path.append('../input/timmmaster') import timm import math import os import numpy as np import cv2 import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import StratifiedKFold import timm import torch from torch import nn from torch.utils.data import Dataset, DataLoader import torch.nn.functional as F import albumentations from albumentations.pytorch.transforms import ToTensorV2 from torch.optim import lr_scheduler from tqdm import tqdm import matplotlib.pyplot as plt from sklearn import metrics from datetime import date from sklearn.metrics import f1_score, accuracy_score ###Output _____no_output_____ ###Markdown Configuration Options ###Code TRAIN_DIR = '../input/shopee-product-matching/train_images' TEST_DIR = '../input/shopee-product-matching/test_images' TRAIN_CSV = '../input/crossvalidationfolds/folds.csv' MODEL_PATH = './' class CFG: seed = 123 img_size = 512 classes = 11014 fc_dim = 512 epochs = 15 batch_size = 32 num_workers = 3 model_name = 'tf_efficientnet_b4' device = 'cuda' if torch.cuda.is_available() else 'cpu' scheduler_params = { "lr_start": 1e-3, "lr_max": 1e-5 * batch_size, "lr_min": 1e-6, "lr_ramp_ep": 5, "lr_sus_ep": 0, "lr_decay": 0.8, } model_path='../input/21-mar-lr-large/2022-03-20_softmax_512x512_tf_efficientnet_b4.pt' isTraining=False ###Output _____no_output_____ ###Markdown Solution Approach* In this competition it is given that,if two or more images have **same label group** then they are **similar products.** * Basically we can use this information to transfer the business problem into **multi class classification** problem.* From Image EDA, I found out that we have **11014** different classes, and dataset is **not balanced dataset*** If you see below plot, we can clearly see that there are **hardly 1000 data points having more than 10 products per label.** In this notebook I used **Weighted Sampler technique used in pytorch for handling imbalanced classification problem** ###Code train_df=pd.read_csv('../input/shopee-product-matching/train.csv') labelGroups = train_df.label_group.value_counts() # print(labelGroups) plt.figure(figsize=(15,5)) plt.plot(np.arange(len(labelGroups)), labelGroups.values) plt.xlabel("Index for unique label_group_item", size=12) plt.ylabel("Number of product data for label ", size=12) plt.title("label vs label frequency", size=15) plt.show() ###Output _____no_output_____ ###Markdown Create Custom DataSet ###Code class ShopeeDataset(Dataset): def __init__(self, df,root_dir, isTraining=False, transform=None): self.df = df self.transform = transform self.root_dir = root_dir def __len__(self): return len(self.df) def __getitem__(self, idx): # get row at index idx # print("idx",idx) row = self.df.iloc[idx] # print(row) label = row.label_group image_path = os.path.join(self.root_dir, row.image) # read image convert to RGB and apply augmentation image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.transform: aug = self.transform(image=image) image = aug['image'] return image, torch.tensor(label).long() ###Output _____no_output_____ ###Markdown Create Data Augmentation For training and validation Data ###Code def getAugmentation(IMG_SIZE, isTraining=False): if isTraining: return albumentations.Compose([ albumentations.Resize(IMG_SIZE, IMG_SIZE, always_apply=True), albumentations.HorizontalFlip(p=0.5), albumentations.VerticalFlip(p=0.5), albumentations.Rotate(limit=120, p=0.75), albumentations.RandomBrightness(limit=(0.09, 0.6), p=0.5), albumentations.Normalize( mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225] ), ToTensorV2(p=1.0) ]) else: return albumentations.Compose([ albumentations.Resize(IMG_SIZE, IMG_SIZE, always_apply=True), albumentations.Normalize( mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225] ), ToTensorV2(p=1.0) ]) ###Output _____no_output_____ ###Markdown Build Model ###Code class ShopeeLabelGroupClassfier(nn.Module): def __init__(self, model_name='tf_efficientnet_b0', loss_fn='softmax', classes = CFG.classes, fc_dim = CFG.fc_dim, pretrained=True, use_fc=True, isTraining=False ): super(ShopeeLabelGroupClassfier,self).__init__() # create bottlenack backbone network from pretrained model self.backbone = timm.create_model(model_name, pretrained=pretrained) in_features = self.backbone.classifier.in_features # we will put FC layers over backbone to classfy images based on label groups self.backbone.classifier = nn.Identity() self.backbone.global_pool = nn.Identity() self.pooling = nn.AdaptiveAvgPool2d(1) self.use_fc = use_fc self.loss_fn =loss_fn # build top fc layers if self.use_fc: self.dropout = nn.Dropout(0.2) self.fc = nn.Linear(in_features,fc_dim ) self.bn = nn.BatchNorm1d(fc_dim) in_features = fc_dim self.loss_fn = loss_fn if self.loss_fn=='softmax': self.final = nn.Linear(in_features, CFG.classes) def forward(self, image, label): features = self.get_features(image) if self.loss_fn=='softmax': logits = self.final(features) return logits def get_features(self,inp): batch_dim = inp.shape[0] inp = self.backbone(inp) inp = self.pooling(inp).view(batch_dim, -1) if self.use_fc: inp = self.dropout(inp) inp = self.fc(inp) inp = self.bn(inp) return inp # shoppe_label_classfier = ShopeeLabelGroupClassfier() ###Output _____no_output_____ ###Markdown Training Single Epoch ###Code def training_one_epoch(epoch_num,model, dataloader,optimizer, scheduler, device, loss_criteria): avgloss = 0.0 # put model in traning model model.train() tq = tqdm(enumerate(dataloader), total=len(dataloader)) for idx, data in tq: batch_size = data[0].shape[0] images = data[0] targets = data[1] # zero out gradient optimizer.zero_grad() # put input and target to device images = images.to(device) targets = targets.to(device) # pass input to the model output = model(images,targets) # get loss loss = loss_criteria(output,targets) # backpropogation loss.backward() # update learning rate step optimizer.step() # avg loss avgloss += loss.item() tq.set_postfix({'loss' : '%.6f' %float(avgloss/(idx+1)), 'LR' : optimizer.param_groups[0]['lr']}) # lr scheduler step after each epoch scheduler.step() return avgloss / len(dataloader) ###Output _____no_output_____ ###Markdown Validating Single Epoch ###Code def validation_one_epoch(model, dataloader, epoch, device, loss_criteria): avgloss = 0.0 # put model in traning model model.eval() tq = tqdm(enumerate(dataloader), desc = "Training Epoch { }" + str(epoch+1)) y_true=[] y_pred=[] with torch.no_grad(): for idx, data in tq: batch_size = data[0].shape[0] images = data[0] targets = data[1] images = images.to(device) targets = targets.to(device) output = model(images,targets) predicted_label=torch.argmax(output,1) y_true.extend(targets.detach().cpu().numpy()) y_pred.extend(predicted_label.detach().cpu().numpy()) loss = loss_criteria(output,targets) avgloss += loss.item() tq.set_postfix({'validation loss' : '%.6f' %float(avgloss/(idx+1))}) f1_score_metric = f1_score(y_true, y_pred, average='micro') tq.set_postfix({'validation f1 score' : '%.6f' %float(f1_score_metric)}) return avgloss / len(dataloader),f1_score_metric ###Output _____no_output_____ ###Markdown Helper Function for Handling class imbalanced data ###Code import numpy as np def get_class_weights(data): weight_dict=dict() # Format of row : PostingId, Image, ImageHash, Title, LabelGroup # LabelGroup index is 4 and it is representating class information for row in data.values: weight_dict[row[4]]=0 # Word dictionary keys will be label and value will be frequency of label in dataset for row in data.values: weight_dict[row[4]]+=1 # for each data point get label count data class_sample_count= np.array([weight_dict[row[4]] for row in data.values]) # each data point weight will be inverse of frequency weight = 1. / class_sample_count weight=torch.from_numpy(weight) return weight ###Output _____no_output_____ ###Markdown Training Loop ###Code def run_training(): data = pd.read_csv('../input/crossvalidationfolds/folds.csv') # label encoding labelencoder= LabelEncoder() data['label_group_original']=data['label_group'] data['label_group'] = labelencoder.fit_transform(data['label_group']) #data['weights'] = data['label_group'].map(1/data['label_group'].value_counts()) # create training_data and validation data initially not using k fold train_data = data[data['fold']!=0] # get weights for classes samples_weight=get_class_weights(train_data) print("samples_weight", len(samples_weight)) validation_data = data[data['fold']==0] # training augmentation train_aug = getAugmentation(CFG.img_size,isTraining=True ) validation_aug = getAugmentation(CFG.img_size, isTraining=False) # create custom train and validation dataset trainset = ShopeeDataset(train_data, TRAIN_DIR, isTraining=True, transform = train_aug) validset = ShopeeDataset(validation_data, TRAIN_DIR, isTraining=False, transform = validation_aug) print(len(data), len(samples_weight)) print(len(trainset)) # create data sampler sampler = torch.utils.data.sampler.WeightedRandomSampler(samples_weight, num_samples=len(samples_weight)) # create custom training and validation data loader num_workers=CFG.num_workers, train_dataloader = DataLoader(trainset, batch_size=CFG.batch_size, drop_last=True,pin_memory=True, sampler=sampler) validation_dataloader = DataLoader(validset, batch_size=CFG.batch_size, drop_last=True,pin_memory=True) # define loss function loss_criteria = nn.CrossEntropyLoss() loss_criteria.to(CFG.device) # define model model = ShopeeLabelGroupClassfier() model.to(CFG.device) # define optimzer optimizer = torch.optim.Adam(model.parameters(),lr= CFG.scheduler_params['lr_start']) # learning rate scheudler scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=7, T_mult=1, eta_min=1e-6, last_epoch=-1) history = {'train_loss':[],'validation_loss':[]} for epoch in range(CFG.epochs): # get current epoch training loss avg_train_loss = training_one_epoch(epoch_num = epoch, model = model, dataloader = train_dataloader, optimizer = optimizer, scheduler = scheduler, device = CFG.device, loss_criteria = loss_criteria) # get current epoch validation loss avg_validation_loss = validation_one_epoch(model = model, dataloader = validation_dataloader, epoch = epoch, device = CFG.device, loss_criteria = loss_criteria) history['train_loss'].append(avg_train_loss) history['validation_loss'].append(avg_validation_loss) # save model torch.save(model.state_dict(), MODEL_PATH + str(date.today()) +'_softmax_512x512_{}.pt'.format(CFG.model_name)) torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), # 'scheduler': lr_scheduler.state_dict() }, MODEL_PATH + str(date.today()) +'_softmax_512x512_{}_checkpoints.pt'.format(CFG.model_name) ) return model, history history=None if CFG.isTraining: model, history = run_training() ###Output _____no_output_____ ###Markdown Plot Training and Validation Loss and Accuracy ###Code if CFG.isTraining: epoch_lst = [ i+1 for i in range(15)] plt.plot(epoch_lst,history['train_loss']) plt.xlabel("Epoch number") plt.ylabel('Training Loss') plt.title('Training Loss SoftMax Loss Function') plt.show() if CFG.isTraining: plt.plot(epoch_lst,history['validation_loss']) plt.xlabel("Epoch number") plt.ylabel('Validation Loss') plt.title('Validation Loss SoftMax Loss Function') plt.show() ###Output _____no_output_____ ###Markdown Prediction ###Code def prediction(model): data = pd.read_csv('../input/crossvalidationfolds/folds.csv') # label encoding labelencoder= LabelEncoder() data['label_group'] = labelencoder.fit_transform(data['label_group']) # Prepare Validation data validation_data = data[data['fold']==0] validation_aug = getAugmentation(CFG.img_size,isTraining=False) validset = ShopeeDataset(validation_data, TRAIN_DIR, isTraining=False, transform = validation_aug) test_data_loader = torch.utils.data.DataLoader(validset,batch_size=CFG.batch_size) # put model in evalution mode model.eval() tq = tqdm(enumerate(test_data_loader)) y_true=[] y_pred=[] with torch.no_grad(): for idx, data in tq: images = data[0] targets = data[1] images = images.to(CFG.device) targets = targets.to(CFG.device) y_true.extend(targets.detach().cpu().numpy()) output = model(images,targets) outputs=torch.argmax(output,1) y_pred.extend(outputs.detach().cpu().numpy()) f1_score_metric = f1_score(y_true, y_pred, average='micro') return f1_score_metric if not CFG.isTraining: model = ShopeeLabelGroupClassfier(pretrained=False).to(CFG.device) model.load_state_dict(torch.load(CFG.model_path)) f1=prediction(model) print("F1 score {}".format(f1)) ###Output 215it [02:25, 1.48it/s]
SIC_AI_Coding_Exercises/SIC_AI_Chapter_02_Coding_Exercises/ex_0112.ipynb
###Markdown Coding Exercise 0112 1. Working with Excel documents: ###Code # Install the library. !pip install openpyxl # Import the required libraries. import openpyxl import os !wget --no-clobber https://github.com/stefannae/SIC-Artificial-Intelligence/raw/main/SIC_AI_Coding_Exercises/SIC_AI_Chapter_02_Coding_Exercises/my_excel_workbook.xlsx # Go to the directory where the file is located. os.chdir(r'~~') # Please, replace the path with your own. ###Output _____no_output_____ ###Markdown 1.1. Working with existing documents: ###Code wb = openpyxl.load_workbook('my_excel_workbook.xlsx') # Open an workbook. wb.sheetnames # Show the sheet names as a list. sh = wb['Sheet1'] # Get the 'Sheet1' as an object. cl = sh['A1'] # 'Get the A1' cell as an object. print(cl.value) # Show the cell value. print(sh['A1'].value) # Another way to show the value of 'A1' cell. print(sh.cell(1,1).value) # Get the cell value by specifying the row and column positions. # Show values from several cells. for i in range(1,11): print(sh.cell(i,1).value ) ###Output _____no_output_____ ###Markdown 1.2. Creating a new document: ###Code # Create a new workbook. my_wb = openpyxl.Workbook() # Create a new workbook object in the memory. print(my_wb.sheetnames) # In this workbook there is only the 'Sheet'. # Manipulating the content of new new workbook. my_sh = my_wb['Sheet'] my_sh['A1'].value = 999 # Change the value of a cell. my_sh['A2'] = 666 # Change the value of another cell. This is OK. my_sh.title = 'MySheet1' # Change the sheet name. my_sh2 = my_wb.create_sheet(index = 0, title = 'MySheet2') # Append a new sheet. my_sh2['A1'].value = 777 # Change the value of a cell in the new sheet. print(my_wb.sheetnames) # Save the workbook object as a file. my_wb.save('my_new_excel_workbook.xlsx') ###Output _____no_output_____
practice/week-14/Regression-All-in-One.ipynb
###Markdown BIG DATA ANALYTICS PROGRAMMING : Regression Task Regression(회귀) 문제를 처음 부터 끝까지 다뤄 봅니다---References- https://github.com/rickiepark/handson-ml2/blob/master/02_end_to_end_machine_learning_project.ipynb 1. Load Dataset ###Code import pandas as pd import numpy as np df = pd.read_csv("data/housing.csv") ###Output _____no_output_____ ###Markdown 2. Data에 대한 기본적인 정보 확인 ###Code df.head() df.info() df['ocean_proximity'].value_counts() df.describe() %matplotlib inline import matplotlib.pyplot as plt df.hist(bins=50, figsize=(20,15)) plt.show() ###Output _____no_output_____ ###Markdown 3. 미리 훈련/테스트 데이터셋 나누기 ###Code from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import train_test_split df["income_cat"] = pd.cut(df["median_income"], bins=[0., 1.5, 3.0, 4.5, 6., np.inf], labels=[1, 2, 3, 4, 5]) df.head() df["income_cat"].value_counts() df["income_cat"].hist() train_set_random, test_set_random = train_test_split(df, test_size=0.2, random_state=42) split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(df, df["income_cat"]): strat_train_set = df.loc[train_index] strat_test_set = df.loc[test_index] strat_test_set["income_cat"].value_counts() / len(strat_test_set) test_set_random['income_cat'].value_counts() / len(test_set_random) df["income_cat"].value_counts() / len(df) def income_cat_proportions(data): return data["income_cat"].value_counts() / len(data) compare_props = pd.DataFrame({ "Overall": income_cat_proportions(df), "Stratified": income_cat_proportions(strat_test_set), "Random": income_cat_proportions(test_set_random), }).sort_index() compare_props["Rand. %error"] = 100 * compare_props["Random"] / compare_props["Overall"] - 100 compare_props["Strat. %error"] = 100 * compare_props["Stratified"] / compare_props["Overall"] - 100 compare_props for set_ in (strat_train_set, strat_test_set): set_.drop("income_cat", axis=1, inplace=True) df = strat_train_set.copy() ###Output _____no_output_____ ###Markdown 4. 탐색적 데이터 분석 ###Code df.plot(kind="scatter", x="longitude", y="latitude") df.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1) df.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4, s=df["population"]/100, label="population", figsize=(10,7), c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True, sharex=False) plt.legend() import matplotlib.image as mpimg california_img=mpimg.imread("data/california.png") ax = df.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7), s=df['population']/100, label="Population", c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=False, alpha=0.4, ) plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5, cmap=plt.get_cmap("jet")) plt.ylabel("Latitude", fontsize=14) plt.xlabel("Longitude", fontsize=14) prices = df["median_house_value"] tick_values = np.linspace(prices.min(), prices.max(), 11) cbar = plt.colorbar(ticks=tick_values/prices.max()) cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14) cbar.set_label('Median House Value', fontsize=16) plt.legend(fontsize=16) plt.show() corr_matrix = df.corr() corr_matrix["median_house_value"].sort_values(ascending=False) from pandas.plotting import scatter_matrix attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"] scatter_matrix(df[attributes], figsize=(12, 8)) df.plot(kind="scatter", x="median_income", y="median_house_value", alpha=0.1) plt.axis([0, 16, 0, 550000]) ###Output _____no_output_____ ###Markdown 5. 추가 속성 생성 ###Code df["rooms_per_household"] = df["total_rooms"]/df["households"] df["bedrooms_per_room"] = df["total_bedrooms"]/df["total_rooms"] df["population_per_household"]=df["population"]/df["households"] corr_matrix = df.corr() corr_matrix["median_house_value"].sort_values(ascending=False) df.plot(kind="scatter", x="bedrooms_per_room", y="median_house_value", alpha=0.2) plt.show() df.describe() ###Output _____no_output_____ ###Markdown 6. 데이터 전처리 6-1. Label 분리 및 결측값 핸들링 ###Code df = strat_train_set.drop("median_house_value", axis=1) # 훈련 세트를 위해 레이블 삭제 df_labels = strat_train_set["median_house_value"].copy() sample_incomplete_rows = df[df.isnull().any(axis=1)].head() sample_incomplete_rows sample_incomplete_rows.dropna(subset=["total_bedrooms"]) # 옵션 1 sample_incomplete_rows.drop("total_bedrooms", axis=1) # 옵션 2 median = df["total_bedrooms"].median() df["total_bedrooms"].fillna(median, inplace=True) # 옵션 3 df.info() ###Output _____no_output_____ ###Markdown 6-2. Categorical 데이터 인코딩 ###Code df_cat = df[["ocean_proximity"]] df_cat.head(10) from sklearn.preprocessing import OrdinalEncoder ordinal_encoder = OrdinalEncoder() df_cat_encoded = ordinal_encoder.fit_transform(df_cat) df_cat_encoded[:10] ordinal_encoder.categories_ from sklearn.preprocessing import OneHotEncoder cat_encoder = OneHotEncoder() df_cat_1hot = cat_encoder.fit_transform(df_cat) df_cat_1hot cat_encoder.get_feature_names() df_cat_1hot.toarray() for index, category in enumerate(cat_encoder.get_feature_names()): print(index) print(category) df[category] = df_cat_1hot.toarray()[:,index] df.head() organized_df = df.drop("ocean_proximity", axis=1) organized_df ###Output _____no_output_____ ###Markdown 6-3. Numerical 데이터 정규화 ###Code from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() X = scaler.fit_transform(organized_df) y = df_labels.values X y ###Output _____no_output_____ ###Markdown 7. 정리된 데이터셋을 확인 하기 위한 간단한 모델 적용 ###Code from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(X, y) ###Output _____no_output_____ ###Markdown 7-1. 테스트 데이터셋에 전처리 적용 ###Code def organizing(encoder, scaler, data): for index, category in enumerate(encoder.get_feature_names()): df_cat = data[["ocean_proximity"]] data[category] = encoder.transform(df_cat).toarray()[:,index] data.drop("ocean_proximity", axis=1, inplace=True) X = scaler.transform(data) return X test_y = strat_test_set['median_house_value'] test_X = strat_test_set.drop("median_house_value", axis=1) # 훈련 세트를 위해 레이블 삭제 test_X.info() test_X["total_bedrooms"].fillna(median,inplace=True) test_X.info() test_X = organizing(cat_encoder, scaler, test_X) print(test_X) ###Output _____no_output_____ ###Markdown 7-2. 예측 ###Code pred_y = reg.predict(test_X) mse = mean_squared_error(test_y, pred_y) rmse = np.sqrt(mse) print(rmse) mae = mean_absolute_error(test_y, pred_y) print(mae) ###Output _____no_output_____ ###Markdown 8. 최적의 모델 찾기 ###Code from sklearn.utils import all_estimators estimators = all_estimators(type_filter='regressor') all_regs = [] for name, RegressorClass in estimators: try: reg = RegressorClass() all_regs.append(reg) print('Appending', name) except: pass results = [] from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestRegressor rfr = RandomForestRegressor(random_state=42) scores = cross_val_score(rfr, X, y, scoring="neg_mean_squared_error", cv=10) scores = np.sqrt(-scores) print("점수:", scores) print("평균:", scores.mean()) print("표준 편차:", scores.std()) SUPER_SLOW_REGRESSION = ["GaussianProcessRegressor","KernelRidge"] for reg in all_regs: reg_name = reg.__class__.__name__ if reg_name not in SUPER_SLOW_REGRESSION: try: # reg.fit(X, y) scores = cross_val_score(reg, X, y, scoring="neg_mean_squared_error", cv=5) scores = np.sqrt(-scores) if not scores.mean(): break print("{}: RMSE {}".format(reg.__class__.__name__, scores.mean())) result = { "Name":reg.__class__.__name__, "RMSE":scores.mean() } results.append(result) except: pass result_df = pd.DataFrame(results) result_df result_df.sort_values(by="RMSE") ###Output _____no_output_____ ###Markdown 9. 모델 세부 튜닝 ###Code from sklearn.model_selection import GridSearchCV param_grid = [ {'n_estimators': [50, 70, 100, 120, 150], 'max_features': [2, 4, 6, 8]}, ] forest_reg = RandomForestRegressor(random_state=42) grid_search = GridSearchCV(forest_reg, param_grid, cv=5, verbose=2, scoring='neg_mean_squared_error', return_train_score=True) grid_search.fit(X, y) grid_search.best_params_ reg = RandomForestRegressor(max_features=6, n_estimators=150,random_state=42) reg.fit(X,y) pred_y = reg.predict(test_X) mse = mean_squared_error(test_y, pred_y) rmse = np.sqrt(mse) mae = mean_absolute_error(test_y, pred_y) print("RMSE {}, MAE {}".format(rmse,mae)) ###Output _____no_output_____ ###Markdown Q. 중요하지 않은 속성 제거뒤 다시 해보기! ###Code feature_importances = grid_search.best_estimator_.feature_importances_ print(feature_importances) features_with_importance = zip(df.columns, grid_search.best_estimator_.feature_importances_) sorted(features_with_importance,key=lambda f : f[1], reverse=True) ###Output _____no_output_____
_notebooks/2020-05-06-Shortest-Unsorted-Continuous-Subarray.ipynb
###Markdown "Shortest Unsorted Continuous Subarray"> "[[Leetcode]](https://leetcode.com/problems/shortest-unsorted-continuous-subarray/)[Arrays]"- toc: true - badges: true- comments: true- categories: [Problem Solving,Leetcode]- comments: true- author: Teja Kummarikuntla Problem StatementGiven an integer array, you need to find one continuous subarray that if you only sort this subarray in ascending order, then the whole array will be sorted in ascending order, too.You need to find the shortest such subarray and output its length. [URL](https://leetcode.com/problems/shortest-unsorted-continuous-subarray/) Example 1:```Input: [2, 6, 4, 8, 10, 9, 15]Output: 5``` Explanation: You need to sort [6, 4, 8, 10, 9] in ascending order to make the whole array sorted in ascending order. Note:```- Then length of the input array is in range [1, 10,000].- The input array may contain duplicates, so ascending order here means <=.``` Approach 1 [Reference](https://leetcode.com/problems/shortest-unsorted-continuous-subarray/discuss/609557/Python-Using-sorted-array-to-cross-check-(Runtime%3A-O(nlog(n)))![](Images/Problem_solving/findUnsortedSubarray/approach_1.png) ###Code #collapse-hide from typing import List class Solution: def findUnsortedSubarray(self, nums: List[int]) -> int: sortedArr = sorted(nums) startIndex = 0 endIndex = len(nums)-1 if nums == sortedArr: return 0 while(nums[endIndex] == sortedArr[endIndex]): endIndex -= 1 while(nums[startIndex] == sortedArr[startIndex]): startIndex += 1 return (endIndex-startIndex)+1 sol = Solution() sol.findUnsortedSubarray([2, 6, 4, 8, 10, 9, 15]) sol.findUnsortedSubarray([]) sol.findUnsortedSubarray([1, 2, 3, 4]) ###Output _____no_output_____
Applying KNN Classifier on Iris Dataset.ipynb
###Markdown Loading Required Libraries ###Code # Loading Required Libraries import numpy as np import pandas as pd import sklearn from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.datasets import load_iris from matplotlib import pyplot as plt from sklearn import datasets from sklearn import tree ###Output _____no_output_____ ###Markdown Exploring Iris Dataset ###Code # Loading Datasets iris_data = load_iris() iris = pd.DataFrame(iris_data.data) iris_targets = pd.DataFrame(iris_data.target) # Priting Features Name of Iris Data print ("Features Name : ", iris_data.feature_names) # Priting Targets Name of Iris Data print ("Targets Name : ", iris_data.target_names) # Shape of Datasets print ("Dataset Shape: ", iris.shape) # First Five Sample features print ("Dataset: ",iris.head()) # First Five Sample Targets print ("Dataset: ",iris_targets.head()) ###Output Features Name : ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] Targets Name : ['setosa' 'versicolor' 'virginica'] Dataset Shape: (150, 4) Dataset: 0 1 2 3 0 5.1 3.5 1.4 0.2 1 4.9 3.0 1.4 0.2 2 4.7 3.2 1.3 0.2 3 4.6 3.1 1.5 0.2 4 5.0 3.6 1.4 0.2 Dataset: 0 0 0 1 0 2 0 3 0 4 0 ###Markdown Splitting Dataset into training and testing sets ###Code # Features and Targets X = iris_data.data Y = iris_data.target # Splitting the Dataset into Training and Testing sets X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state = 42) ###Output _____no_output_____ ###Markdown Normalizing the dataset ###Code from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) X_train[0:4,:] ###Output _____no_output_____ ###Markdown KNN Classifier ###Code from sklearn.neighbors import KNeighborsClassifier KNN = KNeighborsClassifier(n_neighbors = 5) KNN.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Predicting ###Code Y_pred = KNN.predict(X_test) ###Output _____no_output_____ ###Markdown Accuracy & Confusion Matrix ###Code from sklearn.metrics import confusion_matrix #Accuray of the Model print("Accuracy:", accuracy_score(y_test, Y_pred)*100, "%") print(confusion_matrix(y_test, Y_pred)) ###Output Accuracy: 100.0 % [[10 0 0] [ 0 9 0] [ 0 0 11]] ###Markdown Calculating Error for K Values ###Code error = [] # Calculating error for K values between 1 and 40 for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) pred_i = knn.predict(X_test) error.append(np.mean(pred_i != y_test)) print(np.mean(pred_i != y_test)) ###Output 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03333333333333333 0.0 0.03333333333333333 0.03333333333333333 0.03333333333333333 0.03333333333333333 0.03333333333333333 0.03333333333333333 0.03333333333333333 0.03333333333333333 0.03333333333333333 0.06666666666666667 0.03333333333333333 0.03333333333333333 ###Markdown Plotting Error for K Values ###Code plt.figure(figsize=(12, 6)) plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=10) plt.title('Error Rate K Value') plt.xlabel('K Value') plt.ylabel('Mean Error') ###Output _____no_output_____
examples/private-set-intersection/PSI_Client_Syft_Data_Scientist.ipynb
###Markdown from: https://github.com/OpenMined/PSI/blob/master/private_set_intersection/python/tests.py Goto --------> [server-step-1] [Client-Step-1] get reveal_intersection ###Code duet.store.pandas reveal_intersection_ptr = duet.store["reveal_intersection"] reveal_intersection = reveal_intersection_ptr.get( request_block=True, name="reveal_intersection", reason="Are we revealing or not?", timeout_secs=10, delete_obj=False ) reveal_intersection ###Output _____no_output_____ ###Markdown send client_items_len ###Code client = psi.client.CreateWithNewKey(reveal_intersection) client_items = ["Element " + str(i) for i in range(1000)] sy_client_items_len = sy.lib.python.Int(len(client_items)) sy_client_items_len_ptr = sy_client_items_len.send(duet, searchable=True, tags=["client_items_len"], description="client items length") duet.store.pandas ###Output _____no_output_____ ###Markdown Goto --------> [Server-Step-2] [Client-Step-2] get setup message ###Code duet.store.pandas setup_ptr = duet.store["setup"] setup = setup_ptr.get( request_block=True, name="setup", reason="To get the setup", timeout_secs=10, delete_obj=False ) type(setup) ###Output _____no_output_____ ###Markdown send request ###Code request = client.CreateRequest(client_items) request_ptr = request.send(duet, tags=["request"], searchable=True, description="client request") duet.store.pandas ###Output _____no_output_____ ###Markdown Goto --------> [Server-Step-3] [Client-Step-3] get response ###Code duet.store.pandas response_ptr = duet.store["response"] response = response_ptr.get( request_block=True, name="response", reason="To get the response", timeout_secs=10, ) type(response) ###Output _____no_output_____ ###Markdown get result ###Code if reveal_intersection: intersection = client.GetIntersection(setup, response) iset = set(intersection) for idx in range(len(client_items)): if idx % 2 == 0: assert idx in iset else: assert idx not in iset if not reveal_intersection: intersection = client.GetIntersectionSize(setup, response) assert intersection >= (len(client_items) / 2.0) assert intersection <= (1.1 * len(client_items) / 2.0) intersection ###Output _____no_output_____ ###Markdown from: https://github.com/OpenMined/PSI/blob/master/private_set_intersection/python/tests.py Goto --------> [server-step-1] [Client-Step-1] get reveal_intersection ###Code duet.store.pandas reveal_intersection_ptr = duet.store["reveal_intersection"] reveal_intersection = reveal_intersection_ptr.get( request_block=True, name="reveal_intersection", reason="Are we revealing or not?", timeout_secs=10, delete_obj=False ) reveal_intersection ###Output _____no_output_____ ###Markdown send client_items_len ###Code client = psi.client.CreateWithNewKey(reveal_intersection) client_items = ["Element " + str(i) for i in range(1000)] sy_client_items_len = sy.lib.python.Int(len(client_items)) sy_client_items_len_ptr = sy_client_items_len.send(duet, pointable=True, tags=["client_items_len"], description="client items length") duet.store.pandas ###Output _____no_output_____ ###Markdown Goto --------> [Server-Step-2] [Client-Step-2] get setup message ###Code duet.store.pandas setup_ptr = duet.store["setup"] setup = setup_ptr.get( request_block=True, name="setup", reason="To get the setup", timeout_secs=10, delete_obj=False ) type(setup) ###Output _____no_output_____ ###Markdown send request ###Code request = client.CreateRequest(client_items) request_ptr = request.send(duet, tags=["request"], pointable=True, description="client request") duet.store.pandas ###Output _____no_output_____ ###Markdown Goto --------> [Server-Step-3] [Client-Step-3] get response ###Code duet.store.pandas response_ptr = duet.store["response"] response = response_ptr.get( request_block=True, name="response", reason="To get the response", timeout_secs=10, ) type(response) ###Output _____no_output_____ ###Markdown get result ###Code if reveal_intersection: intersection = client.GetIntersection(setup, response) iset = set(intersection) for idx in range(len(client_items)): if idx % 2 == 0: assert idx in iset else: assert idx not in iset if not reveal_intersection: intersection = client.GetIntersectionSize(setup, response) assert intersection >= (len(client_items) / 2.0) assert intersection <= (1.1 * len(client_items) / 2.0) intersection ###Output _____no_output_____ ###Markdown from: https://github.com/OpenMined/PSI/blob/master/private_set_intersection/python/tests.py Goto --------> [server-step-1] [Client-Step-1] get reveal_intersection ###Code duet.store.pandas reveal_intersection_ptr = duet.store["reveal_intersection"] reveal_intersection = reveal_intersection_ptr.get( request_block=True, name="reveal_intersection", reason="Are we revealing or not?", timeout_secs=10, delete_obj=False ) reveal_intersection ###Output _____no_output_____ ###Markdown send client_items_len ###Code client = psi.client.CreateWithNewKey(reveal_intersection) client_items = ["Element " + str(i) for i in range(1000)] sy_client_items_len = sy.lib.python.Int(len(client_items)) sy_client_items_len_ptr = sy_client_items_len.send(duet, pointable=True, tags=["client_items_len"], description="client items length") duet.store.pandas ###Output _____no_output_____ ###Markdown Goto --------> [Server-Step-2] [Client-Step-2] get setup message ###Code duet.store.pandas setup_ptr = duet.store["setup"] setup = setup_ptr.get( request_block=True, name="setup", reason="To get the setup", timeout_secs=10, delete_obj=False ) type(setup) ###Output _____no_output_____ ###Markdown send request ###Code request = client.CreateRequest(client_items) request_ptr = request.send(duet, tags=["request"], pointable=True, description="client request") duet.store.pandas ###Output _____no_output_____ ###Markdown Goto --------> [Server-Step-3] [Client-Step-3] get response ###Code duet.store.pandas response_ptr = duet.store["response"] response = response_ptr.get( request_block=True, name="response", reason="To get the response", timeout_secs=10, ) type(response) ###Output _____no_output_____ ###Markdown get result ###Code if reveal_intersection: intersection = client.GetIntersection(setup, response) iset = set(intersection) for idx in range(len(client_items)): if idx % 2 == 0: assert idx in iset else: assert idx not in iset if not reveal_intersection: intersection = client.GetIntersectionSize(setup, response) assert intersection >= (len(client_items) / 2.0) assert intersection <= (1.1 * len(client_items) / 2.0) intersection ###Output _____no_output_____
Train MRCNN.ipynb
###Markdown Validating the model ###Code import os import cv2 import sys import random import math import re import time import numpy as np import tensorflow as tf import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches import skimage import glob # Root directory of the project ROOT_DIR = '/content/drive/My Drive/Mask_RCNN' # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils from mrcnn import visualize from mrcnn.visualize import display_images import mrcnn.model as modellib from mrcnn.model import log import cloud %matplotlib inline # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") custom_WEIGHTS_PATH = "/content/drive/My Drive/Mask_RCNN/logs/cloud20200316T1012/mask_rcnn_cloud_0010.h5" # TODO: update this path config = cloud.CloudConfig() custom_DIR = os.path.join(ROOT_DIR, "Cloud_Dataset") #Override the training configurations with a few # changes for inferencing. class InferenceConfig(config.__class__): # Run detection on one image at a time GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() # Device to load the neural network on. # Useful if you're training a model on the same # machine, in which case use CPU and leave the # GPU for training. DEVICE = "/gpu:0" # /cpu:0 or /gpu:0 # Inspect the model in training or inference modes # values: 'inference' or 'training' # TODO: code for 'training' test mode not ready yet TEST_MODE = "inference" def get_ax(rows=1, cols=1, size=16): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Adjust the size attribute to control how big to render images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax # Load validation dataset dataset = cloud.CloudDataset() dataset.load_custom(custom_DIR, "val") # Must call before using the dataset dataset.prepare() print("Images: {}\nClasses: {}".format(len(dataset.image_ids), dataset.class_names)) # Create model in inference mode with tf.device(DEVICE): model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR,config=config) # load the last model you trained # weights_path = model.find_last()[1] # Load weights print("Loading weights ", custom_WEIGHTS_PATH) model.load_weights(custom_WEIGHTS_PATH, by_name=True) from importlib import reload reload(visualize) image_id = random.choice(dataset.image_ids) image, image_meta, gt_class_id, gt_bbox, gt_mask =\ modellib.load_image_gt(dataset, config, image_id, use_mini_mask=False) info = dataset.image_info[image_id] print("image ID: {}.{} ({}) {}".format(info["source"], info["id"], image_id, dataset.image_reference(image_id))) # Run object detection results = model.detect([image], verbose=1) # Display results ax = get_ax(1) r = results[0] visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], dataset.class_names, r['scores'], ax=ax, title="Predictions") # log("gt_class_id", gt_class_id) # log("gt_bbox", gt_bbox) print(r['rois']) # print(r['masks']) # log("gt_mask", gt_mask) ###Output image ID: cloud.satellite6.jpg (5) /content/drive/My Drive/Mask_RCNN/Cloud_Dataset/val/satellite6.jpg Processing 1 images image shape: (1024, 1024, 3) min: 0.00000 max: 255.00000 uint8 molded_images shape: (1, 1024, 1024, 3) min: -123.70000 max: 151.10000 float64 image_metas shape: (1, 14) min: 0.00000 max: 1024.00000 int64 anchors shape: (1, 261888, 4) min: -0.35390 max: 1.29134 float32 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead. [[721 319 769 439] [386 461 753 771] [260 317 589 853]]
notebooks/dflow.ipynb
###Markdown mmdflowDetect water in a static image of an oil-water flow experiment. DescriptionA gray-scale image of an oil-water flow experiment is processed. This image is composed of a top-lateral view of a transparent pipe containing water, in the center, and oil, around the water. This procedure detects the region where the water is by using connected filtering, thresholding and shape smoothing. ###Code import numpy as np from PIL import Image import ia870 as ia import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Reading The gray-scale image of the water-oil flow experiment is read. ###Code a_pil = Image.open('../data/flow.tif').convert('L') a = np.array (a_pil) (fig, axes) = plt.subplots(nrows=1, ncols=1,figsize=(5, 5)) axes.set_title('a') axes.imshow(a, cmap='gray') axes.axis('off') ###Output _____no_output_____ ###Markdown Dark region enhancementThe dark region of the image is enhanced by the close top-hat operator. ###Code b=ia.iacloseth(a,ia.iaseline(50,90)); (fig, axes) = plt.subplots(nrows=1, ncols=1,figsize=(5, 5)) axes.set_title('b') axes.imshow(b, cmap='gray') axes.axis('off') ###Output _____no_output_____ ###Markdown FilteringA connected filtering is applied to remove small artifacts present in the image. ###Code c=ia.iacloserec(b,ia.iasebox(5)); (fig, axes) = plt.subplots(nrows=1, ncols=1,figsize=(5, 5)) axes.set_title('c') axes.imshow(c, cmap='gray') axes.axis('off') ###Output _____no_output_____ ###Markdown Shape filteringAn alternated sequential filtering is used for shape smoothing. ###Code d=ia.iaasf(c,'co',ia.iasecross()); (fig, axes) = plt.subplots(nrows=1, ncols=1,figsize=(5, 5)) axes.set_title('d') axes.imshow(d, cmap='gray') axes.axis('off') ###Output _____no_output_____ ###Markdown ThresholdingThe original and thresholded image overlayed on the original are presented successively. ###Code e=ia.iathreshad(d,100); (fig, axes) = plt.subplots(nrows=1, ncols=2,figsize=(10, 7)) axes[0].set_title('a') axes[0].imshow(a, cmap='gray') axes[0].axis('off') axes[1].set_title('a, e') axes[1].imshow(ia.iagshow(a, e).transpose(1, 2, 0), cmap='gray') axes[1].axis('off') ###Output _____no_output_____
notebooks/issues/53_move_local_template_to_config_dir.ipynb
###Markdown [53](https://github.com/blaylockbk/Herbie/issues/53) To extend Herbie, put local template in `~/.config/herbie` ###Code from herbie.archive import Herbie import herbie.models as models_template H = Herbie('2017-10-21', model='gefs', variable='tmp', member=1) H.SOURCES H.download() H.read_idx(':6 hour') ds = H.xarray(":6 hour") ds from toolbox.cartopy_tools import common_features, pc ax = common_features().ax ds.t.plot(ax=ax, transform=pc) from datetime import datetime from os import remove import matplotlib.pyplot as plt from herbie.archive import Herbie now = datetime.now() today = datetime(now.year, now.month, now.day) today_str = today.strftime('%Y-%m-%d %H:%M') H = Herbie(today_str, model='hrrr', product='prs', save_dir='$TMPDIR') H.download() H.xarray('TMP:2 m') H.local_grib.expand() ###Output _____no_output_____
notebook/c620_Mathematical_Programming_Solver.ipynb
###Markdown ###Code !pip install autorch > log.txt import joblib import autorch from autorch.function import sp2wt import pandas as pd import numpy as np import torch from torch import nn from torch.optim import Adam pd.options.display.max_rows = 999 df = pd.read_csv('/content/drive/MyDrive/台塑輕油案子/data/c620/cleaned/c620_train.csv',index_col=0) c = joblib.load('/content/drive/MyDrive/台塑輕油案子/data/c620/col_names/c620_col_names.pkl') df.head(3) ###Output _____no_output_____ ###Markdown 建立 f(case,input_wt,op) = output_wt ###Code # def columns input_wt_col = c['x41'] case_col = c['case'] op_col = c['density']+c['yRefluxRate']+c['yHeatDuty']+c['yControl'] sp_col = c['vent_gas_sf'] +c['distillate_sf'] +c['sidedraw_sf'] +c['bottoms_sf'] output_wt_col = c['vent_gas_x'] +c['distillate_x'] +c['sidedraw_x'] +c['bottoms_x'] n_idx = [ [i,i+41,i+41*2,i+41*3] for i in range(41)] # train c620_f = autorch.utils.PartBulider(df,case_col+input_wt_col+op_col,sp_col,max_epochs=100,limit_y_range=True,normalize_idx_list=n_idx) c620_f.net = nn.Sequential(nn.Linear(len(case_col+input_wt_col+op_col),256),nn.Linear(256,256),nn.Linear(256,len(sp_col)),nn.Sigmoid()) c620_f.optimizer = Adam(c620_f.net.parameters(),lr=1e-3) c620_f.train() # test x_test = c620_f.data['X_test'] x41 = df.loc[x_test.index,c['x41']].values sp = c620_f.predict(x_test).iloc[:,:41*4] s1,s2,s3,s4 = sp.iloc[:,:41].values,sp.iloc[:,41:41*2].values,sp.iloc[:,41*2:41*3].values,sp.iloc[:,41*3:41*4].values w1,w2,w3,w4 = sp2wt(x41,s1),sp2wt(x41,s2),sp2wt(x41,s3),sp2wt(x41,s4) wt_pred = np.hstack((w1,w2,w3,w4)) wt_pred = pd.DataFrame(wt_pred,index=x_test.index,columns=output_wt_col) wt_real = df.loc[x_test.index,output_wt_col] res = c620_f.show_metrics(wt_real,wt_pred) res res.loc[['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%']] a = wt_pred[['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%']].head(10) b = wt_real[['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%']].head(10) b.columns = ['輸出端'] a.join(b) def F(case,input_wt,op): sp = c620_f.predict(case.join(input_wt).join(op)) s1,s2,s3,s4 = sp.iloc[:,:41].values,sp.iloc[:,41:41*2].values,sp.iloc[:,41*2:41*3].values,sp.iloc[:,41*3:41*4].values x41 = input_wt.values w1,w2,w3,w4 = sp2wt(x41,s1),sp2wt(x41,s2),sp2wt(x41,s3),sp2wt(x41,s4) wt_pred = np.hstack((w1,w2,w3,w4)) wt_pred = pd.DataFrame(wt_pred,index=input_wt.index,columns=output_wt_col) return wt_pred ###Output _____no_output_____ ###Markdown 建立 g(case,input_wt) = op ###Code path = '/content/drive/MyDrive/台塑輕油案子/data/c620/模擬擴充資料0514.xlsx' df_extend = pd.read_excel(path) idx_extend = df_extend.iloc[0,6:].values case_extend = df_extend.iloc[[5,6,7],6:].T case_extend.columns = case_col case_extend.index = idx_extend case_extend.head(1) wt_extend = df_extend.iloc[132:132+41,6:].T wt_extend.columns = input_wt_col wt_extend.index = idx_extend wt_extend.head(1) op_extend = df_extend.iloc[221:221+2,6:].T op_extend.columns = op_col[-2:] op_extend.index = idx_extend op_extend.head(1) G = joblib.load('/content/drive/MyDrive/台塑輕油案子/data/c620/model/c620_G.pkl') op_pred = G.predict(case_extend.join(wt_extend)) op_pred = pd.DataFrame(op_pred,columns=op_col,index=idx_extend) op_pred[op_col[-2:]] = op_extend op_extend = op_pred op_extend.head(1) df_extend = case_extend.join(wt_extend).join(op_extend).astype('float32') df_extend.head(1) G = autorch.utils.PartBulider(df.append(df_extend),case_col+input_wt_col,op_col,max_epochs=42,limit_y_range=True) G.net = nn.Sequential(nn.Linear(len(case_col+input_wt_col),256),nn.Linear(256,256),nn.Linear(256,len(op_col)),nn.Sigmoid()) G.optimizer = Adam(G.net.parameters(),lr=1e-3) G.train() G.test() cond = (df['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%'] >= 69) & (df['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%'] <= 71) sample = df[cond].sample(10) case,input_wt,op = sample[case_col] ,sample[input_wt_col] ,sample[op_col] F(case,input_wt,op) sample[output_wt_col] sample['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%'] ###Output _____no_output_____ ###Markdown 數學規劃求解器 透過調整op 來讓 'Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%' == 70 ###Code !pip install optuna > log.txt sample[input_wt_col] sample[['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%']] op_max = df.append(df_extend)[op_col].max().to_dict() op_min = df.append(df_extend)[op_col].min().to_dict() op_max op_min joblib.dump(op_max,'/content/drive/MyDrive/台塑輕油案子/data/c620/map_dict/c620_op_max.pkl') joblib.dump(op_min,'/content/drive/MyDrive/台塑輕油案子/data/c620/map_dict/c620_op_min.pkl') import optuna # 目標函數 def objective(trial): # 可控變數 op_dict = {} for name in op_col: op_dict[name] = trial.suggest_uniform(name,op_min[name],op_max[name]) op = pd.DataFrame(op_dict,index=sample.index) # 計算loss 輸入端bz = sample[case_col]['Tatoray Stripper C620 Operation_Specifications_Spec 3 : Benzene in Sidedraw_wt%'].values 輸出端bz = F(sample[case_col],sample[input_wt_col],op)['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%'].values loss = np.mean((輸入端bz - 輸出端bz)**2) return loss # 做搜索 study = optuna.create_study() study.optimize(objective, n_trials=100) op_opt = pd.DataFrame(study.best_params,index=sample.index) #搜索結果 op_opt # 看有沒有符合業主需要的70 a = sample[['Tatoray Stripper C620 Operation_Specifications_Spec 3 : Benzene in Sidedraw_wt%']] b = F(case,input_wt,op_opt)[['Tatoray Stripper C620 Operation_Sidedraw Production Rate and Composition_Benzene_wt%']] b.columns = ['優化結果'] a.join(b) op_pred = G.predict(sample[case_col+input_wt_col]) import seaborn as sb import matplotlib.pyplot as plt for i in op_col: sb.kdeplot(df[op_col][i],label='kde') plt.axvline(op_opt[i][0],label='op_optimal',c='red') plt.axvline(op_pred[i][0],label='op_pred',c='green') plt.legend() plt.show() import joblib G.shrink() c620_f.shrink() joblib.dump(G,'/content/drive/MyDrive/台塑輕油案子/data/c620/model/c620_G.pkl') joblib.dump(c620_f,'/content/drive/MyDrive/台塑輕油案子/data/c620/model/c620_F.pkl') ###Output _____no_output_____
Multiple_Text_Combination_and_Mapping.ipynb
###Markdown Multiple Text Combination and Mapping ProjectThe aim of this project was to find all possible answers to a quiz with 10 questions which had two options each.**CONSIDERATIONS**- Only one answer can be picked per question.- Final output **should not have any duplicate** combination of answers.- Lastly, assuming all items in the left list (option 1) stood for **ODD** (O) selections, while those in the right stood for **EVEN (E)**; Map the final output as **Os** and **Es** . ###Code # Import necessary modules import pandas as pd import random import numpy as np # generate a dataframe of quiz possible answers possible_ans = pd.DataFrame({ 'opt_1': ['A','C','E','G','I','K','M','O','Q','S'], 'opt_2': ['B','D','F','H','J','L','N','P','R','T'] }) possible_ans answers = [] #all possible lists of answers are stored here , this is a list of lists x = 0 # create a loop to keep generating random choices, # of course, there are not up to or more than 100000 possible combinations while x< 100000: # generate a random choice from each row across both columns, then write all the choices to a list # store list in rand_choice rand_choice = possible_ans.apply(lambda row : random.choice(row.tolist()),axis =1).tolist() # append the rand_choice generated into another list called 'answers' , if the list has not yet been added if rand_choice not in answers: answers.append(rand_choice) x+=1 answers print ('there are {} possible combination of answers'.format(len(answers))) answers list_of_answers = pd.DataFrame(answers) list_of_answers.to_csv('list_of_answers.csv') list_of_answers # reason for importing the file earler exported was to avoid changing the already established values since # values were randomly generated raw_text = pd.read_csv('/list_of_answers.csv',index_col = 0) raw_text.head(10) # concatenate answers across columns for all rows and save in new column raw_text['possible_outcomes'] = raw_text.sum(axis=1) raw_text # Create a function to replace text with O's and E's by mapping using the translate() method def map_text(value): # define the map list map_list = { 'A':'O','B':'E','C':'O','D':'E','E':'O','F':'E','G':'O','H':'E','I':'O','J':'E','K':'O', 'L':'E','M':'O','N':'E','O':'O','P':'E','Q':'O','R':'E','S':'O','T':'E' } # create a mapped table which the translate method will use trans_table = value.maketrans(map_list) # translate all values introduced into the function value = value.translate(trans_table) return value # test the function map_text('ACFGIKMPQS') raw_text_2 = raw_text raw_text_2.head() # apply map_text function on the column with earlier saved possible outcomes raw_text_2['replaced_values'] = raw_text_2['possible_outcomes'].apply(map_text) raw_text_2 # save final output to csv raw_text_2.to_csv('updated_list_of_answers.csv') ###Output _____no_output_____
notebooks/4.1-mbml_kf_w_input_IT_unique.ipynb
###Markdown Kalman filters Italy Table of contents1. [Data](Data)2. [Model with the vector c fixed as [0, 1]](Model-with-the-vector-c-fixed-as-[0,-1])3. [Model with the vector c as a random variable with prior](Model-with-the-vector-c-as-a-random-variable-with-prior)4. [Model without input (2 hidden variables)](Model-without-input) ###Code import sys from os.path import pardir, join import pandas as pd import numpy as np import numpyro import numpyro.distributions as dist from numpyro import handlers from numpyro.infer import MCMC, NUTS import matplotlib.pyplot as plt import jax import jax.numpy as jnp from jax import random, vmap from jax.scipy.special import logsumexp from jax import lax np.random.seed(42) plt.style.use('ggplot') %matplotlib inline plt.rcParams['figure.figsize'] = (16, 10) from sklearn.preprocessing import StandardScaler ROOT = pardir DATA = join(ROOT, "data", "processed") ###Output _____no_output_____ ###Markdown Data The data from italy has 57 unduplicated dates. ###Code df = pd.read_csv(join(DATA, 'data_italy_sixcol.csv')) df_filtered = df.groupby("Date").apply(lambda x: x.iloc[0]) data = df_filtered.values X = data[:, 2:].astype(np.float_) y = data[:,1].astype(np.float_) n_train = 45 n_test = len(y)-n_train idx_train = [*range(0,n_train)] idx_test = [*range(n_train, len(y))] y_train = y[idx_train] y_test = y[idx_test] ###Output _____no_output_____ ###Markdown Model with the vector c fixed as [0, 1] ###Code sys.path.append(join(ROOT, "src", "models")) sys.path.append(join(ROOT, "src", "visualization")) from kf_input import model_wo_c, model_w_c from train import train_kf from visualize import get_samples, plot_samples, plot_forecast mcmc = train_kf(model_wo_c, y_train, n_train, n_test, x=X) hmc_samples = get_samples(mcmc) plot_samples(hmc_samples, ["beta", "tau", "sigma"]) plot_forecast(hmc_samples, idx_train, idx_test, y_train, y_test) ###Output _____no_output_____ ###Markdown Model with the vector c as a random variable with prior ###Code mcmc2 = train_kf(model_w_c, y_train, n_train, n_test, x=X) hmc_samples = get_samples(mcmc2) plot_samples(hmc_samples, ["beta", "tau", "sigma"]) plot_forecast(hmc_samples, idx_train, idx_test, y_train, y_test) ###Output _____no_output_____ ###Markdown Model without input ###Code from kf import twoh_c_kf mcmc3 = train_kf(twoh_c_kf, y_train, n_train, n_test, x=None) hmc_samples = get_samples(mcmc3) plot_samples(hmc_samples, ["beta", "tau", "sigma"]) plot_forecast(hmc_samples, idx_train, idx_test, y_train, y_test) ###Output _____no_output_____
site/en/tutorials/keras/Intro_to_RNN.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Understanding recurrent neural networks View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial gives a brief introduction of recurrent neural networks (RNN). The code example in this tutorial is adapted from Chapter 6, Section 2 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). We'll use [tf.keras](https://www.tensorflow.org/guide/keras), a high-level API to build and train a simple RNN model in TensorFlow. Introduction A major characteristics for traditional neural networks is that they process each input independently, with no states kept in between inputs. With such models, a sequence input, such as an entire movie review on IMDB, needs to be transformed into a single data point, and processed in one go.In contrast, recurrent neural networks (RNN) process sequence input by iterating through the elements in the sequence, and maintain a state for all the data it has seen so far. Taking IMDB movie review as an example, RNN processes each review word by word. When processing a word, the RNN network "remembers" the state of all the previous words in this review. The state of the RNN is reset when processing another independent input, such as another review. ###Code import tensorflow as tf from tensorflow import keras print(tf.__version__) ###Output _____no_output_____ ###Markdown A recurrent layer in Keras Keras recurrent layers can be run in two different modes: they return either the full sequences of successive outputs for each timestep (a 3D tensor of shape (batch_size, timesteps, output_features)), or return only the last output for each input sequence (a 2D tensor of shape (batch_size, output_features)). These two modes are controlled by the return_sequences constructor argument.Let's take a look at an example that uses a SimpleRNN layer and returns only the output at the last timestep: ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, SimpleRNN model = Sequential() model.add(Embedding(10000, 32)) model.add(SimpleRNN(32)) model.summary() ###Output _____no_output_____ ###Markdown The following example returns the full state sequence. ###Code model = Sequential() model.add(Embedding(10000, 32)) model.add(SimpleRNN(32, return_sequences=True)) model.summary() ###Output _____no_output_____ ###Markdown It is sometimes useful to stack several recurrent layers one after the other in order to increase the representational power of a network. In such a setup, you have to get all intermediate layers to return full sequences: ###Code model = Sequential() model.add(Embedding(10000, 32)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32)) # This last layer only returns the last outputs. model.summary() ###Output _____no_output_____ ###Markdown Now let's try to use such a model on the IMDB movie review classification problem. First, let's preprocess the data: ###Code from tensorflow.keras.datasets import imdb from tensorflow.keras.preprocessing import sequence max_features = 10000 # number of words to consider as features maxlen = 500 # cut texts after this number of words (among top max_features most common words) batch_size = 32 print('Loading data...') (input_train, y_train), (input_test, y_test) = imdb.load_data(num_words=max_features) print(len(input_train), 'train sequences') print(len(input_test), 'test sequences') print('Pad sequences (samples x time)') input_train = sequence.pad_sequences(input_train, maxlen=maxlen) input_test = sequence.pad_sequences(input_test, maxlen=maxlen) print('input_train shape:', input_train.shape, 'y_train shape:', y_train.shape) print('input_test shape:', input_test.shape, 'y_test shape:', y_test.shape) ###Output _____no_output_____ ###Markdown Let's train a simple recurrent network using an Embedding layer and a SimpleRNN layer: ###Code from tensorflow.keras.layers import Dense model = Sequential() model.add(Embedding(max_features, 32)) model.add(SimpleRNN(32)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(input_train, y_train, epochs=10, batch_size=128, validation_split=0.2) ###Output _____no_output_____ ###Markdown Let's display the training and validation loss and accuracy: ###Code import matplotlib.pyplot as plt %matplotlib inline acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() test_loss, test_accuracy = model.evaluate(input_test, y_test) print('Test Loss:', test_loss, 'Test Accuracy:', test_accuracy) ###Output _____no_output_____ ###Markdown As a reminder, in [basic text classification tutorial](https://www.tensorflow.org/tutorials/keras/basic_text_classification) , our fairly naive approach to this very dataset got us to 88% test accuracy. Unfortunately, our small recurrent network doesn't perform very well at all compared to this baseline (only up to 85% validation accuracy, and 74% test accuracy). Part of the problem is that our inputs only consider the first 500 words rather the full sequences -- hence our RNN has access to less information than our earlier baseline model. The remainder of the problem is simply that SimpleRNN isn't very good at processing long sequences, like text. Other types of recurrent layers perform much better. Let's take a look at some more advanced layers. A concrete LSTM example in Keras Although SimpleRNN should retain the information about inputs seen many timesteps before, in practice, such long-term dependency is impossible to learn because of the [vanishing gradient problem](https://en.wikipedia.org/wiki/Vanishing_gradient_problem). Long Short-Term Memory (LSTM) algorithm was developed to overcome this problem. Please see [Understanding LSTM Networks](https://colah.github.io/posts/2015-08-Understanding-LSTMs/) for an introduction to LSTM.The example below is a network with LSTM layer, similar to the one with SimpleRNN that we just presented. For simplicity, we only specify the output dimensionality of the LSTM layer, and leave every other argument (there are lots) to the Keras defaults. ###Code from tensorflow.keras.layers import LSTM model = Sequential() model.add(Embedding(max_features, 32)) model.add(LSTM(32)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(input_train, y_train, epochs=10, batch_size=128, validation_split=0.2) ###Output _____no_output_____ ###Markdown Let's display the training and validation loss and accuracy: ###Code import matplotlib.pyplot as plt %matplotlib inline acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() test_loss, test_accuracy = model.evaluate(input_test, y_test) print('Test Loss:', test_loss, 'Test Accuracy:', test_accuracy) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Understanding recurrent neural networks View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial gives a brief introduction of recurrent neural networks (RNN). The code example in this tutorial is adapted from Chapter 6, Section 2 of [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python?a_aid=keras&a_bid=76564dff). We'll use [tf.keras](https://www.tensorflow.org/guide/keras), a high-level API to build and train a simple RNN model in TensorFlow. Introduction A major characteristics for traditional neural networks is that they process each input independently, with no states kept in between inputs. With such models, a sequence input, such as an entire movie review on IMDB, needs to be transformed into a single data point, and processed in one go.In contrast, recurrent neural networks (RNN) process sequence input by iterating through the elements in the sequence, and maintain a state for all the data it has seen so far. As shown in the diagram below, ${X_t}$, ${O_t}$ and ${S_t}$ are respectively the input, output and hidden state at time step t. When we move from time step t to time step t + 1, the hidden state at time step t + 1 depends on both the input at t + 1, and the hidden state from the previous time step.![Diagram of a simple RNN layer](simpleRNN_diagram.png)Taking IMDB movie review as an example, RNN processes each review word by word. When processing a word, the RNN network "remembers" the state of all the previous words in this review. The state of the RNN is reset when processing another independent input, such as another review. ###Code import tensorflow as tf from tensorflow import keras print(tf.__version__) ###Output _____no_output_____ ###Markdown A recurrent layer in Keras Keras recurrent layers can be run in two different modes: they return either the full sequences of successive outputs for each timestep (a 3D tensor of shape (batch_size, timesteps, output_features)), or return only the last output for each input sequence (a 2D tensor of shape (batch_size, output_features)). These two modes are controlled by the return_sequences constructor argument.Let's take a look at an example that uses a SimpleRNN layer and returns only the output at the last timestep.Before we add a simple RNN layer, let's first create a embedding layer. An embedding layer organize the words with similar meanings into similar vectors. Comparing to one-hot encoding, word embedding is dense and relative low dimensional. To create an embedding layer, we will pass two parameters, the first parameter is the maximum number of words in each vector, the second paramater is the number of vectors for the embedding layer. In this example, the embedding layer splits the words into 32 vectors, each vector contains maximum 10000 words. ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, SimpleRNN model = Sequential() model.add(Embedding(10000, 32)) model.add(SimpleRNN(32)) model.summary() ###Output _____no_output_____ ###Markdown The following example returns the full state sequence. ###Code model = Sequential() model.add(Embedding(10000, 32)) model.add(SimpleRNN(32, return_sequences=True)) model.summary() ###Output _____no_output_____ ###Markdown It is sometimes useful to stack several recurrent layers one after the other in order to increase the representational power of a network. In such a setup, you have to get all intermediate layers to return full sequences: ###Code model = Sequential() model.add(Embedding(10000, 32)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32, return_sequences=True)) model.add(SimpleRNN(32)) # This last layer only returns the last outputs. model.summary() ###Output _____no_output_____ ###Markdown Now let's try to use such a model on the IMDB movie review classification problem. First, let's load and preprocess the data. The preprocessing step applies padding to the sentences so that all have the same length. The padding step is required because we are going to use batch mode later on when we fit the model. It is required to have same input length within a batch. ###Code from tensorflow.keras.datasets import imdb from tensorflow.keras.preprocessing import sequence max_features = 10000 # number of words to consider as features maxlen = 500 # cut texts after this number of words (among top max_features most common words) batch_size = 32 print('Loading data...') (input_train, y_train), (input_test, y_test) = imdb.load_data(num_words=max_features) print(len(input_train), 'train sequences') print(len(input_test), 'test sequences') print('Pad sequences (samples x time)') input_train = sequence.pad_sequences(input_train, maxlen=maxlen) input_test = sequence.pad_sequences(input_test, maxlen=maxlen) print('input_train shape:', input_train.shape, 'y_train shape:', y_train.shape) print('input_test shape:', input_test.shape, 'y_test shape:', y_test.shape) ###Output _____no_output_____ ###Markdown Let's train a simple recurrent network using an Embedding layer and a SimpleRNN layer: ###Code from tensorflow.keras.layers import Dense model = Sequential() model.add(Embedding(max_features, 32)) model.add(SimpleRNN(32)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(input_train, y_train, epochs=10, batch_size=128, validation_split=0.2) ###Output _____no_output_____ ###Markdown Let's display the training and validation loss and accuracy: ###Code import matplotlib.pyplot as plt %matplotlib inline acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() test_loss, test_accuracy = model.evaluate(input_test, y_test) print('Test Loss:', test_loss, 'Test Accuracy:', test_accuracy) ###Output _____no_output_____ ###Markdown As a reminder, in [basic text classification tutorial](https://www.tensorflow.org/tutorials/keras/basic_text_classification) , our fairly naive approach to this very dataset got us to 88% test accuracy. Unfortunately, our small recurrent network doesn't perform very well at all compared to this baseline (only up to 85% validation accuracy, and 74% test accuracy). Part of the problem is that our inputs only consider the first 500 words rather the full sequences -- hence our RNN has access to less information than our earlier baseline model. The remainder of the problem is simply that SimpleRNN isn't very good at processing long sequences, like text. Other types of recurrent layers perform much better. Let's take a look at some more advanced layers. A concrete LSTM example in Keras Although SimpleRNN should retain the information about inputs seen many timesteps before, in practice, such long-term dependency is impossible to learn because of the [vanishing gradient problem](https://en.wikipedia.org/wiki/Vanishing_gradient_problem). Long Short-Term Memory (LSTM) algorithm was developed to overcome this problem. Please see [Understanding LSTM Networks](https://colah.github.io/posts/2015-08-Understanding-LSTMs/) for an introduction to LSTM.The example below is a network with LSTM layer, similar to the one with SimpleRNN that we just presented. For simplicity, we only specify the output dimensionality of the LSTM layer, and leave every other argument (there are lots) to the Keras defaults. ###Code from tensorflow.keras.layers import LSTM model = Sequential() model.add(Embedding(max_features, 32)) model.add(LSTM(32)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(input_train, y_train, epochs=10, batch_size=128, validation_split=0.2) ###Output _____no_output_____ ###Markdown Let's display the training and validation loss and accuracy: ###Code import matplotlib.pyplot as plt %matplotlib inline acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() test_loss, test_accuracy = model.evaluate(input_test, y_test) print('Test Loss:', test_loss, 'Test Accuracy:', test_accuracy) ###Output _____no_output_____
04_transformer_tutorial_2nd_part/BERT_tutorial/transformer_2_tutorial.ipynb
###Markdown Transformer解读的第二部分, 这部分是实践的部分 二. transformer代码解读, 语料数据预处理, BERT的预训练和情感分析的应用: 首先是今天课程内容的顺序, 我将BERT代码解读放到了最后, 把主要内容排在了前面, 注意我们今天使用的是**PyTorch**深度学习框架, **其实用什么样的框架并不重要**, 本节课**代码的部分不是重点**, 重点是让大家可以掌握$NLP$中**语料预处理**和**建模**并**解决实际应用中出现的困难**的的一些思路, 那话说回来为什么用PyTorch呢? 我其实用Tensorflow的时间要比PyTorch长很多, 但是目前用了PyTorch之后, 我感觉对于NLP来说, PyTorch真的比Tensorflow好用多了, 因为Tensorflow属于静态图, 建模和调试都很麻烦. 尤其是序列模型要定义很多variable scope和name scope之类的, 也就是张量的作用域, 这些东西命名搞不好一不小心就会有bug, 而且有些bug不会报错, 当你发现计算结果不对, 要再返回头debug, 而且Tensorflow的静态图不支持调试, 要用sess.run把想要的结果计算出来才可以. 但是PyTorch是动态图, 就和写numpy一样, 非常方便调试, 而且用class面向对象方式建模, 先声明操作再执行操作, 这样基本不容易在数据流图上出现bug. 如果你从来没用过**PyTorch**我今天在后面代码部分会带大家大致熟悉一下, 主要是带大家熟悉一下PyTorch的特性, 具体教程官方文档中的快速入门(英文)写的就很好, https://pytorch.org/tutorials/: 1. 进一步理解$positional \ encoding$, 结合注意力矩阵可视化位置编码;2. **语言模型**的定义和**BERT解读**;3. BERT训练之前的准备工作, 语料预处理;4. BERT的预训练, 训练参数;5. 使用BERT预训练模型进行自然语言的情感分类;6. BERT代码解读(这部分因为长度原因放在单独一个视频里). 1. 进一步理解$positional \ encoding$, 结合注意力矩阵可视化位置编码; ###Code # 导入依赖库 import numpy as np import matplotlib.pyplot as plt import seaborn as sns import math import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from IPython.display import Image init_notebook_mode(connected=True) def get_positional_encoding(max_seq_len, embed_dim): # 初始化一个positional encoding # embed_dim: 字嵌入的维度 # max_seq_len: 最大的序列长度 positional_encoding = np.array([ [pos / np.power(10000, 2 * i / embed_dim) for i in range(embed_dim)] if pos != 0 else np.zeros(embed_dim) for pos in range(max_seq_len)]) positional_encoding[1:, 0::2] = np.sin(positional_encoding[1:, 0::2]) # dim 2i 偶数 positional_encoding[1:, 1::2] = np.cos(positional_encoding[1:, 1::2]) # dim 2i+1 奇数 # 归一化, 用位置嵌入的每一行除以它的模长 # denominator = np.sqrt(np.sum(position_enc**2, axis=1, keepdims=True)) # position_enc = position_enc / (denominator + 1e-8) return positional_encoding positional_encoding = get_positional_encoding(max_seq_len=100, embed_dim=128) # 3d可视化 relation_matrix = np.dot(positional_encoding, positional_encoding.T)[1:, 1:] data = [go.Surface(z=relation_matrix)] layout = go.Layout(scene={"xaxis": {'title': "sequence length"}, "yaxis": {"title": "sequence length"}}) fig = go.Figure(data=data, layout=layout) iplot(fig) ###Output _____no_output_____ ###Markdown 上图中, 我们用位置编码矩阵乘以(矩阵乘)他本身的转置, 也就是$PE: \ [seq\_len, \ embedding\_dim ]$, 我们求$PEPE^T$, 得出的维度是$[seq\_len, \ seq\_len ]$. 我们看到上图中, 矩阵的对角线隆起, 也就是值比较大, 是因为一个矩阵乘以他本身的转置之后, 形成的矩阵的对角线正是这个矩阵的每一行$(row)$点乘这一行本身, 所以是值最大的区域(红色部分). 对于位置编码来说, 也就是当前位置与当前位置本身相关程度最高. 再往对角线两边看, 发现以对角线(红色山峰)区域为中心, 两边属于缓慢下降趋势, 这就说明了随着离当前位置越远, 其位置编码的相关程度就越低. 由此可见, 位置编码建立在时间维度的关联关系. 2. 语言模型的定义和BERT解读; 什么是语言模型, 其实用一个公式就可以表示$P(c_{1},\ldots ,c_{m})$, 假设我们有一句话, $c_{1}到c_{m}$是这句话里的$m$个字, 而语言模型就是求的是这句话出现的概率是多少. 比如说在一个语音识别的场景, 机器听到一句话是"wo wang dai san le(我忘带伞了)", 然后机器解析出两个句子, 一个是"我网袋散了", 另一个是"我忘带伞了", 也就是前者的概率大于后者. 然后语言模型就可以判断$P("我忘带伞了") > P("我网袋散了")$, 从而得出这句语音的正确解析结果是"我忘带伞了". BERT的全称是: Bidirectional Encoder Representations from Transformers, 如果翻译过来也就是**双向transformer编码表达**, 我们在上节课解读了transformer的编码器, 编码器输出的隐藏层就是自然语言序列的数学表达, 那么双向是什么意思呢? 我们来看一下下面这张图. ![](./imgs/bidirectional.png) 上图中$E_i$是指的单个字或词, $T_i$指的是最终计算得出的**隐藏层**, 还记得我们在Transformer(一)中讲到的注意力矩阵和注意力加权, 经过这样的操作之后, 序列里面的每一个字, **都含有这个字前面的信息和后面的信息**, 这就是**双向**的理解, 在这里, 一句话中每一个字, 经过注意力机制和加权之后, **当前这个字等于用这句话中其他所有字重新表达了一遍**, 每个字含有了这句话中所有成分的信息. 在BERT中, 主要是以两种预训练的方式来建立语言模型: BERT语言模型任务一: MASKED LM在BERT中, Masked LM(Masked language Model)构建了语言模型, 这也是BERT的预训练中任务之一, 简单来说, 就是**随机遮盖或替换**一句话里面任意字或词, 然后让模型通过上下文的理解预测那一个被遮盖或替换的部分, 之后**做$Loss$的时候只计算被遮盖部分的$Loss$**, 其实是一个很容易理解的任务, 实际操作方式如下: 1. 随机把一句话中$15 \% $的$token$替换成以下内容: 1) 这些$token$有$80 \% $的几率被替换成$[mask]$; 2) 有$10 \%$的几率被替换成任意一个其他的$token$; 3) 有$10 \%$的几率原封不动.2. 之后让模型**预测和还原**被遮盖掉或替换掉的部分, 模型最终输出的隐藏层的计算结果的维度是: $X_{hidden}: [batch\_size, \ seq\_len, \ embedding\_dim]$ 我们初始化一个映射层的权重$W_{vocab}$: $W_{vocab}: [embedding\_dim, \ vocab\_size]$ 我们用$W_{vocab}$完成隐藏维度到字向量数量的映射, 只要求$X_{hidden}$和$W_{vocab}$的矩阵乘(点积): $X_{hidden}W_{vocab}: [batch\_size, \ seq\_len, \ vocab\_size] $之后把上面的计算结果在$vocab\_size$(最后一个)维度做$softmax$归一化, 是每个字对应的$vocab\_size$的和为$1$, 我们就可以通过$vocab\_size$里概率最大的字来得到模型的预测结果, 就可以和我们准备好的$Label$做损失($Loss$)并反传梯度了. 注意做损失的时候, 只计算在第1步里当句中**随机遮盖或替换**的部分, 其余部分不做损失, 对于其他部分, 模型输出什么东西, 我们不在意. BERT语言模型任务二: Next Sentence Prediction1. 首先我们拿到属于上下文的一对句子, 也就是两个句子, 之后我们要在这两段连续的句子里面加一些特殊$token$: $[cls]$上一句话,$[sep]$下一句话.$[sep]$ 也就是在句子开头加一个$[cls]$, 在两句话之中和句末加$[sep]$, 具体地就像下图一样: ![](./imgs/embeddings.png) 2. 我们看到上图中两句话是$[cls]$ my dog is cute $[sep]$ he likes playing $[sep]$, $[cls]$我的狗很可爱$[sep]$他喜欢玩耍$[sep]$, 除此之外, 我们还要准备同样格式的两句话, 但他们不属于上下文关系的情况; $[cls]$我的狗很可爱$[sep]$企鹅不擅长飞行$[sep]$, 可见这属于上下句不属于上下文关系的情况; 在实际的训练中, 我们让上面两种情况出现的比例为$1:1$, 也就是一半的时间输出的文本属于上下文关系, 一半时间不是.3. 我们进行完上述步骤之后, 还要随机初始化一个可训练的$segment \ embeddings$, 见上图中, 作用就是用$embeddings$的信息让模型分开上下句, 我们一把给上句全$0$的$token$, 下句啊全$1$的$token$, 让模型得以判断上下句的起止位置, 例如: $[cls]$我的狗很可爱$[sep]$企鹅不擅长飞行$[sep]$ $0 \quad \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 $ 上面$0$和$1$就是$segment \ embeddings$.4. 还记得我们上节课说过的, 注意力机制就是, 让每句话中的每一个字对应的那一条向量里, 都融入这句话所有字的信息, 那么我们在最终隐藏层的计算结果里, 只要取出$[cls]token$所对应的一条向量, 里面就含有整个句子的信息, 因为我们期望这个句子里面所有信息都会往$[cls]token$所对应的一条向量里汇总: 模型最终输出的隐藏层的计算结果的维度是: 我们$X_{hidden}: [batch\_size, \ seq\_len, \ embedding\_dim]$ 我们要取出$[cls]token$所对应的一条向量, $[cls]$对应着$\ seq\_len$维度的第$0$条: $cls\_vector = X_{hidden}[:, \ 0, \ :]$ $cls\_vector \in \mathbb{R}^{batch\_size, \ embedding\_dim}$ 之后我们再初始化一个权重, 完成从$embedding\_dim$维度到$1$的映射, 也就是逻辑回归, 之后用$sigmoid$函数激活, 就得到了而分类问题的推断. 我们用$\hat{y}$来表示模型的输出的推断, 他的值介于$(0, \ 1)$之间: $\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (0, \ 1)$至此$BERT$的训练方法就讲完了, 是不是很简单, 下面我们来为$BERT$的预训练准备数据. 3. BERT训练之前的准备工作, 语料预处理;__字典的制作, 参见目录./corpus/BERT_preprocessing.ipynb文件中的讲解__ 4. BERT的预训练, 训练参数;BERT论文中, 推荐的模型参数为: 基准模型$transformer\_block=12, \ embedding\_dimension=768, \ num\_heads=12, \ Total Param eters=110M)$, 可见其中共有$1.1$亿参数, 除此之外, 还有比基准模型还大的高性能模型, 参数量为$3$亿, 要想训练并使用这么大参数的模型, 需要充裕的计算资源! 但是经过我的实际测试, 结合我目前正在研究的命名实体识别, 语义分析, 关系抽取和知识图谱的需求, 发现其实这个参数比较过剩, 我们今天训练BERT所用的参数为$transformer\_block=6, \ embedding\_dimension=384, \ num\_heads=12, \ Total Param eters=23M)$, 可见我把参数缩减到$2$千万, 但即使这样, 使用一块11GB显存的2080Ti显卡, 训练维基百科语料的BERT也需要一周的时间. 注意我们今天所使用的模型, 是在开源项目 https://github.com/huggingface/pytorch-transformers 的基础上修改而来, 其中我添加了很多中文注释, 添加了预处理模块, 添加了动态padding优化了速度(在后面代码解读的部分会讲到), 添加了情感分析模块等; 中文维基百科语料: https://github.com/brightmart/nlp_chinese_corpus 我只是做了一下预处理, 以适应BERT的预训练, 预处理之后的语料可以在readme.md文件中的百度网盘地址下载; 我已经把使用维基百科语料预训练好的BERT模型上传到了百度网盘, 请在readme.md文件中查看, 我还想提醒大家一下, 网盘上的BERT预训练模型在训练的时候, 使用了一些简单的技巧, 但这些技巧并没有出现在这个教程开源的代码里面, 这是因为某些不方便的原因, 不过我可以告诉大家这些技巧, 大家可以自己实现一下, 另外, 不建议大家用我公开的BERT训练代码来重新训练BERT模型, 因为我上传的已经训练好的BERT性能要更好一些: BERT训练技巧: 1) 因为我们是按单个字为单位训练BERT, 所以在Masked LM里面, 把句子中的英文单词分出来, 将英文单词所在的区域一起遮盖掉, 让模型预测这个部分; 2) 很多句子里含有数字, 显然在Masked LM中, 让模型准确地预测数据是不现实的, 所以我们把原文中的数字(包括整数和小数)都替换成一个特殊token, NUM, 这样模型只要预测出这个地方应该是某些数字就可以来. BERT训练代码解读在第6部分 5. 使用BERT预训练模型进行自然语言的情感分类;1) **情感分析语料预处理**: 参见目录./corpus/sentiment_preprocessing.ipynb, 我用使用来酒店评论语料, 不过这个语料规模要比2018年用LSTM做情感分析的要大一些, 正面评论和负面评论各5000条, 其实这也是玩具级数据集, 用BERT参数这么大的模型, 训练会产生严重过拟合, 泛化能力差的情况, 这也是我们下面需要解决的问题; 2) 回顾在BERT的训练中Next Sentence Prediction中, 我们取出$[cls]$对应的那一条向量, 然后把他映射成1个数值并用$sigmoid$函数激活: $$\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (0, \ 1)$$3) **动态学习率和提前终止$(early \ stop)$**: 上一步我们将语料划分成了训练和测试集, 我们的训练方式是, 每个$epoch$, 用训练集训练. 对模型性能的衡量标准是$AUC$, $AUC$的衡量标准对二分类非常易用, 这里因为时间关系就不讲了, 如果大家不熟悉可以上网搜寻相关资料. 当前$epoch$训练完毕之后, 用测试集衡量当前训练结果, 并记下当前$epoch$的$AUC$, 如果当前的$AUC$较上一个$epoch$没有提升, 那就**降低学习率**, 实际操作是让当前的学习率降低$1/5$, 直到$10$个$epoch$测试集的$AUC$都没有提升, 就终止训练. 我们的初始学习率是$1e-6$, 因为我们是在维基百科预训练语料的基础上进行训练的, 属于下游任务, 只需要微调预训练模型就好. 4) **解决过拟合问题:** 但在实际操作中, 使用$\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (0, \ 1)$的方式, 发现虽然在训练集和测试集上$AUC$都很高, 但实际随便输入一些从各种网上随便找的一些酒店评论后, 发现泛化能力不好. 这是因为我们的训练数据集非常小, 即使区分训练集和测试集, 但因为整体数据形态比较单一, 模型遇到自己没见过的情况就很容易无法做出正确判断, 为了提高模型的泛化性能, 我尝试了另一种模型结构: ![](./imgs/mean_max_pool.jpg) 如上图, 我尝试$mean \ max \ pool$的一种把隐藏层的序列转换为一条向量的方式, 其实就是沿着$sequence \ length$的维度分别求均值和$max$, 之后拼起来成为一条向量, 之后同样映射成一个值再激活, 伪代码如下: $X_{hidden}: [batch\_size, \ seq\_len, \ embedding\_dim]$ $mean\_pooled = mean(X_{hidden}, \ dimension=seq\_len) \quad [batch\_size, \ embedding\_dim]$$max\_pooled = max(X_{hidden}, \ dimension=seq\_len) \quad [batch\_size, \ embedding\_dim]$$mean\_max\_pooled = concatenate(mean\_pooled, \ max\_pooled, \ dimension=embedding\_dim ) \quad [batch\_size, \ embedding\_dim * 2]$ 上式中$mean\_max\_pooled$也就是我们得到的一句话的数学表达, 含有这句话的信息, 其实这也是一种$DOC2VEC$的方法, 也就是把一句话转换成一条向量, 而且无论这句话有多长, 转换出来向量的维度都是一样的, 之后可以用这些向量做一些分类聚类等任务. 下一步我们同样做映射, 之后用$sigmoid$激活: $\hat{y} = sigmoid(Linear(mean\_max\_pooled)) \quad \hat{y} \in (0, \ 1)$ 怎样理解这样的操作呢, 隐藏层就是一句话的数学表达, 我们求均值和最大值正数学表达对这句话的平均响应, 和最大响应, 之后我们用线性映射来识别这些响应, 从而得到模型的推断结果. 我们还用了$weight \ decay$的方式, 其实就是$L2 \ normalization$, 在PyTorch里有接口可以直接调用, 一会会说到, 其实$L2$正则的作用就是防止参数的值变得过大或过小, 我们可以设想一下, 由于我们的训练数据很少, 所以实际使用模型进行推断的时候有些字和词或者句子结构的组合模型都是没见过的, 模型里面参数的值很大的话会造成遇到某一些特别的句子或者词语的时候, 模型对句子的响应过大, 导致最终输出的值偏离实际, 其实我们希望模型更从容淡定一些, 所以我们加入$L2 \ normalization$. 除此之外, 我们预训练的BERT有6个transformer block, 我们在情感分析的时候, 只用了3个, 因为后面实在是参数太多, 容易导致过拟合, 所以在第三个transformer block之后, 就截出隐藏层进行$pooling$了, 后面的transformer block都没有用到. 再除此之外, 我使用了$dropout$机制, $dropout$设为了$0.4$, 因为模型参数是在是太多, 所以在训练的时候直接让$40\%$的参数失能, 防止过拟合. 经过以上方法, 模型训练集和测试机的$AUC$都达到了$0.95$以上, 而且经过实际的测试, 模型也可以基本比较正确的分辨出语句的情感极性. 5) **阈值微调:** 经过模型的推断, 输出的值介于0到1之间, 我们可以认为只要这个值在0.5以上, 就是正样本, 如果在0.5以下, 就是副样本, 其实这是不一定的, 0.5通常不是最佳的分类边界, 所以我写了一个用来寻找最佳阈值的脚本, 在./metrics/\_\_init\_\_.py里面. 这个脚本的方法是从0.01到0.99定义99个阈值, 高于阈值算正样本, 低于算副样本, 然后与测试集计算$f1 \ score$, 之后选出可以使$f1 \ score$最高的阈值, 在训练中, 每一个$epoch$都会运行一次寻找阈值的脚本. ###Code import pandas as pd df = pd.read_pickle("./sentiment_state_dict_mean_max_pool/df_log.pickle") # 训练日志的尾部, 可见训练集train_auc和测试集test_auc都到达了0.95以上, # 实际上测试集的auc比训练集还要高, 因为训练集有dropout df.tail() # 让我们来画一下图 import matplotlib.pyplot as plt plt.plot(df["train_auc"].tolist(), c="b", label="train_auc") plt.plot(df["test_auc"].tolist(), c="r", label="test_auc") plt.xlabel("epochs") plt.ylabel("AUC") plt.yticks([i/10 for i in range(11)]) plt.grid() plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 6) **情感分析代码解读和实际测试**: 代码解读见视频讲解, 下面我们进行测试: ###Code from Sentiment_Inference import * model = Sentiment_Analysis(max_seq_len=300, batch_size=2) # https://www.booking.com/reviews.zh-cn.html test_list = [ "有几次回到酒店房间都没有被整理。两个人入住,只放了一套洗漱用品。", "早餐时间询问要咖啡或茶,本来是好事,但每张桌子上没有放“怡口糖”(代糖),又显得没那么周到。房间里卫生间用品补充,有时有点漫不经心个人觉得酒店房间禁烟比较好", '十六浦酒店有提供港澳码头的SHUTTLE BUS, 但氹仔没有订了普通房, 可能是会员的关系 UPGRADE到了DELUXE房,风景是绿色的河, 感观一般, 但房间还是不错的, 只是装修有点旧了另外品尝了酒店的自助晚餐, 种类不算多, 味道OK, 酒类也免费任饮, 这个不错最后就是在酒店的娱乐场赢了所有费用, 一切都值得了!', '地理位置优越,出门就是步行街,也应该是耶路撒冷的中心地带,去老城走约20分钟。房间很实用,虽然不含早餐,但是楼下周边有很多小超市和餐厅、面包店,所以一切都不是问题。', '实在失望!如果果晚唔系送朋友去码头翻香港一定会落酒店大堂投诉佢!太离谱了!我地吃个晚饭消费千几蚊 ,买单个黑色衫叫Annie果个唔知系部长定系经理录左我万几蚊!简直系离晒大谱的 !咁样的管理层咁大间酒店真的都不敢恭维!', '酒店服务太棒了, 服务态度非常好, 房间很干净', "服务各方面没有不周到而的地方, 各方面没有没想到的细节", "房间设施比较旧,虽然是古典风格,但浴室的浴霸比较不好用。很不满意的是大厅坐下得消费,不人性化,而且糕点和沙拉很难吃,贵而且是用塑料盒子装的,5星级?特别是青团,58块钱4个,感觉放了好几天了,超级难吃。。。把外国朋友吓坏了。。。", "南京东路地铁出来就能看到,很方便。酒店大堂和房间布置都有五星级的水准。", "服务不及5星,前台非常不专业,入住时会告知你没房要等,不然就加钱升级房间。前台个个冰块脸,对待客人好像仇人一般,带着2岁的小孩前台竟然还要收早餐费。门口穿白衣的大爷是木头人,不会提供任何帮助。入住期间想要多一副牙刷给孩子用,竟然被问为什么。五星设施,一星服务,不会再入住!" ] model(test_list) text = "对于这个亲子房来说,没有浴缸对于比较小的小朋友来说可能会有点不太方便,小的时候不太会站立洗澡的,所以可能需要洗盆浴,我们宝宝4岁了,其实也没有关系,但是之前有自己经历过带6个月宝宝出去玩的,很多店家觉得浴缸浪费空间所以都只有淋浴房。但是自己给宝宝洗澡的时候就非常尴尬…不知道这家是不是可以有租用的。因为我们不是一定需要,也没有做询问。" model(text) ###Output 对于这个亲子房来说,没有浴缸对于比较小的小朋友来说可能会有点不太方便,小的时候不太会站立洗澡的,所以可能需要洗盆浴,我们宝宝4岁了,其实也没有关系,但是之前有自己经历过带6个月宝宝出去玩的,很多店家觉得浴缸浪费空间所以都只有淋浴房。但是自己给宝宝洗澡的时候就非常尴尬…不知道这家是不是可以有租用的。因为我们不是一定需要,也没有做询问。 负样本, 输出值0.31 ---------- ###Markdown 中文自然语言处理Transformer模型(二)BERT的预训练实践与应用 这是Transformer解读的第二部分, 这部分是实践的部分, 如果你没有看第一部分: [汉语自然语言处理-从零解读碾压循环神经网络的transformer模型(一)](https://github.com/aespresso/a_journey_into_math_of_ml/tree/master/03_transformer_tutorial_1st_part) | 视频讲解: [B站讲解](https://www.bilibili.com/video/av58239477/) / [youtube](https://www.youtube.com/watch?v=wLKsaZWeuCM) | 二. transformer代码解读, 语料数据预处理, BERT的预训练和情感分析的应用: 首先是今天课程内容的顺序, 我将BERT代码解读放到了最后, 把主要内容排在了前面, 注意我们今天使用的是**PyTorch**深度学习框架, **其实用什么样的框架并不重要**, 本节课**代码的部分不是重点**, 重点是让大家可以掌握$NLP$中**语料预处理**和**建模**并**解决实际应用中出现的困难**的的一些思路, 那话说回来为什么用PyTorch呢? 我其实用Tensorflow的时间要比PyTorch长很多, 但是目前用了PyTorch之后, 我感觉对于NLP来说, PyTorch真的比Tensorflow好用多了, 因为Tensorflow属于静态图, 建模和调试都很麻烦. 尤其是序列模型要定义很多variable scope和name scope之类的, 也就是张量的作用域, 这些东西命名搞不好一不小心就会有bug, 而且有些bug不会报错, 当你发现计算结果不对, 要再返回头debug, 而且Tensorflow的静态图不支持调试, 要用sess.run把想要的结果计算出来才可以. 但是PyTorch是动态图, 就和写numpy一样, 非常方便调试, 而且用class面向对象方式建模, 先声明操作再执行操作, 这样基本不容易在数据流图上出现bug. 如果你从来没用过**PyTorch**我今天在后面代码部分会带大家大致熟悉一下, 主要是带大家熟悉一下PyTorch的特性, 具体教程官方文档中的快速入门(英文)写的就很好, https://pytorch.org/tutorials/: 1. 进一步理解$positional \ encoding$, 结合注意力矩阵可视化位置编码;2. **语言模型**的定义和**BERT解读**;3. BERT训练之前的准备工作, 语料预处理;4. BERT的预训练, 训练参数;5. 使用BERT预训练模型进行自然语言的情感分类;6. BERT代码解读(这部分因为长度原因放在单独一个视频里). 1. 进一步理解$positional \ encoding$, 结合注意力矩阵可视化位置编码; ###Code # 导入依赖库 import numpy as np import matplotlib.pyplot as plt import seaborn as sns import math import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from IPython.display import Image init_notebook_mode(connected=True) def get_positional_encoding(max_seq_len, embed_dim): # 初始化一个positional encoding # embed_dim: 字嵌入的维度 # max_seq_len: 最大的序列长度 positional_encoding = np.array([ [pos / np.power(10000, 2 * i / embed_dim) for i in range(embed_dim)] if pos != 0 else np.zeros(embed_dim) for pos in range(max_seq_len)]) positional_encoding[1:, 0::2] = np.sin(positional_encoding[1:, 0::2]) # dim 2i 偶数 positional_encoding[1:, 1::2] = np.cos(positional_encoding[1:, 1::2]) # dim 2i+1 奇数 # 归一化, 用位置嵌入的每一行除以它的模长 # denominator = np.sqrt(np.sum(position_enc**2, axis=1, keepdims=True)) # position_enc = position_enc / (denominator + 1e-8) return positional_encoding positional_encoding = get_positional_encoding(max_seq_len=100, embed_dim=128) # 3d可视化 relation_matrix = np.dot(positional_encoding, positional_encoding.T)[1:, 1:] data = [go.Surface(z=relation_matrix)] layout = go.Layout(scene={"xaxis": {'title': "sequence length"}, "yaxis": {"title": "sequence length"}}) fig = go.Figure(data=data, layout=layout) iplot(fig) ###Output _____no_output_____ ###Markdown 上图中, 我们用位置编码矩阵乘以(矩阵乘)他本身的转置, 也就是$PE: \ [seq\_len, \ embedding\_dim ]$, 我们求$PEPE^T$, 得出的维度是$[seq\_len, \ seq\_len ]$. 我们看到上图中, 矩阵的对角线隆起, 也就是值比较大, 是因为一个矩阵乘以他本身的转置之后, 形成的矩阵的对角线正是这个矩阵的每一行$(row)$点乘这一行本身, 所以是值最大的区域(红色部分). 对于位置编码来说, 也就是当前位置与当前位置本身相关程度最高. 再往对角线两边看, 发现以对角线(红色山峰)区域为中心, 两边属于缓慢下降趋势, 这就说明了随着离当前位置越远, 其位置编码的相关程度就越低. 由此可见, 位置编码建立在时间维度的关联关系. 2. 语言模型的定义和BERT解读; 什么是语言模型, 其实用一个公式就可以表示$P(c_{1},\ldots ,c_{m})$, 假设我们有一句话, $c_{1}到c_{m}$是这句话里的$m$个字, 而语言模型就是求的是这句话出现的概率是多少. 比如说在一个语音识别的场景, 机器听到一句话是"wo wang dai san le(我忘带伞了)", 然后机器解析出两个句子, 一个是"我网袋散了", 另一个是"我忘带伞了", 也就是前者的概率大于后者. 然后语言模型就可以判断$P("我忘带伞了") > P("我网袋散了")$, 从而得出这句语音的正确解析结果是"我忘带伞了". BERT的全称是: Bidirectional Encoder Representations from Transformers, 如果翻译过来也就是**双向transformer编码表达**, 我们在上节课解读了transformer的编码器, 编码器输出的隐藏层就是自然语言序列的数学表达, 那么双向是什么意思呢? 我们来看一下下面这张图. ![](./imgs/bidirectional.png) 上图中$E_i$是指的单个字或词, $T_i$指的是最终计算得出的**隐藏层**, 还记得我们在Transformer(一)中讲到的注意力矩阵和注意力加权, 经过这样的操作之后, 序列里面的每一个字, **都含有这个字前面的信息和后面的信息**, 这就是**双向**的理解, 在这里, 一句话中每一个字, 经过注意力机制和加权之后, **当前这个字等于用这句话中其他所有字重新表达了一遍**, 每个字含有了这句话中所有成分的信息. 在BERT中, 主要是以两种预训练的方式来建立语言模型: BERT语言模型任务一: MASKED LM在BERT中, Masked LM(Masked language Model)构建了语言模型, 这也是BERT的预训练中任务之一, 简单来说, 就是**随机遮盖或替换**一句话里面任意字或词, 然后让模型通过上下文的理解预测那一个被遮盖或替换的部分, 之后**做$Loss$的时候只计算被遮盖部分的$Loss$**, 其实是一个很容易理解的任务, 实际操作方式如下: 1. 随机把一句话中$15 \% $的$token$替换成以下内容: 1) 这些$token$有$80 \% $的几率被替换成$[mask]$; 2) 有$10 \%$的几率被替换成任意一个其他的$token$; 3) 有$10 \%$的几率原封不动.2. 之后让模型**预测和还原**被遮盖掉或替换掉的部分, 模型最终输出的隐藏层的计算结果的维度是: $X_{hidden}: [batch\_size, \ seq\_len, \ embedding\_dim]$ 我们初始化一个映射层的权重$W_{vocab}$: $W_{vocab}: [embedding\_dim, \ vocab\_size]$ 我们用$W_{vocab}$完成隐藏维度到字向量数量的映射, 只要求$X_{hidden}$和$W_{vocab}$的矩阵乘(点积): $X_{hidden}W_{vocab}: [batch\_size, \ seq\_len, \ vocab\_size] $之后把上面的计算结果在$vocab\_size$(最后一个)维度做$softmax$归一化, 是每个字对应的$vocab\_size$的和为$1$, 我们就可以通过$vocab\_size$里概率最大的字来得到模型的预测结果, 就可以和我们准备好的$Label$做损失($Loss$)并反传梯度了. 注意做损失的时候, 只计算在第1步里当句中**随机遮盖或替换**的部分, 其余部分不做损失, 对于其他部分, 模型输出什么东西, 我们不在意. BERT语言模型任务二: Next Sentence Prediction1. 首先我们拿到属于上下文的一对句子, 也就是两个句子, 之后我们要在这两段连续的句子里面加一些特殊$token$: $[cls]$上一句话,$[sep]$下一句话.$[sep]$ 也就是在句子开头加一个$[cls]$, 在两句话之中和句末加$[sep]$, 具体地就像下图一样: ![](./imgs/embeddings.png) 2. 我们看到上图中两句话是$[cls]$ my dog is cute $[sep]$ he likes playing $[sep]$, $[cls]$我的狗很可爱$[sep]$他喜欢玩耍$[sep]$, 除此之外, 我们还要准备同样格式的两句话, 但他们不属于上下文关系的情况; $[cls]$我的狗很可爱$[sep]$企鹅不擅长飞行$[sep]$, 可见这属于上下句不属于上下文关系的情况; 在实际的训练中, 我们让上面两种情况出现的比例为$1:1$, 也就是一半的时间输出的文本属于上下文关系, 一半时间不是.3. 我们进行完上述步骤之后, 还要随机初始化一个可训练的$segment \ embeddings$, 见上图中, 作用就是用$embeddings$的信息让模型分开上下句, 我们一把给上句全$0$的$token$, 下句啊全$1$的$token$, 让模型得以判断上下句的起止位置, 例如: $[cls]$我的狗很可爱$[sep]$企鹅不擅长飞行$[sep]$ $0 \quad \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 1 $ 上面$0$和$1$就是$segment \ embeddings$.4. 还记得我们上节课说过的, 注意力机制就是, 让每句话中的每一个字对应的那一条向量里, 都融入这句话所有字的信息, 那么我们在最终隐藏层的计算结果里, 只要取出$[cls]token$所对应的一条向量, 里面就含有整个句子的信息, 因为我们期望这个句子里面所有信息都会往$[cls]token$所对应的一条向量里汇总: 模型最终输出的隐藏层的计算结果的维度是: 我们$X_{hidden}: [batch\_size, \ seq\_len, \ embedding\_dim]$ 我们要取出$[cls]token$所对应的一条向量, $[cls]$对应着$\ seq\_len$维度的第$0$条: $cls\_vector = X_{hidden}[:, \ 0, \ :]$ $cls\_vector \in \mathbb{R}^{batch\_size, \ embedding\_dim}$ 之后我们再初始化一个权重, 完成从$embedding\_dim$维度到$1$的映射, 也就是逻辑回归, 之后用$sigmoid$函数激活, 就得到了而分类问题的推断. 我们用$\hat{y}$来表示模型的输出的推断, 他的值介于$(0, \ 1)$之间: $\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (0, \ 1)$至此$BERT$的训练方法就讲完了, 是不是很简单, 下面我们来为$BERT$的预训练准备数据. 3. BERT训练之前的准备工作, 语料预处理;__字典的制作, 参见目录./corpus/BERT_preprocessing.ipynb文件中的讲解__ 4. BERT的预训练, 训练参数;BERT论文中, 推荐的模型参数为: 基准模型$transformer\_block=12, \ embedding\_dimension=768, \ num\_heads=12, \ Total Param eters=110M)$, 可见其中共有$1.1$亿参数, 除此之外, 还有比基准模型还大的高性能模型, 参数量为$3$亿, 要想训练并使用这么大参数的模型, 需要充裕的计算资源! 但是经过我的实际测试, 结合我目前正在研究的命名实体识别, 语义分析, 关系抽取和知识图谱的需求, 发现其实这个参数比较过剩, 我们今天训练BERT所用的参数为$transformer\_block=6, \ embedding\_dimension=384, \ num\_heads=12, \ Total Param eters=23M)$, 可见我把参数缩减到$2$千万, 但即使这样, 使用一块11GB显存的2080Ti显卡, 训练维基百科语料的BERT也需要一周的时间. 注意我们今天所使用的模型, 是在开源项目 https://github.com/huggingface/pytorch-transformers 的基础上修改而来, 其中我添加了很多中文注释, 添加了预处理模块, 添加了动态padding优化了速度(在后面代码解读的部分会讲到), 添加了情感分析模块等; 中文维基百科语料: https://github.com/brightmart/nlp_chinese_corpus 我只是做了一下预处理, 以适应BERT的预训练, 预处理之后的语料可以在readme.md文件中的百度网盘地址下载; 我已经把使用维基百科语料预训练好的BERT模型上传到了百度网盘, 请在readme.md文件中查看, 我还想提醒大家一下, 网盘上的BERT预训练模型在训练的时候, 使用了一些简单的技巧, 但这些技巧并没有出现在这个教程开源的代码里面, 这是因为某些不方便的原因, 不过我可以告诉大家这些技巧, 大家可以自己实现一下, 另外, 不建议大家用我公开的BERT训练代码来重新训练BERT模型, 因为我上传的已经训练好的BERT性能要更好一些: BERT训练技巧: 1) 因为我们是按单个字为单位训练BERT, 所以在Masked LM里面, 把句子中的英文单词分出来, 将英文单词所在的区域一起遮盖掉, 让模型预测这个部分; 2) 很多句子里含有数字, 显然在Masked LM中, 让模型准确地预测数据是不现实的, 所以我们把原文中的数字(包括整数和小数)都替换成一个特殊token, NUM, 这样模型只要预测出这个地方应该是某些数字就可以来. BERT训练代码解读在第6部分 5. 使用BERT预训练模型进行自然语言的情感分类;1) **情感分析语料预处理**: 参见目录./corpus/sentiment_preprocessing.ipynb, 我用使用来酒店评论语料, 不过这个语料规模要比2018年用LSTM做情感分析的要大一些, 正面评论和负面评论各5000条, 其实这也是玩具级数据集, 用BERT参数这么大的模型, 训练会产生严重过拟合, 泛化能力差的情况, 这也是我们下面需要解决的问题; 2) 回顾在BERT的训练中Next Sentence Prediction中, 我们取出$[cls]$对应的那一条向量, 然后把他映射成1个数值并用$sigmoid$函数激活: $$\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (0, \ 1)$$3) **动态学习率和提前终止$(early \ stop)$**: 上一步我们将语料划分成了训练和测试集, 我们的训练方式是, 每个$epoch$, 用训练集训练. 对模型性能的衡量标准是$AUC$, $AUC$的衡量标准对二分类非常易用, 这里因为时间关系就不讲了, 如果大家不熟悉可以上网搜寻相关资料. 当前$epoch$训练完毕之后, 用测试集衡量当前训练结果, 并记下当前$epoch$的$AUC$, 如果当前的$AUC$较上一个$epoch$没有提升, 那就**降低学习率**, 实际操作是让当前的学习率降低$1/5$, 直到$10$个$epoch$测试集的$AUC$都没有提升, 就终止训练. 我们的初始学习率是$1e-6$, 因为我们是在维基百科预训练语料的基础上进行训练的, 属于下游任务, 只需要微调预训练模型就好. 4) **解决过拟合问题:** 但在实际操作中, 使用$\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (0, \ 1)$的方式, 发现虽然在训练集和测试集上$AUC$都很高, 但实际随便输入一些从各种网上随便找的一些酒店评论后, 发现泛化能力不好. 这是因为我们的训练数据集非常小, 即使区分训练集和测试集, 但因为整体数据形态比较单一, 模型遇到自己没见过的情况就很容易无法做出正确判断, 为了提高模型的泛化性能, 我尝试了另一种模型结构: ![](./imgs/mean_max_pool.jpg) 如上图, 我尝试$mean \ max \ pool$的一种把隐藏层的序列转换为一条向量的方式, 其实就是沿着$sequence \ length$的维度分别求均值和$max$, 之后拼起来成为一条向量, 之后同样映射成一个值再激活, 伪代码如下: $X_{hidden}: [batch\_size, \ seq\_len, \ embedding\_dim]$ $mean\_pooled = mean(X_{hidden}, \ dimension=seq\_len) \quad [batch\_size, \ embedding\_dim]$$max\_pooled = max(X_{hidden}, \ dimension=seq\_len) \quad [batch\_size, \ embedding\_dim]$$mean\_max\_pooled = concatenate(mean\_pooled, \ max\_pooled, \ dimension=embedding\_dim ) \quad [batch\_size, \ embedding\_dim * 2]$ 上式中$mean\_max\_pooled$也就是我们得到的一句话的数学表达, 含有这句话的信息, 其实这也是一种$DOC2VEC$的方法, 也就是把一句话转换成一条向量, 而且无论这句话有多长, 转换出来向量的维度都是一样的, 之后可以用这些向量做一些分类聚类等任务. 下一步我们同样做映射, 之后用$sigmoid$激活: $\hat{y} = sigmoid(Linear(mean\_max\_pooled)) \quad \hat{y} \in (0, \ 1)$ 怎样理解这样的操作呢, 隐藏层就是一句话的数学表达, 我们求均值和最大值正数学表达对这句话的平均响应, 和最大响应, 之后我们用线性映射来识别这些响应, 从而得到模型的推断结果. 我们还用了$weight \ decay$的方式, 其实就是$L2 \ normalization$, 在PyTorch里有接口可以直接调用, 一会会说到, 其实$L2$正则的作用就是防止参数的值变得过大或过小, 我们可以设想一下, 由于我们的训练数据很少, 所以实际使用模型进行推断的时候有些字和词或者句子结构的组合模型都是没见过的, 模型里面参数的值很大的话会造成遇到某一些特别的句子或者词语的时候, 模型对句子的响应过大, 导致最终输出的值偏离实际, 其实我们希望模型更从容淡定一些, 所以我们加入$L2 \ normalization$. 除此之外, 我们预训练的BERT有6个transformer block, 我们在情感分析的时候, 只用了3个, 因为后面实在是参数太多, 容易导致过拟合, 所以在第三个transformer block之后, 就截出隐藏层进行$pooling$了, 后面的transformer block都没有用到. 再除此之外, 我使用了$dropout$机制, $dropout$设为了$0.4$, 因为模型参数是在是太多, 所以在训练的时候直接让$40\%$的参数失能, 防止过拟合. 经过以上方法, 模型训练集和测试机的$AUC$都达到了$0.95$以上, 而且经过实际的测试, 模型也可以基本比较正确的分辨出语句的情感极性. 5) **阈值微调:** 经过模型的推断, 输出的值介于0到1之间, 我们可以认为只要这个值在0.5以上, 就是正样本, 如果在0.5以下, 就是副样本, 其实这是不一定的, 0.5通常不是最佳的分类边界, 所以我写了一个用来寻找最佳阈值的脚本, 在./metrics/\_\_init\_\_.py里面. 这个脚本的方法是从0.01到0.99定义99个阈值, 高于阈值算正样本, 低于算副样本, 然后与测试集计算$f1 \ score$, 之后选出可以使$f1 \ score$最高的阈值, 在训练中, 每一个$epoch$都会运行一次寻找阈值的脚本. ###Code import pandas as pd df = pd.read_pickle("./sentiment_state_dict_mean_max_pool/df_log.pickle") # 训练日志的尾部, 可见训练集train_auc和测试集test_auc都到达了0.95以上, # 实际上测试集的auc比训练集还要高, 因为训练集有dropout df.tail() # 让我们来画一下图 import matplotlib.pyplot as plt plt.plot(df["train_auc"].tolist(), c="b", label="train_auc") plt.plot(df["test_auc"].tolist(), c="r", label="test_auc") plt.xlabel("epochs") plt.ylabel("AUC") plt.yticks([i/10 for i in range(11)]) plt.grid() plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 6) **情感分析代码解读和实际测试**: 代码解读见视频讲解, 下面我们进行测试: ###Code from Sentiment_Inference import * model = Sentiment_Analysis(max_seq_len=300, batch_size=2) # https://www.booking.com/reviews.zh-cn.html test_list = [ "有几次回到酒店房间都没有被整理。两个人入住,只放了一套洗漱用品。", "早餐时间询问要咖啡或茶,本来是好事,但每张桌子上没有放“怡口糖”(代糖),又显得没那么周到。房间里卫生间用品补充,有时有点漫不经心个人觉得酒店房间禁烟比较好", '十六浦酒店有提供港澳码头的SHUTTLE BUS, 但氹仔没有订了普通房, 可能是会员的关系 UPGRADE到了DELUXE房,风景是绿色的河, 感观一般, 但房间还是不错的, 只是装修有点旧了另外品尝了酒店的自助晚餐, 种类不算多, 味道OK, 酒类也免费任饮, 这个不错最后就是在酒店的娱乐场赢了所有费用, 一切都值得了!', '地理位置优越,出门就是步行街,也应该是耶路撒冷的中心地带,去老城走约20分钟。房间很实用,虽然不含早餐,但是楼下周边有很多小超市和餐厅、面包店,所以一切都不是问题。', '实在失望!如果果晚唔系送朋友去码头翻香港一定会落酒店大堂投诉佢!太离谱了!我地吃个晚饭消费千几蚊 ,买单个黑色衫叫Annie果个唔知系部长定系经理录左我万几蚊!简直系离晒大谱的 !咁样的管理层咁大间酒店真的都不敢恭维!', '酒店服务太棒了, 服务态度非常好, 房间很干净', "服务各方面没有不周到而的地方, 各方面没有没想到的细节", "房间设施比较旧,虽然是古典风格,但浴室的浴霸比较不好用。很不满意的是大厅坐下得消费,不人性化,而且糕点和沙拉很难吃,贵而且是用塑料盒子装的,5星级?特别是青团,58块钱4个,感觉放了好几天了,超级难吃。。。把外国朋友吓坏了。。。", "南京东路地铁出来就能看到,很方便。酒店大堂和房间布置都有五星级的水准。", "服务不及5星,前台非常不专业,入住时会告知你没房要等,不然就加钱升级房间。前台个个冰块脸,对待客人好像仇人一般,带着2岁的小孩前台竟然还要收早餐费。门口穿白衣的大爷是木头人,不会提供任何帮助。入住期间想要多一副牙刷给孩子用,竟然被问为什么。五星设施,一星服务,不会再入住!" ] model(test_list) text = "对于这个亲子房来说,没有浴缸对于比较小的小朋友来说可能会有点不太方便,小的时候不太会站立洗澡的,所以可能需要洗盆浴,我们宝宝4岁了,其实也没有关系,但是之前有自己经历过带6个月宝宝出去玩的,很多店家觉得浴缸浪费空间所以都只有淋浴房。但是自己给宝宝洗澡的时候就非常尴尬…不知道这家是不是可以有租用的。因为我们不是一定需要,也没有做询问。" model(text) ###Output 对于这个亲子房来说,没有浴缸对于比较小的小朋友来说可能会有点不太方便,小的时候不太会站立洗澡的,所以可能需要洗盆浴,我们宝宝4岁了,其实也没有关系,但是之前有自己经历过带6个月宝宝出去玩的,很多店家觉得浴缸浪费空间所以都只有淋浴房。但是自己给宝宝洗澡的时候就非常尴尬…不知道这家是不是可以有租用的。因为我们不是一定需要,也没有做询问。 负样本, 输出值0.31 ----------
VacationPy/.ipynb_checkpoints/VacationPy-checkpoint.ipynb
###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. installed gmaps- pip install gmaps ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code # Create DataFrame from WeatherPy csv weather_info = pd.read_csv("../output_data/city_weather.csv") weather_info ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps gmaps.configure(api_key=g_key) # Store latitude and longitude in locations locations = weather_info[["Lat","Lng"]] # Store humidity as the weight in hweight hweight = weather_info["Humidity"].astype(float) # Plot Heatmap fig = gmaps.figure(map_type="SATELLITE") # Create heat layer heat_layer = gmaps.heatmap_layer(locations, weights=hweight,dissipating=False, max_intensity=100,point_radius=2) # Add layer fig.add_layer(heat_layer) # Display figure fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Set perfect weather conditions hotel_df = weather_info.loc[(weather_info["Max Temp"]>= 65)&(weather_info["Max Temp"]<=70)&(weather_info["Wind Speed"]<10)&(weather_info["Cloudiness"]==0)] hotel_df # Drop the other rows that do not fit the criteria above # Reset the index and drop previous index number hotel_df = hotel_df.dropna(how='any') hotel_df = hotel_df.reset_index(drop=True) hotel_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # Add "Hotel Name" column to the DataFrame hotel_df["Hotel Name"]="" hotel_df.head() # create params # create a for loop to iterate through each city # then we want to grab hotel name by lat and lng from api # store it back into dataframe # Params dictionary to update each iteration params = { "radius":5000, "types":"hotel", "key":g_key } # Use Lat and Long to identify the hotel names for index, row in hotel_df.iterrows(): lat = row["Lat"] lng = row["Lng"] # Change location each iteration while leaving original params in place params["location"] = f"{lat},{lng}" # Base URL to use for request base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # Make the request hotel_name = requests.get(base_url, params=params).json() # Since some data may be missing we incorporate a try-except to skip any that are missing a data point. try: hotel_df.loc[index, "Hotel Name"] = hotel_name["results"][3]["name"] except (KeyError, IndexError): print("Missing field/result...skipping.") # Export to csv file # Display dataframe with new Hotel Name information hotel_df.to_csv("../output_data/hotel_df.csv") hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # info_box_content displays information from hotel_info when clicked on markers = gmaps.marker_layer(locations, info_box_content = hotel_info ) fig.add_layer(markers) # Display figure fig # info_box_content source: API documentation¶. (n.d.). Retrieved July 23, 2020, from https://jupyter-gmaps.readthedocs.io/en/latest/api.html ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json #!jupyter nbextension enable --py gmaps # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code weather_data = pd.read_csv('WeatherPy.csv') weather_data.head() weather_data.rename(columns = {'Lat':'Latitude', 'Lng': 'Longitude'}, inplace = True) weather_data.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code gmaps.configure(api_key=g_key) locations = weather_data[["Latitude", "Longitude"]] humidity = weather_data["Humidity"] fig = gmaps.figure() heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=10, point_radius = 1) fig.add_layer(heat_layer) fig fig.savefig("map_export.png", dpi=300) ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code cond_weather_data = weather_data.loc[(weather_data["Max Temp"]>=75) & (weather_data["Max Temp"]<=80) & (weather_data["Humidity"]<50) & (weather_data["Wind Speed"]<10)] cond_weather_data.dropna() ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df = cond_weather_data hotel_df['Hotel Name'] = "" hotel_df.head() for index, row in hotel_df.iterrows(): lat = row["Latitude"] lng = row["Longitude"] target_type = "hotel" radius = 5000 params["location"] = f"{lat},{lng}" base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" hotel_name = requests.get(base_url, params=params) try: hotel_df.loc[index, "Hotel Name"] = hotel_name["results"][0]["name"] except (KeyError, IndexError): hotel_df.loc[index, 'Hotel Name'] = "NaN" hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Latitude", "Longitude"]] # Add marker layer ontop of heat map #https://jupyter-gmaps.readthedocs.io/en/v0.3.4/gmaps.html # Create a map using state centroid coordinates to set markers marker_locations = hotel_df[['Hotel Name']] # Create a marker_layer using the poverty list to fill the info box <-- census assignment fig = gmaps.figure() markers = gmaps.marker_layer(marker_locations, hotel_df=[f"Hotel Name: {hotel_df.loc[index,'Hotel Name']}" for index,row in hotel_df.iterrows]) fig.add_layer(markers) # Display figure fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code weather_data = pd.read_csv("../WeatherPy/output_data/cities.csv") weather_data ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code cities = pd.read_csv("cities.csv", encoding="utf-8") cities.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code humidity = cities["Humidity"].astype(float) maxhumidity = humidity.max() locations = cities[["Lat", "Lng"]] fig = gmaps.figure() heat_layer = gmaps.heatmap_layer(locations, weights=humidity,dissipating=False, max_intensity=maxhumidity,point_radius=3) fig.add_layer(heat_layer) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code hotel_df = cities.loc[(cities["Max Temp"] > 70) & (cities["Max Temp"] < 80) & (cities["Cloudiness"] == 0), :] hotel_df = narrowed_city_df.dropna(how='any') hotel_df.reset_index(inplace=True) del hotel_df['index'] hotel_df.head() ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotellist = [] for i in range(len(hotel_df)): lat = hotel_df.loc[i]['Lat'] lng = hotel_df.loc[i]['Lng'] params = { "location": f"{lat},{lng}", "radius": 5000, "types" : "hotel", "key": g_key } base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" requested = requests.get(base_url, params=params) jsn = requested.json() try: hotellist.append(jsn['results'][0]['name']) except: hotellist.append("") hotel_df["Hotel Name"] = hotellist hotel_df = narrowed_city_df.dropna(how='any') hotel_df.head() # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map markers = gmaps.marker_layer(locations) fig.add_layer(markers) fig # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code part_1_dataframe=pd.read_csv("../WeatherPy/city_weather_df.csv") part_1_dataframe.head() #dropping the unnamed dropna_part_1_dataframe=part_1_dataframe.dropna() del dropna_part_1_dataframe["Unnamed: 0"] dropna_part_1_dataframe.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code #Access maps with API key gmaps.configure(api_key=g_key) #getting coordinates coord=pd.DataFrame(dropna_part_1_dataframe, columns=["Lat","Lng"]) #creating coordinate list coord_list=coord.values.tolist() #figure layout figure_layout={ "width":"400px", "height":"300px", "border":"1px solid black", "padding":"1px", "margin":"0 auto 0 auto" } fig=gmaps.figure(layout=figure_layout) #Weights weights=dropna_part_1_dataframe.Humidity heatmap=gmaps.heatmap_layer(coord_list, weights=weights) #Heatmap heatmap=gmaps.heatmap_layer(coord_list) heatmap.max_intensity=2 heatmap.point_radius=3 fig.add_layer(heatmap) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code #Fit weather conditions: A max temperature between 55-65 degrees, wind speed less than 15 mph, 100% cloudiness, and below 20% humidty hotel_df=dropna_part_1_dataframe.loc[(dropna_part_1_dataframe["Max Temp"]>=55) & (dropna_part_1_dataframe["Max Temp"]<=65) & (dropna_part_1_dataframe["Wind Speed"]<=15) & (dropna_part_1_dataframe["Cloudiness"]<=100) & (dropna_part_1_dataframe["Humidity"]<=20)] hotel_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df["Hotel Name"]="" hotel_df #geocoordinates target_coord="-35.10, 173.78" target_search="Hotels" target_radius=5000 target_type="lodging" #setting up params params={ "location":target_coord, "keyword":target_search, "radius":target_radius, "type":target_type, "key":g_key } #base url base_url="https://maps.googleapis.com/maps/api/place/nearbysearch/json" #run a ruquest response=requests.get(base_url, params=params) #convert to json hotels=response.json() json.dumps(hotels, indent=4, sort_keys=True) #For City #2 #geocoordinates target_coord2="-35.23, 173.95" target_search2="Hotels" target_radius2=5000 target_type2="lodging" #setting up params params2={ "location":target_coord2, "keyword":target_search2, "radius":target_radius2, "type":target_type2, "key":g_key } #base url base_url="https://maps.googleapis.com/maps/api/place/nearbysearch/json" #run a ruquest response2=requests.get(base_url, params=params2) #convert to json hotels2=response2.json() json.dumps(hotels2, indent=4, sort_keys=True) #storing into dataframe hotel_df["Hotel Name"]=[(hotels["results"][0]["name"]), (hotels2["results"][0]["name"])] hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map markers=gmaps.marker_layer(locations) # Display figure fig.add_layer(markers) fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import citipy # Import API key from config import g_key %matplotlib inline gmaps.configure(api_key=g_key) fig1 = gmaps.figure() fig1 ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code vaca_cities_df = pd.read_csv (r'C:\Users\ICPC\Desktop\Data_Sci_Homework\Python-API-HW\WeatherPy\cities_df.csv') print (vaca_cities_df) ###Output City Cloudiness Country Date Humidity Lat \ 0 colares 20.0 3600.0 1.620053e+09 55.0 38.7992 1 barrow 90.0 -28800.0 1.620053e+09 86.0 71.2906 2 avarua 90.0 -36000.0 1.620053e+09 73.0 -21.2078 3 hasaki 20.0 32400.0 1.620053e+09 38.0 35.7333 4 kunming 0.0 28800.0 1.620053e+09 52.0 25.0389 .. ... ... ... ... ... ... 546 mackenzie 90.0 -25200.0 1.620054e+09 87.0 55.2999 547 monrovia 75.0 0.0 1.620054e+09 66.0 6.3005 548 seoul 0.0 32400.0 1.620054e+09 58.0 37.5683 549 dubrajpur 90.0 19800.0 1.620054e+09 94.0 23.8000 550 rocha 64.0 -10800.0 1.620054e+09 52.0 -34.4833 Lng Max Temp Windspeed 0 -9.4469 73.00 10.36 1 -156.7887 15.80 3.27 2 -159.7750 75.20 8.05 3 140.8333 59.00 10.36 4 102.7183 66.20 13.42 .. ... ... ... 546 -123.1698 35.60 3.44 547 -10.7969 91.40 10.36 548 126.9778 53.60 3.44 549 87.3833 77.00 5.75 550 -54.3333 77.09 12.71 [551 rows x 9 columns] ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code humidity = vaca_cities_df["Humidity"] maxhumidity = humidity.max() locations = vaca_cities_df[["Lat", "Lng"]] locations figure = gmaps.figure() heat_layer = gmaps.heatmap_layer(locations, weights=humidity,dissipating=False, max_intensity=maxhumidity,point_radius=2) figure.add_layer(heat_layer) figure ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code ideal_df = vaca_cities_df[(vaca_cities_df['Max Temp'].between(70,80)) & (vaca_cities_df['Windspeed']<10) & (vaca_cities_df['Cloudiness']=0)] ideal_df.reset_index(inplace=True) del ideal_df['index'] ideal_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df = [] for x in range(len(ideal_df)): lat = ideal_df.loc[x]['Lat'] lng = ideal_df.loc[x]['Lng'] params = { "location": f"{lat},{lng}", "radius": 5000, "types" : "hotel", "key": g_key } base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" requested = requests.get(base_url, params=params) response = requested.json() try: hotel_df.append(response['results'][0]['name']) except: hotel_df.append("") ideal_df["Hotel Name"] = hotel_df ideal_df ideal_df = ideal_df.dropna(how='any') ideal_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in ideal_df.iterrows()] locations = ideal_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Plot markers on top of the heatmap # Add marker layer ontop of heat map markers = gmaps.marker_layer(locations, info_box_content = hotel_info) figure.add_layer(markers) # Display figure figure # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code cities = "C:/Users/arc user/Desktop/python-api-challenge/WeatherPy/cities.csv" weather_data = pd.read_csv(cities) weather_data ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps gmaps.configure(api_key=g_key) %matplotlib inline # Store latitude and longitude in locations locations = weather_data[["Lat", "Lng"]] #Store humidity humidity = weather_data["Humidity"] # Plot Heatmap fig = gmaps.figure() # Create heat layer heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=100, point_radius=5) # Add layer fig.add_layer(heat_layer) # Display figure fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code #A max temperature lower than 80 degrees but higher than 70 (converted to Celsius). #Wind speed less than 10 mph. #Zero cloudiness. narrow_weather = weather_data.loc[(weather_data["Max Temp"]> 21.11)\ &(weather_data["Max Temp"]<26.66)&(weather_data["Wind Speed"]<10)&(weather_data["Cloudiness"]==0)].dropna() ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df = narrow_weather[["City", "Lat", "Lng"]].copy() hotel_df["Hotel Name"]="" hotel_df # params dictionary to update each iteration params = { "radius": 5000, "types": "lodging", "key": g_key } # Use the lat/lng we recovered to identify hotels for index, row in hotel_df.iterrows(): # get lat, lng from df lat = row["Lat"] lng = row["Lng"] # change location each iteration while leaving original params in place params["location"] = f"{lat},{lng}" # Use the search term: "lodging" and our lat/lng base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # make request and print url name_address = requests.get(base_url, params=params) # print the name_address url, avoid doing for public github repos in order to avoid exposing key # print(name_address.url) # convert to json name_address = name_address.json() # print(json.dumps(name_address, indent=4, sort_keys=True)) # Since some data may be missing we incorporate a try-except to skip any that are missing a data point. try: hotel_df.loc[index, "Hotel Name"] = name_address["results"][0]["name"] except (KeyError, IndexError): print("Missing field/result... skipping.") hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map markers = gmaps.marker_layer(locations,info_box_content=hotel_info) fig.add_layer(markers) fig # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code pip install gmaps # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code Weather_file = "../WeatherPy/weathercities.csv" #Weather_file Weather_df2 = pd.read_csv(Weather_file) Weatger_df2 = Weather_df2.dropna() Weather_df2 ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code gmaps.configure(g_key) locations = Weather_df2[["Lat", "Lng"]] locations humidity = Weather_df2["Humidity"].astype(float) humidity #Plotting Heatmap figure = gmaps.figure() # Create the heat layer heatmap_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=10, point_radius=1) # Add layer figure.add_layer(heatmap_layer) # Display figure figure ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code #Narrow down the DataFrame to find your ideal weather condition. # A max temperature lower than 85 degrees but higher than 70. # Wind speed less than 10 mph. # Zero cloudiness. # Drop any rows that don't contain all three conditions. # You want to be sure the weather is ideal NarrowDown_df = pd.DataFrame(Weather_df2, columns = ["City","Country", "Max Temp", "Wind Speed", "Cloudiness"]) max_temp = (NarrowDown_df["Max Temp"] <= 85) & (NarrowDown_df["Max Temp"] > 70) wind_speed = NarrowDown_df["Wind Speed"] < 10 cloudiness = NarrowDown_df["Cloudiness"] == 0 NarrowDown_df[max_temp & wind_speed & cloudiness] ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # Store into variable named hotel_df. hotel_df = pd.DataFrame(Weather_df2, columns=["City","Country","Lat","Lng"]) #Add a "Hotel Name" column to the DataFrame. hotel_df["Hotel Name"] = "" hotel_df #Set parameters to search for hotels with 5000 meters. hotel_name = [] # params dictionary to update each iteration params = { "radius": 5000, "types": "hotel", "keyword": "hotel", "key": g_key } #------------------------------------------------------------------------------------------------------------- # Nearest Restuatrant Exercise CODE # use iterrows to iterate through pandas dataframe for index, row in hotel_df.iterrows(): #get coordinates lat = row["Lat"] lng = row["Lng"] # change location each iteration params["location"] = f"{lat},{lng}" # base url base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" #make API request & convert to json response = requests.get(base_url, params=params).json() # extract results results = response['results'] try: hotel_name.append(response['results'][0]['name']) except (KeyError, IndexError): hotel_name.append(np.nan) hotel_name hotel_df.iloc[0][0] #Store the first Hotel result into the DataFrame. hotel_df['Hotel Name']= hotel_name hotel_df.dropna() hotel_df.to_csv('VacationHotels.csv') #from gmaps in-class exercise #Plot markers on top of the heatmap. markers = gmaps.marker_layer(locations) # Add the layer to the map figure.add_layer(markers) figure # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in NarrowDown_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Display Map ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code df = pd.read_csv('../clean_city_data.csv') df ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import time import json import os os.chdir('../config') from config import gp os.chdir('../WeatherPy') # Import API key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code load_csv = "../WeatherPy/output/cities.csv" city_df = pd.read_csv(load_csv) city_df.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code locations = city_df[["Latitude", "Longitude"]] humidity = city_df['Humidity'].astype(int) # Plot Heatmap fig = gmaps.figure() # Create heat layer heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=10, point_radius=1) # Add layer fig.add_layer(heat_layer) # Display figure fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # max temperature lower than 80 degrees but higher than 70. # Wind speed less than 10 mph. # Zero cloudiness. narrowed_city_df = city_df.copy() narrowed_city_df = narrowed_city_df[narrowed_city_df['Max Temp'] >= 70] narrowed_city_df = narrowed_city_df[narrowed_city_df['Max Temp'] <= 80] narrowed_city_df = narrowed_city_df[narrowed_city_df['Wind Speed'] <= 10] narrowed_city_df = narrowed_city_df[narrowed_city_df['Cloudiness'] == 0] narrowed_city_df = narrowed_city_df.dropna() narrowed_city_df = narrowed_city_df.reset_index() narrowed_city_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # create hotel_df with hotel name column hotel_df = narrowed_city_df hotel_df["Hotel Name"] = np.nan hotel_df=hotel_df.rename(columns={"Latitude":"Lat","Longitude":"Lng"}) hotel_df #search googleplaces for hotels within 5000 meters #list for hotel names hotels = [] #checker variable x = 0 # for loop to search through city coords for cities in hotel_df['City']: target_coordinates = str(hotel_df['Lat'][x])+' , '+str(hotel_df['Lng'][x]) x+=1 target_radius = 5000 target_type = 'lodging' params = { "location": target_coordinates, "radius": target_radius, "type": target_type, "key": gp } base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # try/except to check if a city turns up try: response = requests.get(base_url, params=params) hotel_results = response.json() hotels.append(hotel_results['results'][0]['name']) except IndexError: hotels.append(np.nan) #append dataframe with hotel names hotel_df['Hotel Name'] = hotels hotel_df #clean up DataSet by remooving NAN hotel_df_clean = hotel_df.dropna() hotel_df_clean # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in narrowed_city_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Add marker layer ontop of heat map and display fig = gmaps.figure() markers = gmaps.marker_layer(locations, info_box_content=hotel_info) fig.add_layer(markers) fig # Display Map ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json import time # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code weather_data = pd.read_csv("../WeatherPy/output_data/cities.csv") weather_data ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps gmaps.configure(api_key=g_key) # Store latitude and longitude in locations locations = weather_data[["Lat", "Lng"]] # Store Humidity in humidity humidity = weather_data["Humidity"] # Plot Heatmap fig = gmaps.figure(center=(46.0, -5.0), zoom_level=2) max_intensity = np.max(humidity) # Create heat layer heat_layer = gmaps.heatmap_layer(locations, weights = humidity, dissipating=False, max_intensity=100, point_radius=3) # Add layer fig.add_layer(heat_layer) # Display figure fig max_intensity ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Narrow down the cities with wind speed less than 10 mph, cloudiness equals to 0 and max temp between 60 and 80 narrowed_city_df = weather_data.loc[(weather_data["Wind Speed"] <= 10) & (weather_data["Cloudiness"] == 0) & \ (weather_data["Max Temp"] >= 70) & (weather_data["Max Temp"] <= 80)].dropna() narrowed_city_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # Create a hotel_df hotel_df = narrowed_city_df.loc[:,["City","Country", "Lat", "Lng"]] # Add a "Hotel Name" column to the DataFrame. hotel_df["Hotel Name"] = "" # Display the result hotel_df base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params = {"type" : "hotel", "keyword" : "hotel", "radius" : 5000, "key" : g_key} for index, row in hotel_df.iterrows(): # get city name, lat, lnt from df lat = row["Lat"] lng = row["Lng"] city_name = row["City"] # add keyword to params dict params["location"] = f"{lat},{lng}" # assemble url and make API request print(f"Retrieving Results for Index {index}: {city_name}.") response = requests.get(base_url, params=params).json() # extract results results = response['results'] # save the hotel name to dataframe try: print(f"Closest hotel in {city_name} is {results[0]['name']}.") hotel_df.loc[index, "Hotel Name"] = results[0]['name'] # if there is no hotel available, show missing field except (KeyError, IndexError): print("Missing field/result... skipping.") print("------------") # Wait 1 sec to make another api request to avoid SSL Error time.sleep(1) # Print end of search once searching is completed print("-------End of Search-------") # Display the hotel dataframe hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer and info box content ontop of heat map markers = gmaps.marker_layer(locations, info_box_content = hotel_info) # Add the layer to the map fig.add_layer(markers) # Display Map fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Output File (CSV) output_data_file = "output_data/Hotels.csv" # Import API key from api_keys import g_key hotel_df ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code city_data_file= "../output_data/cities.csv" city_data_df = pd.read_csv(city_data_file) city_data_df ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code gmaps.configure(api_key=g_key) locations = city_data_df[['Lat','Lng']] center_map = (0,0) fig = gmaps.figure(map_type='ROADMAP') heatmap_layer = gmaps.heatmap_layer( city_data_df[["Lat", "Lng"]], weights=city_data_df["Humidity"], max_intensity=100, point_radius=15) fig = gmaps.figure(layout={'width' : '100%', 'height' : '675px'},center=(0,0),zoom_level=1.9) fig.add_layer(heatmap_layer) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # narrow down weather df # Max temp <80, Min temp >70, Cloudiness =0, Wind Speed <10mph best_weather_df=city_data_df[city_data_df["Max Temp"] <75] best_weather_df=best_weather_df[best_weather_df["Max Temp"] >55] best_weather_df=best_weather_df[best_weather_df["Wind Speed"] <10] best_weather_df=best_weather_df[best_weather_df["Cloudiness"]<1] best_weather_df.dropna() best_weather_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df = best_weather_df hotel_df["Hotel Name"] = "" hotel_df.reset_index(inplace=True) hotel_df.drop(columns='index') lat = hotel_df["Lat"].astype(float) lng = hotel_df["Lng"].astype(float) hotel_df.head() import pprint lat = hotel_df["Lat"] lng = hotel_df["Lng"] hotels=[] for i in range (len(hotel_df)): target_type = "lodging" location = f"{lat[i]},{lng[i]}" keyword = "hotel" radius = 5000 base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json?" params= { "location" : location, "radius" : radius, "types" : target_type, "key" : g_key } try: response = requests.get(base_url, params=params).json() pprint(response) hotel_name = response hotels.append(hotel_name["results"][0]["name"]) print(hotel_name["results"][0]["name"]) except: hotels.append("") print("No result found. Skipping ... ") pass # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json import pprint # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code cities_df = pd.read_csv('../cities.csv') cities_df = cities_df.drop(['Unnamed: 0'], axis=1) cities_df ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code gmaps.configure(api_key = g_key) locations = cities_df[["latitude", "longitude"]] humidity = cities_df["humidity"] humidity fig = gmaps.figure() heat_layer = gmaps.heatmap_layer(locations, weights=humidity,dissipating=False,max_intensity=100,point_radius=1) fig.add_layer(heat_layer) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code hotel_df = cities_df.loc[(cities_df['max temperature']<80) & (cities_df['max temperature']>70) & (cities_df['wind speed']<10) & (cities_df['cloudiness']==0)] hotel_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df['Hotel Name'] = "" target_radius = 5000 target_search = "Hotel" base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params = { "radius": target_radius, "keyword": target_search, "key": g_key } for index, row in hotel_df.iterrows(): lat = row['latitude'] lon = row['longitude'] params['location'] = f"{lat},{lon}" print(f"Retrieving Results for Index {index}.") response = requests.get(base_url, params=params).json() results = response['results'] try: print(f"Closest hotel is {results[0]['name']}.") print("------------") hotel_df.loc[index, 'Hotel Name'] = results[0]['name'] except (KeyError, IndexError): print("No hotel within 5000 meters") hotel_df.loc[index, 'Hotel Name'] = "No hotel within 5000 meters" print("------------") hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{city}</dd> <dt>Country</dt><dd>{country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["latitude", "longitude"]] humidity = hotel_df["humidity"] # Add marker layer ontop of heat map fig = gmaps.figure() marker_layer = gmaps.marker_layer(locations, info_box_content=hotel_info) heat_layer = gmaps.heatmap_layer(locations, weights=humidity,dissipating=False,max_intensity=80,point_radius=3) fig.add_layer(heat_layer) fig.add_layer(marker_layer) fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code cities_df = pd.read_csv("../WeatherPy/Cities.csv") cities_df ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code gmaps.configure(api_key=g_key) locations = cities_df[["Lat", "Lng"]] Humidity = cities_df["Humidity"] max_humidity = cities_df["Humidity"].max() fig = gmaps.figure() heatmap = gmaps.heatmap_layer(locations, weights=Humidity, max_intensity=max_humidity) fig.add_layer(heatmap) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code hotel_df = cities_df.loc[(cities_df["Max Temp"] < 80) & (cities_df["Max Temp"] > 70),:] hotel_df = hotel_df.loc[hotel_df["Wind Speed"] < 10,:] hotel_df = hotel_df.loc[hotel_df["Cloudiness"] == 0,:] hotel_df = hotel_df.loc[hotel_df["Humidity"] < 50,:] hotel_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df["Hotel Name"] = "" hotel_df["Hotel Lat"] = "" hotel_df["Hotel Lng"] = "" hotel_df.head() url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json?" radius = 5000 parameters = {"key": g_key, "radius": radius, "keyword": "hotel"} failed = [] for index, row in hotel_df.iterrows(): parameters["location"] = f"{row[6]},{row[7]}" response = requests.get(url, params=parameters).json() try: hotel_df.loc[index, "Hotel Name"] = response["results"][0]["name"] hotel_df.loc[index, "Hotel Lat"] = response["results"][0]["geometry"]["location"]["lat"] hotel_df.loc[index, "Hotel Lng"] = response["results"][0]["geometry"]["location"]["lng"] except (KeyError, IndexError): print("Couldn't find a hotel...") failed.append(hotel_df.loc[index, "City"]) failed for city in failed: hotel_df = hotel_df[hotel_df["City"] != city] hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] hotel_locations = hotel_df[["Hotel Lat", "Hotel Lng"]] # Add marker layer ontop of heat map markers = gmaps.marker_layer(hotel_locations, info_box_content=hotel_info) fig.add_layer(markers) # Display Map fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json # Import API key from api_keys import g_key # Configure gmaps gmaps.configure(api_key=g_key) ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code weather_df = pd.read_csv('../WeatherPy/weather_data.csv') ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Latitude and longitude as locations. latitude_longitude = weather_df[['lat', 'lng']] # Humidity as weight. humidity = weather_df["humidity"] latitude_longitude.head() # Add Heatmap layer to map. figure_layout = { 'width': '500px', 'height': '400px', 'padding': '1px', 'margin': '0 auto 0 auto' } # Use the gmaps.figure fig = gmaps.figure(layout=figure_layout,zoom_level=3,center=(25,25)) # Create heat layer heat_layer = gmaps.heatmap_layer(latitude_longitude, weights=humidity, dissipating=False, max_intensity=100, point_radius=1.5) # Add heat layer fig.add_layer(heat_layer) ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Create the perfect vacation climate # A max temperature lower than 80 degrees but higher than 70. perfect_temperature = (weather_df.temperature < 80) & (weather_df.temperature > 70) perfect_wind = weather_df.wind_speed < 10 perfect_cloudiness = weather_df.cloudiness == 0 perfect_vacation = perfect_temperature & perfect_wind & perfect_cloudiness # Use boolean indexing to filter the weather_df dataframe - drop null values ideal_weather = weather_df[perfect_vacation] ideal_weather = ideal_weather.dropna() ideal_weather = ideal_weather.reset_index() ideal_weather.head(10) ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df = ideal_weather # Add column for Hotel Name hotel_df['Hotel Name'] = "" hotel_df.head() # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["lat", "lng"]] # Add marker layer ontop of heat map # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code cities_df =pd.read_csv("../WeatherPy/output_data/cities.csv") #drop na value(if there were) and remove unnamed column cities_df=cities_df.drop(columns=["Unnamed: 0"]) cities_df = cities_df.dropna() cities_df ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps with API key gmaps.configure(api_key = g_key) # Store 'Lat' and 'Lng' into locations locations = cities_df [["Lat", "Lng"]].astype(float) weights = cities_df["Humidity"].astype(float) # Create a Humidity Heatmap layer fig = gmaps.figure() heat_layer = gmaps.heatmap_layer(locations, weights=weights , dissipating=False, max_intensity= max(weights), point_radius = 5) fig.add_layer(heat_layer) # Saves an image of our chart so that we can view it in a folder plt.savefig("output_data/Fig1.png") fig ###Output _____no_output_____ ###Markdown Analysis: It seems that the humidity is higher in South America in comparison to north america humidity is lower in Algeria, Sudan, Egypt ###Code ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code ## Narrow down the DataFrame to find your ideal weather condition new_cities = pd.DataFrame(cities_df, columns = ["City", "Max Temp", "Wind Speed", "Cloudiness"]) # The ideal condition based on the instruction: # A max temperature lower than 80 degrees but higher than 70. # Wind speed less than 10 mph. # Zero cloudiness. ideal_temp = (new_cities["Max Temp"]<80) & (new_cities["Max Temp"]>70) ideal_wind = new_cities["Wind Speed"]<10 ideal_cloudiness = new_cities["Cloudiness"]==0 ideal_cities = new_cities.loc[ideal_cloudiness & ideal_temp & ideal_wind] ideal_cities ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df = pd.DataFrame(cities_df, columns=["City", "Country", "Lat", "Lng"]) #Add a "Hotel Name" column to the DataFrame. hotel_df["Hotel Name"] = "" hotel_df hotel_name = [] # params dictionary to update each iteration params = { "radius": 5000, "types": "hotel", "keyword": "hotel", "key": g_key, } # Loop through the hotel_df and run a lat/long search for each city for index, row in hotel_df.iterrows(): # get lat, lng from df lat = row["Lat"] lng = row["Lng"] # change location each iteration while leaving original params in place params["location"] = f"{lat},{lng}" # Use the search term: "hotel" and our lat/lng base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # make request hotel_names = requests.get(base_url, params=params).json() try: hotel_df.loc[index,"Hotel Name"]=hotel_names["results"][0]["name"] except IndexError: print("Missing field/result... skipping.") # Save Data to csv hotel_df.to_csv("output_data/hotel.csv") # Visualize to confirm airport data appears hotel_df hotel_df.to_csv("output_data/hotel.csv") #pprint the hotel names print(json.dumps(hotel_names, indent=4, sort_keys=True)) # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map markers = gmaps.marker_layer(locations, info_box_content = hotel_info) # Add the layer to the map fig.add_layer(markers) # Display Map fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code !jupyter nbextension enable --py --sys-prefix widgetsnbextension !pip install gmaps !jupyter nbextension enable --py --sys-prefix gmaps # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Display figure ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json import time # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code path = os.path.join("..", "output_data", "cities.csv") weather_df = pd.read_csv(path) weather_df.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps gmaps.configure(api_key=g_key) # Store latitude and longitude in locations locations = weather_df[["Lat", "Lng"]] # Store Humidity in humidity humidity = weather_df["Humidity"] # Plot Heatmap fig = gmaps.figure(center=(46.0, -5.0), zoom_level=2) max_intensity = np.max(humidity) # Create heat layer heatmap_layer = gmaps.heatmap_layer(locations, weights = humidity, dissipating=False, max_intensity=100, point_radius=3) # Add layer fig.add_layer(heatmap_layer) # Display figure fig max_intensity ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Narrow down the cities with wind speed less than 10 mph, cloudiness equals to 0 and max temp between 60 and 80 new_weather_df = weather_df.loc[(weather_df["Wind Speed"] <= 10) & (weather_df["Cloudiness"] == 0) & \ (weather_df["Max Temp"] >= 70) & (weather_df["Max Temp"] <= 80)].dropna() new_weather_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # Create a hotel_df hotel_df = new_weather_df.loc[:,["City","Country", "Lat", "Lng"]] # Add a "Hotel Name" column to the DataFrame. hotel_df["Hotel Name"] = "" # Display the result hotel_df base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params = {"type" : "hotel", "keyword" : "hotel", "radius" : 5000, "key" : g_key} for index, row in hotel_df.iterrows(): # get city name, lat, lnt from df lat = row["Lat"] lng = row["Lng"] city_name = row["City"] # add keyword to params dict params["location"] = f"{lat},{lng}" # assemble url and make API request print(f"Retrieving Results for Index {index}: {city_name}.") response = requests.get(base_url, params=params).json() # extract results results = response['results'] # save the hotel name to dataframe try: print(f"Closest hotel in {city_name} is {results[0]['name']}.") hotel_df.loc[index, "Hotel Name"] = results[0]['name'] # if there is no hotel available, show missing field except (KeyError, IndexError): print("Missing field/result... skipping.") print("------------") # Wait 1 sec to make another api request to avoid SSL Error time.sleep(1) # Print done when search is completed print("Done") # Display the hotel dataframe hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map # Add marker layer and info box content ontop of heat map markers = gmaps.marker_layer(locations, info_box_content = hotel_info) # Add the layer to the map fig.add_layer(markers) # Display figure fig ###Output _____no_output_____ ###Markdown VacationPy ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Otras %matplotlib inline # Import API key from llavero import gkey ###Output _____no_output_____ ###Markdown Create a heat map that displays the humidity for every city from Part I. ###Code # Import Data from las excercise old_data = "../WeatherPy/weather_df.csv" cities = pd.read_csv(old_data) city_data = cities[cities["Cloudiness"] > 0] # Eliminate rows without data city_data # Create a Humidity Heatmap Layer loc_hm = city_data[['Lat','Lon']].astype(float) loc_hm.head() # Create a Humidity Heatmap Layer hum_hm = city_data["Humidity"].astype(float) hum_df = pd.DataFrame(hum_hm) hum_df.head() # create a humidity Heatmap layer fig = gmaps.figure() heat_layer = gmaps.heatmap_layer(loc_hm, weights=hum_hm, dissipating=False, max_intensity=100, point_radius = 1) fig.add_layer(heat_layer) fig # Select criteria to map # A max temperature lower than 25 degrees Celsius but higher than 18 degrees Celsius. # Wind speed less than 10 km/h. # Zero cloudiness. mycities = city_data mycities = mycities[mycities['Hi Temp'] <= 25] mycities = mycities[mycities['Hi Temp'] > 18] mycities = mycities[mycities['Wind Speed'] <= 16] mycities = mycities[mycities['Cloudiness'] <= 25] mycities.head() ###Output _____no_output_____ ###Markdown * Using Google Places API to find the first hotel for each city located within 5000 meters of your coordinates.* Plot the hotels on top of the humidity heatmap with each pin containing the Hotel Name, City, and Country. Hotel Map* Store into variable named hotel_df.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotel_df = mycities hotel_df["Hotel"] = "" hotel_df # Look for nearby hotels in the selected regions base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" hotel_per_city = hotel_df[['City','Lat','Lon']] hotel = [] for index, row in hotel_per_city.iterrows(): lats = hotel_per_city['Lat'][index] lngs = hotel_per_city['Lon'][index] params = { "location": f"{lats},{lngs}", "rankby": "distance", "keyword": "hotel", "key": gkey,} response = requests.get(base_url, params=params).json() try: results = response['results'] hotel.append(results[0]['name']) except: hotel_df = hotel_df.drop(index) hotel # Integrate hotel list to column in dataframe hotel_df = pd.DataFrame(hotel_df) hotel_df['Hotel Name'] = hotel hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[['Lat', 'Lon']] # Plot Heatmap fig = gmaps.figure() # Create heat layer heat_layer = gmaps.heatmap_layer(locations, dissipating=False, max_intensity=10, point_radius=1) # Add layer fig.add_layer(heat_layer) # Display figure fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from config import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code # Read cities file and store into Pandas data frame file_to_load = "../output_data/cities.csv" cities_df = pd.read_csv(file_to_load) cities_df.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code #Configure gmaps gmaps.configure(api_key=g_key) #Use the lat and Lng as locations and humidity as the weight geolocations = cities_df[["Lat", "Lng"]].astype(float) humidity = cities_df["Humidity"].astype(float) #Add Heatmap layer to map fig = gmaps.figure(center=(20,0), zoom_level=1.5) heat_layer = gmaps.heatmap_layer(geolocations, weights=humidity, dissipating=False, max_intensity=500, point_radius = 4) fig.add_layer(heat_layer) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Narrow down the DataFrame to find your ideal weather condition. # A max temperature lower than 80 degrees but higher than 70. # Wind speed less than 10 mph. # Zero cloudiness. # Drop any rows that don't contain all three conditions. You want to be sure the weather is ideal. narrow_df = cities_df.loc[(cities_df["Max Temp"] > 70) & (cities_df["Max Temp"] < 80) & (cities_df["Wind Speed"] < 10) & (cities_df["Cloudiness"] == 0 )] narrow_df.dropna() narrow_df #Total 8 rows returned, reasonable count for api hits ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code #Store filtered and narrow data frame from above to a new data frame that will include hotel information #Note: received a SettingWithCopyWarning when simply using the = operator. Using loc and copy per documentation hotel_df = narrow_df[0:len(narrow_df)].copy() hotel_df["Hotel Name"] = "" hotel_df["Hotel Address"] = "" #Set parameters to search for hotels within 5000 meters params = { "radius" : 5000, "keyword" : "hotel", "key" : g_key } for index, row in hotel_df.iterrows(): # get lat, lng from df lat = row["Lat"] lng = row["Lng"] # change location each iteration while leaving original params in place params["location"] = f"{lat},{lng}" # Use the lat/lng and the rest of the params as set earlier base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" hotels = requests.get(base_url, params=params) hotels = hotels.json() try: hotel_df.loc[index, "Hotel Name"] = hotels["results"][0]["name"] hotel_df.loc[index, "Hotel Address"] = hotels["results"][0]["vicinity"] print(f"Hotel found") except (KeyError, IndexError): print("Missing field/result... skipping.") hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map markers = gmaps.marker_layer(locations, info_box_content=hotel_info) fig.add_layer(markers) # Display figure fig #Please note, screenshot of the final image included within "output_data/map.png" ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json import pprint # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code # create a reference to the csv file cities_csv = "output_data/cities.csv" # read the csv file into a dataframe cities_df = pd.read_csv(cities_csv) cities_df = cities_df.dropna() del cities_df["Unnamed: 0"] cities_df.head() cities_df.count() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps with API key gmaps.configure(api_key=g_key) # Store 'Lat' and 'Lng' as locations locations = cities_df[["Lat", "Lng"]].astype(float) humidity = cities_df["Humidity"].astype(float) # Add heatmap layer to map fig = gmaps.figure(center=(50.0, -35.0), zoom_level=2) heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=300, point_radius = 5) fig.add_layer(heat_layer) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Narrow down the DataFrame to find your ideal weather condition. # Drop any rows that don't contain all three conditions # A max temperature lower than 80 degrees but higher than 70. city_low_temp = cities_df[cities_df["Max Temp"] > 70] city_max_temp = city_low_temp[city_low_temp["Max Temp"] < 80] # Zero cloudiness city_cloudless = city_max_temp[city_max_temp["Cloudiness"] == 0] # Wind speed less than 10 mph city_wind = city_cloudless[city_cloudless["Wind Speed"] < 40] # Store into hotel variable name hotel_df = city_wind hotel_df ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code reduced_cities_df = cities_df.loc[(cities_df["Wind Speed"] < 10) & (cities_df["Cloudiness"] == 0) & \ (cities_df["Max Temp"] > 70) & (cities_df["Max Temp"] < 80)].dropna() reduced_cities_df.count() hotel_df = city_wind.loc[:,["City", "Country", "Lat", "Lng"]] hotel_df import json import pprint base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params = {"type" : "hotel", "keyword" : "hotel", "radius" : 5000, "key" : g_key} for index, row in hotel_df.iterrows(): lat = row["Lat"] lng = row["Lng"] city_name = row["City"] # add keyword to params dict params["location"] = f"{lat},{lng}" # assemble url and make API request print(f"Retrieving Results for Index {index}: {city_name}.") response = requests.get(base_url, params=params).json() pprint.pprint(response) # extract results results = response['results'] print(json.dumps(response, indent=4, sort_keys=True)) # save the hotel name to dataframe try: print(f"Closest hotel in {city_name} is {results[0]['name']}.") hotel_df.loc[index, "Hotel Name"] = results[0]['name'] # if there is no hotel available, show missing field except (KeyError, IndexError): print("No hotel") print("------------") # Add "Hotel Name" column to DF hotel_df["Hotel Name"] = "" hotel_name = [] # Using Google Places API to find the first hotel for each city located within 5000 meters of your coordinates. base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # Set parameters target_radius = 5000 target_type = "hotel" params = { "key": g_key, "radius": target_radius, "type": target_type } # Loop through the hotel_df and get the Lat/Lng for each city for index, row in hotel_df.iterrows(): # get coordinates lat = row["Lat"] lng = row["Lng"] city_name = row["City"] params["location"] = f"{lat},{lng}" print(f"Retrieving Results for Index {index}: {city_name}.") response = requests.get(base_url, params=params).json() # print response results = response['results'] pprint.pprint(response) # save the hotel name to dataFrame hotel_df.loc[index, "Hotel Name"] = results[0]['name'] # Plot the hotels on top of the humidity heatmap with each pin containing the **Hotel Name**, **City**, and **Country** hotel_df # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map marker = gmaps.marker_layer(locations, info_box_content=hotel_info) fig.add_layer(marker) # Display figure fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup %matplotlib inline from ipywidgets.embed import embed_minimal_html #To export image to html import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import json import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code #pip install gmaps City_df=pd.read_csv("../WeatherPy/city_data.csv") City_df.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code import gmaps ## Configure gmaps with API key gmaps.configure(api_key=g_key) # Store 'Lat' and 'Lng' into locations locations=City_df[['lat','lng']] locations Humidity_rate=City_df["Humidity"] # # Create a Humidity Heatmap layer fig = gmaps.figure(zoom_level=1,center=(10,10)) #fig.add_layer(gmaps.heatmap_layer(locations, weights=weights)) heat_layer = gmaps.heatmap_layer(locations, weights=Humidity_rate, dissipating=False, max_intensity=100, point_radius = 3 ) fig.add_layer(heat_layer) embed_minimal_html('Heatmap.html', views=[fig]) fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code #new df with all null values dropped New_City_df=City_df.dropna().reset_index() New_City_df.head() #reduced to 567 rows ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code #ideal vacation spots Hotel_df=New_City_df.loc[((New_City_df["MaxTemp"]>70) & (New_City_df["MaxTemp"]<75))& (New_City_df["Wind_Speed"]<5)& (New_City_df["Cloudiness"]<10)] Hotel_df.head() Hotel_df["Hotel Name"]= "" Hotel_df.head() base_url= "https://maps.googleapis.com/maps/api/place/nearbysearch/json" lat=Hotel_df["lat"] lng=Hotel_df["lng"] params={ "key":g_key, "radius":5000, "types":"lodging" } for index,row in Hotel_df.iterrows(): lat=row["lat"] lng=row["lng"] params["location"]=f"{lat},{lng}" response=requests.get(base_url,params=params).json() # print(json.dumps(response, indent=4, sort_keys=True)) try: Hotel_df.loc[index,"Hotel Name"]=response["results"][0]["name"] except (KeyError,IndexError): print("Missing data.....skipping") Hotel_df.reset_index() # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City Name}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in Hotel_df.iterrows()] locations = Hotel_df[["lat", "lng"]] # Add marker layer ontop of heat map marker_layer = gmaps.marker_layer(locations, info_box_content=hotel_info) fig1= gmaps.figure(zoom_level=1,center=(15,15)) fig1.add_layer(marker_layer) fig1.add_layer(heat_layer) embed_minimal_html('Hotel_markers.html', views=[fig1]) # Display figure fig1 ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os import json # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code # Load csv file csv_file="../WeatherPy/City_Weather_Data.csv" #Read csv file weather_df=pd.read_csv(csv_file) weather_df.head(10) ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps gmaps.configure(api_key=g_key) # Locations locations = weather_df[["Lat", "Lng"]] humidity =weather_df["Humidity"].astype(float) # Plot Heatmap fig = gmaps.figure() # Create heat layer heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=100, point_radius=2) # Add layer fig.add_layer(heat_layer) # Display figure fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Filter vacation with zero cloudiness vacation_no_cloud = weather_df[weather_df["Cloudiness"] == 0] # Filter vacation with max temp above 70 degrees F vacation_above_70_degrees = vacation_no_cloud[vacation_no_cloud["Max Temp"] > 70] # Filter vacation with max temp below 80 degrees F vacation_below_80_degrees = vacation_above_70_degrees[vacation_above_70_degrees["Max Temp"] < 80] # Filter vacation with wind speed below 10 mph vacation_slow_wind = vacation_below_80_degrees[vacation_below_80_degrees["Wind Speed"] < 10] # Filter vacation with humidity below 60 % perfect_vacation = vacation_slow_wind[vacation_slow_wind["Humidity"] < 60] # Set Index indexed_perfect_vacation = perfect_vacation.reset_index() del indexed_perfect_vacation["index"] indexed_perfect_vacation vaca_locations = indexed_perfect_vacation[["Lat", "Lng"]] vaca_humidity = indexed_perfect_vacation["Humidity"].astype(float) # Plot Heatmap vaca_fig = gmaps.figure() # Create heat layer vaca_heat_layer = gmaps.heatmap_layer(vaca_locations, weights=vaca_humidity, dissipating=False, max_intensity=50, point_radius=2.5) # Add layer vaca_fig.add_layer(vaca_heat_layer) # Display figure vaca_fig ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code hotels = [] # Loop through narrowed down dataframe to get nearest hotel for city in range(len(indexed_perfect_vacation["City"])): lat = indexed_perfect_vacation.loc[city]["Lat"] lng = indexed_perfect_vacation.loc[city]["Lng"] city_coords = f"{lat},{lng}" params = { "location": city_coords, "types": "lodging", "radius": 5000, "key": g_key } base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" hotel_request = requests.get(base_url, params=params) hotel_response = hotel_request.json() try: hotels.append(hotel_response["results"][0]["name"]) except: hotels.append("Nearest hotel not found") # Dataframe with nearest hotel indexed_perfect_vacation["Nearest Hotel"] = hotels indexed_perfect_vacation # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Nearest Hotel}</dd> <dt>City</dt><dd>{City}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in indexed_perfect_vacation.iterrows()] locations = indexed_perfect_vacation[["Lat", "Lng"]] # Add marker layer ontop of heat map markers = gmaps.marker_layer(locations, info_box_content= [f"Nearest Hotel: {hotel}" for hotel in hotels]) vaca_fig.add_layer(markers) # Display figure vaca_fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code weather_df = pd.read_csv('../output_data/cities.csv') weather_df.head(3) ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps with API key gmaps.configure(api_key=g_key) ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Create data with nice weather conditions nice_weather_df = weather_df[(weather_df["Max Temp"] > 70) & (weather_df["Max Temp"] < 80) & (weather_df["Wind Speed"] < 10) & (weather_df["Cloudiness"] == 0)] ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # initialize variables target_lat = [] target_lng = [] humidity = [] hotel_name = [] locate = [] lat1 = [] lng1 = [] h_city = [] h_country = [] # Get latitude and longitude from google maps for i in range(0, 10): lat = nice_weather_df.iloc[i,6].astype(str) lon = nice_weather_df.iloc[i,7].astype(str) humid = nice_weather_df.iloc[i,5] #city = nice_weather_df.iloc[i,1] #country = nice_weather_df.iloc[i,3] loc = f"{lat}, {lon}" params = { "location": loc, "radius": 5000, "type": "hotel", "key": g_key } base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" response = requests.get(base_url, params=params).json() results = response['results'] lat1 = results[0]["geometry"]['location']["lat"] lng1 = results[0]["geometry"]['location']["lng"] #loc1 = f"'{lat1}, {lng1}'" target_lat.append(results[0]["geometry"]['location']["lat"]) target_lng.append(results[0]["geometry"]['location']["lng"]) #locate = results[0]["geometry"]['location']["lat"] ) humidity.append(nice_weather_df.iloc[i,5]) hotel_name.append(results[0]["name"]) h_city.append(nice_weather_df.iloc[i,1]) h_country.append(nice_weather_df.iloc[i,3]) # Create dataframe for google maps hotel_df = pd.DataFrame({ "lat": target_lat, "lng": target_lng, "humid": humidity, "hotel": hotel_name, "city": h_city, "country": h_country }) # Create paramters for mp locations = hotel_df[["lat", "lng"]].astype(float) location = hotel_df[["lat", "lng"]].astype(float) humidity = hotel_df["humid"].astype(float) city_cntry = hotel_df["city"] + ", "+ hotel_df["country"] hotel = "Hotel: "+ hotel_df["hotel"] # Create map fig = gmaps.figure() # Add heatmap layer heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=100, point_radius = 2) fig.add_layer(heat_layer) # Add marker layer marker_layer = gmaps.marker_layer(locations,hover_text=hotel,info_box_content=city_cntry) fig.add_layer(marker_layer) # Display map fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing.* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code # Load the csv file from part 1 file = "../output_data/Clean_City_Data.csv" clean = pd.read_csv(file) # clean_df has a 'unnamed' column, so remove it so it looks better #clean_df.head() cleancities = clean.drop(columns=["Unnamed: 0"]) cleancities.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Configure gmaps gmaps.configure(api_key = g_key) # Initiate variables locations = cleancities[['Lat', 'Lng']].astype(float) humidity = cleancities['Humidity'].astype(float) # Add some specifications to heatmap heatmap_specs = { 'width': '1000px', 'height': '500px', 'margin': '0 auto 0 auto' } # Create map fig = gmaps.figure(layout=heatmap_specs, zoom_level=2, center=(0,0)) # Add layer details heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=100, point_radius=1) fig.add_layer(heat_layer) plt.savefig("../Images/humidty_heatmap.png") fig ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code # Narrow down the DataFrame to find your ideal weather condition. # Drop any rows that don't contain all three conditions. You want to be sure the weather is ideal. # Set specifications ideal_temp = (cleancities['Max Temp']>70) & (cleancities['Max Temp']<86) ideal_wind = cleancities['Wind Speed']<10 ideal_humid = cleancities['Humidity']<50 # Collect all ideal specs ideal_vaca = ideal_temp & ideal_wind & ideal_humid # Create new df using collected specs ideal_vaca_df = cleancities[ideal_vaca] ideal_vaca_df = ideal_vaca_df.dropna() # Limit the number of rows returned by your API requests to a reasonable number. # I think this is what that means... by making sure only 7 rows are returned.. ideal_vaca_df.head(7) ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code # Store into variable named hotel_df # I think that means just change the name of the df.. hotel_df = ideal_vaca_df # Add a "Hotel Name" column to the df # Use empty quotes for initial value, since we don't have that data yet hotel_df['Hotel Name'] = "" hotel_df.head() # Hit the Google Places API for each city's coordinates # Set parameters dictionary to search for hotels with 5000 meters params = { "radius": 5000, "types": "hotels", "keyword": "hotel", "key": g_key} # Start a for loop using iterrows for index, row in hotel_df.iterrows(): # First, get the lat and long coords from our df lat = row['Lat'] lng = row['Lng'] # Add a location parameter using lat and long that we just iterrated through params['location'] = f"{lat},{lng}" base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" response = requests.get(base_url, params=params).json() # Store the first Hotel result into the DataFrame try: hotel_df.loc[index, "Hotel Name"] = response["results"][0]["name"] except: print("Missing data") hotel_df.head() # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add some specifications to heatmap # This part reminds me of CSS, syntax is basicly identical, which makes sense since we are styling an image heatmap_specs = { 'width': '1000px', 'height': '500px', 'margin': '0 auto 0 auto' } # Add marker layer ontop of heat map fig = gmaps.figure(layout=heatmap_specs, zoom_level=2, center=(0,0)) hotel_markers = gmaps.marker_layer(locations, info_box_content=hotel_info) fig.add_layer(heat_layer) fig.add_layer(hotel_markers) # Save figure plt.savefig("../Images/hotel_heatmap.png") # Display figure fig ###Output _____no_output_____ ###Markdown VacationPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key ###Output _____no_output_____ ###Markdown Store Part I results into DataFrame* Load the csv exported in Part I to a DataFrame ###Code weather_df = pd.read_csv("../WeatherPy/weather.csv") weather_df.head() ###Output _____no_output_____ ###Markdown Humidity Heatmap* Configure gmaps.* Use the Lat and Lng as locations and Humidity as the weight.* Add Heatmap layer to map. ###Code # Access maps with unique API key gmaps.configure(api_key=g_key) # Store latitude and longitude in locations locations = weather_df[["Lat", "Lng"]] humidity = weather_df["Humidity"] # Plot Heatmap fig = gmaps.figure() # Create heat layer heat_layer = gmaps.heatmap_layer(locations, weights=humidity, dissipating=False, max_intensity=10, point_radius=1) # Add layer fig.add_layer(heat_layer) # Display figure fig heat_layer.max_intensity = 150 heat_layer.point_radius = 3 ###Output _____no_output_____ ###Markdown Create new DataFrame fitting weather criteria* Narrow down the cities to fit weather conditions.* Drop any rows will null values. ###Code ideal_weather = weather_df[weather_df["Max Temp"]<80] ideal_weather = weather_df[weather_df["Max Temp"]>70] ideal_weather = weather_df[weather_df["Wind Speed"]<10] ideal_weather = weather_df[weather_df["Cloudiness"] == 0] ideal_weather = ideal_weather.dropna() ideal_weather = ideal_weather.reset_index(drop=True) ideal_weather ###Output _____no_output_____ ###Markdown Hotel Map* Store into variable named `hotel_df`.* Add a "Hotel Name" column to the DataFrame.* Set parameters to search for hotels with 5000 meters.* Hit the Google Places API for each city's coordinates.* Store the first Hotel result into the DataFrame.* Plot markers on top of the heatmap. ###Code locations = ideal_weather[["Lat", "Lng"]] target_type = "hotel" radius = 5000 base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" params = { "location": str(locations.iloc[33,0]) + ", " +str(locations.iloc[33,1]), "types": target_type, "radius": radius, "key": g_key } # Run request response = requests.get(base_url, params) ideal_hotel = response.json() from pprint import pprint pprint(ideal_hotel) locations = ideal_weather[["Lat", "Lng"]] target_type = "hotel" radius = 5000 hotels = [] # Build URL using the Google Maps API base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" for i in range(len(ideal_weather)): params = { "location": str(locations.iloc[i,0]) + ", " +str(locations.iloc[i,1]), "types": target_type, "radius": radius, "key": g_key } # Run request response = requests.get(base_url, params) ideal_hotel = response.json() try: hotels.append(ideal_hotel["results"][1]["name"]) except: print(f"Row {i} search has zero results") # ideal_weather.drop(index=33,inplace=True) # ideal_weather.drop(index=78,inplace=True) hotel_df = ideal_weather hotel_df["Hotel Name"] = hotels hotel_df.head() # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map markers = gmaps.marker_layer(locations,hover_text=hotel_info) fig.add_layer(markers) # Display figure fig ###Output _____no_output_____
LilySu_Assignment2_LS_DS_112_Loading_Data.ipynb
###Markdown Lambda School Data Science - Loading DataData comes in many shapes and sizes - we'll start by loading tabular data, usually in csv format.Data set sources:- https://archive.ics.uci.edu/ml/datasets.html- https://github.com/awesomedata/awesome-public-datasets- https://registry.opendata.aws/ (beyond scope for now, but good to be aware of)Let's start with an example - [data about flags](https://archive.ics.uci.edu/ml/datasets/Flags). Lecture example - flag data ###Code # Step 1 - find the actual file to download # From navigating the page, clicking "Data Folder" flag_data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/flags/flag.data' # You can "shell out" in a notebook for more powerful tools # https://jakevdp.github.io/PythonDataScienceHandbook/01.05-ipython-and-shell-commands.html # Funny extension, but on inspection looks like a csv !curl https://archive.ics.uci.edu/ml/machine-learning-databases/flags/flag.data # Extensions are just a norm! You have to inspect to be sure what something is # Step 2 - load the data # How to deal with a csv? 🐼 import pandas as pd flag_data = pd.read_csv(flag_data_url) # Step 3 - verify we've got *something* flag_data.head() # Step 4 - Looks a bit odd - verify that it is what we want flag_data.count() !curl https://archive.ics.uci.edu/ml/machine-learning-databases/flags/flag.data | wc # So we have 193 observations with funny names, file has 194 rows # Looks like the file has no header row, but read_csv assumes it does help(pd.read_csv) # Alright, we can pass header=None to fix this flag_data = pd.read_csv(flag_data_url, header=None) flag_data.head() flag_data.count() flag_data.isna().sum() ###Output _____no_output_____ ###Markdown Yes, but what does it *mean*?This data is fairly nice - it was "donated" and is already "clean" (no missing values). But there are no variable names - so we have to look at the codebook (also from the site).```1. name: Name of the country concerned2. landmass: 1=N.America, 2=S.America, 3=Europe, 4=Africa, 4=Asia, 6=Oceania3. zone: Geographic quadrant, based on Greenwich and the Equator; 1=NE, 2=SE, 3=SW, 4=NW4. area: in thousands of square km5. population: in round millions6. language: 1=English, 2=Spanish, 3=French, 4=German, 5=Slavic, 6=Other Indo-European, 7=Chinese, 8=Arabic, 9=Japanese/Turkish/Finnish/Magyar, 10=Others7. religion: 0=Catholic, 1=Other Christian, 2=Muslim, 3=Buddhist, 4=Hindu, 5=Ethnic, 6=Marxist, 7=Others8. bars: Number of vertical bars in the flag9. stripes: Number of horizontal stripes in the flag10. colours: Number of different colours in the flag11. red: 0 if red absent, 1 if red present in the flag12. green: same for green13. blue: same for blue14. gold: same for gold (also yellow)15. white: same for white16. black: same for black17. orange: same for orange (also brown)18. mainhue: predominant colour in the flag (tie-breaks decided by taking the topmost hue, if that fails then the most central hue, and if that fails the leftmost hue)19. circles: Number of circles in the flag20. crosses: Number of (upright) crosses21. saltires: Number of diagonal crosses22. quarters: Number of quartered sections23. sunstars: Number of sun or star symbols24. crescent: 1 if a crescent moon symbol present, else 025. triangle: 1 if any triangles present, 0 otherwise26. icon: 1 if an inanimate image present (e.g., a boat), otherwise 027. animate: 1 if an animate image (e.g., an eagle, a tree, a human hand) present, 0 otherwise28. text: 1 if any letters or writing on the flag (e.g., a motto or slogan), 0 otherwise29. topleft: colour in the top-left corner (moving right to decide tie-breaks)30. botright: Colour in the bottom-left corner (moving left to decide tie-breaks)```Exercise - read the help for `read_csv` and figure out how to load the data with the above variable names. One pitfall to note - with `header=None` pandas generated variable names starting from 0, but the above list starts from 1... Your assignment - pick a dataset and do something like the aboveThis is purposely open-ended - you can pick any data set you wish. It is highly advised you pick a dataset from UCI or a similar "clean" source.If you get that done and want to try more challenging or exotic things, go for it! Use documentation as illustrated above, and follow the 20-minute rule (that is - ask for help if you're stuck).If you have loaded a few traditional datasets, see the following section for suggested stretch goals. ###Code # TODO your work here! # And note you should write comments, descriptions, and add new # code and text blocks as needed import pandas as pd import io from google.colab import files uploaded = files.upload() df_airlines = pd.read_csv(io.BytesIO(uploaded['airlines.csv'])) df_airlines.head() from google.colab import files uploaded = files.upload() df_airport= pd.read_csv(io.BytesIO(uploaded['airports.csv'])) df_airport.head() df_airport.copy(deep=True) df_airlines.head() df_airlines.copy(deep=True) df_airlines[:3] ###Output _____no_output_____
howtolens/chapter_1_introduction/tutorial_5_ray_tracing.ipynb
###Markdown Tutorial 5: Ray Tracing=======================In the last tutorial, our use of `Plane`'s was a bit clunky. We manually had to input `Grid`'s to trace them, and keeptrack of which `Grid`'s were the image-plane`s and which were the source planes. It was easy to make mistakes!Fotunately, in **PyAutoLens**, you won't actually spend much hands-on time with the `Plane` objects. Instead, you'llprimarily use the `ray-tracing` module, which we'll cover in this example. Lets look at how easy it is to setup thesame lens-plane + source-plane strong lens configuration as the previous tutorial, but with a lot less lines of code! ###Code %matplotlib inline from pyprojroot import here workspace_path = str(here()) %cd $workspace_path print(f"Working Directory has been set to `{workspace_path}`") import autolens as al import autolens.plot as aplt ###Output _____no_output_____ ###Markdown Let use the same `Grid` we've all grown to know and love by now! ###Code image_plane_grid = al.Grid.uniform(shape_2d=(100, 100), pixel_scales=0.05, sub_size=2) ###Output _____no_output_____ ###Markdown For our lens galaxy, we'll use the same SIS `MassProfile` as before. ###Code sis_mass_profile = al.mp.SphericalIsothermal(centre=(0.0, 0.0), einstein_radius=1.6) lens_galaxy = al.Galaxy(redshift=0.5, mass=sis_mass_profile) print(lens_galaxy) ###Output _____no_output_____ ###Markdown And for our source galaxy, the same `SphericalSersic` `LightProfile` ###Code sersic_light_profile = al.lp.SphericalSersic( centre=(0.0, 0.0), intensity=1.0, effective_radius=1.0, sersic_index=1.0 ) source_galaxy = al.Galaxy(redshift=1.0, light=sersic_light_profile) print(source_galaxy) ###Output _____no_output_____ ###Markdown Now, lets use the lens and source galaxies to ray-trace our `Grid`, using a `Tracer` from the ray-tracing module. When we pass our galaxies into the `Tracer` below, the following happens:1) The galaxies are ordered in ascending redshift.2) Planes are created at every one of these redshifts, with the galaxies at those redshifts associated with those planes. ###Code tracer = al.Tracer.from_galaxies(galaxies=[lens_galaxy, source_galaxy]) ###Output _____no_output_____ ###Markdown This `Tracer` is composed of a list of planes, in this case two `Plane`'s (the image and source plane). ###Code print(tracer.planes) ###Output _____no_output_____ ###Markdown We can access these using the `image_plane` and `source_plane` attributes. ###Code print("Image Plane:") print(tracer.planes[0]) print(tracer.image_plane) print() print("Source Plane:") print(tracer.planes[1]) print(tracer.source_plane) ###Output _____no_output_____ ###Markdown The most convenient part of the `Tracer` is we can use it to create fully `ray-traced` images, without manually setting up the `Plane`'s to do this. The function below does the following1) Using the lens-total mass distribution, the deflection angle of every image-plane `Grid` coordinate is computed.2) These deflection angles are used to trace every image-plane coordinate to a source-plane coordinate.3) The light of each traced source-plane coordinate is evaluated using the source-plane `Galaxy`'s `LightProfile`. ###Code traced_image = tracer.image_from_grid(grid=image_plane_grid) print("traced image pixel 1") print(traced_image.in_2d[0, 0]) print("traced image pixel 2") print(traced_image.in_2d[0, 1]) print("traced image pixel 3") print(traced_image.in_2d[0, 2]) ###Output _____no_output_____ ###Markdown This image appears as the Einstein ring we saw in the previous tutorial. ###Code aplt.Tracer.image(tracer=tracer, grid=image_plane_grid) ###Output _____no_output_____ ###Markdown We can also use the `Tracer` to compute the traced `Grid` of every plane, instead of getting the traced image itself: ###Code traced_grids = tracer.traced_grids_of_planes_from_grid(grid=image_plane_grid) ###Output _____no_output_____ ###Markdown And the source-plane`s `Grid` has been deflected. ###Code print("grid source-plane coordinate 1") print(traced_grids[1].in_2d[0, 0]) print("grid source-plane coordinate 2") print(traced_grids[1].in_2d[0, 1]) print("grid source-plane coordinate 3") print(traced_grids[1].in_2d[0, 2]) ###Output _____no_output_____ ###Markdown We can use the plane_plotter to plot these grids, like we did before. ###Code plotter = aplt.Plotter(labels=aplt.Labels(title="Image-plane Grid")) aplt.Plane.plane_grid(plane=tracer.image_plane, grid=traced_grids[0], plotter=plotter) plotter = aplt.Plotter(labels=aplt.Labels(title="Source-plane Grid")) aplt.Plane.plane_grid(plane=tracer.source_plane, grid=traced_grids[1], plotter=plotter) aplt.Plane.plane_grid( plane=tracer.source_plane, grid=traced_grids[1], axis_limits=[-0.1, 0.1, -0.1, 0.1], plotter=plotter, ) ###Output _____no_output_____ ###Markdown **PyAutoLens** has tools for plotting a `Tracer`. A ray-tracing subplot plots the following:1) The image, computed by tracing the source-`Galaxy`'s light `forwards` through the `Tracer`.2) The source-plane image, showing the source-`Galaxy`'s true appearance (i.e. if it were not lensed).3) The image-plane convergence, computed using the lens `Galaxy`'s total mass distribution.4) The image-plane gravitational potential, computed using the lens `Galaxy`'s total mass distribution.5) The image-plane deflection angles, computed using the lens `Galaxy`'s total mass distribution. ###Code aplt.Tracer.subplot_tracer(tracer=tracer, grid=image_plane_grid) ###Output _____no_output_____ ###Markdown Just like for a plane, these quantities attributes can be computed by passing a `Grid` (converted to 2D ndarraysthe same dimensions as our input grid!). ###Code convergence = tracer.convergence_from_grid(grid=image_plane_grid) print("Tracer - Convergence - `Grid` coordinate 1:") print(convergence.in_2d[0, 0]) print("Tracer - Convergence - `Grid` coordinate 2:") print(convergence.in_2d[0, 1]) print("Tracer - Convergence - `Grid` coordinate 3:") print(convergence.in_2d[0, 2]) print("Tracer - Convergence - `Grid` coordinate 101:") print(convergence.in_2d[1, 0]) ###Output _____no_output_____ ###Markdown Of course, these convergences are identical to the image-plane convergences, as it`s only the lens galaxy that contributes to the overall mass of the ray-tracing system. ###Code image_plane_convergence = tracer.image_plane.convergence_from_grid( grid=image_plane_grid ) print("Image-Plane - Convergence - `Grid` coordinate 1:") print(image_plane_convergence.in_2d[0, 0]) print("Image-Plane - Convergence - `Grid` coordinate 2:") print(image_plane_convergence.in_2d[0, 1]) print("Image-Plane - Convergence - `Grid` coordinate 3:") print(image_plane_convergence.in_2d[0, 2]) print("Image-Plane - Convergence - `Grid` coordinate 101:") print(image_plane_convergence.in_2d[1, 0]) ###Output _____no_output_____ ###Markdown I've left the rest below commented to avoid too many print statements, but if you're feeling adventurous go ahead and uncomment the lines below! ###Code # print(`Potential:`) # print(tracer.potential_from_grid(grid=image_plane_grid)) # print(tracer.image_plane.potential_from_grid(grid=image_plane_grid)) # print(`Deflections:`) # print(tracer.deflections_from_grid(grid=image_plane_grid)) # print(tracer.deflections_from_grid(grid=image_plane_grid)) # print(tracer.image_plane.deflections_from_grid(grid=image_plane_grid)) # print(tracer.image_plane.deflections_from_grid(grid=image_plane_grid)) ###Output _____no_output_____ ###Markdown You can also plot the above attributes on individual figures, using appropriate ray-tracing `Plotter` (I've left most commented out again for convenience) ###Code aplt.Tracer.convergence(tracer=tracer, grid=image_plane_grid) # aplt.Tracer.potential(tracer=tracer, grid=image_plane_grid) # aplt.Tracer.deflections_y(tracer=tracer, grid=image_plane_grid) # aplt.Tracer.deflections_x(tracer=tracer, grid=image_plane_grid) # aplt.Tracer.image(tracer=tracer, grid=image_plane_grid) ###Output _____no_output_____ ###Markdown Tutorial 5: Ray Tracing=======================In the last tutorial, our use of `Plane`'s was a bit clunky. We manually had to input `Grid`'s to trace them, and keeptrack of which `Grid`'s were the image-plane`s and which were the source planes. It was easy to make mistakes!Fortunately, in **PyAutoLens**, you won't actually spend much hands-on time with the `Plane` objects. Instead, you'llprimarily use the `ray-tracing` module, which we'll cover in this example. Lets look at how easy it is to setup thesame lens-plane + source-plane strong lens configuration as the previous tutorial, but with a lot less lines of code! ###Code %matplotlib inline from pyprojroot import here workspace_path = str(here()) %cd $workspace_path print(f"Working Directory has been set to `{workspace_path}`") import autolens as al import autolens.plot as aplt ###Output _____no_output_____ ###Markdown Let use the same `Grid` we've all grown to know and love by now! ###Code image_plane_grid = al.Grid.uniform(shape_2d=(100, 100), pixel_scales=0.05, sub_size=2) ###Output _____no_output_____ ###Markdown For our lens galaxy, we'll use the same SIS `MassProfile` as before. ###Code sis_mass_profile = al.mp.SphericalIsothermal(centre=(0.0, 0.0), einstein_radius=1.6) lens_galaxy = al.Galaxy(redshift=0.5, mass=sis_mass_profile) print(lens_galaxy) ###Output _____no_output_____ ###Markdown And for our source galaxy, the same `SphericalSersic` `LightProfile` ###Code sersic_light_profile = al.lp.SphericalSersic( centre=(0.0, 0.0), intensity=1.0, effective_radius=1.0, sersic_index=1.0 ) source_galaxy = al.Galaxy(redshift=1.0, light=sersic_light_profile) print(source_galaxy) ###Output _____no_output_____ ###Markdown Now, lets use the lens and source galaxies to ray-trace our `Grid`, using a `Tracer` from the ray-tracing module. When we pass our galaxies into the `Tracer` below, the following happens:1) The galaxies are ordered in ascending redshift.2) Planes are created at every one of these redshifts, with the galaxies at those redshifts associated with those planes. ###Code tracer = al.Tracer.from_galaxies(galaxies=[lens_galaxy, source_galaxy]) ###Output _____no_output_____ ###Markdown This `Tracer` is composed of a list of planes, in this case two `Plane`'s (the image and source plane). ###Code print(tracer.planes) ###Output _____no_output_____ ###Markdown We can access these using the `image_plane` and `source_plane` attributes. ###Code print("Image Plane:") print(tracer.planes[0]) print(tracer.image_plane) print() print("Source Plane:") print(tracer.planes[1]) print(tracer.source_plane) ###Output _____no_output_____ ###Markdown The most convenient part of the `Tracer` is we can use it to create fully `ray-traced` images, without manually setting up the `Plane`'s to do this. The function below does the following1) Using the lens-total mass distribution, the deflection angle of every image-plane `Grid` coordinate is computed.2) These deflection angles are used to trace every image-plane coordinate to a source-plane coordinate.3) The light of each traced source-plane coordinate is evaluated using the source-plane `Galaxy`'s `LightProfile`. ###Code traced_image = tracer.image_from_grid(grid=image_plane_grid) print("traced image pixel 1") print(traced_image.in_2d[0, 0]) print("traced image pixel 2") print(traced_image.in_2d[0, 1]) print("traced image pixel 3") print(traced_image.in_2d[0, 2]) ###Output _____no_output_____ ###Markdown This image appears as the Einstein ring we saw in the previous tutorial. ###Code tracer_plotter = aplt.TracerPlotter(tracer=tracer, grid=image_plane_grid) tracer_plotter.figures(image=True) ###Output _____no_output_____ ###Markdown We can also use the `Tracer` to compute the traced `Grid` of every plane, instead of getting the traced image itself: ###Code traced_grids = tracer.traced_grids_of_planes_from_grid(grid=image_plane_grid) ###Output _____no_output_____ ###Markdown And the source-plane`s `Grid` has been deflected. ###Code print("grid source-plane coordinate 1") print(traced_grids[1].in_2d[0, 0]) print("grid source-plane coordinate 2") print(traced_grids[1].in_2d[0, 1]) print("grid source-plane coordinate 3") print(traced_grids[1].in_2d[0, 2]) ###Output _____no_output_____ ###Markdown We can use the TracerPlotter to plot these planes and grids. ###Code include_2d = aplt.Include2D(grid=True) tracer_plotter = aplt.TracerPlotter( tracer=tracer, grid=image_plane_grid, include_2d=include_2d ) tracer_plotter.figures_of_planes(plane_image=True, plane_grid=True, plane_index=0) tracer_plotter.figures_of_planes(plane_image=True, plane_grid=True, plane_index=1) ###Output _____no_output_____ ###Markdown **PyAutoLens** has tools for plotting a `Tracer`. A ray-tracing subplot plots the following:1) The image, computed by tracing the source-`Galaxy`'s light `forwards` through the `Tracer`.2) The source-plane image, showing the source-`Galaxy`'s true appearance (i.e. if it were not lensed).3) The image-plane convergence, computed using the lens `Galaxy`'s total mass distribution.4) The image-plane gravitational potential, computed using the lens `Galaxy`'s total mass distribution.5) The image-plane deflection angles, computed using the lens `Galaxy`'s total mass distribution. ###Code tracer_plotter.subplot_tracer() ###Output _____no_output_____ ###Markdown Just like for a plane, these quantities attributes can be computed by passing a `Grid` (converted to 2D ndarraysthe same dimensions as our input grid!). ###Code convergence = tracer.convergence_from_grid(grid=image_plane_grid) print("Tracer - Convergence - `Grid` coordinate 1:") print(convergence.in_2d[0, 0]) print("Tracer - Convergence - `Grid` coordinate 2:") print(convergence.in_2d[0, 1]) print("Tracer - Convergence - `Grid` coordinate 3:") print(convergence.in_2d[0, 2]) print("Tracer - Convergence - `Grid` coordinate 101:") print(convergence.in_2d[1, 0]) ###Output _____no_output_____ ###Markdown Of course, these convergences are identical to the image-plane convergences, as it`s only the lens galaxy that contributes to the overall mass of the ray-tracing system. ###Code image_plane_convergence = tracer.image_plane.convergence_from_grid( grid=image_plane_grid ) print("Image-Plane - Convergence - `Grid` coordinate 1:") print(image_plane_convergence.in_2d[0, 0]) print("Image-Plane - Convergence - `Grid` coordinate 2:") print(image_plane_convergence.in_2d[0, 1]) print("Image-Plane - Convergence - `Grid` coordinate 3:") print(image_plane_convergence.in_2d[0, 2]) print("Image-Plane - Convergence - `Grid` coordinate 101:") print(image_plane_convergence.in_2d[1, 0]) ###Output _____no_output_____ ###Markdown I've left the rest below commented to avoid too many print statements, but if you're feeling adventurous go ahead and uncomment the lines below! ###Code # print(`Potential:`) # print(tracer.potential_from_grid(grid=image_plane_grid)) # print(tracer.image_plane.potential_from_grid(grid=image_plane_grid)) # print(`Deflections:`) # print(tracer.deflections_from_grid(grid=image_plane_grid)) # print(tracer.deflections_from_grid(grid=image_plane_grid)) # print(tracer.image_plane.deflections_from_grid(grid=image_plane_grid)) # print(tracer.image_plane.deflections_from_grid(grid=image_plane_grid)) ###Output _____no_output_____ ###Markdown You can also plot the above attributes on individual figures, using appropriate ray-tracing `Plotter` (I've left most commented out again for convenience) ###Code tracer_plotter = aplt.TracerPlotter(tracer=tracer, grid=image_plane_grid) tracer_plotter.figures( image=True, convergence=True, potential=False, deflections_y=False, deflections_x=False, ) ###Output _____no_output_____ ###Markdown In the previous tutorial, we plotted the critical curves on the convergence map of a `MassProfile`. We now introducethe 'caustic' which is a critical curve mapped to the source-plane. This is computed by calculating the the deflection angles of the `Tracer` at the critical curves and ray-tracing them to the source plane.As discussed in the previous tutorial, critical curves mark regions of infinite magnification. Thus, if a sourceappears near a caustic in the source plane it will appear significantly brighter than its true luminosity. We can plot both the critical curve and caustic using an `Include2D` object. Note how the critical curve appearsonly for the image-plane grid, whereas the caustic only appears in the source plane.NOTE: Again, numerical issues make the caustic appear 'jagged' when it should be smooth. ###Code include_2d = aplt.Include2D(critical_curves=True, caustics=True) tracer_plotter = aplt.TracerPlotter(tracer=tracer, grid=image_plane_grid) tracer_plotter.figures_of_planes(plane_grid=True, plane_index=0) tracer_plotter.figures_of_planes(plane_grid=True, plane_index=1) ###Output _____no_output_____ ###Markdown We can also plot the caustic on the source-plane image. ###Code tracer_plotter.figures_of_planes(plane_image=True, plane_index=1) ###Output _____no_output_____ ###Markdown Caustics also mark the regions in the source-plane where the multiplicity of the strong lens changes. That if,if a source crosses a caustic, it goes from 2 images to 1 image. Try and show this yourself by changing the (y,x) centre of the source-plane galaxy's light profile! ###Code sersic_light_profile = al.lp.SphericalSersic( centre=(0.0, 0.0), intensity=1.0, effective_radius=1.0, sersic_index=1.0 ) source_galaxy = al.Galaxy(redshift=1.0, light=sersic_light_profile) tracer = al.Tracer.from_galaxies(galaxies=[lens_galaxy, source_galaxy]) tracer_plotter = aplt.TracerPlotter(tracer=tracer, grid=image_plane_grid) tracer_plotter.figures_of_planes(plane_image=True, plane_index=1) ###Output _____no_output_____
notebooks/version_02_1/1_intro_to_automl.ipynb
###Markdown AutoML solution vs single model FEDOT version = 0.2.1Below is an example of running an Auto ML solution for a classification problem. Description of the task and dataset ###Code import pandas as pd import warnings warnings.filterwarnings("ignore") # Input data from csv files train_data_path = '../data/scoring_train.csv' test_data_path = '../data/scoring_test.csv' df = pd.read_csv(train_data_path) df.head(5) ###Output _____no_output_____ ###Markdown Baseline modelLet's use the api features to solve the classification problem. First, we create a chain from a single model "xgboost". To do this, we will substitute the appropriate name in the predefined_model field. ###Code from fedot.api.main import Fedot #task selection, initialisation of the framework baseline_model = Fedot(problem='classification') #fit model without optimisation - single XGBoost node is used baseline_model.fit(features=train_data_path, target='target', predefined_model='xgboost') #evaluate the prediction with test data baseline_model.predict_proba(features=test_data_path) #evaluate quality metric for the test sample baseline_metrics = baseline_model.get_metrics() print(baseline_metrics) ###Output {'roc_auc': 0.827, 'f1': 0.32508833922261476} ###Markdown FEDOT AutoML for classificationWe can identify the model using an evolutionary algorithm built into the core of the FEDOT framework. ###Code # new instance to be used as AutoML tool auto_model = Fedot(problem='classification', seed = 42, verbose_level=4) #run of the AutoML-based model generation pipeline = auto_model.fit(features=train_data_path, target='target') prediction = auto_model.predict_proba(features=test_data_path) auto_metrics = auto_model.get_metrics() print(auto_metrics) #comparison with the manual pipeline print('Baseline', round(baseline_metrics['roc_auc'], 3)) print('AutoML solution', round(auto_metrics['roc_auc'], 3)) ###Output Baseline 0.827 AutoML solution 0.849 ###Markdown AutoML solution vs single model FEDOT version = 0.2.1 ###Code pip install fedot==0.2.1 ###Output _____no_output_____ ###Markdown Below is an example of running an Auto ML solution for a classification problem. Description of the task and dataset ###Code import pandas as pd import warnings warnings.filterwarnings("ignore") # Input data from csv files train_data_path = '../data/scoring_train.csv' test_data_path = '../data/scoring_test.csv' df = pd.read_csv(train_data_path) df.head(5) ###Output _____no_output_____ ###Markdown Baseline modelLet's use the api features to solve the classification problem. First, we create a chain from a single model "xgboost". To do this, we will substitute the appropriate name in the predefined_model field. ###Code from fedot.api.main import Fedot #task selection, initialisation of the framework baseline_model = Fedot(problem='classification') #fit model without optimisation - single XGBoost node is used baseline_model.fit(features=train_data_path, target='target', predefined_model='xgboost') #evaluate the prediction with test data baseline_model.predict_proba(features=test_data_path) #evaluate quality metric for the test sample baseline_metrics = baseline_model.get_metrics() print(baseline_metrics) ###Output {'roc_auc': 0.827, 'f1': 0.32508833922261476} ###Markdown FEDOT AutoML for classificationWe can identify the model using an evolutionary algorithm built into the core of the FEDOT framework. ###Code # new instance to be used as AutoML tool auto_model = Fedot(problem='classification', seed = 42, verbose_level=4) #run of the AutoML-based model generation pipeline = auto_model.fit(features=train_data_path, target='target') prediction = auto_model.predict_proba(features=test_data_path) auto_metrics = auto_model.get_metrics() print(auto_metrics) #comparison with the manual pipeline print('Baseline', round(baseline_metrics['roc_auc'], 3)) print('AutoML solution', round(auto_metrics['roc_auc'], 3)) ###Output Baseline 0.827 AutoML solution 0.849
intro-to-python/intro-to-python-workbook.ipynb
###Markdown Intro to Python Variables in PythonVariables in programming languages hold values.* In Python a single `=` (equals sign) assigns the value on the right to the name of the variable on the left.* Variables are created when a value is assigned to it.* In the code block below, Python assigns the numerical value `42` to a variable called `age` Creating variables ###Code helpful_articles = 42 library = "Cushing/Whitney Medical Library" ###Output _____no_output_____ ###Markdown Rules for creating variables* Variable names can only contain letters, digits, and underscores `_`* Variable names cannot start with a digit* Variable names are case sensitive (`library`, `Library`, and `LIBRARY`) are three different variables Use `print` to display values* `print` is a Python function used to read-out, display, or "print out" the value stored within a variable name.* Function in python look like this, `print()`, where the function name is followed by a set of parentheses. * You will provide values to the function within the parentheses. These values can also be called "arguments".* In the case of print, the values that are fed into the parentheses are the items you want to display, or print.* You can print the values of variables, strings, or digits.* You can also print multiple values in one print statement ###Code print(helpful_articles) print(100 + 2 / 3 * 3) print("String is another word for text") print(String is another word for text) print("The", library, "is my favorite library") ###Output The Cushing/Whitney Medical Library is my favorite library ###Markdown Using variables within calculations ###Code helpful_articles = helpful_articles + 3 print(helpful_articles) ###Output 48 ###Markdown Use an index to get a single character from a string* The characters within a string are ordered. For example, the string `AB` is not the same as the string `BA`. Updating Variables* Python operates from top to bottom.* The value held in second will not be updated to reflect that `first = 2`, because we are not reassigning the variable ###Code first = 1 second = 5 * first first = 2 print('first is:', first, 'and second is:', second) ###Output first is: 2 and second is: 5 ###Markdown Break here for 10 minutes to complete exercises. Data Types in Python* Every value in a program has a specific type.* Integer(`int`): represents positive or negative whole numbers like 3 or -15.* Floating point (`float`): (i.e. decimal point): represents real numbers like 3.14159 or -2.5.* Character string (`str`): text. * Written in either single quotations marks or double quotation marks (`""` or `''`) * The quotation marks are not printed when the string is displayed Use the `type` function to find the type of a value* `type` workes on values and the values of variables ###Code print(type(52)) print(type("some words")) message = "penny for your thoughts" print(message) print(type(message)) print(type("100")) ###Output <class 'str'> ###Markdown Data type conversions ###Code excel_cell = "299182" print(type(excel_cell)) excel_cell = int(excel_cell) print(type(excel_cell)) number = 100 print(str(number) + "ish") ###Output 100ish ###Markdown Strings have length and an index* The built-in function `len` counts the number of characters in a string* The characters (individual letters, numbers, spaces, etc.) within a string are ordered. For example the strings "AB" and "BA" are not the same.* Each position in the string is given a number - the first character is `1`, the second character is `2`, and so on. This number representing the position of a character is called an index. ###Code print(library) # let's refer to a string variable we created previously print(len(library)) ###Output Cushing/Whitney Medical Library 31 ###Markdown Of the 31 characters that make up our string, `C` should be the first one. We can check this. In C based programming languages like Python, index counting starts from 0. ###Code print(library[0]) ###Output C ###Markdown Use slicing to parse out a substring* A part of a string is called a substring. A substring can be as short as a single character.* An item in a list is called an element. Whenever we treat a string as a list, the string's elements are its individual characters. * We take a slice of a string or list using `[start:stop]`, where `start` is replaced with the index of the first element we want and `stop` is replaced by the index of the element just after the last element we want.* Slicing does not change the contents of the original string. The slice is a copy of part of the original string. ###Code print(library) print(library[16:23]) print(library[24:31]) ###Output Cushing/Whitney Medical Library Medical Library ###Markdown Break here for 10 minutes to complete exercises. Functions and Finding Help in Python* Different functions may take 0 or 1, or many arguments.* Functions are likely to be specific about the data type they need.* Functions may have default values for some arguments.* You can learn about functions using a `help` function.* Python has built-in functions, as well as many other functions that are associated with external packages. * You can create your own functions in Python. Functions might be able to take multiple items ###Code print(max(2039, 39228, 3948, 10029)) print(min(2039, 39228, 3948, 10029)) ###Output 39228 2039 ###Markdown Functions might have default settings ###Code print(round(3.712)) print(round(3.712, 1)) ###Output 4 3.7 ###Markdown Finding more information about a function ###Code help(round) ###Output Help on built-in function round in module builtins: round(number, ndigits=None) Round a number to a given precision in decimal digits. The return value is an integer if ndigits is omitted or None. Otherwise the return value has the same type as the number. ndigits may be negative. ###Markdown Access more functions by importing external libraries into a projectWe will discuss libraries further in a later section, but this is how you add or import a library (i.e., package) into a python project. * Libraries are installed once per your machine, but they need to be imported into each project you would like to use them in. * In order to use functions from a specific package, you need to indicate which package the function is coming from using the syntax: library_name.function_name() * E.g., statistics.mode() ###Code import statistics n = [1, 1, 2, 3, 3, 3, 3] s = statistics.mode(n) print(s) ###Output 3 ###Markdown Lists* Doing calculations with a hundred variables called `patient_001`, `patient_002`, `patient_003`, etc., would be very slow and tedious. However, if all of these patients were in a list, you can perform calculations across each item in the list in an automated way.* Lists store multiple values.* Items in a list are stored between hard brackets `[]`.* Values in lists are separated by commas `,`. Creating and returning list contents ###Code weights = [157, 180, 166, 150, 183, 160] print("Weights in list:", weights) print("Length of weights list:", len(weights)) ###Output Weights in list: [157, 180, 166, 150, 183, 160] Length of weights list: 6 ###Markdown Use an index to return a specific element from a list ###Code print('First item in list:', weights[0]) ###Output First item in list: 157 ###Markdown Use an index to replace an item in a list ###Code weights[0] = 156 print('Weights list is now:', weights) ###Output Weights list is now: [156, 180, 166, 150, 183, 160] ###Markdown Adding (i.e. appending) items to a list* `append` is a "method" of list. Methods are like functions, but tied to a particular object.* Use `object_name.method_name` to call methods.* You can find the methods that object have associated with them by running the `help` function on the object name (eg, `help(list)`) ###Code names = ["Elo", "Molly", "Charlie", "Riley"] print("Original list:", names) names.append("Ben") names.append("Charolette") print("List after append", names) ###Output Original list: ['Elo', 'Molly', 'Charlie', 'Riley'] List after append ['Elo', 'Molly', 'Charlie', 'Riley', 'Ben', 'Charolette'] ###Markdown Combining lists together* You can combine lists together with another list method called `extend` ###Code names_1 = ["Elo", "Molly", "Charlie", "Riley"] names_2 = ["Ben", "Charolette"] names_1.extend(names_2) print(names_1) ###Output ['Elo', 'Molly', 'Charlie', 'Riley', 'Ben', 'Charolette'] ###Markdown Create an empty list and append items to it ###Code empty_list = [] print(empty_list) empty_list.append("this is a single string") print(empty_list) empty_list.append(["this", "is", "a", "few", "strings"]) print(empty_list) ###Output [] ['this is a single string'] ['this is a single string', ['this', 'is', 'a', 'few', 'strings']] ###Markdown Break here for 10 minutes to complete the exercises in Part 3: Functions and Lists. For Loops* For loops allow you to drill down into a data structure. * Operate on sentence in a paragraph, each word in a sentence, or each character in a word. * Operate on each table in a database, each column in a spreadsheet, or each cell in a column. * Operate on each item in a list.* A for loop executes commands once for each element in a set. ###Code for number in [2, 3, 5]: print(number) #indentations in python are important! ###Output 2 3 5 ###Markdown You can also return items in a list that has been stored as a variable ###Code for name in names_1: print('First name:', name) ###Output First name: Elo First name: Molly First name: Charlie First name: Riley First name: Ben First name: Charolette ###Markdown The body of a loop can contain many statements ###Code prime_numbers = [2, 3, 5] for p in prime_numbers: first_equation = p + 100 second_equation = p * -1 print(p, first_equation, second_equation) ###Output 2 102 -2 3 103 -3 5 105 -5 ###Markdown Break here for 10 minutes to complete the exercises in Part 4: For Loops. Python Libraries * A "library" in python is a collection of files (called modules) that contain functions for use by other programs.* A Python program must import a library in order to use it. You will use `import` to do this.* Refer to items from specific libraries as library_name.item_name. * Python uses `.` to mean "part of"* Use the `help` function to learn about the contents of a library module. Pandas (a Python Library) and Data Frames* Pandas is a widely-used Python library for statistics, particularly on tabular data.* Pandas borrows many features from R’s dataframes. * A 2-dimensional table whose columns have names and potentially have different data types.* Load it with import pandas as pd. The alias pd is commonly used for Pandas. Shortning pandas to pd this saves typing time. Import the Pandas library to this project ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Read a Comma Separate Values (CSV) data file with pd.read_csv.* This imports the csv into your project and saves it as a variable called data.* As you work with `data`, you are not altering the original CSV file. ###Code data = pd.read_csv("data/newly_hiv_infected_number_all_ages.csv", index_col = "country") print(data) data.info() ###Output <class 'pandas.core.frame.DataFrame'> Index: 143 entries, Afghanistan to Zimbabwe Data columns (total 22 columns): 1990 68 non-null float64 1991 68 non-null float64 1992 68 non-null float64 1993 68 non-null float64 1994 68 non-null float64 1995 68 non-null float64 1996 68 non-null float64 1997 68 non-null float64 1998 68 non-null float64 1999 68 non-null float64 2000 68 non-null float64 2001 68 non-null float64 2002 68 non-null float64 2003 68 non-null float64 2004 68 non-null float64 2005 68 non-null float64 2006 68 non-null float64 2007 68 non-null float64 2008 68 non-null float64 2009 68 non-null float64 2010 49 non-null float64 2011 132 non-null float64 dtypes: float64(22) memory usage: 25.7+ KB ###Markdown Use `DataFrame.loc[... , ...]` to select values by their index labels.* The position before the comma indicates the row, and the position after the comma indicates the column returned. * Fill in both spaces before and after the comma to return a single cell (sample of 1 country during one year). * Indicate only the first position (with a `:` in the second position) to return an entire row (country) from the data frame.* Indicate only the second position (with a `:` in the first position) to return an entire column (year) from the data frame. ###Code print(data.loc["France","1995"]) print(data.loc["France",:]) print(data.loc[:,"1995"]) ###Output country Afghanistan NaN Angola 13000.0 Argentina 6700.0 Armenia 120.0 Australia NaN Austria NaN Azerbaijan NaN Bahamas 750.0 Bangladesh 160.0 Barbados 160.0 Belarus 60.0 Belgium NaN Belize 350.0 Benin 7500.0 Bhutan NaN Bolivia NaN Botswana 36000.0 Brazil NaN Bulgaria NaN Burkina Faso 14000.0 Burundi 27000.0 Cambodia 11000.0 Cameroon 51000.0 Canada NaN Central African Republic 25000.0 Chile NaN Colombia NaN Congo, Rep. 6000.0 Costa Rica NaN Cote d'Ivoire 89000.0 ... Slovak Republic NaN Slovenia NaN Somalia NaN South Africa 430000.0 South Korea NaN South Sudan NaN Spain NaN Sri Lanka 160.0 Sudan NaN Suriname 1100.0 Swaziland 13000.0 Sweden NaN Switzerland NaN Tajikistan 350.0 Tanzania 170000.0 Thailand 49000.0 Togo 13000.0 Trinidad and Tobago 1300.0 Tunisia NaN Turkey NaN Uganda 92000.0 Ukraine NaN United Kingdom NaN United States 51000.0 Uruguay NaN Venezuela NaN Vietnam NaN Yemen NaN Zambia 84000.0 Zimbabwe 250000.0 Name: 1995, Length: 143, dtype: float64 ###Markdown Use `DataFrame.loc[... , ...]` to select multiple columns or rows ###Code print(data.loc["Angola":"Cameroon", "2005":"2011"]) ###Output 2005 2006 2007 2008 2009 2010 2011 country Angola 23000.0 24000.0 24000.0 24000.0 24000.0 24000.0 23000.0 Argentina 7700.0 7700.0 7600.0 7500.0 7500.0 NaN 5600.0 Armenia 120.0 120.0 120.0 300.0 300.0 NaN 350.0 Australia NaN NaN NaN NaN NaN NaN 1100.0 Austria NaN NaN NaN NaN NaN NaN 1200.0 Azerbaijan NaN NaN NaN NaN NaN NaN 750.0 Bahamas 750.0 750.0 350.0 350.0 350.0 350.0 350.0 Bangladesh 750.0 750.0 750.0 750.0 750.0 1100.0 1300.0 Barbados 60.0 60.0 60.0 60.0 60.0 60.0 60.0 Belarus 2400.0 2100.0 1900.0 1800.0 1800.0 1800.0 1900.0 Belgium NaN NaN NaN NaN NaN NaN 1300.0 Belize 350.0 350.0 350.0 350.0 350.0 350.0 350.0 Benin 5100.0 4800.0 4800.0 4900.0 4900.0 4900.0 4900.0 Bhutan NaN NaN NaN NaN NaN NaN 350.0 Bolivia NaN NaN NaN NaN NaN NaN 1300.0 Botswana 17000.0 16000.0 16000.0 15000.0 14000.0 NaN NaN Brazil NaN NaN NaN NaN NaN NaN 18000.0 Bulgaria NaN NaN NaN NaN NaN NaN 350.0 Burkina Faso 7300.0 6900.0 6900.0 7000.0 8000.0 NaN NaN Burundi 6900.0 6000.0 5100.0 4400.0 3700.0 3200.0 3000.0 Cambodia 3200.0 2500.0 2100.0 1900.0 1400.0 1300.0 1100.0 Cameroon 54000.0 52000.0 50000.0 47000.0 46000.0 43000.0 43000.0 ###Markdown Use `DataFrame.loc[... , ...]` to call a customized subset ###Code north_america = ["Canada", "United States", "Mexico"] every_five = ["1990", "1995", "2000", "2005", "2010"] subset = data.loc[north_america,every_five] print(subset) ###Output 1990 1995 2000 2005 2010 country Canada NaN NaN NaN NaN NaN United States 88000.0 51000.0 52000.0 49000.0 49000.0 Mexico 11000.0 12000.0 13000.0 12000.0 10000.0 ###Markdown Summarizing data subsets ###Code print(subset.describe()) ###Output 1990 1995 2000 2005 2010 count 2.000000 2.000000 2.000000 2.000000 2.000000 mean 49500.000000 31500.000000 32500.000000 30500.000000 29500.000000 std 54447.222151 27577.164466 27577.164466 26162.950904 27577.164466 min 11000.000000 12000.000000 13000.000000 12000.000000 10000.000000 25% 30250.000000 21750.000000 22750.000000 21250.000000 19750.000000 50% 49500.000000 31500.000000 32500.000000 30500.000000 29500.000000 75% 68750.000000 41250.000000 42250.000000 39750.000000 39250.000000 max 88000.000000 51000.000000 52000.000000 49000.000000 49000.000000 ###Markdown Finding elements where rates per year are higher than average. This returns a TRUE or FALSE boolean. ###Code print(data > data.mean()) filter = data > data.mean() print(data[filter]) ###Output 1990 1991 1992 1993 1994 \ country Afghanistan NaN NaN NaN NaN NaN Angola NaN NaN NaN NaN NaN Argentina NaN NaN NaN NaN NaN Armenia NaN NaN NaN NaN NaN Australia NaN NaN NaN NaN NaN Austria NaN NaN NaN NaN NaN Azerbaijan NaN NaN NaN NaN NaN Bahamas NaN NaN NaN NaN NaN Bangladesh NaN NaN NaN NaN NaN Barbados NaN NaN NaN NaN NaN Belarus NaN NaN NaN NaN NaN Belgium NaN NaN NaN NaN NaN Belize NaN NaN NaN NaN NaN Benin NaN NaN NaN NaN NaN Bhutan NaN NaN NaN NaN NaN Bolivia NaN NaN NaN NaN NaN Botswana NaN NaN NaN NaN NaN Brazil NaN NaN NaN NaN NaN Bulgaria NaN NaN NaN NaN NaN Burkina Faso 26000.0 NaN NaN NaN NaN Burundi NaN NaN NaN NaN NaN Cambodia NaN NaN NaN NaN NaN Cameroon NaN NaN 33000.0 40000.0 46000.0 Canada NaN NaN NaN NaN NaN Central African Republic NaN NaN NaN NaN NaN Chile NaN NaN NaN NaN NaN Colombia NaN NaN NaN NaN NaN Congo, Rep. NaN NaN NaN NaN NaN Costa Rica NaN NaN NaN NaN NaN Cote d'Ivoire 52000.0 72000.0 90000.0 99000.0 98000.0 ... ... ... ... ... ... Slovak Republic NaN NaN NaN NaN NaN Slovenia NaN NaN NaN NaN NaN Somalia NaN NaN NaN NaN NaN South Africa 44000.0 73000.0 120000.0 190000.0 300000.0 South Korea NaN NaN NaN NaN NaN South Sudan NaN NaN NaN NaN NaN Spain NaN NaN NaN NaN NaN Sri Lanka NaN NaN NaN NaN NaN Sudan NaN NaN NaN NaN NaN Suriname NaN NaN NaN NaN NaN Swaziland NaN NaN NaN NaN NaN Sweden NaN NaN NaN NaN NaN Switzerland NaN NaN NaN NaN NaN Tajikistan NaN NaN NaN NaN NaN Tanzania 180000.0 200000.0 200000.0 200000.0 190000.0 Thailand 140000.0 150000.0 120000.0 90000.0 64000.0 Togo NaN NaN NaN NaN NaN Trinidad and Tobago NaN NaN NaN NaN NaN Tunisia NaN NaN NaN NaN NaN Turkey NaN NaN NaN NaN NaN Uganda 130000.0 120000.0 110000.0 110000.0 98000.0 Ukraine NaN NaN NaN NaN NaN United Kingdom NaN NaN NaN NaN NaN United States 88000.0 52000.0 50000.0 52000.0 49000.0 Uruguay NaN NaN NaN NaN NaN Venezuela NaN NaN NaN NaN NaN Vietnam NaN NaN NaN NaN NaN Yemen NaN NaN NaN NaN NaN Zambia 85000.0 87000.0 87000.0 86000.0 85000.0 Zimbabwe 180000.0 200000.0 210000.0 240000.0 260000.0 1995 1996 1997 1998 1999 \ country Afghanistan NaN NaN NaN NaN NaN Angola NaN NaN NaN NaN NaN Argentina NaN NaN NaN NaN NaN Armenia NaN NaN NaN NaN NaN Australia NaN NaN NaN NaN NaN Austria NaN NaN NaN NaN NaN Azerbaijan NaN NaN NaN NaN NaN Bahamas NaN NaN NaN NaN NaN Bangladesh NaN NaN NaN NaN NaN Barbados NaN NaN NaN NaN NaN Belarus NaN NaN NaN NaN NaN Belgium NaN NaN NaN NaN NaN Belize NaN NaN NaN NaN NaN Benin NaN NaN NaN NaN NaN Bhutan NaN NaN NaN NaN NaN Bolivia NaN NaN NaN NaN NaN Botswana NaN NaN NaN NaN NaN Brazil NaN NaN NaN NaN NaN Bulgaria NaN NaN NaN NaN NaN Burkina Faso NaN NaN NaN NaN NaN Burundi NaN NaN NaN NaN NaN Cambodia NaN NaN NaN NaN NaN Cameroon 51000.0 56000.0 59000.0 61000.0 61000.0 Canada NaN NaN NaN NaN NaN Central African Republic NaN NaN NaN NaN NaN Chile NaN NaN NaN NaN NaN Colombia NaN NaN NaN NaN NaN Congo, Rep. NaN NaN NaN NaN NaN Costa Rica NaN NaN NaN NaN NaN Cote d'Ivoire 89000.0 78000.0 68000.0 61000.0 55000.0 ... ... ... ... ... ... Slovak Republic NaN NaN NaN NaN NaN Slovenia NaN NaN NaN NaN NaN Somalia NaN NaN NaN NaN NaN South Africa 430000.0 570000.0 680000.0 720000.0 710000.0 South Korea NaN NaN NaN NaN NaN South Sudan NaN NaN NaN NaN NaN Spain NaN NaN NaN NaN NaN Sri Lanka NaN NaN NaN NaN NaN Sudan NaN NaN NaN NaN NaN Suriname NaN NaN NaN NaN NaN Swaziland NaN NaN NaN NaN NaN Sweden NaN NaN NaN NaN NaN Switzerland NaN NaN NaN NaN NaN Tajikistan NaN NaN NaN NaN NaN Tanzania 170000.0 160000.0 150000.0 140000.0 140000.0 Thailand 49000.0 NaN NaN NaN NaN Togo NaN NaN NaN NaN NaN Trinidad and Tobago NaN NaN NaN NaN NaN Tunisia NaN NaN NaN NaN NaN Turkey NaN NaN NaN NaN NaN Uganda 92000.0 88000.0 87000.0 87000.0 89000.0 Ukraine NaN NaN NaN NaN NaN United Kingdom NaN NaN NaN NaN NaN United States 51000.0 66000.0 68000.0 67000.0 60000.0 Uruguay NaN NaN NaN NaN NaN Venezuela NaN NaN NaN NaN NaN Vietnam NaN NaN NaN NaN NaN Yemen NaN NaN NaN NaN NaN Zambia 84000.0 84000.0 85000.0 86000.0 88000.0 Zimbabwe 250000.0 240000.0 230000.0 220000.0 190000.0 ... 2002 2003 2004 2005 \ country ... Afghanistan ... NaN NaN NaN NaN Angola ... NaN NaN NaN NaN Argentina ... NaN NaN NaN NaN Armenia ... NaN NaN NaN NaN Australia ... NaN NaN NaN NaN Austria ... NaN NaN NaN NaN Azerbaijan ... NaN NaN NaN NaN Bahamas ... NaN NaN NaN NaN Bangladesh ... NaN NaN NaN NaN Barbados ... NaN NaN NaN NaN Belarus ... NaN NaN NaN NaN Belgium ... NaN NaN NaN NaN Belize ... NaN NaN NaN NaN Benin ... NaN NaN NaN NaN Bhutan ... NaN NaN NaN NaN Bolivia ... NaN NaN NaN NaN Botswana ... NaN NaN NaN NaN Brazil ... NaN NaN NaN NaN Bulgaria ... NaN NaN NaN NaN Burkina Faso ... NaN NaN NaN NaN Burundi ... NaN NaN NaN NaN Cambodia ... NaN NaN NaN NaN Cameroon ... 58000.0 58000.0 56000.0 54000.0 Canada ... NaN NaN NaN NaN Central African Republic ... NaN NaN NaN NaN Chile ... NaN NaN NaN NaN Colombia ... NaN NaN NaN NaN Congo, Rep. ... NaN NaN NaN NaN Costa Rica ... NaN NaN NaN NaN Cote d'Ivoire ... 42000.0 38000.0 NaN NaN ... ... ... ... ... ... Slovak Republic ... NaN NaN NaN NaN Slovenia ... NaN NaN NaN NaN Somalia ... NaN NaN NaN NaN South Africa ... 560000.0 520000.0 500000.0 480000.0 South Korea ... NaN NaN NaN NaN South Sudan ... NaN NaN NaN NaN Spain ... NaN NaN NaN NaN Sri Lanka ... NaN NaN NaN NaN Sudan ... NaN NaN NaN NaN Suriname ... NaN NaN NaN NaN Swaziland ... NaN NaN NaN NaN Sweden ... NaN NaN NaN NaN Switzerland ... NaN NaN NaN NaN Tajikistan ... NaN NaN NaN NaN Tanzania ... 140000.0 140000.0 140000.0 140000.0 Thailand ... NaN 38000.0 NaN NaN Togo ... NaN NaN NaN NaN Trinidad and Tobago ... NaN NaN NaN NaN Tunisia ... NaN NaN NaN NaN Turkey ... NaN NaN NaN NaN Uganda ... 100000.0 110000.0 120000.0 120000.0 Ukraine ... NaN NaN NaN NaN United Kingdom ... NaN NaN NaN NaN United States ... 48000.0 49000.0 49000.0 49000.0 Uruguay ... NaN NaN NaN NaN Venezuela ... NaN NaN NaN NaN Vietnam ... NaN NaN NaN NaN Yemen ... NaN NaN NaN NaN Zambia ... 94000.0 96000.0 96000.0 93000.0 Zimbabwe ... 130000.0 110000.0 110000.0 110000.0 2006 2007 2008 2009 2010 \ country Afghanistan NaN NaN NaN NaN NaN Angola NaN NaN NaN NaN NaN Argentina NaN NaN NaN NaN NaN Armenia NaN NaN NaN NaN NaN Australia NaN NaN NaN NaN NaN Austria NaN NaN NaN NaN NaN Azerbaijan NaN NaN NaN NaN NaN Bahamas NaN NaN NaN NaN NaN Bangladesh NaN NaN NaN NaN NaN Barbados NaN NaN NaN NaN NaN Belarus NaN NaN NaN NaN NaN Belgium NaN NaN NaN NaN NaN Belize NaN NaN NaN NaN NaN Benin NaN NaN NaN NaN NaN Bhutan NaN NaN NaN NaN NaN Bolivia NaN NaN NaN NaN NaN Botswana NaN NaN NaN NaN NaN Brazil NaN NaN NaN NaN NaN Bulgaria NaN NaN NaN NaN NaN Burkina Faso NaN NaN NaN NaN NaN Burundi NaN NaN NaN NaN NaN Cambodia NaN NaN NaN NaN NaN Cameroon 52000.0 50000.0 47000.0 46000.0 43000.0 Canada NaN NaN NaN NaN NaN Central African Republic NaN NaN NaN NaN NaN Chile NaN NaN NaN NaN NaN Colombia NaN NaN NaN NaN NaN Congo, Rep. NaN NaN NaN NaN NaN Costa Rica NaN NaN NaN NaN NaN Cote d'Ivoire NaN NaN NaN NaN NaN ... ... ... ... ... ... Slovak Republic NaN NaN NaN NaN NaN Slovenia NaN NaN NaN NaN NaN Somalia NaN NaN NaN NaN NaN South Africa 470000.0 460000.0 450000.0 430000.0 390000.0 South Korea NaN NaN NaN NaN NaN South Sudan NaN NaN NaN NaN NaN Spain NaN NaN NaN NaN NaN Sri Lanka NaN NaN NaN NaN NaN Sudan NaN NaN NaN NaN NaN Suriname NaN NaN NaN NaN NaN Swaziland NaN NaN NaN NaN NaN Sweden NaN NaN NaN NaN NaN Switzerland NaN NaN NaN NaN NaN Tajikistan NaN NaN NaN NaN NaN Tanzania 140000.0 140000.0 140000.0 140000.0 140000.0 Thailand NaN NaN NaN NaN NaN Togo NaN NaN NaN NaN NaN Trinidad and Tobago NaN NaN NaN NaN NaN Tunisia NaN NaN NaN NaN NaN Turkey NaN NaN NaN NaN NaN Uganda 130000.0 140000.0 150000.0 150000.0 150000.0 Ukraine NaN NaN NaN NaN NaN United Kingdom NaN NaN NaN NaN NaN United States 49000.0 49000.0 49000.0 49000.0 49000.0 Uruguay NaN NaN NaN NaN NaN Venezuela NaN NaN NaN NaN NaN Vietnam NaN NaN NaN NaN NaN Yemen NaN NaN NaN NaN NaN Zambia 88000.0 81000.0 72000.0 76000.0 NaN Zimbabwe 100000.0 100000.0 100000.0 95000.0 87000.0 2011 country Afghanistan NaN Angola 23000.0 Argentina NaN Armenia NaN Australia NaN Austria NaN Azerbaijan NaN Bahamas NaN Bangladesh NaN Barbados NaN Belarus NaN Belgium NaN Belize NaN Benin NaN Bhutan NaN Bolivia NaN Botswana NaN Brazil 18000.0 Bulgaria NaN Burkina Faso NaN Burundi NaN Cambodia NaN Cameroon 43000.0 Canada NaN Central African Republic NaN Chile NaN Colombia NaN Congo, Rep. NaN Costa Rica NaN Cote d'Ivoire NaN ... ... Slovak Republic NaN Slovenia NaN Somalia NaN South Africa 380000.0 South Korea NaN South Sudan 16000.0 Spain NaN Sri Lanka NaN Sudan NaN Suriname NaN Swaziland NaN Sweden NaN Switzerland NaN Tajikistan NaN Tanzania 150000.0 Thailand NaN Togo NaN Trinidad and Tobago NaN Tunisia NaN Turkey NaN Uganda 150000.0 Ukraine NaN United Kingdom NaN United States 49000.0 Uruguay NaN Venezuela NaN Vietnam 21000.0 Yemen NaN Zambia NaN Zimbabwe 74000.0 [143 rows x 22 columns] ###Markdown Return countries that have reported numbers that are higher than average every year. ###Code higher_than_average = data[filter] always_higher_than_average = higher_than_average.dropna() #drops rows with 1 or more NAN value print(always_higher_than_average) print(always_higher_than_average.describe()) ###Output 1990 1991 1992 1993 1994 1995 \ country Kenya 120000.0 170000.0 240000.0 280000.0 280000.0 250000.0 Malawi 79000.0 85000.0 88000.0 89000.0 88000.0 90000.0 Nigeria 96000.0 140000.0 180000.0 230000.0 280000.0 320000.0 South Africa 44000.0 73000.0 120000.0 190000.0 300000.0 430000.0 Tanzania 180000.0 200000.0 200000.0 200000.0 190000.0 170000.0 Uganda 130000.0 120000.0 110000.0 110000.0 98000.0 92000.0 United States 88000.0 52000.0 50000.0 52000.0 49000.0 51000.0 Zimbabwe 180000.0 200000.0 210000.0 240000.0 260000.0 250000.0 1996 1997 1998 1999 ... 2002 \ country ... Kenya 210000.0 170000.0 150000.0 140000.0 ... 130000.0 Malawi 96000.0 100000.0 100000.0 100000.0 ... 100000.0 Nigeria 340000.0 340000.0 350000.0 350000.0 ... 300000.0 South Africa 570000.0 680000.0 720000.0 710000.0 ... 560000.0 Tanzania 160000.0 150000.0 140000.0 140000.0 ... 140000.0 Uganda 88000.0 87000.0 87000.0 89000.0 ... 100000.0 United States 66000.0 68000.0 67000.0 60000.0 ... 48000.0 Zimbabwe 240000.0 230000.0 220000.0 190000.0 ... 130000.0 2003 2004 2005 2006 2007 2008 \ country Kenya 130000.0 130000.0 120000.0 120000.0 130000.0 120000.0 Malawi 100000.0 96000.0 90000.0 82000.0 73000.0 63000.0 Nigeria 290000.0 290000.0 300000.0 320000.0 330000.0 340000.0 South Africa 520000.0 500000.0 480000.0 470000.0 460000.0 450000.0 Tanzania 140000.0 140000.0 140000.0 140000.0 140000.0 140000.0 Uganda 110000.0 120000.0 120000.0 130000.0 140000.0 150000.0 United States 49000.0 49000.0 49000.0 49000.0 49000.0 49000.0 Zimbabwe 110000.0 110000.0 110000.0 100000.0 100000.0 100000.0 2009 2010 2011 country Kenya 120000.0 110000.0 100000.0 Malawi 58000.0 51000.0 46000.0 Nigeria 360000.0 380000.0 340000.0 South Africa 430000.0 390000.0 380000.0 Tanzania 140000.0 140000.0 150000.0 Uganda 150000.0 150000.0 150000.0 United States 49000.0 49000.0 49000.0 Zimbabwe 95000.0 87000.0 74000.0 [8 rows x 22 columns] 1990 1991 1992 1993 \ count 8.000000 8.000000 8.000000 8.00000 mean 114625.000000 130000.000000 149750.000000 173875.00000 std 47996.837693 57268.789805 67021.851447 80945.19751 min 44000.000000 52000.000000 50000.000000 52000.00000 25% 85750.000000 82000.000000 104500.000000 104750.00000 50% 108000.000000 130000.000000 150000.000000 195000.00000 75% 142500.000000 177500.000000 202500.000000 232500.00000 max 180000.000000 200000.000000 240000.000000 280000.00000 1994 1995 1996 1997 \ count 8.000000 8.000000 8.000000 8.000000 mean 193125.000000 206625.000000 221250.000000 228125.000000 std 101327.527638 130282.042946 167972.574292 202895.073164 min 49000.000000 51000.000000 66000.000000 68000.000000 25% 95500.000000 91500.000000 94000.000000 96750.000000 50% 225000.000000 210000.000000 185000.000000 160000.000000 75% 280000.000000 267500.000000 265000.000000 257500.000000 max 300000.000000 430000.000000 570000.000000 680000.000000 1998 1999 ... 2002 \ count 8.000000 8.000000 ... 8.000000 mean 229250.000000 222375.000000 ... 188500.000000 std 218113.175079 216404.342114 ... 166924.277101 min 67000.000000 60000.000000 ... 48000.000000 25% 96750.000000 97250.000000 ... 100000.000000 50% 145000.000000 140000.000000 ... 130000.000000 75% 252500.000000 230000.000000 ... 180000.000000 max 720000.000000 710000.000000 ... 560000.000000 2003 2004 2005 2006 \ count 8.00000 8.000000 8.000000 8.000000 mean 181125.00000 179375.000000 176125.000000 176375.000000 std 153600.07208 147024.718524 143048.880257 143656.273793 min 49000.00000 49000.000000 49000.000000 49000.000000 25% 107500.00000 106500.000000 105000.000000 95500.000000 50% 120000.00000 125000.000000 120000.000000 125000.000000 75% 177500.00000 177500.000000 180000.000000 185000.000000 max 520000.00000 500000.000000 480000.000000 470000.000000 2007 2008 2009 2010 \ count 8.000000 8.000000 8.000000 8.00000 mean 177750.000000 176500.000000 175250.000000 169625.00000 std 142211.864082 142303.498602 141466.553341 137887.05264 min 49000.000000 49000.000000 49000.000000 49000.00000 25% 93250.000000 90750.000000 85750.000000 78000.00000 50% 135000.000000 130000.000000 130000.000000 125000.00000 75% 187500.000000 197500.000000 202500.000000 207500.00000 max 460000.000000 450000.000000 430000.000000 390000.00000 2011 count 8.000000 mean 161125.000000 std 129450.969759 min 46000.000000 25% 67750.000000 50% 125000.000000 75% 197500.000000 max 380000.000000 [8 rows x 22 columns] ###Markdown Use .iloc to subset the dataframe ###Code subset = data.iloc[88:92,:5] #.iloc uses numerical indexes instead of row or column names like .loc does print(subset) ###Output 1990 1991 1992 1993 1994 country Mozambique 25000.0 33000.0 43000.0 55000.0 67000.0 Myanmar 14000.0 13000.0 13000.0 16000.0 17000.0 Namibia 3800.0 5200.0 7200.0 9800.0 13000.0 Nepal 350.0 350.0 750.0 1000.0 1500.0 ###Markdown Perform calculations over columns ###Code print("1990:\n", subset.loc[:, "1990"],"\n1994: \n", subset.loc[:, "1994"]) print("diff: \n", subset.loc[:, "1994"] - subset.loc[:, "1990"]) ###Output 1990: country Mozambique 25000.0 Myanmar 14000.0 Namibia 3800.0 Nepal 350.0 Name: 1990, dtype: float64 1994: country Mozambique 67000.0 Myanmar 17000.0 Namibia 13000.0 Nepal 1500.0 Name: 1994, dtype: float64 diff: country Mozambique 42000.0 Myanmar 3000.0 Namibia 9200.0 Nepal 1150.0 dtype: float64 ###Markdown Break here for 10 minutes to complete the exercises in Part 5: Pandas and Data Frames. Conditional Statements* An `if` statement (more properly called a conditional statement) controls whether a block of code is executed or not. * The structure of an `if` statement is similar to that of a `for` loop: * The first line opens with `if` and ends with a colon `:` * The body containing one or more statements is indented (by 4 spaces or a tab) ###Code result = 42 if result == 42: print(result, "is the answer to the meaning of life and the universe") result = 10 if result < 42: print(result, "is not the answer to the meaning of life") ###Output 42 is the answer to the meaning of life 10 is not the answer to the meaning of life ###Markdown Conditionals are often used within `for` loops ###Code results = [10, 20, 12, 43, 50, 42] for result in results: if result > statistics.mean(results): print(result, "is larger than average") ###Output 43 is larger than average 50 is larger than average 42 is larger than average ###Markdown Use `else` within a to execute a block of code when an `if` condition is *not* true ###Code for result in results: if result > statistics.mean(results): print(result, "is larger than average") else: print(result, "is smaller than average") ###Output 10 is smaller than average 20 is smaller than average 12 is smaller than average 43 is larger than average 50 is larger than average 42 is larger than average ###Markdown Use `elif` to add additional tests ###Code for result in results: if result > 42: print(result, "is too large") elif result < 42: print(result, "is too small") else: print(result, "is the answer to the meaning of life and the universe") ###Output 10 is too small 20 is too small 12 is too small 43 is too large 50 is too large 42 is the answer to the meaning of life and the universe
notebooks/Dissertation/data_gen/explicit_problems_5d.ipynb
###Markdown Explicit 5D BenchmarksThis file demonstrates how to generate, plot, and output data for 1d benchmarksChoose from:1. Korns_011. Korns_021. Korns_031. Korns_041. Korns_051. Korns_061. Korns_071. Korns_081. Korns_091. Korns_101. Korns_111. Korns_121. Korns_131. Korns_141. Korns_15 Imports ###Code from pypge.benchmarks import explicit import numpy as np # visualization libraries import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import gridspec # plot the visuals in ipython %matplotlib inline ###Output _____no_output_____ ###Markdown Generate the data with noise ###Code # Set your output directories img_dir = "../img/benchmarks/explicit/" data_dir = "../data/benchmarks/explicit/" # used for plotting manual_scale = True ymin = -2000 ymax = 2000 do_enable = False xs_params = [ (-3.14,3.14), (-3.14,3.14), (0.001,1000), (-3.14,3.14), (-3.14,3.14) ] # choose your problem here prob = explicit.Korns_15(noise=1.0, npts=4000, xs_params=xs_params) # you can also specify the following params as keyword arguments # # params = { # 'name': "Koza_01", # 'xs_str': ["x"], # 'eqn_str': "x**4 + x**3 + x**2 + x", # 'xs_params': [ (-4.0,4.0) ], # 'npts': 200, # 'noise': 1.0 # } # or make your own with the following # # explicit.Explicit_1D(params): ###Output { 'eqn_str': '12 - 6*(tan(x)/exp(y))*(ln(z)-tan(v))', 'name': 'Korns_15', 'noise': 1.0, 'npts': 4000, 'xs': [x, y, z, v, w], 'xs_params': [ (-3.14, 3.14), (-3.14, 3.14), (0.001, 1000), (-3.14, 3.14), (-3.14, 3.14)], 'xs_str': ['x', 'y', 'z', 'v', 'w']} ###Markdown Plot inline and save image ###Code print prob['name'], prob['eqn'] print prob['xpts'].shape xs = prob['xpts'][0] ys = prob['xpts'][1] zs = prob['xpts'][2] vs = prob['xpts'][3] ws = prob['xpts'][4] Ys = prob['ypure'] fig = plt.figure() fig.set_size_inches(16, 20) gs = gridspec.GridSpec(5, 2) fig.suptitle(prob['name'] + " Clean", fontsize=36) ax0 = fig.add_subplot(gs[0,:]) ax0.scatter(xs, Ys, marker='.') ax0.set_xlabel('X') ax0.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax1 = fig.add_subplot(gs[1,:]) ax1.scatter(ys, Ys, marker='.') ax1.set_xlabel('Y') ax1.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax2 = fig.add_subplot(gs[2,:]) ax2.scatter(zs, Ys, marker='.') ax2.set_xlabel('Z') ax2.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax3 = fig.add_subplot(gs[3,:]) ax3.scatter(vs, Ys, marker='.') ax3.set_xlabel('V') ax3.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax4 = fig.add_subplot(gs[4,:]) ax4.scatter(ws, Ys, marker='.') ax4.set_xlabel('W') ax4.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) plt.savefig(img_dir + prob['name'].lower() + "_clean.png", dpi=200) plt.show() Ys = prob['ypts'] fig = plt.figure() fig.set_size_inches(16, 20) gs = gridspec.GridSpec(5, 2) fig.suptitle(prob['name'] + " Noisy", fontsize=36) ax0 = fig.add_subplot(gs[0,:]) ax0.scatter(xs, Ys, marker='.') ax0.set_xlabel('X') ax0.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax1 = fig.add_subplot(gs[1,:]) ax1.scatter(ys, Ys, marker='.') ax1.set_xlabel('Y') ax1.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax2 = fig.add_subplot(gs[2,:]) ax2.scatter(zs, Ys, marker='.') ax2.set_xlabel('Z') ax2.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax3 = fig.add_subplot(gs[3,:]) ax3.scatter(vs, Ys, marker='.') ax3.set_xlabel('V') ax3.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) ax4 = fig.add_subplot(gs[4,:]) ax4.scatter(ws, Ys, marker='.') ax4.set_xlabel('W') ax4.set_ylabel('OUT') if manual_scale: plt.autoscale(enable=do_enable) plt.ylim(ymin,ymax) plt.savefig(img_dir + prob['name'].lower() + "_noisy.png", dpi=200) plt.show() ###Output Korns_15 -6*(log(z) - tan(v))*exp(-y)*tan(x) + 12 (5, 4000) ###Markdown Output json and csv data ###Code data = np.array([prob['xpts'][0],prob['xpts'][1],prob['xpts'][2],prob['xpts'][3],prob['xpts'][4], prob['ypts']]).T print data.shape cols = [['x', 'y', 'z', 'v', 'w', 'out']] out_data = cols + data.tolist() import json json_out = json.dumps( out_data, indent=4) # print json_out f_json = open(data_dir + prob['name'].lower() + ".json", 'w') f_json.write(json_out) f_json.close() f_csv = open(data_dir + prob['name'].lower() + ".csv", 'w') for row in out_data: line = ", ".join([str(col) for col in row]) + "\n" f_csv.write(line) f_csv.close() ###Output (4000, 6) ###Markdown Output *clean* json and csv data ###Code data = np.array([prob['xpts'][0],prob['xpts'][1],prob['xpts'][2],prob['xpts'][3],prob['xpts'][4], prob['ypure']]).T print data.shape cols = [['x', 'y', 'z', 'v', 'w', 'out']] out_data = cols + data.tolist() import json json_out = json.dumps( out_data, indent=4) # print json_out f_json = open(data_dir + prob['name'].lower() + "_clean.json", 'w') f_json.write(json_out) f_json.close() f_csv = open(data_dir + prob['name'].lower() + "_clean.csv", 'w') for row in out_data: line = ", ".join([str(col) for col in row]) + "\n" f_csv.write(line) f_csv.close() ###Output (4000, 6)
Python Tutorial Tensorflow/15_Data_augmentation.ipynb
###Markdown Rotate, zoom, transform, change contrast to get new data ###Code import os import PIL import cv2 import pathlib import numpy as np import pandas as pd import seaborn as sn import tensorflow as tf from tensorflow import keras from matplotlib import pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split %matplotlib inline # load data dir dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, cache_dir='.', untar=True) data_dir = pathlib.Path(data_dir) print(f"Numbers of images: {len(list(data_dir.glob('*/*.jpg')))}") roses = list(data_dir.glob("roses/*.jpg")) PIL.Image.open(str(roses[1])) flowers_images_dict = { 'roses': list(data_dir.glob('roses/*')), 'daisy': list(data_dir.glob('daisy/*')), 'dandelion': list(data_dir.glob('dandelion/*')), 'sunflowers': list(data_dir.glob('sunflowers/*')), 'tulips': list(data_dir.glob('tulips/*')), } flowers_labels_dict = { 'roses': 0, 'daisy': 1, 'dandelion': 2, 'sunflowers': 3, 'tulips': 4, } # get X, y data sets using a loop X, y = [], [] for name, imgs in flowers_images_dict.items(): for img in imgs: img = cv2.imread(str(img)) resized_img = cv2.resize(img, (180, 180)) X.append(resized_img) y.append(flowers_labels_dict[name]) X, y = np.array(X), np.array(y) X.shape, y.shape # split train test sets and scale them X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) X_train, X_test = X_train / 255, X_test / 255 # define the model model = keras.Sequential([ keras.layers.Conv2D(filters=16, kernel_size=(3, 3), padding="same", activation="relu"), keras.layers.MaxPooling2D(), keras.layers.Conv2D(filters=32, kernel_size=(3, 3), padding="same", activation="relu"), keras.layers.MaxPooling2D(), keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu"), keras.layers.MaxPooling2D(), keras.layers.Flatten(), keras.layers.Dense(128, activation="relu"), keras.layers.Dense(5, activation="linear"), ]) model.compile(optimizer="adam", loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"]) # train model model.fit(X_train, y_train, epochs=30) # this model is overfitting y_pred = model.predict(X_test) y_pred_class = [np.argmax(x) for x in y_pred] print("Classification Report: \n", classification_report(y_test, y_pred_class)) # Augment Data data_augmentation = keras.Sequential([ keras.layers.experimental.preprocessing.RandomFlip("horizontal"), keras.layers.experimental.preprocessing.RandomRotation(0.2), keras.layers.experimental.preprocessing.RandomZoom(0.2), keras.layers.experimental.preprocessing.RandomContrast(0.3), ]) plt.axis("off") plt.imshow(X[0]) plt.axis("off") plt.imshow(data_augmentation(X)[0]) model = keras.Sequential([ data_augmentation, keras.layers.Conv2D(filters=16, kernel_size=(3, 3), padding="same", activation="relu"), keras.layers.MaxPooling2D(), keras.layers.Conv2D(filters=32, kernel_size=(3, 3), padding="same", activation="relu"), keras.layers.MaxPooling2D(), keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu"), keras.layers.MaxPooling2D(), keras.layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", activation="relu"), keras.layers.MaxPooling2D(), keras.layers.Flatten(), keras.layers.Dense(128, activation="relu"), keras.layers.Dense(5, activation="linear"), ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit(X_train, y_train, epochs=50) # Accuracy increased from 68 percent to 77 percent y_pred = model.predict(X_test) y_pred_class = [np.argmax(x) for x in y_pred] print("Classification Report: \n", classification_report(y_test, y_pred_class)) from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Dense from keras.layers import Flatten from keras.layers import Dropout from keras.layers import BatchNormalization def better_model(): model = Sequential([data_augmentation]) model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=(180, 180, 3))) model.add(BatchNormalization()) model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.3)) model.add(Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D((2, 2))) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(128, activation='relu', kernel_initializer='he_uniform')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(5, activation='softmax')) # compile model model.compile(optimizer="SGD", loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model better_model = better_model() better_model.fit(X_train, y_train, epochs=30) # actually not better y_pred = better_model.predict(X_test) y_pred_class = [np.argmax(x) for x in y_pred] print("Classification Report: \n", classification_report(y_test, y_pred_class)) ###Output Classification Report: precision recall f1-score support 0 0.53 0.33 0.41 176 1 0.62 0.42 0.50 154 2 0.34 0.94 0.50 226 3 0.56 0.10 0.17 150 4 0.87 0.19 0.31 212 accuracy 0.42 918 macro avg 0.58 0.40 0.38 918 weighted avg 0.58 0.42 0.38 918
docs/examples/1_Getting_Started.ipynb
###Markdown Hello, welcome to our `boomdiff` package tutorial series. The `boomdiff` is a package implementing forward-mode auto differentiations and graident-based optimizations of user-specified or pre-set objective functions. The organization of `boomdiff` package is highly modularized, with three major modules: 1. The `boomdiff.AD` class, as the core functionality of `boomdiff` package, provides the interface to create, operate variables and track their gradients. Such functionality is realized through the `AD` instances or `AD` instances array data structures. We will walk thorugh this in tutorial section 1.2. The `boomdiff.optimize` module includes optimization algorithms based on the gradients of loss functions, user-defined or pre-set. We will illustrate the usage in tutorial section 2.3. The `boomdiff.loss_function` module includes some pre-set loss functions, like mean squared error (MSE), for users' convenience. We will illustrate the usage in tutorial section 2Following the basic tutorials (if you are proficient at progamming, you can probably skip the basic tutorials), two general pedagogical examples will be given - A linear regression model in tutorial section 3 - A logistic regression model in tutorial section 4- A simple neural network model in section 5. (Yes! we are proud that `boomdiff` can be used as a deep learning framework! Although there are still lots of things to do regarding performance.)These two examples will include most features, show you the usability and power of the `boomdiff` package, and you can probably understand the basic logics to use `boomdiff`: $$\text{Create variables} \to \text{Construct models and define target functions} \to \text{Optimization}$$Then, you can construct your own models with `boomdiff` and solve real-life optimization problems! 1.1 Create a AD instance as a scalar variable To start, make sure you have followed the [installation tutorial](https://github.com/team-boomeraang/cs107-FinalProject/blob/master/README.mdinstallation-of-boomdiff) and successfully installed the `boomdiff` package. If this is the case, we can import the package: ###Code from boomdiff import AD ###Output _____no_output_____ ###Markdown The instantiation of a single variable with AD is quite intuitive, we can simply call: ###Code a = AD(10., {'a': 1.0}) ###Output _____no_output_____ ###Markdown Then a variable called `a` is created, it is an AD class instance. There are two arguments should be put in such instantiation: value and partial derivative dictionary. The two property can be called by attributes `func_val` and `partial_dict`: ###Code print(a.func_val) print(a.partial_dict) ###Output 10.0 {'a': 1.0} ###Markdown Here the value is `10`, which means the variable `a` itself is at 10. And the partial derivative dictionary `{'a': 1.0}` means, the variable's partial derivative to the name `'a'` is 1.0. **Name string** is one key property used to tracking the gradient in the multi-variable case. Here, as we haven't put any operations to such a variable, you can simple view the string `'a'` as the name of the variable, the derivative to itself should mostly be 1 (you can set it to other values as a seed vector).Based on such motivation, we also support create a varible in a simpler manner: ###Code b = AD(7,'b') print(b.func_val) print(b.partial_dict) ###Output 7 {'b': 1.0} ###Markdown As above, you can only give the value and a name string, the partial derivative to itself will be set to 1.0 by default. Now you have another variable `b`.> Note: When dealing with multi-variable cases, make sure the name strings of your different variables are different! And the best practice is making the name of variables and their name string consistent, i.e. do `a = AD(10, 'a')` instead of `a = AD(10, 'b')`.And, if you are super lazy and will only work with a single variable, so the name string is not quite meaningful for you. We also support such syntax: ###Code x1 = AD(5.0) print(x1.func_val) print(x1.partial_dict) ###Output 5.0 {'x1': 1} ###Markdown As shown, you can only put an value and the name string is set to `'x1'` by default. Now you have another variable `x1`. You will see the power of the name string in following operations. 1.2 Apply operations to AD instances and track gradient With the three variables `a`, `b`, `x1` we created above, we can do some operations. Let's start with an simple case: `f = 2*a + 3*b - 4*x1`. For this case, we can simply calculate by hand that:$$f=21,\quad \frac{\partial f}{\partial a} = 2, \quad \frac{\partial f}{\partial b} = 3, \quad \frac{\partial f}{\partial x1} = -4$$This calcualation can also be done quite intuitively in `boomdiff`: ###Code f = 2*a + 3*b - 4*x1 print("Function value: ", f.func_val) print("Partial derivatives: ", f.partial_dict) ###Output Function value: 21.0 Partial derivatives: {'a': 2.0, 'b': 3.0, 'x1': -4} ###Markdown The object `f` is still an AD instance. Besides the function value, the name strings in its `partial_dict` atribute clearly show the gradients relation. Now you can see why the name string is important. Furthermore, as the `f` is still an AD instance, you can continue to apply operations on it and extend the computational graph, the gradients tape will still hold: ###Code f2 = f**2 + AD.sin(a)/AD.exp(b) + AD.log(x1) print("Function value: ", f2.func_val) print("Partial derivatives: ", f2.partial_dict) ###Output Function value: 442.6089418293942 Partial derivatives: {'a': 83.99923486580482, 'b': 126.0004960830399, 'x1': -167.8} ###Markdown If you are annoyed by the long float expression like me, you can control the decimal rounded length by a helper method `round`: ###Code print("Rounded Function value: ", f2.round(1).func_val) print("Rounded Partial derivatives: ", f2.round(1).partial_dict) ###Output Rounded Function value: 442.6 Rounded Partial derivatives: {'a': 84.0, 'b': 126.0, 'x1': -167.8} ###Markdown Currently, the `boomdiff` has alrealy support a huge amount of basic operations, functions and helper methods. For a complete API list and descriptions, see [AD API](https://github.com/team-boomeraang/cs107-FinalProject/blob/master/docs/documentation.mdautodiff).If you are done with the tracked operations and only want the function values, we provide a simple method called `value` to detach, it will return simple number values: ###Code f2.round(4).value() ###Output _____no_output_____ ###Markdown 1.3 Create AD instances arrays as variable arrays Above, we demonstrated how to create and operate scalar varaibles in `boomdiff`. However, sometimes the number of parameters in a real-life model is quite large, it might be exhausting to create them one by one. Based on such motivation, we develop the following tools to create AD instances arrays as variable arrays. You can create a bunch of parameters with few lines. At the moment, `numpy>=1.19` is needed to support all desired features, we import `numpy`: ###Code import numpy as np np.random.seed(14) # For reproducibility ###Output _____no_output_____ ###Markdown Now let's say we want a `2*2` parameters matrix `w1`, we can make it by two lines:1. Create an array with `numpy`, with size equal `2*2` ###Code w1_np = np.array([[1.,2.],[3.,4.]]) ###Output _____no_output_____ ###Markdown 2. Convert it to AD instances arrays with `AD.from_array()` method: ###Code w1 = AD.from_array(w1_np, prefix='w1') print(w1) ###Output [[1.0 ({'w1_0_0': 1.0}) 2.0 ({'w1_0_1': 1.0})] [3.0 ({'w1_1_0': 1.0}) 4.0 ({'w1_1_1': 1.0})]] ###Markdown Now we have the parameters matrix `w1`. You can see that object `w1` is an array with all elements are AD instances. The value of the elements are determined by the `w1_np` array, and the name string is `prefix_i_j`, `i` and `j` are the row and column index in the matrix, so each element will have different name strings. All derivatives here are set to 1.0 by default. You can simple convert `w1` back by `AD.to_array()` method: ###Code AD.to_array(w1) ###Output _____no_output_____ ###Markdown 1.4 Apply operations to AD instances array and track gradient All operations mentioned in section 1.2 will still work for AD instances arrays, either element-wise or broadcast. For example: ###Code w1**2 w1/w1 AD.log(w1) AD.tanh(w1) ###Output _____no_output_____ ###Markdown ---Besides, there are some array-specific operations, like `AD.sum()`, `AD.mean()`, `AD.dot()`. For example, we can define Frobinius norm of `w1` by one line, and the gradients are tracked ###Code AD.sum(w1**2) ###Output _____no_output_____ ###Markdown ---We support matrix operations between a `numpy` array and an AD instances array: ###Code A = np.random.randint(0,5,size=[2,1]) A AD.dot(w1,A) w1@A B = np.random.randint(0,5,size=[2,2]) B w1+B ###Output _____no_output_____ ###Markdown ---We support matrix operations between two AD instances arrays: ###Code w2 = AD.from_array(np.random.randint(0,5,size=[2,1]), prefix="w2") w2 w1@w2 w3 = AD.from_array(np.random.randint(0,5,size=[2,2]), prefix="w3") w3 w1-w3 ###Output _____no_output_____ ###Markdown ---We support operations between an AD instance and an AD instances arrays, in a broadcast manner: ###Code a w1+a ###Output _____no_output_____
old/districts-cities.ipynb
###Markdown Get congressional district shapefiles FTP down from ftp2.census.gov ###Code # s = time.time() # print('getting congressional district shapefiles from Census FTP...') # os.chdir(shapefiledir+'CD/') # ftp = FTP('ftp2.census.gov') # ftp.login() # #print(ftp.getwelcome()) # ftp.cwd('geo/tiger/TIGER{0:.0f}/CD/'.format(thisyear)) # #print(ftp.nlst()) # thefilename = 'tl_{0:.0f}_us_cd116.zip'.format(thisyear) # #print(thefilename) # with open(thefilename, 'wb') as f: # ftp.retrbinary('RETR {0:}'.format(thefilename), f.write) # ftp.quit() # #print('ok') # print('unzipping...') # thezipfile = zipfile.ZipFile(shapefiledir+'CD/tl_{0:.0f}_us_cd116.zip'.format(thisyear)) # thezipfile.extractall() # thezipfile.close() # os.remove(shapefiledir+'CD/tl_2018_us_cd116.zip') # #os.listdir() # e = time.time() # g = g + (e-s) # print('Got 1 file in {0:,.0f} seconds!'.format(e-s)) # #os.listdir() ###Output _____no_output_____ ###Markdown Load congressional district shapefiles into a GeoDataFrame ###Code s = time.time() print('reading congressional districts...') cd_gdf = geopandas.read_file(shapefiledir+'CD/tl_2018_us_cd116.shp') cd_gdf.loc[:, 'GEOID'] = cd_gdf['GEOID'].apply(lambda x: '50000US'+str(x)) #cd_gdf = cd_gdf.set_index('GEOID') print('reading helpfel files...') geo_summary_levels_df = pandas.read_csv(extras_dir+'geo_summary_levels.csv', index_col='SUMLEVEL') statecodes_df = pandas.read_csv(extras_dir+'statecodes.csv', index_col='STATE') print('converting to numeric and adding state names and setting index...') for x in ['STATEFP', 'CD116FP']: cd_gdf.loc[:, x] = pandas.to_numeric(cd_gdf[x], errors='coerce', downcast='integer') for x in ['CDSESSN', 'ALAND', 'AWATER', 'INTPTLAT', 'INTPTLON']: cd_gdf.loc[:, x] = pandas.to_numeric(cd_gdf[x], errors='coerce') cd_gdf = cd_gdf.merge(statecodes_df.reset_index(), how='left', left_on='STATEFP', right_on='STATE').set_index('GEOID') #cd_gdf = cd_gdf.set_index('GEOID') e = time.time() g = g + (e-s) print('Read {0:,.0f} districts in {1:,.1f} seconds.'.format(len(cd_gdf), e-s)) #statecodes_df #cd_gdf.apply(lambda row: '50000US{0:02d}{1:02d}'.format(int(row['STATEFP']), int(row['CD116FP'])), axis=1) #cd_gdf[['CD116FP','NAMELSAD','LSAD','CDSESSN','STATE','STUSAB','STATE_NAME','STATENS']] ###Output reading congressional districts... reading helpfel files... converting to numeric and adding state names and setting index... Read 444 districts in 2.0 seconds. ###Markdown Get community-based statistical areas ###Code s = time.time() print('getting community-based statistical areas...') cbsa_gdf = geopandas.read_file(shapefiledir+'CBSA/tl_2018_us_cbsa.shp') print('removing CBSAs in Puerto Rico...') cbsa_gdf = cbsa_gdf[cbsa_gdf['NAME'].apply(lambda x: ', PR' in x) == False] cbsa_gdf = cbsa_gdf.set_index('GEOID') cbsa_gdf = cbsa_gdf.sort_index() print('reading OMB data for community-based statistical areas...') cbsa_data_df = pandas.read_excel(extras_dir+'cbsa_list1_2020.xls', header=2) cbsa_principal_cities_df = pandas.read_excel(extras_dir+'cbsa_list2_2020.xls', header=2) print('chopping off non-data from bottom of dataframes...') cbsa_data_df = cbsa_data_df.head(-4) cbsa_principal_cities_df = cbsa_principal_cities_df.head(-4) #cbsa_principal_cities_df = cbsa_principal_cities_df.rename(columns={'CBSA Code': 'GEOID'}) #cbsa_principal_cities_df = cbsa_principal_cities_df.set_index('GEOID') e = time.time() g = g + (e-s) print('\nRead {0:,.0f} community-based statistical areas in {1:,.0f} seconds!'.format(len(cbsa_gdf), e-s)) #metro_areas_df.sample(1) ###Output getting community-based statistical areas... removing CBSAs in Puerto Rico... reading OMB data for community-based statistical areas... chopping off non-data from bottom of dataframes... Read 933 community-based statistical areas in 2 seconds! ###Markdown Identify metropolitan statistical areas (MSAs) ###Code metro_areas_gdf = cbsa_gdf.join( cbsa_principal_cities_df[ (cbsa_principal_cities_df['Metropolitan/Micropolitan Statistical Area'] == 'Metropolitan Statistical Area') & (cbsa_principal_cities_df['CBSA Title'].apply(lambda x: x[-4:] != ', PR')) ][['CBSA Code', 'CBSA Title', 'Metropolitan/Micropolitan Statistical Area']].drop_duplicates().set_index('CBSA Code') ) metro_areas_gdf = metro_areas_gdf[metro_areas_gdf['Metropolitan/Micropolitan Statistical Area'].notnull()] metro_areas_gdf = metro_areas_gdf[[x for x in metro_areas_gdf.columns.tolist() if x != 'geometry'] + ['geometry']] print('\nFound {0:,.0f} MSAs in {1:,.0f} seconds!'.format(len(metro_areas_gdf), e-s)) ###Output Found 381 MSAs in 2 seconds! ###Markdown Load places shapefiles ###Code s = time.time() place_gdf = geopandas.GeoDataFrame() place_file_list = [shapefiledir+'PLACE/'+x for x in os.listdir(shapefiledir+'PLACE/') if x[-4:] == '.shp'] for i in range(0, len(place_file_list)): if (debug >= 2): if ((np.mod(i,10) == 0) | (i == len(place_file_list)-1)): print('\tReading file {0:,.0f} of {1:,.0f}...'.format(i+1, len(place_file_list))) place_gdf_i = geopandas.read_file(place_file_list[i]) place_gdf = pandas.concat((place_gdf, place_gdf_i), axis=0, sort=False) print('converting to numeric...') place_gdf.loc[:, 'STATEFP'] = pandas.to_numeric(place_gdf['STATEFP'], errors='coerce') place_gdf.loc[:, 'PLACEFP'] = pandas.to_numeric(place_gdf['PLACEFP'], errors='coerce') print('setting GEOID as index...') place_gdf = place_gdf.set_index("GEOID") place_gdf = place_gdf.sort_index() e = time.time() g = g + (e-s) print('Read {0:,.0f} places in {1:,.0f} seconds!'.format(len(place_gdf), e-s)) ###Output Reading file 1 of 51... Reading file 11 of 51... Reading file 21 of 51... Reading file 31 of 51... Reading file 41 of 51... Reading file 51 of 51... converting to numeric... setting GEOID as index... Read 29,321 places in 20 seconds! ###Markdown Identify principal cities for each metro area Metro areas with one principal city ###Code s = time.time() print('finding MSAs with only one principal city...') value_counts_s = cbsa_principal_cities_df[ cbsa_principal_cities_df['CBSA Code'].isin(metro_areas_gdf.index) ]['CBSA Code'].value_counts() single_principal_city_list = value_counts_s[value_counts_s == 1].sort_index().index.tolist() metro_areas_gdf.loc[single_principal_city_list] metro_areas_gdf = metro_areas_gdf.assign(principal_city_placeid = np.nan) metro_areas_gdf = metro_areas_gdf.assign(principal_cities_geometry = np.nan) #metro_areas_gdf metro_areas_gdf.loc[ cbsa_principal_cities_df[ cbsa_principal_cities_df['CBSA Code'].isin(single_principal_city_list) ]['CBSA Code'].tolist(), 'principal_city_placeid'] = cbsa_principal_cities_df[ cbsa_principal_cities_df['CBSA Code'].isin(single_principal_city_list) ][ ['FIPS State Code', 'FIPS Place Code'] ].apply(lambda row: '{0:02d}{1:05d}'.format(int(row['FIPS State Code']), int(row['FIPS Place Code'])), axis=1).values metro_areas_gdf.loc[ metro_areas_gdf[metro_areas_gdf['principal_city_placeid'].notnull()].index , 'principal_cities_geometry'] = place_gdf.loc[ metro_areas_gdf[metro_areas_gdf['principal_city_placeid'].notnull()]['principal_city_placeid'] ].geometry.values e = time.time() g = g + (e-s) print('added principal city geometries for {0:,.0f} MSAs with a single principal city in {1:,.1f} seconds!'.format(len(metro_areas_gdf[metro_areas_gdf['principal_city_placeid'].notnull()]), e-s)) ###Output finding MSAs with only one principal city... added principal city geometries for 244 MSAs with a single principal city in 0.1 seconds! ###Markdown Metro areas with multiple principal cities ###Code s = time.time() print('finding MSAs with multiple principal cities...') need_these_metro_areas_list = metro_areas_gdf[metro_areas_gdf['principal_city_placeid'].isnull()].index.tolist() newgdf = geopandas.GeoDataFrame(data=None, columns=['geometry'], crs=metro_areas_gdf.crs, geometry='geometry') cnt = 0 for this_metro_area in need_these_metro_areas_list: cnt = cnt + 1 if ((np.mod(cnt,20) == 0) | (cnt == len(need_these_metro_areas_list))): print('Checking metro area {0:,.0f} of {1:,.0f}...'.format(cnt, len(need_these_metro_areas_list))) the_principal_city_place_id_list = cbsa_principal_cities_df[ cbsa_principal_cities_df['CBSA Code'] == this_metro_area].apply(lambda row: '{0:02d}{1:05d}'.format(int(row['FIPS State Code']), int(row['FIPS Place Code'])), axis=1).tolist() this_metro_area_principal_city_geolist = [] for this_principal_city_id in the_principal_city_place_id_list: if (place_gdf.loc[this_principal_city_id].geometry.type == 'Polygon'): this_metro_area_principal_city_geolist.append(place_gdf.loc[this_principal_city_id].geometry) else: for x in place_gdf.loc[this_principal_city_id].geometry: if (x.type == 'Polygon'): this_metro_area_principal_city_geolist.append(x) else: print(x.type) combined_geo = unary_union(this_metro_area_principal_city_geolist) newgdf.loc[this_metro_area, 'geometry'] = combined_geo #newgdf.index.name = 'GEOID' metro_areas_gdf.loc[newgdf.index, 'principal_cities_geometry'] = newgdf.geometry metro_areas_gdf = metro_areas_gdf.drop('principal_city_placeid', axis=1) # print('backing up...') # cd_gdf_bk = cd_gdf # metro_areas_gdf_bk = metro_areas_gdf e = time.time() g = g + (e-s) print('Done in {0:,.0f} seconds!'.format(e-s)) #print('ok') s = time.time() print('keeping only the 435 voting members...') cd_gdf = cd_gdf[ (cd_gdf['NAMELSAD'].apply(lambda x: ('Congressional District' in x) == True)) & (cd_gdf['CD116FP'].notnull()) ] cd_gdf = cd_gdf.assign(pct_metro_area_overlap = np.nan) cd_gdf = cd_gdf.assign(pct_city_area_overlap = np.nan) cd_gdf = cd_gdf.assign(type = np.nan) print('\n') print('calculating overlap between congressional districts and metro areas...') print('Considering {0:,.0f} congressional districts...'.format(len(cd_gdf))) i = 0 for ix, thisrow in cd_gdf.sort_values(by=['STATE_NAME', 'CD116FP']).iterrows(): i = i + 1 if ((np.mod(i,50) == 0) | (i == 435)): print('Reading district {0:,.0f} of 435...'.format(i)) # print('{0:}-{1:.0f}...'.format( # thisrow['STATE_NAME'], # thisrow['CD116FP'] # )) total_metro_area_overlap = 0 for jx, thatrow in metro_areas_gdf[metro_areas_gdf.geometry.apply(lambda x: x.intersects(thisrow.geometry))].iterrows(): intersector = thisrow.geometry.intersection(thatrow.geometry) intersector_area_sq_m = geopandas.GeoSeries(intersector, crs=cd_gdf.crs).to_crs(equal_area_crs).geometry.values[0].area if (intersector_area_sq_m >= overlap_area_metro_tol): total_metro_area_overlap = total_metro_area_overlap + intersector_area_sq_m cd_gdf.loc[ix, 'pct_metro_area_overlap'] = total_metro_area_overlap / (thisrow['ALAND'] + thisrow['AWATER']) # metro_areas_gdf.loc[ix, 'pct_metro_area'] = intersector_area_sq_m / (thisrow['ALAND'] + thisrow['AWATER']) #metro_areas_gdf print('\n') print('calculating overlap between congressional districts and principal cities...') i = 0 metro_areas_gdf = metro_areas_gdf.set_geometry('principal_cities_geometry') for ix, thisrow in cd_gdf.iterrows(): i = i + 1 if ((np.mod(i,50) == 0) | (i == 435)): print('Reading district {0:,.0f} of 435...'.format(i)) # print('{0:}-{1:.0f}...'.format( # thisrow['STATE_NAME'], # thisrow['CD116FP'] # )) total_city_overlap = 0 for jx, thatrow in metro_areas_gdf[metro_areas_gdf.geometry.apply(lambda x: x.intersects(thisrow.geometry))].iterrows(): city_intersector = thisrow.geometry.intersection(thatrow.geometry) city_intersector_area_sq_m = geopandas.GeoSeries(city_intersector, crs=cd_gdf.crs).to_crs(equal_area_crs).geometry.values[0].area if (city_intersector_area_sq_m >= overlap_area_city_tol): total_city_overlap = total_city_overlap + city_intersector_area_sq_m cd_gdf.loc[ix, 'pct_city_area_overlap'] = total_city_overlap / (thisrow['ALAND'] + thisrow['AWATER']) #cd_gdf = cd_gdf['pct_metro_area_overlap'].fillna(0) #cd_gdf = cd_gdf['pct_city_overlap'].fillna(0) metro_areas_gdf = metro_areas_gdf.set_geometry('geometry') print('\n') print('identifying urban/suburban/rural based on pct_metro_area_overlap, pct_city_area_overlap...') cd_gdf = cd_gdf.assign(type = np.nan) cd_gdf.loc[cd_gdf['pct_city_area_overlap'] > .95, 'type'] = 'Urban' cd_gdf.loc[cd_gdf['pct_metro_area_overlap'] <= .5, 'type'] = 'Rural' cd_gdf.loc[ (cd_gdf['pct_city_area_overlap'] <= .95) & (cd_gdf['pct_metro_area_overlap'] > .5) , 'type'] = 'Suburban' e = time.time() g = g + (e-s) print('Got district urban/suburban/rural for {0:,.0f} districts in {1:,.0f} minutes {2:,.0f} seconds!'.format(len(cd_gdf), np.floor((e-s)/60), np.floor((e-s)%60))) print(cd_gdf.groupby('type').size()) cd_gdf[cd_gdf['type'] == 'Rural'][['STATE_NAME', 'CD116FP'] ].sort_values(['STATE_NAME', 'CD116FP'])[125:] print('Saving districts...') cd_gdf.reset_index().to_file(outdir+'cd116_with_areas_and_types_435.shp') print('DONE! Total time: {0:,.0f} minutes {1:,.0f} seconds!'.format(np.floor(g/60), np.floor(g%60))) z = geopandas.read_file(outdir+'cd116_with_areas_and_types_435.shp') z ###Output _____no_output_____
ai-platform-unified/notebooks/unofficial/migration/UJ13 unified Data Labeling task.ipynb
###Markdown AI Platform (Unified) SDK: Data Labeling InstallationInstall the latest (preview) version of AI Platform (Unified) SDK. ###Code ! pip3 install -U google-cloud-aiplatform --user ###Output _____no_output_____ ###Markdown Install the Google *cloud-storage* library as well. ###Code ! pip3 install google-cloud-storage ###Output _____no_output_____ ###Markdown Restart the KernelOnce you've installed the AI Platform (Unified) SDK and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages. ###Code import os if not os.getenv("AUTORUN"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin GPU run-time*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU** Set up your GCP project**The following steps are required, regardless of your notebook environment.**1. [Select or create a GCP project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)3. [Enable the AI Platform APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)4. [Google Cloud SDK](https://cloud.google.com/sdk) is already installed in AI Platform Notebooks.5. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. ###Code PROJECT_ID = "[your-project-id]" #@param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID ###Output _____no_output_____ ###Markdown RegionYou can also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Below are regions supported for AI Platform (Unified). We recommend when possible, to choose the region closest to you.- Americas: `us-central1`- Europe: `europe-west4`- Asia Pacific: `asia-east1`You cannot use a Multi-Regional Storage bucket for training with AI Platform. Not all regions provide support for all AI Platform services. For the latest support per region, see [Region support for AI Platform (Unified) services](https://cloud.google.com/ai-platform-unified/docs/general/locations) ###Code REGION = 'us-central1' #@param {type: "string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Authenticate your GCP account**If you are using AI Platform Notebooks**, your environment is alreadyauthenticated. Skip this step.*Note: If you are on an AI Platform notebook and run the cell, the cell knows to skip executing the authentication steps.* ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your Google Cloud account. This provides access # to your Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on AI Platform, then don't execute this code if not os.path.exists('/opt/deeplearning/metadata/env_version'): if 'google.colab' in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this tutorial in a notebook locally, replace the string # below with the path to your service account key and run this cell to # authenticate your Google Cloud account. else: %env GOOGLE_APPLICATION_CREDENTIALS your_path_to_credentials.json # Log in to your account on Google Cloud ! gcloud auth login ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This tutorial is designed to use training data that is in a public Cloud Storage bucket and a local Cloud Storage bucket for your batch predictions. You may alternatively use your own training data that you have stored in a local Cloud Storage bucket.Set the name of your Cloud Storage bucket below. It must be unique across all Cloud Storage buckets. ###Code BUCKET_NAME = "[your-bucket-name]" #@param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "[your-bucket-name]": BUCKET_NAME = PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION gs://$BUCKET_NAME ###Output _____no_output_____ ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al gs://$BUCKET_NAME ###Output _____no_output_____ ###Markdown Set up variablesNext, set up some variables used throughout the tutorial. Import libraries and define constants Import AI Platform (Unified) SDKImport the AI Platform (Unified) SDK into our Python environment. ###Code import os import sys import time from google.cloud.aiplatform import gapic as aip from google.protobuf import json_format from google.protobuf.struct_pb2 import Value from google.protobuf.struct_pb2 import Struct from google.protobuf.json_format import MessageToJson from google.protobuf.json_format import ParseDict ###Output _____no_output_____ ###Markdown AI Platform (Unified) constantsSetup up the following constants for AI Platform (Unified):- `API_ENDPOINT`: The AI Platform (Unified) API service endpoint for dataset, model, job, pipeline and endpoint services.- `API_PREDICT_ENDPOINT`: The AI Platform (Unified) API service endpoint for prediction.- `PARENT`: The AI Platform (Unified) location root path for dataset, model and endpoint resources. ###Code # API Endpoint API_ENDPOINT = "{0}-aiplatform.googleapis.com".format(REGION) # AI Platform (Unified) location root path for your dataset, model and endpoint resources PARENT = "projects/" + PROJECT_ID + "/locations/" + REGION ###Output _____no_output_____ ###Markdown AutoML constantsNext, setup constants unique to AutoML image classification datasets and training:- Dataset Schemas: Tells the managed dataset service which type of dataset it is.- Data Labeling (Annotations) Schemas: Tells the managed dataset service how the data is labeled (annotated).- Dataset Training Schemas: Tells the managed pipelines service the task (e.g., classification) to train the model for. ###Code # Image Dataset type IMAGE_SCHEMA = "google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml" # Image Labeling type IMPORT_SCHEMA_IMAGE_CLASSIFICATION = "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_classification_single_label_io_format_1.0.0.yaml" # Image labeling task LABELING_SCHEMA_IMAGE = "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/image_classification_1.0.0.yaml" ###Output _____no_output_____ ###Markdown ClientsThe AI Platform (Unified) SDK works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the server (AI Platform).You will use several clients in this tutorial, so set them all up upfront.- Dataset Service for managed datasets.- Job Service for batch jobs and custom training. ###Code # client options same for all services client_options = {"api_endpoint": API_ENDPOINT} def create_dataset_client(): client = aip.DatasetServiceClient( client_options=client_options ) return client def create_job_client(): client = aip.JobServiceClient( client_options=client_options ) return client clients = {} clients["dataset"] = create_dataset_client() clients["job"] = create_job_client() for client in clients.items(): print(client) import tensorflow as tf LABELING_FILES = [ "https://raw.githubusercontent.com/googleapis/python-aiplatform/master/samples/snippets/resources/daisy.jpg" ] IMPORT_FILE = "gs://" + BUCKET_NAME + '/labeling.csv' with tf.io.gfile.GFile(IMPORT_FILE, 'w') as f: for lf in LABELING_FILES: ! wget {lf} | gsutil cp {lf.split("/")[-1]} gs://{BUCKET_NAME} f.write("gs://" + BUCKET_NAME + "/" + lf.split("/")[-1] + "\n") ! gsutil cat $IMPORT_FILE ###Output _____no_output_____ ###Markdown *Example output*:```gs://migration-ucaip-trainingaip-20210303215432/daisy.jpg``` Create a dataset [projects.locations.datasets.create](https://cloud.google.com/ai-platform-unified/docs/reference/rest/v1beta1/projects.locations.datasets/create) Request ###Code DATA_SCHEMA = IMAGE_SCHEMA dataset = { "display_name": "labeling_" + TIMESTAMP, "metadata_schema_uri": "gs://" + DATA_SCHEMA } print(MessageToJson( aip.CreateDatasetRequest( parent=PARENT, dataset=dataset ).__dict__["_pb"]) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "parent": "projects/migration-ucaip-training/locations/us-central1", "dataset": { "displayName": "labeling_20210303215432", "metadataSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml" }}``` Call ###Code request = clients["dataset"].create_dataset( parent=PARENT, dataset=dataset ) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/datasets/1165112889535627264", "displayName": "labeling_20210303215432", "metadataSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml", "labels": { "aiplatform.googleapis.com/dataset_metadata_schema": "IMAGE" }, "metadata": { "dataItemSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/dataitem/image_1.0.0.yaml" }}``` ###Code # The full unique ID for the dataset dataset_id = result.name # The short numeric ID for the dataset dataset_short_id = dataset_id.split('/')[-1] print(dataset_id) ###Output _____no_output_____ ###Markdown [projects.locations.datasets.import](https://cloud.google.com/ai-platform-unified/docs/reference/rest/v1beta1/projects.locations.datasets/import) Request ###Code LABEL_SCHEMA = IMPORT_SCHEMA_IMAGE_CLASSIFICATION import_config = { "gcs_source": { "uris": [IMPORT_FILE] }, "import_schema_uri": LABEL_SCHEMA } print(MessageToJson( aip.ImportDataRequest( name=dataset_short_id, import_configs=[import_config] ).__dict__["_pb"]) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "1165112889535627264", "importConfigs": [ { "gcsSource": { "uris": [ "gs://migration-ucaip-trainingaip-20210303215432/labeling.csv" ] }, "importSchemaUri": "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_classification_single_label_io_format_1.0.0.yaml" } ]}``` Call ###Code request = clients["dataset"].import_data( name=dataset_id, import_configs=[import_config] ) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{}``` Create data labeling specialist pool In case you do not have access to labeling services execute this section. ###Code # add client for specialist pool clients["specialist_pool"] = aip.SpecialistPoolServiceClient( client_options=client_options ) ###Output _____no_output_____ ###Markdown [projects.locations.specialistPools.create](https://cloud.google.com/ai-platform-unified/docs/reference/rest/v1beta1/projects.locations.specialistPools/createe) RequestIn this part, you will replace [your-email-address] with your email address. This makes you the specialist and recipient of the labeling request. ###Code EMAIL = "[your-email-address]" specialist_pool = { "name": "labeling_" + TIMESTAMP, #he resource name of the SpecialistPool. "display_name": "labeling_" + TIMESTAMP, # user-defined name of the SpecialistPool "specialist_manager_emails": [EMAIL] } print(MessageToJson( aip.CreateSpecialistPoolRequest( parent=PARENT, specialist_pool=specialist_pool ).__dict__["_pb"]) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "parent": "projects/migration-ucaip-training/locations/us-central1", "specialistPool": { "name": "labeling_20210303215432", "displayName": "labeling_20210303215432", "specialistManagerEmails": [ "[email protected]" ] }}``` Call ###Code request = clients["specialist_pool"].create_specialist_pool( parent=PARENT, specialist_pool=specialist_pool ) ###Output _____no_output_____ ###Markdown Response ###Code result = request.result() print(MessageToJson(result.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/specialistPools/1167839678372511744"}``` ###Code specialist_name = result.name specialist_id = specialist_name.split("/")[-1] print(specialist_name) ###Output _____no_output_____ ###Markdown Create data labeling job [projects.locations.dataLabelingJobs.create](https://cloud.google.com/ai-platform-unified/docs/reference/rest/v1beta1/projects.locations.dataLabelingJobs/create) ###Code # create placeholder file for valid PDF file with instruction for data labeling ! echo "this is instruction" >> instruction.txt | gsutil cp instruction.txt gs://$BUCKET_NAME ###Output _____no_output_____ ###Markdown Request ###Code LABLEING_SCHEMA = LABELING_SCHEMA_IMAGE INSTRUCTION_FILE = "gs://" + BUCKET_NAME + "/instruction.txt" inputs = json_format.ParseDict({"annotation_specs": ["rose"]}, Value()) data_labeling_job = { "display_name": "labeling_" + TIMESTAMP, "datasets": [dataset_id], "labeler_count": 1, "instruction_uri": INSTRUCTION_FILE, "inputs_schema_uri": LABLEING_SCHEMA, "inputs": inputs, "annotation_labels": { "aiplatform.googleapis.com/annotation_set_name": "data_labeling_job_specialist_pool" }, "specialist_pools": [specialist_name] } print(MessageToJson( aip.CreateDataLabelingJobRequest( parent=PARENT, data_labeling_job=data_labeling_job ).__dict__["_pb"]) ) ###Output _____no_output_____ ###Markdown *Example output*:```{ "parent": "projects/migration-ucaip-training/locations/us-central1", "dataLabelingJob": { "displayName": "labeling_20210303215432", "datasets": [ "projects/116273516712/locations/us-central1/datasets/1165112889535627264" ], "labelerCount": 1, "instructionUri": "gs://migration-ucaip-trainingaip-20210303215432/instruction.txt", "inputsSchemaUri": "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/image_classification_1.0.0.yaml", "inputs": { "annotation_specs": [ "rose" ] }, "annotationLabels": { "aiplatform.googleapis.com/annotation_set_name": "data_labeling_job_specialist_pool" }, "specialistPools": [ "projects/116273516712/locations/us-central1/specialistPools/1167839678372511744" ] }``` Call ###Code request = clients["job"].create_data_labeling_job( parent=PARENT, data_labeling_job=data_labeling_job ) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/dataLabelingJobs/3830883229125050368", "displayName": "labeling_20210303215432", "datasets": [ "projects/116273516712/locations/us-central1/datasets/1165112889535627264" ], "labelerCount": 1, "instructionUri": "gs://migration-ucaip-trainingaip-20210303215432/instruction.txt", "inputsSchemaUri": "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/image_classification_1.0.0.yaml", "inputs": { "annotationSpecs": [ "rose" ] }, "state": "JOB_STATE_PENDING", "createTime": "2021-03-03T21:55:31.239049Z", "updateTime": "2021-03-03T21:55:31.239049Z"}``` ###Code labeling_task_name = request.name print(labeling_task_name) ###Output _____no_output_____ ###Markdown [projects.locations.dataLabelingJobs.get](https://cloud.google.com/ai-platform-unified/docs/reference/rest/v1beta1/projects.locations.dataLabelingJobs/get) Call ###Code request = clients["job"].get_data_labeling_job( name=labeling_task_name ) ###Output _____no_output_____ ###Markdown Response ###Code print(MessageToJson(request.__dict__["_pb"])) ###Output _____no_output_____ ###Markdown *Example output*:```{ "name": "projects/116273516712/locations/us-central1/dataLabelingJobs/3830883229125050368", "displayName": "labeling_20210303215432", "datasets": [ "projects/116273516712/locations/us-central1/datasets/1165112889535627264" ], "labelerCount": 1, "instructionUri": "gs://migration-ucaip-trainingaip-20210303215432/instruction.txt", "inputsSchemaUri": "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/image_classification_1.0.0.yaml", "inputs": { "annotationSpecs": [ "rose" ] }, "state": "JOB_STATE_PENDING", "createTime": "2021-03-03T21:55:31.239049Z", "updateTime": "2021-03-03T21:55:31.239049Z", "specialistPools": [ "projects/116273516712/locations/us-central1/specialistPools/1167839678372511744" ]}``` [projects.locations.dataLabelingJobs.cancel](https://cloud.google.com/ai-platform-unified/docs/reference/rest/v1beta1/projects.locations.dataLabelingJobs/cancel) Call ###Code request = clients["job"].cancel_data_labeling_job( name=labeling_task_name ) ###Output _____no_output_____ ###Markdown Response ###Code print(request) ###Output _____no_output_____ ###Markdown *Example output*:```None``` ###Code while True: response = clients["job"].get_data_labeling_job(name=labeling_task_name) if response.state == aip.JobState.JOB_STATE_CANCELLED: print("Labeling job CANCELED") break else: print("Canceling labeling job:", response.state) time.sleep(60) ###Output _____no_output_____ ###Markdown Cleaning upTo clean up all GCP resources used in this project, you can [delete the GCPproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial. ###Code delete_dataset = True delete_job = True delete_specialist_pool = True delete_bucket = True # Delete the dataset using the AI Platform (Unified) fully qualified identifier for the dataset try: if delete_dataset: clients['dataset'].delete_dataset(name=dataset_id) except Exception as e: print(e) # Delete the labeling job using the AI Platform (Unified) fully qualified identifier for the dataset try: if delete_job: request = clients["job"].delete_data_labeling_job(name=labeling_task_name) except Exception as e: print(e) # Delete the specialist pool using the AI Platform (Unified) fully qualified identifier for the dataset try: if delete_specialist_pool: clients["specialist_pool"].delete_specialist_pool(name=specialist_name) except Exception as e: print(e) if delete_bucket and 'BUCKET_NAME' in globals(): ! gsutil rm -r gs://$BUCKET_NAME ###Output _____no_output_____
quora/notebooks/EDA.ipynb
###Markdown Exploration of Quora dataset ###Code import sys sys.path.append("..") import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.style.use("dark_background") # comment out if using light Jupyter theme dtypes = {"qid": str, "question_text": str, "target": int} train = pd.read_csv("../data/train.csv", dtype=dtypes) test = pd.read_csv("../data/test.csv", dtype=dtypes) ###Output _____no_output_____ ###Markdown 1. A first glance ###Code train.head() print("There are {} questions in train and {} in test".format(train.shape[0], test.shape[0])) print("Target value is binary (values: {})".format(set(train["target"].unique()))) print("Number of toxic questions in training data is {} (proportion: {}).".format(train["target"].sum(), train["target"].mean())) ###Output _____no_output_____ ###Markdown 2. A closer look at the questions 2.1 Question length (characters) ###Code train["text_length"] = train["question_text"].str.len() train["text_length"].describe() ###Output _____no_output_____ ###Markdown Most questions are relatively short, i.e., less than 100 characters. There are some exceptions, however, with a maximum of more than a thousand. Let's see how many characters we should consider. ###Code for length in [100, 150, 200, 250, 300, 350, 500]: num = np.sum(train["text_length"] > length) print("There are {} questions ({}%) with more than {} characters." .format(num, np.round(num / len(train) * 100, 2), length)) ###Output _____no_output_____ ###Markdown The number of questions with more than 250 characters is already small and with more than 300 negligible. We can cut the questions at 300 or even just remove them. Would there be a difference between the length of toxic and sincere questions? ###Code def split_on_target(data): toxic = data[data["target"] == 1] sincere = data[data["target"] == 0] return sincere, toxic sincere, toxic = split_on_target(train) def plot_density_plots(sincere_data, toxic_data, column, xlim=(0, 300), bin_size=5): fig, axes = plt.subplots(1, 2, figsize=(12, 5)) axes[0] = sns.distplot(sincere_data[column], ax=axes[0], bins=np.arange(xlim[0], xlim[1], bin_size)) axes[0].set_title("Sincere questions") axes[1] = sns.distplot(toxic_data[column], ax=axes[1], bins=np.arange(xlim[0], xlim[1], bin_size)) axes[1].set_title("Toxic questions") if xlim is not None: for ax in axes: ax.set_xlim(xlim[0], xlim[1]) plt.suptitle("Comparison of {} between sincere and toxic questions".format(column)) plt.show() plot_density_plots(sincere, toxic, "text_length") ###Output _____no_output_____ ###Markdown Toxic questions seem to have a higher chance of having somewhat more characters, although the medians seem to be more or less the same. The numbers confirm: ###Code pd.concat([sincere["text_length"].describe(), toxic["text_length"].describe()], axis=1) ###Output _____no_output_____ ###Markdown 2.2 Question length (words)A similar analysis can be done based on the number of _words_ per question, rather than the number of characters. To do this properly, we should probably first remove symbols and punctuation, but let's take a quick look. ###Code train["words"] = train["question_text"].apply(lambda x: len(x.split(" "))) sincere, toxic = split_on_target(train) plot_density_plots(sincere, toxic, "words", xlim=(0, 60), bin_size=2) ###Output _____no_output_____ ###Markdown The same conclusion seems to hold for the number of words. It is, thus, useful to include the question size as a feature in our models. Also, it seems that there are not many questions with more than 50 or 60 words: ###Code for n in [50, 55, 60]: print("{} questions with more than {} words.".format(np.sum(train["words"] > n), n)) ###Output _____no_output_____
Cross Language Information Retrieval.ipynb
###Markdown Cross Language Information Retrieval OverviewThe aim of this project is to build a cross language information retrieval system (CLIR) which, given a query in German, will be capable of searching text documents written in English and displaying the results in German.We're going to use machine translation, information retrieval using a vector space model, and then assess the performance of the system using IR evaluation techniques.Parts of the project are explained as we progress. Data Used- bitext.(en,de): A sentence aligned, parallel German-English corpus, sourced from the Europarl corpus (which is a collection of debates held in the EU parliament over a number of years). We'll use this to develop word-alignment tools, and build a translation probability table. - newstest.(en,de): A separate, smaller parallel corpus for evaulation of the translation system.- devel.(docs,queries,qrel): A set of documents in English (sourced from Wikipedia), queries in German, and relevance judgement scores for each query-document pair. The files are available to check out in the data/clir directory of the repo. Housekeeping: File encodings and tokenisationSince the data files we use is utf-8 encoded text, we need to convert the strings into ASCII by escaping the special symbols. We also import some libraries in this step as well. ###Code from nltk.tokenize import word_tokenize from __future__ import division #To properly handle floating point divisions. import math #Function to tokenise string/sentences. def tokenize(line, tokenizer=word_tokenize): utf_line = line.decode('utf-8').lower() return [token.encode('ascii', 'backslashreplace') for token in tokenizer(utf_line)] ###Output _____no_output_____ ###Markdown Now we can test out our tokenize function. Notice how it converts the word Über. ###Code tokenize("Seit damals ist er auf über 10.000 Punkte gestiegen.") ###Output _____no_output_____ ###Markdown Let's store the path of the data files as easily identifiable variables for future access. ###Code DEVELOPMENT_DOCS = 'data/clir/devel.docs' #Data file for IR engine development DEVELOPMENT_QUERIES = 'data/clir/devel.queries' #Data file containing queries in German DEVELOPMENT_QREL = 'data/clir/devel.qrel' #Data file containing a relevance score or query-doc pairs BITEXT_ENG = 'data/clir/bitext.en' #Bitext data file in English for translation engine and language model development BITEXT_DE = 'data/clir/bitext.de' #Bitext data file in German NEWSTEST_ENG = 'data/clir/newstest.en' #File for testing language model ###Output _____no_output_____ ###Markdown With that out of the way, lets get to the meat of the project. As mentioned earlier, we're going to build a CLIR engine consisting of information retrieval and translation components, and then evaluate its accuracy.The CLIR system will:- **translate queries** from German into English (because our searcheable corpus is in English), using word-based translation, a rather simplistic approach as opposed to the sophistication you might see in, say, *Google Translate*.- **search over the document corpus** using the Okapi BM25 IR ranking model, a variation of the traditional TF-IDF model.- **evaluate the quality** of ranked retrieval results using the query relevance judgements. Information Retrieval using [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25)We'll start by building an IR system, and give it a test run with some English queries. Here's an overview of the tasks involved:- Loading the data files, and tokenizing the input.- Preprocessing the lexicon by stemming, removing stopwords.- Calculating the TF/IDF representation for all documents in our wikipedia corpus.- Storing an inverted index to efficiently documents, given a query term.- Implementing querying with BM25.- Test runs.So for our first task, we'll load the devel.docs file, extract and tokenize the terms, and store them in a python dictionary with the document ids as keys. ###Code import nltk import re stopwords = set(nltk.corpus.stopwords.words('english')) #converting stopwords to a set for faster processing in the future. stemmer = nltk.stem.PorterStemmer() #Function to extract and tokenize terms from a document def extract_and_tokenize_terms(doc): terms = [] for token in tokenize(doc): if token not in stopwords: # 'in' and 'not in' operations are faster over sets than lists if not re.search(r'\d',token) and not re.search(r'[^A-Za-z-]',token): #Removing numbers and punctuations #(excluding hyphenated words) terms.append(stemmer.stem(token.lower())) return terms documents = {} #Dictionary to store documents with ids as keys. #Reading each line in the file and storing it documents dictionary f = open(DEVELOPMENT_DOCS) for line in f: doc = line.split("\t") terms = extract_and_tokenize_terms(doc[1]) documents[doc[0]] = terms f.close() ###Output _____no_output_____ ###Markdown To check if everything is working till now, let's access a document from the dictionary, with the id '290'. ###Code documents['290'][:20] #To keep things short, we're only going to check out 20 tokens. ###Output _____no_output_____ ###Markdown Now we'll build an inverted index for the documents, so that we can quickly access documents for the terms we need. ###Code #Building an inverted index for the documents from collections import defaultdict inverted_index = defaultdict(set) for docid, terms in documents.items(): for term in terms: inverted_index[term].add(docid) ###Output _____no_output_____ ###Markdown To test it out, the list of documents containing the word 'pizza': ###Code inverted_index['pizza'] ###Output _____no_output_____ ###Markdown On to the BM25 TF-IDF representation, we'll create the td-idf matrix for terms-documents, first without the query component. The query component is dependent on the terms in our query. So we'll just calculate that, and multiply it with the overall score when we want to retreive documents for a particular query. ###Code #Building a TF-IDF representation using BM25 NO_DOCS = len(documents) #Number of documents AVG_LEN_DOC = sum([len(doc) for doc in documents.values()])/len(documents) #Average length of documents #The function below takes the documentid, and the term, to calculate scores for the tf and idf #components, and multiplies them together. def tf_idf_score(k1,b,term,docid): ft = len(inverted_index[term]) term = stemmer.stem(term.lower()) fdt = documents[docid].count(term) idf_comp = math.log((NO_DOCS - ft + 0.5)/(ft+0.5)) tf_comp = ((k1 + 1)*fdt)/(k1*((1-b) + b*(len(documents[docid])/AVG_LEN_DOC))+fdt) return idf_comp * tf_comp #Function to create tf_idf matrix without the query component def create_tf_idf(k1,b): tf_idf = defaultdict(dict) for term in set(inverted_index.keys()): for docid in inverted_index[term]: tf_idf[term][docid] = tf_idf_score(k1,b,term,docid) return tf_idf #Creating tf_idf matrix with said parameter values: k1 and b for all documents. tf_idf = create_tf_idf(1.5,0.5) ###Output _____no_output_____ ###Markdown We took the default values for k1 and b (1.5 and 0.5), which seemed to give good results. Although these parameters may be altered depending on the type of data being dealth with. Now we create a method to retrieve the query component, and another method that will use the previous ones and retrieve the relevant documents for a query, sorted on the basis of their ranks. ###Code #Function to retrieve query component def get_qtf_comp(k3,term,fqt): return ((k3+1)*fqt[term])/(k3 + fqt[term]) #Function to retrieve documents || Returns a set of documents and their relevance scores. def retr_docs(query,result_count): q_terms = [stemmer.stem(term.lower()) for term in query.split() if term not in stopwords] #Removing stopwords from queries fqt = {} for term in q_terms: fqt[term] = fqt.get(term,0) + 1 scores = {} for word in fqt.keys(): #print word + ': '+ str(inverted_index[word]) for document in inverted_index[word]: scores[document] = scores.get(document,0) + (tf_idf[word][document]*get_qtf_comp(0,word,fqt)) #k3 chosen as 0 (default) return sorted(scores.items(),key = lambda x : x[1] , reverse=True)[:result_count] ###Output _____no_output_____ ###Markdown Let's try and retrieve a document for a query. ###Code retr_docs("Manchester United",5) ###Output _____no_output_____ ###Markdown Checking out the terms in the top ranked document.. ###Code documents['19961'][:30] ###Output _____no_output_____ ###Markdown The information retrieval engine has worked quite well in this case. The top ranked document for the query is a snippet of the wikipedia article for Manchester United Football Club. On further inspection, we can see that the documents ranked lower are, for example, for The University of Manchester, or even just articles with the words 'Manchester' or 'United' in them.Now we can begin translating the German queries to English. Query Translation: For translation, we'll implement a simple word-based translation model in a noisy channel setting. This means that we'll use both a language model over English, and a translation model.We'll use a unigram language model for decoding/translation, but also create a model with trigram to test the improvement in performace). Our aim is to find the string, $\vec{e}$ which maximises $p(\vec{e}) p(\vec{g} | \vec{e})$, given English output string $\vec{e}$ and German input string $\vec{g}$. Language Model:[From Wikipedia](https://en.wikipedia.org/wiki/Language_model): A statistical language model is a probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability P(w1,....,wm) to the whole sequence. The models will be trained on the 'bitext.en' file, and tested on 'newstest.en'.As we'll train the model on different files, it's obvious that we'll run into words (unigrams) and trigrams what we hadn't seen in the file we trained the model on. To account for these unknown information, we'll use add-k or [laplace smoothing](https://en.wikipedia.org/wiki/Additive_smoothing) for the unigram and [Katz-Backoff smoothing](https://en.wikipedia.org/wiki/Katz%27s_back-off_model) for the trigram model.Let's start with calculating the unigram, bigram and trigram counts (we need the bigram counts for trigram smoothing). The sentences are also converted appropriately by adding sentinels at the start and end of sentences. ###Code #Calculating the unigram, bigram and trigram counts. f = open(BITEXT_ENG) train_sentences = [] for line in f: train_sentences.append(tokenize(line)) f.close() #Function to mark the first occurence of words as unknown, for training. def check_for_unk_train(word,unigram_counts): if word in unigram_counts: return word else: unigram_counts[word] = 0 return "UNK" #Function to convert sentences for training the language model. def convert_sentence_train(sentence,unigram_counts): #<s1> and <s2> are sentinel tokens added to the start and end, for handling tri/bigrams at the start of a sentence. return ["<s1>"] + ["<s2>"] + [check_for_unk_train(token.lower(),unigram_counts) for token in sentence] + ["</s2>"]+ ["</s1>"] #Function to obtain unigram, bigram and trigram counts. def get_counts(sentences): trigram_counts = defaultdict(lambda: defaultdict(dict)) bigram_counts = defaultdict(dict) unigram_counts = {} for sentence in sentences: sentence = convert_sentence_train(sentence, unigram_counts) for i in range(len(sentence) - 2): trigram_counts[sentence[i]][sentence[i+1]][sentence[i+2]] = trigram_counts[sentence[i]][sentence[i+1]].get(sentence[i+2],0) + 1 bigram_counts[sentence[i]][sentence[i+1]] = bigram_counts[sentence[i]].get(sentence[i+1],0) + 1 unigram_counts[sentence[i]] = unigram_counts.get(sentence[i],0) + 1 unigram_counts["</s1>"] = unigram_counts["<s1>"] unigram_counts["</s2>"] = unigram_counts["<s2>"] bigram_counts["</s2>"]["</s1>"] = bigram_counts["<s1>"]["<s2>"] return unigram_counts, bigram_counts, trigram_counts unigram_counts, bigram_counts,trigram_counts = get_counts(train_sentences) ###Output _____no_output_____ ###Markdown We can calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) of our language models to see how well they predict a sentence. ###Code #Constructing unigram model with 'add-k' smoothing token_count = sum(unigram_counts.values()) #Function to convert unknown words for testing. #Words that don't appear in the training corpus (even if they are in the test corpus) are marked as UNK. def check_for_unk_test(word,unigram_counts): if word in unigram_counts and unigram_counts[word] > 0: return word else: return "UNK" def convert_sentence_test(sentence,unigram_counts): return ["<s1>"] + ["<s2>"] + [check_for_unk_test(word.lower(),unigram_counts) for word in sentence] + ["</s2>"] + ["</s1>"] #Returns the log probability of a unigram, with add-k smoothing. We're taking logs to avoid probability underflow. def get_log_prob_addk(word,unigram_counts,k): return math.log((unigram_counts[word] + k)/ \ (token_count + k*len(unigram_counts))) #Returns the log probability of a sentence. def get_sent_log_prob_addk(sentence, unigram_counts,k): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_addk(word, unigram_counts,k) for word in sentence]) def calculate_perplexity_uni(sentences,unigram_counts, token_count, k): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_addk(sentence,unigram_counts,k) return math.exp(-total_log_prob/test_token_count) f = open(NEWSTEST_ENG) test_sents = [] for line in f: test_sents.append(tokenize(line)) f.close() ###Output _____no_output_____ ###Markdown Now we'll calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) for the model, as a measure of performance i.e. how well they predict a sentence. To find the optimum value of k, we can just calculate the perplexity multiple times with different k(s). ###Code #Calculating the perplexity for different ks ks = [0.0001,0.01,0.1,1,10] for k in ks: print str(k) +": " + str(calculate_perplexity_uni(test_sents,unigram_counts,token_count,k)) ###Output 0.0001: 613.918691403 0.01: 614.027477551 0.1: 615.06903252 1: 628.823994251 10: 823.302441447 ###Markdown Using add-k smoothing, perplexity for the unigram model increases with the increase in k. So 0.0001 is the best choice for k.Moving on to tri-grams. ###Code #Calculating the N1/N paramaters for Trigrams/Bigrams/Unigrams in Katz-Backoff Smoothing TRI_ONES = 0 #N1 for Trigrams TRI_TOTAL = 0 #N for Trigrams for twod in trigram_counts.values(): for oned in twod.values(): for val in oned.values(): if val==1: TRI_ONES+=1 #Count of trigram seen once TRI_TOTAL += 1 #Count of all trigrams seen BI_ONES = 0 #N1 for Bigrams BI_TOTAL = 0 #N for Bigrams for oned in bigram_counts.values(): for val in oned.values(): if val==1: BI_ONES += 1 #Count of bigram seen once BI_TOTAL += 1 #Count of all bigrams seen UNI_ONES = unigram_counts.values().count(1) UNI_TOTAL = len(unigram_counts) #Constructing trigram model with backoff smoothing TRI_ALPHA = TRI_ONES/TRI_TOTAL #Alpha parameter for trigram counts BI_ALPHA = BI_ONES/BI_TOTAL #Alpha parameter for bigram counts UNI_ALPHA = UNI_ONES/UNI_TOTAL def get_log_prob_back(sentence,i,unigram_counts,bigram_counts,trigram_counts,token_count): if trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i],0) > 0: return math.log((1-TRI_ALPHA)*trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i])/bigram_counts[sentence[i-2]][sentence[i-1]]) else: if bigram_counts[sentence[i-1]].get(sentence[i],0)>0: return math.log(TRI_ALPHA*((1-BI_ALPHA)*bigram_counts[sentence[i-1]][sentence[i]]/unigram_counts[sentence[i-1]])) else: return math.log(TRI_ALPHA*BI_ALPHA*(1-UNI_ALPHA)*((unigram_counts[sentence[i]]+0.0001)/(token_count+(0.0001)*len(unigram_counts)))) def get_sent_log_prob_back(sentence, unigram_counts, bigram_counts,trigram_counts, token_count): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_back(sentence,i, unigram_counts,bigram_counts,trigram_counts,token_count) for i in range(2,len(sentence))]) def calculate_perplexity_tri(sentences,unigram_counts,bigram_counts,trigram_counts, token_count): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_back(sentence,unigram_counts,bigram_counts,trigram_counts,token_count) return math.exp(-total_log_prob/test_token_count) #Calculating the perplexity calculate_perplexity_tri(test_sents,unigram_counts,bigram_counts,trigram_counts,token_count) ###Output _____no_output_____ ###Markdown For unigram language model, the perplexity for different values of k were as follow:kPerplexity0.0001613.920.01614.030.1628.821823.302For tri-gram model, Katz-Backoff smoothing was chosen as it takes a discounted probability for things only seen once, and backs off to a lower level n-gram for unencountered n-grams.Compared with the trigram model, the perplexity was as follows:ModelPerplexityUnigram (Best K)613.92Trigram (Katz Backoff)461.65As can be seen, the trigram model with 'Katz Backoff' smoothing seems to perform better than the best unigram model (with k = 0.0001). Thus we can say that this model is better for predicting the sequence of a sentence than unigram, which should is obvious if you think about it. Translation modelNext, we'll estimate translation model probabilities. For this, we'll use IBM1 from the NLTK library. IBM1 learns word based translation probabilities using expectation maximisation. We'll use both 'bitext.de' and 'bitext.en' files for this purpose; extract the sentences from each, and then use IBM1 to build the translation tables. ###Code #Creating lists of English and German sentences from bitext. from nltk.translate import IBMModel1 from nltk.translate import AlignedSent, Alignment eng_sents = [] de_sents = [] f = open(BITEXT_ENG) for line in f: terms = tokenize(line) eng_sents.append(terms) f.close() f = open(BITEXT_DE) for line in f: terms = tokenize(line) de_sents.append(terms) f.close() #Zipping together the bitexts for easier access paral_sents = zip(eng_sents,de_sents) #Building English to German translation table for words (Backward alignment) eng_de_bt = [AlignedSent(E,G) for E,G in paral_sents] eng_de_m = IBMModel1(eng_de_bt, 5) #Building German to English translation table for words (Backward alignment) de_eng_bt = [AlignedSent(G,E) for E,G in paral_sents] de_eng_m = IBMModel1(de_eng_bt, 5) ###Output _____no_output_____ ###Markdown We can take the intersection of the dual alignments to obtain a combined alignment for each sentence in the bitext. ###Code #Script below to combine alignments using set intersections combined_align = [] for i in range(len(eng_de_bt)): forward = {x for x in eng_de_bt[i].alignment} back_reversed = {x[::-1] for x in de_eng_bt[i].alignment} combined_align.append(forward.intersection(back_reversed)) ###Output _____no_output_____ ###Markdown Now we can create translation dictionaries in both English to German, and German to English directions. Creating dictionaries for occurence counts first. ###Code #Creating German to English dictionary with occurence count of word pairs de_eng_count = defaultdict(dict) for i in range(len(de_eng_bt)): for item in combined_align[i]: de_eng_count[de_eng_bt[i].words[item[1]]][de_eng_bt[i].mots[item[0]]] = de_eng_count[de_eng_bt[i].words[item[1]]].get(de_eng_bt[i].mots[item[0]],0) + 1 #Creating a English to German dict with occ count of word pais eng_de_count = defaultdict(dict) for i in range(len(eng_de_bt)): for item in combined_align[i]: eng_de_count[eng_de_bt[i].words[item[0]]][eng_de_bt[i].mots[item[1]]] = eng_de_count[eng_de_bt[i].words[item[0]]].get(eng_de_bt[i].mots[item[1]],0) + 1 ###Output _____no_output_____ ###Markdown Creating dictionaries for translation probabilities. ###Code #Creating German to English table with word translation probabilities de_eng_prob = defaultdict(dict) for de in de_eng_count.keys(): for eng in de_eng_count[de].keys(): de_eng_prob[de][eng] = de_eng_count[de][eng]/sum(de_eng_count[de].values()) #Creating English to German dict with word translation probabilities eng_de_prob = defaultdict(dict) for eng in eng_de_count.keys(): for de in eng_de_count[eng].keys(): eng_de_prob[eng][de] = eng_de_count[eng][de]/sum(eng_de_count[eng].values()) ###Output _____no_output_____ ###Markdown Let's look at some examples of translating individual words from German to English. ###Code #Examples of translating individual words from German to English print de_eng_prob['frage'] print de_eng_prob['handlung'] print de_eng_prob['haus'] ###Output {'question': 0.970873786407767, 'issue': 0.019417475728155338, 'matter': 0.009708737864077669} {'rush': 1.0} {'begins': 0.058823529411764705, 'house': 0.9411764705882353} ###Markdown Building the noisy channel translation model, which uses the english to german translation dictionary and the unigram language model to add "noise". ###Code #Building noisy channel translation model def de_eng_noisy(german): noisy={} for eng in de_eng_prob[german].keys(): noisy[eng] = eng_de_prob[eng][german]+ get_log_prob_addk(eng,unigram_counts,0.0001) return noisy ###Output _____no_output_____ ###Markdown Let's check out the translation using the noise channel approach. ###Code #Test block to check alignments print de_eng_noisy('vater') print de_eng_noisy('haus') print de_eng_noisy('das') print de_eng_noisy('entschuldigung') ###Output {'father': -8.798834996562721} {'begins': -10.2208672198799, 'house': -8.163007778647888} {'this': -5.214590799418497, 'the': -3.071527829335362, 'that': -4.664995720177421} {'excuse': -11.870404868087332, 'apology': -12.39683538573032, 'comprehend': -11.89683538573032} ###Markdown Translations for 'vater', 'hause', 'das' seem to be pretty good, with the max score going to the best translation. For the word 'entschuldigung', the best possible translation is 'excuse', while 'comprehend' being close. But in real world use, the most common translation for 'entschuldigung' is 'sorry'. Checking the reverse translation for 'sorry', ###Code eng_de_prob['sorry'] ###Output _____no_output_____ ###Markdown The word 'bereue', which Google translates as 'regret'. This is one example of a 'bad' alignment.Let's try tanslating some queries now. ###Code #Translating first 5 queries into English #Function for direct translation def de_eng_direct(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_prob[token], key=de_eng_prob[token].get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) #Function for noisy channel translation def de_eng_noisy_translate(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_noisy(token), key=de_eng_noisy(token).get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) f = open(DEVELOPMENT_QUERIES) lno = 0 plno = 0 #Also building a dictionary of query ids and query content (only for the first 100s) german_qs = {} test_query_trans_sents = [] #Building a list for perplexity checks. for line in f: lno+=1 query_id = line.split('\t')[0] query_german = line.split('\t')[1] german_qs[query_id] = query_german.strip() translation = str(de_eng_noisy_translate(query_german)) if plno<5: print query_id + "\n" + "German: " + str(query_german) + "\n" + "English: " + translation +"\n\n" plno+=1 test_query_trans_sents.append(translation) if lno==100: break f.close() ###Output 82 German: der ( von engl . action : tat , handlung , bewegung ) ist ein filmgenre des unterhaltungskinos , in welchem der fortgang der äußeren handlung von zumeist spektakulär inszenierten kampf - und gewaltszenen vorangetrieben und illustriert wird . English: the ( , guises . action : indeed , rush , movement ) is a filmgenre the unterhaltungskinos , in much the fortgang the external rush , zumeist spektakul\xe4r inszenierten fight - and gewaltszenen pushed and illustriert will . 116 German: die ( einheitenzeichen : u für unified atomic mass unit , veraltet amu für atomic mass unit ) ist eine maßeinheit der masse . English: the ( einheitenzeichen : u for unified atomic mass unit , obsolete amu for atomic mass unit ) is a befuddled the mass . 240 German: der von lateinisch actualis , " wirklich " , auch aktualitätsprinzip , uniformitäts - oder gleichförmigkeitsprinzip , englisch uniformitarianism , ist die grundlegende wissenschaftliche methode in der . English: the , lateinisch actualis , `` really `` , , aktualit\xe4tsprinzip , uniformit\xe4ts - or gleichf\xf6rmigkeitsprinzip , english uniformitarianism , is the fundamental scientific method in the . 320 German: die ( griechisch el , von altgriechisch grc , - " zusammen - " , " anbinden " , gemeint ist " die herzbeutel angehängte " ) , ist ein blutgefäß , welches das blut vom herz wegführt . English: the ( griechisch el , , altgriechisch grc , - `` together - `` , `` anbinden `` , meant is `` the herzbeutel angeh\xe4ngte `` ) , is a blutgef\xe4\xdf , welches the blood vom heart wegf\xfchrt . 540 German: unter der bezeichnung fasst man die drei im nördlichen alpenvorland liegenden gewässereinheiten obersee , untersee und seerhein zusammen . English: under the bezeichnung summarizes one the three , northern alpenvorland liegenden gew\xe4ssereinheiten obersee , untersee and seerhein together . ###Markdown The translations of the first 5 queries according to Google translate are as follows: 82 of ( . Of eng action : act, action , movement, ) is a film genre of entertainment cinema , in which the continued transition of the external action of mostly spectacularly staged battle - and violent scenes is advanced and illustrated .116 ( unit sign : u for unified atomic mass unit , amu outdated for atomic mass unit ) is a unit of measure of mass .240 of actualis from Latin , "real" , even actuality principle , uniformity - or gleichförmigkeitsprinzip , English uniformitarianism , is the basic scientific method in .320 (Greek el , from Ancient Greek grc , - " together - " , " tie " , is meant " the heart bag attached" ) is a blood vessel that leads away the blood from the heart .540 under the designation one summarizes the three lying in the northern waters alpenvorland units obersee , subsea and Seerhein together .---Translations obtained through Google Translate are obviously better. It's interesting to note that our own translation engine works well if a 'word-word' translation is considered, and if the word-pair has been encountered enough times in the bi-lingual corpora. Google Translate also seems to perform better as it's considering phrase based translation, which is more sophisticated and accurate than word-word translation. Our engine also seems to work better for function words rather than content words as those would have been the one encountered a lot in the bi-corpora and are better aligned.The alignments were combined by taking the intersection of the forward and reverse alignments in this case. Combining the two alignments improved things in the sense that the intersection got rid of all the extra 'noise' in the alignments, so that the most likely ones remained (that existed both in the forward and reverse direction). Combining, and Evaluation For the final bit, we'll create a function that translates a query, and retrieves the relevant documents for it. Then, to evaluate the results of our CLIR engine, we'll use the [Mean Average Precision](https://www.youtube.com/watch?v=pM6DJ0ZZee0) to judge the performance of the CLIR system. MAP is a standard evaluation metric used in IR. ###Code #Building a dictionary for queryids and relevant document ids qrel = defaultdict(list) f = open(DEVELOPMENT_QREL) for line in f: item = line.split('\t') qrel[item[0]].append(item[2]) f.close() #Single function to retreive documents for a German query def trans_retr_docs(german_query,no_of_results,translation_function): trans_query = " ".join(extract_and_tokenize_terms(translation_function(german_query))) return [item[0] for item in retr_docs(trans_query,no_of_results)] #Retriving 100 documents #Calculating the map score def calc_map(no_of_results,translation_function): average_precision = [] for gq in german_qs.keys(): relevant_docs = qrel[gq] incremental_precision = [] resulting_docs = trans_retr_docs(german_qs[gq],no_of_results,translation_function) total_counter = 0 true_positive_counter = 0 for doc in resulting_docs: total_counter+=1 if doc in relevant_docs: true_positive_counter += 1 incremental_precision.append(true_positive_counter/total_counter) #For no relevant retreivals, the average precision will be considered 0. try: average_precision.append(sum(incremental_precision)/len(incremental_precision)) except: average_precision.append(0) return (sum(average_precision)/len(average_precision)) ###Output _____no_output_____ ###Markdown To keep runtime at a minimum, we'll only consider the top 100 returned results (documents) when ###Code #Printing the map score for direct translations print calc_map(100,de_eng_direct) #Printing the map score for noisy channel translations print calc_map(100,de_eng_noisy_translate) ###Output 0.364795198505 ###Markdown Cross Language Information Retrieval Housekeeping: File encodings and tokenisation ###Code from nltk.tokenize import word_tokenize from __future__ import division #To properly handle floating point divisions. import math #Function to tokenise string/sentences. def tokenize(line, tokenizer=word_tokenize): utf_line = line.decode('utf-8').lower() return [token.encode('ascii', 'backslashreplace') for token in tokenizer(utf_line)] tokenize("Seit damals ist er auf über 10.000 Punkte gestiegen.") DEVELOPMENT_DOCS = 'data/clir/devel.docs' #Data file for IR engine development DEVELOPMENT_QUERIES = 'data/clir/devel.queries' #Data file containing queries in German DEVELOPMENT_QREL = 'data/clir/devel.qrel' #Data file containing a relevance score or query-doc pairs BITEXT_ENG = 'data/clir/bitext.en' #Bitext data file in English for translation engine and language model development BITEXT_DE = 'data/clir/bitext.de' #Bitext data file in German NEWSTEST_ENG = 'data/clir/newstest.en' #File for testing language model ###Output _____no_output_____ ###Markdown Information Retrieval using [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25) ###Code import nltk import re stopwords = set(nltk.corpus.stopwords.words('english')) #converting stopwords to a set for faster processing in the future. stemmer = nltk.stem.PorterStemmer() #Function to extract and tokenize terms from a document def extract_and_tokenize_terms(doc): terms = [] for token in tokenize(doc): if token not in stopwords: # 'in' and 'not in' operations are faster over sets than lists if not re.search(r'\d',token) and not re.search(r'[^A-Za-z-]',token): #Removing numbers and punctuations #(excluding hyphenated words) terms.append(stemmer.stem(token.lower())) return terms documents = {} #Dictionary to store documents with ids as keys. #Reading each line in the file and storing it documents dictionary f = open(DEVELOPMENT_DOCS) for line in f: doc = line.split("\t") terms = extract_and_tokenize_terms(doc[1]) documents[doc[0]] = terms f.close() documents['290'][:20] #To keep things short, we're only going to check out 20 tokens. #Building an inverted index for the documents from collections import defaultdict inverted_index = defaultdict(set) for docid, terms in documents.items(): for term in terms: inverted_index[term].add(docid) inverted_index['pizza'] #Building a TF-IDF representation using BM25 NO_DOCS = len(documents) #Number of documents AVG_LEN_DOC = sum([len(doc) for doc in documents.values()])/len(documents) #Average length of documents #The function below takes the documentid, and the term, to calculate scores for the tf and idf #components, and multiplies them together. def tf_idf_score(k1,b,term,docid): ft = len(inverted_index[term]) term = stemmer.stem(term.lower()) fdt = documents[docid].count(term) idf_comp = math.log((NO_DOCS - ft + 0.5)/(ft+0.5)) tf_comp = ((k1 + 1)*fdt)/(k1*((1-b) + b*(len(documents[docid])/AVG_LEN_DOC))+fdt) return idf_comp * tf_comp #Function to create tf_idf matrix without the query component def create_tf_idf(k1,b): tf_idf = defaultdict(dict) for term in set(inverted_index.keys()): for docid in inverted_index[term]: tf_idf[term][docid] = tf_idf_score(k1,b,term,docid) return tf_idf #Creating tf_idf matrix with said parameter values: k1 and b for all documents. tf_idf = create_tf_idf(1.5,0.5) #Function to retrieve query component def get_qtf_comp(k3,term,fqt): return ((k3+1)*fqt[term])/(k3 + fqt[term]) #Function to retrieve documents || Returns a set of documents and their relevance scores. def retr_docs(query,result_count): q_terms = [stemmer.stem(term.lower()) for term in query.split() if term not in stopwords] #Removing stopwords from queries fqt = {} for term in q_terms: fqt[term] = fqt.get(term,0) + 1 scores = {} for word in fqt.keys(): #print word + ': '+ str(inverted_index[word]) for document in inverted_index[word]: scores[document] = scores.get(document,0) + (tf_idf[word][document]*get_qtf_comp(0,word,fqt)) #k3 chosen as 0 (default) return sorted(scores.items(),key = lambda x : x[1] , reverse=True)[:result_count] retr_docs("Manchester United",5) documents['19961'][:30] ###Output _____no_output_____ ###Markdown Language Model: ###Code #Calculating the unigram, bigram and trigram counts. f = open(BITEXT_ENG) train_sentences = [] for line in f: train_sentences.append(tokenize(line)) f.close() #Function to mark the first occurence of words as unknown, for training. def check_for_unk_train(word,unigram_counts): if word in unigram_counts: return word else: unigram_counts[word] = 0 return "UNK" #Function to convert sentences for training the language model. def convert_sentence_train(sentence,unigram_counts): #<s1> and <s2> are sentinel tokens added to the start and end, for handling tri/bigrams at the start of a sentence. return ["<s1>"] + ["<s2>"] + [check_for_unk_train(token.lower(),unigram_counts) for token in sentence] + ["</s2>"]+ ["</s1>"] #Function to obtain unigram, bigram and trigram counts. def get_counts(sentences): trigram_counts = defaultdict(lambda: defaultdict(dict)) bigram_counts = defaultdict(dict) unigram_counts = {} for sentence in sentences: sentence = convert_sentence_train(sentence, unigram_counts) for i in range(len(sentence) - 2): trigram_counts[sentence[i]][sentence[i+1]][sentence[i+2]] = trigram_counts[sentence[i]][sentence[i+1]].get(sentence[i+2],0) + 1 bigram_counts[sentence[i]][sentence[i+1]] = bigram_counts[sentence[i]].get(sentence[i+1],0) + 1 unigram_counts[sentence[i]] = unigram_counts.get(sentence[i],0) + 1 unigram_counts["</s1>"] = unigram_counts["<s1>"] unigram_counts["</s2>"] = unigram_counts["<s2>"] bigram_counts["</s2>"]["</s1>"] = bigram_counts["<s1>"]["<s2>"] return unigram_counts, bigram_counts, trigram_counts unigram_counts, bigram_counts,trigram_counts = get_counts(train_sentences) #Constructing unigram model with 'add-k' smoothing token_count = sum(unigram_counts.values()) #Function to convert unknown words for testing. #Words that don't appear in the training corpus (even if they are in the test corpus) are marked as UNK. def check_for_unk_test(word,unigram_counts): if word in unigram_counts and unigram_counts[word] > 0: return word else: return "UNK" def convert_sentence_test(sentence,unigram_counts): return ["<s1>"] + ["<s2>"] + [check_for_unk_test(word.lower(),unigram_counts) for word in sentence] + ["</s2>"] + ["</s1>"] #Returns the log probability of a unigram, with add-k smoothing. We're taking logs to avoid probability underflow. def get_log_prob_addk(word,unigram_counts,k): return math.log((unigram_counts[word] + k)/ \ (token_count + k*len(unigram_counts))) #Returns the log probability of a sentence. def get_sent_log_prob_addk(sentence, unigram_counts,k): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_addk(word, unigram_counts,k) for word in sentence]) def calculate_perplexity_uni(sentences,unigram_counts, token_count, k): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_addk(sentence,unigram_counts,k) return math.exp(-total_log_prob/test_token_count) f = open(NEWSTEST_ENG) test_sents = [] for line in f: test_sents.append(tokenize(line)) f.close() #Calculating the perplexity for different ks ks = [0.0001,0.01,0.1,1,10] for k in ks: print str(k) +": " + str(calculate_perplexity_uni(test_sents,unigram_counts,token_count,k)) #Calculating the N1/N paramaters for Trigrams/Bigrams/Unigrams in Katz-Backoff Smoothing TRI_ONES = 0 #N1 for Trigrams TRI_TOTAL = 0 #N for Trigrams for twod in trigram_counts.values(): for oned in twod.values(): for val in oned.values(): if val==1: TRI_ONES+=1 #Count of trigram seen once TRI_TOTAL += 1 #Count of all trigrams seen BI_ONES = 0 #N1 for Bigrams BI_TOTAL = 0 #N for Bigrams for oned in bigram_counts.values(): for val in oned.values(): if val==1: BI_ONES += 1 #Count of bigram seen once BI_TOTAL += 1 #Count of all bigrams seen UNI_ONES = unigram_counts.values().count(1) UNI_TOTAL = len(unigram_counts) #Constructing trigram model with backoff smoothing TRI_ALPHA = TRI_ONES/TRI_TOTAL #Alpha parameter for trigram counts BI_ALPHA = BI_ONES/BI_TOTAL #Alpha parameter for bigram counts UNI_ALPHA = UNI_ONES/UNI_TOTAL def get_log_prob_back(sentence,i,unigram_counts,bigram_counts,trigram_counts,token_count): if trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i],0) > 0: return math.log((1-TRI_ALPHA)*trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i])/bigram_counts[sentence[i-2]][sentence[i-1]]) else: if bigram_counts[sentence[i-1]].get(sentence[i],0)>0: return math.log(TRI_ALPHA*((1-BI_ALPHA)*bigram_counts[sentence[i-1]][sentence[i]]/unigram_counts[sentence[i-1]])) else: return math.log(TRI_ALPHA*BI_ALPHA*(1-UNI_ALPHA)*((unigram_counts[sentence[i]]+0.0001)/(token_count+(0.0001)*len(unigram_counts)))) def get_sent_log_prob_back(sentence, unigram_counts, bigram_counts,trigram_counts, token_count): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_back(sentence,i, unigram_counts,bigram_counts,trigram_counts,token_count) for i in range(2,len(sentence))]) def calculate_perplexity_tri(sentences,unigram_counts,bigram_counts,trigram_counts, token_count): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_back(sentence,unigram_counts,bigram_counts,trigram_counts,token_count) return math.exp(-total_log_prob/test_token_count) #Calculating the perplexity calculate_perplexity_tri(test_sents,unigram_counts,bigram_counts,trigram_counts,token_count) ###Output _____no_output_____ ###Markdown Translation model ###Code #Creating lists of English and German sentences from bitext. from nltk.translate import IBMModel1 from nltk.translate import AlignedSent, Alignment eng_sents = [] de_sents = [] f = open(BITEXT_ENG) for line in f: terms = tokenize(line) eng_sents.append(terms) f.close() f = open(BITEXT_DE) for line in f: terms = tokenize(line) de_sents.append(terms) f.close() #Zipping together the bitexts for easier access paral_sents = zip(eng_sents,de_sents) #Building English to German translation table for words (Backward alignment) eng_de_bt = [AlignedSent(E,G) for E,G in paral_sents] eng_de_m = IBMModel1(eng_de_bt, 5) #Building German to English translation table for words (Backward alignment) de_eng_bt = [AlignedSent(G,E) for E,G in paral_sents] de_eng_m = IBMModel1(de_eng_bt, 5) #Script below to combine alignments using set intersections combined_align = [] for i in range(len(eng_de_bt)): forward = {x for x in eng_de_bt[i].alignment} back_reversed = {x[::-1] for x in de_eng_bt[i].alignment} combined_align.append(forward.intersection(back_reversed)) #Creating German to English dictionary with occurence count of word pairs de_eng_count = defaultdict(dict) for i in range(len(de_eng_bt)): for item in combined_align[i]: de_eng_count[de_eng_bt[i].words[item[1]]][de_eng_bt[i].mots[item[0]]] = de_eng_count[de_eng_bt[i].words[item[1]]].get(de_eng_bt[i].mots[item[0]],0) + 1 #Creating a English to German dict with occ count of word pais eng_de_count = defaultdict(dict) for i in range(len(eng_de_bt)): for item in combined_align[i]: eng_de_count[eng_de_bt[i].words[item[0]]][eng_de_bt[i].mots[item[1]]] = eng_de_count[eng_de_bt[i].words[item[0]]].get(eng_de_bt[i].mots[item[1]],0) + 1 #Creating German to English table with word translation probabilities de_eng_prob = defaultdict(dict) for de in de_eng_count.keys(): for eng in de_eng_count[de].keys(): de_eng_prob[de][eng] = de_eng_count[de][eng]/sum(de_eng_count[de].values()) #Creating English to German dict with word translation probabilities eng_de_prob = defaultdict(dict) for eng in eng_de_count.keys(): for de in eng_de_count[eng].keys(): eng_de_prob[eng][de] = eng_de_count[eng][de]/sum(eng_de_count[eng].values()) #Examples of translating individual words from German to English print de_eng_prob['frage'] print de_eng_prob['handlung'] print de_eng_prob['haus'] #Building noisy channel translation model def de_eng_noisy(german): noisy={} for eng in de_eng_prob[german].keys(): noisy[eng] = eng_de_prob[eng][german]+ get_log_prob_addk(eng,unigram_counts,0.0001) return noisy #Test block to check alignments print de_eng_noisy('vater') print de_eng_noisy('haus') print de_eng_noisy('das') print de_eng_noisy('entschuldigung') eng_de_prob['sorry'] #Translating first 5 queries into English #Function for direct translation def de_eng_direct(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_prob[token], key=de_eng_prob[token].get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) #Function for noisy channel translation def de_eng_noisy_translate(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_noisy(token), key=de_eng_noisy(token).get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) f = open(DEVELOPMENT_QUERIES) lno = 0 plno = 0 #Also building a dictionary of query ids and query content (only for the first 100s) german_qs = {} test_query_trans_sents = [] #Building a list for perplexity checks. for line in f: lno+=1 query_id = line.split('\t')[0] query_german = line.split('\t')[1] german_qs[query_id] = query_german.strip() translation = str(de_eng_noisy_translate(query_german)) if plno<5: print query_id + "\n" + "German: " + str(query_german) + "\n" + "English: " + translation +"\n\n" plno+=1 test_query_trans_sents.append(translation) if lno==100: break f.close() ###Output 82 German: der ( von engl . action : tat , handlung , bewegung ) ist ein filmgenre des unterhaltungskinos , in welchem der fortgang der äußeren handlung von zumeist spektakulär inszenierten kampf - und gewaltszenen vorangetrieben und illustriert wird . English: the ( , guises . action : indeed , rush , movement ) is a filmgenre the unterhaltungskinos , in much the fortgang the external rush , zumeist spektakul\xe4r inszenierten fight - and gewaltszenen pushed and illustriert will . 116 German: die ( einheitenzeichen : u für unified atomic mass unit , veraltet amu für atomic mass unit ) ist eine maßeinheit der masse . English: the ( einheitenzeichen : u for unified atomic mass unit , obsolete amu for atomic mass unit ) is a befuddled the mass . 240 German: der von lateinisch actualis , " wirklich " , auch aktualitätsprinzip , uniformitäts - oder gleichförmigkeitsprinzip , englisch uniformitarianism , ist die grundlegende wissenschaftliche methode in der . English: the , lateinisch actualis , `` really `` , , aktualit\xe4tsprinzip , uniformit\xe4ts - or gleichf\xf6rmigkeitsprinzip , english uniformitarianism , is the fundamental scientific method in the . 320 German: die ( griechisch el , von altgriechisch grc , - " zusammen - " , " anbinden " , gemeint ist " die herzbeutel angehängte " ) , ist ein blutgefäß , welches das blut vom herz wegführt . English: the ( griechisch el , , altgriechisch grc , - `` together - `` , `` anbinden `` , meant is `` the herzbeutel angeh\xe4ngte `` ) , is a blutgef\xe4\xdf , welches the blood vom heart wegf\xfchrt . 540 German: unter der bezeichnung fasst man die drei im nördlichen alpenvorland liegenden gewässereinheiten obersee , untersee und seerhein zusammen . English: under the bezeichnung summarizes one the three , northern alpenvorland liegenden gew\xe4ssereinheiten obersee , untersee and seerhein together . ###Markdown Combining, and Evaluation ###Code #Building a dictionary for queryids and relevant document ids qrel = defaultdict(list) f = open(DEVELOPMENT_QREL) for line in f: item = line.split('\t') qrel[item[0]].append(item[2]) f.close() #Single function to retreive documents for a German query def trans_retr_docs(german_query,no_of_results,translation_function): trans_query = " ".join(extract_and_tokenize_terms(translation_function(german_query))) return [item[0] for item in retr_docs(trans_query,no_of_results)] #Retriving 100 documents #Calculating the map score def calc_map(no_of_results,translation_function): average_precision = [] for gq in german_qs.keys(): relevant_docs = qrel[gq] incremental_precision = [] resulting_docs = trans_retr_docs(german_qs[gq],no_of_results,translation_function) total_counter = 0 true_positive_counter = 0 for doc in resulting_docs: total_counter+=1 if doc in relevant_docs: true_positive_counter += 1 incremental_precision.append(true_positive_counter/total_counter) #For no relevant retreivals, the average precision will be considered 0. try: average_precision.append(sum(incremental_precision)/len(incremental_precision)) except: average_precision.append(0) return (sum(average_precision)/len(average_precision)) #Printing the map score for direct translations print calc_map(100,de_eng_direct) #Printing the map score for noisy channel translations print calc_map(100,de_eng_noisy_translate) ###Output 0.364795198505 ###Markdown Cross Language Information Retrieval OverviewThe aim of this project is to build the cross language information retrieval system (CLIR) which, given a query in German, will be capable of searching text documents written in English and displaying the results in German.We're going to use machine translation, information retrieval using a vector space model, and then assess the performance of the system using IR evaluation techniques.Parts of the project are explained as we progress. Data Used- bitext.(en,de): A sentence aligned, parallel German-English corpus, sourced from the Europarl corpus (which is a collection of debates held in the EU parliament over a number of years). We'll use this to develop word-alignment tools, and build a translation probability table. - newstest.(en,de): A separate, smaller parallel corpus for evaulation of the translation system.- devel.(docs,queries,qrel): A set of documents in English (sourced from Wikipedia), queries in German, and relevance judgement scores for each query-document pair. The files are available to check out in the data/clir directory of the repo. Housekeeping: File encodings and tokenisationSince the data files we use is utf-8 encoded text, we need to convert the strings into ASCII by escaping the special symbols. We also import some libraries in this step as well. ###Code from nltk.tokenize import word_tokenize from __future__ import division #To properly handle floating point divisions. import math #Function to tokenise string/sentences. def tokenize(line, tokenizer=word_tokenize): utf_line = line.decode('utf-8').lower() return [token.encode('ascii', 'backslashreplace') for token in tokenizer(utf_line)] ###Output _____no_output_____ ###Markdown Now we can test out our tokenize function. Notice how it converts the word Über. ###Code tokenize("Seit damals ist er auf über 10.000 Punkte gestiegen.") ###Output _____no_output_____ ###Markdown Let's store the path of the data files as easily identifiable variables for future access. ###Code DEVELOPMENT_DOCS = 'data/clir/devel.docs' #Data file for IR engine development DEVELOPMENT_QUERIES = 'data/clir/devel.queries' #Data file containing queries in German DEVELOPMENT_QREL = 'data/clir/devel.qrel' #Data file containing a relevance score or query-doc pairs BITEXT_ENG = 'data/clir/bitext.en' #Bitext data file in English for translation engine and language model development BITEXT_DE = 'data/clir/bitext.de' #Bitext data file in German NEWSTEST_ENG = 'data/clir/newstest.en' #File for testing language model ###Output _____no_output_____ ###Markdown With that out of the way, lets get to the meat of the project. As mentioned earlier, we're going to build a CLIR engine consisting of information retrieval and translation components, and then evaluate its accuracy.The CLIR system will:- **translate queries** from German into English (because our searcheable corpus is in English), using word-based translation, a rather simplistic approach as opposed to the sophistication you might see in, say, *Google Translate*.- **search over the document corpus** using the Okapi BM25 IR ranking model, a variation of the traditional TF-IDF model.- **evaluate the quality** of ranked retrieval results using the query relevance judgements. Information Retrieval using [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25)We'll start by building an IR system, and give it a test run with some English queries. Here's an overview of the tasks involved:- Loading the data files, and tokenizing the input.- Preprocessing the lexicon by stemming, removing stopwords.- Calculating the TF/IDF representation for all documents in our wikipedia corpus.- Storing an inverted index to efficiently documents, given a query term.- Implementing querying with BM25.- Test runs.So for our first task, we'll load the devel.docs file, extract and tokenize the terms, and store them in a python dictionary with the document ids as keys. ###Code import nltk import re stopwords = set(nltk.corpus.stopwords.words('english')) #converting stopwords to a set for faster processing in the future. stemmer = nltk.stem.PorterStemmer() #Function to extract and tokenize terms from a document def extract_and_tokenize_terms(doc): terms = [] for token in tokenize(doc): if token not in stopwords: # 'in' and 'not in' operations are faster over sets than lists if not re.search(r'\d',token) and not re.search(r'[^A-Za-z-]',token): #Removing numbers and punctuations #(excluding hyphenated words) terms.append(stemmer.stem(token.lower())) return terms documents = {} #Dictionary to store documents with ids as keys. #Reading each line in the file and storing it documents dictionary f = open(DEVELOPMENT_DOCS) for line in f: doc = line.split("\t") terms = extract_and_tokenize_terms(doc[1]) documents[doc[0]] = terms f.close() ###Output _____no_output_____ ###Markdown To check if everything is working till now, let's access a document from the dictionary, with the id '290'. ###Code documents['290'][:20] #To keep things short, we're only going to check out 20 tokens. ###Output _____no_output_____ ###Markdown Now we'll build an inverted index for the documents, so that we can quickly access documents for the terms we need. ###Code #Building an inverted index for the documents from collections import defaultdict inverted_index = defaultdict(set) for docid, terms in documents.items(): for term in terms: inverted_index[term].add(docid) ###Output _____no_output_____ ###Markdown To test it out, the list of documents containing the word 'pizza': ###Code inverted_index['pizza'] ###Output _____no_output_____ ###Markdown On to the BM25 TF-IDF representation, we'll create the td-idf matrix for terms-documents, first without the query component. The query component is dependent on the terms in our query. So we'll just calculate that, and multiply it with the overall score when we want to retreive documents for a particular query. ###Code #Building a TF-IDF representation using BM25 NO_DOCS = len(documents) #Number of documents AVG_LEN_DOC = sum([len(doc) for doc in documents.values()])/len(documents) #Average length of documents #The function below takes the documentid, and the term, to calculate scores for the tf and idf #components, and multiplies them together. def tf_idf_score(k1,b,term,docid): ft = len(inverted_index[term]) term = stemmer.stem(term.lower()) fdt = documents[docid].count(term) idf_comp = math.log((NO_DOCS - ft + 0.5)/(ft+0.5)) tf_comp = ((k1 + 1)*fdt)/(k1*((1-b) + b*(len(documents[docid])/AVG_LEN_DOC))+fdt) return idf_comp * tf_comp #Function to create tf_idf matrix without the query component def create_tf_idf(k1,b): tf_idf = defaultdict(dict) for term in set(inverted_index.keys()): for docid in inverted_index[term]: tf_idf[term][docid] = tf_idf_score(k1,b,term,docid) return tf_idf #Creating tf_idf matrix with said parameter values: k1 and b for all documents. tf_idf = create_tf_idf(1.5,0.5) ###Output _____no_output_____ ###Markdown We took the default values for k1 and b (1.5 and 0.5), which seemed to give good results. Although these parameters may be altered depending on the type of data being dealth with. Now we create a method to retrieve the query component, and another method that will use the previous ones and retrieve the relevant documents for a query, sorted on the basis of their ranks. ###Code #Function to retrieve query component def get_qtf_comp(k3,term,fqt): return ((k3+1)*fqt[term])/(k3 + fqt[term]) #Function to retrieve documents || Returns a set of documents and their relevance scores. def retr_docs(query,result_count): q_terms = [stemmer.stem(term.lower()) for term in query.split() if term not in stopwords] #Removing stopwords from queries fqt = {} for term in q_terms: fqt[term] = fqt.get(term,0) + 1 scores = {} for word in fqt.keys(): #print word + ': '+ str(inverted_index[word]) for document in inverted_index[word]: scores[document] = scores.get(document,0) + (tf_idf[word][document]*get_qtf_comp(0,word,fqt)) #k3 chosen as 0 (default) return sorted(scores.items(),key = lambda x : x[1] , reverse=True)[:result_count] ###Output _____no_output_____ ###Markdown Let's try and retrieve a document for a query. ###Code retr_docs("Manchester United",5) ###Output _____no_output_____ ###Markdown Checking out the terms in the top ranked document.. ###Code documents['19961'][:30] ###Output _____no_output_____ ###Markdown The information retrieval engine has worked quite well in this case. The top ranked document for the query is a snippet of the wikipedia article for Manchester United Football Club. On further inspection, we can see that the documents ranked lower are, for example, for The University of Manchester, or even just articles with the words 'Manchester' or 'United' in them.Now we can begin translating the German queries to English. Query Translation: For translation, we'll implement a simple word-based translation model in a noisy channel setting. This means that we'll use both a language model over English, and a translation model.We'll use a unigram language model for decoding/translation, but also create a model with trigram to test the improvement in performace). Our aim is to find the string, $\vec{e}$ which maximises $p(\vec{e}) p(\vec{g} | \vec{e})$, given English output string $\vec{e}$ and German input string $\vec{g}$. Language Model:[From Wikipedia](https://en.wikipedia.org/wiki/Language_model): A statistical language model is a probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability P(w1,....,wm) to the whole sequence. The models will be trained on the 'bitext.en' file, and tested on 'newstest.en'.As we'll train the model on different files, it's obvious that we'll run into words (unigrams) and trigrams what we hadn't seen in the file we trained the model on. To account for these unknown information, we'll use add-k or [laplace smoothing](https://en.wikipedia.org/wiki/Additive_smoothing) for the unigram and [Katz-Backoff smoothing](https://en.wikipedia.org/wiki/Katz%27s_back-off_model) for the trigram model.Let's start with calculating the unigram, bigram and trigram counts (we need the bigram counts for trigram smoothing). The sentences are also converted appropriately by adding sentinels at the start and end of sentences. ###Code #Calculating the unigram, bigram and trigram counts. f = open(BITEXT_ENG) train_sentences = [] for line in f: train_sentences.append(tokenize(line)) f.close() #Function to mark the first occurence of words as unknown, for training. def check_for_unk_train(word,unigram_counts): if word in unigram_counts: return word else: unigram_counts[word] = 0 return "UNK" #Function to convert sentences for training the language model. def convert_sentence_train(sentence,unigram_counts): #<s1> and <s2> are sentinel tokens added to the start and end, for handling tri/bigrams at the start of a sentence. return ["<s1>"] + ["<s2>"] + [check_for_unk_train(token.lower(),unigram_counts) for token in sentence] + ["</s2>"]+ ["</s1>"] #Function to obtain unigram, bigram and trigram counts. def get_counts(sentences): trigram_counts = defaultdict(lambda: defaultdict(dict)) bigram_counts = defaultdict(dict) unigram_counts = {} for sentence in sentences: sentence = convert_sentence_train(sentence, unigram_counts) for i in range(len(sentence) - 2): trigram_counts[sentence[i]][sentence[i+1]][sentence[i+2]] = trigram_counts[sentence[i]][sentence[i+1]].get(sentence[i+2],0) + 1 bigram_counts[sentence[i]][sentence[i+1]] = bigram_counts[sentence[i]].get(sentence[i+1],0) + 1 unigram_counts[sentence[i]] = unigram_counts.get(sentence[i],0) + 1 unigram_counts["</s1>"] = unigram_counts["<s1>"] unigram_counts["</s2>"] = unigram_counts["<s2>"] bigram_counts["</s2>"]["</s1>"] = bigram_counts["<s1>"]["<s2>"] return unigram_counts, bigram_counts, trigram_counts unigram_counts, bigram_counts,trigram_counts = get_counts(train_sentences) ###Output _____no_output_____ ###Markdown We can calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) of our language models to see how well they predict a sentence. ###Code #Constructing unigram model with 'add-k' smoothing token_count = sum(unigram_counts.values()) #Function to convert unknown words for testing. #Words that don't appear in the training corpus (even if they are in the test corpus) are marked as UNK. def check_for_unk_test(word,unigram_counts): if word in unigram_counts and unigram_counts[word] > 0: return word else: return "UNK" def convert_sentence_test(sentence,unigram_counts): return ["<s1>"] + ["<s2>"] + [check_for_unk_test(word.lower(),unigram_counts) for word in sentence] + ["</s2>"] + ["</s1>"] #Returns the log probability of a unigram, with add-k smoothing. We're taking logs to avoid probability underflow. def get_log_prob_addk(word,unigram_counts,k): return math.log((unigram_counts[word] + k)/ \ (token_count + k*len(unigram_counts))) #Returns the log probability of a sentence. def get_sent_log_prob_addk(sentence, unigram_counts,k): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_addk(word, unigram_counts,k) for word in sentence]) def calculate_perplexity_uni(sentences,unigram_counts, token_count, k): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_addk(sentence,unigram_counts,k) return math.exp(-total_log_prob/test_token_count) f = open(NEWSTEST_ENG) test_sents = [] for line in f: test_sents.append(tokenize(line)) f.close() ###Output _____no_output_____ ###Markdown Now we'll calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) for the model, as a measure of performance i.e. how well they predict a sentence. To find the optimum value of k, we can just calculate the perplexity multiple times with different k(s). ###Code #Calculating the perplexity for different ks ks = [0.0001,0.01,0.1,1,10] for k in ks: print str(k) +": " + str(calculate_perplexity_uni(test_sents,unigram_counts,token_count,k)) ###Output 0.0001: 613.918691403 0.01: 614.027477551 0.1: 615.06903252 1: 628.823994251 10: 823.302441447 ###Markdown Using add-k smoothing, perplexity for the unigram model increases with the increase in k. So 0.0001 is the best choice for k.Moving on to tri-grams. ###Code #Calculating the N1/N paramaters for Trigrams/Bigrams/Unigrams in Katz-Backoff Smoothing TRI_ONES = 0 #N1 for Trigrams TRI_TOTAL = 0 #N for Trigrams for twod in trigram_counts.values(): for oned in twod.values(): for val in oned.values(): if val==1: TRI_ONES+=1 #Count of trigram seen once TRI_TOTAL += 1 #Count of all trigrams seen BI_ONES = 0 #N1 for Bigrams BI_TOTAL = 0 #N for Bigrams for oned in bigram_counts.values(): for val in oned.values(): if val==1: BI_ONES += 1 #Count of bigram seen once BI_TOTAL += 1 #Count of all bigrams seen UNI_ONES = unigram_counts.values().count(1) UNI_TOTAL = len(unigram_counts) #Constructing trigram model with backoff smoothing TRI_ALPHA = TRI_ONES/TRI_TOTAL #Alpha parameter for trigram counts BI_ALPHA = BI_ONES/BI_TOTAL #Alpha parameter for bigram counts UNI_ALPHA = UNI_ONES/UNI_TOTAL def get_log_prob_back(sentence,i,unigram_counts,bigram_counts,trigram_counts,token_count): if trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i],0) > 0: return math.log((1-TRI_ALPHA)*trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i])/bigram_counts[sentence[i-2]][sentence[i-1]]) else: if bigram_counts[sentence[i-1]].get(sentence[i],0)>0: return math.log(TRI_ALPHA*((1-BI_ALPHA)*bigram_counts[sentence[i-1]][sentence[i]]/unigram_counts[sentence[i-1]])) else: return math.log(TRI_ALPHA*BI_ALPHA*(1-UNI_ALPHA)*((unigram_counts[sentence[i]]+0.0001)/(token_count+(0.0001)*len(unigram_counts)))) def get_sent_log_prob_back(sentence, unigram_counts, bigram_counts,trigram_counts, token_count): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_back(sentence,i, unigram_counts,bigram_counts,trigram_counts,token_count) for i in range(2,len(sentence))]) def calculate_perplexity_tri(sentences,unigram_counts,bigram_counts,trigram_counts, token_count): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_back(sentence,unigram_counts,bigram_counts,trigram_counts,token_count) return math.exp(-total_log_prob/test_token_count) #Calculating the perplexity calculate_perplexity_tri(test_sents,unigram_counts,bigram_counts,trigram_counts,token_count) ###Output _____no_output_____ ###Markdown For unigram language model, the perplexity for different values of k were as follow:kPerplexity0.0001613.920.01614.030.1628.821823.302For tri-gram model, Katz-Backoff smoothing was chosen as it takes a discounted probability for things only seen once, and backs off to a lower level n-gram for unencountered n-grams.Compared with the trigram model, the perplexity was as follows:ModelPerplexityUnigram (Best K)613.92Trigram (Katz Backoff)461.65As can be seen, the trigram model with 'Katz Backoff' smoothing seems to perform better than the best unigram model (with k = 0.0001). Thus we can say that this model is better for predicting the sequence of a sentence than unigram, which should is obvious if you think about it. Translation modelNext, we'll estimate translation model probabilities. For this, we'll use IBM1 from the NLTK library. IBM1 learns word based translation probabilities using expectation maximisation. We'll use both 'bitext.de' and 'bitext.en' files for this purpose; extract the sentences from each, and then use IBM1 to build the translation tables. ###Code #Creating lists of English and German sentences from bitext. from nltk.translate import IBMModel1 from nltk.translate import AlignedSent, Alignment eng_sents = [] de_sents = [] f = open(BITEXT_ENG) for line in f: terms = tokenize(line) eng_sents.append(terms) f.close() f = open(BITEXT_DE) for line in f: terms = tokenize(line) de_sents.append(terms) f.close() #Zipping together the bitexts for easier access paral_sents = zip(eng_sents,de_sents) #Building English to German translation table for words (Backward alignment) eng_de_bt = [AlignedSent(E,G) for E,G in paral_sents] eng_de_m = IBMModel1(eng_de_bt, 5) #Building German to English translation table for words (Backward alignment) de_eng_bt = [AlignedSent(G,E) for E,G in paral_sents] de_eng_m = IBMModel1(de_eng_bt, 5) ###Output _____no_output_____ ###Markdown We can take the intersection of the dual alignments to obtain a combined alignment for each sentence in the bitext. ###Code #Script below to combine alignments using set intersections combined_align = [] for i in range(len(eng_de_bt)): forward = {x for x in eng_de_bt[i].alignment} back_reversed = {x[::-1] for x in de_eng_bt[i].alignment} combined_align.append(forward.intersection(back_reversed)) ###Output _____no_output_____ ###Markdown Now we can create translation dictionaries in both English to German, and German to English directions. Creating dictionaries for occurence counts first. ###Code #Creating German to English dictionary with occurence count of word pairs de_eng_count = defaultdict(dict) for i in range(len(de_eng_bt)): for item in combined_align[i]: de_eng_count[de_eng_bt[i].words[item[1]]][de_eng_bt[i].mots[item[0]]] = de_eng_count[de_eng_bt[i].words[item[1]]].get(de_eng_bt[i].mots[item[0]],0) + 1 #Creating a English to German dict with occ count of word pais eng_de_count = defaultdict(dict) for i in range(len(eng_de_bt)): for item in combined_align[i]: eng_de_count[eng_de_bt[i].words[item[0]]][eng_de_bt[i].mots[item[1]]] = eng_de_count[eng_de_bt[i].words[item[0]]].get(eng_de_bt[i].mots[item[1]],0) + 1 ###Output _____no_output_____ ###Markdown Creating dictionaries for translation probabilities. ###Code #Creating German to English table with word translation probabilities de_eng_prob = defaultdict(dict) for de in de_eng_count.keys(): for eng in de_eng_count[de].keys(): de_eng_prob[de][eng] = de_eng_count[de][eng]/sum(de_eng_count[de].values()) #Creating English to German dict with word translation probabilities eng_de_prob = defaultdict(dict) for eng in eng_de_count.keys(): for de in eng_de_count[eng].keys(): eng_de_prob[eng][de] = eng_de_count[eng][de]/sum(eng_de_count[eng].values()) ###Output _____no_output_____ ###Markdown Let's look at some examples of translating individual words from German to English. ###Code #Examples of translating individual words from German to English print de_eng_prob['frage'] print de_eng_prob['handlung'] print de_eng_prob['haus'] ###Output {'question': 0.970873786407767, 'issue': 0.019417475728155338, 'matter': 0.009708737864077669} {'rush': 1.0} {'begins': 0.058823529411764705, 'house': 0.9411764705882353} ###Markdown Building the noisy channel translation model, which uses the english to german translation dictionary and the unigram language model to add "noise". ###Code #Building noisy channel translation model def de_eng_noisy(german): noisy={} for eng in de_eng_prob[german].keys(): noisy[eng] = eng_de_prob[eng][german]+ get_log_prob_addk(eng,unigram_counts,0.0001) return noisy ###Output _____no_output_____ ###Markdown Let's check out the translation using the noise channel approach. ###Code #Test block to check alignments print de_eng_noisy('vater') print de_eng_noisy('haus') print de_eng_noisy('das') print de_eng_noisy('entschuldigung') ###Output {'father': -8.798834996562721} {'begins': -10.2208672198799, 'house': -8.163007778647888} {'this': -5.214590799418497, 'the': -3.071527829335362, 'that': -4.664995720177421} {'excuse': -11.870404868087332, 'apology': -12.39683538573032, 'comprehend': -11.89683538573032} ###Markdown Translations for 'vater', 'hause', 'das' seem to be pretty good, with the max score going to the best translation. For the word 'entschuldigung', the best possible translation is 'excuse', while 'comprehend' being close. But in real world use, the most common translation for 'entschuldigung' is 'sorry'. Checking the reverse translation for 'sorry', ###Code eng_de_prob['sorry'] ###Output _____no_output_____ ###Markdown The word 'bereue', which Google translates as 'regret'. This is one example of a 'bad' alignment.Let's try tanslating some queries now. ###Code #Translating first 5 queries into English #Function for direct translation def de_eng_direct(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_prob[token], key=de_eng_prob[token].get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) #Function for noisy channel translation def de_eng_noisy_translate(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_noisy(token), key=de_eng_noisy(token).get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) f = open(DEVELOPMENT_QUERIES) lno = 0 plno = 0 #Also building a dictionary of query ids and query content (only for the first 100s) german_qs = {} test_query_trans_sents = [] #Building a list for perplexity checks. for line in f: lno+=1 query_id = line.split('\t')[0] query_german = line.split('\t')[1] german_qs[query_id] = query_german.strip() translation = str(de_eng_noisy_translate(query_german)) if plno<5: print query_id + "\n" + "German: " + str(query_german) + "\n" + "English: " + translation +"\n\n" plno+=1 test_query_trans_sents.append(translation) if lno==100: break f.close() ###Output 82 German: der ( von engl . action : tat , handlung , bewegung ) ist ein filmgenre des unterhaltungskinos , in welchem der fortgang der äußeren handlung von zumeist spektakulär inszenierten kampf - und gewaltszenen vorangetrieben und illustriert wird . English: the ( , guises . action : indeed , rush , movement ) is a filmgenre the unterhaltungskinos , in much the fortgang the external rush , zumeist spektakul\xe4r inszenierten fight - and gewaltszenen pushed and illustriert will . 116 German: die ( einheitenzeichen : u für unified atomic mass unit , veraltet amu für atomic mass unit ) ist eine maßeinheit der masse . English: the ( einheitenzeichen : u for unified atomic mass unit , obsolete amu for atomic mass unit ) is a befuddled the mass . 240 German: der von lateinisch actualis , " wirklich " , auch aktualitätsprinzip , uniformitäts - oder gleichförmigkeitsprinzip , englisch uniformitarianism , ist die grundlegende wissenschaftliche methode in der . English: the , lateinisch actualis , `` really `` , , aktualit\xe4tsprinzip , uniformit\xe4ts - or gleichf\xf6rmigkeitsprinzip , english uniformitarianism , is the fundamental scientific method in the . 320 German: die ( griechisch el , von altgriechisch grc , - " zusammen - " , " anbinden " , gemeint ist " die herzbeutel angehängte " ) , ist ein blutgefäß , welches das blut vom herz wegführt . English: the ( griechisch el , , altgriechisch grc , - `` together - `` , `` anbinden `` , meant is `` the herzbeutel angeh\xe4ngte `` ) , is a blutgef\xe4\xdf , welches the blood vom heart wegf\xfchrt . 540 German: unter der bezeichnung fasst man die drei im nördlichen alpenvorland liegenden gewässereinheiten obersee , untersee und seerhein zusammen . English: under the bezeichnung summarizes one the three , northern alpenvorland liegenden gew\xe4ssereinheiten obersee , untersee and seerhein together . ###Markdown The translations of the first 5 queries according to Google translate are as follows: 82 of ( . Of eng action : act, action , movement, ) is a film genre of entertainment cinema , in which the continued transition of the external action of mostly spectacularly staged battle - and violent scenes is advanced and illustrated .116 ( unit sign : u for unified atomic mass unit , amu outdated for atomic mass unit ) is a unit of measure of mass .240 of actualis from Latin , "real" , even actuality principle , uniformity - or gleichförmigkeitsprinzip , English uniformitarianism , is the basic scientific method in .320 (Greek el , from Ancient Greek grc , - " together - " , " tie " , is meant " the heart bag attached" ) is a blood vessel that leads away the blood from the heart .540 under the designation one summarizes the three lying in the northern waters alpenvorland units obersee , subsea and Seerhein together .---Translations obtained through Google Translate are obviously better. It's interesting to note that our own translation engine works well if a 'word-word' translation is considered, and if the word-pair has been encountered enough times in the bi-lingual corpora. Google Translate also seems to perform better as it's considering phrase based translation, which is more sophisticated and accurate than word-word translation. Our engine also seems to work better for function words rather than content words as those would have been the one encountered a lot in the bi-corpora and are better aligned.The alignments were combined by taking the intersection of the forward and reverse alignments in this case. Combining the two alignments improved things in the sense that the intersection got rid of all the extra 'noise' in the alignments, so that the most likely ones remained (that existed both in the forward and reverse direction). Combining, and Evaluation For the final bit, we'll create a function that translates a query, and retrieves the relevant documents for it. Then, to evaluate the results of our CLIR engine, we'll use the [Mean Average Precision](https://www.youtube.com/watch?v=pM6DJ0ZZee0) to judge the performance of the CLIR system. MAP is a standard evaluation metric used in IR. ###Code #Building a dictionary for queryids and relevant document ids qrel = defaultdict(list) f = open(DEVELOPMENT_QREL) for line in f: item = line.split('\t') qrel[item[0]].append(item[2]) f.close() #Single function to retreive documents for a German query def trans_retr_docs(german_query,no_of_results,translation_function): trans_query = " ".join(extract_and_tokenize_terms(translation_function(german_query))) return [item[0] for item in retr_docs(trans_query,no_of_results)] #Retriving 100 documents #Calculating the map score def calc_map(no_of_results,translation_function): average_precision = [] for gq in german_qs.keys(): relevant_docs = qrel[gq] incremental_precision = [] resulting_docs = trans_retr_docs(german_qs[gq],no_of_results,translation_function) total_counter = 0 true_positive_counter = 0 for doc in resulting_docs: total_counter+=1 if doc in relevant_docs: true_positive_counter += 1 incremental_precision.append(true_positive_counter/total_counter) #For no relevant retreivals, the average precision will be considered 0. try: average_precision.append(sum(incremental_precision)/len(incremental_precision)) except: average_precision.append(0) return (sum(average_precision)/len(average_precision)) ###Output _____no_output_____ ###Markdown To keep runtime at a minimum, we'll only consider the top 100 returned results (documents) when ###Code #Printing the map score for direct translations print calc_map(100,de_eng_direct) #Printing the map score for noisy channel translations print calc_map(100,de_eng_noisy_translate) ###Output 0.364795198505 ###Markdown Cross Language Information Retrieval OverviewThe aim of this project is to build a cross language information retrieval system (CLIR) which, given a query in German, will be capable of searching text documents written in English and displaying the results in German.We're going to use machine translation, information retrieval using a vector space model, and then assess the performance of the system using IR evaluation techniques.Parts of the project are explained as we progress. Data Used- bitext.(en,de): A sentence aligned, parallel German-English corpus, sourced from the Europarl corpus (which is a collection of debates held in the EU parliament over a number of years). We'll use this to develop word-alignment tools, and build a translation probability table. - newstest.(en,de): A separate, smaller parallel corpus for evaulation of the translation system.- devel.(docs,queries,qrel): A set of documents in English (sourced from Wikipedia), queries in German, and relevance judgement scores for each query-document pair. The files are available to check out in the data/clir directory of the repo. Housekeeping: File encodings and tokenisationSince the data files we use is utf-8 encoded text, we need to convert the strings into ASCII by escaping the special symbols. We also import some libraries in this step as well. ###Code from nltk.tokenize import word_tokenize from __future__ import division #To properly handle floating point divisions. import math #Function to tokenise string/sentences. def tokenize(line, tokenizer=word_tokenize): utf_line = line.decode('utf-8').lower() return [token.encode('ascii', 'backslashreplace') for token in tokenizer(utf_line)] ###Output _____no_output_____ ###Markdown Now we can test out our tokenize function. Notice how it converts the word Über. ###Code tokenize("Seit damals ist er auf über 10.000 Punkte gestiegen.") ###Output _____no_output_____ ###Markdown Let's store the path of the data files as easily identifiable variables for future access. ###Code DEVELOPMENT_DOCS = 'data/clir/devel.docs' #Data file for IR engine development DEVELOPMENT_QUERIES = 'data/clir/devel.queries' #Data file containing queries in German DEVELOPMENT_QREL = 'data/clir/devel.qrel' #Data file containing a relevance score or query-doc pairs BITEXT_ENG = 'data/clir/bitext.en' #Bitext data file in English for translation engine and language model development BITEXT_DE = 'data/clir/bitext.de' #Bitext data file in German NEWSTEST_ENG = 'data/clir/newstest.en' #File for testing language model ###Output _____no_output_____ ###Markdown With that out of the way, lets get to the meat of the project. As mentioned earlier, we're going to build a CLIR engine consisting of information retrieval and translation components, and then evaluate its accuracy.The CLIR system will:- **translate queries** from German into English (because our searcheable corpus is in English), using word-based translation, a rather simplistic approach as opposed to the sophistication you might see in, say, *Google Translate*.- **search over the document corpus** using the Okapi BM25 IR ranking model, a variation of the traditional TF-IDF model.- **evaluate the quality** of ranked retrieval results using the query relevance judgements. Information Retrieval using [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25)We'll start by building an IR system, and give it a test run with some English queries. Here's an overview of the tasks involved:- Loading the data files, and tokenizing the input.- Preprocessing the lexicon by stemming, removing stopwords.- Calculating the TF/IDF representation for all documents in our wikipedia corpus.- Storing an inverted index to efficiently documents, given a query term.- Implementing querying with BM25.- Test runs.So for our first task, we'll load the devel.docs file, extract and tokenize the terms, and store them in a python dictionary with the document ids as keys. ###Code import nltk import re stopwords = set(nltk.corpus.stopwords.words('english')) #converting stopwords to a set for faster processing in the future. stemmer = nltk.stem.PorterStemmer() #Function to extract and tokenize terms from a document def extract_and_tokenize_terms(doc): terms = [] for token in tokenize(doc): if token not in stopwords: # 'in' and 'not in' operations are faster over sets than lists if not re.search(r'\d',token) and not re.search(r'[^A-Za-z-]',token): #Removing numbers and punctuations #(excluding hyphenated words) terms.append(stemmer.stem(token.lower())) return terms documents = {} #Dictionary to store documents with ids as keys. #Reading each line in the file and storing it documents dictionary f = open(DEVELOPMENT_DOCS) for line in f: doc = line.split("\t") terms = extract_and_tokenize_terms(doc[1]) documents[doc[0]] = terms f.close() ###Output _____no_output_____ ###Markdown To check if everything is working till now, let's access a document from the dictionary, with the id '290'. ###Code documents['290'][:20] #To keep things short, we're only going to check out 20 tokens. ###Output _____no_output_____ ###Markdown Now we'll build an inverted index for the documents, so that we can quickly access documents for the terms we need. ###Code #Building an inverted index for the documents from collections import defaultdict inverted_index = defaultdict(set) for docid, terms in documents.items(): for term in terms: inverted_index[term].add(docid) ###Output _____no_output_____ ###Markdown To test it out, the list of documents containing the word 'pizza': ###Code inverted_index['pizza'] ###Output _____no_output_____ ###Markdown On to the BM25 TF-IDF representation, we'll create the td-idf matrix for terms-documents, first without the query component. The query component is dependent on the terms in our query. So we'll just calculate that, and multiply it with the overall score when we want to retreive documents for a particular query. ###Code #Building a TF-IDF representation using BM25 NO_DOCS = len(documents) #Number of documents AVG_LEN_DOC = sum([len(doc) for doc in documents.values()])/len(documents) #Average length of documents #The function below takes the documentid, and the term, to calculate scores for the tf and idf #components, and multiplies them together. def tf_idf_score(k1,b,term,docid): ft = len(inverted_index[term]) term = stemmer.stem(term.lower()) fdt = documents[docid].count(term) idf_comp = math.log((NO_DOCS - ft + 0.5)/(ft+0.5)) tf_comp = ((k1 + 1)*fdt)/(k1*((1-b) + b*(len(documents[docid])/AVG_LEN_DOC))+fdt) return idf_comp * tf_comp #Function to create tf_idf matrix without the query component def create_tf_idf(k1,b): tf_idf = defaultdict(dict) for term in set(inverted_index.keys()): for docid in inverted_index[term]: tf_idf[term][docid] = tf_idf_score(k1,b,term,docid) return tf_idf #Creating tf_idf matrix with said parameter values: k1 and b for all documents. tf_idf = create_tf_idf(1.5,0.5) ###Output _____no_output_____ ###Markdown We took the default values for k1 and b (1.5 and 0.5), which seemed to give good results. Although these parameters may be altered depending on the type of data being dealth with. Now we create a method to retrieve the query component, and another method that will use the previous ones and retrieve the relevant documents for a query, sorted on the basis of their ranks. ###Code #Function to retrieve query component def get_qtf_comp(k3,term,fqt): return ((k3+1)*fqt[term])/(k3 + fqt[term]) #Function to retrieve documents || Returns a set of documents and their relevance scores. def retr_docs(query,result_count): q_terms = [stemmer.stem(term.lower()) for term in query.split() if term not in stopwords] #Removing stopwords from queries fqt = {} for term in q_terms: fqt[term] = fqt.get(term,0) + 1 scores = {} for word in fqt.keys(): #print word + ': '+ str(inverted_index[word]) for document in inverted_index[word]: scores[document] = scores.get(document,0) + (tf_idf[word][document]*get_qtf_comp(0,word,fqt)) #k3 chosen as 0 (default) return sorted(scores.items(),key = lambda x : x[1] , reverse=True)[:result_count] ###Output _____no_output_____ ###Markdown Let's try and retrieve a document for a query. ###Code retr_docs("Manchester United",5) ###Output _____no_output_____ ###Markdown Checking out the terms in the top ranked document.. ###Code documents['19961'][:30] ###Output _____no_output_____ ###Markdown The information retrieval engine has worked quite well in this case. The top ranked document for the query is a snippet of the wikipedia article for Manchester United Football Club. On further inspection, we can see that the documents ranked lower are, for example, for The University of Manchester, or even just articles with the words 'Manchester' or 'United' in them.Now we can begin translating the German queries to English. Query Translation: For translation, we'll implement a simple word-based translation model in a noisy channel setting. This means that we'll use both a language model over English, and a translation model.We'll use a unigram language model for decoding/translation, but also create a model with trigram to test the improvement in performace). Our aim is to find the string, $\vec{e}$ which maximises $p(\vec{e}) p(\vec{g} | \vec{e})$, given English output string $\vec{e}$ and German input string $\vec{g}$. Language Model:[From Wikipedia](https://en.wikipedia.org/wiki/Language_model): A statistical language model is a probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability P(w1,....,wm) to the whole sequence. The models will be trained on the 'bitext.en' file, and tested on 'newstest.en'.As we'll train the model on different files, it's obvious that we'll run into words (unigrams) and trigrams what we hadn't seen in the file we trained the model on. To account for these unknown information, we'll use add-k or [laplace smoothing](https://en.wikipedia.org/wiki/Additive_smoothing) for the unigram and [Katz-Backoff smoothing](https://en.wikipedia.org/wiki/Katz%27s_back-off_model) for the trigram model.Let's start with calculating the unigram, bigram and trigram counts (we need the bigram counts for trigram smoothing). The sentences are also converted appropriately by adding sentinels at the start and end of sentences. ###Code #Calculating the unigram, bigram and trigram counts. f = open(BITEXT_ENG) train_sentences = [] for line in f: train_sentences.append(tokenize(line)) f.close() #Function to mark the first occurence of words as unknown, for training. def check_for_unk_train(word,unigram_counts): if word in unigram_counts: return word else: unigram_counts[word] = 0 return "UNK" #Function to convert sentences for training the language model. def convert_sentence_train(sentence,unigram_counts): #<s1> and <s2> are sentinel tokens added to the start and end, for handling tri/bigrams at the start of a sentence. return ["<s1>"] + ["<s2>"] + [check_for_unk_train(token.lower(),unigram_counts) for token in sentence] + ["</s2>"]+ ["</s1>"] #Function to obtain unigram, bigram and trigram counts. def get_counts(sentences): trigram_counts = defaultdict(lambda: defaultdict(dict)) bigram_counts = defaultdict(dict) unigram_counts = {} for sentence in sentences: sentence = convert_sentence_train(sentence, unigram_counts) for i in range(len(sentence) - 2): trigram_counts[sentence[i]][sentence[i+1]][sentence[i+2]] = trigram_counts[sentence[i]][sentence[i+1]].get(sentence[i+2],0) + 1 bigram_counts[sentence[i]][sentence[i+1]] = bigram_counts[sentence[i]].get(sentence[i+1],0) + 1 unigram_counts[sentence[i]] = unigram_counts.get(sentence[i],0) + 1 unigram_counts["</s1>"] = unigram_counts["<s1>"] unigram_counts["</s2>"] = unigram_counts["<s2>"] bigram_counts["</s2>"]["</s1>"] = bigram_counts["<s1>"]["<s2>"] return unigram_counts, bigram_counts, trigram_counts unigram_counts, bigram_counts,trigram_counts = get_counts(train_sentences) ###Output _____no_output_____ ###Markdown We can calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) of our language models to see how well they predict a sentence. ###Code #Constructing unigram model with 'add-k' smoothing token_count = sum(unigram_counts.values()) #Function to convert unknown words for testing. #Words that don't appear in the training corpus (even if they are in the test corpus) are marked as UNK. def check_for_unk_test(word,unigram_counts): if word in unigram_counts and unigram_counts[word] > 0: return word else: return "UNK" def convert_sentence_test(sentence,unigram_counts): return ["<s1>"] + ["<s2>"] + [check_for_unk_test(word.lower(),unigram_counts) for word in sentence] + ["</s2>"] + ["</s1>"] #Returns the log probability of a unigram, with add-k smoothing. We're taking logs to avoid probability underflow. def get_log_prob_addk(word,unigram_counts,k): return math.log((unigram_counts[word] + k)/ \ (token_count + k*len(unigram_counts))) #Returns the log probability of a sentence. def get_sent_log_prob_addk(sentence, unigram_counts,k): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_addk(word, unigram_counts,k) for word in sentence]) def calculate_perplexity_uni(sentences,unigram_counts, token_count, k): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_addk(sentence,unigram_counts,k) return math.exp(-total_log_prob/test_token_count) f = open(NEWSTEST_ENG) test_sents = [] for line in f: test_sents.append(tokenize(line)) f.close() ###Output _____no_output_____ ###Markdown Now we'll calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) for the model, as a measure of performance i.e. how well they predict a sentence. To find the optimum value of k, we can just calculate the perplexity multiple times with different k(s). ###Code #Calculating the perplexity for different ks ks = [0.0001,0.01,0.1,1,10] for k in ks: print str(k) +": " + str(calculate_perplexity_uni(test_sents,unigram_counts,token_count,k)) ###Output 0.0001: 613.918691403 0.01: 614.027477551 0.1: 615.06903252 1: 628.823994251 10: 823.302441447 ###Markdown Using add-k smoothing, perplexity for the unigram model increases with the increase in k. So 0.0001 is the best choice for k.Moving on to tri-grams. ###Code #Calculating the N1/N paramaters for Trigrams/Bigrams/Unigrams in Katz-Backoff Smoothing TRI_ONES = 0 #N1 for Trigrams TRI_TOTAL = 0 #N for Trigrams for twod in trigram_counts.values(): for oned in twod.values(): for val in oned.values(): if val==1: TRI_ONES+=1 #Count of trigram seen once TRI_TOTAL += 1 #Count of all trigrams seen BI_ONES = 0 #N1 for Bigrams BI_TOTAL = 0 #N for Bigrams for oned in bigram_counts.values(): for val in oned.values(): if val==1: BI_ONES += 1 #Count of bigram seen once BI_TOTAL += 1 #Count of all bigrams seen UNI_ONES = unigram_counts.values().count(1) UNI_TOTAL = len(unigram_counts) #Constructing trigram model with backoff smoothing TRI_ALPHA = TRI_ONES/TRI_TOTAL #Alpha parameter for trigram counts BI_ALPHA = BI_ONES/BI_TOTAL #Alpha parameter for bigram counts UNI_ALPHA = UNI_ONES/UNI_TOTAL def get_log_prob_back(sentence,i,unigram_counts,bigram_counts,trigram_counts,token_count): if trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i],0) > 0: return math.log((1-TRI_ALPHA)*trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i])/bigram_counts[sentence[i-2]][sentence[i-1]]) else: if bigram_counts[sentence[i-1]].get(sentence[i],0)>0: return math.log(TRI_ALPHA*((1-BI_ALPHA)*bigram_counts[sentence[i-1]][sentence[i]]/unigram_counts[sentence[i-1]])) else: return math.log(TRI_ALPHA*BI_ALPHA*(1-UNI_ALPHA)*((unigram_counts[sentence[i]]+0.0001)/(token_count+(0.0001)*len(unigram_counts)))) def get_sent_log_prob_back(sentence, unigram_counts, bigram_counts,trigram_counts, token_count): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_back(sentence,i, unigram_counts,bigram_counts,trigram_counts,token_count) for i in range(2,len(sentence))]) def calculate_perplexity_tri(sentences,unigram_counts,bigram_counts,trigram_counts, token_count): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_back(sentence,unigram_counts,bigram_counts,trigram_counts,token_count) return math.exp(-total_log_prob/test_token_count) #Calculating the perplexity calculate_perplexity_tri(test_sents,unigram_counts,bigram_counts,trigram_counts,token_count) ###Output _____no_output_____ ###Markdown For unigram language model, the perplexity for different values of k were as follow:kPerplexity0.0001613.920.01614.030.1628.821823.302For tri-gram model, Katz-Backoff smoothing was chosen as it takes a discounted probability for things only seen once, and backs off to a lower level n-gram for unencountered n-grams.Compared with the trigram model, the perplexity was as follows:ModelPerplexityUnigram (Best K)613.92Trigram (Katz Backoff)461.65As can be seen, the trigram model with 'Katz Backoff' smoothing seems to perform better than the best unigram model (with k = 0.0001). Thus we can say that this model is better for predicting the sequence of a sentence than unigram, which should is obvious if you think about it. Translation modelNext, we'll estimate translation model probabilities. For this, we'll use IBM1 from the NLTK library. IBM1 learns word based translation probabilities using expectation maximisation. We'll use both 'bitext.de' and 'bitext.en' files for this purpose; extract the sentences from each, and then use IBM1 to build the translation tables. ###Code #Creating lists of English and German sentences from bitext. from nltk.translate import IBMModel1 from nltk.translate import AlignedSent, Alignment eng_sents = [] de_sents = [] f = open(BITEXT_ENG) for line in f: terms = tokenize(line) eng_sents.append(terms) f.close() f = open(BITEXT_DE) for line in f: terms = tokenize(line) de_sents.append(terms) f.close() #Zipping together the bitexts for easier access paral_sents = zip(eng_sents,de_sents) #Building English to German translation table for words (Backward alignment) eng_de_bt = [AlignedSent(E,G) for E,G in paral_sents] eng_de_m = IBMModel1(eng_de_bt, 5) #Building German to English translation table for words (Backward alignment) de_eng_bt = [AlignedSent(G,E) for E,G in paral_sents] de_eng_m = IBMModel1(de_eng_bt, 5) ###Output _____no_output_____ ###Markdown We can take the intersection of the dual alignments to obtain a combined alignment for each sentence in the bitext. ###Code #Script below to combine alignments using set intersections combined_align = [] for i in range(len(eng_de_bt)): forward = {x for x in eng_de_bt[i].alignment} back_reversed = {x[::-1] for x in de_eng_bt[i].alignment} combined_align.append(forward.intersection(back_reversed)) ###Output _____no_output_____ ###Markdown Now we can create translation dictionaries in both English to German, and German to English directions. Creating dictionaries for occurence counts first. ###Code #Creating German to English dictionary with occurence count of word pairs de_eng_count = defaultdict(dict) for i in range(len(de_eng_bt)): for item in combined_align[i]: de_eng_count[de_eng_bt[i].words[item[1]]][de_eng_bt[i].mots[item[0]]] = de_eng_count[de_eng_bt[i].words[item[1]]].get(de_eng_bt[i].mots[item[0]],0) + 1 #Creating a English to German dict with occ count of word pais eng_de_count = defaultdict(dict) for i in range(len(eng_de_bt)): for item in combined_align[i]: eng_de_count[eng_de_bt[i].words[item[0]]][eng_de_bt[i].mots[item[1]]] = eng_de_count[eng_de_bt[i].words[item[0]]].get(eng_de_bt[i].mots[item[1]],0) + 1 ###Output _____no_output_____ ###Markdown Creating dictionaries for translation probabilities. ###Code #Creating German to English table with word translation probabilities de_eng_prob = defaultdict(dict) for de in de_eng_count.keys(): for eng in de_eng_count[de].keys(): de_eng_prob[de][eng] = de_eng_count[de][eng]/sum(de_eng_count[de].values()) #Creating English to German dict with word translation probabilities eng_de_prob = defaultdict(dict) for eng in eng_de_count.keys(): for de in eng_de_count[eng].keys(): eng_de_prob[eng][de] = eng_de_count[eng][de]/sum(eng_de_count[eng].values()) ###Output _____no_output_____ ###Markdown Let's look at some examples of translating individual words from German to English. ###Code #Examples of translating individual words from German to English print de_eng_prob['frage'] print de_eng_prob['handlung'] print de_eng_prob['haus'] ###Output {'question': 0.970873786407767, 'issue': 0.019417475728155338, 'matter': 0.009708737864077669} {'rush': 1.0} {'begins': 0.058823529411764705, 'house': 0.9411764705882353} ###Markdown Building the noisy channel translation model, which uses the english to german translation dictionary and the unigram language model to add "noise". ###Code #Building noisy channel translation model def de_eng_noisy(german): noisy={} for eng in de_eng_prob[german].keys(): noisy[eng] = eng_de_prob[eng][german]+ get_log_prob_addk(eng,unigram_counts,0.0001) return noisy ###Output _____no_output_____ ###Markdown Let's check out the translation using the noise channel approach. ###Code #Test block to check alignments print de_eng_noisy('vater') print de_eng_noisy('haus') print de_eng_noisy('das') print de_eng_noisy('entschuldigung') ###Output {'father': -8.798834996562721} {'begins': -10.2208672198799, 'house': -8.163007778647888} {'this': -5.214590799418497, 'the': -3.071527829335362, 'that': -4.664995720177421} {'excuse': -11.870404868087332, 'apology': -12.39683538573032, 'comprehend': -11.89683538573032} ###Markdown Translations for 'vater', 'hause', 'das' seem to be pretty good, with the max score going to the best translation. For the word 'entschuldigung', the best possible translation is 'excuse', while 'comprehend' being close. But in real world use, the most common translation for 'entschuldigung' is 'sorry'. Checking the reverse translation for 'sorry', ###Code eng_de_prob['sorry'] ###Output _____no_output_____ ###Markdown The word 'bereue', which Google translates as 'regret'. This is one example of a 'bad' alignment.Let's try tanslating some queries now. ###Code #Translating first 5 queries into English #Function for direct translation def de_eng_direct(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_prob[token], key=de_eng_prob[token].get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) #Function for noisy channel translation def de_eng_noisy_translate(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_noisy(token), key=de_eng_noisy(token).get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) f = open(DEVELOPMENT_QUERIES) lno = 0 plno = 0 #Also building a dictionary of query ids and query content (only for the first 100s) german_qs = {} test_query_trans_sents = [] #Building a list for perplexity checks. for line in f: lno+=1 query_id = line.split('\t')[0] query_german = line.split('\t')[1] german_qs[query_id] = query_german.strip() translation = str(de_eng_noisy_translate(query_german)) if plno<5: print query_id + "\n" + "German: " + str(query_german) + "\n" + "English: " + translation +"\n\n" plno+=1 test_query_trans_sents.append(translation) if lno==100: break f.close() ###Output 82 German: der ( von engl . action : tat , handlung , bewegung ) ist ein filmgenre des unterhaltungskinos , in welchem der fortgang der äußeren handlung von zumeist spektakulär inszenierten kampf - und gewaltszenen vorangetrieben und illustriert wird . English: the ( , guises . action : indeed , rush , movement ) is a filmgenre the unterhaltungskinos , in much the fortgang the external rush , zumeist spektakul\xe4r inszenierten fight - and gewaltszenen pushed and illustriert will . 116 German: die ( einheitenzeichen : u für unified atomic mass unit , veraltet amu für atomic mass unit ) ist eine maßeinheit der masse . English: the ( einheitenzeichen : u for unified atomic mass unit , obsolete amu for atomic mass unit ) is a befuddled the mass . 240 German: der von lateinisch actualis , " wirklich " , auch aktualitätsprinzip , uniformitäts - oder gleichförmigkeitsprinzip , englisch uniformitarianism , ist die grundlegende wissenschaftliche methode in der . English: the , lateinisch actualis , `` really `` , , aktualit\xe4tsprinzip , uniformit\xe4ts - or gleichf\xf6rmigkeitsprinzip , english uniformitarianism , is the fundamental scientific method in the . 320 German: die ( griechisch el , von altgriechisch grc , - " zusammen - " , " anbinden " , gemeint ist " die herzbeutel angehängte " ) , ist ein blutgefäß , welches das blut vom herz wegführt . English: the ( griechisch el , , altgriechisch grc , - `` together - `` , `` anbinden `` , meant is `` the herzbeutel angeh\xe4ngte `` ) , is a blutgef\xe4\xdf , welches the blood vom heart wegf\xfchrt . 540 German: unter der bezeichnung fasst man die drei im nördlichen alpenvorland liegenden gewässereinheiten obersee , untersee und seerhein zusammen . English: under the bezeichnung summarizes one the three , northern alpenvorland liegenden gew\xe4ssereinheiten obersee , untersee and seerhein together . ###Markdown The translations of the first 5 queries according to Google translate are as follows: 82 of ( . Of eng action : act, action , movement, ) is a film genre of entertainment cinema , in which the continued transition of the external action of mostly spectacularly staged battle - and violent scenes is advanced and illustrated .116 ( unit sign : u for unified atomic mass unit , amu outdated for atomic mass unit ) is a unit of measure of mass .240 of actualis from Latin , "real" , even actuality principle , uniformity - or gleichförmigkeitsprinzip , English uniformitarianism , is the basic scientific method in .320 (Greek el , from Ancient Greek grc , - " together - " , " tie " , is meant " the heart bag attached" ) is a blood vessel that leads away the blood from the heart .540 under the designation one summarizes the three lying in the northern waters alpenvorland units obersee , subsea and Seerhein together .---Translations obtained through Google Translate are obviously better. It's interesting to note that our own translation engine works well if a 'word-word' translation is considered, and if the word-pair has been encountered enough times in the bi-lingual corpora. Google Translate also seems to perform better as it's considering phrase based translation, which is more sophisticated and accurate than word-word translation. Our engine also seems to work better for function words rather than content words as those would have been the one encountered a lot in the bi-corpora and are better aligned.The alignments were combined by taking the intersection of the forward and reverse alignments in this case. Combining the two alignments improved things in the sense that the intersection got rid of all the extra 'noise' in the alignments, so that the most likely ones remained (that existed both in the forward and reverse direction). Combining, and Evaluation For the final bit, we'll create a function that translates a query, and retrieves the relevant documents for it. Then, to evaluate the results of our CLIR engine, we'll use the [Mean Average Precision](https://www.youtube.com/watch?v=pM6DJ0ZZee0) to judge the performance of the CLIR system. MAP is a standard evaluation metric used in IR. ###Code #Building a dictionary for queryids and relevant document ids qrel = defaultdict(list) f = open(DEVELOPMENT_QREL) for line in f: item = line.split('\t') qrel[item[0]].append(item[2]) f.close() #Single function to retreive documents for a German query def trans_retr_docs(german_query,no_of_results,translation_function): trans_query = " ".join(extract_and_tokenize_terms(translation_function(german_query))) return [item[0] for item in retr_docs(trans_query,no_of_results)] #Retriving 100 documents #Calculating the map score def calc_map(no_of_results,translation_function): average_precision = [] for gq in german_qs.keys(): relevant_docs = qrel[gq] incremental_precision = [] resulting_docs = trans_retr_docs(german_qs[gq],no_of_results,translation_function) total_counter = 0 true_positive_counter = 0 for doc in resulting_docs: total_counter+=1 if doc in relevant_docs: true_positive_counter += 1 incremental_precision.append(true_positive_counter/total_counter) #For no relevant retreivals, the average precision will be considered 0. try: average_precision.append(sum(incremental_precision)/len(incremental_precision)) except: average_precision.append(0) return (sum(average_precision)/len(average_precision)) ###Output _____no_output_____ ###Markdown To keep runtime at a minimum, we'll only consider the top 100 returned results (documents) when ###Code #Printing the map score for direct translations print calc_map(100,de_eng_direct) #Printing the map score for noisy channel translations print calc_map(100,de_eng_noisy_translate) ###Output 0.364795198505 ###Markdown Cross Language Information Retrieval OverviewThe aim of this project is to build a cross language information retrieval system (CLIR) which, given a query in German, will be capable of searching text documents written in English and displaying the results in German.We're going to use machine translation, information retrieval using a vector space model, and then assess the performance of the system using IR evaluation techniques.Parts of the project are explained as we progress. Data Used- bitext.(en,de): A sentence aligned, parallel German-English corpus, sourced from the Europarl corpus (which is a collection of debates held in the EU parliament over a number of years). We'll use this to develop word-alignment tools, and build a translation probability table. - newstest.(en,de): A separate, smaller parallel corpus for evaulation of the translation system.- devel.(docs,queries,qrel): A set of documents in English (sourced from Wikipedia), queries in German, and relevance judgement scores for each query-document pair. The files are available to check out in the data/clir directory of the repo. Housekeeping: File encodings and tokenisationSince the data files we use is utf-8 encoded text, we need to convert the strings into ASCII by escaping the special symbols. We also import some libraries in this step as well. ###Code from nltk.tokenize import word_tokenize from __future__ import division #To properly handle floating point divisions. import math #Function to tokenise string/sentences. def tokenize(line, tokenizer=word_tokenize): utf_line = line.decode('utf-8').lower() return [token.encode('ascii', 'backslashreplace') for token in tokenizer(utf_line)] ###Output _____no_output_____ ###Markdown Now we can test out our tokenize function. Notice how it converts the word Über. ###Code tokenize("Seit damals ist er auf über 10.000 Punkte gestiegen.") ###Output _____no_output_____ ###Markdown Let's store the path of the data files as easily identifiable variables for future access. ###Code DEVELOPMENT_DOCS = 'data/clir/devel.docs' #Data file for IR engine development DEVELOPMENT_QUERIES = 'data/clir/devel.queries' #Data file containing queries in German DEVELOPMENT_QREL = 'data/clir/devel.qrel' #Data file containing a relevance score or query-doc pairs BITEXT_ENG = 'data/clir/bitext.en' #Bitext data file in English for translation engine and language model development BITEXT_DE = 'data/clir/bitext.de' #Bitext data file in German NEWSTEST_ENG = 'data/clir/newstest.en' #File for testing language model ###Output _____no_output_____ ###Markdown With that out of the way, lets get to the meat of the project. As mentioned earlier, we're going to build a CLIR engine consisting of information retrieval and translation components, and then evaluate its accuracy.The CLIR system will:- **translate queries** from German into English (because our searcheable corpus is in English), using word-based translation, a rather simplistic approach as opposed to the sophistication you might see in, say, *Google Translate*.- **search over the document corpus** using the Okapi BM25 IR ranking model, a variation of the traditional TF-IDF model.- **evaluate the quality** of ranked retrieval results using the query relevance judgements. Information Retrieval using [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25)We'll start by building an IR system, and give it a test run with some English queries. Here's an overview of the tasks involved:- Loading the data files, and tokenizing the input.- Preprocessing the lexicon by stemming, removing stopwords.- Calculating the TF/IDF representation for all documents in our wikipedia corpus.- Storing an inverted index to efficiently documents, given a query term.- Implementing querying with BM25.- Test runs.So for our first task, we'll load the devel.docs file, extract and tokenize the terms, and store them in a python dictionary with the document ids as keys. ###Code import nltk import re stopwords = set(nltk.corpus.stopwords.words('english')) #converting stopwords to a set for faster processing in the future. stemmer = nltk.stem.PorterStemmer() #Function to extract and tokenize terms from a document def extract_and_tokenize_terms(doc): terms = [] for token in tokenize(doc): if token not in stopwords: # 'in' and 'not in' operations are faster over sets than lists if not re.search(r'\d',token) and not re.search(r'[^A-Za-z-]',token): #Removing numbers and punctuations #(excluding hyphenated words) terms.append(stemmer.stem(token.lower())) return terms documents = {} #Dictionary to store documents with ids as keys. #Reading each line in the file and storing it documents dictionary f = open(DEVELOPMENT_DOCS) for line in f: doc = line.split("\t") terms = extract_and_tokenize_terms(doc[1]) documents[doc[0]] = terms f.close() ###Output _____no_output_____ ###Markdown To check if everything is working till now, let's access a document from the dictionary, with the id '290'. ###Code documents['290'][:20] #To keep things short, we're only going to check out 20 tokens. ###Output _____no_output_____ ###Markdown Now we'll build an inverted index for the documents, so that we can quickly access documents for the terms we need. ###Code #Building an inverted index for the documents from collections import defaultdict inverted_index = defaultdict(set) for docid, terms in documents.items(): for term in terms: inverted_index[term].add(docid) ###Output _____no_output_____ ###Markdown To test it out, the list of documents containing the word 'pizza': ###Code inverted_index['pizza'] ###Output _____no_output_____ ###Markdown On to the BM25 TF-IDF representation, we'll create the td-idf matrix for terms-documents, first without the query component. The query component is dependent on the terms in our query. So we'll just calculate that, and multiply it with the overall score when we want to retreive documents for a particular query. ###Code #Building a TF-IDF representation using BM25 NO_DOCS = len(documents) #Number of documents AVG_LEN_DOC = sum([len(doc) for doc in documents.values()])/len(documents) #Average length of documents #The function below takes the documentid, and the term, to calculate scores for the tf and idf #components, and multiplies them together. def tf_idf_score(k1,b,term,docid): ft = len(inverted_index[term]) term = stemmer.stem(term.lower()) fdt = documents[docid].count(term) idf_comp = math.log((NO_DOCS - ft + 0.5)/(ft+0.5)) tf_comp = ((k1 + 1)*fdt)/(k1*((1-b) + b*(len(documents[docid])/AVG_LEN_DOC))+fdt) return idf_comp * tf_comp #Function to create tf_idf matrix without the query component def create_tf_idf(k1,b): tf_idf = defaultdict(dict) for term in set(inverted_index.keys()): for docid in inverted_index[term]: tf_idf[term][docid] = tf_idf_score(k1,b,term,docid) return tf_idf #Creating tf_idf matrix with said parameter values: k1 and b for all documents. tf_idf = create_tf_idf(1.5,0.5) ###Output _____no_output_____ ###Markdown We took the default values for k1 and b (1.5 and 0.5), which seemed to give good results. Although these parameters may be altered depending on the type of data being dealth with. Now we create a method to retrieve the query component, and another method that will use the previous ones and retrieve the relevant documents for a query, sorted on the basis of their ranks. ###Code #Function to retrieve query component def get_qtf_comp(k3,term,fqt): return ((k3+1)*fqt[term])/(k3 + fqt[term]) #Function to retrieve documents || Returns a set of documents and their relevance scores. def retr_docs(query,result_count): q_terms = [stemmer.stem(term.lower()) for term in query.split() if term not in stopwords] #Removing stopwords from queries fqt = {} for term in q_terms: fqt[term] = fqt.get(term,0) + 1 scores = {} for word in fqt.keys(): #print word + ': '+ str(inverted_index[word]) for document in inverted_index[word]: scores[document] = scores.get(document,0) + (tf_idf[word][document]*get_qtf_comp(0,word,fqt)) #k3 chosen as 0 (default) return sorted(scores.items(),key = lambda x : x[1] , reverse=True)[:result_count] ###Output _____no_output_____ ###Markdown Let's try and retrieve a document for a query. ###Code retr_docs("Manchester United",5) ###Output _____no_output_____ ###Markdown Checking out the terms in the top ranked document.. ###Code documents['19961'][:30] ###Output _____no_output_____ ###Markdown The information retrieval engine has worked quite well in this case. The top ranked document for the query is a snippet of the wikipedia article for Manchester United Football Club. On further inspection, we can see that the documents ranked lower are, for example, for The University of Manchester, or even just articles with the words 'Manchester' or 'United' in them.Now we can begin translating the German queries to English. Query Translation: For translation, we'll implement a simple word-based translation model in a noisy channel setting. This means that we'll use both a language model over English, and a translation model.We'll use a unigram language model for decoding/translation, but also create a model with trigram to test the improvement in performace). Our aim is to find the string, $\vec{e}$ which maximises $p(\vec{e}) p(\vec{g} | \vec{e})$, given English output string $\vec{e}$ and German input string $\vec{g}$. Language Model:[From Wikipedia](https://en.wikipedia.org/wiki/Language_model): A statistical language model is a probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability P(w1,....,wm) to the whole sequence. The models will be trained on the 'bitext.en' file, and tested on 'newstest.en'.As we'll train the model on different files, it's obvious that we'll run into words (unigrams) and trigrams what we hadn't seen in the file we trained the model on. To account for these unknown information, we'll use add-k or [laplace smoothing](https://en.wikipedia.org/wiki/Additive_smoothing) for the unigram and [Katz-Backoff smoothing](https://en.wikipedia.org/wiki/Katz%27s_back-off_model) for the trigram model.Let's start with calculating the unigram, bigram and trigram counts (we need the bigram counts for trigram smoothing). The sentences are also converted appropriately by adding sentinels at the start and end of sentences. ###Code #Calculating the unigram, bigram and trigram counts. f = open(BITEXT_ENG) train_sentences = [] for line in f: train_sentences.append(tokenize(line)) f.close() #Function to mark the first occurence of words as unknown, for training. def check_for_unk_train(word,unigram_counts): if word in unigram_counts: return word else: unigram_counts[word] = 0 return "UNK" #Function to convert sentences for training the language model. def convert_sentence_train(sentence,unigram_counts): #<s1> and <s2> are sentinel tokens added to the start and end, for handling tri/bigrams at the start of a sentence. return ["<s1>"] + ["<s2>"] + [check_for_unk_train(token.lower(),unigram_counts) for token in sentence] + ["</s2>"]+ ["</s1>"] #Function to obtain unigram, bigram and trigram counts. def get_counts(sentences): trigram_counts = defaultdict(lambda: defaultdict(dict)) bigram_counts = defaultdict(dict) unigram_counts = {} for sentence in sentences: sentence = convert_sentence_train(sentence, unigram_counts) for i in range(len(sentence) - 2): trigram_counts[sentence[i]][sentence[i+1]][sentence[i+2]] = trigram_counts[sentence[i]][sentence[i+1]].get(sentence[i+2],0) + 1 bigram_counts[sentence[i]][sentence[i+1]] = bigram_counts[sentence[i]].get(sentence[i+1],0) + 1 unigram_counts[sentence[i]] = unigram_counts.get(sentence[i],0) + 1 unigram_counts["</s1>"] = unigram_counts["<s1>"] unigram_counts["</s2>"] = unigram_counts["<s2>"] bigram_counts["</s2>"]["</s1>"] = bigram_counts["<s1>"]["<s2>"] return unigram_counts, bigram_counts, trigram_counts unigram_counts, bigram_counts,trigram_counts = get_counts(train_sentences) ###Output _____no_output_____ ###Markdown We can calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) of our language models to see how well they predict a sentence. ###Code #Constructing unigram model with 'add-k' smoothing token_count = sum(unigram_counts.values()) #Function to convert unknown words for testing. #Words that don't appear in the training corpus (even if they are in the test corpus) are marked as UNK. def check_for_unk_test(word,unigram_counts): if word in unigram_counts and unigram_counts[word] > 0: return word else: return "UNK" def convert_sentence_test(sentence,unigram_counts): return ["<s1>"] + ["<s2>"] + [check_for_unk_test(word.lower(),unigram_counts) for word in sentence] + ["</s2>"] + ["</s1>"] #Returns the log probability of a unigram, with add-k smoothing. We're taking logs to avoid probability underflow. def get_log_prob_addk(word,unigram_counts,k): return math.log((unigram_counts[word] + k)/ \ (token_count + k*len(unigram_counts))) #Returns the log probability of a sentence. def get_sent_log_prob_addk(sentence, unigram_counts,k): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_addk(word, unigram_counts,k) for word in sentence]) def calculate_perplexity_uni(sentences,unigram_counts, token_count, k): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_addk(sentence,unigram_counts,k) return math.exp(-total_log_prob/test_token_count) f = open(NEWSTEST_ENG) test_sents = [] for line in f: test_sents.append(tokenize(line)) f.close() ###Output _____no_output_____ ###Markdown Now we'll calculate the [perplexity](https://en.wikipedia.org/wiki/Perplexity) for the model, as a measure of performance i.e. how well they predict a sentence. To find the optimum value of k, we can just calculate the perplexity multiple times with different k(s). ###Code #Calculating the perplexity for different ks ks = [0.0001,0.01,0.1,1,10] for k in ks: print str(k) +": " + str(calculate_perplexity_uni(test_sents,unigram_counts,token_count,k)) ###Output 0.0001: 613.918691403 0.01: 614.027477551 0.1: 615.06903252 1: 628.823994251 10: 823.302441447 ###Markdown Using add-k smoothing, perplexity for the unigram model increases with the increase in k. So 0.0001 is the best choice for k.Moving on to tri-grams. ###Code #Calculating the N1/N paramaters for Trigrams/Bigrams/Unigrams in Katz-Backoff Smoothing TRI_ONES = 0 #N1 for Trigrams TRI_TOTAL = 0 #N for Trigrams for twod in trigram_counts.values(): for oned in twod.values(): for val in oned.values(): if val==1: TRI_ONES+=1 #Count of trigram seen once TRI_TOTAL += 1 #Count of all trigrams seen BI_ONES = 0 #N1 for Bigrams BI_TOTAL = 0 #N for Bigrams for oned in bigram_counts.values(): for val in oned.values(): if val==1: BI_ONES += 1 #Count of bigram seen once BI_TOTAL += 1 #Count of all bigrams seen UNI_ONES = unigram_counts.values().count(1) UNI_TOTAL = len(unigram_counts) #Constructing trigram model with backoff smoothing TRI_ALPHA = TRI_ONES/TRI_TOTAL #Alpha parameter for trigram counts BI_ALPHA = BI_ONES/BI_TOTAL #Alpha parameter for bigram counts UNI_ALPHA = UNI_ONES/UNI_TOTAL def get_log_prob_back(sentence,i,unigram_counts,bigram_counts,trigram_counts,token_count): if trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i],0) > 0: return math.log((1-TRI_ALPHA)*trigram_counts[sentence[i-2]][sentence[i-1]].get(sentence[i])/bigram_counts[sentence[i-2]][sentence[i-1]]) else: if bigram_counts[sentence[i-1]].get(sentence[i],0)>0: return math.log(TRI_ALPHA*((1-BI_ALPHA)*bigram_counts[sentence[i-1]][sentence[i]]/unigram_counts[sentence[i-1]])) else: return math.log(TRI_ALPHA*BI_ALPHA*(1-UNI_ALPHA)*((unigram_counts[sentence[i]]+0.0001)/(token_count+(0.0001)*len(unigram_counts)))) def get_sent_log_prob_back(sentence, unigram_counts, bigram_counts,trigram_counts, token_count): sentence = convert_sentence_test(sentence, unigram_counts) return sum([get_log_prob_back(sentence,i, unigram_counts,bigram_counts,trigram_counts,token_count) for i in range(2,len(sentence))]) def calculate_perplexity_tri(sentences,unigram_counts,bigram_counts,trigram_counts, token_count): total_log_prob = 0 test_token_count = 0 for sentence in sentences: test_token_count += len(sentence) + 2 # have to consider the end token total_log_prob += get_sent_log_prob_back(sentence,unigram_counts,bigram_counts,trigram_counts,token_count) return math.exp(-total_log_prob/test_token_count) #Calculating the perplexity calculate_perplexity_tri(test_sents,unigram_counts,bigram_counts,trigram_counts,token_count) ###Output _____no_output_____ ###Markdown For unigram language model, the perplexity for different values of k were as follow:kPerplexity0.0001613.920.01614.030.1628.821823.302For tri-gram model, Katz-Backoff smoothing was chosen as it takes a discounted probability for things only seen once, and backs off to a lower level n-gram for unencountered n-grams.Compared with the trigram model, the perplexity was as follows:ModelPerplexityUnigram (Best K)613.92Trigram (Katz Backoff)461.65As can be seen, the trigram model with 'Katz Backoff' smoothing seems to perform better than the best unigram model (with k = 0.0001). Thus we can say that this model is better for predicting the sequence of a sentence than unigram, which should is obvious if you think about it. Translation modelNext, we'll estimate translation model probabilities. For this, we'll use IBM1 from the NLTK library. IBM1 learns word based translation probabilities using expectation maximisation. We'll use both 'bitext.de' and 'bitext.en' files for this purpose; extract the sentences from each, and then use IBM1 to build the translation tables. ###Code #Creating lists of English and German sentences from bitext. from nltk.translate import IBMModel1 from nltk.translate import AlignedSent, Alignment eng_sents = [] de_sents = [] f = open(BITEXT_ENG) for line in f: terms = tokenize(line) eng_sents.append(terms) f.close() f = open(BITEXT_DE) for line in f: terms = tokenize(line) de_sents.append(terms) f.close() #Zipping together the bitexts for easier access paral_sents = zip(eng_sents,de_sents) #Building English to German translation table for words (Backward alignment) eng_de_bt = [AlignedSent(E,G) for E,G in paral_sents] eng_de_m = IBMModel1(eng_de_bt, 5) #Building German to English translation table for words (Backward alignment) de_eng_bt = [AlignedSent(G,E) for E,G in paral_sents] de_eng_m = IBMModel1(de_eng_bt, 5) ###Output _____no_output_____ ###Markdown We can take the intersection of the dual alignments to obtain a combined alignment for each sentence in the bitext. ###Code #Script below to combine alignments using set intersections combined_align = [] for i in range(len(eng_de_bt)): forward = {x for x in eng_de_bt[i].alignment} back_reversed = {x[::-1] for x in de_eng_bt[i].alignment} combined_align.append(forward.intersection(back_reversed)) ###Output _____no_output_____ ###Markdown Now we can create translation dictionaries in both English to German, and German to English directions. Creating dictionaries for occurence counts first. ###Code #Creating German to English dictionary with occurence count of word pairs de_eng_count = defaultdict(dict) for i in range(len(de_eng_bt)): for item in combined_align[i]: de_eng_count[de_eng_bt[i].words[item[1]]][de_eng_bt[i].mots[item[0]]] = de_eng_count[de_eng_bt[i].words[item[1]]].get(de_eng_bt[i].mots[item[0]],0) + 1 #Creating a English to German dict with occ count of word pais eng_de_count = defaultdict(dict) for i in range(len(eng_de_bt)): for item in combined_align[i]: eng_de_count[eng_de_bt[i].words[item[0]]][eng_de_bt[i].mots[item[1]]] = eng_de_count[eng_de_bt[i].words[item[0]]].get(eng_de_bt[i].mots[item[1]],0) + 1 ###Output _____no_output_____ ###Markdown Creating dictionaries for translation probabilities. ###Code #Creating German to English table with word translation probabilities de_eng_prob = defaultdict(dict) for de in de_eng_count.keys(): for eng in de_eng_count[de].keys(): de_eng_prob[de][eng] = de_eng_count[de][eng]/sum(de_eng_count[de].values()) #Creating English to German dict with word translation probabilities eng_de_prob = defaultdict(dict) for eng in eng_de_count.keys(): for de in eng_de_count[eng].keys(): eng_de_prob[eng][de] = eng_de_count[eng][de]/sum(eng_de_count[eng].values()) ###Output _____no_output_____ ###Markdown Let's look at some examples of translating individual words from German to English. ###Code #Examples of translating individual words from German to English print de_eng_prob['frage'] print de_eng_prob['handlung'] print de_eng_prob['haus'] ###Output {'question': 0.970873786407767, 'issue': 0.019417475728155338, 'matter': 0.009708737864077669} {'rush': 1.0} {'begins': 0.058823529411764705, 'house': 0.9411764705882353} ###Markdown Building the noisy channel translation model, which uses the english to german translation dictionary and the unigram language model to add "noise". ###Code #Building noisy channel translation model def de_eng_noisy(german): noisy={} for eng in de_eng_prob[german].keys(): noisy[eng] = eng_de_prob[eng][german]+ get_log_prob_addk(eng,unigram_counts,0.0001) return noisy ###Output _____no_output_____ ###Markdown Let's check out the translation using the noise channel approach. ###Code #Test block to check alignments print de_eng_noisy('vater') print de_eng_noisy('haus') print de_eng_noisy('das') print de_eng_noisy('entschuldigung') ###Output {'father': -8.798834996562721} {'begins': -10.2208672198799, 'house': -8.163007778647888} {'this': -5.214590799418497, 'the': -3.071527829335362, 'that': -4.664995720177421} {'excuse': -11.870404868087332, 'apology': -12.39683538573032, 'comprehend': -11.89683538573032} ###Markdown Translations for 'vater', 'hause', 'das' seem to be pretty good, with the max score going to the best translation. For the word 'entschuldigung', the best possible translation is 'excuse', while 'comprehend' being close. But in real world use, the most common translation for 'entschuldigung' is 'sorry'. Checking the reverse translation for 'sorry', ###Code eng_de_prob['sorry'] ###Output _____no_output_____ ###Markdown The word 'bereue', which Google translates as 'regret'. This is one example of a 'bad' alignment.Let's try tanslating some queries now. ###Code #Translating first 5 queries into English #Function for direct translation def de_eng_direct(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_prob[token], key=de_eng_prob[token].get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) #Function for noisy channel translation def de_eng_noisy_translate(query): query_english = [] query_tokens = tokenize(query) for token in query_tokens: try: query_english.append(max(de_eng_noisy(token), key=de_eng_noisy(token).get)) except: query_english.append(token) #Returning the token itself when it cannot be found in the translation table. #query_english.append("NA") return " ".join(query_english) f = open(DEVELOPMENT_QUERIES) lno = 0 plno = 0 #Also building a dictionary of query ids and query content (only for the first 100s) german_qs = {} test_query_trans_sents = [] #Building a list for perplexity checks. for line in f: lno+=1 query_id = line.split('\t')[0] query_german = line.split('\t')[1] german_qs[query_id] = query_german.strip() translation = str(de_eng_noisy_translate(query_german)) if plno<5: print query_id + "\n" + "German: " + str(query_german) + "\n" + "English: " + translation +"\n\n" plno+=1 test_query_trans_sents.append(translation) if lno==100: break f.close() ###Output 82 German: der ( von engl . action : tat , handlung , bewegung ) ist ein filmgenre des unterhaltungskinos , in welchem der fortgang der äußeren handlung von zumeist spektakulär inszenierten kampf - und gewaltszenen vorangetrieben und illustriert wird . English: the ( , guises . action : indeed , rush , movement ) is a filmgenre the unterhaltungskinos , in much the fortgang the external rush , zumeist spektakul\xe4r inszenierten fight - and gewaltszenen pushed and illustriert will . 116 German: die ( einheitenzeichen : u für unified atomic mass unit , veraltet amu für atomic mass unit ) ist eine maßeinheit der masse . English: the ( einheitenzeichen : u for unified atomic mass unit , obsolete amu for atomic mass unit ) is a befuddled the mass . 240 German: der von lateinisch actualis , " wirklich " , auch aktualitätsprinzip , uniformitäts - oder gleichförmigkeitsprinzip , englisch uniformitarianism , ist die grundlegende wissenschaftliche methode in der . English: the , lateinisch actualis , `` really `` , , aktualit\xe4tsprinzip , uniformit\xe4ts - or gleichf\xf6rmigkeitsprinzip , english uniformitarianism , is the fundamental scientific method in the . 320 German: die ( griechisch el , von altgriechisch grc , - " zusammen - " , " anbinden " , gemeint ist " die herzbeutel angehängte " ) , ist ein blutgefäß , welches das blut vom herz wegführt . English: the ( griechisch el , , altgriechisch grc , - `` together - `` , `` anbinden `` , meant is `` the herzbeutel angeh\xe4ngte `` ) , is a blutgef\xe4\xdf , welches the blood vom heart wegf\xfchrt . 540 German: unter der bezeichnung fasst man die drei im nördlichen alpenvorland liegenden gewässereinheiten obersee , untersee und seerhein zusammen . English: under the bezeichnung summarizes one the three , northern alpenvorland liegenden gew\xe4ssereinheiten obersee , untersee and seerhein together . ###Markdown The translations of the first 5 queries according to Google translate are as follows: 82 of ( . Of eng action : act, action , movement, ) is a film genre of entertainment cinema , in which the continued transition of the external action of mostly spectacularly staged battle - and violent scenes is advanced and illustrated .116 ( unit sign : u for unified atomic mass unit , amu outdated for atomic mass unit ) is a unit of measure of mass .240 of actualis from Latin , "real" , even actuality principle , uniformity - or gleichförmigkeitsprinzip , English uniformitarianism , is the basic scientific method in .320 (Greek el , from Ancient Greek grc , - " together - " , " tie " , is meant " the heart bag attached" ) is a blood vessel that leads away the blood from the heart .540 under the designation one summarizes the three lying in the northern waters alpenvorland units obersee , subsea and Seerhein together .---Translations obtained through Google Translate are obviously better. It's interesting to note that our own translation engine works well if a 'word-word' translation is considered, and if the word-pair has been encountered enough times in the bi-lingual corpora. Google Translate also seems to perform better as it's considering phrase based translation, which is more sophisticated and accurate than word-word translation. Our engine also seems to work better for function words rather than content words as those would have been the one encountered a lot in the bi-corpora and are better aligned.The alignments were combined by taking the intersection of the forward and reverse alignments in this case. Combining the two alignments improved things in the sense that the intersection got rid of all the extra 'noise' in the alignments, so that the most likely ones remained (that existed both in the forward and reverse direction). Combining, and Evaluation For the final bit, we'll create a function that translates a query, and retrieves the relevant documents for it. Then, to evaluate the results of our CLIR engine, we'll use the [Mean Average Precision](https://www.youtube.com/watch?v=pM6DJ0ZZee0) to judge the performance of the CLIR system. MAP is a standard evaluation metric used in IR. ###Code #Building a dictionary for queryids and relevant document ids qrel = defaultdict(list) f = open(DEVELOPMENT_QREL) for line in f: item = line.split('\t') qrel[item[0]].append(item[2]) f.close() #Single function to retreive documents for a German query def trans_retr_docs(german_query,no_of_results,translation_function): trans_query = " ".join(extract_and_tokenize_terms(translation_function(german_query))) return [item[0] for item in retr_docs(trans_query,no_of_results)] #Retriving 100 documents #Calculating the map score def calc_map(no_of_results,translation_function): average_precision = [] for gq in german_qs.keys(): relevant_docs = qrel[gq] incremental_precision = [] resulting_docs = trans_retr_docs(german_qs[gq],no_of_results,translation_function) total_counter = 0 true_positive_counter = 0 for doc in resulting_docs: total_counter+=1 if doc in relevant_docs: true_positive_counter += 1 incremental_precision.append(true_positive_counter/total_counter) #For no relevant retreivals, the average precision will be considered 0. try: average_precision.append(sum(incremental_precision)/len(incremental_precision)) except: average_precision.append(0) return (sum(average_precision)/len(average_precision)) ###Output _____no_output_____ ###Markdown To keep runtime at a minimum, we'll only consider the top 100 returned results (documents) when ###Code #Printing the map score for direct translations print calc_map(100,de_eng_direct) #Printing the map score for noisy channel translations print calc_map(100,de_eng_noisy_translate) ###Output 0.364795198505
charts/Yang,Wenxin_final.ipynb
###Markdown Codes for final project of MUSA620 2019 Wenxin Yang | 2019.05 1 Preparation 1.1 Load data and packages 1.1.1 import packages ###Code import geopandas as gpd import json import pandas as pd import requests from io import StringIO from shapely.geometry import Point import matplotlib.pyplot as plt from census_area import Census ###Output _____no_output_____ ###Markdown 1.1.2 load car crash data ###Code url = 'https://data.boston.gov/dataset/7b29c1b2-7ec2-4023-8292-c24f5d8f0905/resource/e4bfe397-6bfc-49c5-9367-c879fac7401d/download/crash_april_2019.csv.csv' r = requests.get(url) df = pd.read_csv(StringIO(r.text)) df['coord'] = list(zip(df.long, df.lat)) df['coord'] = df['coord'].apply(Point) crash = gpd.GeoDataFrame(df, geometry = 'coord') crash.crs = ({'init':'epsg:26986'}) crash.head() # convert time of car crash data crash['dispatch_ts'] = pd.to_datetime(crash['dispatch_ts'], format='%Y-%m-%d %H:%M:%S') crash['year'] = crash['dispatch_ts'].dt.year crash['month'] = crash['dispatch_ts'].dt.month crash['week'] = crash['dispatch_ts'].dt.week ###Output _____no_output_____ ###Markdown 1.1.3 load census data ###Code my_api_key = '' # get api key for census data api api_key = my_api_key c = Census(key=api_key) ma_code = 25 boston_code = '07000' #from https://api.census.gov/data/2017/acs/acs5/variables.html #B19013_001E is the code for median household income variables = ('NAME', 'B19013_001E') result = c.acs5.state_place(variables, ma_code, boston_code, year=2017) inc_tracts = c.acs5.state_place_tract(variables, ma_code, boston_code, return_geometry=True) crs = {'init':'epsg:26986'} inc_df = gpd.GeoDataFrame.from_features(inc_tracts, crs=crs) len(inc_df) inc_df = inc_df.loc[inc_df['B19013_001E']>0] len(inc_df) inc_df.head() ###Output _____no_output_____ ###Markdown 2 Visualizations 2.1 Visualizations created with folium ###Code import folium from folium.plugins import HeatMap coordcrash = crash[['lat','long']].values m1 = folium.Map( location=[42.31, -71.10], tiles='cartodbpositron', zoom_start=11 ) HeatMap(coordcrash).add_to(m1) m1 ###Output _____no_output_____ ###Markdown 2.1.1 Heatmap with time ###Code def generateBaseMap(default_location=[42.31, -71.10], default_zoom_start=11): base_map = folium.Map(location=default_location, control_scale=True, zoom_start=default_zoom_start,tiles='stamentoner') return base_map df_year_list = [] for year in range(2015,2020): for month in range(1,13): df_year_list.append(crash.loc[(crash['year']==year) & (crash['month']==month)].groupby(['lat','long']).sum().reset_index().values.tolist()) len(df_year_list) from folium.plugins import HeatMap basemap = generateBaseMap(default_location=[42.31, -71.16],default_zoom_start=11) HeatMapWithTime(df_year_list,radius=15,gradient={0.2:'blue',0.4:'lime',0.6:'orange',1:'red'},min_opacity=0.6,max_opacity=0.9,use_local_extrema=True).add_to(basemap) basemap.save('final_heatmapwithtime.html') ct2 = ct = inc_df[['tract','OBJECTID','B19013_001E','STGEOMETRY.AREA','STGEOMETRY.LEN','geometry']] ct2.to_file('ct2.geojson',driver='GeoJSON') import branca import json import os import folium from folium.plugins import MarkerCluster MarkerCluster() colorscale = branca.colormap.linear.YlGnBu_09.scale(10000,220000) def col(feature): inc = feature['properties']['B19013_001E'] return { 'fillOpacity': 0.5, 'weight': 0, 'fillColor': '#black' if inc is None else colorscale(inc) } ctgjson = json.load(open('ct2.geojson')) ###Output _____no_output_____ ###Markdown 2.1.2 Choropleth map of median income level & cluster of car crashes ###Code m = folium.Map( location=[42.31, -71.10], tiles='stamentoner', zoom_start=11 ) folium.GeoJson( ctgjson, name = 'Median Household Income Level', style_function = col ).add_to(m) marker_cluster = MarkerCluster( name = 'Cluster of Car Crashes' ).add_to(m) for point in range(len(crash)): folium.Marker(coordcrash[point], tooltip = 'Time of crash: '+str(crash['dispatch_ts'][point]), icon = folium.Icon( color = 'red', icon_color = 'white', icon = 'car', angle = 0, prefix = 'fa' )).add_to(marker_cluster) folium.LayerControl().add_to(m) m m.save('final_cluster_and_choro.html') ###Output _____no_output_____ ###Markdown 2.2 Visualizations created with altair 2.2.1 Chart of car crashes vs. transit mode & location type ###Code crash.location_type.unique() joined = gpd.sjoin(crash, inc_df, op='within', how='left') # spatial join joined1 = gpd.sjoin(crash, inc_df, op='within', how='left').groupby(['year','mode_type','location_type']).size().reset_index() joined1.columns = ['year','mode_type','location_type','count'] joined1.head() import altair as alt pink_blue = alt.Scale(domain=('ped', 'mv','bike'), range=["steelblue", "salmon","orange"]) slider = alt.binding_range(min=2015, max=2019, step=1) select_year = alt.selection_single(name = 'select',fields=['year'], bind=slider) chart1 = alt.Chart(joined1).mark_bar().encode( x=alt.X('mode_type:N', title=None), y=alt.Y('count:Q', scale=alt.Scale(domain=(0, 2000)),title = 'Number of Crashes'), color=alt.Color('mode_type:N', scale=pink_blue), column='location_type:N' ).properties( width=150 ).add_selection( select_year ).transform_filter( select_year ) chart1.save('final_count_crash_150.json') ###Output _____no_output_____ ###Markdown 2.2.2 Charts of car crashes vs. transit modes / location types over time ###Code crash['date'] = pd.to_datetime(crash['year'].astype(str)+'-'+crash['month'].astype(str)) crash.head() chart2df = crash.groupby(['date','mode_type']).size().reset_index() chart3df = crash.groupby(['date','location_type']).size().reset_index() chart2df.columns = ['date','mode_type','count'] chart3df.columns = ['date','location_type','count'] from datetime import datetime nearest = alt.selection(type='single', nearest=True, on='mouseover', fields=['date'], empty='none') # The basic line line = alt.Chart().mark_line().encode( alt.X('date:T', axis=alt.Axis(title='')), alt.Y('count:Q', axis=alt.Axis(title='',format='f')), color='mode_type:N' ) # Transparent selectors across the chart. This is what tells us # the x-value of the cursor selectors = alt.Chart().mark_point().encode( x='date:T', opacity=alt.value(0), ).add_selection( nearest ) # Draw points on the line, and highlight based on selection points = line.mark_point().encode( opacity=alt.condition(nearest, alt.value(1), alt.value(0)) ) # Draw text labels near the points, and highlight based on selection text = line.mark_text(align='left', dx=5, dy=-5).encode( text=alt.condition(nearest, 'count:Q', alt.value(' ')) ) # Draw a rule at the location of the selection rules = alt.Chart().mark_rule(color='gray').encode( x='date:T', ).transform_filter( nearest ) # Put the five layers into a chart and bind the data stockChart = alt.layer(line, selectors, points, rules, text, data=chart2df, width=500, height=300,title='Car Crashes by Mode Type') stockChart.save('final_car_crash_mode_time_400.json') nearest = alt.selection(type='single', nearest=True, on='mouseover', fields=['date'], empty='none') # The basic line line = alt.Chart().mark_line().encode( alt.X('date:T', axis=alt.Axis(title='')), alt.Y('count:Q', axis=alt.Axis(title='',format='f')), color='location_type:N' ) # Transparent selectors across the chart. This is what tells us # the x-value of the cursor selectors = alt.Chart().mark_point().encode( x='date:T', opacity=alt.value(0), ).add_selection( nearest ) # Draw points on the line, and highlight based on selection points = line.mark_point().encode( opacity=alt.condition(nearest, alt.value(1), alt.value(0)) ) # Draw text labels near the points, and highlight based on selection text = line.mark_text(align='left', dx=5, dy=-5).encode( text=alt.condition(nearest, 'count:Q', alt.value(' ')) ) # Draw a rule at the location of the selection rules = alt.Chart().mark_rule(color='gray').encode( x='date:T', ).transform_filter( nearest ) # Put the five layers into a chart and bind the data loc_type = alt.layer(line, selectors, points, rules, text, data=chart3df, width=500, height=300,title='Car Crashes by Location Type') loc_type.save('final_car_crash_location_time_400.json') ###Output _____no_output_____
(t2) Deep Learning Computations/Shalaka_DL_DLComputations/Shalaka_DL_DLComputations_HPTClassification.ipynb
###Markdown Hyper-parameter Tunning of Machine Learning (ML) Models Code for Classification Problems `Dataset Used:`MNIST dataset `Machine Learning Algorithm Used:`* Random Forest (RF) * Support Vector Machine (SVM) * K-Nearest Neighbor (KNN) * Artificial Neural Network (ANN) `Hyper-parameter Tuning Algorithms Used:`* Grid Search * Random Search* Bayesian Optimization with Gaussian Processes (BO-GP)* Bayesian Optimization with Tree-structured Parzen Estimator (BO-TPE) --- ###Code # Importing required libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import scipy.stats as stats from sklearn import datasets from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report,confusion_matrix,accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC ###Output _____no_output_____ ###Markdown Loading MNIST DatasetThe Modified National Institute of Standards and Technology (MNIST) database is a large database of handwritten digits that is commonly used by the people who want to try learning techniques and pattern recognition methods on real-world data while spending minimal efforts on preprocessing and formatting. It has a training set of 60,000 examples, and a test set of 10,000 examples.It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image.It has 1797 record and 64 columns.For more details about the dataset click here: [Details-1](http://yann.lecun.com/exdb/mnist/), [Details-2](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.htmlsklearn.datasets.load_digits/) ###Code # Loading the dataset X, y = datasets.load_digits(return_X_y=True) datasets.load_digits() ###Output _____no_output_____ ###Markdown Baseline Machine Learning Models: Classifier with default Hyper-parameters `Random Forest` ###Code # Random Forest (RF) with 3-fold cross validation RF_clf = RandomForestClassifier() RF_clf.fit(X,y) RF_scores = cross_val_score(RF_clf, X, y, cv = 3,scoring = 'accuracy') print("Accuracy (RF): "+ str(RF_scores.mean())) ###Output Accuracy (RF): 0.9365609348914857 ###Markdown `Support Vector Machine` ###Code # Support Vector Machine (SVM) SVM_clf = SVC(gamma='scale') SVM_clf.fit(X,y) SVM_scores = cross_val_score(SVM_clf, X, y, cv = 3,scoring = 'accuracy') print("Accuracy (SVM): "+ str(SVM_scores.mean())) ###Output Accuracy (SVM): 0.9699499165275459 ###Markdown `K-Nearest Neighbor` ###Code # K-Nearest Neighbor (KNN) KNN_clf = KNeighborsClassifier() KNN_clf.fit(X,y) KNN_scores = cross_val_score(KNN_clf, X, y, cv = 3,scoring='accuracy') print("Accuracy (KNN):"+ str(KNN_scores.mean())) ###Output Accuracy (KNN):0.9627156371730662 ###Markdown `Artificial Neural Network` ###Code # Artificial Neural Network (ANN) from keras.models import Sequential, Model from keras.layers import Dense, Input from keras.wrappers.scikit_learn import KerasClassifier from keras.callbacks import EarlyStopping def ann_model(optimizer = 'sgd',neurons = 32,batch_size = 32,epochs = 50,activation = 'relu',patience = 5,loss = 'categorical_crossentropy'): model = Sequential() model.add(Dense(neurons, input_shape = (X.shape[1],), activation = activation)) model.add(Dense(neurons, activation = activation)) model.add(Dense(10,activation='softmax')) model.compile(optimizer = optimizer, loss = loss) early_stopping = EarlyStopping(monitor = "loss", patience = patience) history = model.fit(X, pd.get_dummies(y).values, batch_size = batch_size, epochs=epochs, callbacks = [early_stopping], verbose=0) return model ANN_clf = KerasClassifier(build_fn = ann_model, verbose = 0) ANN_scores = cross_val_score(ANN_clf, X, y, cv = 3,scoring = 'accuracy') print("Accuracy (ANN):"+ str(ANN_scores.mean())) ###Output WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/wrappers/scikit_learn.py:241: Sequential.predict_classes (from tensorflow.python.keras.engine.sequential) is deprecated and will be removed after 2021-01-01. Instructions for updating: Please use instead:* `np.argmax(model.predict(x), axis=-1)`, if your model does multi-class classification (e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) > 0.5).astype("int32")`, if your model does binary classification (e.g. if it uses a `sigmoid` last-layer activation). Accuracy (ANN):0.9988870339454646 ###Markdown Hyper-parameter Tuning Algorithms `1] Grid Search` ###Code from sklearn.model_selection import GridSearchCV ###Output _____no_output_____ ###Markdown `Random Forest` ###Code # Random Forest (RF) RF_params = { 'n_estimators': [10, 20, 30], 'max_depth': [15,20,25,30,50], "criterion":['gini','entropy'] } RF_clf = RandomForestClassifier(random_state = 1) RF_grid = GridSearchCV(RF_clf, RF_params, cv = 3, scoring = 'accuracy') RF_grid.fit(X, y) print(RF_grid.best_params_) print("Accuracy (RF): "+ str(RF_grid.best_score_)) ###Output {'criterion': 'entropy', 'max_depth': 15, 'n_estimators': 30} Accuracy (RF): 0.9343350027824151 ###Markdown `Support Vector Machine` ###Code # Support Vector Machine (SVM) SVM_params = { 'C': [1, 10, 20, 50, 100], "kernel":['linear','poly','rbf','sigmoid'] } SVM_clf = SVC(gamma='scale') SVM_grid = GridSearchCV(SVM_clf, SVM_params, cv = 3, scoring = 'accuracy') SVM_grid.fit(X, y) print(SVM_grid.best_params_) print("Accuracy:"+ str(SVM_grid.best_score_)) ###Output {'C': 10, 'kernel': 'rbf'} Accuracy:0.9738452977184195 ###Markdown `K-Nearest Neighbor` ###Code #K-Nearest Neighbor (KNN) KNN_params = { 'n_neighbors': [2, 4, 6, 8] } KNN_clf = KNeighborsClassifier() KNN_grid = GridSearchCV(KNN_clf, KNN_params, cv = 3, scoring = 'accuracy') KNN_grid.fit(X, y) print(KNN_grid.best_params_) print("Accuracy:"+ str(KNN_grid.best_score_)) ###Output {'n_neighbors': 4} Accuracy:0.9638286032276016 ###Markdown `Artificial Neural Network` ###Code # Artificial Neural Network (ANN) ANN_params = { 'optimizer': ['adam','sgd'], 'activation': ['relu','tanh'], 'batch_size': [16,32], 'neurons':[16,32], 'epochs':[30,50], 'patience':[3,5] } ANN_clf = KerasClassifier(build_fn = ann_model, verbose = 0) ANN_grid = GridSearchCV(ANN_clf, ANN_params, cv = 3,scoring = 'accuracy') ANN_grid.fit(X, y) print(ANN_grid.best_params_) print("Accuracy (ANN): "+ str(ANN_grid.best_score_)) ###Output {'activation': 'relu', 'batch_size': 16, 'epochs': 50, 'neurons': 32, 'optimizer': 'adam', 'patience': 5} Accuracy (ANN): 0.9994435169727324 ###Markdown `2] Random Search` ###Code from sklearn.model_selection import RandomizedSearchCV from random import randrange as sp_randrange from scipy.stats import randint as sp_randint ###Output _____no_output_____ ###Markdown `Random Forest` ###Code # Random Forest (RF) RF_params = { 'n_estimators': sp_randint(10,100), 'max_depth': sp_randint(5,50), "criterion":['gini','entropy'] } RF_clf = RandomForestClassifier(random_state = 1) RF_Random = RandomizedSearchCV(RF_clf, param_distributions = RF_params, n_iter = 20,cv = 3,scoring = 'accuracy') RF_Random.fit(X, y) print(RF_Random.best_params_) print("Accuracy (RF):"+ str(RF_Random.best_score_)) ###Output {'criterion': 'gini', 'max_depth': 10, 'n_estimators': 86} Accuracy (RF):0.9476905954368391 ###Markdown `Support Vector Machine` ###Code # Support Vector Machine(SVM) SVM_params = { 'C': stats.uniform(1,50), "kernel":['poly','rbf'] } SVM_clf = SVC(gamma='scale') SVM_Random = RandomizedSearchCV(SVM_clf, param_distributions = SVM_params, n_iter = 20,cv = 3,scoring = 'accuracy') SVM_Random.fit(X, y) print(SVM_Random.best_params_) print("Accuracy (SVM): "+ str(SVM_Random.best_score_)) ###Output {'C': 33.97410441400006, 'kernel': 'rbf'} Accuracy (SVM): 0.9738452977184195 ###Markdown `K-Nearest Neighbor` ###Code # K-Nearest Neighbor (KNN) KNN_params = {'n_neighbors': range(1,20)} KNN_clf = KNeighborsClassifier() KNN_Random = RandomizedSearchCV(KNN_clf, param_distributions = KNN_params,n_iter = 10,cv = 3,scoring = 'accuracy') KNN_Random.fit(X, y) print(KNN_Random.best_params_) print("Accuracy (KNN): "+ str(KNN_Random.best_score_)) ###Output {'n_neighbors': 3} Accuracy (KNN): 0.9682804674457429 ###Markdown `Artificial Neural Network` ###Code # Artificial Neural Network (ANN) ANN_params = { 'optimizer': ['adam','sgd'], 'activation': ['relu','tanh'], 'batch_size': [16,32], 'neurons':sp_randint(10,100), 'epochs':[30,50], 'patience':sp_randint(5,20) } ANN_clf = KerasClassifier(build_fn = ann_model, verbose = 0) ANN_Random = RandomizedSearchCV(ANN_clf, param_distributions = ANN_params, n_iter = 10,cv = 3,scoring = 'accuracy') ANN_Random.fit(X, y) print(ANN_Random.best_params_) print("Accuracy (ANN): "+ str(ANN_Random.best_score_)) ###Output {'activation': 'relu', 'batch_size': 16, 'epochs': 30, 'neurons': 89, 'optimizer': 'adam', 'patience': 5} Accuracy (ANN): 1.0 ###Markdown `3] Bayesian Optimization with Gaussian Process (BO-GP)` ###Code from skopt import Optimizer from skopt import BayesSearchCV from skopt.space import Real, Categorical, Integer ###Output _____no_output_____ ###Markdown `Random Factor` ###Code #Random Forest (RF) RF_params = { 'n_estimators': Integer(10,100), 'max_depth': Integer(5,50), "criterion":['gini','entropy'] } RF_clf = RandomForestClassifier(random_state = 1) RF_Bayes = BayesSearchCV(RF_clf, RF_params,cv = 3,n_iter = 20, n_jobs = -1,scoring = 'accuracy') RF_Bayes.fit(X, y) print(RF_Bayes.best_params_) print("Accuracy (RF): "+ str(RF_Bayes.best_score_)) ###Output OrderedDict([('criterion', 'gini'), ('max_depth', 29), ('n_estimators', 81)]) Accuracy (RF): 0.9449081803005008 ###Markdown `Support Vector Machine` ###Code # Support Vector Machine (SVM) SVM_params = { 'C': Real(1,50), "kernel":['poly','rbf'] } SVM_clf = SVC(gamma = 'scale') SVM_Bayes = BayesSearchCV(SVM_clf, SVM_params,cv = 3,n_iter = 20, n_jobs = -1,scoring = 'accuracy') SVM_Bayes.fit(X, y) print(SVM_Bayes.best_params_) print("Accuracy (SVM): "+ str(SVM_Bayes.best_score_)) ###Output /usr/local/lib/python3.6/dist-packages/skopt/optimizer/optimizer.py:449: UserWarning: The objective has been evaluated at this point before. warnings.warn("The objective has been evaluated " /usr/local/lib/python3.6/dist-packages/skopt/optimizer/optimizer.py:449: UserWarning: The objective has been evaluated at this point before. warnings.warn("The objective has been evaluated " ###Markdown `K-Nearest Neighbor` ###Code # K-Nearest Neighbor (KNN) KNN_params = {'n_neighbors': Integer(1,20),} KNN_clf = KNeighborsClassifier() KNN_Bayes = BayesSearchCV(KNN_clf, KNN_params,cv = 3,n_iter = 10, n_jobs = -1,scoring = 'accuracy') KNN_Bayes.fit(X, y) print(KNN_Bayes.best_params_) print("Accuracy (KNN): "+ str(KNN_Bayes.best_score_)) ###Output OrderedDict([('n_neighbors', 4)]) Accuracy (KNN): 0.9638286032276016 ###Markdown `Artificial Neural Network` ###Code # Artificial Neural Network (ANN) ANN_params = { 'optimizer': ['adam','sgd'], 'activation': ['relu','tanh'], 'batch_size': [16,32], 'neurons':Integer(10,100), 'epochs':[30,50], 'patience':Integer(5,20) } ANN_clf = KerasClassifier(build_fn = ann_model, verbose = 0) ANN_Bayes = BayesSearchCV(ANN_clf, ANN_params,cv = 3,n_iter = 10, scoring = 'accuracy') ANN_Bayes.fit(X, y) print(ANN_Bayes.best_params_) print("Accuracy (ANN): "+ str(ANN_Bayes.best_score_)) ###Output OrderedDict([('activation', 'relu'), ('batch_size', 22), ('epochs', 35), ('neurons', 83), ('optimizer', 'sgd'), ('patience', 13)]) Accuracy (ANN): 0.9994435169727324 ###Markdown `4] Bayesian Optimization with Tree-structured Parzen Estimator (BO-TPE)` ###Code from sklearn.model_selection import StratifiedKFold from hyperopt import hp, fmin, tpe, STATUS_OK, Trials ###Output _____no_output_____ ###Markdown `Random Forest` ###Code # Random Forest (RF) def RF_fun(params): params = { 'n_estimators': int(params['n_estimators']), 'max_features': int(params['max_features']), "criterion":str(params['criterion']) } RF_clf = RandomForestClassifier(**params) RF_score = cross_val_score(RF_clf, X, y, cv = StratifiedKFold(n_splits = 3),scoring = 'accuracy').mean() return {'loss':-RF_score, 'status': STATUS_OK } RF_space = { 'n_estimators': hp.quniform('n_estimators', 10, 100, 1), "max_features":hp.quniform('max_features', 1, 32, 1), "criterion":hp.choice('criterion',['gini','entropy']) } RF_best = fmin(fn = RF_fun, space = RF_space, algo = tpe.suggest, max_evals = 20) print("Estimated optimum (RF): " +str(RF_best)) ###Output 100%|██████████| 20/20 [00:12<00:00, 1.62it/s, best loss: -0.9410127991096271] Estimated optimum (RF): {'criterion': 1, 'max_features': 4.0, 'n_estimators': 84.0} ###Markdown `Support Vector Machine` ###Code # Support Vector Machine (SVM) def SVM_fun(params): params = { 'C': abs(float(params['C'])), "kernel":str(params['kernel']) } SVM_clf = SVC(gamma ='scale', **params) SVM_score = cross_val_score(SVM_clf, X, y, cv = StratifiedKFold(n_splits = 3), scoring ='accuracy').mean() return {'loss':-SVM_score, 'status': STATUS_OK } SVM_space = { 'C': hp.normal('C', 0, 50), "kernel":hp.choice('kernel',['poly','rbf']) } SVM_best = fmin(fn = SVM_fun, space = SVM_space, algo = tpe.suggest, max_evals = 20) print("Estimated optimum (SVM): "+str(SVM_best)) ###Output 100%|██████████| 20/20 [00:05<00:00, 3.91it/s, best loss: -0.9749582637729549] Estimated optimum (SVM): {'C': 2.5830277799962245, 'kernel': 1} ###Markdown `K-Nearest Neighbor` ###Code # K-Nearest Neighbor (KNN) def KNN_fun(params): params = {'n_neighbors': abs(int(params['n_neighbors'])) } KNN_clf = KNeighborsClassifier(**params) KNN_score = cross_val_score(KNN_clf, X, y, cv = StratifiedKFold(n_splits=3), scoring='accuracy').mean() return {'loss':-KNN_score, 'status': STATUS_OK } KNN_space = {'n_neighbors': hp.quniform('n_neighbors', 1, 20, 1)} KNN_best = fmin(fn = KNN_fun, space = KNN_space, algo = tpe.suggest, max_evals = 10) print("Estimated optimum (KNN): "+str(KNN_best)) ###Output 100%|██████████| 10/10 [00:03<00:00, 2.87it/s, best loss: -0.9638286032276016] Estimated optimum (KNN): {'n_neighbors': 4.0} ###Markdown `Artificial Neural Network` ###Code # Artificial Neural Network (ANN) def ANN_fun(params): params = { "optimizer":str(params['optimizer']), "activation":str(params['activation']), 'batch_size': abs(int(params['batch_size'])), 'neurons': abs(int(params['neurons'])), 'epochs': abs(int(params['epochs'])), 'patience': abs(int(params['patience'])) } ANN_clf = KerasClassifier(build_fn = ann_model,**params, verbose = 0) ANN_score = -np.mean(cross_val_score(ANN_clf, X, y, cv=3, scoring = "accuracy")) return {'loss':ANN_score, 'status': STATUS_OK } ANN_space = { "optimizer":hp.choice('optimizer',['adam','rmsprop','sgd']), "activation":hp.choice('activation',['relu','tanh']), 'batch_size': hp.quniform('batch_size', 16, 32, 16), 'neurons': hp.quniform('neurons', 10, 100, 10), 'epochs': hp.quniform('epochs', 30, 50, 10), 'patience': hp.quniform('patience', 5, 20, 5), } ANN_best = fmin(fn = ANN_fun, space = ANN_space, algo = tpe.suggest, max_evals = 10) print("Estimated optimum (ANN): "+str(ANN_best)) ###Output 100%|██████████| 10/10 [03:07<00:00, 18.70s/it, best loss: -1.0] Estimated optimum (ANN): {'activation': 0, 'batch_size': 16.0, 'epochs': 50.0, 'neurons': 80.0, 'optimizer': 0, 'patience': 10.0}
LoopingandListsandStuff.ipynb
###Markdown Looping and Lists and stuff Section 1: working with loops Read the instructions, then _add one line of code_ to complete the functions below Function 1The function `letters_one` takes in a `string` as an argument, and then `prints` out each letter on a new line.**Note** do not `return` anything, only `print`. Do not change our code. Only add *ONE LINE* of code. ###Code def letters_one(word): for i in word: print(i) #Add your line of code below here# #Add your line of code above here# letters_one('Explore') letters_one('2w3vc78u') ###Output 2 w 3 v c 7 8 u ###Markdown Function 2The function `letters_two` takes in a `string` as an argument, and then `prints` out each letter on a new line.**Note** do not `return` anything, only `print`. Do not change our code. Only add *ONE LINE* of code. ###Code def letters_two(word): for i in range(len(word)): #Add your line of code below here# print(word[i]) #Add your line of code above here# letters_two('Erolpxe') letters_two('u87cv3w2') ###Output u 8 7 c v 3 w 2 ###Markdown Function 3The function `items_one` takes in a `List` as an argument, and then `prints` out each item on a new line.**Note** do not `return` anything, only `print`. Do not change our code. Only add *ONE LINE* of code. ###Code def items_one(a_list): for i in a_list: #Add your line of code below here# print(i) #Add your line of code above here# items_one(['E','x','p','l','o','r','e']) items_one(['2','w','3','v','c','7','8','u']) ###Output 2 w 3 v c 7 8 u ###Markdown Function 4The function `items_two` takes in a `List` as an argument, and then `prints` out each item on a new line.**note** do not `return` anything, only `print`. Do not change our code. Only add *ONE LINE* of code. ###Code def items_two(a_list): for i in range(len(a_list)): #Add your line of code below here# print(a_list[i]) #Add your line of code above here# items_two(['E','r','o','l','p','x','e']) items_two(['u','8','7','c','v','3','w','2']) ###Output u 8 7 c v 3 w 2 ###Markdown Section 2: Manipulating Lists Read the instructions, then complete the functions| Function 1The function `string_to_list` takes in a `String` as a parameter and `returns` a list where each item is a character in the `String`.If we pass ```Hello``` to the function, then it must `return` ```['H','e','l','l','o']```**Note** the function **MUST** `return`. It must **not** `print`. ###Code def string_to_list(string_par): #Add your code below here# return list(string_par) #Add your code above here# string_to_list('Explore') string_to_list('2w3vc78u') ###Output _____no_output_____ ###Markdown Function 2The function `string_to_int_list` takes in a `String` of characters and digits as a parameter and `returns` a list called `digits_list` where each item the integer version of the digits in the string.If we pass ```'1ee7'``` to the function, then it must add `return` ```[1,7]``` (**NOT** ```['1','7']```)**Note** the function **MUST not** `print`.**Hint** you can test if a character is a digit using `isdigit()` e.g. `'2'.isdigit()` returns `True` but `'w'.isdigit()` returns `False` ###Code def string_to_int_list(mixed_string): digits_list = [] #Add your code below here# mixed_string = list(mixed_string) for item in mixed_string: if item.isdigit(): digits_list.append(int(item)) #Add your line of code above here# return digits_list string_to_int_list('2w3vc78u') string_to_int_list('1337') ###Output _____no_output_____
Reducer/min_max_reducer.ipynb
###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. Uncomment these lines if you are running this notebook for the first time. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for the first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) Map.setCenter(-81.31, 29.90, 10) Map.addLayer(min_image, {}, 'Min image') Map.addLayer(max_image, {}, 'Max image') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) Map.setCenter(-81.31, 29.90, 10) Map.addLayer(min_image, {}, 'Min image') Map.addLayer(max_image, {}, 'Max image') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://geemap.org). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet. ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('Installing geemap ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) import ee import geemap ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) Map.setCenter(-81.31, 29.90, 10) Map.addLayer(min_image, {}, 'Min image') Map.addLayer(max_image, {}, 'Max image') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The following script checks if the geehydro package has been installed. If not, it will install geehydro, which automatically install its dependencies, including earthengine-api and folium. ###Code import subprocess try: import geehydro except ImportError: print('geehydro package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geehydro']) ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) Map.setCenter(-81.31, 29.90, 10) Map.addLayer(min_image, {}, 'Min image') Map.addLayer(max_image, {}, 'Max image') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as geemap except: import geemap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. ###Code Map = geemap.Map(center=[40,-100], zoom=4) Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) Map.setCenter(-81.31, 29.90, 10) Map.addLayer(min_image, {}, 'Min image') Map.addLayer(max_image, {}, 'Max image') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine APIInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.The magic command `%%capture` can be used to hide output from a specific cell. ###Code # %%capture # !pip install earthengine-api # !pip install geehydro ###Output _____no_output_____ ###Markdown Import libraries ###Code import ee import folium import geehydro ###Output _____no_output_____ ###Markdown Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once. Uncomment the line `ee.Authenticate()` if you are running this notebook for this first time or if you are getting an authentication error. ###Code # ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function. The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`. ###Code Map = folium.Map(location=[40, -100], zoom_start=4) Map.setOptions('HYBRID') ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) Map.setCenter(-81.31, 29.90, 10) Map.addLayer(min_image, {}, 'Min image') Map.addLayer(max_image, {}, 'Max image') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True) Map ###Output _____no_output_____ ###Markdown View source on GitHub Notebook Viewer Run in binder Run in Google Colab Install Earth Engine API and geemapInstall the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`.The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemapdependencies), including earthengine-api, folium, and ipyleaflet.**Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). ###Code # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create an interactive map The default basemap is `Google Satellite`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/geemap.pyL13) can be added using the `Map.add_basemap()` function. ###Code Map = emap.Map(center=[40,-100], zoom=4) Map.add_basemap('ROADMAP') # Add Google Map Map ###Output _____no_output_____ ###Markdown Add Earth Engine Python script ###Code # Add Earth Engine dataset # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) Map.setCenter(-81.31, 29.90, 10) Map.addLayer(min_image, {}, 'Min image') Map.addLayer(max_image, {}, 'Max image') ###Output _____no_output_____ ###Markdown Display Earth Engine data layers ###Code Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map ###Output _____no_output_____ ###Markdown Pydeck Earth Engine IntroductionThis is an introduction to using [Pydeck](https://pydeck.gl) and [Deck.gl](https://deck.gl) with [Google Earth Engine](https://earthengine.google.com/) in Jupyter Notebooks. If you wish to run this locally, you'll need to install some dependencies. Installing into a new Conda environment is recommended. To create and enter the environment, run:```conda create -n pydeck-ee -c conda-forge python jupyter notebook pydeck earthengine-api requests -ysource activate pydeck-eejupyter nbextension install --sys-prefix --symlink --overwrite --py pydeckjupyter nbextension enable --sys-prefix --py pydeck```then open Jupyter Notebook with `jupyter notebook`. Now in a Python Jupyter Notebook, let's first import required packages: ###Code from pydeck_earthengine_layers import EarthEngineLayer import pydeck as pdk import requests import ee ###Output _____no_output_____ ###Markdown AuthenticationUsing Earth Engine requires authentication. If you don't have a Google account approved for use with Earth Engine, you'll need to request access. For more information and to sign up, go to https://signup.earthengine.google.com/. If you haven't used Earth Engine in Python before, you'll need to run the following authentication command. If you've previously authenticated in Python or the command line, you can skip the next line.Note that this creates a prompt which waits for user input. If you don't see a prompt, you may need to authenticate on the command line with `earthengine authenticate` and then return here, skipping the Python authentication. ###Code try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() ###Output _____no_output_____ ###Markdown Create MapNext it's time to create a map. Here we create an `ee.Image` object ###Code # Initialize objects ee_layers = [] view_state = pdk.ViewState(latitude=37.7749295, longitude=-122.4194155, zoom=10, bearing=0, pitch=45) # %% # Add Earth Engine dataset # Load and filter the Sentinel-2 image collection. collection = ee.ImageCollection('COPERNICUS/S2') \ .filterDate('2016-01-01', '2016-12-31') \ .filterBounds(ee.Geometry.Point([-81.31, 29.90])) # Reduce the collection. extrema = collection.reduce(ee.Reducer.minMax()) # print(extrema.getInfo()) min_image = extrema.select(0) max_image = extrema.select(1) view_state = pdk.ViewState(longitude=-81.31, latitude=29.90, zoom=10) ee_layers.append(EarthEngineLayer(ee_object=min_image, vis_params={})) ee_layers.append(EarthEngineLayer(ee_object=max_image, vis_params={})) ###Output _____no_output_____ ###Markdown Then just pass these layers to a `pydeck.Deck` instance, and call `.show()` to create a map: ###Code r = pdk.Deck(layers=ee_layers, initial_view_state=view_state) r.show() ###Output _____no_output_____
Chapter01/TensorFlow Estimator API.ipynb
###Markdown Tensorflow Estimator API **Getting ready...** ###Code install.packages("tfestimators") library(tfestimators) # training data x_data_df <- as.data.frame( matrix(rnorm(1000*784), nrow = 1000, ncol = 784)) y_data_df <- as.data.frame(matrix(rnorm(1000), nrow = 1000, ncol = 1)) colnames(y_data_df)<- c("target") dummy_data_estimator <- cbind(x_data_df,y_data_df) ###Output _____no_output_____ ###Markdown **How to do it...** ###Code # feature columns features_set <- setdiff(names(dummy_data_estimator), "target") # construct feature columns feature_cols <- feature_columns( column_numeric(features_set) ) # construct input function estimator_input_fn <- function(data_,num_epochs = 1) { input_fn(data_, features = features_set, response = "target",num_epochs = num_epochs ) } # construct classifier regressor <- dnn_regressor( feature_columns = feature_cols, hidden_units = c(5, 10, 8), label_dimension = 1L, activation_fn = "relu" ) # train classifier with training dataset train(regressor, input_fn = estimator_input_fn(data_ = dummy_data_estimator)) # test data x_data_test_df <- as.data.frame( matrix(rnorm(100*784), nrow = 100, ncol = 784)) y_data_test_df <- as.data.frame(matrix(rnorm(100), nrow = 100, ncol = 1)) colnames(y_data_test_df)<- c("target") dummy_data_test_df <- cbind(x_data_test_df,y_data_test_df) # predict with test dataset predictions <- predict(regressor, input_fn = estimator_input_fn(dummy_data_test_df), predict_keys = c("predictions")) # evaluate with test dataset evaluation <- evaluate(regressor, input_fn = estimator_input_fn(dummy_data_test_df)) evaluation ###Output _____no_output_____ ###Markdown **There is more...** ###Code training_history <- train(regressor, input_fn = estimator_input_fn(data_ = dummy_data_estimator), hooks = list(hook_history_saver(every_n_step = 2)) ) ###Output _____no_output_____
docs/source/examples/geochem/mineral_endmembers.ipynb
###Markdown Mineral Endmember Decomposition=================================A common task when working with mineral chemistry data is to take measured compositionsand decompose these into relative proportions of mineral endmember compositions.pyrolite includes some utilities to achieve this and a limited mineral databasefor looking up endmember compositions. This part of the package is being activelydeveloped, so expect expansions and improvements soon. ###Code import pandas as pd import numpy as np from pyrolite.mineral.mindb import get_mineral from pyrolite.mineral.normative import endmember_decompose ###Output _____no_output_____ ###Markdown First we'll start with a composition of an unknown olivine: ###Code comp = pd.Series({"MgO": 42.06, "SiO2": 39.19, "FeO": 18.75}) ###Output _____no_output_____ ###Markdown We can break this down into olivine endmebmers using the:func:`~pyrolite.mineral.transform.endmember_decompose` function: ###Code ed = endmember_decompose( pd.DataFrame(comp).T, endmembers="olivine", ord=1, molecular=True ) ed ###Output _____no_output_____ ###Markdown Equally, if you knew the likely endmembers beforehand, you could specify a list ofendmembers: ###Code ed = endmember_decompose( pd.DataFrame(comp).T, endmembers=["forsterite", "fayalite"], ord=1, molecular=True ) ed ###Output _____no_output_____ ###Markdown We can check this by recombining the components with these proportions. We can firstlookup the compositions for our endmembers: ###Code em = pd.DataFrame([get_mineral("forsterite"), get_mineral("fayalite")]) em.loc[:, ~(em == 0).all(axis=0)] # columns not full of zeros ###Output _____no_output_____ ###Markdown First we have to convert these element-based compositions to oxide-based compositions: ###Code emvalues = ( em.loc[:, ["Mg", "Si", "Fe"]] .pyrochem.to_molecular() .fillna(0) .pyrochem.convert_chemistry(to=["MgO", "SiO2", "FeO"], molecular=True) .fillna(0) .pyrocomp.renormalise(scale=1) ) emvalues ###Output _____no_output_____ ###Markdown These can now be used with our endmember proportions to regenerate a composition: ###Code recombined = pd.DataFrame(ed.values.flatten() @ emvalues).T.pyrochem.to_weight() recombined ###Output _____no_output_____ ###Markdown To make sure these compositions are within 0.01 percent: ###Code assert np.allclose(recombined.values, comp.values, rtol=10 ** -4) ###Output _____no_output_____ ###Markdown Mineral Endmember Decomposition=================================A common task when working with mineral chemistry data is to take measured compositionsand decompose these into relative proportions of mineral endmember compositions.pyrolite includes some utilities to achieve this and a limited mineral databasefor looking up endmember compositions. This part of the package is being activelydeveloped, so expect expansions and improvements soon. ###Code import pandas as pd import numpy as np from pyrolite.mineral.mindb import get_mineral from pyrolite.mineral.normative import endmember_decompose ###Output _____no_output_____ ###Markdown First we'll start with a composition of an unknown olivine: ###Code comp = pd.Series({"MgO": 42.06, "SiO2": 39.19, "FeO": 18.75}) ###Output _____no_output_____ ###Markdown We can break this down into olivine endmebmers using the:func:`~pyrolite.mineral.transform.endmember_decompose` function: ###Code ed = endmember_decompose( pd.DataFrame(comp).T, endmembers="olivine", ord=1, molecular=True ) ed ###Output _____no_output_____ ###Markdown Equally, if you knew the likely endmembers beforehand, you could specify a list ofendmembers: ###Code ed = endmember_decompose( pd.DataFrame(comp).T, endmembers=["forsterite", "fayalite"], ord=1, molecular=True ) ed ###Output _____no_output_____ ###Markdown We can check this by recombining the components with these proportions. We can firstlookup the compositions for our endmembers: ###Code em = pd.DataFrame([get_mineral("forsterite"), get_mineral("fayalite")]) em.loc[:, ~(em == 0).all(axis=0)] # columns not full of zeros ###Output _____no_output_____ ###Markdown First we have to convert these element-based compositions to oxide-based compositions: ###Code emvalues = ( em.loc[:, ["Mg", "Si", "Fe"]] .pyrochem.to_molecular() .fillna(0) .pyrochem.convert_chemistry(to=["MgO", "SiO2", "FeO"], molecular=True) .fillna(0) .pyrocomp.renormalise(scale=1) ) emvalues ###Output _____no_output_____ ###Markdown These can now be used with our endmember proportions to regenerate a composition: ###Code recombined = pd.DataFrame(ed.values.flatten() @ emvalues).T.pyrochem.to_weight() recombined ###Output _____no_output_____ ###Markdown To make sure these compositions are within 0.01 percent: ###Code assert np.allclose(recombined.values, comp.values, rtol=10 ** -4) ###Output _____no_output_____
ukpsummarizer-be/cplex/python/examples/mp/jupyter/incremental_modeling.ipynb
###Markdown Incremental modeling with decision optimizationThis tutorial includes everything you need to set up decision optimization engines, build a mathematical programming model, then incrementally modify it.You will learn how to:- change coefficients in an expression- add terms in an expression- modify constraints and variables bounds- remove/add constraints- play with relaxationsWhen you finish this tutorial, you'll have a foundational knowledge of _Prescriptive Analytics_.>This notebook is part of the **[Prescriptive Analytics for Python](https://rawgit.com/IBMDecisionOptimization/docplex-doc/master/docs/index.html)**>It requires a valid subscription to **Decision Optimization on the Cloud** or a **local installation of CPLEX Optimizers**. Discover us [here](https://developer.ibm.com/docloud)Table of contents:- [Describe the business problem](Describe-the-business-problem:--Games-Scheduling-in-the-National-Football-League)* [How decision optimization (prescriptive analytics) can help](How--decision-optimization-can-help)* [Use decision optimization](Use-decision-optimization) * [Step 1: Download the library](Step-1:-Download-the-library) * [Step 2: Set up the engines](Step-2:-Set-up-the-prescriptive-engine) * [Step 3: Set up the prescriptive model](Step-3:-Set-up-the-prescriptive-model) * [Step 4: Modify the model](Step-4:-Modify-the-model)* [Summary](Summary)**** Describe the business problem: Telephone productionA possible descriptive model of the telephone production problem is as follows:* Decision variables: * Number of desk phones produced (DeskProduction) * Number of cellular phones produced (CellProduction)Objective: Maximize profit* Constraints: * The DeskProduction should be greater than or equal to 100. * The CellProduction should be greater than or equal to 100. * The assembly time for DeskProduction plus the assembly time for CellProduction should not exceed 400 hours. * The painting time for DeskProduction plus the painting time for CellProduction should not exceed 490 hours.This is a type of discrete optimization problem that can be solved by using either **Integer Programming** (IP) or **Constraint Programming** (CP). > **Integer Programming** is the class of problems defined as the optimization of a linear function, subject to linear constraints over integer variables. > **Constraint Programming** problems generally have discrete decision variables, but the constraints can be logical, and the arithmetic expressions are not restricted to being linear. For the purposes of this tutorial, we will illustrate a solution with mathematical programming (MP). How decision optimization can help* Prescriptive analytics (decision optimization) technology recommends actions that are based on desired outcomes. It takes into account specific scenarios, resources, and knowledge of past and current events. With this insight, your organization can make better decisions and have greater control of business outcomes. * Prescriptive analytics is the next step on the path to insight-based actions. It creates value through synergy with predictive analytics, which analyzes data to predict future outcomes. * Prescriptive analytics takes that insight to the next level by suggesting the optimal way to handle that future situation. Organizations that can act fast in dynamic conditions and make superior decisions in uncertain environments gain a strong competitive advantage. With prescriptive analytics, you can: * Automate the complex decisions and trade-offs to better manage your limited resources.* Take advantage of a future opportunity or mitigate a future risk.* Proactively update recommendations based on changing events.* Meet operational goals, increase customer loyalty, prevent threats and fraud, and optimize business processes. Use decision optimization Step 1: Download the libraryRun the following code to install Decision Optimization CPLEX Modeling library. The *DOcplex* library contains the two modeling packages, Mathematical Programming and Constraint Programming, referred to earlier. ###Code import docplex check = (docplex.__version__ >= '2.1') if check is False: !conda install -y -c ibmdecisionoptimization docplex ###Output _____no_output_____ ###Markdown A restart of the kernel might be needed. Step 2: Set up the prescriptive engine* Subscribe to the [Decision Optimization on Cloud solve service](https://developer.ibm.com/docloud).* Get the service URL and your personal API key. ###Code from docplex.mp.model import * SVC_URL = "ENTER YOUR URL HERE" SVC_KEY = "ENTER YOUR KEY HERE" ###Output _____no_output_____ ###Markdown Step 3: Set up the prescriptive model Writing a mathematical modelConvert the descriptive model into a mathematical model:* Use the two decision variables DeskProduction and CellProduction* Use the data given in the problem description (remember to convert minutes to hours where appropriate)* Write the objective as a mathematical expression* Write the constraints as mathematical expressions (use “=”, “=”, and name the constraints to describe their purpose)* Define the domain for the decision variables Telephone production: a mathematical modelTo express the last two constraints, we model assembly time and painting time as linear combinations of the two productions, resulting in the following mathematical model:maximize: 12 desk_production+20 cell_productionsubject to: desk_production>=100 cell_production>=100 0.2 desk_production+0.4 cell_production<=400 0.5 desk_production+0.4 cell_production<=490 ###Code # first import the Model class from docplex.mp from docplex.mp.model import Model # create one model instance, with a name m = Model(name='telephone_production') ###Output _____no_output_____ ###Markdown The continuous variable desk represents the production of desk telephones.The continuous variable cell represents the production of cell phones. ###Code # by default, all variables in Docplex have a lower bound of 0 and infinite upper bound desk = m.integer_var(name='desk') cell = m.integer_var(name='cell') m.maximize(12 * desk + 20 * cell) # write constraints # constraint #1: desk production is greater than 100 m.add_constraint(desk >= 100, "desk") # constraint #2: cell production is greater than 100 m.add_constraint(cell >= 100, "cell") # constraint #3: assembly time limit ct_assembly = m.add_constraint( 0.2 * desk + 0.4 * cell <= 400, "assembly_limit") # constraint #4: paiting time limit ct_painting = m.add_constraint( 0.5 * desk + 0.4 * cell <= 490, "painting_limit") ###Output _____no_output_____ ###Markdown Solve with Decision Optimization solve service If url and key are None, the Modeling layer will look for a local runtime, otherwise will use the credentials.Look at the documentation for a good understanding of the various solving/generation modes.If you're using a Community Edition of CPLEX runtimes, depending on the size of the problem, the solve stage may fail and will need a paying subscription or product installation.You will get the best solution found after ***n*** seconds, thanks to a time limit parameter. ###Code m.print_information() msol = m.solve(url=SVC_URL, key=SVC_KEY) assert msol is not None, "model can't solve" m.print_solution() ###Output objective: 20600 desk=300 cell=850 ###Markdown Step 4: Modify the model Modify constraints and variables bounds The model object provides getters to retrieve variables and constraints by name:* get_var_by_name* get_constraint_by_nameThe variable and constraint objects both provide properties to access the right hand side (rhs) and left hand side (lhs).When you modify a rhs or lhs of a variable, you of course need to give a number.When you modify a rhs or lhs of a constraint, you can give a number or an expression based on variables.Let's say we want to build 2000 cells and 1000 desks maximum.And let's say we want to increase the production of both of them from 100 to 350 ###Code # Access by name m.get_var_by_name("desk").ub = 2000 # acess via the object cell.ub = 1000 m.get_constraint_by_name("desk").rhs = 350 m.get_constraint_by_name("cell").rhs = 350 msol = m.solve(url=SVC_URL, key=SVC_KEY) assert msol is not None, "model can't solve" m.print_solution() ###Output objective: 19940 desk=350 cell=787 ###Markdown The production plan has been updated accordingly to our small changes. Modify expressions We now want to introduce a new type of product: the "hybrid" telephone. ###Code hybrid = m.integer_var(name='hybrid') ###Output _____no_output_____ ###Markdown We need to:- introduce it in the objective- introduce it in the existing painting and assembly time constraints - add a new constraint for its production to produce at least 350 of them. ###Code m.add_constraint(hybrid >= 350) ; ###Output _____no_output_____ ###Markdown The objective will move frommaximize: 12 desk_production+20 cell_productiontomaximize: 12 desk_production+20 cell_production + 10 hybrid_prodction ###Code m.get_objective_expr().add_term(hybrid, 10) ; ###Output _____no_output_____ ###Markdown The time constraints will be updated from 0.2 desk_production+0.4 cell_production<=4000.5 desk_production+0.4 cell_production<=490to0.2 desk_production+0.4 cell_production + 0.2 hybrid_production<=4000.5 desk_production+0.4 cell_production + 0.2 hybrid_production<=490 When you add a constraint to a model, its object is returned to you by the method add_constraint.If you don't have it, you can access it via its name ###Code m.get_constraint_by_name("assembly_limit").lhs.add_term(hybrid, 0.2) ct_painting.lhs.add_term(hybrid, 0.2) ; ###Output _____no_output_____ ###Markdown We can now compute the new production plan for our 3 products ###Code msol = m.solve(url=SVC_URL, key=SVC_KEY) assert msol is not None, "model can't solve" m.print_solution() ###Output objective: 19950 desk=350 cell=612 hybrid=351 ###Markdown Let's now say we improved our painting process, the distribution of the coefficients in the painting limits is not [0.5, 0.4, 0.2] anymore but [0.1, 0.1, 0.1]When you have the hand on an expression, you can modify the coefficient variable by variable with set_coefficient or via a list of (variable, coeff) with set_coefficients ###Code ct_painting.lhs.set_coefficients([(desk, 0.1), (cell, 0.1), (hybrid, 0.1)]) msol = m.solve(url=SVC_URL, key=SVC_KEY) assert msol is not None, "model can't solve" m.print_solution() ###Output objective: 21900 desk=950 cell=350 hybrid=350 ###Markdown Relaxations Let's now introduce a new constraint: polishing time limit. ###Code # constraint: polishing time limit ct_polishing = m.add_constraint( 0.6 * desk + 0.6 * cell + 0.3 * hybrid <= 290, "polishing_limit") msol = m.solve(url=SVC_URL, key=SVC_KEY) if msol is None: print("model can't solve") ###Output model can't solve ###Markdown The model is now infeasible. We need to handle it and dig into the infeasibilities. You can now use the Relaxer object. You can control the way it will relax the constraints or you can use 1 of the various automatic modes:- 'all' relaxes all constraints using a MEDIUM priority; this is the default.- 'named' relaxes all constraints with a user name but not the others.- 'match' looks for priority names within constraint names; unnamed constraints are not relaxed.We will use the 'match' mode.Polishing constraint is mandatory.Painting constraint is a nice to have.Assembly constraint has low priority. ###Code ct_polishing.name = "high_"+ct_polishing.name ct_assembly.name = "low_"+ct_assembly.name ct_painting.name = "medium_"+ct_painting.name # if a name contains "low", it has priority LOW # if a ct name contains "medium" it has priority MEDIUM # same for HIGH # if a constraint has no name or does not match any, it is not relaxable. from docplex.mp.relaxer import Relaxer relaxer = Relaxer(prioritizer='match', verbose=True) relaxed_sol = relaxer.relax(m, url=SVC_URL, key=SVC_KEY) relaxed_ok = relaxed_sol is not None assert relaxed_ok, "relaxation failed" relaxer.print_information() m.print_solution() ct_polishing_relax = relaxer.get_relaxation(ct_polishing) print("* found slack of {0} for polish ct".format(ct_polishing_relax)) ct_polishing.rhs+= ct_polishing_relax m.solve(url=SVC_URL, key=SVC_KEY) m.report() m.print_solution() ###Output * found slack of 235.0 for polish ct * model telephone_production solved with objective = 14700 objective: 14700 desk=350 cell=350 hybrid=350
course2/session1/kadenze_mir_c2_s1_3_random_sample_generation.ipynb
###Markdown Random sample generation In this notebook we sketch how we can generate random samples from a discrte probability distribution using the cummulative distribution. If we have a probabilistic model even if it is significantly more complicated then we can generate random data samples using similar ideas. ###Code import numpy as np values = np.int64([1, 2, 3]) probability_distribution = [1/6., 3/6., 2/6.] cummulative_distribution = np.cumsum(probability_distribution) print(cummulative_distribution) samples = [] for n in np.arange(0,10): # generate a random number uniformly distributed between 0.0 and 1.0 r = np.random.uniform() print("Random number %f"% r) if r < cummulative_distribution[0]: samples.append(1) print('Sample value: 1') elif r < cummulative_distribution[1]: print('Sample value 2') samples.append(2) else: print('Sample value3') samples.append(3) print(samples) ###Output _____no_output_____
example/custom_layers_and_models.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. This notebook was running on tensorflow-114-vm@google cloud ###Code import tensorflow as tf tf.enable_eager_execution( config=None, device_policy=None, execution_mode=None ) ###Output /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /usr/local/lib/python3.5/dist-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /usr/local/lib/python3.5/dist-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /usr/local/lib/python3.5/dist-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /usr/local/lib/python3.5/dist-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /usr/local/lib/python3.5/dist-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /usr/local/lib/python3.5/dist-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) ###Markdown Writing custom layers and models with Keras View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Setup The Layer class Layers encapsulate a state (weights) and some computationThe main data structure you'll work with is the `Layer`.A layer encapsulates both a state (the layer's "weights")and a transformation from inputs to outputs (a "call", the layer'sforward pass).Here's a densely-connected layer. It has a state: the variables `w` and `b`. ###Code from tensorflow.keras import layers class Linear(layers.Layer): def __init__(self, units=32, input_dim=32): super(Linear, self).__init__() w_init = tf.random_normal_initializer() self.w = tf.Variable(initial_value=w_init(shape=(input_dim, units), dtype='float32'), trainable=True) b_init = tf.zeros_initializer() self.b = tf.Variable(initial_value=b_init(shape=(units,), dtype='float32'), trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b x = tf.ones((2, 2)) linear_layer = Linear(4, 2) y = linear_layer(x) print(y) ###Output tf.Tensor( [[ 1.2631972 -1.1278888 0.7652812 -0.10996719] [ 1.2631972 -1.1278888 0.7652812 -0.10996719]], shape=(2, 4), dtype=float32) ###Markdown Note that the weights `w` and `b` are automatically tracked by the layer uponbeing set as layer attributes: ###Code assert linear_layer.weights == [linear_layer.w, linear_layer.b] ###Output _____no_output_____ ###Markdown Note you also have access to a quicker shortcut for adding weight to a layer: the `add_weight` method: ###Code class Linear(layers.Layer): def __init__(self, units=32, input_dim=32): super(Linear, self).__init__() self.w = self.add_weight(shape=(input_dim, units), initializer='random_normal', trainable=True) self.b = self.add_weight(shape=(units,), initializer='zeros', trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b x = tf.ones((2, 2)) linear_layer = Linear(4, 2) y = linear_layer(x) print(y) ###Output tf.Tensor( [[-0.05017339 -0.09985163 -0.04027011 0.01080477] [-0.05017339 -0.09985163 -0.04027011 0.01080477]], shape=(2, 4), dtype=float32) ###Markdown Layers can have non-trainable weightsBesides trainable weights, you can add non-trainable weights to a layer as well.Such weights are meant not to be taken into account during backpropagation,when you are training the layer.Here's how to add and use a non-trainable weight: ###Code class ComputeSum(layers.Layer): def __init__(self, input_dim): super(ComputeSum, self).__init__() self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), trainable=False) def call(self, inputs): self.total.assign_add(tf.reduce_sum(inputs, axis=0)) return self.total x = tf.ones((2, 2)) my_sum = ComputeSum(2) y = my_sum(x) print(y.numpy()) y = my_sum(x) print(y.numpy()) ###Output [2. 2.] [4. 4.] ###Markdown It's part of `layer.weights`, but it gets categorized as a non-trainable weight: ###Code print('weights:', len(my_sum.weights)) print('non-trainable weights:', len(my_sum.non_trainable_weights)) # It's not included in the trainable weights: print('trainable_weights:', my_sum.trainable_weights) ###Output weights: 1 non-trainable weights: 1 trainable_weights: [] ###Markdown Best practice: deferring weight creation until the shape of the inputs is knownIn the logistic regression example above, our `Linear` layer took an `input_dim` argumentthat was used to compute the shape of the weights `w` and `b` in `__init__`: ###Code class Linear(layers.Layer): def __init__(self, units=32, input_dim=32): super(Linear, self).__init__() self.w = self.add_weight(shape=(input_dim, units), initializer='random_normal', trainable=True) self.b = self.add_weight(shape=(units,), initializer='zeros', trainable=True) ###Output _____no_output_____ ###Markdown In many cases, you may not know in advance the size of your inputs, and you wouldlike to lazily create weights when that value becomes known,some time after instantiating the layer.In the Keras API, we recommend creating layer weights in the `build(inputs_shape)` method of your layer.Like this: ###Code class Linear(layers.Layer): def __init__(self, units=32): super(Linear, self).__init__() self.units = units def build(self, input_shape): self.w = self.add_weight(shape=(input_shape[-1], self.units), initializer='random_normal', trainable=True) self.b = self.add_weight(shape=(self.units,), initializer='random_normal', trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b ###Output _____no_output_____ ###Markdown The `__call__` method of your layer will automatically run `build` the first time it is called.You now have a layer that's lazy and easy to use: ###Code linear_layer = Linear(32) # At instantiation, we don't know on what inputs this is going to get called y = linear_layer(x) # The layer's weights are created dynamically the first time the layer is called ###Output _____no_output_____ ###Markdown Layers are recursively composableIf you assign a Layer instance as attribute of another Layer,the outer layer will start tracking the weights of the inner layer.We recommend creating such sublayers in the `__init__` method (since the sublayers will typically have a `build` method, they will be built when the outer layer gets built). ###Code # Let's assume we are reusing the Linear class # with a `build` method that we defined above. class MLPBlock(layers.Layer): def __init__(self): super(MLPBlock, self).__init__() self.linear_1 = Linear(32) self.linear_2 = Linear(32) self.linear_3 = Linear(1) def call(self, inputs): x = self.linear_1(inputs) x = tf.nn.relu(x) x = self.linear_2(x) x = tf.nn.relu(x) return self.linear_3(x) mlp = MLPBlock() y = mlp(tf.ones(shape=(3, 64))) # The first call to the `mlp` will create the weights print('weights:', len(mlp.weights)) print('trainable weights:', len(mlp.trainable_weights)) ###Output weights: 6 trainable weights: 6 ###Markdown Layers recursively collect losses created during the forward passWhen writing the `call` method of a layer, you can create loss tensors that you will want to use later, when writing your training loop. This is doable by calling `self.add_loss(value)`: ###Code # A layer that creates an activity regularization loss class ActivityRegularizationLayer(layers.Layer): def __init__(self, rate=1e-2): super(ActivityRegularizationLayer, self).__init__() self.rate = rate def call(self, inputs): self.add_loss(self.rate * tf.reduce_sum(inputs)) return inputs ###Output _____no_output_____ ###Markdown These losses (including those created by any inner layer) can be retrieved via `layer.losses`.This property is reset at the start of every `__call__` to the top-level layer, so that `layer.losses` always contains the loss values created during the last forward pass. ###Code class OuterLayer(layers.Layer): def __init__(self): super(OuterLayer, self).__init__() self.activity_reg = ActivityRegularizationLayer(1e-2) def call(self, inputs): return self.activity_reg(inputs) layer = OuterLayer() assert len(layer.losses) == 0 # No losses yet since the layer has never been called _ = layer(tf.zeros(1, 1)) assert len(layer.losses) == 1 # We created one loss value # `layer.losses` gets reset at the start of each __call__ _ = layer(tf.zeros(1, 1)) assert len(layer.losses) == 1 # This is the loss created during the call above ###Output _____no_output_____ ###Markdown In addition, the `loss` property also contains regularization losses created for the weights of any inner layer: ###Code class OuterLayer(layers.Layer): def __init__(self): super(OuterLayer, self).__init__() self.dense = layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(1e-3)) def call(self, inputs): return self.dense(inputs) layer = OuterLayer() _ = layer(tf.zeros((1, 1))) # This is `1e-3 * sum(layer.dense.kernel ** 2)`, # created by the `kernel_regularizer` above. print(layer.losses) ###Output [<tf.Tensor: id=270, shape=(), dtype=float32, numpy=0.001828252>] ###Markdown These losses are meant to be taken into account when writing training loops, like this:```python Instantiate an optimizer.optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) Iterate over the batches of a dataset.for x_batch_train, y_batch_train in train_dataset: with tf.GradientTape() as tape: logits = layer(x_batch_train) Logits for this minibatch Loss value for this minibatch loss_value = loss_fn(y_batch_train, logits) Add extra losses created during this forward pass: loss_value += sum(model.losses) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights))```For a detailed guide about writing training loops, see the second section of the [guide to training and evaluation](./train_and_evaluate.ipynb). You can optionally enable serialization on your layersIf you need your custom layers to be serializable as part of a [Functional model](./functional.ipynb), you can optionally implement a `get_config` method: ###Code class Linear(layers.Layer): def __init__(self, units=32): super(Linear, self).__init__() self.units = units def build(self, input_shape): self.w = self.add_weight(shape=(input_shape[-1], self.units), initializer='random_normal', trainable=True) self.b = self.add_weight(shape=(self.units,), initializer='random_normal', trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b def get_config(self): return {'units': self.units} # Now you can recreate the layer from its config: layer = Linear(64) config = layer.get_config() print(config) new_layer = Linear.from_config(config) ###Output {'units': 64} ###Markdown Note that the `__init__` method of the base `Layer` class takes some keyword arguments, in particular a `name` and a `dtype`. It's good practice to pass these arguments to the parent class in `__init__` and to include them in the layer config: ###Code class Linear(layers.Layer): def __init__(self, units=32, **kwargs): super(Linear, self).__init__(**kwargs) self.units = units def build(self, input_shape): self.w = self.add_weight(shape=(input_shape[-1], self.units), initializer='random_normal', trainable=True) self.b = self.add_weight(shape=(self.units,), initializer='random_normal', trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b def get_config(self): config = super(Linear, self).get_config() config.update({'units': self.units}) return config layer = Linear(64) config = layer.get_config() print(config) new_layer = Linear.from_config(config) ###Output {'name': 'linear_8', 'dtype': None, 'trainable': True, 'units': 64} ###Markdown If you need more flexibility when deserializing the layer from its config, you can also override the `from_config` class method. This is the base implementation of `from_config`:```pythondef from_config(cls, config): return cls(**config)```To learn more about serialization and saving, see the complete [Guide to Saving and Serializing Models](./save_and_serialize.ipynb). Privileged `training` argument in the `call` methodSome layers, in particular the `BatchNormalization` layer and the `Dropout` layer, have different behaviors during training and inference. For such layers, it is standard practice to expose a `training` (boolean) argument in the `call` method.By exposing this argument in `call`, you enable the built-in training and evaluation loops (e.g. `fit`) to correctly use the layer in training and inference. ###Code class CustomDropout(layers.Layer): def __init__(self, rate, **kwargs): super(CustomDropout, self).__init__(**kwargs) self.rate = rate def call(self, inputs, training=None): if training: return tf.nn.dropout(inputs, rate=self.rate) return inputs ###Output _____no_output_____ ###Markdown Building Models The Model classIn general, you will use the `Layer` class to define inner computation blocks,and will use the `Model` class to define the outer model -- the object you will train.For instance, in a ResNet50 model, you would have several ResNet blocks subclassing `Layer`,and a single `Model` encompassing the entire ResNet50 network.The `Model` class has the same API as `Layer`, with the following differences:- It exposes built-in training, evaluation, and prediction loops (`model.fit()`, `model.evaluate()`, `model.predict()`).- It exposes the list of its inner layers, via the `model.layers` property.- It exposes saving and serialization APIs.Effectively, the "Layer" class corresponds to what we refer to in the literatureas a "layer" (as in "convolution layer" or "recurrent layer") or as a "block" (as in "ResNet block" or "Inception block").Meanwhile, the "Model" class corresponds to what is referred to in the literatureas a "model" (as in "deep learning model") or as a "network" (as in "deep neural network").For instance, we could take our mini-resnet example above, and use it to build a `Model` that we couldtrain with `fit()`, and that we could save with `save_weights`:```pythonclass ResNet(tf.keras.Model): def __init__(self): super(ResNet, self).__init__() self.block_1 = ResNetBlock() self.block_2 = ResNetBlock() self.global_pool = layers.GlobalAveragePooling2D() self.classifier = Dense(num_classes) def call(self, inputs): x = self.block_1(inputs) x = self.block_2(x) x = self.global_pool(x) return self.classifier(x)resnet = ResNet()dataset = ...resnet.fit(dataset, epochs=10)resnet.save_weights(filepath)``` Putting it all together: an end-to-end exampleHere's what you've learned so far:- A `Layer` encapsulate a state (created in `__init__` or `build`) and some computation (in `call`).- Layers can be recursively nested to create new, bigger computation blocks.- Layers can create and track losses (typically regularization losses).- The outer container, the thing you want to train, is a `Model`. A `Model` is just like a `Layer`, but with added training and serialization utilities.Let's put all of these things together into an end-to-end example: we're going to implement a Variational AutoEncoder (VAE). We'll train it on MNIST digits.Our VAE will be a subclass of `Model`, built as a nested composition of layers that subclass `Layer`. It will feature a regularization loss (KL divergence). ###Code class Sampling(layers.Layer): """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit.""" def call(self, inputs): z_mean, z_log_var = inputs batch = tf.shape(z_mean)[0] dim = tf.shape(z_mean)[1] epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) return z_mean + tf.exp(0.5 * z_log_var) * epsilon class Encoder(layers.Layer): """Maps MNIST digits to a triplet (z_mean, z_log_var, z).""" def __init__(self, latent_dim=32, intermediate_dim=64, name='encoder', **kwargs): super(Encoder, self).__init__(name=name, **kwargs) self.dense_proj = layers.Dense(intermediate_dim, activation='relu') self.dense_mean = layers.Dense(latent_dim) self.dense_log_var = layers.Dense(latent_dim) self.sampling = Sampling() def call(self, inputs): x = self.dense_proj(inputs) z_mean = self.dense_mean(x) z_log_var = self.dense_log_var(x) z = self.sampling((z_mean, z_log_var)) return z_mean, z_log_var, z class Decoder(layers.Layer): """Converts z, the encoded digit vector, back into a readable digit.""" def __init__(self, original_dim, intermediate_dim=64, name='decoder', **kwargs): super(Decoder, self).__init__(name=name, **kwargs) self.dense_proj = layers.Dense(intermediate_dim, activation='relu') self.dense_output = layers.Dense(original_dim, activation='sigmoid') def call(self, inputs): x = self.dense_proj(inputs) return self.dense_output(x) class VariationalAutoEncoder(tf.keras.Model): """Combines the encoder and decoder into an end-to-end model for training.""" def __init__(self, original_dim, intermediate_dim=64, latent_dim=32, name='autoencoder', **kwargs): super(VariationalAutoEncoder, self).__init__(name=name, **kwargs) self.original_dim = original_dim self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim) self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim) def call(self, inputs): z_mean, z_log_var, z = self.encoder(inputs) reconstructed = self.decoder(z) # Add KL divergence regularization loss. kl_loss = - 0.5 * tf.reduce_mean( z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1) self.add_loss(kl_loss) return reconstructed original_dim = 784 vae = VariationalAutoEncoder(original_dim, 64, 32) optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) mse_loss_fn = tf.keras.losses.MeanSquaredError() loss_metric = tf.keras.metrics.Mean() (x_train, _), _ = tf.keras.datasets.mnist.load_data() x_train = x_train.reshape(60000, 784).astype('float32') / 255 train_dataset = tf.data.Dataset.from_tensor_slices(x_train) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64) # Iterate over epochs. for epoch in range(3): print('Start of epoch %d' % (epoch,)) # Iterate over the batches of the dataset. for step, x_batch_train in enumerate(train_dataset): with tf.GradientTape() as tape: reconstructed = vae(x_batch_train) # Compute reconstruction loss loss = mse_loss_fn(x_batch_train, reconstructed) loss += sum(vae.losses) # Add KLD regularization loss grads = tape.gradient(loss, vae.trainable_weights) optimizer.apply_gradients(zip(grads, vae.trainable_weights)) loss_metric(loss) if step % 100 == 0: print('step %s: mean loss = %s' % (step, loss_metric.result())) ###Output Start of epoch 0 step 0: mean loss = tf.Tensor(0.333594, shape=(), dtype=float32) step 100: mean loss = tf.Tensor(0.12490749, shape=(), dtype=float32) step 200: mean loss = tf.Tensor(0.09895289, shape=(), dtype=float32) step 300: mean loss = tf.Tensor(0.08900405, shape=(), dtype=float32) step 400: mean loss = tf.Tensor(0.08410553, shape=(), dtype=float32) step 500: mean loss = tf.Tensor(0.08077162, shape=(), dtype=float32) step 600: mean loss = tf.Tensor(0.07866916, shape=(), dtype=float32) step 700: mean loss = tf.Tensor(0.07706785, shape=(), dtype=float32) step 800: mean loss = tf.Tensor(0.07590426, shape=(), dtype=float32) step 900: mean loss = tf.Tensor(0.07490685, shape=(), dtype=float32) Start of epoch 1 step 0: mean loss = tf.Tensor(0.07461874, shape=(), dtype=float32) step 100: mean loss = tf.Tensor(0.07394995, shape=(), dtype=float32) step 200: mean loss = tf.Tensor(0.07347135, shape=(), dtype=float32) step 300: mean loss = tf.Tensor(0.07299441, shape=(), dtype=float32) step 400: mean loss = tf.Tensor(0.07266846, shape=(), dtype=float32) step 500: mean loss = tf.Tensor(0.07226782, shape=(), dtype=float32) step 600: mean loss = tf.Tensor(0.07197859, shape=(), dtype=float32) step 700: mean loss = tf.Tensor(0.07168568, shape=(), dtype=float32) step 800: mean loss = tf.Tensor(0.07144765, shape=(), dtype=float32) step 900: mean loss = tf.Tensor(0.07119144, shape=(), dtype=float32) Start of epoch 2 step 0: mean loss = tf.Tensor(0.07111951, shape=(), dtype=float32) step 100: mean loss = tf.Tensor(0.07093658, shape=(), dtype=float32) step 200: mean loss = tf.Tensor(0.07081041, shape=(), dtype=float32) step 300: mean loss = tf.Tensor(0.070655316, shape=(), dtype=float32) step 400: mean loss = tf.Tensor(0.07056138, shape=(), dtype=float32) step 500: mean loss = tf.Tensor(0.070404164, shape=(), dtype=float32) step 600: mean loss = tf.Tensor(0.07029703, shape=(), dtype=float32) step 700: mean loss = tf.Tensor(0.07017324, shape=(), dtype=float32) step 800: mean loss = tf.Tensor(0.07007284, shape=(), dtype=float32) step 900: mean loss = tf.Tensor(0.06995187, shape=(), dtype=float32) ###Markdown Note that since the VAE is subclassing `Model`, it features built-in training loops. So you could also have trained it like this: ###Code vae = VariationalAutoEncoder(784, 64, 32) optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError()) vae.fit(x_train, x_train, epochs=3, batch_size=64) ###Output Epoch 1/3 60000/60000 [==============================] - 4s 60us/sample - loss: 0.0746 Epoch 2/3 60000/60000 [==============================] - 3s 55us/sample - loss: 0.0676 Epoch 3/3 60000/60000 [==============================] - 3s 55us/sample - loss: 0.0676 ###Markdown Beyond object-oriented development: the Functional APIWas this example too much object-oriented development for you? You can also build models using [the Functional API](./functional.ipynb). Importantly, choosing one style or another does not prevent you from leveraging components written in the other style: you can always mix-and-match.For instance, the Functional API example below reuses the same `Sampling` layer we defined in the example above. ###Code original_dim = 784 intermediate_dim = 64 latent_dim = 32 # Define encoder model. original_inputs = tf.keras.Input(shape=(original_dim,), name='encoder_input') x = layers.Dense(intermediate_dim, activation='relu')(original_inputs) z_mean = layers.Dense(latent_dim, name='z_mean')(x) z_log_var = layers.Dense(latent_dim, name='z_log_var')(x) z = Sampling()((z_mean, z_log_var)) encoder = tf.keras.Model(inputs=original_inputs, outputs=z, name='encoder') # Define decoder model. latent_inputs = tf.keras.Input(shape=(latent_dim,), name='z_sampling') x = layers.Dense(intermediate_dim, activation='relu')(latent_inputs) outputs = layers.Dense(original_dim, activation='sigmoid')(x) decoder = tf.keras.Model(inputs=latent_inputs, outputs=outputs, name='decoder') # Define VAE model. outputs = decoder(z) vae = tf.keras.Model(inputs=original_inputs, outputs=outputs, name='vae') # Add KL divergence regularization loss. kl_loss = - 0.5 * tf.reduce_mean( z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1) vae.add_loss(kl_loss) # Train. optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError()) vae.fit(x_train, x_train, epochs=3, batch_size=64) tf.__version__ ###Output _____no_output_____
tutorials/Certification_Trainings/Public/databricks_notebooks/2.6/6.Playground_DataFrames_v2.6.3.ipynb
###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) 6. Spark DataFrames Playground v.2.6.3 ###Code import sparknlp from sparknlp.base import * from sparknlp.annotator import * from pyspark.ml import Pipeline print("Spark NLP version", sparknlp.version()) spark = sparknlp.start() print("Apache Spark version:", spark.version) spark document = DocumentAssembler().setInputCol('text').setOutputCol('document') tokenizer = Tokenizer().setInputCols('document').setOutputCol('token') pos = PerceptronModel.pretrained().setInputCols('document', 'token').setOutputCol('pos') pipeline = Pipeline().setStages([document, tokenizer, pos]) !wget https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp-workshop/master/jupyter/annotation/english/spark-nlp-basics/sample-sentences-en.txt dbutils.fs.cp("file:/databricks/driver/sample-sentences-en.txt", "dbfs:/") %fs ls "file:/databricks/driver" data = spark.read.text('./sample-sentences-en.txt').toDF('text') data.show(5) model = pipeline.fit(data) result = model.transform(data) result.show(5) stored = result\ .select('text', 'pos.begin', 'pos.end', 'pos.result', 'pos.metadata')\ .toDF('text', 'pos_begin', 'pos_end', 'pos_result', 'pos_meta')\ .cache() stored.printSchema() stored.show(5) ###Output _____no_output_____ ###Markdown --------- Spark SQL Functions ###Code from pyspark.sql.functions import * stored.filter(array_contains('pos_result', 'VBD')).show(5) stored.withColumn('token_count', size('pos_result')).select('pos_result', 'token_count').show(5) stored.select('text', array_max('pos_end')).show(5) stored.withColumn('unique_pos', array_distinct('pos_result')).select('pos_result', 'unique_pos').show(5) stored.groupBy(array_sort(array_distinct('pos_result'))).count().show(10) ###Output _____no_output_____ ###Markdown ---------------- SQL Functions with `col` ###Code from pyspark.sql.functions import col stored.select(col('pos_meta').getItem(0).getItem('word')).show(5) ###Output _____no_output_____ ###Markdown ------------- Spark NLP Annotation UDFs ###Code result.select('pos').show(1, truncate=False) def nn_tokens(annotations): nn_annotations = list( filter(lambda annotation: annotation.result == 'NN', annotations) ) return list( map(lambda nn_annotation: nn_annotation.metadata['word'], nn_annotations) ) from sparknlp.functions import * from pyspark.sql.types import ArrayType, StringType result.select(map_annotations(nn_tokens, ArrayType(StringType()))('pos').alias('nn_tokens')).show(truncate=False) ###Output _____no_output_____
notebook/MS_Nature_Rowitch_snRNAseq.ipynb
###Markdown Human Brain samples - MS Nature 2019 Rowitch dataset reprocessed Please download the input data before proceedPlease extract the tarball to current working directory, input data would be in **./data****Download link https://bit.ly/2F6o5n7** ###Code import scanpy as sc import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt from matplotlib import rcParams from matplotlib import colors import seaborn as sb import glob import rpy2.rinterface_lib.callbacks import logging from rpy2.robjects import pandas2ri import anndata2ri from scipy.sparse.csc import csc_matrix # Ignore R warning messages #Note: this can be commented out to get more verbose R output rpy2.rinterface_lib.callbacks.logger.setLevel(logging.ERROR) # Automatically convert rpy2 outputs to pandas dataframes pandas2ri.activate() anndata2ri.activate() %load_ext rpy2.ipython plt.rcParams['figure.figsize']=(8,8) #rescale figures sc.settings.verbosity = 3 #sc.set_figure_params(dpi=200, dpi_save=300) sc.logging.print_versions() results_file = './write/ms_nature_2019_rowitch_pp.h5ad' ###Output scanpy==1.5.1 anndata==0.7.1 umap==0.4.3 numpy==1.18.4 scipy==1.4.1 pandas==1.0.3 scikit-learn==0.22.1 statsmodels==0.10.1 python-igraph==0.7.1 louvain==0.6.1 ###Markdown Load human brain snRNAseq samplesHere we load the pre-processed datasets (which has been annotated), and the raw matrices (which won't be filtered on the gene level). Raw data ###Code wpath = "./data/" metafile = "all_samples.txt" meta = pd.read_csv( wpath + "/" + metafile, header = 0) meta # design # Set up data loading file_base = './data/' adatas_raw = [] # Loop to load data for i in range(len(meta['library_id'])): #Parse filenames sample = meta['library_id'][i] h5_file = file_base+sample+'/outs/filtered_feature_bc_matrix.h5' #Load data adata_tmp = sc.read_10x_h5(h5_file) adata_tmp.X = csc_matrix(adata_tmp.X) #Annotate data sampleID = sample.split('-rxn')[0] adata_tmp.obs['sample'] = ['MSsnRNAseq2019_'+sample]*adata_tmp.n_obs # adata_tmp.obs['study'] = ['MS_Nature_2019_Rowitch_snRNAseq']*adata_tmp.n_obs # adata_tmp.obs['chemistry'] = ['v2_10X']*adata_tmp.n_obs # adata_tmp.obs['tissue'] = ['Brain']*adata_tmp.n_obs # adata_tmp.obs['species'] = ['Human']*adata_tmp.n_obs # adata_tmp.obs['data_type'] = ['UMI']*adata_tmp.n_obs # adata_tmp.obs adata_tmp.var_names_make_unique() #Append to main adata object adatas_raw.append(adata_tmp) meta['sample_id'] = meta['library_id'].copy() meta['sample_id'] = meta['sample_id'].str.replace("_3PEE_ref", "") meta meta.shape # Concatenate to unique adata object adata_raw = adatas_raw[0].concatenate(adatas_raw[1:], batch_key='sample_ID', batch_categories=meta['sample_id']) adata_raw.obs['sample'] = adata_raw.obs['sample'].str.replace("_3PEE_ref", "") adata_raw.obs.head() adata_raw.obs.drop(columns=['sample_ID'], inplace=True) adata_raw.obs.head() adata_raw.obs.index.rename('barcode', inplace=True) adata_raw.obs.head() adata_raw.shape type(adata_raw.X) # adata_raw.X = csc_matrix(adata_raw.X) # Save merged object adata_raw.write(results_file) ###Output ... storing 'sample' as categorical ... storing 'feature_types' as categorical ... storing 'genome' as categorical ###Markdown 1. Pre-processing and visualization 1.1 Quality control ###Code adata_raw_copy = adata_raw.copy() sc.pp.calculate_qc_metrics(adata_raw, inplace=True) # Quality control - calculate QC covariates adata_raw.obs['n_counts'] = adata_raw.X.sum(1) adata_raw.obs['log_counts'] = np.log(adata_raw.obs['n_counts']) adata_raw.obs['n_genes'] = (adata_raw.X > 0).sum(1) # mt_gene_mask = [gene.startswith('MT-') for gene in adata_raw.var_names] # adata_raw.obs['mt_frac'] = adata_raw.X[:, mt_gene_mask].sum(1)/adata_raw.obs['n_counts'] mito_genes = adata_raw.var_names.str.startswith('MT-') adata_raw.obs['mt_frac'] = np.sum(adata_raw[:, mito_genes].X, axis=1) / np.sum(adata_raw.X, axis=1) # Quality control - plot QC metrics sc.pl.violin(adata_raw, ['n_genes', 'n_counts', 'mt_frac'],groupby='sample', jitter=0.4, multi_panel=False) sc.pl.scatter(adata_raw, x='n_counts', y='mt_frac') sc.pl.scatter(adata_raw, x='n_counts', y='n_genes', color='mt_frac') sc.pl.scatter(adata_raw[adata_raw.obs['n_counts'] < 20000], x='n_counts', y='n_genes', color='mt_frac') #Thresholding decision: counts p3 = sb.distplot(adata_raw.obs['n_counts'], kde=False, bins=200) plt.show() p4 = sb.distplot(adata_raw.obs['n_counts'][adata_raw.obs['n_counts']<4000], kde=False,bins=200) plt.show() p5 = sb.distplot(adata_raw.obs['n_counts'][adata_raw.obs['n_counts']>25000], kde=False, bins=60) plt.show() ###Output _____no_output_____ ###Markdown Zoom-in histograms of the number of counts per cell show that there's a group of cells with n_counts < 3500, this would remove 47k out of 65k cells. But paper said cut at 1000 reads, stick with 1000 reads. On the upper end of the distribution, we can see that the high peak centered around 5000 counts spans until around 40000 counts. ###Code # Filter cells according to identified QC thresholds: print('Total number of cells: {:d}'.format(adata_raw.n_obs)) sc.pp.filter_cells(adata_raw, min_counts = 1000) print('Number of cells after min count filter: {:d}'.format(adata_raw.n_obs)) sc.pp.filter_cells(adata_raw, max_counts = 40000) print('Number of cells after max count filter: {:d}'.format(adata_raw.n_obs)) adata_raw = adata_raw[adata_raw.obs['mt_frac'] < 0.2] print('Number of cells after MT filter: {:d}'.format(adata_raw.n_obs)) # look at the effect of thresholding sc.pl.scatter(adata_raw, x='n_counts', y='n_genes', color='mt_frac') #Thresholding decision: genes p6 = sb.distplot(adata_raw.obs['n_genes'], kde=False, bins=60) plt.show() p7 = sb.distplot(adata_raw.obs['n_genes'][adata_raw.obs['n_genes']<1500], kde=False, bins=60) plt.show() ###Output _____no_output_____ ###Markdown From the histograms of the number of genes per cell, we can notice that there still is a small population showing n_genes < 600 which should be filtered out. But paper said 500 ###Code # Thresholding on number of genes print('Total number of cells: {:d}'.format(adata_raw.n_obs)) sc.pp.filter_cells(adata_raw, min_genes = 600) print('Number of cells after gene filter: {:d}'.format(adata_raw.n_obs)) #Filter genes: print('Total number of genes: {:d}'.format(adata_raw.n_vars)) # Min 20 cells - filters out 0 count genes sc.pp.filter_genes(adata_raw, min_cells=20) print('Number of genes after cell filter: {:d}'.format(adata_raw.n_vars)) # Save merged object adata_raw.write('./write/ms_nature_2019_rowitch_done_QC_filter_46kcell_25kgene.h5ad') ###Output _____no_output_____ ###Markdown Normalization ###Code adata_raw = sc.read_h5ad('./write/ms_nature_2019_rowitch_done_QC_filter_46kcell_25kgene.h5ad') sc.pp.normalize_per_cell(adata_raw, counts_per_cell_after=1e6) sc.pp.log1p(adata_raw) # sc.pp.pca(adata_pp, n_comps=15, svd_solver='arpack') # sc.pp.neighbors(adata_pp) # sc.tl.louvain(adata_pp, key_added='groups', resolution=0.5) adata_raw.write('./write/ms_nature_2019_rowitch_filtered_normalized_log1p_non_scaled.h5ad') import gc gc.collect() infile = './write/ms_nature_2019_rowitch_filtered_normalized_log1p_non_scaled.h5ad' adata_raw = sc.read_h5ad(infile) def mod_index(meta): meta['index'] = meta['index'].str.replace("_3PEE_ref", "") return meta # attach exisiting harmony and liger coordinates # harmony adata_harmony = sc.read_h5ad("./data/harmony_clustered.h5ad") adata_harmony.obs.index = adata_harmony.obs.index.str.replace("_3PEE_ref", "") adata_harmony.obs # subset adata_raw to match same cells cells = list(set(adata_raw.obs.index) & set(adata_harmony.obs.index)) adata_raw = adata_raw[cells] xpca = pd.DataFrame(adata_harmony.obsm['X_pca']).set_index(adata_harmony.obs.index) xtsne = pd.DataFrame(adata_harmony.obsm['X_tsne']).set_index(adata_harmony.obs.index) xumap = pd.DataFrame(adata_harmony.obsm['X_umap']).set_index(adata_harmony.obs.index) adata_raw.obsm['X_pca_harmony'] = np.array(xpca.loc[adata_raw.obs.index]) adata_raw.obsm['X_tsne_harmony'] = np.array(xtsne.loc[adata_raw.obs.index]) adata_raw.obsm['X_umap_harmony'] = np.array(xumap.loc[adata_raw.obs.index]) adata_raw.obs['louvain_harmony'] = adata_harmony.obs['louvain'].loc[adata_raw.obs.index] adata_raw.obs = adata_raw.obs.astype({'louvain_harmony':'category'}) # liger xtsne = pd.read_csv("./data/liger_runumap.tsne.coords.txt", sep='\t', encoding='utf-8') xumap = pd.read_csv("./data/liger_runumap.umap.coords.txt", sep='\t', encoding='utf-8') xlouvain = pd.read_csv("./data/liger_clusterID.txt", sep='\t', encoding='utf-8') xtsne = mod_index(xtsne) xumap = mod_index(xumap) xlouvain['index'] = xlouvain['barcode'] xlouvain = mod_index(xlouvain) xumap.set_index('index', inplace=True) xtsne.set_index('index', inplace=True) xlouvain.set_index('index', inplace=True) adata_raw.obsm['X_tsne_liger'] = np.array(xtsne.loc[adata_raw.obs.index]) adata_raw.obsm['X_umap_liger'] = np.array(xumap.loc[adata_raw.obs.index]) adata_raw.obs['louvain_liger'] = np.array(xlouvain.loc[adata_raw.obs.index]['clusterID']) adata_raw.obs = adata_raw.obs.astype({'louvain_liger':'category'}) outfile = infile outfile = outfile.replace(".h5ad","") adata_raw.write_h5ad(outfile+"_with_embedings.h5ad") import gc gc.collect() ###Output _____no_output_____ ###Markdown attach meta data from the paper ###Code xmeta = pd.read_csv("./data/meta.tsv", sep='\t', encoding='utf-8') xmeta.index = xmeta['cell'].str.replace("_.*_.*","")+"-"+xmeta['sample']+"_10x" xmeta xmeta.loc[set(set(xmeta.index) & set(adata_raw.obs.index))][['Capbatch','Seqbatch','cell_type','diagnosis','region','sample','sex','stage']] features = ['Capbatch','Seqbatch','cell_type','diagnosis','region','sample','sex','stage'] bcodes = set(set(xmeta.index) & set(adata_raw.obs.index)) for f in features: adata_raw.obs[f] = 'nan' adata_raw.obs[f].loc[bcodes] = xmeta[f].loc[bcodes] set(adata_raw.obs['cell_type']) adata_raw.obs['>Description'] = ['Human brain snRNAseq 46k cells (MS Nature 2019 Schirmer et al.); data - normalized, log transformed UMI; platform - 10X v2 chemistry | embedding by umap_harmony; color by cell_type']*adata_raw.n_obs outfile = infile outfile = outfile.replace(".h5ad","") adata_raw.write_h5ad(outfile+"_with_embedings_and_labels.h5ad") ###Output ... storing 'sample' as categorical ... storing 'Capbatch' as categorical ... storing 'Seqbatch' as categorical ... storing 'cell_type' as categorical ... storing 'diagnosis' as categorical ... storing 'region' as categorical ... storing 'sex' as categorical ... storing 'stage' as categorical ... storing '>Description' as categorical
6.deployment_eia.ipynb
###Markdown Module 6. Amazon SageMaker Deployment for EIA(Elastic Inference Accelerator)---***[주의] 본 모듈은 PyTorch EIA 1.3.1 버전에서 훈련을 수행한 모델만 배포가 가능합니다. 코드가 정상적으로 수행되지 않는다면, 프레임워크 버전을 동일 버전으로 맞춰 주시기 바랍니다.***본 모듈에서는 Elastic Inference Accelerator(EIA)를 사용하여 모델을 배포해 보겠습니다. Elastic Inference Accelerator훈련 인스턴스와 달리 실시간 추론 인스턴스는 계속 상시로 띄우는 경우가 많기에, 딥러닝 어플리케이션에서 low latency를 위해 GPU 인스턴스를 사용하면 많은 비용이 발생합니다.Amazon Elastic Inference는 저렴하고 메모리가 작은 GPU 기반 가속기를 Amazon EC2, Amazon ECS, Amazon SageMaker에 연결할 수 있는 서비스로, Accelerator가 CPU 인스턴스에 프로비저닝되고 연결됩니다. EIA를 사용하면 GPU 인스턴스에 근접한 퍼포먼스를 보이면서 인스턴스 실행 비용을 최대 75%까지 절감할 수 있습니다. 모든 Amazon SageMaker 인스턴스 유형, EC2 인스턴스 유형 또는 Amazon ECS 작업을 지원하며, 대부분의 딥러닝 프레임워크를 지원하고 있습니다. 지원되는 프레임워크 버전은 AWS CLI로 확인할 수 있습니다.```bash$ aws ecr list-images --repository-name tensorflow-inference-eia --registry-id 763104351884$ aws ecr list-images --repository-name pytorch-inference-eia --registry-id 763104351884$ aws ecr list-images --repository-name mxnet-inference-eia --registry-id 763104351884```참조: https://aws.amazon.com/ko/blogs/korea/amazon-elastic-inference-gpu-powered-deep-learning-inference-acceleration/ 1. Inference script---아래 코드 셀은 `src` 디렉토리에 SageMaker 추론 스크립트인 `inference_eia.py`를 저장합니다.Module 5의 코드와 대부분 동일하지만, `model_fn()` 메서드의 구현이 다른 점을 유의해 주세요. ###Code import os import time import sagemaker from sagemaker.pytorch.model import PyTorchModel role = sagemaker.get_execution_role() %%writefile ./src/inference_eia.py from __future__ import absolute_import import argparse import json import logging import os import sys import time import random from os.path import join import numpy as np import io import tarfile import boto3 from PIL import Image import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from torch.optim import lr_scheduler import torch.optim as optim import torchvision import copy import torch.utils.data import torch.utils.data.distributed from torchvision import datasets, transforms, models from torch import topk logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(sys.stdout)) JSON_CONTENT_TYPE = 'application/json' def model_fn(model_dir): logger.info("==> model_dir : {}".format(model_dir)) traced_model = torch.jit.load(os.path.join(model_dir, 'model_eia.pth')) return traced_model # Deserialize the request body def input_fn(request_body, request_content_type='application/x-image'): print('An input_fn that loads a image tensor') print(request_content_type) if request_content_type == 'application/x-image': img = np.array(Image.open(io.BytesIO(request_body))) elif request_content_type == 'application/x-npy': img = np.frombuffer(request_body, dtype='uint8').reshape(137, 236) else: raise ValueError( 'Requested unsupported ContentType in content_type : ' + request_content_type) img = 255 - img img = img[:,:,np.newaxis] img = np.repeat(img, 3, axis=2) test_transforms = transforms.Compose([ transforms.ToTensor() ]) img_tensor = test_transforms(img) return img_tensor # Predicts on the deserialized object with the model from model_fn() def predict_fn(input_data, model): logger.info('Entering the predict_fn function') start_time = time.time() input_data = input_data.unsqueeze(0) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) model.eval() input_data = input_data.to(device) result = {} with torch.no_grad(): logits = model(input_data) pred_probs = F.softmax(logits, dim=1).data.squeeze() outputs = topk(pred_probs, 5) result['score'] = outputs[0].detach().cpu().numpy() result['class'] = outputs[1].detach().cpu().numpy() print("--- Elapsed time: %s secs ---" % (time.time() - start_time)) return result # Serialize the prediction result into the response content type def output_fn(pred_output, accept=JSON_CONTENT_TYPE): return json.dumps({'score': pred_output['score'].tolist(), 'class': pred_output['class'].tolist()}), accept ###Output Overwriting ./src/inference_eia.py ###Markdown 2. TorchScript Compile (Tracing)---PyTorch 프레임워크에서 EI를 사용하기 위해서는 [TorchScript](https://pytorch.org/docs/1.3.1/jit.html)로 모델을 컴파일해야 하며, 2020년 8월 시점에서는 PyTorch 1.3.1을 지원하고 있습니다. TorchScript는 PyTorch 코드에서 직렬화 및 최적화 가능한 모델로 컴파일하며 Python 인터프리터의 글로벌 인터프리터 잠금 (GIL)과 무관하기 때문에 Python 외의 언어에서 로드 가능하고 최적화가 용이합니다.TorchScript로 변환하는 방법은 **tracing** 방식과 **scripting** 방식이 있으며, 본 핸즈온에서는 tracing 방식을 사용하겠습니다. 참고로 tracing 방식은 샘플 입력 데이터를 모델에 입력 후 그 입력의 흐름(feedforward)을 기록하여 포착하는 메커니즘이며, scripting 방식은 모델 코드를 직접 분석해서 컴파일하는 방식입니다. Install dependencies ###Code import sys !{sys.executable} -m pip install --upgrade pip --trusted-host pypi.org --trusted-host files.pythonhosted.org !{sys.executable} -m pip install https://download.pytorch.org/whl/cpu/torchvision-0.4.2%2Bcpu-cp36-cp36m-linux_x86_64.whl !{sys.executable} -m pip install https://s3.amazonaws.com/amazonei-pytorch/torch_eia-1.3.1-cp36-cp36m-manylinux1_x86_64.whl !{sys.executable} -m pip install graphviz==0.13.2 !{sys.executable} -m pip install mxnet-model-server==1.0.8 !{sys.executable} -m pip install pillow==7.1.0 !{sys.executable} -m pip install sagemaker_containers !{sys.executable} -m pip install -U sagemaker ###Output _____no_output_____ ###Markdown CompileTracing 방식은 특정 input을 모델에 적용했을 때 수행되면서 operation이 저장하기 때문에, 이미지 사이즈와 동일한 크기의 랜덤 입력 데이터를 모델을 적용해야 합니다. ###Code import torch, os from torchvision import models model_dir = './model' print("==> model_dir : {}".format(model_dir)) model = models.resnet18(pretrained=True) last_hidden_units = model.fc.in_features model.fc = torch.nn.Linear(last_hidden_units, 186) model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pth'))) import torch data = torch.rand(1,3,137,236) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) input_data = data.to(device) with torch.jit.optimized_execution(True, {'target_device': 'eia:0'}): traced_model = torch.jit.trace(model, input_data) ###Output /local/p4clients/pkgbuild-kCleo/workspace/build/PyTorchECL/PyTorchECL-1.x.548.0/AL2012/DEV.STD.PTHREAD/build/private/src/torch/csrc/jit/eia/eia_interface.h:52: UserWarning: Notice - No last error found /local/p4clients/pkgbuild-kCleo/workspace/build/PyTorchECL/PyTorchECL-1.x.548.0/AL2012/DEV.STD.PTHREAD/build/private/src/torch/csrc/jit/eia/eia_interface.h:52: UserWarning: Notice - No last error found ###Markdown 컴파일한 모델로 로컬 환경에서 추론을 수행해 보겠습니다. ###Code from src.inference_eia import model_fn, input_fn, predict_fn, output_fn from PIL import Image import numpy as np import json file_path = 'test_imgs/test_0.jpg' with open(file_path, mode='rb') as file: img_byte = bytearray(file.read()) data = input_fn(img_byte) result = predict_fn(data, traced_model) print(result) ###Output An input_fn that loads a image tensor application/x-image Entering the predict_fn function --- Elapsed time: 0.023025035858154297 secs --- {'score': array([0.62198836, 0.2314413 , 0.04159953, 0.02067479, 0.01897352], dtype=float32), 'class': array([ 3, 2, 169, 168, 70])} ###Markdown TorchScript 모델을 파일로 직렬화하여 저장합니다. 그런 다음, `tar.gz`로 압축하고 이 파일을 S3로 복사합니다. ###Code torch.jit.save(traced_model, './model/model_eia.pth') tar_filename = 'model_eia.tar.gz' !cd model/ && tar -czvf $tar_filename model_eia.pth artifacts_dir = 's3://sagemaker-us-east-1-143656149352/pytorch-training-2020-08-16-04-47-36-618/output/' !aws s3 cp model/$tar_filename $artifacts_dir ###Output upload: model/model_eia.tar.gz to s3://sagemaker-us-east-1-143656149352/pytorch-training-2020-08-16-04-47-36-618/output/model_eia.tar.gz ###Markdown 3. SageMaker Hosted Endpoint Inference---SageMaker가 관리하는 배포 클러스터를 프로비저닝하는 시간이 소요되기 때문에 추론 서비스를 시작하는 데에는 약 5~10분 정도 소요됩니다. ###Code import boto3 client = boto3.client('sagemaker') runtime_client = boto3.client('sagemaker-runtime') def get_model_path(sm_client, max_results=1, name_contains='pytorch'): training_job = sm_client.list_training_jobs(MaxResults=max_results, NameContains=name_contains, SortBy='CreationTime', SortOrder='Descending') training_job_name = training_job['TrainingJobSummaries'][0]['TrainingJobName'] training_job_description = sm_client.describe_training_job(TrainingJobName=training_job_name) model_path = training_job_description['ModelArtifacts']['S3ModelArtifacts'] return model_path #model_path = get_model_path(client, max_results=3) model_path = os.path.join(artifacts_dir, tar_filename) print(model_path) endpoint_name = "endpoint-bangali-classifier-eia-{}".format(int(time.time())) pytorch_model = PyTorchModel(model_data=model_path, role=role, entry_point='./src/inference_eia.py', framework_version='1.3.1', py_version='py3') predictor = pytorch_model.deploy(instance_type='ml.c5.large', initial_instance_count=1, accelerator_type='ml.eia2.large', endpoint_name=endpoint_name, wait=False) # client = boto3.client('sagemaker') # waiter = client.get_waiter('endpoint_in_service') # waiter.wait(EndpointName=endpoint_name) import boto3 client = boto3.client('sagemaker') runtime_client = boto3.client('sagemaker-runtime') endpoint_name = pytorch_model.endpoint_name client.describe_endpoint(EndpointName = endpoint_name) ###Output _____no_output_____ ###Markdown 추론을 수행합니다. (`ContentType='application/x-image'`) ###Code with open(file_path, mode='rb') as file: img_byte = bytearray(file.read()) response = runtime_client.invoke_endpoint( EndpointName=endpoint_name, ContentType='application/x-image', Accept='application/json', Body=img_byte ) print(response['Body'].read().decode()) %timeit runtime_client.invoke_endpoint(EndpointName=endpoint_name, ContentType='application/x-image', Accept='application/json', Body=img_byte) ###Output 94.1 ms ± 6.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) ###Markdown SageMaker Hosted Endpoint Clean-up엔드포인트를 계속 사용하지 않는다면, 불필요한 과금을 피하기 위해 엔드포인트를 삭제해야 합니다. SageMaker SDK에서는 `delete_endpoint()` 메소드로 간단히 삭제할 수 있으며, UI에서도 쉽게 삭제할 수 있습니다. ###Code def delete_endpoint(client, endpoint_name): response = client.describe_endpoint_config(EndpointConfigName=endpoint_name) model_name = response['ProductionVariants'][0]['ModelName'] client.delete_model(ModelName=model_name) client.delete_endpoint(EndpointName=endpoint_name) client.delete_endpoint_config(EndpointConfigName=endpoint_name) print(f'--- Deleted model: {model_name}') print(f'--- Deleted endpoint: {endpoint_name}') print(f'--- Deleted endpoint_config: {endpoint_name}') delete_endpoint(client, endpoint_name) ###Output _____no_output_____
notebooks/ols_baseline.ipynb
###Markdown OLS regressions - baseline for Capstone analysisIn this notebook, I perform OLS regressions using systemwide CaBi trips as the dependent variable. ###Code from util_functions import * import numpy as np import pandas as pd import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns; sns.set_style('darkgrid') import statsmodels.graphics.gofplots as gofplots %matplotlib inline set_env_path() conn, cur = aws_connect() query = """ SELECT *, CASE day_of_week WHEN 5 THEN 1 WHEN 6 THEN 1 ELSE 0 END AS weekend_dummy, from final_db""" df = pd.read_sql(query, con=conn) df.shape ###Output _____no_output_____ ###Markdown First specification attempt - theory basedA lot of the variation in daily CaBi rides can be explained by weather.I decided on the following specification based on trial and error and intuition. For our ML analysis, we will want to look into ways to perform feature selection algorithmically (I'm looking into this right now).That said, the variables I've chosen are fairly arbitrary and could probably be improved, but we shouldn't spend a huge amount of time on baseline stuff. I made sure to try to avoid multicollinearity, for example high and low temperature, population and date, and all of the CaBi data are all highly correlated. ###Code def fitOLS(equation, cov='nonrobust'): ''' This function uses statsmodels.ols to estimate OLS regressions using R/patsy-style syntax. Args: equation (str): A patsy-style regression equation. e.g. 'cabi_trips ~ apparenttemperaturehigh + daylight_hours + rain' cov (str): A specific covariance matrix type. Default is 'nonrobust'. HC0-HC3 available for heteroskedasticity-robust standard errors. Returns: results: A RegressionResults object which summarizes the fit of a linear regression model. ''' model = smf.ols('{}'.format(equation), df) results = model.fit(cov_type='{}'.format(cov), use_t=True) return results # Using the new weekend_dummy for demonstrative purposes results = fitOLS('cabi_trips ~ year + daylight_hours + ' 'apparenttemperaturehigh + rain + snow + ' 'nats_games + weekend_dummy', cov='HC0') results.summary() # Fit the model and print results # I wanted to use dc_pop instead of year (they're highly correlated) # But there are 0s in dc_pop that throw off the analysis results = fitOLS('cabi_trips ~ year + daylight_hours + ' 'apparenttemperaturehigh + rain + snow + ' 'nats_games + C(day_of_week)', cov='HC0') results.summary() ###Output _____no_output_____ ###Markdown Our results look good.The R-squared tells us that about 74% of the variance in cabi_trips is explained by the variance in the explanatory variables.The low p-values indicate that the results we found are all statistically significant.Each of the coefficient estimates indicates the average change in daily CaBi trips associated with a one-unit increase in the explanatory variable, all else held equal. For dummy variables, this can be interpreted as an on-off switch, so on days when it snows, we should expect 1550 fewer rides.There are other things to worry about, though. Statistical programming packages often include diagnostic plots by default, but statsmodels doesn't. I explain three of these plots below. ###Code '''Homoskedasticity is when the variance/scatter/spread of the residuals is constant for all values of the fitted values. It is an assumption under OLS. Heteroskedasticity is when the variance of the residuals changes as the fitted values change. If not addressed, it can lead to biased estimators. If our residuals were heteroskedastic, we would expect a scatter plot to form a funnel shape, and a regression line to have a slope. ''' # Regplot fits a regression line to a scatterplot plt.title('Residuals vs Fitted Values') sns.regplot(results.fittedvalues, results.resid) plt.xlabel('Y-hat') plt.ylabel('Residuals') plt.show() ###Output _____no_output_____ ###Markdown It doesn't look like there's heteroskedasticity, and the regression line is flat. However I think given our sample size and the significance of our variables, it couldn't hurt to specify heteroskedasticity-robust standard errors (the cov=HC0 argument in fitOLS). In practice I rarely see standard errors that aren't robust to either heteroskedasticity or clustering. (If we wanted to cluster, we would have to choose variables to cluster on, and I haven't looked into that for our data). ###Code '''Normality of the residuals with mean 0 is another assumption under OLS. If residuals are nonnormal and not approximately centered at 0, the model is probably misspecified. The first chart is a kernel density estimation and the second is a Q-Q plot. Q-Q plots compare two datasets to see whether or not they come from the same distribution. If they do, the points should form a straight line. Here, we have a Normal Q-Q plot, where our residuals are being compared against a normal distribution. ''' # How are our residuals distributed? plt.title('Density Plot of Residuals') sns.kdeplot(results.resid) plt.show() # How close are our residuals to normal? fig = gofplots.qqplot(results.resid, line='s') plt.title("Normal Q-Q plot") plt.show() ###Output _____no_output_____ ###Markdown The residuals appear to be approximately centered around 0.The third chart shows that our residuals are close to normal, but at the extreme ends of our distribution we get farther from a normal distribution. Second specification attempt - dockless?Next, I add dless_trips_all to the specification to see if there's any effect. ###Code results = fitOLS('cabi_trips ~ year + daylight_hours +' 'apparenttemperaturehigh + rain + snow + ' 'nats_games + C(day_of_week) + dless_trips_all', cov='HC0') results.summary() ###Output _____no_output_____ ###Markdown R squared is slightly higher.dless_trips_all is statistically significant, but its coefficient is small. An increase of 100 dockless trips is associated with 33 fewer CaBi trips. Its upper bound is also fairly close to 0. For the sake of brevity I don't include the diagnostic plots here because they don't change much after adding just one independent variable. Third specification attempt - transformationsNext, I try taking the natural log of certain variables. When you include a logged variable, its interpretation changes to percentage change instead of unit change. I get into specifics in the cell after the regression results.Logging variables is also very good for dealing with outliers. OLS is sensitive to outliers - we saw this demonstrated in class when we removed one observation from the IQ ~ TVhours regression. Logging a variable with a long right tail will often make it approximately normal, which is better for OLS. ###Code # I ran into errors trying to log cabi_trips because the log of 0 is undefined. # Ended up having to drop the four observations where cabi_trips==0 df = df[df.cabi_trips != 0] df.shape results = fitOLS('np.log(cabi_trips) ~ year + daylight_hours + ' 'np.log(apparenttemperaturehigh) + rain + snow + nats_games + C(day_of_week) + ' 'dless_trips_all', cov='HC0') results.summary() ###Output _____no_output_____ ###Markdown Since we have some logged variables, the interpretation of the coefficients changes.Before, the interpretation of apparenttemperaturehigh's effect on cabi_rides was basically "Holding all else equal, how many more cabi rides should we see if the feels-like temperature is one degree (F) higher?"Now that both are logged, the coefficient of 0.8136 means "Holding all else equal, if feels-like temperature rises by 1%, we expect there to be a 0.81% increase in CaBi rides." I explain the interpretation of the dummy coefficients below. ###Code # When you have a logged dependent variable, be careful with dummies # The effect is asymmetrical! # more: https://davegiles.blogspot.com/2011/03/dummies-for-dummies.html print('If rain switches from 0 to 1, the % impact on cabi_trips is ', 100*(np.exp(-0.2168) - 1)) print('If rain switches from 1 to 0, the % impact on cabi_trips is ', 100*(np.exp(0.2168) - 1)) print('If snow switches from 0 to 1, the % impact on cabi_trips is ', 100*(np.exp(-0.3684) - 1)) print('If snow switches from 1 to 0, the % impact on cabi_trips is ', 100*(np.exp(0.3684) - 1)) ###Output If rain switches from 0 to 1, the % impact on cabi_trips is -19.490902860146488 If rain switches from 1 to 0, the % impact on cabi_trips is 24.209565816256216 If snow switches from 0 to 1, the % impact on cabi_trips is -30.815960982195236 If snow switches from 1 to 0, the % impact on cabi_trips is 44.542009139224504 ###Markdown All in all, this third specification isn't that appealing. nats_games is no longer significant, the R squared is lower, and the dummy variables don't make as much intuitive sense.Looking at the charts below you can see that things look worse than before. This particular specification is no good. ###Code # Heteroskedasticity? plt.title('Residuals vs Fitted Values') sns.regplot(results.fittedvalues, results.resid) plt.xlabel('Y-hat') plt.ylabel('Residuals') plt.show() # How are our residuals distributed? plt.title('Density Plot of Residuals') sns.kdeplot(results.resid) plt.show() # How close are our residuals to normality? fig = gofplots.qqplot(results.resid, line='s') plt.title("Normal Q-Q plot") plt.show() ###Output _____no_output_____
FINAL_Scrapping.ipynb
###Markdown Development ###Code url = 'https://www.conestogac.on.ca/fulltime/3d-computer-animation' driver = get_driver(url) df = pd.read_csv("dataset/all_program_names.csv") count = 3 availabilities = {} def loop(availabilities, count): try: url_list = df.ProgramLink for url in url_list[count-3:]: driver.get(url) time.sleep(2) print(count, ")", url) availability_temp = get_availability(driver) if(availability_temp): availabilities[url] = availability_temp count += 1 else: return [availabilities, count] except: print("----") return [availabilities, count] for i in range(246): availabilities, count = loop(availabilities, count) df_avaibility = pd.DataFrame(columns=["URL", "DOMESTIC", "INTERNATIONAL"]) for url, availability in availabilities.items(): row = {"URL": url} domestic = [] for intake, campus, status in zip(availability["domestic"]["intake"], availability["domestic"]["campus"], availability["domestic"]["status"]): domestic.append(", ".join([intake, campus, status])) row["DOMESTIC"] = " | ".join(domestic) international = [] for intake, campus, status in zip(availability["international"]["intake"], availability["international"]["campus"], availability["international"]["status"]): international.append(", ".join([intake, campus, status])) row["INTERNATIONAL"] = " | ".join(international) df_avaibility = df_avaibility.append(row, ignore_index=True) df_avaibility df_avaibility.to_csv("dataset/fasnshwe_careers.csv", index=False) !shutdown -s for progress in range(10): sys.stdout.write("Download progress: %d%% \r" % (progress)) time.sleep(0.8) sys.stdout.flush() url = 'https://www.conestogac.on.ca/fulltime/autism-and-behavioural-science' driver.get(url) def get_availability(driver): availability = {"domestic": {"intake": [], "campus": [], "status": []}, "international": {"intake": [], "campus": [], "status": []}} button = find_element_n(driver, xpath_="//button[@class='btn bg-primary-dropdown text-uppercase']") if(button): button.click() time.sleep(1.5) div = find_element_n(driver, xpath_="//div[@class='px-0 dropdown-menu bg-primary-dropdown dropdown-menu-right mt-0 show']") children = None if(div): children = find_elements_n(div, xpath_='./*') a_list = None if(children): a_list = children[:-1] test = [] if(a_list): for a in a_list: div = find_element_n(a, xpath_="//div[@class='row mx-auto']") if(div): div_list = find_elements_n(div, class_='row') if(div_list): intake_campus = div_list[0].text.strip() intake = intake_campus.split("|")[0].strip() campus = intake_campus.split("|")[1].strip() status = div_list[1].text.strip() domestic_status = status.split("\n")[0].strip() international_status = None if("\n" in status): international_status = status.split("\n")[1].strip() availability["domestic"]["intake"].append(intake) availability["domestic"]["campus"].append(campus) availability["domestic"]["status"].append(domestic_status) if(international_status): availability["international"]["intake"].append(intake) availability["international"]["campus"].append(campus) availability["international"]["status"].append(international_status) return availability get_availability(driver) ###Output _____no_output_____ ###Markdown import ###Code import sqlite3 import sys from selenium import webdriver import time from os import path from tqdm import tqdm import os from selenium.webdriver.common.by import By from selenium.webdriver.chrome.service import Service import time from tqdm import tqdm import pandas as pd import numpy as np import string import random from bs4 import BeautifulSoup ###Output _____no_output_____ ###Markdown Browser setup ###Code def chrome(): service = Service("../drivers/chromedriver") driver = webdriver.Chrome(service = service) return driver def opera(): # need to change, srd DRIVER_PATH = "../drivers/operadriver" driver = webdriver.Opera(executable_path=DRIVER_PATH) return driver def firefox(): # need to change, srd DRIVER_PATH = "../drivers/geckodriver" driver = webdriver.Firefox(executable_path=DRIVER_PATH) return driver def get_driver(url): driver = chrome() # driver = opera() # driver = firefox() driver.get(url) return driver ###Output _____no_output_____ ###Markdown Element Search ###Code def find_element_n(root, xpath_=None, tag_=None, id_=None, class_=None, exception=False): tag = None try: if(xpath_): tag = root.find_element(by=By.XPATH, value=xpath_) elif(tag_): tag = root.find_element(by=By.TAG_NAME, value=tag_) elif(id_): tag = root.find_element(by=By.ID, value=id_) elif(class_): tag = root.find_element(by=By.CLASS_NAME, value=class_) return tag except: pass if(exception): raise Exception("\n\n\n>>> Element not found <<<\n\n\n") else: return False def find_elements_n(root, xpath_=None, tag_=None, id_=None, class_=None, exception=False): tags = None try: if(xpath_): tags = root.find_elements(by=By.XPATH, value=xpath_) elif(tag_): tags = root.find_elements(by=By.TAG_NAME, value=tag_) elif(id_): tags = root.find_elements(by=By.ID, value=id_) elif(class_): tags = root.find_elements(by=By.CLASS_NAME, value=class_) return tags except: pass if(exception): raise Exception("\n\n\n>>> Element not found <<<\n\n\n") else: return False def find_element(root, xpath_=None, tag_=None, id_=None, class_=None, init_wait = 0, wait = 1, limit=3.5, exception=False): """ {init_wait} : sleep for given time before element existence check {wait} : sleep every time when through except except block {exception} : whether to through error{True} or return False{False} """ time.sleep(init_wait) while(limit > 0): tag = None try: if(xpath_): tag = root.find_element(by=By.XPATH, value=xpath_) elif(tag_): tag = root.find_element(by=By.TAG_NAME, value=tag_) elif(id_): tag = root.find_element(by=By.ID, value=id_) elif(class_): tag = root.find_element(by=By.CLASS_NAME, value=class_) return tag except: print("----", limit, "----") time.sleep(wait) limit -= wait if(exception): raise Exception("\n\n\n>>> Element not found <<<\n\n\n") else: return False def find_elements(root, xpath_=None, tag_=None, id_=None, class_=None, init_wait = 0, wait = 1, limit=3.5, exception=False): """ {init_wait} : sleep for given time before element existence check {wait} : sleep every time when through except except block {exception} : whether to through error{True} or return False{False} """ time.sleep(init_wait) while(limit > 0): tags = None try: if(xpath_): tags = root.find_elements(by=By.XPATH, value=xpath_) elif(tag_): tags = root.find_elements(by=By.TAG_NAME, value=tag_) elif(id_): tags = root.find_elements(by=By.ID, value=id_) elif(class_): tags = root.find_elements(by=By.CLASS_NAME, value=class_) return tags except: print("----", limit, "----") time.sleep(wait) limit -= wait if(exception): raise Exception("\n\n\n>>> Element not found <<<\n\n\n") else: return False ###Output _____no_output_____ ###Markdown All Program Search ###Code url = "https://www.conestogac.on.ca/fulltime" driver = get_driver(url) def get_all_program_names_list(driver): ul = find_element_n(driver, xpath_="//ul[@class='list-unstyled mt-md-5']") li_list = find_elements_n(ul, tag_='li') program_names = [] program_links = [] for li in tqdm(li_list): a = find_element(li, tag_='a') link = a.get_attribute("href").strip() span = find_element(a, tag_='span') name = span.text.strip() program_names.append(name) program_links.append(link) if(program_names or program_links or program_codes): programs = {'ProgramName': program_names, 'ProgramLink': program_links} return programs else: raise Exception("---ERROR IN FETCHING PROGRAM NAME---") return False programs = get_all_program_names_list(driver) df = pd.DataFrame(programs) df.to_csv('dataset/all_program_names.csv') ###Output _____no_output_____ ###Markdown Functions Program Name ###Code def get_program_name(driver): div = find_element_n(driver, xpath_="//div[@class='col-12 text-white text-shadow']") h1 = find_element_n(div, tag_='h1') name = "" if(h1): name = h1.text.strip() return name get_program_name(driver) ###Output _____no_output_____ ###Markdown overview ###Code def get_overview(driver): div = find_element_n(driver, xpath_="//div[@class='pr-lg-3']") children = find_elements_n(div, xpath_='./*') p = None for tag in children: if(tag.tag_name == "p"): p = tag break overview = "" if(p): overview = p.text.strip() return overview get_overview(driver) ###Output _____no_output_____ ###Markdown category ###Code def get_category(driver): div = find_element_n(driver, xpath_="//div[@class='my-5 border pl-3 pr-3']") children = find_elements_n(div, xpath_='./*') p = None for tag in children: if(tag.tag_name == "p"): p = tag break category = "" if(p): a = find_element_n(p, tag_='a') if(a): category = a.text.strip() return category get_category(driver) ###Output _____no_output_____ ###Markdown code ###Code def get_code(driver): div_main = find_element_n(driver, xpath_="//div[@class='container mt-5 datasection bg-white']") div = find_element_n(div_main, tag_='div') sub_div = find_element_n(div, class_='col-lg-5') sub_div_1 = find_element_n(sub_div, tag_='div') sub_div_2 = find_element_n(sub_div_1, class_='row') div_list = find_elements_n(sub_div_2, tag_='div') code = "" div_credential = div_list[0] if(div_credential): strong = find_element_n(div_credential, tag_='strong') if(strong): strong_len = len(strong.text) code = div_credential.text[strong_len:].strip() return code get_code(driver) ###Output _____no_output_____ ###Markdown availability (srd working) ###Code def get_availability(driver): availability = {"domestic": {"intake": [], "campus": [], "status": []}, "international": {"intake": [], "campus": [], "status": []}} button = find_element_n(driver, xpath_="//button[@class='btn bg-primary-dropdown text-uppercase']") if(button): button.click() time.sleep(1.5) div = find_element_n(driver, xpath_="//div[@class='px-0 dropdown-menu bg-primary-dropdown dropdown-menu-right mt-0 show']") print(div) children = None if(div): children = find_elements_n(div, xpath_='./*') a_list = None if(children): a_list = children[:-1] test = [] if(a_list): for a in a_list: div = find_element_n(a, xpath_="//div[@class='row mx-auto']") if(div): div_list = find_elements_n(div, class_='row') if(div_list): intake_campus = div_list[0].text.strip() intake = intake_campus.split("|")[0].strip() campus = intake_campus.split("|")[1].strip() status = div_list[1].text.strip() domestic_status = status.split("\n")[0].strip() international_status = status.split("\n")[1].strip() availability["domestic"]["intake"].append(intake) availability["domestic"]["campus"].append(campus) availability["domestic"]["status"].append(domestic_status) availability["international"]["intake"].append(intake) availability["international"]["campus"].append(campus) availability["international"]["status"].append(international_status) return availability get_availability(driver) ###Output <selenium.webdriver.remote.webelement.WebElement (session="58af2cd73cc3bc55f9a10472352d7473", element="6b6e3bd8-d35f-4140-816b-c68c4379a33a")> ###Markdown credential ###Code def get_credential(driver): div_main = find_element_n(driver, xpath_="//div[@class='container mt-5 datasection bg-white']") div = find_element_n(div_main, tag_='div') sub_div = find_element_n(div, class_='col-lg-5') sub_div_1 = find_element_n(sub_div, tag_='div') sub_div_2 = find_element_n(sub_div_1, class_='row') div_list = find_elements_n(sub_div_2, tag_='div') credential = "" div_credential = div_list[5] if(div_credential): strong = find_element_n(div_credential, tag_='strong') if(strong): strong_len = len(strong.text) credential = div_credential.text[strong_len:].strip() return credential get_credential(driver) ###Output _____no_output_____ ###Markdown Program Coordinator ###Code def get_coordinator(driver): div = find_element_n(driver, xpath_="//div[@class='my-5 border pl-3 pr-3']") children = find_elements_n(div, xpath_='./*') ul = None for tag in children: if(tag.tag_name == "ul"): ul = tag break li = None if(ul): li = find_element_n(ul, tag_='li') span = None if(li): span = find_element_n(li, tag_='span') coordinator = "" if(span): coordinator = span.text.strip() return coordinator get_coordinator(driver) ###Output _____no_output_____ ###Markdown delivery ###Code def get_delivery(driver): div_main = find_element_n(driver, xpath_="//div[@class='container mt-5 datasection bg-white']") div = find_element_n(div_main, tag_='div') sub_div = find_element_n(div, class_='col-lg-5') sub_div_1 = find_element_n(sub_div, tag_='div') sub_div_2 = find_element_n(sub_div_1, class_='row') div_list = find_elements_n(sub_div_2, tag_='div') delivery = "" div_delivery = div_list[1] if(div_delivery): strong = find_element_n(div_delivery, tag_='strong') if(strong): strong_len = len(strong.text) delivery = div_delivery.text[strong_len:].strip() return delivery get_delivery(driver) ###Output _____no_output_____ ###Markdown Tution Fees (srd working) ###Code def get_tution_fees(driver): fees = {"domestic_fees": "", "international_fees": ""} div = find_element_n(driver, class_='fees-block', exception=False) div_domestic = find_element_n(div, class_='canadian-cost-block', exception=False) div_international = find_element_n(div, class_='international-cost-block', exception=False) span_domestic = find_element_n(div_domestic, class_='fees-cost-dollar', exception=False) span_international = find_element_n(div_international, class_='fees-cost-dollar', exception=False) if(span_domestic): fees["domestic_fees"] = span_domestic.text.strip() if(span_international): fees["international_fees"] = span_international.text.strip() return fees get_tution_fees(driver) ###Output _____no_output_____ ###Markdown Related Programs (srd working) ###Code def get_related_programs(driver): related_programs = {} main_div = find_element_n(driver, class_='field--name-field-related-programs', exception=False) div = find_element_n(main_div, class_='field__items', exception=False) if(div): sub_divs = find_elements_n(div, class_='field__item') if(sub_divs): for sub_div in sub_divs: a = sub_div.find_element(By.TAG_NAME, 'a') if(a): name = a.text.strip() link = a.get_attribute("href").strip() related_programs[name] = link return related_programs get_related_programs(driver) ###Output _____no_output_____ ###Markdown Other Functions url_creater_for_subjects ###Code def url_creater_for_subjects(url): url_list = url.split("/") url_list = url_list[:-1] url_list.append("courses-next") url = "/".join(url_list) return url ###Output _____no_output_____ ###Markdown Link joiner ###Code def link_joiner(url): base_url = "https://www.fanshawec.ca" + url return base_url ###Output _____no_output_____ ###Markdown Data Screapping ###Code program_details = { "URL": None, "CollegeName": None, "ProgramName": None, "Overview": None, "Category": None, "Code" : None, "Availability" : None, "Credential" : None, "RelatedPrograms" : None, "ProgramCoordinator" : None, "Delivery" : None, "TuitionFees" : None, } def get_program_details(program_details, college_name, url): driver.get(url) time.sleep(0.3) program_details["URL"] = url.strip() program_details["CollegeName"] = college_name.strip() program_details["ProgramName"] = get_program_name(driver) program_details["Overview"] = get_overview(driver) program_details["Category"] = get_category(driver) program_details["Code"] = get_code(driver) program_details["Availability"] = get_availability(driver) program_details["Credential"] = get_credential(driver) program_details["RelatedPrograms"] = get_related_programs(driver) program_details["ProgramCoordinator"] = get_coordinator(driver) program_details["Delivery"] = get_delivery(driver) program_details["TuitionFees"] = get_tution_fees(driver) return program_details df_all_programs = pd.read_csv('./dataset/all_program_names.csv') count = 3 programs = {} for url in df_all_programs.ProgramLink[count-3:]: print(str(count) + ') '+ url) programs[url] = get_program_details(program_details.copy(), "Fanshawe", url) count += 1 ###Output 235) https://www.fanshawec.ca/programs/smm1-sport-and-event-marketing/next 236) https://www.fanshawec.ca/programs/scm2-supply-chain-management-logistics-co-op/next 237) https://www.fanshawec.ca/programs/tes2-teaching-english-speakers-other-languages-and-intercultural-competence/next 238) https://www.fanshawec.ca/programs/tss2-technical-systems-analysis/next 239) https://www.fanshawec.ca/programs/tdm2s-tool-and-die-maker-block-and-day-release-apprenticeship/next 240) https://www.fanshawec.ca/programs/ttc6-tourism-travel/next 241) https://www.fanshawec.ca/programs/tts1-tourism-travel-studies/next 242) https://www.fanshawec.ca/programs/tct4-truck-and-coach-technician-block-release-apprenticeship/next 243) https://www.fanshawec.ca/programs/tct3-truck-and-coach-technician-day-release-apprenticeship/next 244) https://www.fanshawec.ca/programs/vee1-visual-effects-and-editing-contemporary-media/next 245) https://www.fanshawec.ca/programs/iwd2-web-development-and-internet-applications/next 246) https://www.fanshawec.ca/programs/wft1-welding-and-fabrication-technician-co-op/next 247) https://www.fanshawec.ca/programs/wtq1j-welding-techniques/next ###Markdown Store to DataFrame ###Code columns = ["ID", "URL", "College", "Program", "Overview", "Category", "Code", "Domestic Availability", "International Availability", "Credential", "Related Programs", "Program Coordinator", "Delivery", "Domestic Fees", "International Fees"] columns L = len(programs.keys()) program_id_list = {} letters = string.ascii_uppercase + string.digits for key in programs.keys(): while(True): temp_id = "FAN"+''.join(random.choice(letters) for i in range(4)) if(temp_id not in program_id_list): program_id_list[temp_id] = key break def get_value_from_string(string): if(string): return string return np.NaN def make_string_availability(availability): intake = availability["intake"] campus = availability["campus"] status = availability["status"] temp = [intake_ + ", " + campus_ + ", " + status_ for intake_, campus_, status_ in zip(intake, campus, status)] availability = " | ".join(temp) return availability df = pd.DataFrame(columns=columns) for id_, url in program_id_list.items(): row = {} row = {"ID": id_, "URL": url} program = programs[url] row["College"] = program["CollegeName"] row["Program"] = get_value_from_string(program["ProgramName"]) row["Overview"] = get_value_from_string(program["Overview"]) row["Category"] = get_value_from_string(program["Category"]) row["Code"] = get_value_from_string(program["Code"]) availability_domestic_temp = program["Availability"]["domestic"] availability_domestic_temp = make_string_availability(availability_domestic_temp) row["Domestic Availability"] = get_value_from_string(availability_domestic_temp) availability_international_temp = program["Availability"]["international"] availability_international_temp = make_string_availability(availability_international_temp) row["International Availability"] = get_value_from_string(availability_international_temp) row["Credential"] = get_value_from_string(program["Credential"]) related_temp = program["RelatedPrograms"].keys() related_temp = ", ".join(related_temp) row["Related Programs"] = get_value_from_string(related_temp) row["Program Coordinator"] = get_value_from_string(program["ProgramCoordinator"]) delivery_temp = program["Delivery"] delivery_temp = ", ".join(delivery_temp.split("\n")) row["Delivery"] = get_value_from_string(delivery_temp) row["Domestic Fees"] = get_value_from_string(program["TuitionFees"]["domestic_fees"]) row["International Fees"] = get_value_from_string(program["TuitionFees"]["international_fees"]) df = df.append(row, ignore_index=True) df ###Output _____no_output_____ ###Markdown Create CSV file ###Code df.to_csv("dataset//fanshawe_dataset.csv", index=False) ###Output _____no_output_____ ###Markdown Careers ###Code def get_careers(driver): a = driver.find_element(by=By.CLASS_NAME, value='details-title') if(a): a.click() time.sleep(2) source = driver.page_source soup = BeautifulSoup(source, 'lxml') div = soup.find('details', class_='collapse-processed') p_list = div.find_all("p") careers = [] for p in p_list: career = p.find("strong") if(career): careers.append(career.text.strip()) return careers get_careers(driver) count = 3 career_list = {} key_values = list(program_id_list.items()) for id_, url in key_values[count-3:]: driver.get(url) time.sleep(0.3) print(count, ")", url) careers = get_careers(driver) career_list[id_] = ", ".join(careers) count += 1 def loop(career_list, count): try: key_values = list(program_id_list.items()) for id_, url in key_values[count-3:]: driver.get(url) time.sleep(2) print(count, ")", url) careers = get_careers(driver) career_list[id_] = ", ".join(careers) count += 1 except: print("----") return [career_list, count] for i in range(260): career_list, count = loop(career_list, count) df_careers = pd.DataFrame(columns=["ID", "Careers"]) for id_, careers in career_list.items(): row = {"ID": id_, "Careers": careers.strip(' ,')} df_careers = df_careers.append(row, ignore_index=True) df_careers.to_csv("dataset/fasnshwe_careers.csv", index=False) ###Output _____no_output_____
Project 2 - Online Shoppers Intent/Online Shoppers Intention Exercise.ipynb
###Markdown Online shopping intention analysis ###Code import numpy as np # linear algebra import pandas as pd # data processing import matplotlib.pyplot as plt #PLOTTING import seaborn as sns #plotting import plotly as py #plotting import plotly.graph_objs as go #plotting ###loading data base_url = 'https://raw.githubusercontent.com/onur-duman/OnlineShoppersIntention-EDA-Classification-Clustering/main/online_shoppers_intention.csv' df = pd.read_csv(base_url) df.head() ## looking at missing values missing = df.isnull().sum() print(missing) ## since no value is empty we can skip this part df.fillna(0, inplace = True) ### lets take the product related bounce rate x = df.iloc[:,[5,6]].values x.shape # let's apply elbow method to check the number of clusters from sklearn.cluster import KMeans wcss = [] for i in range(1, 11): km = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0, algorithm = 'full', tol = 0.001) km.fit(x) labels = km.labels_ wcss.append(km.inertia_) plt.rcParams['figure.figsize'] = (13, 7) plt.plot(range(1, 11), wcss) plt.grid() plt.tight_layout() plt.title('The Elbow Method', fontsize = 20) plt.xlabel('No. of Clusters') plt.ylabel('wcss') plt.show() km = KMeans(n_clusters = 2, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0) # get predicted cluster index for each sample: 0, 1, 2 y_means = km.fit_predict(x) plt.scatter(x[y_means == 0, 0], x[y_means == 0, 1], s = 50, c = 'yellow', label = 'Uninterested Customers') plt.scatter(x[y_means == 1, 0], x[y_means == 1, 1], s = 50, c = 'pink', label = 'Target Customers') plt.scatter(km.cluster_centers_[:,0], km.cluster_centers_[:, 1], s = 50, c = 'blue' , label = 'centeroid') plt.title('ProductRelated Duration vs Bounce Rate', fontsize = 20) plt.grid() plt.xlabel('ProductRelated Duration') plt.ylabel('Bounce Rates') plt.legend() plt.show() from sklearn.preprocessing import LabelEncoder le = LabelEncoder() labels_true = le.fit_transform(df['Revenue']) # get predicted clustering result label labels_pred = y_means # print adjusted rand index, which measures the similarity of the two assignments from sklearn import metrics score = metrics.adjusted_rand_score(labels_true, labels_pred) print("Adjusted rand index: ") print(score) # print confusion matrix #cm = metrics.plot_confusion_matrix(None, labels_true, labels_pred) #print(cm) import scikitplot as skplt plt_1 = skplt.metrics.plot_confusion_matrix(labels_true, labels_pred, normalize=False) plt_2 = skplt.metrics.plot_confusion_matrix(labels_true, labels_pred, normalize=True) ###Output Adjusted rand index: 0.08344649929017146
runge_kutta_mv.ipynb
###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivativs to integrate ###Code def dydx(x,y): # set the derivatives # our equation is d^2x/dx^2 = -y # so we can write # dydx = z # dzdx = -y # we will set y = y[0] (the function y) # we will set z = y[1] (the function x) # declare an array y_derivs = np.zeros(2) # array of functions # set dydx = z y_derivs[0] = y[1] # dydx we put in y_derivs[1] # set dydx = -y y_derivs[1] = -1*y[0] # here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code # now we'll operate on all the elements at the same time def rk4_mv_core(dydx,xi,yi,nv,h): #dydx is function we just wrote, # xi is value of x at step i # xi changes by value of h # nv is number of variables # yi is the array # declare k? arrays k1 = np.zeros(nv) # each k is array of two emelents one that k2 = np.zeros(nv) # corresponds to y and one that corresponds to z k3 = np.zeros(nv) k4 = np.zeros(nv) # define x at 1/2 step x_ipoh = xi + 0.5*h # define x at 1 step x_ipo = xi + h # declare a temp y array, will contain estimated values of y and z # ad different points of steps y_temp = np.zeros(nv) # get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] # get k2 values y_temp[:] = yi[:] + 0.5*k1[:] # initial values on left side + .5 of k1, we get to midpoint y_derivs = dydx(x_ipoh,y_temp) # estimate of y and z at half step and k2[:] = h*y_derivs[:] # recompute derivatives at half step # get k3 values y_temp[:] = yi[:] + 0.5*k2[:] # different step, with different derivative y_derivs = dydx(x_ipoh,y_temp) # retaking half step and recomputing derivatives k3[:] = h*y_derivs[:] # # get k4 values y_temp[:] = yi[:] + k3[:] # taking full step for k4 using recomputed y_derivs = dydx(x_ipoh,y_temp) # derivatives from above k4[:] = h*y_derivs[:] # advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code # dydx functions that take drivatives # x_i value of x at step i # y_i values of items in array at i # h is step size # tol tolerance # this function def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 # set a maximum number of iterations imax = 10000 # set an iteration variable i = 0 # create an error Delta = np.full(nv,2*tol) # array that contains error estimates # remember the step h_step = h # adjust steps until error is in our tolerance while(Delta.max()/tol > 1.0): #print(Delta.max(),h,x_i,y_i,nv,h_step) # estimate our error by taking one step of size h # vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) # copmaring to one full step y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) # copmaring to two steps of h/2 y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) # using y_1 estimate here which is # estimate for y and z from previous step # that used half step # compute an error Delta = np.fabs(y_2 - y_11) # if the error is too large, take a smaller step # Delta.max() is the biggest element in Delta # if this value is > 1 after divided by tol, our step was too big if(Delta.max()/tol > 1.0): # our errors is too large, decrease the step # multiplying by SAFETY to get smaller step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) # check iteration if(i >= imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ", i) # iterate i+=1 # next time, try to take a bigger step, so estimate new h step with below h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FAC) # return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code # this function, you pass in the derivatives you want to evolve # the starting place, the ending place, and tolerance # it will call the two functions we just wrote # we don't know how many steps we'll take so we have initial conditions # we just provide some tolerance and want for this wrapper to try to stay # within the tolerance def rk4_mv(dydx,a,b,y_a,tol): # dydx is the derivate wrt x # a is the lower bound # b is the upper bound # y_a are the boundary conditions # tol is the tolerance for integrating y # define our starting step xi = a # current value of x yi = y_a.copy() # current value of # an initial step size == make very small h = 1.0e-4 * (b-a) # set a minimum number of iterations since we don't know how # many iterations we'll need to take imax = 10000 # set an iteration variable i = 0 # set the number of coupled odes to the size of y_a nv = len(y_a) # initial comditions of y_a # set the initial conditions ( arrays that we'll be plotting ) x = np.full(1,a) # signle element array with value a y = np.full((1,nv),y_a) # array with all values of x at all nv steps, # and y and z at values of x (variable y is actually # an array) # set a flag flag = 1 # loop until we reach the right side while(flag): # calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) # update the step h = h_new # prevent an overshoot, as we integrate along x, when we get close to # edge, we don't want to cross it, so we retake step to get to the edge if(xi+h_step>b): # take a smaller step h = b-xi # recalculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) # break flag = 0 # update values in the arrays xi += h_step yi[:] = yi_new[:] # arrays # add the step to the arrays x = np.append(x,xi) y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:] = y y_new[-1,:] = yi[:] del y # frees memory of y y = y_new # prevent too many iterations if(i>=imax): print("Maximum iterations reached.") raise StopIteration("Iteration number = ", i) #iterate i += 1 # output some information # %3d is a format of the integer so here we want 3 places in the integer # \t means to pritn out tab space on screen # %9.8f print out floating number with 8 digets on right hand side of decimal s = "i = %3d\tx = %9.8f\th = %9.8f\tb=%9.8f" % (i,xi,h_step,b) print(s) # break if new xi is == b if(xi == b): flag = 0 # return the answer return x, y ###Output _____no_output_____ ###Markdown Perform the integration ###Code a = 0.0 b = 2.0 * np.pi # initial conditions y_0 = np.zeros(2) # array of size 2 y_0[0] = 0.0 y_0[1] = 1.0 nv = 2 tolerance = 1.0e-6 # perform the integration x,y = rk4_mv(dydx,a,b,y_0,tolerance) ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our eq is d^2y/dx^2 = -y #so write #dydx = z #dzdx = -y #we will set y = y[0] #we will set z = y[1] #declare an array, size 2 y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx = -1 y_derivs[1] = -1*y[0] #return an array return y_derivs ###Output _____no_output_____ ###Markdown Def. the 4th order RK method ###Code def rk4_mv_core(dydx, xi, yi, nv, h): #declare k? arrays #h = step size #yi = array #nv = number of variables #each new k depends on the previous k's, K4 depends on k3 to k1 #nv in our case is 2, y and z k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi +0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh, y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh, y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + 0.5*k3[:] y_derivs = dydx(x_ipo, y_temp) k4[:] = h*y_derivs[:] #advance y by a step h #weighted sum yipo = yi + (k1 + 2*k2+ 2*k3 +k4)/6. return yipo ###Output _____no_output_____ ###Markdown Def an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx, x_i, y_i, nv, h, tol): #define safety scale #used to estimate an error, 1 big step, 2 little steps #if error is bigger than tol, reduce size of step #if error is smaller than tol, increase size of step, limit in #increase of step size, half of previous step SAFETY = 0.9 H_NEW_FAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv, 2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate our error by taking one step of size h #vs. two steps of size h/2 y_2 = rk4_mv_core(dydx, x_i, y_i, nv, h_step) y_1 = rk4_mv_core(dydx, x_i, y_i, nv, 0.5*h_step) y_11 = rk4_mv_core(dydx, x_i+0.5*h_step, y_i, nv, 0.5*h_step) #compute error Delta = np.fabs(y_2 - y_11) #if the error is too lage, take smaller step if(Delta.max()/tol > 1.0): #our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #check iteration if(i>imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ", i) #iterate i += 1 #next time, try to take a bigger step #can only take a step thats 2x as big as current step, due to h_new_fac h_new = np. fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step def rk4_mv(dfdx, a, b, y_a, tol): #dfdx is the derivative wrt x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is the tolerane for integrating y #define our starting step xi = a yi = y_a.copy() #an initial step size == make very small h = 1.0e-4 *(b-a) #set a max number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled odes to the #size of y_a nv = len(y_a) #set the initial conditions x = np.full(1,a) y = np.full((1,nv), y_a) #set a flag flag = 1 ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our eq is d^2y/dx^2 = -y #so write #dydx = z #dzdx = -y #we will set y = y[0] #we will set z = y[1] #declare an array, size 2 y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx = -1 y_derivs[1] = -1*y[0] #return an array return y_derivs ###Output _____no_output_____ ###Markdown Def. the 4th order RK method ###Code def rk4_mv_core(dydx, xi, yi, nv, h): #declare k? arrays #h = step size #yi = array #nv = number of variables #each new k depends on the previous k's, K4 depends on k3 to k1 #nv in our case is 2, y and z k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi +0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh, y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh, y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + k3[:] y_derivs = dydx(x_ipo, y_temp) k4[:] = h*y_derivs[:] #advance y by a step h #weighted sum yipo = yi + (k1 + 2*k2+ 2*k3 +k4)/6. return yipo ###Output _____no_output_____ ###Markdown Def an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx, x_i, y_i, nv, h, tol): #define safety scale #used to estimate an error, 1 big step, 2 little steps #if error is bigger than tol, reduce size of step #if error is smaller than tol, increase size of step, limit in #increase of step size, half of previous step SAFETY = 0.9 H_NEW_FAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv, 2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate our error by taking one step of size h #vs. two steps of size h/2 y_2 = rk4_mv_core(dydx, x_i, y_i, nv, h_step) y_1 = rk4_mv_core(dydx, x_i, y_i, nv, 0.5*h_step) y_11 = rk4_mv_core(dydx, x_i+0.5*h_step, y_1, nv, 0.5*h_step) #compute error, just an estimate Delta = np.fabs(y_2 - y_11) #if the error is too lage, take smaller step if(Delta.max()/tol > 1.0): #our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #check iteration if(i>imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ", i) #iterate i += 1 #next time, try to take a bigger step #can only take a step thats 2x as big as current step, due to h_new_fac h_new = np. fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step def rk4_mv(dydx, a, b, y_a, tol): #dfdx is the derivative wrt x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is the tolerane for integrating y #define our starting step xi = a yi = y_a.copy() #an initial step size == make very small h = 1.0e-4 *(b-a) #set a max number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled odes to the #size of y_a nv = len(y_a) #set the initial conditions #single element array with a as that value x = np.full(1,a) y = np.full((1,nv), y_a) #set a flag, loop until we reach right side #number of steps unkown flag = 1 #loop until we reach the right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx, xi, yi, nv, h, tol) #update the step h = h_new #prevent an overshoot if(xi+h_step>b): #take a smaller step h = b-xi #recalculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx, xi, yi, nv, h, tol) #break flag = 0 #update values xi += h_step yi[:] = yi_new[:] #add the step to the arrays x =np.append(x, xi) #give it an array and number it'll append xi, and overwrite x with the new array y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:] = y #x-1 because we added an extra element to x, but y and x have to be the same length y_new[-1,:] = yi[:] del y #erases last y matrix y = y_new #prevent too many iterations if(i>=imax): print("Maximum iterations reached.") raise StopIteration("Iteration number= ", i) #iterate i += 1 #output some information #3 means a field with 3 elements, 3 digits #d means integer # \t means print tab followed by x = # %9.8 means print out 9 total digits where 8 are on the RHS of decimal s = "i = %3d\tx = %9.8f\th = %9.8f\tb=%9.8f" % (i, xi, h_step, b) print(s) #break if new xi is == b #ends integration if(xi == b): flag = 0 #return answer return x,y ###Output _____no_output_____ ###Markdown Perform the integration a = 0.0b = 2.0 *np.piy_0 = np.zeros(2)y_0 [0] = 0.0y_0 [1] = 1.0nv = 2tolerance = 1.0e-6perform the integrationx, y = rk4_mv(dydx, a, b, y_0, tolerance) Plot the result ###Code plt.plot(x,y[:,0], 'o', label = 'y(x)') plt.plot(x, y[:,1], 'o', label='dydx(x)') xx = np.linspace(0, 2.0*np.pi, 1000) plt.plot(xx, np.sin(xx), label='sin(x)') plt.plot(xx, np.cos(xx), label= 'cos(x)') plt.xlabel('x') plt.ylabel('y, dy/dx') plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Plot error ###Code sine = np.sin(x) cosine = np.cos(x) y_error = (y[:,0]-sine) dydx_error = (y[:,1]-cosine) plt.plot(x, y_error, label="y(x) Error") plt.plot(x, dydx_error, label="y(x) Error") plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled variables to integrate ###Code def dydx(x,y): #set the derivatives #our equation is d**2/dx**2 = -y #so we can write #dy/dx = x #dz/dx = -y #we will set y=y[0] #and z=y[1] #declare an array y_derivs = np.zeros(2) #set dydx = z y_derivs[1] = -1*y[0] #return the derivatives return y_derivs ###Output _____no_output_____ ###Markdown Define 4th order RK scheme for multiple variables ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #dydx = function of derivatives #xi = val of x at step i #yi = array of vars at step i #nv = number of vars #h = step size #declare k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #half step x_ipoh = x_i + 0.5*h #define x at 1 step x_ipo = x_i + h #declare a temp array y_temp = np.zeros(nv) #advance y[] by a step h y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] #k2 vals #NXT CLASS #k_1 = h*g(x_i,f_i) #k_2 = h*g(x_ipoh, f_i + 0.5*k_1) #k_3 = h*g(x_ipoh, f_i + 0.5*k_2) #k_4 = h*g(x_ipo, f_i + k_3) f_ipo = f_i + (k_1 + 2*k_2 + 2*k_3 + k_4)/6 return f_ipo ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import mathplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivativs to integrate ###Code def dydx(x,y): # set the derivatives # our equation is d^2x/dx^2 = -y # so we can write # dydx = z # dzdx = -y # we will set y = y[0] (the function y) # we will set z = y[1] (the function x) # declare an array y_derivs = np.zeros(2) # array of functions # set dydx = z y_derivs[0] = y[1] # dydx we put in y_derivs[1] # set dydx = -y y_derivs[1] = -1*y[0] # here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code # now we'll operate on all the elements at the same time def rk4+mv_core(dydx,xi,yi,nv,h): #dydx is function we just wrote, # xi is value of x at step i # xi changes by value of h # nv is number of variables # yi is the array # declare k? arrays k1 = np.zeros(nv) # each k is array of two emelents one that k2 = np.zeros(nv) # corresponds to y and one that corresponds to z k3 = np.zeros(nv) k4 = np.zeros(nv) # define x at 1/2 step x_ipoh = xi + 0.5*h # define x at 1 step x_ipo = xi + h # declare a temp y array, will contain estimated values of y and z # ad different points of steps y_temp = np.zeros(nv) # get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] # get k2 values y_temp[:] = yi[:] + 0.5*k1[:] # initial values on left side + .5 of k1, we get to midpoint y_derivs = dydx(x_ipoh,y_temp) # estimate of y and z at half step and k2[:] = h*y_derivs[:] # recompute derivatives at half step # get k3 values y_temp[:] = yi[:] + 0.5*k2[:] # different step, with different derivative y_derivs = dydx(x_ipoh,y_temp) # retaking half step and recomputing derivatives k3[:] = h*y_derivs[:] # # get k4 values y_temp[:] = yi[:] + k3[:] # taking full step for k4 using recomputed y_derivs = dydx(x_ipoh,y_temp) # derivatives from above k3[:] = h*y_derivs[:] # advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code # dydx functions that take drivatives # x_i value of x at step i # y_i values of items in array at i # h is step size # tol tolerance # this function def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 # set a maximum number of iterations imax = 1000 # set an iteration variable i = 0 # create an error Delta = np.full(nv,2*tol) # array that contains error estimates # remember the step h_step = h # adjust steps until error is in our tolerance while(Delta.max()/tol > 1.0): # estimate our error by taking one step of size h # vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) # copmaring to one full step y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) # copmaring to two steps of h/2 y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) # using y_1 estimate here which is # estimate for y and z from previous step # that used half step # compute an error Delta = np.fabs(y_2 - y_11) # if the error is too large, take a smaller step # Delta.max() is the biggest element in Delta # if this value is > 1 after divided by tol, our step was too big if(Delta.max()/tol > 1.0): # our errors is too large, decrease the step # multiplying by SAFETY to get smaller step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) # check iteration if(i >= imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ", i) # iterate i+=1 # next time, try to take a bigger step, so estimate new h step with below h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*step*H_NEW_FAC) # return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code # this function, you pass in the derivatives you want to evolve # the starting place, the ending place, and tolerance # it will call the two functions we just wrote # we don't know how many steps we'll take so we have initial conditions # we just provide some tolerance and want for this wrapper to try to stay # within the tolerance def rk4_mv(dydx,a,b,y_a,tol): # dydx is the derivate wrt x # a is the lower bound # b is the upper bound # y_a are the boundary conditions # tol is the tolerance for integrating y # define our starting step xi = a yi = y_a.copy() # an initial step size == make very small h = 1.0e-4 * (b-a) # set a minimum number of iterations since we don't know how # many iterations we'll need to take imax = 10000 # set an iteration variable i = 0 # set the number of coupled odes to the size of y_a nv = len(y_a) # set the initial conditions x = np.full(1,a) # array y = np.full((1,nv),y_a) # array with all values of x at all nv steps, # and y and z at values of x # set a flag flag = 1 # loop until we reach the right side while(flag): # calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) # update the step h = h_new # prevent an overshoot, as we integrate along x, when we get close to # edge, we don't want to cross it, so we retake step to get to the edge if(xi+h_step>b): # take a smaller step h = b-xi # recalculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) # break flag = 0 # update values in the arrays xi += h_step yi[:] = yi_new[:] # arrays # add the step to the arrays x = npappend(x,xi) y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:] = y y_new[-1,:] = yi[:] del y y = y_new # prevent too many iterations if(i>=imax): print("Maximum iterations reached.") raise StopIteration("Iteration number = ", i) #iterate i += 1 # output some information s = "i = %sd" ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables. ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our equation is d^2y/dx^2 = -y #so we can write #dydx = z #dzdx = -y #we will set y = y[0] #we will set z = y[1] #declare an array y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx = -y y_derivs[1] = -1*y[0] #here we have to return an array return y_derivs def rk4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi + 0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + 0.5*k3[:] y_derivs = dydx(x_ipo,y_temp) k4[:] = h*y_derivs[:] #advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6 return yipo def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create a error Delta = np.full(nv,2*tol) #remember the step h_step = h #adjur step while(Delta.max()/tol > 1.0): #estimate our error by taking one step of size h #vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,0.5*h_step) #compute an error Delta = np.fabs(y_2 - y_11) #if the error is too large take a smaller step if(Delta.max()/tol > 1.0): #our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iteration in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) #iterate i+=1 #next time,try to take a bigger step h_new = npfmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FACE) #return the answer, a new step, and the step actually took return y_2, h_new, h_step def rk4_mv(dfdx,a,b,y_a,tol): #dydx is the derivative wrt x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is the tolerance for integrating y #define our starting step xi = a yi = y_a.copy #an initial step size == make very small! h = 1.04e-4 * (b-a) #set a maximum number of iterations imax=10000 #set an iteration variable i=0 #set the number of coupled odes to the #size of y_a nv = len(y_a) #set the intial conditions x = np.full(1,a) y = np.full((1,nv),y_a) #set a flag flag = 1 #loop until we reach the right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #update the step h = h_new #prevent an overshoot if(xi+h_step>b): #take a smaller step h = b-xi #recalculate y_i+1 y_new,h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag = 0 #update values xi+= h_step yi[:] = yi_new[:] #add the stp to the arrays x = np.append(x,xi) y_new = np.zeros((lens(x),nv)) y_new[0:len(x)-1,:] = y y_new[-1,:] = yi[:] del y y = y_new #prevent too many iterations if(i>=imax): print("Maximum iterations reached.") raise StopIteration("Iteration number = ",i) #iterate i+=1 #output some information s = "i = %3d\tx = %9.8f\tb=%9.8f" %(i,xi, h_step, b) print(s) #break if new xi is == b if(xi==b): flag = 0 #return the answer return x,y a = 0.0 b = 2.0 * np.pi y_0 = np.zeros(2) y_0[0] = 0.0 y_0[1] = 1.0 nv = 2 tolerance = 1.0e-6 #perform the integration x,y = rk4_mv(dydx,a,b,y_0,tolerance) ###Output _____no_output_____ ###Markdown create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown define coupled deribatives to integrate ###Code def dydx(x,y): #set derivatives, equation is d^2y/dx^2=-y #dydx=z & dzdx=-y #set y=y[0] and z=y[1] #declare array y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx=-y y_derivs[1]=-1*y[0] #here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown define 4th order rk method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k?[wild card gives digits btwn 0-9] arrays k1=np.zeros(nv) k2=np.zeros(nv) k3=np.zeros(nv) k4=np.zeros(nv) #define x at 1/2 step x_ipoh = xi+0.5*h #define x at 1 step x_ipo = xi+h #declare a tempy array y_temp= np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:]=h*y_derivs[:] #get k2 values y_temp[:]=yi[:]+0.5*k1[:] y_derivs= dydx(x_ipoh,y_temp) k2[:]=h*y_derivs[:] #k3 values y_temp[:]=yi[:]+0.5*k2[:] y_derivs= dydx(x_ipoh,y_temp) k3[:]=h*y_derivs[:] #k4 values y_temp[:]=yi[:]+k3[:] y_derivs= dydx(x_ipo,y_temp) k4[:]=h*y_derivs[:] #advance y by step h yipo=yi+(k1+2*k2+2*k3+k4)/6 return yipo ###Output _____no_output_____ ###Markdown define adaptive step size driver for rk4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set maximum number of iterations imax= 10000 #set an iteration variable i=0 #create an error Delta= np.full(nv,2*tol) #remember the step h_step=h #adjust step while(Delta.max()/tol>1.0): #estimate error by taking 1 h step vs. 2 h/2 steps y_2=rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1=rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11=rky_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute error Delta=np.fabs(y_2-y_11) #if error is too large take smaller step if(Delta.max()/tol>1.0): #error to large-> decrease step h_step *= SAFETY*(Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("ending after i = ",i) #iterate i+=1 #next time, try to take a bigger step h_new= np.fmin(h_step*(Delta.max()/tol)**(-0.9),h_step*H_NEW_FAC) #reurn the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown define wrapper 4 rk4 ###Code def rk4_mv(dydx,a,b,y_a,tol): #dydx is the derivative wrt x #a is lower bound/ b is upper bound #y_a is boundary conditions #tol: tolerance for int y #define starting step xi = a yi = y_a.copy() #an initial step size == make very small h= 1.0e-4*(b-a) imax=10000 i=0 #set # of coupled ode's to size y_a nv = len(y_a) #set initial conditions x = np.full(l,a) y = np.full((1,nv),y_a) #set a flag flag=1 #loop til we reach right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #update new step h = h_new #prevent overshoot if(xi+h_step>b): #take smaller step h = b-xi #recalc y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag = 0 ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set our derivatives #our equation is d^2y/dx^2=-y #so we can write #dydx=z #dzdx=-y #we will set y=y[0] #we will set z=y[1] #declare an array y_derivs=np.zeros(2) #set dydx=z y_derivs[0] = y[1] #set dzdx=-y y_derivs[1] = -1*y[0] #here we have to return the array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays k1=np.zeros(nv) k2=np.zeros(nv) k3=np.zeros(nv) k4=np.zeros(nv) #define x at 1/2 step x_ipoh=xi+0.5*h #define x at 1 step x_pio=xi+h #declare a temp y array y_temp=np.zeros(nv) #get k1 values y_derivs=dydx(xi,yi) k1[:]=h*y_derivs[:] #det k2 values y_temp[:]=yi[:]+0.5*k1[:] y_derivs=dydx(x_ipoh,y_temp) k2[:]=h*y_derivs[:] #det k3 values y_temp[:]=yi[:]+0.5*k2[:] y_derivs=dydx(x_ipoh,y_temp) k3[:]=h*y_derivs[:] #det k4 values y_temp[:]=yi[:]+k3[:] y_derivs=dydx(x_ipoh,y_temp) k4[:]=h*y_derivs[:] #advance y by a step h yipo=yi+(k1+2*k2+2*k3+k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY=0.9 H_NEW_FAC=2.0 #set a maximum number of iterations imax=10000 #set an iteration variable i=0 #create an error Delta=np.full(nv,2*tol) #remember the step h_step=h #adjust step while(Delta.max()/tol>1.0): #estimate our error by taking one step of size h vs. two stepsof size h/2 y_2=rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1=rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11=rk4_mv_core(dydx,x_i+0.5*h_step,y_i,nv,0.5*h_step) #compute the error Delta=np.fabs(y_2-y_11) #if the error is too large, take a smaller step if(Delta.max()/tol>1.0): #our error is too large, decrease the step h_step*=SAFETY*(Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i=",i) #iterate i+=1 #next time, try to take a bigger step h_new=np.fmin(h_step*(Delta.max()/tol)**(-0.9),h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dfdx,a,b,y_a,tol): #dfdx is the derivative wrt x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is the tolerance for integrating y #define our starting step xi=a yi=y_a.copy() #an initial step size == make very small! h=1.0e-4*(b-a) #set a max number of iterations imax=10000 #set an iteration variable i=0 #set the number of coupled odes to the size of y_a nv=len(y_a) #set the initial conditions x=np.full(1,a) y=np.full((1,nv),y_a) #set a flag flag=1 #loop until we reach the right side while(flag): yi_new, h_new, h_step=rk4_mv_ad(dydx,xi,yi,nv,h,tol) #calculate y=i+1 h=h_new #update the step if(xi+h_step>b): #take a smaller step h=b-xi #recalculate y_i+1 yi_new,h_new,h_step=rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag=0 #update values xi+=h_step yi[:]=yi_new[:] #add the step to the arrays x=np.append(x,xi) y_new=np.zeros((len(x),nv)) y_new[0:len(x)-1,:]=y y_new[-1,:]=yi[:] del y y=y_new #prevent too many iteraions if(i>=imax): print ("Maxiomum iterations reached") raise StopIteration("Iteration number=",i) #iterate i+=1 #output some information s="i=%3d\tx=%9.8f\th=%9.8f\tb=%9.8f"%(i,xi,h_step,b) print(s) #break if new xi is == b if(xi==b): flag=0 return x,y ###Output _____no_output_____ ###Markdown Perform the integration ###Code a=0.0 b=2.0*np.pi y_0=np.zeros(2) y_0[0]=0.0 y_0[1]=1.0 nv=2 tolerance=1.0e-6 #perform the integration x,y=rk4_mv(dydx,a,b,y_0,tolerance) ###Output _____no_output_____ ###Markdown Plot the results ###Code plt.plot(x,y[:,0],'o',label='y(x)') plt.plot(x,y[:,1],'o',label='dydx(x)') xx=np.linspace(0,2.0*np.pi,1000) plt.plot(xx,np.sin(xx),label='sin(x)') plt.plot(xx,np.cos(xx),label='cos(x)') plt.xlabel('x') plt.ylabel('y,dy/dx') plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our equation is d^2y/dx^2 = -y #so we can write #dydx = z #dzdx = -y #we will set y = y[0] #we will set z = y[1] #declare an array y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx = -y y_derivs[1] = -1*y[0] #here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi +0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + k3[:] y_derivs = dydx(x_ipo,y_temp) k4[:] = h*y_derivs[:] #advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6 return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv,2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate our error by taking one step of size h #vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute an error Delta = np.fabs(y_2 - y_11) #if the error is too large, take a smaller step if(Delta.max()/tol > 1.0): #our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) #iterate i+=1 #next time, try to take a bigger step h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dydx,a,b,y_a,tol): #dydx is the derivative with respect to x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is the tolerance for integrating y #define our starting step xi = a yi = y_a.copy() #an initial step size == make very small! h = 1.0e-4 * (b-a) #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled odes to the #size of y_a nv = len(y_a) #set the initial conditions x = np.full(1,a) y = np.full((1,nv),y_a) #set a flag flag = 1 #loop until we reach the right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #update the step h = h_new #prevent an overshoot if(xi+h_step>b): #take a smaller step h = b-xi #recalculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag = 0 #update values xi += h_step yi[:] = yi_new[:] #add the step to the arrays x = np.append(x,xi) y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:] = y y_new[-1,:] = yi[:] del y y = y_new #prevent too many iterations if(i>imax): print("Maximum iterations reached.") raise StopIteration("Iteration number = ",i) #iterate i += 1 #output some information s = "i = %3d\tx = %9.8f\th = %9.8f\tb = %9.8f" % (i, xi, h_step, b) print(s) #break if new xi is == b if(xi==b): flag = 0 #return the answer return x,y ###Output _____no_output_____ ###Markdown Perform the integration ###Code a = 0.0 b = 2.0 * np.pi y_0 = np.zeros(2) y_0[0] = 0.0 y_0[1] = 1.0 nv = 2 tolerance = 1.0e-6 #perform the integration x,y = rk4_mv(dydx,a,b,y_0,tolerance) ###Output _____no_output_____ ###Markdown Plot the result ###Code plt.plot(x,y[:,0],'o',label='y(x)') plt.plot(x,y[:,1],'o',label='dydx(x)') xx = np.linspace(0,2.0*np.pi,1000) plt.plot(xx,np.sin(xx),label='sin(x)') plt.plot(xx,np.cos(xx),label='cos(x)') plt.xlabel('x') plt.ylabel('y, dy/dx') plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Plot the error(errors actually exceed the tolerance) ###Code sine = np.sin(x) cosine = np.cos(x) y_error = (y[:,0]-sine) dydx_error = (y[:,1]-cosine) plt.plot(x, y_error, label="y(x) Error") plt.plot(x, dydx_error, label="dydx(x) Error") plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our equation is d^2y/dx^2 = -y #so we can write #dydx = z #dzdx = -y #we will set y = y[0] #we will set z = y[1] #declare an array y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx = -y y_derivs[1] = -1*y[0] #here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi +0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + k3[:] y_derivs = dydx(x_ipo,y_temp) k4[:] = h*y_derivs[:] #advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6 return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv,2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate our error by taking one step of size h #vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute an error Delta = np.fabs(y_2 - y_11) #if the error is too large, take a smaller step if(Delta.max()/tol > 1.0): #our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) #iterate i+=1 #next time, try to take a bigger step h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dydx,a,b,y_a,tol): #dydx is the derivative with respect to x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is the tolerance for integrating y #define our starting step xi = a yi = y_a.copy() #an initial step size == make very small! h = 1.0e-4 * (b-a) #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled odes to the #size of y_a nv = len(y_a) #set the initial conditions x = np.full(1,a) y = np.full((1,nv),y_a) ###Output _____no_output_____ ###Markdown 4th order runge kutta with adapted step size- small time step to improve accuracy- integration more efficient (partition) a simple coupled ODEd^2y/dx^2 = -yfor all x the second derivative of y is = -y (sin or cos curve)- specify boundary conditions to determine which- y(0) = 0 and dy/dx (x = 0) = 1 --> sin(x)rewrte as coupled ODEs to solve numerically (slide 8) ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np #define coupled derivatives to integrate def dydx(x,y): #y is a 2D array #equation is d^2y/dx^2 = -y #so: dydx = z, dz/dx = -y #set y = y[0], z = y[1] #declare array y_derivs = np.zeros(2) y_derivs[0] = y[1] y_derivs[1] = -1*y[0] return y_derivs #can't evolve one without evolving the other, dependent variables #define 4th order RK method def rk_mv_core(dydx,xi,yi,nv,h): #nv = number of variables # h = width #declare k arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at half step x_ipoh = xi + 0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #find k1 values y_derivs = dydx(xi,yi) #array of y derivatives k1[:] = h*y_derivs[:] #taking diff euler steps for derivs #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + k3[:] k4[:] = h*y_derivs[:] #advance y by step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. #this is an array return yipo ###Output _____no_output_____ ###Markdown before, we took a single stepnow we take two different versions of the same equation for the stepcan be used as a check for the previous techniquethe difference should be within tolerance to be valid (if the steps are too big and outside of tolerance then they need to be smaller bebeh steps) ###Code #define adaptive step size for RK4 def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set max number of iterations imax = 10000 #set iteration variable, num of iterations taken i = 0 #create an error (array) Delta = np.full(nv,2*tol) #twice the tol, if it exceeds tol #steps need to be smoler #remember step h_step = h #adjust step while(Delta.max()/tol > 1.0): #while loop #estimate error by taking one step of size h vs two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,0.5*h_step) #compute error Delta = np.fabs(y_2 - y_1) #if the error is too large if(Delta.max()/tol > 1.0): h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #decreases h step size #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) #iterate i+=1 #leave while loop, to try bigger steps h_new = np.fmin(h_step * (Delta.amx()/tol)**(-0.9), h_step*H_NEW_FAC) #return the answer, the new step, and the step actually taken return y_2, h_new, h_step #wrapper function def rk4_mv(dydx,a,b,y_a,tol): #dydx = deriv wrt x #a = lower bound #b = upper bound #y_a = boundary conditions (0,1) #tol = tolerance for integrating y #define starting step xi = a yi = y_a.copy() #initial step size (smallllll) h = 1.0e-4 * (b-a) #max number of iterations imax = 10000 #set iteration variable i = 0 #set the number of coupled ODEs to the size of y_a nv = len(y-a) #set initial conditions x = np.sull(1,a) y = np.full((1,nv),y_a) #2 dimensional array #set flag flag = 1 #loop until we reach the right side while(flag): ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables. ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown This cell and the one following it are not a requirement, it is only for looks ###Code #use colors.subclass(or command; e.g bold).colorname to print #examples: print(colors.bold, colors.fg.blue, "this will be bold and blue") #everything after this will have that format until the following command #is given: print(colors.reset, "now, this text will be normal") class colors: reset='\033[0m' #reset all colors with colors.reset bold='\033[01m' underline='\033[04m' strikethrough='\033[09m' reverse='\033[07m' class fg: #foreground subclass black='\033[30m' red='\033[31m' green='\033[32m' orange='\033[33m' blue='\033[34m' purple='\033[35m' cyan='\033[36m' lightgrey='\033[37m' darkgrey='\033[90m' lightred='\033[91m' lightgreen='\033[92m' yellow='\033[93m' lightblue='\033[94m' pink='\033[95m' lightcyan='\033[96m' class bg: #background subclass black='\033[40m' red='\033[41m' green='\033[42m' orange='\033[43m' blue='\033[44m' purple='\033[45m' cyan='\033[46m' lightgrey='\033[47m' ###Output _____no_output_____ ###Markdown The above code was provided by https://www.geeksforgeeks.org/print-colors-python-terminal/ Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our equation is d^2y/dx^2 = -y #so we can write #dydx = z #dzdx = -y #we will set y = y[0] #we will set z = y[1] #declare an array y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx = -y y_derivs[1] = -1*y[0] #here we have to return an array with dydx return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays; (? is a wildcard, used for k1,k2,...,kn) k1=np.zeros(nv) k2=np.zeros(nv) k3=np.zeros(nv) k4=np.zeros(nv) #define x at 1/2 step x_ipoh = xi + 0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + k3[:] y_derivs = dydx(x_ipo,y_temp) k4[:] = h*y_derivs[:] #advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set a max number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv,2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate our error by taking one step of size h #vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute an error Delta = np.fabs(y_2 - y_11) #if the error is too large, take a smaller step if(Delta.max()/tol > 1.0): #our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) #iterate i+=1 #next time, try to take a bigger step h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dydx,a,b,y_a,tol): #dfdx is derivative w.r.t. x #a is lower bound #b is upper bound #y_a are boundary conditions #tol is tolerance for integrating y #define our starting step xi = a yi = y_a.copy() #an initial step size == make very small h = 1.0e-4 * (b-a) #set max number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled ODEs to the size of y_a nv = len(y_a) #set the initial conditions x = np.full(1,a) y = np.full((1,nv),y_a) #set a flag flag = 1 #loop until we reach the right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #update the step h = h_new #prevent an overshoot if(xi+h_step>b): #take a smaller step h = b-xi #recalculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag = 0 #update values xi += h_step yi[:] = yi_new[:] #add the step to the arrays x = np.append(x,xi) y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:] = y y_new[-1,:] = yi[:] del y y = y_new #prevent too many iterations if(i>=imax): print(colors.bold, colors.fg.red, colors.bg.black, "Maximum iterations reached.", colors.reset) raise StopIteration("Iteration number = ",i) #iterate i += 1 #output some information s = "i =%3d\tx = %9.8f\th = %9.8f\tb=%9.8f" % (i,xi,h_step,b) print(s) #break if new xi is == b if(xi==b): flag = 0 #return the answer print(colors.bold, colors.fg.purple, "Iteration #", i, colors.reset) return x,y ###Output _____no_output_____ ###Markdown Perform the integration ###Code a = 0.0 b = 2.0 * np.pi y_0 = np.zeros(2) y_0[0] = 0.0 y_0[1] = 1.0 nv = 2 tolerance = 1.0e-6 #perform the integration x,y = rk4_mv(dydx,a,b,y_0,tolerance) ###Output i = 1 x = 0.00000186 h = 0.00000186 b=6.28318531 i = 2 x = 0.00000384 h = 0.00000199 b=6.28318531 i = 3 x = 0.00000584 h = 0.00000200 b=6.28318531 i = 4 x = 0.00000784 h = 0.00000200 b=6.28318531 i = 5 x = 0.00000984 h = 0.00000200 b=6.28318531 i = 6 x = 0.00001184 h = 0.00000200 b=6.28318531 i = 7 x = 0.00001384 h = 0.00000200 b=6.28318531 i = 8 x = 0.00001584 h = 0.00000200 b=6.28318531 i = 9 x = 0.00001784 h = 0.00000200 b=6.28318531 i = 10 x = 0.00001984 h = 0.00000200 b=6.28318531 i = 11 x = 0.00002184 h = 0.00000200 b=6.28318531 i = 12 x = 0.00002384 h = 0.00000200 b=6.28318531 i = 13 x = 0.00002584 h = 0.00000200 b=6.28318531 i = 14 x = 0.00002784 h = 0.00000200 b=6.28318531 i = 15 x = 0.00002984 h = 0.00000200 b=6.28318531 i = 16 x = 0.00003184 h = 0.00000200 b=6.28318531 i = 17 x = 0.00003384 h = 0.00000200 b=6.28318531 i = 18 x = 0.00003584 h = 0.00000200 b=6.28318531 i = 19 x = 0.00003784 h = 0.00000200 b=6.28318531 i = 20 x = 0.00003984 h = 0.00000200 b=6.28318531 i = 21 x = 0.00004184 h = 0.00000200 b=6.28318531 i = 22 x = 0.00004384 h = 0.00000200 b=6.28318531 i = 23 x = 0.00004584 h = 0.00000200 b=6.28318531 i = 24 x = 0.00004784 h = 0.00000200 b=6.28318531 i = 25 x = 0.00004984 h = 0.00000200 b=6.28318531 i = 26 x = 0.00005184 h = 0.00000200 b=6.28318531 i = 27 x = 0.00005384 h = 0.00000200 b=6.28318531 i = 28 x = 0.00005584 h = 0.00000200 b=6.28318531 i = 29 x = 0.00005784 h = 0.00000200 b=6.28318531 i = 30 x = 0.00005984 h = 0.00000200 b=6.28318531 i = 31 x = 0.00006184 h = 0.00000200 b=6.28318531 i = 32 x = 0.00006384 h = 0.00000200 b=6.28318531 i = 33 x = 0.00006584 h = 0.00000200 b=6.28318531 i = 34 x = 0.00006784 h = 0.00000200 b=6.28318531 i = 35 x = 0.00006984 h = 0.00000200 b=6.28318531 i = 36 x = 0.00007184 h = 0.00000200 b=6.28318531 i = 37 x = 0.00007384 h = 0.00000200 b=6.28318531 i = 38 x = 0.00007584 h = 0.00000200 b=6.28318531 i = 39 x = 0.00007784 h = 0.00000200 b=6.28318531 i = 40 x = 0.00007984 h = 0.00000200 b=6.28318531 i = 41 x = 0.00008184 h = 0.00000200 b=6.28318531 i = 42 x = 0.00008384 h = 0.00000200 b=6.28318531 i = 43 x = 0.00008584 h = 0.00000200 b=6.28318531 i = 44 x = 0.00008784 h = 0.00000200 b=6.28318531 i = 45 x = 0.00008984 h = 0.00000200 b=6.28318531 i = 46 x = 0.00009184 h = 0.00000200 b=6.28318531 i = 47 x = 0.00009384 h = 0.00000200 b=6.28318531 i = 48 x = 0.00009584 h = 0.00000200 b=6.28318531 i = 49 x = 0.00009784 h = 0.00000200 b=6.28318531 i = 50 x = 0.00009984 h = 0.00000200 b=6.28318531 i = 51 x = 0.00010184 h = 0.00000200 b=6.28318531 i = 52 x = 0.00010384 h = 0.00000200 b=6.28318531 i = 53 x = 0.00010584 h = 0.00000200 b=6.28318531 i = 54 x = 0.00010784 h = 0.00000200 b=6.28318531 i = 55 x = 0.00010984 h = 0.00000200 b=6.28318531 i = 56 x = 0.00011184 h = 0.00000200 b=6.28318531 i = 57 x = 0.00011384 h = 0.00000200 b=6.28318531 i = 58 x = 0.00011584 h = 0.00000200 b=6.28318531 i = 59 x = 0.00011784 h = 0.00000200 b=6.28318531 i = 60 x = 0.00011984 h = 0.00000200 b=6.28318531 i = 61 x = 0.00012184 h = 0.00000200 b=6.28318531 i = 62 x = 0.00012384 h = 0.00000200 b=6.28318531 i = 63 x = 0.00012584 h = 0.00000200 b=6.28318531 i = 64 x = 0.00012784 h = 0.00000200 b=6.28318531 i = 65 x = 0.00012984 h = 0.00000200 b=6.28318531 i = 66 x = 0.00013184 h = 0.00000200 b=6.28318531 i = 67 x = 0.00013384 h = 0.00000200 b=6.28318531 i = 68 x = 0.00013584 h = 0.00000200 b=6.28318531 i = 69 x = 0.00013784 h = 0.00000200 b=6.28318531 i = 70 x = 0.00013984 h = 0.00000200 b=6.28318531 i = 71 x = 0.00014184 h = 0.00000200 b=6.28318531 i = 72 x = 0.00014384 h = 0.00000200 b=6.28318531 i = 73 x = 0.00014584 h = 0.00000200 b=6.28318531 i = 74 x = 0.00014784 h = 0.00000200 b=6.28318531 i = 75 x = 0.00014984 h = 0.00000200 b=6.28318531 i = 76 x = 0.00015184 h = 0.00000200 b=6.28318531 i = 77 x = 0.00015384 h = 0.00000200 b=6.28318531 i = 78 x = 0.00015584 h = 0.00000200 b=6.28318531 i = 79 x = 0.00015784 h = 0.00000200 b=6.28318531 i = 80 x = 0.00015984 h = 0.00000200 b=6.28318531 i = 81 x = 0.00016184 h = 0.00000200 b=6.28318531 i = 82 x = 0.00016384 h = 0.00000200 b=6.28318531 i = 83 x = 0.00016584 h = 0.00000200 b=6.28318531 i = 84 x = 0.00016784 h = 0.00000200 b=6.28318531 i = 85 x = 0.00016984 h = 0.00000200 b=6.28318531 i = 86 x = 0.00017184 h = 0.00000200 b=6.28318531 i = 87 x = 0.00017384 h = 0.00000200 b=6.28318531 i = 88 x = 0.00017584 h = 0.00000200 b=6.28318531 i = 89 x = 0.00017784 h = 0.00000200 b=6.28318531 i = 90 x = 0.00017984 h = 0.00000200 b=6.28318531 i = 91 x = 0.00018184 h = 0.00000200 b=6.28318531 i = 92 x = 0.00018384 h = 0.00000200 b=6.28318531 i = 93 x = 0.00018584 h = 0.00000200 b=6.28318531 i = 94 x = 0.00018784 h = 0.00000200 b=6.28318531 i = 95 x = 0.00018984 h = 0.00000200 b=6.28318531 i = 96 x = 0.00019184 h = 0.00000200 b=6.28318531 i = 97 x = 0.00019384 h = 0.00000200 b=6.28318531 i = 98 x = 0.00019584 h = 0.00000200 b=6.28318531 i = 99 x = 0.00019784 h = 0.00000200 b=6.28318531 i =100 x = 0.00019984 h = 0.00000200 b=6.28318531 i =101 x = 0.00020184 h = 0.00000200 b=6.28318531 i =102 x = 0.00020384 h = 0.00000200 b=6.28318531 i =103 x = 0.00020584 h = 0.00000200 b=6.28318531 i =104 x = 0.00020784 h = 0.00000200 b=6.28318531 i =105 x = 0.00020984 h = 0.00000200 b=6.28318531 i =106 x = 0.00021184 h = 0.00000200 b=6.28318531 i =107 x = 0.00021384 h = 0.00000200 b=6.28318531 i =108 x = 0.00021584 h = 0.00000200 b=6.28318531 i =109 x = 0.00021784 h = 0.00000200 b=6.28318531 i =110 x = 0.00021984 h = 0.00000200 b=6.28318531 i =111 x = 0.00022184 h = 0.00000200 b=6.28318531 i =112 x = 0.00022384 h = 0.00000200 b=6.28318531 i =113 x = 0.00022584 h = 0.00000200 b=6.28318531 i =114 x = 0.00022784 h = 0.00000200 b=6.28318531 i =115 x = 0.00022984 h = 0.00000200 b=6.28318531 i =116 x = 0.00023184 h = 0.00000200 b=6.28318531 i =117 x = 0.00023384 h = 0.00000200 b=6.28318531 i =118 x = 0.00023584 h = 0.00000200 b=6.28318531 i =119 x = 0.00023784 h = 0.00000200 b=6.28318531 i =120 x = 0.00023984 h = 0.00000200 b=6.28318531 i =121 x = 0.00024184 h = 0.00000200 b=6.28318531 i =122 x = 0.00024384 h = 0.00000200 b=6.28318531 i =123 x = 0.00024584 h = 0.00000200 b=6.28318531 i =124 x = 0.00024784 h = 0.00000200 b=6.28318531 i =125 x = 0.00024984 h = 0.00000200 b=6.28318531 i =126 x = 0.00025184 h = 0.00000200 b=6.28318531 i =127 x = 0.00025384 h = 0.00000200 b=6.28318531 i =128 x = 0.00025584 h = 0.00000200 b=6.28318531 i =129 x = 0.00025784 h = 0.00000200 b=6.28318531 i =130 x = 0.00025984 h = 0.00000200 b=6.28318531 i =131 x = 0.00026184 h = 0.00000200 b=6.28318531 i =132 x = 0.00026384 h = 0.00000200 b=6.28318531 i =133 x = 0.00026584 h = 0.00000200 b=6.28318531 i =134 x = 0.00026784 h = 0.00000200 b=6.28318531 i =135 x = 0.00026984 h = 0.00000200 b=6.28318531 i =136 x = 0.00027184 h = 0.00000200 b=6.28318531 i =137 x = 0.00027384 h = 0.00000200 b=6.28318531 i =138 x = 0.00027584 h = 0.00000200 b=6.28318531 i =139 x = 0.00027784 h = 0.00000200 b=6.28318531 i =140 x = 0.00027984 h = 0.00000200 b=6.28318531 i =141 x = 0.00028184 h = 0.00000200 b=6.28318531 i =142 x = 0.00028384 h = 0.00000200 b=6.28318531 i =143 x = 0.00028584 h = 0.00000200 b=6.28318531 i =144 x = 0.00028784 h = 0.00000200 b=6.28318531 i =145 x = 0.00028984 h = 0.00000200 b=6.28318531 i =146 x = 0.00029184 h = 0.00000200 b=6.28318531 i =147 x = 0.00029384 h = 0.00000200 b=6.28318531 i =148 x = 0.00029584 h = 0.00000200 b=6.28318531 i =149 x = 0.00029784 h = 0.00000200 b=6.28318531 i =150 x = 0.00029984 h = 0.00000200 b=6.28318531 i =151 x = 0.00030184 h = 0.00000200 b=6.28318531 i =152 x = 0.00030384 h = 0.00000200 b=6.28318531 i =153 x = 0.00030584 h = 0.00000200 b=6.28318531 i =154 x = 0.00030784 h = 0.00000200 b=6.28318531 i =155 x = 0.00030984 h = 0.00000200 b=6.28318531 i =156 x = 0.00031184 h = 0.00000200 b=6.28318531 i =157 x = 0.00031384 h = 0.00000200 b=6.28318531 i =158 x = 0.00031584 h = 0.00000200 b=6.28318531 i =159 x = 0.00031784 h = 0.00000200 b=6.28318531 i =160 x = 0.00031984 h = 0.00000200 b=6.28318531 i =161 x = 0.00032184 h = 0.00000200 b=6.28318531 i =162 x = 0.00032384 h = 0.00000200 b=6.28318531 i =163 x = 0.00032584 h = 0.00000200 b=6.28318531 i =164 x = 0.00032784 h = 0.00000200 b=6.28318531 i =165 x = 0.00032984 h = 0.00000200 b=6.28318531 i =166 x = 0.00033184 h = 0.00000200 b=6.28318531 i =167 x = 0.00033384 h = 0.00000200 b=6.28318531 i =168 x = 0.00033584 h = 0.00000200 b=6.28318531 i =169 x = 0.00033784 h = 0.00000200 b=6.28318531 i =170 x = 0.00033984 h = 0.00000200 b=6.28318531 i =171 x = 0.00034184 h = 0.00000200 b=6.28318531 i =172 x = 0.00034384 h = 0.00000200 b=6.28318531 i =173 x = 0.00034584 h = 0.00000200 b=6.28318531 i =174 x = 0.00034784 h = 0.00000200 b=6.28318531 i =175 x = 0.00034984 h = 0.00000200 b=6.28318531 i =176 x = 0.00035184 h = 0.00000200 b=6.28318531 i =177 x = 0.00035384 h = 0.00000200 b=6.28318531 i =178 x = 0.00035584 h = 0.00000200 b=6.28318531 i =179 x = 0.00035784 h = 0.00000200 b=6.28318531 i =180 x = 0.00035984 h = 0.00000200 b=6.28318531 i =181 x = 0.00036184 h = 0.00000200 b=6.28318531 i =182 x = 0.00036384 h = 0.00000200 b=6.28318531 i =183 x = 0.00036584 h = 0.00000200 b=6.28318531 i =184 x = 0.00036784 h = 0.00000200 b=6.28318531 i =185 x = 0.00036984 h = 0.00000200 b=6.28318531 i =186 x = 0.00037184 h = 0.00000200 b=6.28318531 i =187 x = 0.00037384 h = 0.00000200 b=6.28318531 i =188 x = 0.00037584 h = 0.00000200 b=6.28318531 i =189 x = 0.00037784 h = 0.00000200 b=6.28318531 i =190 x = 0.00037984 h = 0.00000200 b=6.28318531 i =191 x = 0.00038184 h = 0.00000200 b=6.28318531 i =192 x = 0.00038384 h = 0.00000200 b=6.28318531 i =193 x = 0.00038584 h = 0.00000200 b=6.28318531 i =194 x = 0.00038784 h = 0.00000200 b=6.28318531 i =195 x = 0.00038984 h = 0.00000200 b=6.28318531 i =196 x = 0.00039184 h = 0.00000200 b=6.28318531 i =197 x = 0.00039384 h = 0.00000200 b=6.28318531 i =198 x = 0.00039584 h = 0.00000200 b=6.28318531 i =199 x = 0.00039784 h = 0.00000200 b=6.28318531 i =200 x = 0.00039984 h = 0.00000200 b=6.28318531 i =201 x = 0.00040184 h = 0.00000200 b=6.28318531 i =202 x = 0.00040384 h = 0.00000200 b=6.28318531 i =203 x = 0.00040584 h = 0.00000200 b=6.28318531 i =204 x = 0.00040784 h = 0.00000200 b=6.28318531 i =205 x = 0.00040984 h = 0.00000200 b=6.28318531 i =206 x = 0.00041184 h = 0.00000200 b=6.28318531 i =207 x = 0.00041384 h = 0.00000200 b=6.28318531 i =208 x = 0.00041584 h = 0.00000200 b=6.28318531 i =209 x = 0.00041784 h = 0.00000200 b=6.28318531 i =210 x = 0.00041984 h = 0.00000200 b=6.28318531 i =211 x = 0.00042184 h = 0.00000200 b=6.28318531 i =212 x = 0.00042384 h = 0.00000200 b=6.28318531 i =213 x = 0.00042584 h = 0.00000200 b=6.28318531 i =214 x = 0.00042784 h = 0.00000200 b=6.28318531 i =215 x = 0.00042984 h = 0.00000200 b=6.28318531 i =216 x = 0.00043184 h = 0.00000200 b=6.28318531 i =217 x = 0.00043384 h = 0.00000200 b=6.28318531 i =218 x = 0.00043584 h = 0.00000200 b=6.28318531 i =219 x = 0.00043784 h = 0.00000200 b=6.28318531 i =220 x = 0.00043984 h = 0.00000200 b=6.28318531 i =221 x = 0.00044184 h = 0.00000200 b=6.28318531 i =222 x = 0.00044384 h = 0.00000200 b=6.28318531 i =223 x = 0.00044584 h = 0.00000200 b=6.28318531 i =224 x = 0.00044784 h = 0.00000200 b=6.28318531 i =225 x = 0.00044984 h = 0.00000200 b=6.28318531 i =226 x = 0.00045184 h = 0.00000200 b=6.28318531 i =227 x = 0.00045384 h = 0.00000200 b=6.28318531 i =228 x = 0.00045584 h = 0.00000200 b=6.28318531 i =229 x = 0.00045784 h = 0.00000200 b=6.28318531 i =230 x = 0.00045984 h = 0.00000200 b=6.28318531 i =231 x = 0.00046184 h = 0.00000200 b=6.28318531 i =232 x = 0.00046384 h = 0.00000200 b=6.28318531 i =233 x = 0.00046584 h = 0.00000200 b=6.28318531 i =234 x = 0.00046784 h = 0.00000200 b=6.28318531 i =235 x = 0.00046984 h = 0.00000200 b=6.28318531 i =236 x = 0.00047184 h = 0.00000200 b=6.28318531 i =237 x = 0.00047384 h = 0.00000200 b=6.28318531 i =238 x = 0.00047584 h = 0.00000200 b=6.28318531 i =239 x = 0.00047784 h = 0.00000200 b=6.28318531 i =240 x = 0.00047984 h = 0.00000200 b=6.28318531 i =241 x = 0.00048184 h = 0.00000200 b=6.28318531 i =242 x = 0.00048384 h = 0.00000200 b=6.28318531 i =243 x = 0.00048584 h = 0.00000200 b=6.28318531 i =244 x = 0.00048784 h = 0.00000200 b=6.28318531 i =245 x = 0.00048984 h = 0.00000200 b=6.28318531 i =246 x = 0.00049184 h = 0.00000200 b=6.28318531 i =247 x = 0.00049384 h = 0.00000200 b=6.28318531 i =248 x = 0.00049584 h = 0.00000200 b=6.28318531 i =249 x = 0.00049784 h = 0.00000200 b=6.28318531 i =250 x = 0.00049984 h = 0.00000200 b=6.28318531 i =251 x = 0.00050184 h = 0.00000200 b=6.28318531 i =252 x = 0.00050384 h = 0.00000200 b=6.28318531 i =253 x = 0.00050584 h = 0.00000200 b=6.28318531 i =254 x = 0.00050784 h = 0.00000200 b=6.28318531 i =255 x = 0.00050984 h = 0.00000200 b=6.28318531 i =256 x = 0.00051184 h = 0.00000200 b=6.28318531 i =257 x = 0.00051384 h = 0.00000200 b=6.28318531 i =258 x = 0.00051584 h = 0.00000200 b=6.28318531 i =259 x = 0.00051784 h = 0.00000200 b=6.28318531 i =260 x = 0.00051984 h = 0.00000200 b=6.28318531 i =261 x = 0.00052184 h = 0.00000200 b=6.28318531 i =262 x = 0.00052384 h = 0.00000200 b=6.28318531 i =263 x = 0.00052584 h = 0.00000200 b=6.28318531 i =264 x = 0.00052784 h = 0.00000200 b=6.28318531 i =265 x = 0.00052984 h = 0.00000200 b=6.28318531 i =266 x = 0.00053184 h = 0.00000200 b=6.28318531 i =267 x = 0.00053384 h = 0.00000200 b=6.28318531 i =268 x = 0.00053584 h = 0.00000200 b=6.28318531 i =269 x = 0.00053784 h = 0.00000200 b=6.28318531 i =270 x = 0.00053984 h = 0.00000200 b=6.28318531 i =271 x = 0.00054184 h = 0.00000200 b=6.28318531 i =272 x = 0.00054384 h = 0.00000200 b=6.28318531 i =273 x = 0.00054584 h = 0.00000200 b=6.28318531 i =274 x = 0.00054784 h = 0.00000200 b=6.28318531 i =275 x = 0.00054984 h = 0.00000200 b=6.28318531 i =276 x = 0.00055184 h = 0.00000200 b=6.28318531 i =277 x = 0.00055384 h = 0.00000200 b=6.28318531 i =278 x = 0.00055584 h = 0.00000200 b=6.28318531 i =279 x = 0.00055784 h = 0.00000200 b=6.28318531 i =280 x = 0.00055984 h = 0.00000200 b=6.28318531 i =281 x = 0.00056184 h = 0.00000200 b=6.28318531 i =282 x = 0.00056384 h = 0.00000200 b=6.28318531 i =283 x = 0.00056584 h = 0.00000200 b=6.28318531 i =284 x = 0.00056784 h = 0.00000200 b=6.28318531 i =285 x = 0.00056984 h = 0.00000200 b=6.28318531 i =286 x = 0.00057184 h = 0.00000200 b=6.28318531 i =287 x = 0.00057384 h = 0.00000200 b=6.28318531 i =288 x = 0.00057584 h = 0.00000200 b=6.28318531 i =289 x = 0.00057784 h = 0.00000200 b=6.28318531 i =290 x = 0.00057984 h = 0.00000200 b=6.28318531 i =291 x = 0.00058184 h = 0.00000200 b=6.28318531 i =292 x = 0.00058384 h = 0.00000200 b=6.28318531 i =293 x = 0.00058584 h = 0.00000200 b=6.28318531 i =294 x = 0.00058784 h = 0.00000200 b=6.28318531 i =295 x = 0.00058984 h = 0.00000200 b=6.28318531 i =296 x = 0.00059184 h = 0.00000200 b=6.28318531 i =297 x = 0.00059384 h = 0.00000200 b=6.28318531 i =298 x = 0.00059584 h = 0.00000200 b=6.28318531 i =299 x = 0.00059784 h = 0.00000200 b=6.28318531 i =300 x = 0.00059984 h = 0.00000200 b=6.28318531 i =301 x = 0.00060184 h = 0.00000200 b=6.28318531 i =302 x = 0.00060384 h = 0.00000200 b=6.28318531 i =303 x = 0.00060584 h = 0.00000200 b=6.28318531 i =304 x = 0.00060784 h = 0.00000200 b=6.28318531 i =305 x = 0.00060984 h = 0.00000200 b=6.28318531 i =306 x = 0.00061184 h = 0.00000200 b=6.28318531 i =307 x = 0.00061384 h = 0.00000200 b=6.28318531 i =308 x = 0.00061584 h = 0.00000200 b=6.28318531 i =309 x = 0.00061784 h = 0.00000200 b=6.28318531 i =310 x = 0.00061984 h = 0.00000200 b=6.28318531 i =311 x = 0.00062184 h = 0.00000200 b=6.28318531 i =312 x = 0.00062384 h = 0.00000200 b=6.28318531 i =313 x = 0.00062584 h = 0.00000200 b=6.28318531 i =314 x = 0.00062784 h = 0.00000200 b=6.28318531 i =315 x = 0.00062984 h = 0.00000200 b=6.28318531 i =316 x = 0.00063184 h = 0.00000200 b=6.28318531 i =317 x = 0.00063384 h = 0.00000200 b=6.28318531 i =318 x = 0.00063584 h = 0.00000200 b=6.28318531 i =319 x = 0.00063784 h = 0.00000200 b=6.28318531 i =320 x = 0.00063984 h = 0.00000200 b=6.28318531 i =321 x = 0.00064184 h = 0.00000200 b=6.28318531 i =322 x = 0.00064384 h = 0.00000200 b=6.28318531 i =323 x = 0.00064584 h = 0.00000200 b=6.28318531 i =324 x = 0.00064784 h = 0.00000200 b=6.28318531 i =325 x = 0.00064984 h = 0.00000200 b=6.28318531 i =326 x = 0.00065184 h = 0.00000200 b=6.28318531 i =327 x = 0.00065384 h = 0.00000200 b=6.28318531 i =328 x = 0.00065584 h = 0.00000200 b=6.28318531 i =329 x = 0.00065784 h = 0.00000200 b=6.28318531 i =330 x = 0.00065984 h = 0.00000200 b=6.28318531 i =331 x = 0.00066184 h = 0.00000200 b=6.28318531 i =332 x = 0.00066384 h = 0.00000200 b=6.28318531 i =333 x = 0.00066584 h = 0.00000200 b=6.28318531 i =334 x = 0.00066784 h = 0.00000200 b=6.28318531 i =335 x = 0.00066984 h = 0.00000200 b=6.28318531 i =336 x = 0.00067184 h = 0.00000200 b=6.28318531 i =337 x = 0.00067384 h = 0.00000200 b=6.28318531 i =338 x = 0.00067584 h = 0.00000200 b=6.28318531 i =339 x = 0.00067784 h = 0.00000200 b=6.28318531 i =340 x = 0.00067984 h = 0.00000200 b=6.28318531 i =341 x = 0.00068184 h = 0.00000200 b=6.28318531 i =342 x = 0.00068384 h = 0.00000200 b=6.28318531 i =343 x = 0.00068584 h = 0.00000200 b=6.28318531 i =344 x = 0.00068784 h = 0.00000200 b=6.28318531 i =345 x = 0.00068984 h = 0.00000200 b=6.28318531 i =346 x = 0.00069184 h = 0.00000200 b=6.28318531 i =347 x = 0.00069384 h = 0.00000200 b=6.28318531 i =348 x = 0.00069584 h = 0.00000200 b=6.28318531 i =349 x = 0.00069784 h = 0.00000200 b=6.28318531 i =350 x = 0.00069984 h = 0.00000200 b=6.28318531 i =351 x = 0.00070184 h = 0.00000200 b=6.28318531 i =352 x = 0.00070384 h = 0.00000200 b=6.28318531 i =353 x = 0.00070584 h = 0.00000200 b=6.28318531 i =354 x = 0.00070784 h = 0.00000200 b=6.28318531 i =355 x = 0.00070984 h = 0.00000200 b=6.28318531 i =356 x = 0.00071184 h = 0.00000200 b=6.28318531 i =357 x = 0.00071384 h = 0.00000200 b=6.28318531 i =358 x = 0.00071584 h = 0.00000200 b=6.28318531 i =359 x = 0.00071784 h = 0.00000200 b=6.28318531 i =360 x = 0.00071984 h = 0.00000200 b=6.28318531 i =361 x = 0.00072184 h = 0.00000200 b=6.28318531 i =362 x = 0.00072384 h = 0.00000200 b=6.28318531 i =363 x = 0.00072584 h = 0.00000200 b=6.28318531 i =364 x = 0.00072784 h = 0.00000200 b=6.28318531 i =365 x = 0.00072984 h = 0.00000200 b=6.28318531 i =366 x = 0.00073184 h = 0.00000200 b=6.28318531 i =367 x = 0.00073384 h = 0.00000200 b=6.28318531 i =368 x = 0.00073584 h = 0.00000200 b=6.28318531 i =369 x = 0.00073784 h = 0.00000200 b=6.28318531 i =370 x = 0.00073984 h = 0.00000200 b=6.28318531 i =371 x = 0.00074184 h = 0.00000200 b=6.28318531 i =372 x = 0.00074384 h = 0.00000200 b=6.28318531 i =373 x = 0.00074584 h = 0.00000200 b=6.28318531 i =374 x = 0.00074784 h = 0.00000200 b=6.28318531 i =375 x = 0.00074984 h = 0.00000200 b=6.28318531 i =376 x = 0.00075184 h = 0.00000200 b=6.28318531 i =377 x = 0.00075384 h = 0.00000200 b=6.28318531 i =378 x = 0.00075584 h = 0.00000200 b=6.28318531 i =379 x = 0.00075784 h = 0.00000200 b=6.28318531 i =380 x = 0.00075984 h = 0.00000200 b=6.28318531 i =381 x = 0.00076184 h = 0.00000200 b=6.28318531 i =382 x = 0.00076384 h = 0.00000200 b=6.28318531 i =383 x = 0.00076584 h = 0.00000200 b=6.28318531 i =384 x = 0.00076784 h = 0.00000200 b=6.28318531 i =385 x = 0.00076984 h = 0.00000200 b=6.28318531 i =386 x = 0.00077184 h = 0.00000200 b=6.28318531 i =387 x = 0.00077384 h = 0.00000200 b=6.28318531 i =388 x = 0.00077584 h = 0.00000200 b=6.28318531 i =389 x = 0.00077784 h = 0.00000200 b=6.28318531 i =390 x = 0.00077984 h = 0.00000200 b=6.28318531 i =391 x = 0.00078184 h = 0.00000200 b=6.28318531 i =392 x = 0.00078384 h = 0.00000200 b=6.28318531 i =393 x = 0.00078584 h = 0.00000200 b=6.28318531 i =394 x = 0.00078784 h = 0.00000200 b=6.28318531 i =395 x = 0.00078984 h = 0.00000200 b=6.28318531 i =396 x = 0.00079184 h = 0.00000200 b=6.28318531 i =397 x = 0.00079384 h = 0.00000200 b=6.28318531 i =398 x = 0.00079584 h = 0.00000200 b=6.28318531 i =399 x = 0.00079784 h = 0.00000200 b=6.28318531 i =400 x = 0.00079984 h = 0.00000200 b=6.28318531 i =401 x = 0.00080184 h = 0.00000200 b=6.28318531 i =402 x = 0.00080384 h = 0.00000200 b=6.28318531 i =403 x = 0.00080584 h = 0.00000200 b=6.28318531 i =404 x = 0.00080784 h = 0.00000200 b=6.28318531 i =405 x = 0.00080984 h = 0.00000200 b=6.28318531 i =406 x = 0.00081184 h = 0.00000200 b=6.28318531 i =407 x = 0.00081384 h = 0.00000200 b=6.28318531 i =408 x = 0.00081584 h = 0.00000200 b=6.28318531 i =409 x = 0.00081784 h = 0.00000200 b=6.28318531 i =410 x = 0.00081984 h = 0.00000200 b=6.28318531 i =411 x = 0.00082184 h = 0.00000200 b=6.28318531 i =412 x = 0.00082384 h = 0.00000200 b=6.28318531 i =413 x = 0.00082584 h = 0.00000200 b=6.28318531 i =414 x = 0.00082784 h = 0.00000200 b=6.28318531 i =415 x = 0.00082984 h = 0.00000200 b=6.28318531 i =416 x = 0.00083184 h = 0.00000200 b=6.28318531 i =417 x = 0.00083384 h = 0.00000200 b=6.28318531 i =418 x = 0.00083584 h = 0.00000200 b=6.28318531 i =419 x = 0.00083784 h = 0.00000200 b=6.28318531 i =420 x = 0.00083984 h = 0.00000200 b=6.28318531 i =421 x = 0.00084184 h = 0.00000200 b=6.28318531 i =422 x = 0.00084384 h = 0.00000200 b=6.28318531 i =423 x = 0.00084584 h = 0.00000200 b=6.28318531 i =424 x = 0.00084784 h = 0.00000200 b=6.28318531 i =425 x = 0.00084984 h = 0.00000200 b=6.28318531 i =426 x = 0.00085184 h = 0.00000200 b=6.28318531 i =427 x = 0.00085384 h = 0.00000200 b=6.28318531 i =428 x = 0.00085584 h = 0.00000200 b=6.28318531 i =429 x = 0.00085784 h = 0.00000200 b=6.28318531 i =430 x = 0.00085984 h = 0.00000200 b=6.28318531 i =431 x = 0.00086184 h = 0.00000200 b=6.28318531 i =432 x = 0.00086384 h = 0.00000200 b=6.28318531 i =433 x = 0.00086584 h = 0.00000200 b=6.28318531 i =434 x = 0.00086784 h = 0.00000200 b=6.28318531 i =435 x = 0.00086984 h = 0.00000200 b=6.28318531 i =436 x = 0.00087184 h = 0.00000200 b=6.28318531 i =437 x = 0.00087384 h = 0.00000200 b=6.28318531 i =438 x = 0.00087584 h = 0.00000200 b=6.28318531 i =439 x = 0.00087784 h = 0.00000200 b=6.28318531 i =440 x = 0.00087984 h = 0.00000200 b=6.28318531 i =441 x = 0.00088184 h = 0.00000200 b=6.28318531 i =442 x = 0.00088384 h = 0.00000200 b=6.28318531 i =443 x = 0.00088584 h = 0.00000200 b=6.28318531 i =444 x = 0.00088784 h = 0.00000200 b=6.28318531 i =445 x = 0.00088984 h = 0.00000200 b=6.28318531 i =446 x = 0.00089184 h = 0.00000200 b=6.28318531 i =447 x = 0.00089384 h = 0.00000200 b=6.28318531 i =448 x = 0.00089584 h = 0.00000200 b=6.28318531 i =449 x = 0.00089784 h = 0.00000200 b=6.28318531 i =450 x = 0.00089984 h = 0.00000200 b=6.28318531 i =451 x = 0.00090184 h = 0.00000200 b=6.28318531 i =452 x = 0.00090384 h = 0.00000200 b=6.28318531 i =453 x = 0.00090584 h = 0.00000200 b=6.28318531 i =454 x = 0.00090784 h = 0.00000200 b=6.28318531 i =455 x = 0.00090984 h = 0.00000200 b=6.28318531 i =456 x = 0.00091184 h = 0.00000200 b=6.28318531 i =457 x = 0.00091384 h = 0.00000200 b=6.28318531 i =458 x = 0.00091584 h = 0.00000200 b=6.28318531 i =459 x = 0.00091784 h = 0.00000200 b=6.28318531 i =460 x = 0.00091984 h = 0.00000200 b=6.28318531 i =461 x = 0.00092184 h = 0.00000200 b=6.28318531 i =462 x = 0.00092384 h = 0.00000200 b=6.28318531 i =463 x = 0.00092584 h = 0.00000200 b=6.28318531 i =464 x = 0.00092784 h = 0.00000200 b=6.28318531 i =465 x = 0.00092984 h = 0.00000200 b=6.28318531 i =466 x = 0.00093184 h = 0.00000200 b=6.28318531 i =467 x = 0.00093384 h = 0.00000200 b=6.28318531 i =468 x = 0.00093584 h = 0.00000200 b=6.28318531 i =469 x = 0.00093784 h = 0.00000200 b=6.28318531 i =470 x = 0.00093984 h = 0.00000200 b=6.28318531 i =471 x = 0.00094184 h = 0.00000200 b=6.28318531 i =472 x = 0.00094384 h = 0.00000200 b=6.28318531 i =473 x = 0.00094584 h = 0.00000200 b=6.28318531 i =474 x = 0.00094784 h = 0.00000200 b=6.28318531 i =475 x = 0.00094984 h = 0.00000200 b=6.28318531 i =476 x = 0.00095184 h = 0.00000200 b=6.28318531 i =477 x = 0.00095384 h = 0.00000200 b=6.28318531 i =478 x = 0.00095584 h = 0.00000200 b=6.28318531 i =479 x = 0.00095784 h = 0.00000200 b=6.28318531 i =480 x = 0.00095984 h = 0.00000200 b=6.28318531 i =481 x = 0.00096184 h = 0.00000200 b=6.28318531 i =482 x = 0.00096384 h = 0.00000200 b=6.28318531 i =483 x = 0.00096584 h = 0.00000200 b=6.28318531 i =484 x = 0.00096784 h = 0.00000200 b=6.28318531 i =485 x = 0.00096984 h = 0.00000200 b=6.28318531 i =486 x = 0.00097184 h = 0.00000200 b=6.28318531 i =487 x = 0.00097384 h = 0.00000200 b=6.28318531 i =488 x = 0.00097584 h = 0.00000200 b=6.28318531 i =489 x = 0.00097784 h = 0.00000200 b=6.28318531 i =490 x = 0.00097984 h = 0.00000200 b=6.28318531 i =491 x = 0.00098184 h = 0.00000200 b=6.28318531 i =492 x = 0.00098384 h = 0.00000200 b=6.28318531 i =493 x = 0.00098584 h = 0.00000200 b=6.28318531 i =494 x = 0.00098784 h = 0.00000200 b=6.28318531 i =495 x = 0.00098984 h = 0.00000200 b=6.28318531 i =496 x = 0.00099184 h = 0.00000200 b=6.28318531 i =497 x = 0.00099384 h = 0.00000200 b=6.28318531 i =498 x = 0.00099584 h = 0.00000200 b=6.28318531 i =499 x = 0.00099784 h = 0.00000200 b=6.28318531 i =500 x = 0.00099984 h = 0.00000200 b=6.28318531 i =501 x = 0.00100184 h = 0.00000200 b=6.28318531 i =502 x = 0.00100384 h = 0.00000200 b=6.28318531 i =503 x = 0.00100584 h = 0.00000200 b=6.28318531 i =504 x = 0.00100784 h = 0.00000200 b=6.28318531 i =505 x = 0.00100984 h = 0.00000200 b=6.28318531 i =506 x = 0.00101184 h = 0.00000200 b=6.28318531 i =507 x = 0.00101384 h = 0.00000200 b=6.28318531 i =508 x = 0.00101584 h = 0.00000200 b=6.28318531 i =509 x = 0.00101784 h = 0.00000200 b=6.28318531 i =510 x = 0.00101984 h = 0.00000200 b=6.28318531 i =511 x = 0.00102184 h = 0.00000200 b=6.28318531 i =512 x = 0.00102384 h = 0.00000200 b=6.28318531 i =513 x = 0.00102584 h = 0.00000200 b=6.28318531 i =514 x = 0.00102784 h = 0.00000200 b=6.28318531 i =515 x = 0.00102984 h = 0.00000200 b=6.28318531 i =516 x = 0.00103184 h = 0.00000200 b=6.28318531 i =517 x = 0.00103384 h = 0.00000200 b=6.28318531 i =518 x = 0.00103584 h = 0.00000200 b=6.28318531 i =519 x = 0.00103784 h = 0.00000200 b=6.28318531 i =520 x = 0.00103984 h = 0.00000200 b=6.28318531 i =521 x = 0.00104184 h = 0.00000200 b=6.28318531 i =522 x = 0.00104384 h = 0.00000200 b=6.28318531 i =523 x = 0.00104584 h = 0.00000200 b=6.28318531 i =524 x = 0.00104784 h = 0.00000200 b=6.28318531 i =525 x = 0.00104984 h = 0.00000200 b=6.28318531 i =526 x = 0.00105184 h = 0.00000200 b=6.28318531 i =527 x = 0.00105384 h = 0.00000200 b=6.28318531 i =528 x = 0.00105584 h = 0.00000200 b=6.28318531 i =529 x = 0.00105784 h = 0.00000200 b=6.28318531 i =530 x = 0.00105984 h = 0.00000200 b=6.28318531 i =531 x = 0.00106184 h = 0.00000200 b=6.28318531 i =532 x = 0.00106384 h = 0.00000200 b=6.28318531 i =533 x = 0.00106584 h = 0.00000200 b=6.28318531 i =534 x = 0.00106784 h = 0.00000200 b=6.28318531 i =535 x = 0.00106984 h = 0.00000200 b=6.28318531 i =536 x = 0.00107184 h = 0.00000200 b=6.28318531 i =537 x = 0.00107384 h = 0.00000200 b=6.28318531 i =538 x = 0.00107584 h = 0.00000200 b=6.28318531 i =539 x = 0.00107784 h = 0.00000200 b=6.28318531 i =540 x = 0.00107984 h = 0.00000200 b=6.28318531 i =541 x = 0.00108184 h = 0.00000200 b=6.28318531 i =542 x = 0.00108384 h = 0.00000200 b=6.28318531 i =543 x = 0.00108584 h = 0.00000200 b=6.28318531 i =544 x = 0.00108784 h = 0.00000200 b=6.28318531 i =545 x = 0.00108984 h = 0.00000200 b=6.28318531 i =546 x = 0.00109184 h = 0.00000200 b=6.28318531 i =547 x = 0.00109384 h = 0.00000200 b=6.28318531 i =548 x = 0.00109584 h = 0.00000200 b=6.28318531 i =549 x = 0.00109784 h = 0.00000200 b=6.28318531 i =550 x = 0.00109984 h = 0.00000200 b=6.28318531 i =551 x = 0.00110184 h = 0.00000200 b=6.28318531 i =552 x = 0.00110384 h = 0.00000200 b=6.28318531 i =553 x = 0.00110584 h = 0.00000200 b=6.28318531 i =554 x = 0.00110784 h = 0.00000200 b=6.28318531 i =555 x = 0.00110984 h = 0.00000200 b=6.28318531 i =556 x = 0.00111184 h = 0.00000200 b=6.28318531 i =557 x = 0.00111384 h = 0.00000200 b=6.28318531 i =558 x = 0.00111584 h = 0.00000200 b=6.28318531 i =559 x = 0.00111784 h = 0.00000200 b=6.28318531 i =560 x = 0.00111984 h = 0.00000200 b=6.28318531 i =561 x = 0.00112184 h = 0.00000200 b=6.28318531 i =562 x = 0.00112384 h = 0.00000200 b=6.28318531 i =563 x = 0.00112584 h = 0.00000200 b=6.28318531 i =564 x = 0.00112784 h = 0.00000200 b=6.28318531 i =565 x = 0.00112984 h = 0.00000200 b=6.28318531 i =566 x = 0.00113184 h = 0.00000200 b=6.28318531 i =567 x = 0.00113384 h = 0.00000200 b=6.28318531 i =568 x = 0.00113584 h = 0.00000200 b=6.28318531 i =569 x = 0.00113784 h = 0.00000200 b=6.28318531 i =570 x = 0.00113984 h = 0.00000200 b=6.28318531 i =571 x = 0.00114184 h = 0.00000200 b=6.28318531 i =572 x = 0.00114384 h = 0.00000200 b=6.28318531 i =573 x = 0.00114584 h = 0.00000200 b=6.28318531 i =574 x = 0.00114784 h = 0.00000200 b=6.28318531 i =575 x = 0.00114984 h = 0.00000200 b=6.28318531 i =576 x = 0.00115184 h = 0.00000200 b=6.28318531 i =577 x = 0.00115384 h = 0.00000200 b=6.28318531 i =578 x = 0.00115584 h = 0.00000200 b=6.28318531 i =579 x = 0.00115784 h = 0.00000200 b=6.28318531 i =580 x = 0.00115984 h = 0.00000200 b=6.28318531 i =581 x = 0.00116184 h = 0.00000200 b=6.28318531 i =582 x = 0.00116384 h = 0.00000200 b=6.28318531 i =583 x = 0.00116584 h = 0.00000200 b=6.28318531 i =584 x = 0.00116784 h = 0.00000200 b=6.28318531 i =585 x = 0.00116984 h = 0.00000200 b=6.28318531 i =586 x = 0.00117184 h = 0.00000200 b=6.28318531 i =587 x = 0.00117384 h = 0.00000200 b=6.28318531 i =588 x = 0.00117584 h = 0.00000200 b=6.28318531 i =589 x = 0.00117784 h = 0.00000200 b=6.28318531 i =590 x = 0.00117984 h = 0.00000200 b=6.28318531 i =591 x = 0.00118184 h = 0.00000200 b=6.28318531 i =592 x = 0.00118384 h = 0.00000200 b=6.28318531 i =593 x = 0.00118584 h = 0.00000200 b=6.28318531 i =594 x = 0.00118784 h = 0.00000200 b=6.28318531 i =595 x = 0.00118984 h = 0.00000200 b=6.28318531 i =596 x = 0.00119184 h = 0.00000200 b=6.28318531 i =597 x = 0.00119384 h = 0.00000200 b=6.28318531 i =598 x = 0.00119584 h = 0.00000200 b=6.28318531 i =599 x = 0.00119784 h = 0.00000200 b=6.28318531 i =600 x = 0.00119984 h = 0.00000200 b=6.28318531 i =601 x = 0.00120184 h = 0.00000200 b=6.28318531 i =602 x = 0.00120384 h = 0.00000200 b=6.28318531 i =603 x = 0.00120584 h = 0.00000200 b=6.28318531 i =604 x = 0.00120784 h = 0.00000200 b=6.28318531 i =605 x = 0.00120984 h = 0.00000200 b=6.28318531 i =606 x = 0.00121184 h = 0.00000200 b=6.28318531 i =607 x = 0.00121384 h = 0.00000200 b=6.28318531 i =608 x = 0.00121584 h = 0.00000200 b=6.28318531 i =609 x = 0.00121784 h = 0.00000200 b=6.28318531 ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our equation is d^2y/dx^2 = -y #dydx=z #dzdx=-y #set y=y[0] #set z=y[1] #declare an array y_derivs = np.zeros(2) #set dydx=z y_derivs[0] = y[1] #set dzdx=-y y_derivs[1] = -1*y[0] #here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi+0.5*h #define x at 1 step x_ipo=xi+h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:]=h*y_derivs[:] #get k2 values y_temp[:]=yi[:]+0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:]=yi[:]+0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:]=yi[:]+0.5*k3[:] y_derivs = dydx(x_ipoh,y_temp) k4[:] = h*y_derivs[:] #advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv,2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate error by taking one step of size h vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute an error Delta = np.fabs(y_2 - y_11) #if the error is too large, take a smaller step if(Delta.max()/tol>1.0): #decrease the step h_step *= SAFETY*(Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) #iterate i+=1 #next time, try to take a bigger step h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9),h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dfdx,a,b,y_a,tol): #dfdx is the derivative of x #a is upper bound #b is lower bound #y_a are the boundary conditions #tol is the tolerance for integrating y #define our starting step xi=a yi=y_a.copy() #an initial step size == make very small! h = 1.0e-4 * (b-a) #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled ODEs to the size of y_a nv=len(y_a) #set initial conditions x = np.full(1,a) y = np.full((1,nv),y_a) #set a flag flag = 1 #loop until we reach the right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #update the step h = h_new #prevent an overshoot if(xi+h_step>b): #take a smaller step h = b-xi #recalculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag=0 #update values xi += h_step yi[:] = yi_new[:] #add the step to the arrays x = np.append(x,xi) y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:] = y y_new[-1,:] = yi[:] del y y=y_new #prevent too many iterations if(i>=imax): print("Maximum iterations reached.") raise StopIteration("Iteration number = ",i) #iterate i+=1 #output some information s = "i = %3d\tx = %9.8f\th = %9.8f\tb =%9.8f" % (i,xi,h_step,b) print(s) #break if new xi is ==b if(xi==b): flag=0 #return the answer return x, y a=0.0 b=2.0*np.pi y_0 = np.zeros(2) y_0[0] = 0.0 y_0[1] =1.0 nv = 2 tolerance = 1.0e-6 #perform the integration x,y = rk4_mv(dydx,a,b,y_0,tolerance) plt.plot(x,y[:,0],'o',label='y(x)') plt.plot(x,y[:,1],'o',label='dydx(x)') xx = np.linspace(0,2.0*np.pi,1000) plt.plot(xx,np.sin(xx),label='sin(x)') plt.plot(xx,np.cos(xx),label='cos(x)') plt.xlabel('x') plt.ylabel('y, dy/dx') plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Plot the error ###Code sine = np.sin(x) cosine = np.cos(x) y_error = (y[:,0]-sine) dydx_error = (y[:,1]-cosine) plt.plot(x,y_error,label="y(x) Error") plt.plot(x,dydx_error,label="dydx(x) Error") plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables. ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #dydx needs to return an array #set the derivatives #our equation is d^2y/dx^2 = -y #so we can write #dydx = z #dzdx = -y #we will set y = y[0] #we will set z = y[1] #declare an array y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx = -y y_derivs[1] = -1*y[0] #here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx, xi, yi, nv, h): #declare k? arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi + 0.5*h #define x at 1 step x_ipo = xi + h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_dervis = dydx(xi,yi) k1[:] = h*y_derivs[:] #get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:] = yi[:] + k3[:] y_derivs = dydx(x_ipo,y_temp) k4[:] = h*y_derivs[:] #advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx, x_i, y_i, nv, h, tol): #define safety scale SAFETY = 0.9 H_NEW_PAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv, 2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate our error by taking one step of size h #vs. two steps of size h/2 y_2 = rk4_mv_core(dydx, x_i, y_i, nv, h_step) y_1 = rk4_mv_core(dydx, x_i, y_i, nv, 0.5*h_step) y_11 = rk4_mv_core(dydx, x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute an error Delta = np.fabs(y_2 - y_11) #if the error is too large, take a smaller step if(Delta.max()/tol > 1.0): #our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i =",i) #iterate i+=1 #next time, try to take a bigger step h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dfdx, a, b, y_a, tol): #dfdx is teh derivative wrt x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is teh tolerance for integrating y #define our starting step xi = a yi = y_a.copy() #an initial step size == make very small! h = 1.0e-4 * (b-a) #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled odes to the #size of y_a nv = len(y_a) #set the initial conditions x = np.full(1,a) y = np.full((1,nv), y_a) #set a flag flag = 1 #loop until we reach the right side while(flag): #calculate y_i+1 ############################################# ############################################# ############################################# ###Output _____no_output_____ ###Markdown create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown define coupled deribatives to integrate ###Code def dydx(x,y): #set derivatives, equation is d^2y/dx^2=-y #dydx=z & dzdx=-y #set y=y[0] and z=y[1] #declare array y_derivs = np.zeros(2) #set dydx = z y_derivs[0] = y[1] #set dzdx=-y y_derivs[1]=-1*y[0] #here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown define 4th order rk method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k?[wild card gives digits btwn 0-9] arrays k1=np.zeros(nv) k2=np.zeros(nv) k3=np.zeros(nv) k4=np.zeros(nv) #define x at 1/2 step x_ipoh = xi+0.5*h #define x at 1 step x_ipo = xi+h #declare a tempy array y_temp= np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:]=h*y_derivs[:] #get k2 values y_temp[:]=yi[:]+0.5*k1[:] y_derivs= dydx(x_ipoh,y_temp) k2[:]=h*y_derivs[:] #k3 values y_temp[:]=yi[:]+0.5*k2[:] y_derivs= dydx(x_ipoh,y_temp) k3[:]=h*y_derivs[:] #k4 values y_temp[:]=yi[:]+k3[:] y_derivs= dydx(x_ipo,y_temp) k4[:]=h*y_derivs[:] #advance y by step h yipo=yi+(k1+2*k2+2*k3+k4)/6 return yipo ###Output _____no_output_____ ###Markdown define adaptive step size driver for rk4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set maximum number of iterations imax= 10000 #set an iteration variable i=0 #create an error Delta= np.full(nv,2*tol) #remember the step h_step=h #adjust step while(Delta.max()/tol>1.0): #estimate error by taking 1 h step vs. 2 h/2 steps y_2=rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1=rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11=rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute error Delta=np.fabs(y_2-y_11) #if error is too large take smaller step if(Delta.max()/tol>1.0): #error to large-> decrease step h_step *= SAFETY*(Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("ending after i = ",i) #iterate i+=1 #next time, try to take a bigger step h_new= np.fmin(h_step*(Delta.max()/tol)**(-0.9),h_step*H_NEW_FAC) #reurn the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown define wrapper 4 rk4 ###Code def rk4_mv(dydx,a,b,y_a,tol): #dydx is the derivative wrt x #a is lower bound/ b is upper bound #y_a is boundary conditions #tol: tolerance for int y #define starting step xi = a yi = y_a.copy() #an initial step size == make very small h= 1.0e-4*(b-a) imax=10000 i=0 #set # of coupled ode's to size y_a nv = len(y_a) #set initial conditions x = np.full(1,a) y = np.full((1,nv),y_a) #set a flag flag=1 #loop til we reach right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #update new step h = h_new #prevent overshoot if(xi+h_step>b): #take smaller step h = b-xi #recalc y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag = 0 #update values xi += h_step yi[:] = yi_new[:] # add step to arrays x = np.append(x,xi) y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:]=y y_new[-1,:]=yi[:] del y y = y_new #prevent too many itterations if(i>imax): print("Max iterations reached") raise StopIteration("Iteration number = ",i) #iterate i += 1 #output some info s = "i = %3d\tx = %9.8f\th = %9.8f\tb=%9.8f" % (i,xi,h_step, b) print(s) #break if new xi is ==b if(xi==b): flag = 0 #return answer return x,y ###Output _____no_output_____ ###Markdown perform integration ###Code a = 0.0 b = 2.0*np.pi y_0 = np.zeros(2) y_0[0]=0.0 y_0[1]=1.0 nv=2 tolerance = 1.0e-6 #perform integration x,y=rk4_mv(dydx,a,b,y_0,tolerance) ###Output _____no_output_____ ###Markdown plot result ###Code plt.plot(x,y[:,0],'o',label='y(x)') plt.plot(x,y[:,1],'o',label='dydx(x)') xx = np.linspace(0,2.0*np.pi,1000) plt.plot(xx,np.sin(xx),label='sin(x)') plt.plot(xx,np.cos(xx),label='cos(x)') plt.xlabel('x') plt.ylabel('y, dy/dx') plt.legend(frameon=False) sine = np.sin(x) cosine = np.cos(x) y_error = (y[:,0]-sine) dydx_error = (y[:,1]-cosine) plt.plot(x, y_error, label="y(x) Error") plt.plot(x, dydx_error, label="dydx(x) Error") plt.legend(frameon=False) ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): # Set the derivatives # Our equation is d^2y/dx^2 = -y # So we can write # dydx = z # dzdx = -y # We will set y = y[0] # We will sey z = y[1] # Declare an array y_derivs = np.zeros(2) # Set dydx = x y_derivs[0] = y[1] # Set dzdx = -y y_derivs[1] = -1*y[0] # Here we have to return the arrays of dydx return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): # Declare k? arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) # Define x at 1/2 step x_ipoh = xi + 0.5*h # Define x at 1 step x_ipo = xi + h # Declare a tempy array y_temp = np.zeros(nv) # Get k1 values y_derivs = dydx(xi,yi) k1[:] = h*y_derivs[:] # Get k2 values y_temp[:] = yi[:] + 0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] # Get k3 values y_temp[:] = yi[:] + 0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] # Get k4 values y_temp[:] = yi[:] + k3[:] y_derivs = dydx(x_ipo,y_temp) k4[:] = h*y_derivs[:] # Advance y by step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. # THIS IS AN ARRAY return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): # Define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 # Set a maximum number of iterations imax = 10000 # Set an iteration variable i = 0 # Create an error Delta = np.full(nv,2*tol) # Remember the step h_step = h # Adjust the step while(Delta.max()/tol > 1.0): # Estimate our error by taking one step of size h # vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_i,nv,0.5*h_step) # Compute an error Delta = np.fabs(y_2 - y_11) # If error is too latge, take a smaller step if(Delta.max()/tol > 1.0): # Our error is too large, decrease the step h_step *= SAFETY * (Delta.max()/tol)**(-0.25) # Check the iteration if(i>imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) # Iterate i += 1 # Next time, try to take a bigger step h_new= np.fmin(h_step * (Delta.max()/tol)**(-0.9), h_step*H_NEW_PAC) # Return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dydx,a,b,y_a,tol): # dydx is the derivative wrt x # a is the lower bound # b is the upper bound # y_a are the boundary conditions # tol is the tolerance for integrating y # Define our starting step xi = a yi = y_a.cop() # An initial step size == make very small h = 1.0e-4 * (b-a) # Set a maximum number of iterations imax = 10000 # Set an iteration variable i = 0 # Set the number of coupled odes to the size of y_a nv = len(y_a) # Set the initial conditions x = np.full(1,a) y = np.full((1,nv),y_a) # Set a flag flag = 1 # Loop until we reach the right side while(flag): # Calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,di,yi,nv,h,tol) #Break flag = 0 ###Output _____no_output_____ ###Markdown Create a notebook to perform Runge-Kutta integration for multiple coupled variables ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set our derivatives #our equation is d^2y/dx^2=-y #so we can write #dydx=z #dzdx=-y #we will set y=y[0] #we will set z=y[1] #declare an array y_derivs=np.zeros(2) #set dydx=z y_derivs[0]=y[1] #set dzdx=-y y_derivs[1]=-1*y(0) #here we have to return the array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def k4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays k1=np.zeros(nv) k2=np.zeros(nv) k3=np.zeros(nv) k4=np.zeros(nv) #define x at 1/2 step x_ipoh=xi+0.5*h #define x at 1 step x_pio=xi+h #declare a temp y array y_temp=np.zeros(nv) #get k1 values y_derivs=dydx(xi,yi) k1[:]=h*y_derivs[:] #det k2 values y_temp[:]=yi[:]+0.5*k1[:] y_derivs=dydx(x_ipoh,y_temp) k2[:]=h*y_derivs[:] #det k3 values y_temp[:]=yi[:]+0.5*k2[:] y_derivs=dydx(x_ipoh,y_temp) k3[:]=h*y_derivs[:] #det k4 values y_temp[:]=yi[:]+k3[:] y_derivs=dydx(x_ipoh,y_temp) k4[:]=h*y_derivs[:] #advance y by a step h yipo=yi+(k1+2*k2+2*k3+k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY=0.9 H_NEW_FAC=2.0 #set a maximum number of iterations imax=10000 #set an iteration variable i=0 #create an error Delta=np.full(nv,2*tol) #remember the step h_step=h #adjust step while(Delta.max()/tol>1.0): #estimate our error by taking one step of size h vs. two stepsof size h/2 y_2=rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1=rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11=rk4_mv_core(dydx,x_i+0.5*h_step,y_i,nv,0.5*h_step) #compute the error Delta=n.fabs(y_2-y_11) #if the error is too large, take a smaller step if(Delta.max()/tol>1.0): #our error is too large, decrease the step h_step*=SAFETY*(Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i=",i) #iterate i+=1 #next time, try to take a bigger step h_new=np.fmin(h_step*(Delta.max()/tol)**(-0.9),h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dfdx,a,b,y_a,tol): #dfdx is the derivative wrt x #a is the lower bound #b is the upper bound #y_a are the boundary conditions #tol is the tolerance for integrating y #define our starting step xi=a yi=y_a.copy h=1.0e-4(b-a) imax=10000 i=0 nv=len(y_a) x=np.full(1,a) y=np.full((1,nv),y_a) flag=1 while(flag): yi_new, h_new, h_step=rk4_mv_ad(dydx,xi,yi,nv,h,tol) h=h_new ###Output _____no_output_____ ###Markdown Define our coupled derivatives to integrate ###Code def dydx(x,y): #set the derivatives #our equation is d^2y/dx^2 = -y #dydx=z #dzdx=-y #set y=y[0] #set z=y[1] #declare an array y_derivs = np.zeros(2) #set dydx=z y_derivs[0] = y[1] #set dzdx=-y y_derivs[1] = -1*y[0] #here we have to return an array return y_derivs ###Output _____no_output_____ ###Markdown Define the 4th order RK method ###Code def rk4_mv_core(dydx,xi,yi,nv,h): #declare k? arrays k1 = np.zeros(nv) k2 = np.zeros(nv) k3 = np.zeros(nv) k4 = np.zeros(nv) #define x at 1/2 step x_ipoh = xi+0.5*h #define x at 1 step x_ipo=xi+h #declare a temp y array y_temp = np.zeros(nv) #get k1 values y_derivs = dydx(xi,yi) k1[:]=h*y_derivs[:] #get k2 values y_temp[:]=yi[:]+0.5*k1[:] y_derivs = dydx(x_ipoh,y_temp) k2[:] = h*y_derivs[:] #get k3 values y_temp[:]=yi[:]+0.5*k2[:] y_derivs = dydx(x_ipoh,y_temp) k3[:] = h*y_derivs[:] #get k4 values y_temp[:]=yi[:]+0.5*k3[:] y_derivs = dydx(x_ipoh,y_temp) k4[:] = h*y_derivs[:] #advance y by a step h yipo = yi + (k1 + 2*k2 + 2*k3 + k4)/6. return yipo ###Output _____no_output_____ ###Markdown Define an adaptive step size driver for RK4 ###Code def rk4_mv_ad(dydx,x_i,y_i,nv,h,tol): #define safety scale SAFETY = 0.9 H_NEW_FAC = 2.0 #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #create an error Delta = np.full(nv,2*tol) #remember the step h_step = h #adjust step while(Delta.max()/tol > 1.0): #estimate error by taking one step of size h vs. two steps of size h/2 y_2 = rk4_mv_core(dydx,x_i,y_i,nv,h_step) y_1 = rk4_mv_core(dydx,x_i,y_i,nv,0.5*h_step) y_11 = rk4_mv_core(dydx,x_i+0.5*h_step,y_1,nv,0.5*h_step) #compute an error Delta = np.fabs(y_2 - y_11) #if the error is too large, take a smaller step if(Delta.max()/tol>1.0): #decrease the step h_step *= SAFETY*(Delta.max()/tol)**(-0.25) #check iteration if(i>=imax): print("Too many iterations in rk4_mv_ad()") raise StopIteration("Ending after i = ",i) #iterate i+=1 #next time, try to take a bigger step h_new = np.fmin(h_step * (Delta.max()/tol)**(-0.9),h_step*H_NEW_FAC) #return the answer, a new step, and the step we actually took return y_2, h_new, h_step ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4_mv(dfdx,a,b,y_a,tol): #dfdx is the derivative of x #a is upper bound #b is lower bound #y_a are the boundary conditions #tol is the tolerance for integrating y #define our starting step xi=a yi=y_a.copy() #an initial step size == make very small! h = 1.0e-4 * (b-a) #set a maximum number of iterations imax = 10000 #set an iteration variable i = 0 #set the number of coupled ODEs to the size of y_a nv=len(y_a) #set initial conditions x = np.full(1,a) y = np.full((1,nv),y_a) #set a flag flag = 1 #loop until we reach the right side while(flag): #calculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #update the step h = h_new #prevent an overshoot if(xi+h_step>b): #take a smaller step h = b-xi #recalculate y_i+1 yi_new, h_new, h_step = rk4_mv_ad(dydx,xi,yi,nv,h,tol) #break flag=0 #update values xi += h_step yi[:] = yi_new[:] #add the step to the arrays x = np.append(x,xi) y_new = np.zeros((len(x),nv)) y_new[0:len(x)-1,:] = y y_new[-1,:] = yi[:] del y y=y_new #prevent too many iterations if(i>=imax): print("Maximum iterations reached.") raise StopIteration("Iteration number = ",i) #iterate i+=1 #output some information s = "i = %3d\tx = %9.8f\th = %9.8f\tb =%9.8f" % (i,xi,h_step,b) print(s) #break if new xi is ==b if(xi==b): flag=0 #return the answer return x, y a=0.0 b=2.0*np.pi y_0 = np.zeros(2) y_0[0] = 0.0 y_0[1] =1.0 nv = 2 tolerance = 1.0e-6 #perform the integration x,y = rk4_mv(dydx,a,b,y_0,tolerance) ###Output i = 1 x = 0.00062832 h = 0.00062832 b =6.28318531 i = 2 x = 0.00188496 h = 0.00125664 b =6.28318531 i = 3 x = 0.00439823 h = 0.00251327 b =6.28318531 i = 4 x = 0.00886437 h = 0.00446614 b =6.28318531 i = 5 x = 0.01343975 h = 0.00457538 b =6.28318531 i = 6 x = 0.01797124 h = 0.00453149 b =6.28318531 i = 7 x = 0.02252043 h = 0.00454919 b =6.28318531 i = 8 x = 0.02706280 h = 0.00454237 b =6.28318531 i = 9 x = 0.03160823 h = 0.00454543 b =6.28318531 i = 10 x = 0.03615282 h = 0.00454460 b =6.28318531 i = 11 x = 0.04069821 h = 0.00454539 b =6.28318531 i = 12 x = 0.04524381 h = 0.00454560 b =6.28318531 i = 13 x = 0.04978991 h = 0.00454610 b =6.28318531 i = 14 x = 0.05433647 h = 0.00454656 b =6.28318531 i = 15 x = 0.05888357 h = 0.00454710 b =6.28318531 i = 16 x = 0.06343124 h = 0.00454767 b =6.28318531 i = 17 x = 0.06797954 h = 0.00454830 b =6.28318531 i = 18 x = 0.07252851 h = 0.00454897 b =6.28318531 i = 19 x = 0.07707820 h = 0.00454969 b =6.28318531 i = 20 x = 0.08162866 h = 0.00455046 b =6.28318531 i = 21 x = 0.08617994 h = 0.00455127 b =6.28318531 i = 22 x = 0.09073207 h = 0.00455214 b =6.28318531 i = 23 x = 0.09528512 h = 0.00455305 b =6.28318531 i = 24 x = 0.09983912 h = 0.00455401 b =6.28318531 i = 25 x = 0.10439413 h = 0.00455501 b =6.28318531 i = 26 x = 0.10895020 h = 0.00455607 b =6.28318531 i = 27 x = 0.11350737 h = 0.00455717 b =6.28318531 i = 28 x = 0.11806569 h = 0.00455832 b =6.28318531 i = 29 x = 0.12262521 h = 0.00455952 b =6.28318531 i = 30 x = 0.12718598 h = 0.00456077 b =6.28318531 i = 31 x = 0.13174805 h = 0.00456207 b =6.28318531 i = 32 x = 0.13631146 h = 0.00456341 b =6.28318531 i = 33 x = 0.14087627 h = 0.00456481 b =6.28318531 i = 34 x = 0.14544253 h = 0.00456625 b =6.28318531 i = 35 x = 0.15001028 h = 0.00456775 b =6.28318531 i = 36 x = 0.15457957 h = 0.00456929 b =6.28318531 i = 37 x = 0.15915046 h = 0.00457089 b =6.28318531 i = 38 x = 0.16372299 h = 0.00457253 b =6.28318531 i = 39 x = 0.16829721 h = 0.00457422 b =6.28318531 i = 40 x = 0.17287318 h = 0.00457597 b =6.28318531 i = 41 x = 0.17745094 h = 0.00457776 b =6.28318531 i = 42 x = 0.18203056 h = 0.00457961 b =6.28318531 i = 43 x = 0.18661206 h = 0.00458151 b =6.28318531 i = 44 x = 0.19119552 h = 0.00458346 b =6.28318531 i = 45 x = 0.19578097 h = 0.00458546 b =6.28318531 i = 46 x = 0.20036848 h = 0.00458751 b =6.28318531 i = 47 x = 0.20495809 h = 0.00458961 b =6.28318531 i = 48 x = 0.20954986 h = 0.00459177 b =6.28318531 i = 49 x = 0.21414383 h = 0.00459398 b =6.28318531 i = 50 x = 0.21874007 h = 0.00459624 b =6.28318531 i = 51 x = 0.22333862 h = 0.00459855 b =6.28318531 i = 52 x = 0.22793954 h = 0.00460092 b =6.28318531 i = 53 x = 0.23254288 h = 0.00460334 b =6.28318531 i = 54 x = 0.23714869 h = 0.00460581 b =6.28318531 i = 55 x = 0.24175704 h = 0.00460834 b =6.28318531 i = 56 x = 0.24636797 h = 0.00461093 b =6.28318531 i = 57 x = 0.25098153 h = 0.00461357 b =6.28318531 i = 58 x = 0.25559779 h = 0.00461626 b =6.28318531 i = 59 x = 0.26021681 h = 0.00461901 b =6.28318531 i = 60 x = 0.26483862 h = 0.00462182 b =6.28318531 i = 61 x = 0.26946330 h = 0.00462468 b =6.28318531 i = 62 x = 0.27409090 h = 0.00462760 b =6.28318531 i = 63 x = 0.27872147 h = 0.00463057 b =6.28318531 i = 64 x = 0.28335507 h = 0.00463361 b =6.28318531 i = 65 x = 0.28799177 h = 0.00463670 b =6.28318531 i = 66 x = 0.29263161 h = 0.00463984 b =6.28318531 i = 67 x = 0.29727467 h = 0.00464305 b =6.28318531 i = 68 x = 0.30192098 h = 0.00464632 b =6.28318531 i = 69 x = 0.30657063 h = 0.00464964 b =6.28318531 i = 70 x = 0.31122366 h = 0.00465303 b =6.28318531 i = 71 x = 0.31588014 h = 0.00465648 b =6.28318531 i = 72 x = 0.32054012 h = 0.00465998 b =6.28318531 i = 73 x = 0.32520367 h = 0.00466355 b =6.28318531 i = 74 x = 0.32987085 h = 0.00466718 b =6.28318531 i = 75 x = 0.33454172 h = 0.00467087 b =6.28318531 i = 76 x = 0.33921635 h = 0.00467463 b =6.28318531 i = 77 x = 0.34389480 h = 0.00467845 b =6.28318531 i = 78 x = 0.34857713 h = 0.00468233 b =6.28318531 i = 79 x = 0.35326340 h = 0.00468628 b =6.28318531 i = 80 x = 0.35795369 h = 0.00469029 b =6.28318531 i = 81 x = 0.36264805 h = 0.00469436 b =6.28318531 i = 82 x = 0.36734656 h = 0.00469851 b =6.28318531 i = 83 x = 0.37204928 h = 0.00470272 b =6.28318531 i = 84 x = 0.37675627 h = 0.00470699 b =6.28318531 i = 85 x = 0.38146761 h = 0.00471134 b =6.28318531 i = 86 x = 0.38618336 h = 0.00471575 b =6.28318531 i = 87 x = 0.39090359 h = 0.00472023 b =6.28318531 i = 88 x = 0.39562837 h = 0.00472478 b =6.28318531 i = 89 x = 0.40035778 h = 0.00472941 b =6.28318531 i = 90 x = 0.40509188 h = 0.00473410 b =6.28318531 i = 91 x = 0.40983075 h = 0.00473887 b =6.28318531 i = 92 x = 0.41457445 h = 0.00474370 b =6.28318531 i = 93 x = 0.41932307 h = 0.00474862 b =6.28318531 i = 94 x = 0.42407667 h = 0.00475360 b =6.28318531 i = 95 x = 0.42883533 h = 0.00475866 b =6.28318531 i = 96 x = 0.43359912 h = 0.00476380 b =6.28318531 i = 97 x = 0.43836813 h = 0.00476901 b =6.28318531 i = 98 x = 0.44314243 h = 0.00477430 b =6.28318531 i = 99 x = 0.44792210 h = 0.00477967 b =6.28318531 i = 100 x = 0.45270721 h = 0.00478511 b =6.28318531 i = 101 x = 0.45749785 h = 0.00479064 b =6.28318531 i = 102 x = 0.46229410 h = 0.00479625 b =6.28318531 i = 103 x = 0.46709603 h = 0.00480194 b =6.28318531 i = 104 x = 0.47190374 h = 0.00480771 b =6.28318531 i = 105 x = 0.47671730 h = 0.00481356 b =6.28318531 i = 106 x = 0.48153680 h = 0.00481950 b =6.28318531 i = 107 x = 0.48636233 h = 0.00482553 b =6.28318531 i = 108 x = 0.49119397 h = 0.00483164 b =6.28318531 i = 109 x = 0.49603181 h = 0.00483784 b =6.28318531 i = 110 x = 0.50087593 h = 0.00484413 b =6.28318531 i = 111 x = 0.50572644 h = 0.00485050 b =6.28318531 i = 112 x = 0.51058341 h = 0.00485697 b =6.28318531 i = 113 x = 0.51544695 h = 0.00486353 b =6.28318531 i = 114 x = 0.52031713 h = 0.00487019 b =6.28318531 i = 115 x = 0.52519407 h = 0.00487694 b =6.28318531 i = 116 x = 0.53007785 h = 0.00488378 b =6.28318531 i = 117 x = 0.53496858 h = 0.00489072 b =6.28318531 i = 118 x = 0.53986634 h = 0.00489776 b =6.28318531 i = 119 x = 0.54477124 h = 0.00490490 b =6.28318531 i = 120 x = 0.54968338 h = 0.00491214 b =6.28318531 i = 121 x = 0.55460287 h = 0.00491949 b =6.28318531 i = 122 x = 0.55952980 h = 0.00492693 b =6.28318531 i = 123 x = 0.56446429 h = 0.00493448 b =6.28318531 i = 124 x = 0.56940643 h = 0.00494214 b =6.28318531 i = 125 x = 0.57435634 h = 0.00494991 b =6.28318531 i = 126 x = 0.57931413 h = 0.00495779 b =6.28318531 i = 127 x = 0.58427990 h = 0.00496578 b =6.28318531 i = 128 x = 0.58925378 h = 0.00497388 b =6.28318531 i = 129 x = 0.59423587 h = 0.00498209 b =6.28318531 i = 130 x = 0.59922630 h = 0.00499043 b =6.28318531 i = 131 x = 0.60422518 h = 0.00499888 b =6.28318531 i = 132 x = 0.60923263 h = 0.00500745 b =6.28318531 i = 133 x = 0.61424877 h = 0.00501614 b =6.28318531 i = 134 x = 0.61927373 h = 0.00502496 b =6.28318531 i = 135 x = 0.62430764 h = 0.00503391 b =6.28318531 i = 136 x = 0.62935062 h = 0.00504298 b =6.28318531 i = 137 x = 0.63440280 h = 0.00505218 b =6.28318531 i = 138 x = 0.63946431 h = 0.00506151 b =6.28318531 i = 139 x = 0.64453529 h = 0.00507098 b =6.28318531 i = 140 x = 0.64961588 h = 0.00508059 b =6.28318531 i = 141 x = 0.65470622 h = 0.00509033 b =6.28318531 i = 142 x = 0.65980643 h = 0.00510022 b =6.28318531 i = 143 x = 0.66491668 h = 0.00511025 b =6.28318531 i = 144 x = 0.67003711 h = 0.00512042 b =6.28318531 i = 145 x = 0.67516786 h = 0.00513075 b =6.28318531 i = 146 x = 0.68030908 h = 0.00514123 b =6.28318531 i = 147 x = 0.68546094 h = 0.00515186 b =6.28318531 i = 148 x = 0.69062358 h = 0.00516264 b =6.28318531 i = 149 x = 0.69579718 h = 0.00517359 b =6.28318531 i = 150 x = 0.70098188 h = 0.00518470 b =6.28318531 i = 151 x = 0.70617786 h = 0.00519598 b =6.28318531 i = 152 x = 0.71138529 h = 0.00520743 b =6.28318531 i = 153 x = 0.71660434 h = 0.00521905 b =6.28318531 i = 154 x = 0.72183518 h = 0.00523084 b =6.28318531 i = 155 x = 0.72707799 h = 0.00524281 b =6.28318531 i = 156 x = 0.73233296 h = 0.00525497 b =6.28318531 i = 157 x = 0.73760027 h = 0.00526731 b =6.28318531 i = 158 x = 0.74288012 h = 0.00527985 b =6.28318531 i = 159 x = 0.74817269 h = 0.00529257 b =6.28318531 i = 160 x = 0.75347819 h = 0.00530550 b =6.28318531 i = 161 x = 0.75879681 h = 0.00531862 b =6.28318531 i = 162 x = 0.76412877 h = 0.00533196 b =6.28318531 i = 163 x = 0.76947427 h = 0.00534550 b =6.28318531 i = 164 x = 0.77483354 h = 0.00535926 b =6.28318531 i = 165 x = 0.78020678 h = 0.00537324 b =6.28318531 i = 166 x = 0.78559423 h = 0.00538745 b =6.28318531 i = 167 x = 0.79099141 h = 0.00539718 b =6.28318531 i = 168 x = 0.79638303 h = 0.00539162 b =6.28318531 i = 169 x = 0.80175680 h = 0.00537377 b =6.28318531 i = 170 x = 0.80711792 h = 0.00536112 b =6.28318531 i = 171 x = 0.81246464 h = 0.00534672 b =6.28318531 i = 172 x = 0.81779796 h = 0.00533333 b =6.28318531 i = 173 x = 0.82311779 h = 0.00531983 b =6.28318531 i = 174 x = 0.82842446 h = 0.00530667 b =6.28318531 i = 175 x = 0.83371812 h = 0.00529366 b =6.28318531 i = 176 x = 0.83899899 h = 0.00528087 b =6.28318531 i = 177 x = 0.84426726 h = 0.00526827 b =6.28318531 i = 178 x = 0.84952313 h = 0.00525587 b =6.28318531 i = 179 x = 0.85476678 h = 0.00524365 b =6.28318531 i = 180 x = 0.85999840 h = 0.00523162 b =6.28318531 i = 181 x = 0.86521817 h = 0.00521977 b =6.28318531 i = 182 x = 0.87042626 h = 0.00520809 b =6.28318531 i = 183 x = 0.87562286 h = 0.00519659 b =6.28318531 i = 184 x = 0.88080812 h = 0.00518527 b =6.28318531 i = 185 x = 0.88598223 h = 0.00517410 b =6.28318531 i = 186 x = 0.89114533 h = 0.00516311 b =6.28318531 i = 187 x = 0.89629761 h = 0.00515227 b =6.28318531 i = 188 x = 0.90143920 h = 0.00514160 b =6.28318531 i = 189 x = 0.90657028 h = 0.00513107 b =6.28318531 i = 190 x = 0.91169098 h = 0.00512071 b =6.28318531 i = 191 x = 0.91680147 h = 0.00511049 b =6.28318531 i = 192 x = 0.92190189 h = 0.00510042 b =6.28318531 i = 193 x = 0.92699238 h = 0.00509049 b =6.28318531 i = 194 x = 0.93207309 h = 0.00508071 b =6.28318531 i = 195 x = 0.93714416 h = 0.00507107 b =6.28318531 i = 196 x = 0.94220572 h = 0.00506156 b =6.28318531 i = 197 x = 0.94725791 h = 0.00505219 b =6.28318531 i = 198 x = 0.95230087 h = 0.00504296 b =6.28318531 i = 199 x = 0.95733472 h = 0.00503385 b =6.28318531 i = 200 x = 0.96235959 h = 0.00502487 b =6.28318531 i = 201 x = 0.96737561 h = 0.00501602 b =6.28318531 i = 202 x = 0.97238291 h = 0.00500730 b =6.28318531 i = 203 x = 0.97738161 h = 0.00499870 b =6.28318531 i = 204 x = 0.98237183 h = 0.00499022 b =6.28318531 i = 205 x = 0.98735368 h = 0.00498186 b =6.28318531 i = 206 x = 0.99232729 h = 0.00497361 b =6.28318531 i = 207 x = 0.99729278 h = 0.00496548 b =6.28318531 i = 208 x = 1.00225025 h = 0.00495747 b =6.28318531 i = 209 x = 1.00719981 h = 0.00494957 b =6.28318531 i = 210 x = 1.01214159 h = 0.00494177 b =6.28318531 i = 211 x = 1.01707568 h = 0.00493409 b =6.28318531 i = 212 x = 1.02200220 h = 0.00492652 b =6.28318531 i = 213 x = 1.02692124 h = 0.00491905 b =6.28318531 i = 214 x = 1.03183292 h = 0.00491168 b =6.28318531 i = 215 x = 1.03673734 h = 0.00490442 b =6.28318531 i = 216 x = 1.04163460 h = 0.00489726 b =6.28318531 i = 217 x = 1.04652480 h = 0.00489020 b =6.28318531 i = 218 x = 1.05140804 h = 0.00488324 b =6.28318531 i = 219 x = 1.05628441 h = 0.00487637 b =6.28318531 i = 220 x = 1.06115402 h = 0.00486961 b =6.28318531 i = 221 x = 1.06601695 h = 0.00486293 b =6.28318531 i = 222 x = 1.07087330 h = 0.00485635 b =6.28318531 i = 223 x = 1.07572317 h = 0.00484987 b =6.28318531 i = 224 x = 1.08056664 h = 0.00484347 b =6.28318531 i = 225 x = 1.08540381 h = 0.00483717 b =6.28318531 i = 226 x = 1.09023476 h = 0.00483095 b =6.28318531 i = 227 x = 1.09505959 h = 0.00482482 b =6.28318531 i = 228 x = 1.09987837 h = 0.00481878 b =6.28318531 i = 229 x = 1.10469120 h = 0.00481283 b =6.28318531 i = 230 x = 1.10949816 h = 0.00480696 b =6.28318531 i = 231 x = 1.11429933 h = 0.00480117 b =6.28318531 i = 232 x = 1.11909480 h = 0.00479547 b =6.28318531 i = 233 x = 1.12388465 h = 0.00478985 b =6.28318531 i = 234 x = 1.12866896 h = 0.00478431 b =6.28318531 i = 235 x = 1.13344781 h = 0.00477885 b =6.28318531 i = 236 x = 1.13822128 h = 0.00477347 b =6.28318531 i = 237 x = 1.14298944 h = 0.00476817 b =6.28318531 i = 238 x = 1.14775239 h = 0.00476294 b =6.28318531 i = 239 x = 1.15251018 h = 0.00475779 b =6.28318531 i = 240 x = 1.15726290 h = 0.00475272 b =6.28318531 i = 241 x = 1.16201063 h = 0.00474773 b =6.28318531 i = 242 x = 1.16675343 h = 0.00474280 b =6.28318531 i = 243 x = 1.17149139 h = 0.00473795 b =6.28318531 i = 244 x = 1.17622456 h = 0.00473318 b =6.28318531 i = 245 x = 1.18095304 h = 0.00472847 b =6.28318531 i = 246 x = 1.18567688 h = 0.00472384 b =6.28318531 i = 247 x = 1.19039616 h = 0.00471928 b =6.28318531 i = 248 x = 1.19511095 h = 0.00471479 b =6.28318531 i = 249 x = 1.19982131 h = 0.00471037 b =6.28318531 i = 250 x = 1.20452732 h = 0.00470601 b =6.28318531 i = 251 x = 1.20922905 h = 0.00470173 b =6.28318531 i = 252 x = 1.21392655 h = 0.00469751 b =6.28318531 i = 253 x = 1.21861991 h = 0.00469336 b =6.28318531 i = 254 x = 1.22330918 h = 0.00468927 b =6.28318531 i = 255 x = 1.22799443 h = 0.00468525 b =6.28318531 i = 256 x = 1.23267573 h = 0.00468130 b =6.28318531 i = 257 x = 1.23735313 h = 0.00467741 b =6.28318531 i = 258 x = 1.24202671 h = 0.00467358 b =6.28318531 i = 259 x = 1.24669653 h = 0.00466982 b =6.28318531 i = 260 x = 1.25136264 h = 0.00466612 b =6.28318531 i = 261 x = 1.25602512 h = 0.00466248 b =6.28318531 i = 262 x = 1.26068403 h = 0.00465890 b =6.28318531 i = 263 x = 1.26533942 h = 0.00465539 b =6.28318531 i = 264 x = 1.26999135 h = 0.00465194 b =6.28318531 i = 265 x = 1.27463990 h = 0.00464854 b =6.28318531 i = 266 x = 1.27928511 h = 0.00464521 b =6.28318531 i = 267 x = 1.28392705 h = 0.00464194 b =6.28318531 i = 268 x = 1.28856577 h = 0.00463872 b =6.28318531 i = 269 x = 1.29320134 h = 0.00463557 b =6.28318531 i = 270 x = 1.29783381 h = 0.00463247 b =6.28318531 i = 271 x = 1.30246324 h = 0.00462943 b =6.28318531 i = 272 x = 1.30708970 h = 0.00462645 b =6.28318531 i = 273 x = 1.31171322 h = 0.00462353 b =6.28318531 i = 274 x = 1.31633388 h = 0.00462066 b =6.28318531 i = 275 x = 1.32095173 h = 0.00461785 b =6.28318531 i = 276 x = 1.32556682 h = 0.00461509 b =6.28318531 i = 277 x = 1.33017921 h = 0.00461239 b =6.28318531 i = 278 x = 1.33478896 h = 0.00460975 b =6.28318531 i = 279 x = 1.33939612 h = 0.00460716 b =6.28318531 i = 280 x = 1.34400074 h = 0.00460462 b =6.28318531 i = 281 x = 1.34860289 h = 0.00460214 b =6.28318531 i = 282 x = 1.35320260 h = 0.00459972 b =6.28318531 i = 283 x = 1.35779995 h = 0.00459734 b =6.28318531 i = 284 x = 1.36239497 h = 0.00459502 b =6.28318531 i = 285 x = 1.36698773 h = 0.00459276 b =6.28318531 i = 286 x = 1.37157827 h = 0.00459054 b =6.28318531 i = 287 x = 1.37616666 h = 0.00458838 b =6.28318531 i = 288 x = 1.38075293 h = 0.00458628 b =6.28318531 i = 289 x = 1.38533715 h = 0.00458422 b =6.28318531 i = 290 x = 1.38991936 h = 0.00458221 b =6.28318531 i = 291 x = 1.39449962 h = 0.00458026 b =6.28318531 i = 292 x = 1.39907798 h = 0.00457836 b =6.28318531 i = 293 x = 1.40365449 h = 0.00457651 b =6.28318531 i = 294 x = 1.40822920 h = 0.00457471 b =6.28318531 i = 295 x = 1.41280216 h = 0.00457296 b =6.28318531 i = 296 x = 1.41737342 h = 0.00457126 b =6.28318531 i = 297 x = 1.42194303 h = 0.00456961 b =6.28318531 i = 298 x = 1.42651104 h = 0.00456801 b =6.28318531 i = 299 x = 1.43107751 h = 0.00456646 b =6.28318531 i = 300 x = 1.43564247 h = 0.00456497 b =6.28318531 i = 301 x = 1.44020599 h = 0.00456352 b =6.28318531 i = 302 x = 1.44476810 h = 0.00456212 b =6.28318531 i = 303 x = 1.44932887 h = 0.00456077 b =6.28318531 i = 304 x = 1.45388833 h = 0.00455946 b =6.28318531 i = 305 x = 1.45844654 h = 0.00455821 b =6.28318531 i = 306 x = 1.46300355 h = 0.00455701 b =6.28318531 i = 307 x = 1.46755940 h = 0.00455585 b =6.28318531 i = 308 x = 1.47211414 h = 0.00455474 b =6.28318531 i = 309 x = 1.47666782 h = 0.00455368 b =6.28318531 i = 310 x = 1.48122049 h = 0.00455267 b =6.28318531 i = 311 x = 1.48577220 h = 0.00455171 b =6.28318531 i = 312 x = 1.49032300 h = 0.00455079 b =6.28318531 i = 313 x = 1.49487292 h = 0.00454993 b =6.28318531 i = 314 x = 1.49942203 h = 0.00454911 b =6.28318531 i = 315 x = 1.50397037 h = 0.00454834 b =6.28318531 i = 316 x = 1.50851798 h = 0.00454761 b =6.28318531 i = 317 x = 1.51306491 h = 0.00454693 b =6.28318531 i = 318 x = 1.51761122 h = 0.00454631 b =6.28318531 i = 319 x = 1.52215694 h = 0.00454572 b =6.28318531 i = 320 x = 1.52670213 h = 0.00454519 b =6.28318531 i = 321 x = 1.53124683 h = 0.00454470 b =6.28318531 i = 322 x = 1.53579109 h = 0.00454426 b =6.28318531 i = 323 x = 1.54033496 h = 0.00454387 b =6.28318531 i = 324 x = 1.54487848 h = 0.00454352 b =6.28318531 i = 325 x = 1.54942170 h = 0.00454322 b =6.28318531 i = 326 x = 1.55396467 h = 0.00454297 b =6.28318531 i = 327 x = 1.55850743 h = 0.00454276 b =6.28318531 i = 328 x = 1.56305004 h = 0.00454260 b =6.28318531 i = 329 x = 1.56759253 h = 0.00454249 b =6.28318531 i = 330 x = 1.57213496 h = 0.00454243 b =6.28318531 i = 331 x = 1.57667737 h = 0.00454241 b =6.28318531 i = 332 x = 1.58121981 h = 0.00454244 b =6.28318531 i = 333 x = 1.58576232 h = 0.00454251 b =6.28318531 i = 334 x = 1.59030496 h = 0.00454264 b =6.28318531 i = 335 x = 1.59484776 h = 0.00454281 b =6.28318531 i = 336 x = 1.59939079 h = 0.00454302 b =6.28318531 i = 337 x = 1.60393407 h = 0.00454329 b =6.28318531 i = 338 x = 1.60847767 h = 0.00454360 b =6.28318531 i = 339 x = 1.61302163 h = 0.00454395 b =6.28318531 i = 340 x = 1.61756598 h = 0.00454436 b =6.28318531 i = 341 x = 1.62211079 h = 0.00454481 b =6.28318531 i = 342 x = 1.62665610 h = 0.00454531 b =6.28318531 i = 343 x = 1.63120196 h = 0.00454585 b =6.28318531 i = 344 x = 1.63574841 h = 0.00454645 b =6.28318531 i = 345 x = 1.64029549 h = 0.00454709 b =6.28318531 i = 346 x = 1.64484327 h = 0.00454778 b =6.28318531 i = 347 x = 1.64939178 h = 0.00454851 b =6.28318531 i = 348 x = 1.65394107 h = 0.00454929 b =6.28318531 i = 349 x = 1.65849120 h = 0.00455012 b =6.28318531 i = 350 x = 1.66304220 h = 0.00455100 b =6.28318531 i = 351 x = 1.66759413 h = 0.00455193 b =6.28318531 i = 352 x = 1.67214703 h = 0.00455290 b =6.28318531 i = 353 x = 1.67670095 h = 0.00455392 b =6.28318531 i = 354 x = 1.68125594 h = 0.00455499 b =6.28318531 i = 355 x = 1.68581206 h = 0.00455611 b =6.28318531 i = 356 x = 1.69036933 h = 0.00455728 b =6.28318531 i = 357 x = 1.69492783 h = 0.00455849 b =6.28318531 i = 358 x = 1.69948759 h = 0.00455976 b =6.28318531 i = 359 x = 1.70404866 h = 0.00456107 b =6.28318531 i = 360 x = 1.70861109 h = 0.00456243 b =6.28318531 i = 361 x = 1.71317493 h = 0.00456384 b =6.28318531 i = 362 x = 1.71774024 h = 0.00456530 b =6.28318531 i = 363 x = 1.72230705 h = 0.00456681 b =6.28318531 i = 364 x = 1.72687542 h = 0.00456837 b =6.28318531 i = 365 x = 1.73144541 h = 0.00456998 b =6.28318531 i = 366 x = 1.73601705 h = 0.00457164 b =6.28318531 i = 367 x = 1.74059040 h = 0.00457335 b =6.28318531 i = 368 x = 1.74516551 h = 0.00457511 b =6.28318531 i = 369 x = 1.74974243 h = 0.00457692 b =6.28318531 i = 370 x = 1.75432121 h = 0.00457878 b =6.28318531 i = 371 x = 1.75890191 h = 0.00458070 b =6.28318531 i = 372 x = 1.76348457 h = 0.00458266 b =6.28318531 i = 373 x = 1.76806925 h = 0.00458468 b =6.28318531 i = 374 x = 1.77265599 h = 0.00458674 b =6.28318531 i = 375 x = 1.77724485 h = 0.00458886 b =6.28318531 i = 376 x = 1.78183588 h = 0.00459103 b =6.28318531
docs/notebooks/03_cells_autoname_and_cache.ipynb
###Markdown CellProblem:In GDS format- each cell must have a unique name. Ideally the name is also consitent from different run times, in case you want to merge GDS files that were created at different times or computers.- two cells stored in the GDS file cannot have the same name. Ideally they will be references to the same Cell. See `References tutorial`. That way we only have to store that cell in memory once and all the references are just pointers to that cell.- GDS cells info: - `changed` used to create the cell - `default` in function signature - `full` full settings - name - function_name - module - child: (if any) - simulation, testing, data analysis, derived properties (for example path length of the bend) ...Solution: The decorator `@gf.cell` addresses all these issues:1. Gives the cell a unique name depending on the parameters that you pass to it.2. Creates a cache of cells where we use the cell name as the key. The first time the function runs, the cache stores the component, so the second time, you get the component directly from the cache, so you don't create the same cell twice.For creating new Components you need to create them inside a function, and to make sure that the component gets a good name you just need to add the `@cell` decoratorLets see how it works ###Code import gdsfactory as gf @gf.cell def wg(length=10, width=1): print("BUILDING waveguide") c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) c.add_port(name="o1", midpoint=[0, width / 2], width=width, orientation=180) c.add_port(name="o2", midpoint=[length, width / 2], width=width, orientation=0) return c ###Output _____no_output_____ ###Markdown See how the cells get the name from the parameters that you pass them ###Code c = wg() print(c) # The second time you will get this cell from the cache c = wg() print(c) # If you call the cell with different parameters, the cell will get a different name c = wg(width=0.5) print(c) c.info.changed c.info.full c.info.default c.pprint() ###Output _____no_output_____ ###Markdown thanks to `gf.cell` you can also add any metadata `info` relevant to the cell ###Code c = wg(length=3, info=dict(polarization="te", wavelength=1.55)) c.pprint() print(c.info.wavelength) ###Output _____no_output_____ ###Markdown MetadataTogether with the GDS files that you send to the foundry you can also store some metadata in YAML for each cell containing all the settings that we used to build the GDS.the metadata will consists of all the parameters that were passed to the component function as well as derived properties- info: includes all component metadata - derived properties - external metadata (test_protocol, docs, ...) - simulation_settings - function_name - name: for the component - name_long: for the component - full: full list of settings - changed: changed settings - default: includes the default signature of the component- ports: port name, width, orientation How can you have add two different references to a cell with the same parameters? ###Code import gdsfactory as gf c = gf.Component("problem") R1 = gf.components.rectangle( size=(4, 2), layer=(0, 0) ) # Creates a rectangle (same Unique ID uid) R2 = gf.components.rectangle(size=(4, 2), layer=(0, 0)) # Try Create a new rectangle that we want to change (but has the same name so we will get R1 from the cache) r1r = c << R1 # Add the first rectangle to c r2r = c << R2 # Add the second rectangle to c r2r.move((4, 2)) c print(R1 == R2) print(R1) print(R2) # lets do it cleaner with references import gdsfactory as gf c = gf.Component("solution") R = gf.components.rectangle(size=(4, 2), layer=(0, 0)) r1 = c << R # Add the first rectangle reference to c r2 = c << R # Add the second rectangle reference to c r2.rotate(45) c import gdsfactory as gf c = gf.components.straight() c.show() c.plot() ###Output _____no_output_____ ###Markdown We can even show ports of all references with `component.show(show_subports=True)` ###Code c = gf.components.mzi_phase_shifter(length_x=50) c ###Output _____no_output_____ ###Markdown CacheTo avoid that 2 exact cells are not references of the same cell the `cell` decorator has acache where if a component has already been built it will return the componentfrom the cache ###Code @gf.cell def wg(length=10, width=1): c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) print("BUILDING waveguide") return c gf.clear_cache() wg1 = wg() # cell builds a straight print(wg1) wg2 = wg() # cell returns the same straight as before without having to run the function print(wg2) # notice that they have the same uuid (unique identifier) wg2.plot() from gdsfactory.cell import print_cache ###Output _____no_output_____ ###Markdown Lets say that you change the code of the straight function in a jupyter notebook like this one. (I mostly use Vim/VsCode/Pycharm for creating new cells in python) ###Code print_cache() wg3 = wg() wg4 = wg(length=11) print_cache() gf.clear_cache() ###Output _____no_output_____ ###Markdown To enable nice notebook tutorials, every time we show a cell in Matplotlib or Klayout, you can clear the cache,in case you want to develop cells in jupyter notebooks or an IPython kernel ###Code print_cache() # cache is now empty ###Output _____no_output_____ ###Markdown Validate argument typesBy default, also `@cell` validates arguments based on their type annotations.To make sure you pass the correct arguments to the cell it runs a validator that checks the type annotations for the function.For example this will be correct```pythonimport gdsfactory as [email protected] straigth_waveguide(length:float): return gf.components.straight(length=length)component = straigth_waveguide(length=3)```While this will raise an error, because you are passing a length that is a string, so it cannot convert it to a float```pythonimport gdsfactory as [email protected] straigth_waveguide(length:float): return gf.components.straight(length=length)component = straigth_waveguide(length='long')```by default `@cell` validates all arguments using [pydantic](https://pydantic-docs.helpmanual.io/usage/validation_decorator/argument-types) ###Code @gf.cell def straigth_waveguide(length: float): print(type(length)) return gf.components.straight(length=length) # It will also convert an `int` to a `float` straigth_waveguide(3) ###Output _____no_output_____ ###Markdown Parametric CellsProblem:In GDS format- each component must have a unique name. Ideally the name is also consitent from different run times, in case you want to merge GDS files that were created at different times or computers.- two components stored in the GDS file cannot have the same name. Ideally they will be references to the same component. See `References tutorial`. That way we only have to store that component in memory once and all the references are just pointers to that component.Solution: The decorator `@gf.cell` addresses all these issues:1. Gives the component a unique name depending on the parameters that you pass to it.2. Creates a cache of components where we use the name as the key. The first time the function runs, the cache stores the component, so the second time, you get the component directly from the cache, so you don't create the same component twice.Also, thanks to the @cell decorator, GDS cells in gdsfactory include an `metadata` dictionary where you can access all component settings:- `changed` settings used to create the component- `default` settings in function signature- `full` full settings- name- function_name- module`@cell` comes from PCell `parametric cell` that returns a different Component depending on the input parameters.Make sure that your components get good names by adding the `@cell` decorator to that each function that returns a component.Lets see how it works. ###Code import gdsfactory as gf # gf.CONF.plotter = 'holoviews' @gf.cell def wg(length=10, width=1, layer=(1, 0)): print("BUILDING waveguide") c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=layer) c.add_port( name="o1", midpoint=[0, width / 2], width=width, orientation=180, layer=layer ) c.add_port( name="o2", midpoint=[length, width / 2], width=width, orientation=0, layer=layer ) return c ###Output _____no_output_____ ###Markdown See how the cells get the name from the parameters that you pass them ###Code c = wg() print(c) # The second time you will get this cell from the cache c = wg() print(c) # If you call the cell with different parameters, the cell will get a different name c = wg(width=0.5) print(c) ###Output _____no_output_____ ###Markdown Sometimes when you are changing the inside code of the function, you need to **ignore** the cache.you can pass `cache=False` ###Code c = wg(cache=False) c.metadata.changed c.metadata.default c.metadata.full c.pprint() ###Output _____no_output_____ ###Markdown thanks to `gf.cell` you can also add any metadata `info` relevant to the cell ###Code c = wg(length=3, info=dict(polarization="te", wavelength=1.55)) c.pprint() print(c.metadata.info.wavelength) ###Output _____no_output_____ ###Markdown MetadataTogether with the GDS files that you send to the foundry you can also store some metadata in YAML for each cell containing all the settings that we used to build the GDS.the metadata will consists of all the parameters that were passed to the component function as well as derived properties- settings: includes all component metadata - derived properties - external metadata (test_protocol, docs, ...) - simulation_settings - function_name - name: for the component - name_long: for the component - full: full list of settings - changed: changed settings - default: includes the default signature of the component- ports: port name, width, orientation How can you have add two different references to a cell with the same parameters? ###Code import gdsfactory as gf c = gf.Component("problem") R1 = gf.components.rectangle( size=(4, 2), layer=(2, 0) ) # Creates a rectangle (same Unique ID uid) R2 = gf.components.rectangle(size=(4, 2), layer=(3, 0)) # Try Create a new rectangle that we want to change (but has the same name so we will get R1 from the cache) r1r = c << R1 # Add the first rectangle to c r2r = c << R2 # Add the second rectangle to c r2r.move((4, 2)) c print(R1 == R2) print(R1) print(R2) # lets do it cleaner with references import gdsfactory as gf c = gf.Component("solution") R = gf.components.rectangle(size=(4, 2), layer=(2, 0)) r1 = c << R # Add the first rectangle reference to c r2 = c << R # Add the second rectangle reference to c r2.rotate(45) c import gdsfactory as gf c = gf.components.straight() c.show() c ###Output _____no_output_____ ###Markdown We can even show ports of all references with `component.show(show_subports=True)` ###Code c = gf.components.mzi_phase_shifter(length_x=50) c ###Output _____no_output_____ ###Markdown CacheTo avoid that 2 exact cells are not references of the same cell the `cell` decorator has acache where if a component has already been built it will return the componentfrom the cache ###Code @gf.cell def wg(length=10, width=1): c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) print("BUILDING waveguide") return c gf.clear_cache() wg1 = wg() # cell builds a straight print(wg1) wg2 = wg() # cell returns the same straight as before without having to run the function print(wg2) # notice that they have the same uuid (unique identifier) wg2 from gdsfactory.cell import print_cache ###Output _____no_output_____ ###Markdown Lets say that you change the code of the straight function in a jupyter notebook like this one. (I mostly use Vim/VsCode/Pycharm for creating new cells in python) ###Code print_cache() wg3 = wg() wg4 = wg(length=11) print_cache() gf.clear_cache() ###Output _____no_output_____ ###Markdown To enable nice notebook tutorials, every time we show a cell in Matplotlib or Klayout, you can clear the cache,in case you want to develop cells in jupyter notebooks or an IPython kernel ###Code print_cache() # cache is now empty ###Output _____no_output_____ ###Markdown Validate argument typesBy default, also `@cell` validates arguments based on their type annotations.To make sure you pass the correct arguments to the cell function it runs a validator that checks the type annotations for the function.For example this will be correct```pythonimport gdsfactory as [email protected] straigth_waveguide(length:float): return gf.components.straight(length=length)component = straigth_waveguide(length=3)```While this will raise an error, because you are passing a length that is a string, so it cannot convert it to a float```pythoncomponent = straigth_waveguide(length='long')``````bashValidationError: 1 validation error for StraigthWaveguidelength value is not a valid float (type=type_error.float)```by default `@cell` validates all arguments using [pydantic](https://pydantic-docs.helpmanual.io/usage/validation_decorator/argument-types) ###Code @gf.cell def straigth_waveguide(length: float): print(type(length)) return gf.components.straight(length=length) # It will also convert an `int` to a `float` c = straigth_waveguide(length=3) ###Output _____no_output_____ ###Markdown CellProblem:In GDS format- each component must have a unique name. Ideally the name is also consitent from different run times, in case you want to merge GDS files that were created at different times or computers.- two components stored in the GDS file cannot have the same name. Ideally they will be references to the same component. See `References tutorial`. That way we only have to store that component in memory once and all the references are just pointers to that component.Solution: The decorator `@gf.cell` for Parametric cell functions:1. Gives the component a unique name depending on the parameters that you pass to it.2. Creates a cache of components where we use the name as the key. The first time the function runs, the cache stores the component, so the second time, you get the component directly from the cache, so you don't create the same component twice.Also, thanks to the `@cell` decorator, GDS cells in gdsfactory include an `metadata` dictionary where you can access all component settings:- `changed` settings used to create the component- `default` settings in function signature- `full` full settings- name- function_name- module`@cell` comes from PCell `parametric cell`, where the function returns a different Component depending on the input parameters.Make sure that your components get good names by adding the `@cell` decorator to that each function that returns a Component.A decorator is a function that runs over a function, so when you do ```import gdsfactory as [email protected] mzi_with_bend() -> gf.Component: c = gf.Component() mzi = c << gf.components.mzi() bend = c << gf.components.bend_euler() return c ```it's equivalent to Lets see how it works. ###Code import gdsfactory as gf def mzi_with_bend(radius:float=10.) -> gf.Component: c = gf.Component() mzi = c << gf.components.mzi() bend = c << gf.components.bend_euler(radius=radius) bend.connect('o1', mzi.ports['o2']) return c c = mzi_with_bend() print(f'this cell {c.name!r} does NOT get automatic name') c mzi_with_bend_decorated = gf.cell(mzi_with_bend) c = mzi_with_bend_decorated(radius = 10) print(f'this cell {c.name!r} gets automatic name thanks to the `cell` decorator') c @gf.cell def mzi_with_bend(radius:float=10.) -> gf.Component: c = gf.Component() mzi = c << gf.components.mzi() bend = c << gf.components.bend_euler(radius=radius) bend.connect('o1', mzi.ports['o2']) return c print(f'this cell {c.name!r} gets automatic name thanks to the `cell` decorator') c import gdsfactory as gf # gf.CONF.plotter = 'holoviews' @gf.cell def wg(length=10, width=1, layer=(1, 0)): print("BUILDING waveguide") c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=layer) c.add_port( name="o1", midpoint=[0, width / 2], width=width, orientation=180, layer=layer ) c.add_port( name="o2", midpoint=[length, width / 2], width=width, orientation=0, layer=layer ) return c ###Output _____no_output_____ ###Markdown See how the cells get the name from the parameters that you pass them ###Code c = wg() print(c) # The second time you will get this cell from the cache c = wg() print(c) # If you call the cell with different parameters, the cell gets a different name c = wg(width=0.5) print(c) ###Output _____no_output_____ ###Markdown Sometimes when you are changing the inside code of the function, you need to use `cache=False` to **ignore** the cache. ###Code c = wg(cache=False) c.metadata.changed c.metadata.default c.metadata.full c.pprint() ###Output _____no_output_____ ###Markdown thanks to `gf.cell` you can also add any metadata `info` relevant to the cell ###Code c = wg(length=3, info=dict(polarization="te", wavelength=1.55)) c.pprint() print(c.metadata.info.wavelength) ###Output _____no_output_____ ###Markdown MetadataTogether with the GDS file that you send to the foundry you can also store metadata in YAML for each cell containing all the settings that we used to build the GDS.the metadata will consists of all the parameters that were passed to the component function as well as derived properties- settings: includes all component metadata: - changed: changed settings. - child: child settings. - default: includes the default cell function settings. - full: full settings. - function_name: from the cell function. - info: meatada in Component.info dict. - module: python module where you can find the cell function. - name: for the component- ports: port name, width, orientation ###Code dir(c.metadata) ###Output _____no_output_____ ###Markdown How can you have add two different references to a cell with the same parameters? ###Code import gdsfactory as gf c = gf.Component("problem") R1 = gf.components.rectangle( size=(4, 2), layer=(2, 0) ) # Creates a rectangle (same Unique ID uid) R2 = gf.components.rectangle(size=(4, 2), layer=(3, 0)) # Try Create a new rectangle that we want to change (but has the same name so we will get R1 from the cache) r1r = c << R1 # Add the first rectangle to c r2r = c << R2 # Add the second rectangle to c r2r.move((4, 2)) c print(R1 == R2) print(R1) print(R2) # lets do it cleaner with references import gdsfactory as gf c = gf.Component("solution") R = gf.components.rectangle(size=(4, 2), layer=(2, 0)) r1 = c << R # Add the first rectangle reference to c r2 = c << R # Add the second rectangle reference to c r2.rotate(45) c import gdsfactory as gf c = gf.components.straight() c.show() c ###Output _____no_output_____ ###Markdown We can even show ports of all references with `component.show(show_subports=True)` ###Code c = gf.components.mzi_phase_shifter(length_x=50) c ###Output _____no_output_____ ###Markdown CacheTo avoid that 2 exact cells are not references of the same cell the `cell` decorator has acache where if a component has already been built it will return the componentfrom the cache ###Code @gf.cell def wg(length=10, width=1): c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) print("BUILDING waveguide") return c gf.clear_cache() wg1 = wg() # cell builds a straight print(wg1) wg2 = wg() # cell returns the same straight as before without having to run the function print(wg2) # notice that they have the same uuid (unique identifier) wg2 from gdsfactory.cell import print_cache ###Output _____no_output_____ ###Markdown Lets say that you change the code of the straight function in a jupyter notebook like this one. (I mostly use Vim/VsCode/Pycharm for creating new cells in python) ###Code print_cache() wg3 = wg() wg4 = wg(length=11) print_cache() gf.clear_cache() ###Output _____no_output_____ ###Markdown To enable nice notebook tutorials, every time we show a cell in Matplotlib or Klayout, you can clear the cache,in case you want to develop cells in jupyter notebooks or an IPython kernel ###Code print_cache() # cache is now empty ###Output _____no_output_____ ###Markdown Validate argument typesBy default, also `@cell` validates arguments based on their type annotations.To make sure you pass the correct arguments to the cell function it runs a validator that checks the type annotations for the function.For example this will be correct```pythonimport gdsfactory as [email protected] straigth_waveguide(length:float): return gf.components.straight(length=length)component = straigth_waveguide(length=3)```While this will raise an error, because you are passing a length that is a string, so it cannot convert it to a float```pythoncomponent = straigth_waveguide(length='long')``````bashValidationError: 1 validation error for StraigthWaveguidelength value is not a valid float (type=type_error.float)```by default `@cell` validates all arguments using [pydantic](https://pydantic-docs.helpmanual.io/usage/validation_decorator/argument-types) ###Code @gf.cell def straigth_waveguide(length: float): print(type(length)) return gf.components.straight(length=length) # It will also convert an `int` to a `float` c = straigth_waveguide(length=3) ###Output _____no_output_____ ###Markdown CellProblem:In GDS format- each cell must have a unique name. Ideally the name is also consitent from different run times, in case you want to merge GDS files that were created at different times or computers.- two cells stored in the GDS file cannot have the same name. Ideally they will be references to the same Cell. See `References tutorial`. That way we only have to store that cell in memory once and all the references are just pointers to that cell.- GDS cells info: - `changed` used to create the cell - `default` in function signature - `full` full settings - name - function_name - module - child: (if any) - simulation, testing, data analysis, derived properties (for example path length of the bend) ...Solution: The decorator `@gf.cell` addresses all these issues:1. Gives the cell a unique name depending on the parameters that you pass to it.2. Creates a cache of cells where we use the cell name as the key. The first time the function runs, the cache stores the component, so the second time, you get the component directly from the cache, so you don't create the same cell twice.For creating new Components you need to create them inside a function, and to make sure that the component gets a good name you just need to add the `@cell` decoratorLets see how it works ###Code import gdsfactory as gf @gf.cell def wg(length=10, width=1): print('BUILDING waveguide') c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) c.add_port(name="o1", midpoint=[0, width / 2], width=width, orientation=180) c.add_port(name="o2", midpoint=[length, width / 2], width=width, orientation=0) return c ###Output _____no_output_____ ###Markdown See how the cells get the name from the parameters that you pass them ###Code c = wg() print(c) # The second time you will get this cell from the cache c = wg() print(c) # If you call the cell with different parameters, the cell will get a different name c = wg(width=0.5) print(c) c.info.changed c.info.full c.info.default c.pprint ###Output _____no_output_____ ###Markdown thanks to `gf.cell` you can also add any metadata `info` relevant to the cell ###Code c = wg(length=3, info=dict(polarization='te', wavelength=1.55)) c.pprint print(c.info.wavelength) ###Output _____no_output_____ ###Markdown MetadataTogether with the GDS files that you send to the foundry you can also store some metadata in YAML for each cell containing all the settings that we used to build the GDS.the metadata will consists of all the parameters that were passed to the component function as well as derived properties - info: includes all component metadata - derived properties - external metadata (test_protocol, docs, ...) - simulation_settings - function_name - name: for the component - name_long: for the component - full: full list of settings - changed: changed settings - default: includes the default signature of the component- ports: port name, width, orientation How can you have add two different references to a cell with the same parameters? ###Code import gdsfactory as gf c = gf.Component("problem") R1 = gf.components.rectangle( size=(4, 2), layer=(0, 0) ) # Creates a rectangle (same Unique ID uid) R2 = gf.components.rectangle(size=(4, 2), layer=(0, 0)) # Try Create a new rectangle that we want to change (but has the same name so we will get R1 from the cache) r1r = c << R1 # Add the first rectangle to c r2r = c << R2 # Add the second rectangle to c r2r.move((4, 2)) c print(R1 == R2) print(R1) print(R2) # lets do it cleaner with references import gdsfactory as gf c = gf.Component("solution") R = gf.components.rectangle(size=(4, 2), layer=(0, 0)) r1 = c << R # Add the first rectangle reference to c r2 = c << R # Add the second rectangle reference to c r2.rotate(45) c import gdsfactory as gf c = gf.components.straight() c.show() c.plot() ###Output _____no_output_____ ###Markdown We can even show ports of all references with `component.show(show_subports=True)` ###Code c = gf.components.mzi_phase_shifter(length_x=50) c ###Output _____no_output_____ ###Markdown CacheTo avoid that 2 exact cells are not references of the same cell the `cell` decorator has acache where if component has already been build it will return the componentfrom the cache ###Code @gf.cell def wg(length=10, width=1): c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) print("BUILDING waveguide") return c gf.clear_cache() wg1 = wg() # cell builds a straight print(wg1) wg2 = wg() # cell returns the same straight as before without having to run the function print(wg2) # notice that they have the same uuid (unique identifier) wg2.plot() from gdsfactory.cell import print_cache ###Output _____no_output_____ ###Markdown Lets say that you change the code of the straight function in a jupyter notebook like this one. (I mostly use Vim/VsCode/Pycharm for creating new cells in python) ###Code print_cache() wg3 = wg() wg4 = wg(length=11) print_cache() gf.clear_cache() ###Output _____no_output_____ ###Markdown To enable nice notebook tutorials, every time we show a cell in Matplotlib or Klayout, you can clear the cache,in case you want to develop cells in jupyter notebooks or an IPython kernel ###Code print_cache() # cache is now empty ###Output _____no_output_____ ###Markdown Validate argument typesBy default, also `@cell` validates and converts the argument types.To make sure you pass the correct arguments to the cell it runs a validator that checks the type annotations for the function.For example this will be correct```pythonimport gdsfactory as [email protected] straigth_waveguide(length:float): return gf.components.straight(length=length)component = straigth_waveguide(length=3)```While this will raise an error, because you are passing a length that is a string, so it cannot convert it to a float```pythonimport gdsfactory as [email protected] straigth_waveguide(length:float): return gf.components.straight(length=length)component = straigth_waveguide(length='long')```by default `@cell` validates all arguments using [pydantic](https://pydantic-docs.helpmanual.io/usage/validation_decorator/argument-types) ###Code @gf.cell def straigth_waveguide(length:float): print(type(length)) return gf.components.straight(length=length) # It will also convert an `int` to a `float` straigth_waveguide(3) ###Output _____no_output_____ ###Markdown CellProblem:In GDS format- each cell must have a unique name. Ideally the name is also consitent from different run times, in case you want to merge GDS files that were created at different times or computers.- two cells stored in the GDS file cannot have the same name. Ideally they will be references to the same Cell. See `References tutorial`. That way we only have to store that cell in memory once and all the references are just pointers to that cell.Solution: The decorator `@gf.cell` addresses all these issues:1. Gives the cell a unique name depending on the parameters that you pass to it.2. Creates a cache of cells where we use the cell name as the key. The first time the function runs, the cache stores the component, so the second time, you get the component directly from the cache, so you don't create the same cell twice.Also, thanks to the @cell decorator, GDS cells in gdsfactory include an `info` dictionary where you can access any metadata from the cell: - `changed` settings used to create the cell - `default` settings in function signature - `full` full settings - name - function_name - module - child: (if any) - simulation, testing, data analysis, derived properties (for example path length of the bend) ...For creating Components you can define them in a function, and to make sure that the component gets a good name you just need to add the `@cell` decorator to that functionLets see how it works. ###Code import gdsfactory as gf gf.CONF.plotter = 'holoviews' @gf.cell def wg(length=10, width=1): print("BUILDING waveguide") c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) c.add_port(name="o1", midpoint=[0, width / 2], width=width, orientation=180) c.add_port(name="o2", midpoint=[length, width / 2], width=width, orientation=0) return c ###Output _____no_output_____ ###Markdown See how the cells get the name from the parameters that you pass them ###Code c = wg() print(c) # The second time you will get this cell from the cache c = wg() print(c) # If you call the cell with different parameters, the cell will get a different name c = wg(width=0.5) print(c) c.metadata.changed c.metadata.default c.metadata.full c.pprint() ###Output _____no_output_____ ###Markdown thanks to `gf.cell` you can also add any metadata `info` relevant to the cell ###Code c = wg(length=3, info=dict(polarization="te", wavelength=1.55)) c.pprint() print(c.metadata.info.wavelength) ###Output _____no_output_____ ###Markdown MetadataTogether with the GDS files that you send to the foundry you can also store some metadata in YAML for each cell containing all the settings that we used to build the GDS.the metadata will consists of all the parameters that were passed to the component function as well as derived properties- settings: includes all component metadata - derived properties - external metadata (test_protocol, docs, ...) - simulation_settings - function_name - name: for the component - name_long: for the component - full: full list of settings - changed: changed settings - default: includes the default signature of the component- ports: port name, width, orientation- cells: How can you have add two different references to a cell with the same parameters? ###Code import gdsfactory as gf c = gf.Component("problem") R1 = gf.components.rectangle( size=(4, 2), layer=(2, 0) ) # Creates a rectangle (same Unique ID uid) R2 = gf.components.rectangle(size=(4, 2), layer=(3, 0)) # Try Create a new rectangle that we want to change (but has the same name so we will get R1 from the cache) r1r = c << R1 # Add the first rectangle to c r2r = c << R2 # Add the second rectangle to c r2r.move((4, 2)) c.plot() print(R1 == R2) print(R1) print(R2) # lets do it cleaner with references import gdsfactory as gf c = gf.Component("solution") R = gf.components.rectangle(size=(4, 2), layer=(2, 0)) r1 = c << R # Add the first rectangle reference to c r2 = c << R # Add the second rectangle reference to c r2.rotate(45) c.plot() import gdsfactory as gf c = gf.components.straight() c.show() c.plot() ###Output _____no_output_____ ###Markdown We can even show ports of all references with `component.show(show_subports=True)` ###Code c = gf.components.mzi_phase_shifter(length_x=50) c.plot() ###Output _____no_output_____ ###Markdown CacheTo avoid that 2 exact cells are not references of the same cell the `cell` decorator has acache where if a component has already been built it will return the componentfrom the cache ###Code @gf.cell def wg(length=10, width=1): c = gf.Component() c.add_polygon([(0, 0), (length, 0), (length, width), (0, width)], layer=(1, 0)) print("BUILDING waveguide") return c gf.clear_cache() wg1 = wg() # cell builds a straight print(wg1) wg2 = wg() # cell returns the same straight as before without having to run the function print(wg2) # notice that they have the same uuid (unique identifier) wg2.plot() from gdsfactory.cell import print_cache ###Output _____no_output_____ ###Markdown Lets say that you change the code of the straight function in a jupyter notebook like this one. (I mostly use Vim/VsCode/Pycharm for creating new cells in python) ###Code print_cache() wg3 = wg() wg4 = wg(length=11) print_cache() gf.clear_cache() ###Output _____no_output_____ ###Markdown To enable nice notebook tutorials, every time we show a cell in Matplotlib or Klayout, you can clear the cache,in case you want to develop cells in jupyter notebooks or an IPython kernel ###Code print_cache() # cache is now empty ###Output _____no_output_____ ###Markdown Validate argument typesBy default, also `@cell` validates arguments based on their type annotations.To make sure you pass the correct arguments to the cell it runs a validator that checks the type annotations for the function.For example this will be correct```pythonimport gdsfactory as [email protected] straigth_waveguide(length:float): return gf.components.straight(length=length)component = straigth_waveguide(length=3)```While this will raise an error, because you are passing a length that is a string, so it cannot convert it to a float```pythoncomponent = straigth_waveguide(length='long')``````bashValidationError: 1 validation error for StraigthWaveguidelength value is not a valid float (type=type_error.float)```by default `@cell` validates all arguments using [pydantic](https://pydantic-docs.helpmanual.io/usage/validation_decorator/argument-types) ###Code @gf.cell def straigth_waveguide(length: float): print(type(length)) return gf.components.straight(length=length) # It will also convert an `int` to a `float` c = straigth_waveguide(length=3) ###Output _____no_output_____
project_nb.ipynb
###Markdown Training Data Getting Data ###Code %load_ext autoreload %autoreload 2 # Getting the data from glob import glob imgs = glob('dataset/**/*.png', recursive=True) cars = [] not_cars = [] for img in imgs: if 'non-vehicles' in img: not_cars.append(img) else: cars.append(img) ###Output _____no_output_____ ###Markdown Getting Features ###Code from tqdm import tqdm import cv2 from skimage.feature import hog import matplotlib.image as mpimg import numpy as np # colorwise histogram feature def color_hist(img, nbins=32): channel1 = np.histogram(img[:, :, 0], bins=nbins) channel2 = np.histogram(img[:, :, 1], bins=nbins) channel3 = np.histogram(img[:, :, 2], bins=nbins) return np.concatenate((channel1[0], channel2[0], channel3[0])) # spatial features def bin_spatial(img, size=(32, 32)): c1 = cv2.resize(img[:, :, 0], size).ravel() c2 = cv2.resize(img[:, :, 1], size).ravel() c3 = cv2.resize(img[:, :, 2], size).ravel() return np.hstack((c1, c2, c3)) # convenience method for hog def get_hog(img, orientation, pix_per_cell, cell_per_block, feature_vec=True): return hog(img, orientations=orientation, pixels_per_cell=(pix_per_cell, pix_per_cell), cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True, visualise=True, feature_vector=feature_vec) # used for training def extract_features(imgs, spatial_size=(32, 32), hist_bins=32, orient=9, pix_per_cell=8, cell_per_block=2): # Create a list to append feature vectors to features = [] # Iterate through the list of images for file in tqdm(imgs): file_features = [] # Read in each one by one image = mpimg.imread(file) feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb) spatial_features = bin_spatial(feature_image, size=spatial_size) file_features.append(spatial_features) hist_features = color_hist(feature_image, nbins=hist_bins) file_features.append(hist_features) hog_features = [] for channel in range(feature_image.shape[2]): feat, img = get_hog(feature_image[:, :, channel], orient, pix_per_cell, cell_per_block, feature_vec=True) hog_features.append(feat) hog_features = np.ravel(hog_features) # Append the new feature vector to the features list file_features.append(hog_features) features.append(np.concatenate(file_features)) # Return list of feature vectors return features #car_features = extract_features(cars) #not_car_features = extract_features(not_cars) ###Output 0%| | 0/8968 [00:00<?, ?it/s]/Users/alex/miniconda3/envs/carnd-term1/lib/python3.5/site-packages/skimage/feature/_hog.py:119: skimage_deprecation: Default value of `block_norm`==`L1` is deprecated and will be changed to `L2-Hys` in v0.15 'be changed to `L2-Hys` in v0.15', skimage_deprecation) 100%|██████████| 8968/8968 [06:44<00:00, 17.77it/s] ###Markdown Normalizing features ###Code y = np.hstack((np.ones(len(car_features)), np.zeros(len(not_car_features)))) raw_X = np.vstack((car_features, not_car_features)).astype(np.float64) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(raw_X) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, stratify=y) ###Output _____no_output_____ ###Markdown SVC Training ###Code from sklearn.svm import LinearSVC from sklearn.externals import joblib svc = LinearSVC() %time svc.fit(X_train, y_train) print('Test Score: ', svc.score(X_test, y_test)) # saving the data joblib.dump(svc, 'svc_pickle.pkl') joblib.dump(scaler, 'scaler.pkl') ###Output _____no_output_____ ###Markdown Loading the SVC ###Code from sklearn.svm import LinearSVC from sklearn.externals import joblib from sklearn.preprocessing import StandardScaler from tqdm import tqdm import cv2 from skimage.feature import hog import matplotlib.image as mpimg import numpy as np import skvideo.io from scipy.ndimage.measurements import label loaded_svc = joblib.load('svc_pickle.pkl') loaded_scaler = joblib.load('scaler.pkl') # used for inference, takes an image & draws boxes around the detected cars # reuse scaler for inference # includes sliding window technique def mark_cars(img, y_regions_and_scales, svc, scaler, orient=9, pix_per_cell=8, cell_per_block=2, spatial_size=(32, 32), hist_bins=32, display=False): output_img = None # 2d heatmap heatmap = np.zeros(img.shape[:2]) if display: output_img = np.copy(img) img = img.astype(np.float32) / 255 for (y_region, scale) in y_regions_and_scales: img_region = img[y_region[0]:y_region[1], :, :] color_transformed = cv2.cvtColor(img_region, cv2.COLOR_RGB2YCrCb) img_shape = color_transformed.shape color_transformed = cv2.resize(color_transformed, (int(img_shape[1]//scale), int(img_shape[0]//scale))) ch1 = color_transformed[:, :, 0] ch2 = color_transformed[:, :, 1] ch3 = color_transformed[:, :, 2] num_x_blocks = (ch1.shape[1] // pix_per_cell) - 1 num_y_blocks = (ch1.shape[0] // pix_per_cell) - 1 pixels_per_window = 64 num_blocks_per_window = (pixels_per_window // pix_per_cell) - 1 cells_per_step = 2 num_xsteps = (num_x_blocks - num_blocks_per_window) // cells_per_step num_ysteps = (num_y_blocks - num_blocks_per_window) // cells_per_step # we cut out a section later, don't grab the whole vector yet hog1, _ = get_hog(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False) hog2, _ = get_hog(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False) hog3, _ = get_hog(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False) # sliding window here for xb in range(num_xsteps): for yb in range(num_ysteps): y_start = yb * cells_per_step y_end = y_start + num_blocks_per_window x_start = xb * cells_per_step x_end = x_start + num_blocks_per_window hog_feat1 = hog1[y_start:y_end, x_start:x_end].ravel() hog_feat2 = hog2[y_start:y_end, x_start:x_end].ravel() hog_feat3 = hog3[y_start:y_end, x_start:x_end].ravel() hog_features = np.hstack((hog_feat1, hog_feat2, hog_feat3)) x_left = x_start * pix_per_cell y_top = y_start * pix_per_cell img_cut = cv2.resize(color_transformed[y_top:y_top + pixels_per_window, x_left:x_left + pixels_per_window], (64, 64)) spatial_features = bin_spatial(img_cut, size=spatial_size) hist_features = color_hist(img_cut, nbins=hist_bins) all_features = scaler.transform( np.hstack((spatial_features, hist_features, hog_features)).reshape(1, -1)) prediction = svc.predict(all_features) if prediction == 1: y_top_coord = np.int(y_top * scale) win_len = np.int(pixels_per_window * scale) x_top_left = np.int(x_left * scale) y_top_left = y_top_coord + y_region[0] x_bot_right = x_top_left + win_len y_bot_right = y_top_left + win_len if display: # cut short & return 1 img only cv2.rectangle(output_img, (x_top_left, y_top_left), (x_bot_right, y_bot_right), (0, 0, 255), 6) else: heatmap[y_top_left:y_bot_right, x_top_left:x_bot_right] += 1 if display: return output_img return heatmap import matplotlib.image as mpimg import matplotlib.pyplot as plt # 400 to 656, have exactly 8 blocks region_and_scale = [((400, 700), 1.65)] test_img = mpimg.imread('test_images/test5.jpg') output = mark_cars(test_img, region_and_scale, loaded_svc, loaded_scaler, display=True) plt.imshow(output) ###Output /Users/alex/miniconda3/envs/carnd-term1/lib/python3.5/site-packages/skimage/feature/_hog.py:119: skimage_deprecation: Default value of `block_norm`==`L1` is deprecated and will be changed to `L2-Hys` in v0.15 'be changed to `L2-Hys` in v0.15', skimage_deprecation) ###Markdown Multi-Scale Window ###Code # EDIT CODE & NUMBERS!! pix_per_cell = 8 orient = 9 cell_per_block = 2 def draw_scale_windows(img, y_start, y_stop, scale): output_img = np.copy(img) img = img.astype(np.float32) / 255 img_region = img[y_start:y_stop, :, :] imshape = img_region.shape img_region = cv2.resize(img_region, (np.int(imshape[1] / scale), np.int(imshape[0] / scale))) num_xblocks = (img_region.shape[1] // pix_per_cell) - 1 num_yblocks = (img_region.shape[0] // pix_per_cell) - 1 window = 64 cells_per_step = 2 num_blocks_per_window = (window // pix_per_cell) - 1 num_xsteps = (num_xblocks - num_blocks_per_window) // cells_per_step num_ysteps = (num_yblocks - num_blocks_per_window) // cells_per_step rect_start = None rect_end = None for xb in range(num_xsteps+1): for yb in range(num_ysteps+1): ypos = yb * cells_per_step xpos = xb * cells_per_step xleft = xpos * pix_per_cell ytop = ypos * pix_per_cell x_box_left = np.int(xleft * scale) y_top_draw = np.int(ytop * scale) win_draw = np.int(window * scale) rect_start = (x_box_left, y_top_draw + y_start) rect_end = (x_box_left + win_draw, y_top_draw + win_draw + y_start) cv2.rectangle(output_img, rect_start, rect_end, (0, 0, 255), 4) return output_img region_and_scales = [((380, 500), 1.0), ((380, 600), 1.5), ((400, 650), 2), ((400, 700), 2.5)] plt.figure(figsize=(15,40)) plot_count=1 for (region, scale) in region_and_scales: y_start, y_stop = region plt.subplot(1,4, plot_count) plt.imshow(draw_scale_windows(test_img, y_start, y_stop, scale)) plt.title('Region & Scale %s'% plot_count) plt.xticks([]) plt.yticks([]) plot_count +=1 ###Output _____no_output_____ ###Markdown Video processing ###Code from utils import HeatmapBuffer test_path = 'test_video.mp4' project_path = 'project_video.mp4' output_path = 'output_video.mp4' def gather_frames(path): video = cv2.VideoCapture(path) frames = [] while video.isOpened(): has_frame, frame = video.read() if has_frame: color_transformed = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(color_transformed) else: break video.release() return np.array(frames) def frames_to_video(frames, path): skvideo.io.vwrite(path, frames) def draw_boxes(frames, heatmaps): imgs_with_boxes = frames.copy() color = (0, 0, 255) thickness = 4 for i, heatmap in tqdm(enumerate(heatmaps)): img_with_box = imgs_with_boxes[i] labelled, num_cars = label(heatmap) for car_idx in range(1, num_cars+1): region_y, region_x = np.where(labelled == car_idx) box_top_left = (np.min(region_x), np.min(region_y)) box_bottom_right = (np.max(region_x), np.max(region_y)) cv2.rectangle(img_with_box, box_top_left, box_bottom_right, color, thickness) imgs_with_boxes[i] = img_with_box return imgs_with_boxes def threshold_heatmaps(heatmaps, threshold=3, buffer_size=8): buffer = HeatmapBuffer((buffer_size,) + heatmaps[0].shape) thresholded = list() for heatmap in tqdm(heatmaps): buffer.add_heatmap(heatmap) mean_heatmap = buffer.mean_heatmap() heatmap[mean_heatmap < threshold] = 0 thresholded.append(heatmap) return thresholded def pipeline(frames, svc, scaler, region_and_scales): raw_heatmaps = [mark_cars(img, region_and_scales, svc, scaler) for img in tqdm(frames)] thresholded_heatmaps = threshold_heatmaps(raw_heatmaps) processed_frames = draw_boxes(frames, thresholded_heatmaps) return processed_frames %time frames = gather_frames(project_path) region_and_scales = [((380, 500), 1.0), ((380, 600), 1.5), ((400, 650), 2), ((420, 700), 2.5)] processed_frames = pipeline(frames, loaded_svc, loaded_scaler, region_and_scales) %time frames_to_video(processed_frames, output_path) #frames2 = gather_frames(test_path) x1 = mark_cars(frames2[0], region_and_scales, loaded_svc, loaded_scaler) x2 = mark_cars(frames2[1], region_and_scales, loaded_svc, loaded_scaler) x3 = mark_cars(frames2[2], region_and_scales, loaded_svc, loaded_scaler) x4 = mark_cars(frames2[3], region_and_scales, loaded_svc, loaded_scaler) y = threshold_heatmaps((x1,x2,x3,x4)) boxed = draw_boxes(frames[0:4], y) plt.imshow(boxed[3]) plt.imshow(x4) z, _ = label(x4) plt.imshow(z) ###Output _____no_output_____
agents/manufacturer2/notebooks/03_connect_with_city.ipynb
###Markdown --- 1 – Initiate Manufacturer2 Agent 1.1 – Init ACA-PY agent controller ###Code # Setup agent_controller = AriesAgentController(admin_url,api_key) print(f"Initialising a controller with admin api at {admin_url} and an api key of {api_key}") ###Output Initialising a controller with admin api at http://manufacturer2-agent:3021 and an api key of adminApiKey ###Markdown 1.2 – Start Webhook Server to enable communication with other agents@todo: is communication with other agents, or with other docker containers? ###Code # Listen on webhook server await agent_controller.init_webhook_server(webhook_host, webhook_port) print(f"Listening for webhooks from agent at http://{webhook_host}:{webhook_port}") ###Output Listening for webhooks from agent at http://0.0.0.0:3010 ###Markdown 1.3 – Init ACM Credential Holder ###Code # The CredentialHolder registers relevant webhook servers and event listeners manufacturer2_agent = CredentialHolder(agent_controller) # Verify if Manufacturer already has a VC # (if there are manufacturer credentials, there is no need to execute the notebook) manufacturer2_agent.get_credentials() ###Output Successfully initiated AgentConnectionManager for a(n) Holder ACA-PY agent ###Markdown --- 2 – Establish a connection with the City agent 🏙️A connection with the credential issuer (i.e., the authority agent) must be established before a VC can be received. In this scenario, the Manufacturer2 requests a connection with the Authority to be certified as an official city agency. Thus, the Manufacturer2 agent sends an invitation to the Authority. In real life, the invitation can be shared via video call, phone call, or E-Mail. In this PoC, this is represented by copy and pasting the invitation into the manufacturers' notebooks. 2.1 Join invitation of City agent 🏙️Copy and paste the multi-use invitation of the city agent, and establish a connection with them. ###Code # Variables alias = "undisclosedM2" auto_accept = True # Receive connection invitation connection_id = manufacturer2_agent.receive_connection_invitation(alias=alias, auto_accept=auto_accept) ###Output Please enter invitation received by external agent: ###Markdown Break Point 2 / 3 / 4🚛 ➡️ 🚗 / 🛵 / 🏙️ Please proceed to the remaining Manufacturers. If you have established a connection between the City and all Manufacturers, proceed to the City Notebook's Step 2.2--- 3 – Create Presentation to Send Proof Presentation 3.1 – Create presentation that satisfies requirements of proof requestBefore you can present a presentation, you must identify the presentation record which you wish to respond to with a presentation. To do so, the `prepare_presentation()` function runs through the following steps: 1. Get all proof requests that were sent through `connection_id`2. Get the most recent `presentation_exchange_id` and the corresponding `proof_request` from (1)3. Get the restrictions the City agent defined in `proof_request` from (2)4. Compare all VCs the Manufacturer2 agent has stored, and find (if available) a VC that satisfies the restrictions from (3)5. Return a presentation dictionary from a VC from (4) that satisfies all requirements. Generally, a presentation consists of three classes of attributes: a. `requested_attributes`: Attributes that were signed by an issuer and have been revealed in the presentation process b. `self_attested_attributes`: Attributes that the prover has self attested to in the presentation object. c. `requested_predicates` (predicate proofs): Attribute values that have been proven to meet some statement. (TODO: Show how you can parse this information) ###Code presentation, presentation_exchange_id = manufacturer2_agent.prepare_presentation(connection_id) ###Output > Found proof_request with presentation_exchange_id 3b7d039d-82fb-4f63-aec4-d579a318a9e9 > Restrictions for a suitable proof: {'isManufacturer': {'requirements': {'schema_id': 'AkvQpXzutUhSeeiuZbVcbq:2:certify-manufacturer:0.0.1'}, 'request_attr_name': '0_isManufacturer_uuid'}} > Attribute request for 'isManufacturer' can be satisfied by Credential with VC 'isManufacturer-VC-M2' > Generate the proof presentation :  { 'requested_attributes': { '0_isManufacturer_uuid': { 'cred_id': 'isManufacturer-VC-M2', 'revealed': True, }, }, 'requested_predicates': {}, 'self_attested_attributes': {}, } ###Markdown 3.2 – Send PresentationSend the presentation to the recipient of `presentation_exchange_id` ###Code manufacturer2_agent.send_proof_presentation(presentation_exchange_id, presentation) ###Output --------------------------------------------------------------------- Connection Webhook Event Received: Present-Proof Handler Connection ID : beeebb5f-dfbd-46f6-bc64-e117ceae5af1 Presentation Exchange ID : 3b7d039d-82fb-4f63-aec4-d579a318a9e9 Protocol State : presentation_sent Agent Role : prover Initiator : external --------------------------------------------------------------------- --------------------------------------------------------------------- Connection Webhook Event Received: Present-Proof Handler Connection ID : beeebb5f-dfbd-46f6-bc64-e117ceae5af1 Presentation Exchange ID : 3b7d039d-82fb-4f63-aec4-d579a318a9e9 Protocol State : presentation_acked Agent Role : prover Initiator : external ---------------------------------------------------------------------  Presentation Exchange ID: 3b7d039d-82fb-4f63-aec4-d579a318a9e9 is acknowledged by Relying Party ###Markdown Break Point 6 / 7 / 8🚛 ➡️ 🚗 / 🛵 / 🏙️ Please proceed to the remaining Manufacturers and run all cells between Steps 3 and 4.1 If you have sent proof presentations from all manufacturers, proceed to the City Notebook's Step 3.3 --- 4 – Do Data ScienceAssuming that the City agent will acknowledge the proofs and deem them to be correct, proceed by inviting the City agent to a Duet Connection. 4.1 – Establish a Duet Connection with City Agent: Send Duet invitationDuet is a package that allows you to exchange encrypted data and run privacy-preserving arithmetic operations on them (e.g., through homomorphic encryption or secure multiparty computation). ###Code # Set up connection_id to use for duet connection manufacturer2_agent._update_connection(connection_id=connection_id, is_duet_connection=True, reset_duet=True) # Create duet invitation for city agent duet = sy.launch_duet(credential_exchanger=manufacturer2_agent) ###Output 🎤 🎸 ♪♪♪ Starting Duet ♫♫♫ 🎻 🎹 ♫♫♫ > DISCLAIMER: Duet is an experimental feature currently in beta. ♫♫♫ > Use at your own risk.   > ❤️ Love Duet? Please consider supporting our community! > https://github.com/sponsors/OpenMined ♫♫♫ > Punching through firewall to OpenGrid Network Node at: ♫♫♫ > http://ec2-18-218-7-180.us-east-2.compute.amazonaws.com:5000 ♫♫♫ > ♫♫♫ > ...waiting for response from OpenGrid Network... ♫♫♫ > DONE! ♫♫♫ > STEP 1: Sending Duet Token 4d07c4905d3548cf581e7faf06dee356 ♫♫♫ > to Duet Partner City-Agency ♫♫♫ > via Connection ID beeebb5f-dfbd-46f6-bc64-e117ceae5af1 ♫♫♫ > Done! ♫♫♫ > STEP 2: Awaiting Duet Token from Duet Partner... ♫♫♫ > DONE! Partner's Duet Token: 27e39dabc65cdaf7f2f2d6cca2801889 ♫♫♫ > Connecting... ♫♫♫ > CONNECTED! ♫♫♫ > DUET LIVE STATUS - Objects: 0 Requests: 0 Messages: 1 Request Handlers: 0 ###Markdown 4.2 - Load data to duet store ###Code # Verify data store of duet duet.store.pandas # There should only be an MPC session statement by the City agent ###Output _____no_output_____ ###Markdown Process data before loading it to the duet store. We take a synthetically created dataset of CO2 emission per trip across the City Agent's City (in this case Berlin, Germany). ###Code # Get zipcode data (zipcode data from https://daten.odis-berlin.de/de/dataset/plz/) df_zipcode = pd.read_csv("data/geo/berlin_zipcodes.csv").rename(columns={"plz":"zipcode"}) valid_zipcodes = list(df_zipcode.zipcode) df_zipcode.head() # Get trip data df_co2 = pd.read_csv("data/trips/data.csv", index_col=0) df_co2 = df_co2[df_co2.zipcode.isin(valid_zipcodes)] df_co2["hour"] = df_co2.timestamp.apply(lambda x: int(x[11:13])) df_co2.head() ###Output _____no_output_____ ###Markdown The trip data is then grouped by zipcode to sum the CO2 emission per hour per zipcode. ###Code # Get hourly co2 df_hourly_co2 = df_co2[["zipcode", "hour","co2_grams"]].groupby(["zipcode", "hour"]).sum().reset_index() df_hourly_co2 = df_hourly_co2.pivot(index=["zipcode"], columns=["hour"])["co2_grams"].replace(np.nan, 0) # Get matrix that of shape (4085,25) df_hourly_zipcode = df_zipcode.set_index("zipcode").reindex(columns=list(range(0,24))).replace(np.nan,0)#.reset_index() # Merge dataframes together df = df_hourly_zipcode.add(df_hourly_co2, fill_value=0) print(df.shape) df.head() ###Output (194, 24) ###Markdown Then, convert the dataset to a tensor, and upload the tensor with shape (194 x 24) to the duet data store ###Code # Configure tensor hourly_co2_torch = torch.tensor(df.values) hourly_co2_torch = hourly_co2_torch.tag("hourly-co2-per-zip_2021-08-19") hourly_co2_torch = hourly_co2_torch.describe("Total CO2 per Zipcode per Hour on August 19, 2021. Shape: zipcode (10115-14199) x hour (0-23) = 4085 x 24") # Load tensor to datastore hourly_co2_torch_pointer = hourly_co2_torch.send(duet, pointable=True) # Verify datastore duet.store.pandas ###Output _____no_output_____ ###Markdown 4.3 – Authorize City agent to `.reconstruct()` the dataAuthorize the city agent to reconstruct the data once it is shared and joined with other manufacutrers' data ###Code duet.requests.add_handler( #name="reconstruct", action="accept" ) ###Output [2021-11-27T15:57:16.560773+0000][CRITICAL][logger]][41] Path sympc.session.Session not present in the AST. [2021-11-27T15:57:16.561993+0000][CRITICAL][logger]][41] Path sympc.session.Session not present in the AST. ERROR:asyncio:Exception in callback AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57 handle: <Handle AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py", line 64, in _callback self.emit("error", exc) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 118, in emit self._emit_handle_potential_error(event, args[0] if args else None) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 88, in _emit_handle_potential_error raise error File "/opt/conda/lib/python3.9/asyncio/tasks.py", line 256, in __step result = coro.send(None) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 233, in on_message await self.consumer(msg=message) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 449, in consumer traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 417, in consumer _msg = _deserialize(blob=msg, from_bytes=True) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/message.py", line 183, in _proto2object _deserialize(blob=proto.message, from_bytes=True), SyftMessage File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/action/run_class_method_action.py", line 289, in _proto2object _self=_deserialize(blob=proto._self), File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/pointer/pointer.py", line 335, in _proto2object points_to_type = sy.lib_ast.query(proto.points_to_object_with_path) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 161, in query traceback_and_raise( File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e ValueError: Path sympc.session.Session not present in the AST. [2021-11-27T15:57:16.666951+0000][CRITICAL][logger]][41] Path sympc.session.Session not present in the AST. [2021-11-27T15:57:16.668047+0000][CRITICAL][logger]][41] Path sympc.session.Session not present in the AST. ERROR:asyncio:Exception in callback AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57 handle: <Handle AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py", line 64, in _callback self.emit("error", exc) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 118, in emit self._emit_handle_potential_error(event, args[0] if args else None) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 88, in _emit_handle_potential_error raise error File "/opt/conda/lib/python3.9/asyncio/tasks.py", line 256, in __step result = coro.send(None) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 233, in on_message await self.consumer(msg=message) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 449, in consumer traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 417, in consumer _msg = _deserialize(blob=msg, from_bytes=True) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/message.py", line 183, in _proto2object _deserialize(blob=proto.message, from_bytes=True), SyftMessage File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/action/run_class_method_action.py", line 289, in _proto2object _self=_deserialize(blob=proto._self), File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/pointer/pointer.py", line 335, in _proto2object points_to_type = sy.lib_ast.query(proto.points_to_object_with_path) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 161, in query traceback_and_raise( File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e ValueError: Path sympc.session.Session not present in the AST. [2021-11-27T15:57:16.697455+0000][CRITICAL][logger]][41] Path ReplicatedSharedTensorShareTensorUnion not present in the AST. [2021-11-27T15:57:16.707379+0000][CRITICAL][logger]][41] Path ReplicatedSharedTensorShareTensorUnion not present in the AST. ERROR:asyncio:Exception in callback AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57 handle: <Handle AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py", line 64, in _callback self.emit("error", exc) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 118, in emit self._emit_handle_potential_error(event, args[0] if args else None) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 88, in _emit_handle_potential_error raise error File "/opt/conda/lib/python3.9/asyncio/tasks.py", line 256, in __step result = coro.send(None) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 233, in on_message await self.consumer(msg=message) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 449, in consumer traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 417, in consumer _msg = _deserialize(blob=msg, from_bytes=True) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/message.py", line 183, in _proto2object _deserialize(blob=proto.message, from_bytes=True), SyftMessage File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/action/run_class_method_action.py", line 289, in _proto2object _self=_deserialize(blob=proto._self), File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/pointer/pointer.py", line 335, in _proto2object points_to_type = sy.lib_ast.query(proto.points_to_object_with_path) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) [Previous line repeated 1 more time] File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 161, in query traceback_and_raise( File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e ValueError: Path ReplicatedSharedTensorShareTensorUnion not present in the AST. [2021-11-27T15:57:16.763512+0000][CRITICAL][logger]][41] <class 'syft.core.store.store_memory.MemoryStore'> __delitem__ error <UID: f75cd6b7f45d4e61ba403d4836eed90d>. [2021-11-27T15:57:16.800770+0000][CRITICAL][logger]][41] Path sympc.session.Session not present in the AST. [2021-11-27T15:57:16.821268+0000][CRITICAL][logger]][41] Path sympc.session.Session not present in the AST. ERROR:asyncio:Exception in callback AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57 handle: <Handle AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py", line 64, in _callback self.emit("error", exc) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 118, in emit self._emit_handle_potential_error(event, args[0] if args else None) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 88, in _emit_handle_potential_error raise error File "/opt/conda/lib/python3.9/asyncio/tasks.py", line 256, in __step result = coro.send(None) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 233, in on_message await self.consumer(msg=message) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 449, in consumer traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 417, in consumer _msg = _deserialize(blob=msg, from_bytes=True) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/message.py", line 183, in _proto2object _deserialize(blob=proto.message, from_bytes=True), SyftMessage File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/action/run_class_method_action.py", line 289, in _proto2object _self=_deserialize(blob=proto._self), File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/pointer/pointer.py", line 335, in _proto2object points_to_type = sy.lib_ast.query(proto.points_to_object_with_path) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 161, in query traceback_and_raise( File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e ValueError: Path sympc.session.Session not present in the AST. [2021-11-27T15:57:52.402899+0000][CRITICAL][logger]][41] Path ReplicatedSharedTensorShareTensorUnion not present in the AST. [2021-11-27T15:57:52.404386+0000][CRITICAL][logger]][41] Path ReplicatedSharedTensorShareTensorUnion not present in the AST. ERROR:asyncio:Exception in callback AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57 handle: <Handle AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py", line 64, in _callback self.emit("error", exc) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 118, in emit self._emit_handle_potential_error(event, args[0] if args else None) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 88, in _emit_handle_potential_error raise error File "/opt/conda/lib/python3.9/asyncio/tasks.py", line 256, in __step result = coro.send(None) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 233, in on_message await self.consumer(msg=message) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 449, in consumer traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 417, in consumer _msg = _deserialize(blob=msg, from_bytes=True) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/message.py", line 183, in _proto2object _deserialize(blob=proto.message, from_bytes=True), SyftMessage File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/action/run_class_method_action.py", line 289, in _proto2object _self=_deserialize(blob=proto._self), File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/pointer/pointer.py", line 335, in _proto2object points_to_type = sy.lib_ast.query(proto.points_to_object_with_path) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) [Previous line repeated 1 more time] File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 161, in query traceback_and_raise( File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e ValueError: Path ReplicatedSharedTensorShareTensorUnion not present in the AST. [2021-11-27T15:57:52.544584+0000][CRITICAL][logger]][41] Path ReplicatedSharedTensorShareTensorUnion not present in the AST. [2021-11-27T15:57:52.547442+0000][CRITICAL][logger]][41] Path ReplicatedSharedTensorShareTensorUnion not present in the AST. ERROR:asyncio:Exception in callback AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57 handle: <Handle AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...in the AST.')>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py", line 64, in _callback self.emit("error", exc) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 118, in emit self._emit_handle_potential_error(event, args[0] if args else None) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 88, in _emit_handle_potential_error raise error File "/opt/conda/lib/python3.9/asyncio/tasks.py", line 256, in __step result = coro.send(None) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 233, in on_message await self.consumer(msg=message) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 449, in consumer traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 417, in consumer _msg = _deserialize(blob=msg, from_bytes=True) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/common/message.py", line 183, in _proto2object _deserialize(blob=proto.message, from_bytes=True), SyftMessage File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/action/run_class_method_action.py", line 290, in _proto2object args=list(map(lambda x: _deserialize(blob=x), proto.args)), File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/action/run_class_method_action.py", line 290, in <lambda> args=list(map(lambda x: _deserialize(blob=x), proto.args)), File "/opt/conda/lib/python3.9/site-packages/syft/core/common/serde/deserialize.py", line 89, in _deserialize res = _proto2object(proto=blob) File "/opt/conda/lib/python3.9/site-packages/syft/core/pointer/pointer.py", line 335, in _proto2object points_to_type = sy.lib_ast.query(proto.points_to_object_with_path) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 159, in query return self.attrs[_path[0]].query(path=_path[1:]) [Previous line repeated 1 more time] File "/opt/conda/lib/python3.9/site-packages/syft/ast/attribute.py", line 161, in query traceback_and_raise( File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e ValueError: Path ReplicatedSharedTensorShareTensorUnion not present in the AST. [2021-11-27T15:57:52.555167+0000][CRITICAL][logger]][41] <class 'syft.core.store.store_memory.MemoryStore'> __delitem__ error <UID: 0fbbbaa35c76451e9b7b52c9aa6df455>. [2021-11-27T15:57:52.566703+0000][CRITICAL][logger]][41] <class 'syft.core.store.store_memory.MemoryStore'> __getitem__ error <UID: afc3651963e14748bfc8e833b012439f> <UID: afc3651963e14748bfc8e833b012439f> [2021-11-27T15:57:52.568993+0000][CRITICAL][logger]][41] <UID: afc3651963e14748bfc8e833b012439f> [2021-11-27T15:57:52.574127+0000][CRITICAL][logger]][41] <UID: afc3651963e14748bfc8e833b012439f> [2021-11-27T15:57:52.574886+0000][CRITICAL][logger]][41] <UID: afc3651963e14748bfc8e833b012439f> ERROR:asyncio:Exception in callback AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...833b012439f>)>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57 handle: <Handle AsyncIOEventEmitter._emit_run.<locals>._callback(<Task finishe...833b012439f>)>) at /opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py:57> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/pyee/_asyncio.py", line 64, in _callback self.emit("error", exc) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 118, in emit self._emit_handle_potential_error(event, args[0] if args else None) File "/opt/conda/lib/python3.9/site-packages/pyee/_base.py", line 88, in _emit_handle_potential_error raise error File "/opt/conda/lib/python3.9/asyncio/tasks.py", line 256, in __step result = coro.send(None) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 233, in on_message await self.consumer(msg=message) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 449, in consumer traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 434, in consumer self.recv_immediate_msg_without_reply(msg=_msg) File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 490, in recv_immediate_msg_without_reply traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/grid/connections/webrtc.py", line 485, in recv_immediate_msg_without_reply self.node.recv_immediate_msg_without_reply(msg=msg) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/node.py", line 399, in recv_immediate_msg_without_reply self.process_message(msg=msg, router=self.immediate_msg_without_reply_router) File "/opt/conda/lib/python3.9/site-packages/syft/core/node/common/node.py", line 481, in process_message result = service.process( File "/opt/conda/lib/python3.9/site-packages/syft/core/node/domain/service/request_message.py", line 222, in process msg.object_tags.extend(node.store[msg.object_id]._tags) File "/opt/conda/lib/python3.9/site-packages/syft/core/store/store_memory.py", line 66, in __getitem__ traceback_and_raise(e) File "/opt/conda/lib/python3.9/site-packages/syft/logger.py", line 61, in traceback_and_raise raise e File "/opt/conda/lib/python3.9/site-packages/syft/core/store/store_memory.py", line 63, in __getitem__ return self._objects[key] KeyError: <UID: afc3651963e14748bfc8e833b012439f> [2021-11-27T15:57:52.661545+0000][CRITICAL][logger]][41] <class 'syft.core.store.store_memory.MemoryStore'> __getitem__ error <UID: afc3651963e14748bfc8e833b012439f> <UID: afc3651963e14748bfc8e833b012439f> [2021-11-27T15:57:52.662557+0000][CRITICAL][logger]][41] <UID: afc3651963e14748bfc8e833b012439f> [2021-11-27T15:57:52.663229+0000][CRITICAL][logger]][41] Unable to Get Object with ID <UID: afc3651963e14748bfc8e833b012439f> from store. Possible dangling Pointer. <UID: afc3651963e14748bfc8e833b012439f> [2021-11-27T15:57:52.672784+0000][CRITICAL][logger]][41] Unable to Get Object with ID <UID: afc3651963e14748bfc8e833b012439f> from store. Possible dangling Pointer. <UID: afc3651963e14748bfc8e833b012439f> ERROR:asyncio:Exception in callback Transaction.__retry() handle: <TimerHandle when=22498.439884 Transaction.__retry()> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/aioice/stun.py", line 306, in __retry self.__future.set_exception(TransactionTimeout()) File "/opt/conda/lib/python3.9/asyncio/futures.py", line 270, in set_exception raise exceptions.InvalidStateError(f'{self._state}: {self!r}') asyncio.exceptions.InvalidStateError: FINISHED: <Future finished result=(Message(messa...\xcc\x14\xea'), ('172.25.0.5', 45515))> ERROR:asyncio:Exception in callback Transaction.__retry() handle: <TimerHandle when=64373.296573857 Transaction.__retry()> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/aioice/stun.py", line 306, in __retry self.__future.set_exception(TransactionTimeout()) File "/opt/conda/lib/python3.9/asyncio/futures.py", line 270, in set_exception raise exceptions.InvalidStateError(f'{self._state}: {self!r}') asyncio.exceptions.InvalidStateError: FINISHED: <Future finished result=(Message(messa...xa2\x91"\xe1'), ('172.25.0.5', 45515))> ERROR:asyncio:Exception in callback Transaction.__retry() handle: <TimerHandle when=64718.658408357 Transaction.__retry()> Traceback (most recent call last): File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run self._context.run(self._callback, *self._args) File "/opt/conda/lib/python3.9/site-packages/aioice/stun.py", line 306, in __retry self.__future.set_exception(TransactionTimeout()) File "/opt/conda/lib/python3.9/asyncio/futures.py", line 270, in set_exception raise exceptions.InvalidStateError(f'{self._state}: {self!r}') asyncio.exceptions.InvalidStateError: FINISHED: <Future finished result=(Message(messa...xa9\x8d\x84#'), ('172.25.0.5', 45515))> ###Markdown --- 5 – Terminate ControllerWhenever you have finished with this notebook, be sure to terminate the controller. This is especially important if your business logic runs across multiple notebooks.(Note: the terminating the controller will not terminate the Duet session). ###Code await agent_controller.terminate() ###Output _____no_output_____ ###Markdown PETs/TETs – Hyperledger Aries / PySyft – Manufacturer 2 (Holder) 🚛 ###Code %%javascript document.title = '🚛 Manufacturer2' ###Output _____no_output_____ ###Markdown PART 3: Connect with City to Analyze Data**What:** Share encrypted data with City agent in a trust- and privacy-preserving manner**Why:** Share data with City agent (e.g., to obtain funds)**How:** 1. [Initiate Manufacturer's AgentCommunicationManager (ACM)](1)2. [Connect anonymously with the City agent via a multi-use SSI invitation](2)3. [Prove Manufacturer2 Agent is a certified manufacturer via VCs](3)4. [Establish anonymous Duet Connection to share encrypted data](4)**Accompanying Agents and Notebooks:*** City 🏙️️: `03_connect_with_manufacturer.ipynb`* Optional – Manufacturer1 🚗: `03_connect_with_city.ipynb`* Optional – Manufacturer3 🛵: `03_connect_with_city.ipynb` --- 0 - Setup 0.1 - Imports ###Code import os import numpy as np import pandas as pd import syft as sy import torch from aries_cloudcontroller import AriesAgentController from libs.agent_connection_manager import CredentialHolder ###Output _____no_output_____ ###Markdown 0.2 – Variables ###Code # Get relevant details from .env file api_key = os.getenv("ACAPY_ADMIN_API_KEY") admin_url = os.getenv("ADMIN_URL") webhook_port = int(os.getenv("WEBHOOK_PORT")) webhook_host = "0.0.0.0" ###Output _____no_output_____
week03/.ipynb_checkpoints/prep_notebook_fishData_redo_week03-checkpoint.ipynb
###Markdown Week 03: More analysis with the fish datasetSee lecture slides for more info about how this dataset was collected. Topics: 1. Further data exploration and some beginning Stats Functions 1. Example 1: Croatian Imports 1. Example 2: Plotting by time & dataframes in R Resize plots: ###Code require(repr) options(repr.plot.width=10, repr.plot.height=4) ###Output Loading required package: repr ###Markdown 1. Read in fish data Read in fish data: ###Code fishdata = read.csv("undata_fish_2020.csv") ###Output _____no_output_____ ###Markdown Make sure this is stored somewhere you can remember! You can put it in the same directory as this file (or whatever R-script you are working from) or you can specify a location. For example, on my Mac I can specify the default `Downloads` folder as the location with:```rfishdata = read.csv("~/Downloads/undata_fish_2020.csv")``` Let's make some vectors out of this data - you can use the data as a dataframe (which we'll get to later) but since many folks have a Python background, we might be more used to doing things with vectors: ###Code # make some vectors, first country: country = fishdata[,1] # how about year of data? year = fishdata[,2] # how about type of fish type = fishdata[,3] # how about transaction type? (import, export, re-export/import) transaction = fishdata[,4] # how about the cash amount of the transaction? trade_usd = fishdata[,5] # how about the weight of the fish in kg? weight = fishdata[,6] # how about the quantity name? quant_name = fishdata[,7] # some of of the "quantity" measures are weight, or # of items, or nothing ###Output _____no_output_____ ###Markdown 2. Exploring the fish data The first step here is to explore our dataset - let's look at one vector at a time.Country of each case: ###Code barplot(table(country)) # note: if you stretch the plot window in RStudio you see more/less data ###Output _____no_output_____ ###Markdown What are the different countries? ###Code print(levels(country)) ###Output [1] "Afghanistan" "Albania" [3] "Algeria" "Andorra" [5] "Angola" "Anguilla" [7] "Antigua and Barbuda" "Argentina" [9] "Armenia" "Aruba" [11] "Australia" "Austria" [13] "Azerbaijan" "Bahamas" [15] "Bahrain" "Bangladesh" [17] "Barbados" "Belarus" [19] "Belgium" "Belgium-Luxembourg" [21] "Belize" "Benin" [23] "Bermuda" "Bhutan" [25] "Bolivia (Plurinational State of)" "Bosnia Herzegovina" [27] "Botswana" "Brazil" [29] "Brunei Darussalam" "Bulgaria" [31] "Burkina Faso" "Burundi" [33] "Cabo Verde" "Cambodia" [35] "Cameroon" "Canada" [37] "Central African Rep." "Chad" [39] "Chile" "China" [41] "China, Hong Kong SAR" "China, Macao SAR" [43] "Colombia" "Comoros" [45] "Congo" "Cook Isds" [47] "Costa Rica" "Croatia" [49] "Cuba" "Cyprus" [51] "Czech Rep." "Côte d'Ivoire" [53] "Denmark" "Djibouti" [55] "Dominica" "Dominican Rep." [57] "Ecuador" "Egypt" [59] "El Salvador" ###Markdown How about year of data? ###Code barplot(table(year)) ###Output _____no_output_____ ###Markdown How about type of fish? ###Code barplot(table(type)) ###Output _____no_output_____ ###Markdown Since its hard to see the labels, maybe we want to print out levels by hand: ###Code levels(type) ###Output _____no_output_____ ###Markdown So, all-in-all we see we have about 87 different types of fish import/export in this dataset. How about transaction type? (import, export, re-export/import) ###Code barplot(table(transaction)) ###Output _____no_output_____ ###Markdown How about the cash amount of the transaction? ###Code hist(trade_usd) # numerical data ###Output _____no_output_____ ###Markdown We can see here that this histogram tells us very little.Why? Well let's print out the values of `trade_usd` and take a look: ###Code head(trade_usd, n=10) ###Output _____no_output_____ ###Markdown These numbers are very large overall. One option is that we can divide by something like $1000 and see what that looks like: ###Code hist(trade_usd/1000., xlab='Trade in $1000 USD') ###Output _____no_output_____ ###Markdown Well that didn't do too much good! Why is that? Let's look at some summary stats for this variable: ###Code print(summary(trade_usd)) ###Output Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000e+00 5.347e+03 7.026e+04 8.734e+06 9.152e+05 4.368e+09 ###Markdown So, the min seems to be $0-$1 and the max is $5.2 billion dollars! You can see that the Median & mean are very different, and the IQR extends from 1000 to almost 10 million.When we have data over such a huge range that we want to take a look at, one good idea is to take the log and plot that.Recall log10 means "log base 10". What about a log scale plot? ###Code hist(log10(trade_usd)) ###Output _____no_output_____ ###Markdown Now we can see a lot more detail - what this plot means is that the peak of the distribution is log10 ~ 5 or at 0.1 million dollars ($10^5$ dollars). How about the weight of the fish in kg? ###Code hist(weight) ###Output _____no_output_____ ###Markdown Hard to see - let's look at a summary again: ###Code print(summary(weight)) ###Output Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000e+00 9.410e+02 1.644e+04 2.506e+06 2.328e+05 1.484e+09 879 ###Markdown So again, min & max have a wide range, and a large spread in quartiles. Let's try a log plot again: ###Code hist(log10(weight)) ###Output _____no_output_____ ###Markdown That this looks similar to the trade_usd histogram makes sense inuitivley - more weight of fish probably corresponds to more money flowing. How about the quantity name? ###Code levels(quant_name) ###Output _____no_output_____ ###Markdown Looks like some of of the "quantity" measures are weight, or of items, or nothing.Since this is non-numeric, and only 3 value, let's just look at the table: ###Code table(quant_name) ###Output _____no_output_____ ###Markdown It looks like most entries are in kg, and only a few are in 's. A few specify `No Quantity` - we might want to be careful that we are comparing "apples to apples" - i.e. "like things to like things" and make sure we are not comparing measurements in kg to measurements in " items". 3. Further data exploration and some beginning Stats Functions I'm going to show a few stats functions that we'll use later in class. We'll go over them in a lot of detail later, but for right now, I'm just showing an example of how one might use R to explore a dataset and try to learn stuff about it. I'll say a lot of "this will be quantified later" and it will! So don't get frustrated if its weird or vague at this point! 3A - Example 1: Croatian ImportsLet's start by grabbing a subset of our data. We can do this by "masking" out our dataset and only looking at these specific values using "boolean" operators.Let's say I want *only* Croatian data: ###Code mask = country=="Croatia" # Feel feel to pick your own country! recall: print(levels(country)) to take a look ###Output _____no_output_____ ###Markdown I can then make a subset of this dataset to work with, for example, to plot the total amount of trade in USD from Croatia: ###Code trade_usd_croatia = subset(trade_usd,mask) ###Output _____no_output_____ ###Markdown Here, I use the "subset" function to grab only data with a country code of "croatia".What does the histogram look like? ###Code hist(trade_usd_croatia) ###Output _____no_output_____ ###Markdown Again, we probably want to do a log10-based histogram: ###Code hist(log10(trade_usd_croatia)) ###Output _____no_output_____ ###Markdown We can make more complex masks, for example, remember how we only wanted to compare "like to like" in terms of how things are weighted/counted?Let's also "mask out" only Croatian data that is measured in kg: ###Code mask = (country=="Croatia") & (quant_name == "Weight in kilograms") trade_usd_croatia_kg = subset(trade_usd,mask) ###Output _____no_output_____ ###Markdown Let's overplot this new dataset on our old histogram: ###Code hist(log10(trade_usd_croatia)) hist(log10(trade_usd_croatia_kg),col=rgb(1,0,0),add=T) # add=T to include on old plot ###Output _____no_output_____ ###Markdown It turns out this was an important addition to our mask - it changes how things look at the lowest trade in USD values.Finally, we can further subset and look at only how much import trade they are doing: ###Code mask = (country=="Croatia") & (quant_name == "Weight in kilograms") & (transaction == "Import") trade_usd_croatia_kg_import = subset(trade_usd,mask) options(repr.plot.width=10, repr.plot.height=6) hist(log10(trade_usd_croatia)) hist(log10(trade_usd_croatia_kg),col=rgb(1,0,0),add=T) hist(log10(trade_usd_croatia_kg_import),col=rgb(0,0,1),add=T) # and of course, no plot is complete without a legend! legend("topleft",c("Croatian Trade","Croatian Trade (kg)", "Croatian Imports (kg)"), fill=c(rgb(1,1,1),rgb(1,0,0),rgb(0,0,1))) ###Output _____no_output_____ ###Markdown This subsetting is also useful for looking at summary statistics of this dataset: ###Code print(summary(trade_usd_croatia)) print(summary(trade_usd_croatia_kg)) ###Output Min. 1st Qu. Median Mean 3rd Qu. Max. 1 8118 74396 1375985 538727 77440578 Min. 1st Qu. Median Mean 3rd Qu. Max. 7 12107 94297 1468056 619837 77440578 ###Markdown With the difference between these two, we can already see that if we select for things weighted in kg we find a slightly higher mean/median, etc.This sort of lines up with what we expect from looking at the histograms.Let's also finally compare the imports to the exports from Croatia: ###Code mask = (country=="Croatia") & (quant_name == "Weight in kilograms") & (transaction == "Export") trade_usd_croatia_kg_export = subset(trade_usd,mask) hist(log10(trade_usd_croatia)) hist(log10(trade_usd_croatia_kg),col=rgb(1,0,0),add=T) hist(log10(trade_usd_croatia_kg_import),col=rgb(0,0,1),add=T) hist(log10(trade_usd_croatia_kg_export),col=rgb(0,1,0),add=T) # and, obviously, update our legend: legend("topleft",c("Croatian Trade","Croatian Trade (kg)", "Croatian Imports (kg)", "Croatian Exports (kg)"), fill=c(rgb(1,1,1),rgb(1,0,0),rgb(0,0,1),rgb(0,1,0))) ###Output _____no_output_____ ###Markdown By eye we can see that they seem like the mean/medians might be different but let's use summary to see: ###Code print('IMPORTS') print(summary(trade_usd_croatia_kg_import)) print('EXPORTS') print(summary(trade_usd_croatia_kg_export)) ###Output [1] "IMPORTS" Min. 1st Qu. Median Mean 3rd Qu. Max. 49 12907 105273 1115864 686450 35298642 [1] "EXPORTS" Min. 1st Qu. Median Mean 3rd Qu. Max. 7 11477 85244 1882598 547928 77440578 ###Markdown Again, our histogram seems to be accurate - the export median < import, though note this is not true of the mean.This makes sense because if we look at the STDDEV of each: ###Code print(sd(trade_usd_croatia_kg_import)) print(sd(trade_usd_croatia_kg_export)) ###Output [1] 3053592 [1] 7065054 ###Markdown The sd of the export > import meaning there is a larger spread of trade in USD in the export dataset so it makes sense the mean might be different from the median. **Practice Question: what is skewness of each histogram?** **Practice Question : Can we accurately say for sure that the medians between these are different? Can we quantify how sure we are these means or medians are different?**$\rightarrow$ more on these concepts later in class. 3B - Example 2: Plotting by time & dataframes in RWe can also check out relationships between the data in other ways, like how things change over time.To make sure we are comparing like-to-like, we should also apply whatever mask we are using to our time variable.Let's say we want to see how Croatian imports change with time: ###Code mask = (country=="Croatia") & (quant_name == "Weight in kilograms") & (transaction == "Import") year_croatia_import_kg = subset(year, mask) ###Output _____no_output_____ ###Markdown Now we can plot the imports into Croatia as a function of time: ###Code plot(year_croatia_import_kg,trade_usd_croatia_kg_import, xlab="Year",ylab="Import Trade in USD in Croatia") ###Output _____no_output_____ ###Markdown So this has multiple values - what are they? They are for each type of fish throughout the years.If we want to sum along each year there are plenty of fancy ways to do this.One thing that is nice about R is its use of dataframes. We'll work more with this later, but as an intro, we could either use our original dataframe, or create a new dataframe out of our subset data. Let's try the last option. First, lets take a look at our original dataframe: ###Code head(fishdata) ###Output _____no_output_____ ###Markdown Also try: `fishdata$` and see what autocompletes in RStudio. Let's subset into a new frame based on the masks we used before: ###Code mask = (fishdata$Country.or.Area == "Croatia") & (fishdata$Quantity.Name == "Weight in kilograms") & (fishdata$Flow == "Import") croatianImports = subset(fishdata,mask) head(croatianImports) ###Output _____no_output_____ ###Markdown So you can see from the above that we get the same type of dataframe, or data list, except now if we do `croatianImports$Country.or.Area` in RStudio its only Croatia: ###Code head(croatianImports$Country.or.Area) ###Output _____no_output_____ ###Markdown We'll talk more about functions later, so don't worry if this doesn't make sense now, but we can use something called the `aggregate` function to aggregate the "Trade USD" variable in our dataframe by year: ###Code tradeUSD_by_year = aggregate(Trade..USD. ~ Year, data=croatianImports, sum) ###Output _____no_output_____ ###Markdown What does that ~ mean?? In this case it means "aggregate Trade USD by Year". But in other functions it means different things! We'll look at this later in class as well when we start thinking about linear regression. ###Code plot(tradeUSD_by_year$Year, tradeUSD_by_year$Trade..USD.) ###Output _____no_output_____ ###Markdown We could do fancier aggregates with our base data, but for now, this was just a taste. EXTRA: ###Code myfit = lm(tradeUSD_by_year$Trade..USD. ~ tradeUSD_by_year$Year) plot(tradeUSD_by_year$Year, tradeUSD_by_year$Trade..USD.) abline(myfit, col='blue') ###Output _____no_output_____
category4.ipynb
###Markdown ###Code import json import tensorflow as tf import numpy as np import urllib from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('accuracy')>0.99): print("\nReached 99.9% accuracy so cancelling training!") self.model.stop_training = True callbacks = myCallback() def solution_model(): url = 'https://storage.googleapis.com/download.tensorflow.org/data/sarcasm.json' urllib.request.urlretrieve(url, 'sarcasm.json') # DO NOT CHANGE THIS CODE OR THE TESTS MAY NOT WORK vocab_size = 1000 embedding_dim = 16 max_length = 120 trunc_type='post' padding_type='post' oov_tok = "<OOV>" training_size = 20000 sentences = [] labels = [] with open("sarcasm.json", 'r') as f: datastore = json.load(f) # YOUR CODE HERE for item in datastore: sentences.append(item['headline']) labels.append(item['is_sarcastic']) training_sentences = sentences[0:training_size] testing_sentences = sentences[training_size:] training_labels = labels[0:training_size] testing_labels = labels[training_size:] tokenizer = Tokenizer(num_words=vocab_size, oov_token=oov_tok) tokenizer.fit_on_texts(training_sentences) word_index = tokenizer.word_index training_sequences = tokenizer.texts_to_sequences(training_sentences) training_padded = pad_sequences(training_sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type) testing_sequences = tokenizer.texts_to_sequences(testing_sentences) testing_padded = pad_sequences(testing_sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type) training_padded = np.array(training_padded) training_labels = np.array(training_labels) testing_padded = np.array(testing_padded) testing_labels = np.array(testing_labels) model = tf.keras.Sequential([ # YOUR CODE HERE. KEEP THIS OUTPUT LAYER INTACT OR TESTS MAY FAIL tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=max_length), tf.keras.layers.GlobalAveragePooling1D(), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy']) num_epochs = 350 history = model.fit(training_padded, training_labels, epochs=num_epochs, validation_data=(testing_padded, testing_labels), verbose=2, callbacks=[callbacks]) return model model = solution_model() model.save("mymodel2.h5") ###Output _____no_output_____
Example3/0-Workflow.ipynb
###Markdown Use Altair to Generate SPLOM Chart Note: Student name removed. Submitted, Fall 2019. Table of Contents1&nbsp;&nbsp;Introduction1.1&nbsp;&nbsp;Visualization Technique1.2&nbsp;&nbsp;Visualization Library2&nbsp;&nbsp;Demonstration2.1&nbsp;&nbsp;Basic SPLOM Chart2.2&nbsp;&nbsp;Advanced SPOLM Chart3&nbsp;&nbsp;Conclusion Introduction Visualization Technique This tutorial demonstrates the use of a SPLOM chart. SPLOM stands for **S**catter **PLO**t **M**atrix. As the name suggests, it comprises of a number of scatter plots arranged in a squared matrix. Below is an illustration of SPLOM from **Seaborn** library using the iris data set. We can see it arranges nicely the 4 quantitative variables of iris data set (*sepal length, sepal width, petal length and petal width*) into rows and columns of the matrix. Each pair of variables are plotted in a scatter plot to show their correlation (if exists). The charts along the diagonal line where each variable is plotted against itself are drawn as histograms to show frequencies of each variable. ###Code import seaborn as sns import matplotlib.pyplot as plt iris = sns.load_dataset('iris') sns.pairplot(iris) plt.show() ###Output _____no_output_____
_archived/sstats/sstats-v2.0.ipynb
###Markdown Soccerstats Predictions v2.0 The changelog from v1.x:* Implement data cleaning pipeline for model predictions.* Load saved model from disk.* Use model to predict data points. A. Data Preparation 1. Read csv file ###Code # load csv data to predict stat_df = sqlContext.read\ .format("com.databricks.spark.csv")\ .options(header = True)\ .load("data/predFixture.csv") ###Output _____no_output_____ ###Markdown 2. Filter-out column values ###Code from pyspark.sql.functions import udf from pyspark.sql.types import StringType # replace "-" values with null: HTS_teamAvgOpponentPPG, ATS_teamAvgOpponentPPG nullify_hyphen_cols = udf( lambda row_value: None if row_value == "-" else row_value, StringType() ) stat_df = (stat_df.withColumn("HTS_teamAvgOpponentPPG", nullify_hyphen_cols(stat_df.HTS_teamAvgOpponentPPG)) .withColumn("ATS_teamAvgOpponentPPG", nullify_hyphen_cols(stat_df.ATS_teamAvgOpponentPPG)) ) # drop Null values stat_df = stat_df.dropna() ###Output _____no_output_____ ###Markdown B. Deep Learning 1. Clean data ###Code # drop unnecessary columns ml_df = stat_df.drop( "gameID", "gamePlayDate", "gamePlayTime", "gameHomeTeamName", "gameAwayTeamName", "gameHomeTeamID","gameAwayTeamID", "leagueName", "leagueDivisionName", "gameFtScore" ) # separate col types: double & string # double type features dtype_features = [ "leagueCompletion", "HTS_teamPosition", "HTS_teamGamesPlayed", "HTS_teamGamesWon", "HTS_teamGamesDraw", "HTS_teamGamesLost", "HTS_teamGoalsScored", "HTS_teamGoalsConceded", "HTS_teamPoints", "HTS_teamPointsPerGame", "HTS_teamPPGlast8", "HTS_homeGamesWon", "HTS_homeGamesDraw", "HTS_homeGamesLost", "HTS_homeGamesPlayed", "HTS_awayGamesWon", "HTS_awayGamesDraw", "HTS_awayGamesLost", "HTS_awayGamesPlayed", "HTS_teamPPGHome", "HTS_teamPPGAway", "HTS_teamAvgOpponentPPG", "HTS_homeGoalMargin_by1_wins", "HTS_homeGoalMargin_by1_losses", "HTS_homeGoalMargin_by2_wins", "HTS_homeGoalMargin_by2_losses", "HTS_homeGoalMargin_by3_wins", "HTS_homeGoalMargin_by3_losses", "HTS_homeGoalMargin_by4p_wins", "HTS_homeGoalMargin_by4p_losses", "HTS_awayGoalMargin_by1_wins", "HTS_awayGoalMargin_by1_losses", "HTS_awayGoalMargin_by2_wins", "HTS_awayGoalMargin_by2_losses", "HTS_awayGoalMargin_by3_wins", "HTS_awayGoalMargin_by3_losses", "HTS_awayGoalMargin_by4p_wins", "HTS_awayGoalMargin_by4p_losses", "HTS_totalGoalMargin_by1_wins", "HTS_totalGoalMargin_by1_losses", "HTS_totalGoalMargin_by2_wins", "HTS_totalGoalMargin_by2_losses", "HTS_totalGoalMargin_by3_wins", "HTS_totalGoalMargin_by3_losses", "HTS_totalGoalMargin_by4p_wins", "HTS_totalGoalMargin_by4p_losses", "HTS_homeGoalsScored", "HTS_homeGoalsConceded", "HTS_homeGoalsScoredPerMatch", "HTS_homeGoalsConcededPerMatch", "HTS_homeScored_ConcededPerMatch", "HTS_awayGoalsScored", "HTS_awayGoalsConceded", "HTS_awayGoalsScoredPerMatch", "HTS_awayGoalsConcededPerMatch", "HTS_awayScored_ConcededPerMatch", "ATS_teamPosition", "ATS_teamGamesPlayed", "ATS_teamGamesWon", "ATS_teamGamesDraw", "ATS_teamGamesLost", "ATS_teamGoalsScored", "ATS_teamGoalsConceded", "ATS_teamPoints", "ATS_teamPointsPerGame", "ATS_teamPPGlast8", "ATS_homeGamesWon", "ATS_homeGamesDraw", "ATS_homeGamesLost", "ATS_homeGamesPlayed", "ATS_awayGamesWon", "ATS_awayGamesDraw", "ATS_awayGamesLost", "ATS_awayGamesPlayed", "ATS_teamPPGHome", "ATS_teamPPGAway", "ATS_teamAvgOpponentPPG", "ATS_homeGoalMargin_by1_wins", "ATS_homeGoalMargin_by1_losses", "ATS_homeGoalMargin_by2_wins", "ATS_homeGoalMargin_by2_losses", "ATS_homeGoalMargin_by3_wins", "ATS_homeGoalMargin_by3_losses", "ATS_homeGoalMargin_by4p_wins", "ATS_homeGoalMargin_by4p_losses", "ATS_awayGoalMargin_by1_wins", "ATS_awayGoalMargin_by1_losses", "ATS_awayGoalMargin_by2_wins", "ATS_awayGoalMargin_by2_losses", "ATS_awayGoalMargin_by3_wins", "ATS_awayGoalMargin_by3_losses", "ATS_awayGoalMargin_by4p_wins", "ATS_awayGoalMargin_by4p_losses", "ATS_totalGoalMargin_by1_wins", "ATS_totalGoalMargin_by1_losses", "ATS_totalGoalMargin_by2_wins", "ATS_totalGoalMargin_by2_losses", "ATS_totalGoalMargin_by3_wins", "ATS_totalGoalMargin_by3_losses", "ATS_totalGoalMargin_by4p_wins", "ATS_totalGoalMargin_by4p_losses", "ATS_homeGoalsScored", "ATS_homeGoalsConceded", "ATS_homeGoalsScoredPerMatch", "ATS_homeGoalsConcededPerMatch", "ATS_homeScored_ConcededPerMatch", "ATS_awayGoalsScored", "ATS_awayGoalsConceded", "ATS_awayGoalsScoredPerMatch", "ATS_awayGoalsConcededPerMatch", "ATS_awayScored_ConcededPerMatch" ] # string type features stype_features = [ "HTS_teamCleanSheetPercent", "HTS_homeOver1_5GoalsPercent", "HTS_homeOver2_5GoalsPercent", "HTS_homeOver3_5GoalsPercent", "HTS_homeOver4_5GoalsPercent", "HTS_awayOver1_5GoalsPercent", "HTS_awayOver2_5GoalsPercent", "HTS_awayOver3_5GoalsPercent", "HTS_awayOver4_5GoalsPercent", "HTS_homeCleanSheets", "HTS_homeWonToNil", "HTS_homeBothTeamsScored", "HTS_homeFailedToScore", "HTS_homeLostToNil", "HTS_awayCleanSheets", "HTS_awayWonToNil", "HTS_awayBothTeamsScored", "HTS_awayFailedToScore", "HTS_awayLostToNil", "HTS_homeScored_ConcededBy_0", "HTS_homeScored_ConcededBy_1", "HTS_homeScored_ConcededBy_2", "HTS_homeScored_ConcededBy_3", "HTS_homeScored_ConcededBy_4", "HTS_homeScored_ConcededBy_5p", "HTS_homeScored_ConcededBy_0_or_1", "HTS_homeScored_ConcededBy_2_or_3", "HTS_homeScored_ConcededBy_4p", "HTS_awayScored_ConcededBy_0", "HTS_awayScored_ConcededBy_1", "HTS_awayScored_ConcededBy_2", "HTS_awayScored_ConcededBy_3", "HTS_awayScored_ConcededBy_4", "HTS_awayScored_ConcededBy_5p", "HTS_awayScored_ConcededBy_0_or_1", "HTS_awayScored_ConcededBy_2_or_3", "HTS_awayScored_ConcededBy_4p", "ATS_teamCleanSheetPercent", "ATS_homeOver1_5GoalsPercent", "ATS_homeOver2_5GoalsPercent", "ATS_homeOver3_5GoalsPercent", "ATS_homeOver4_5GoalsPercent", "ATS_awayOver1_5GoalsPercent", "ATS_awayOver2_5GoalsPercent", "ATS_awayOver3_5GoalsPercent", "ATS_awayOver4_5GoalsPercent", "ATS_homeCleanSheets", "ATS_homeWonToNil", "ATS_homeBothTeamsScored", "ATS_homeFailedToScore", "ATS_homeLostToNil", "ATS_awayCleanSheets", "ATS_awayWonToNil", "ATS_awayBothTeamsScored", "ATS_awayFailedToScore", "ATS_awayLostToNil", "ATS_homeScored_ConcededBy_0", "ATS_homeScored_ConcededBy_1", "ATS_homeScored_ConcededBy_2", "ATS_homeScored_ConcededBy_3", "ATS_homeScored_ConcededBy_4", "ATS_homeScored_ConcededBy_5p", "ATS_homeScored_ConcededBy_0_or_1", "ATS_homeScored_ConcededBy_2_or_3", "ATS_homeScored_ConcededBy_4p", "ATS_awayScored_ConcededBy_0", "ATS_awayScored_ConcededBy_1", "ATS_awayScored_ConcededBy_2", "ATS_awayScored_ConcededBy_3", "ATS_awayScored_ConcededBy_4", "ATS_awayScored_ConcededBy_5p", "ATS_awayScored_ConcededBy_0_or_1", "ATS_awayScored_ConcededBy_2_or_3", "ATS_awayScored_ConcededBy_4p" ] # integer type features itype_features = ["HTS_teamGoalsDifference", "ATS_teamGoalsDifference"] from pyspark.sql.types import DoubleType, IntegerType from pyspark.sql.functions import col # cast types to columns: doubles ml_df = ml_df.select(*[col(c).cast("double").alias(c) for c in dtype_features] + stype_features + itype_features) # convert "HTS_teamGoalsDifference" & "ATS_teamGoalsDifference" to integer int_udf = udf( lambda r: int(r), IntegerType() ) # cast types to columns: integers ml_df = ml_df.select(*[int_udf(col(col_name)).name(col_name) for col_name in itype_features] + stype_features + dtype_features) # convert percent cols to float percent_udf = udf( lambda r: float(r.split("%")[0])/100, DoubleType() ) # cast types to columns: strings ml_df = ml_df.select(*[percent_udf(col(col_name)).name(col_name) for col_name in stype_features] + itype_features + dtype_features) ###Output _____no_output_____ ###Markdown 2. Some featurization ###Code import numpy as np feature_cols = dtype_features + stype_features + itype_features ml_df = ml_df[feature_cols] # convert dataframe to ndarray X_new = np.array(ml_df.select(feature_cols).collect()) print("New features shape: '{}'".format(X_new.shape)) ###Output New features shape: '(2, 187)' ###Markdown 3. Restore model from disk ###Code from keras.models import model_from_json # model version to restore MODEL_VERSION = 1.6 # load json and create model json_file = open('models/model_({}).json'.format(MODEL_VERSION), 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("models/model_({}).h5".format(MODEL_VERSION)) print("Loaded model version '{}' from disk!".format(MODEL_VERSION)) ###Output /Users/gilbert/Envs/pyspark/lib/python2.7/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Using TensorFlow backend. ###Markdown 4. Model predictions ###Code import numpy as np from prettytable import PrettyTable # evaluate loaded model on test data loaded_model.compile( loss='binary_crossentropy', optimizer='adagrad', metrics=['accuracy']) # make prediction: class prediction y_new_class = loaded_model.predict_classes(X_new) # make prediction: probability prediction y_new_prob = loaded_model.predict_proba(X_new) # create predictions table predictions = PrettyTable() predictions.field_names = [ "gamePlayDate", "gameHomeTeamName", "gameAwayTeamName", "leagueName", "leagueDivisionName", "predClass", "predProb", "predOutcome" ] # populate prediction table for val in range(len(X_new)): if y_new_class[val] == 0: pred = "Under 3.5" else: pred = "Over 3.5" # append values to predictions table predictions.add_row([ "{}".format(stat_df.collect()[val]["gamePlayDate"]), "{}".format(stat_df.collect()[val]["gameHomeTeamName"]), "{}".format(stat_df.collect()[val]["gameAwayTeamName"]), "{}".format(stat_df.collect()[val]["leagueName"]), "{}".format(stat_df.collect()[val]["leagueDivisionName"]), "{}".format(y_new_class[val]), "{}".format(y_new_prob[val]), "{}".format(pred) ]) print(predictions) ###Output +--------------+------------------+------------------+------------+---------------------+-----------+-------------+-------------+ | gamePlayDate | gameHomeTeamName | gameAwayTeamName | leagueName | leagueDivisionName | predClass | predProb | predOutcome | +--------------+------------------+------------------+------------+---------------------+-----------+-------------+-------------+ | 2018-04-02 | Guayaquil City | Aucas | Ecuador | Serie A - 2nd stage | [0] | [0.0189554] | Under 3.5 | | 2018-03-10 | Southern Utd | Hamilton Wand. | NewZealand | Premiership | [1] | [0.5632164] | Over 3.5 | +--------------+------------------+------------------+------------+---------------------+-----------+-------------+-------------+
iwd_2020.ipynb
###Markdown Tips:* Enable a GPU in Colab before running this notebook. *Edit -> Notebook settings -> Hardware accelerator -> GPU.* * Should you need to reset your environment to a clean state, you can use *Runtime -> Factory reset runtime*. IWD 2020: Training Neural Networks with TensorFlowWelcome! Today, you'll gain hands-on experience training neural networks with TensorFlow. This notebook contains several tutorials and exercises. Your instructor will guide you through the sections you'll explore today. If you're new to Deep Learning, this is a *lot* of material to cover in a short workshop. Our goals are to dive in and get started. You'll find educational resources for you to continue learning at the end, and you can complete the sections we don't finish today at home. Here's an outline of what we'll cover.1. You'll train a Deep Neural Network to classify handwritten digits. This is the "hello world" of computer vision, and a great place to begin if you're new to the subject. As an exercise, you'll use a different dataset, and modify the network.1. Next, you'll train a Convolutional Neural Network to classify images of cats and dogs, using a real-world dataset you read off disk. As an exercise, you'll use data augmentation and dropout to reduce overfitting.1. If time remains, your instructor will walk you through DeepDream. This is an advanced example that lets you visualize some of the features learned by a CNN.Okay, let's get started! Tutorial: MNISTTraining an image classifier on the MNIST dataset of handwritten digits is considered the "hello world" of computer vision. In this tutorial, you will download the dataset, then train a linear model, a neural network, and a deep neural network to classify it. **Key point:** Deep Learning is "code light, but concept heavy". You'll be able to implement a Deep Neural Network in about five lines of code, but the underlying concepts (cross-entropy, softmax, dense layers, etc) normally take a few months to learn. You do need to understand these all today to dive in. Import TensorFlow Let's import TensorFlow. At the time of writing, Colab has TensorFlow version 1.x installed by default. TensorFlow 2.x is much easier to use, so let's start with that. To switch to 2.x we'll use the magic command below. Note, you can also [install](http://tensorflow.org/install) TensorFlow by using `pip`, but in Colab, the magic command is faster. ###Code %tensorflow_version 2.x import tensorflow as tf print("You are using TensorFlow version", tf.__version__) if len(tf.config.list_physical_devices('GPU')) > 0: print("You have a GPU enabled.") else: print("Enable a GPU before running this notebook.") ###Output _____no_output_____ ###Markdown Colab has a variety of GPU types available (each new instance is assigned one randomly, depending on availability). To see which type of GPU you have, you can run ```!nvidia-smi``` in a code cell. Some are quite fast! ###Code # In this notebook, we'll use Keras: TensorFlow's user-friendly API to # define neural networks. Let's import Keras now. from tensorflow import keras import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Download the MNIST datasetMNIST contains 70,000 grayscale images in 10 categories. The images are low resolution (28 by 28 pixels). An important skill in Deep Learning is exploring your dataset, and understanding the format. Let's download MNIST, and explore it now. ###Code dataset = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = dataset.load_data() ###Output _____no_output_____ ###Markdown There are 60,000 images in the training set: ###Code print(train_images.shape) ###Output _____no_output_____ ###Markdown And 10,000 in the testing set: ###Code print(test_images.shape) ###Output _____no_output_____ ###Markdown Each label is an integer between 0-9: ###Code print(train_labels) ###Output _____no_output_____ ###Markdown Preprocess the dataThe pixel values in the images range between 0 and 255. Let's normalize the values 0 and 1 by dividing all the images by 255. It's important that the training set and the testing set are preprocessed in the same way. ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown Let's display the first 25 images from the training set, and display the label below each image. ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(train_labels[i]) plt.show() ###Output _____no_output_____ ###Markdown Create the layersNeural networks are made up of layers. Here, you'll define the layers, and assemble them into a model. We will start with a single Dense layer. What does a layer do?The basic building block of a neural network is the layer. Layers extract representations from the data fed into them. For example:- The first layer in a network might receives the pixel values as input. From these, it learns to detect edges (combinations of pixels). - The next layer in the network receives edges as input, and may learn to detect lines (combinations of edges). - If you added another layer, it might learn to detect shapes (combinations of edges).The "Deep" in "Deep Learning" refers to the depth of the network. Deeper networks can learn increasingly abstract patterns. Roughly, the width of a layer (in terms of the number of neurons) refers to the number of patterns it can learn of each type.Most of deep learning consists of chaining together simple layers. Most layers, such as [tf.keras.layers.Dense](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense), have parameters that are initialized randomly, then tuned (or learned) during training by gradient descent. ###Code # A linear model model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown The first layer in this network, [tf.keras.layers.Flatten](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten), transforms the format of the images from a two-dimensional array (of 28 by 28 pixels) to a one-dimensional array (of 28 * 28 = 784 pixels). Think of this layer as unstacking rows of pixels in the image and lining them up. This layer has no parameters to learn; it only reformats the data. This is necessary since Dense layers require arrays as input.After the pixels are flattened, this model consists of a single Dense layer. This is a densely connected, or fully connected, neural layer. The Dense layer has 10 neurons with softmax activation. This returns an array of 10 probability scores that sum to 1. After classifying an image, each neuron will contains a score that indicates the probability that the current image belongs to one of the 10 classes. Compile the modelBefore the model is ready for training, it needs a few more settings. These are added during the model's compile step:*Loss function* — This measures how accurate the model is during training. You want to minimize this function to "steer" the model in the right direction.*Optimizer* — This is how the model is updated based on the data it sees and its loss function.*Metrics* — Used to monitor the training and testing steps. The following example uses accuracy, the fraction of the images that are correctly classified. ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Train the modelTraining the neural network model requires the following steps:1. Feed the training data to the model. In this example, the training data is in the ```train_images``` and ```train_labels``` arrays.1. The model learns to associate images and labels.1. You ask the model to make predictions about a test set—in this example, the ```test_images``` array.1. Verify that the predictions match the labels from the ```test_labels``` array.To begin training, call the ```model.fit``` method — so called because it "fits" the model to the training data: ###Code EPOCHS=10 model.fit(train_images, train_labels, epochs=EPOCHS) ###Output _____no_output_____ ###Markdown As the model trains, the loss and accuracy metrics are displayed. This model reaches an accuracy of about 0.90 (or 90%) on the training data. Accuracy may be slightly different each time you run this code, since the parameters inside the Dense layer are randomly initialized. Evaluate accuracyNext, compare how the model performs on the test dataset: ###Code test_loss, test_acc = model.evaluate(test_images, test_labels) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown It turns out that the accuracy on the test dataset is a little less than the accuracy on the training dataset. This gap between training accuracy and test accuracy represents overfitting. Overfitting is when a machine learning model performs worse on new, previously unseen inputs than on the training data. An overfitted model "memorizes" the training data—with less accuracy on testing data. Make predictionsWith the model trained, you can use it to make predictions about some images. ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown Here, the model has predicted the label for each image in the testing set. Let's take a look at the first prediction: ###Code print(predictions[0]) ###Output _____no_output_____ ###Markdown A prediction is an array of 10 numbers. They represent the model's "confidence" that the image corresponds to each of the 10 digits. You can see which label has the highest confidence value: ###Code print(tf.argmax(predictions[0])) ###Output _____no_output_____ ###Markdown Exercise: Fashion MNISTIn the above tutorial, you trained a linear model (a single Dense layer) on the MNIST dataset. As an exercise, let's modify your code above to:- Use a new dataset (Fashion MNIST)- Train a neural network (with two Dense layers, instead of just one)- Create plots to observe overfitting and underfitting InstructionsYou will need to make two changes in the code above.**1) Import the Fashion MNIST** To do so, change the line```dataset = keras.datasets.mnist``` to ```dataset = keras.datasets.fashion_mnist```**2) Modify the model definition to create a neural network**To do so, change the lines from:```model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(10, activation='softmax')])```to```model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax')])```This will define a neural network with a single hidden layer. If you like, you can experiment by adding a third Dense layer, which will create a deep neural network. For example:```model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax')])```After making the above changes, on the Colab menu select *Edit -> Clear all outputs* and *Runtime -> Restart runtime* to restore this notebook to a clean state. Run the cells in the tutorial above to train your neural network on Fashion MNIST.**3) Add plots to observe overfitting**If trained for too long, a NN may begin to memorize the training data (rather than learning patterns that generalize to unseen data). This is called overfitting. Of all the hyperparmeters in the design of your network (the number and width of layers, the optimizer, etc) - the most important to set properly is ```epochs```. You will learn more about this in exercise two.To create plots to observe overfitting, modify your training loop as follows.Change:```history = model.fit(train_images, train_labels, epochs=EPOCHS)```to:```history = model.fit(train_images, train_labels, validation_data=(test_images, test_labels), epochs=EPOCHS)```This will capture the accuracy and loss on the training and validation data after epoch. To plot the results, create a new code cell, and add the following code:```acc = history.history['accuracy']val_acc = history.history['val_accuracy']loss = history.history['loss']val_loss = history.history['val_loss']epochs_range = range(EPOCHS)plt.figure(figsize=(8, 8))plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')plt.plot(epochs_range, val_acc, label='Validation Accuracy')plt.legend(loc='lower right')plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)plt.plot(epochs_range, loss, label='Training Loss')plt.plot(epochs_range, val_loss, label='Validation Loss')plt.legend(loc='upper right')plt.title('Training and Validation Loss')plt.show()``` Game break: Teachable MachineIf you'd like, now would be a good time to take a break from coding and try: https://teachablemachine.withgoogle.com/ Tutorial: Cats and DogsYour instructor will walk you through this section (please follow along and ask questions as you have them!). You'll train a CNN to classify images of cats and dogs using a real-world dataset you will download from the web. Download and explore the datasetAlthough you are downloading large files, you are doing so in Colab through Google Cloud Platform (instead of over your local WiFi connection). This means that downloads will usually be fast, regardless of your internet connection. ###Code import os # Our dataset is a zip on the web origin = 'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip' path_to_zip = tf.keras.utils.get_file('cats_and_dogs.zip', origin=origin, extract=True) path_to_folder = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered') ###Output _____no_output_____ ###Markdown The unzipped dataset has the following directory structure:cats_and_dogs_filtered|__ train |______ cats: [cat.0.jpg, cat.1.jpg, cat.2.jpg ....] |______ dogs: [dog.0.jpg, dog.1.jpg, dog.2.jpg ...]|__ validation |______ cats: [cat.2000.jpg, cat.2001.jpg, cat.2002.jpg ....] |______ dogs: [dog.2000.jpg, dog.2001.jpg, dog.2002.jpg ...] The dataset is divided into train and validation splits. Let's create variables that point to each of these directories. ###Code train_dir = os.path.join(path_to_folder, 'train') validation_dir = os.path.join(path_to_folder, 'validation') train_cats_dir = os.path.join(train_dir, 'cats') train_dogs_dir = os.path.join(train_dir, 'dogs') validation_cats_dir = os.path.join(validation_dir, 'cats') validation_dogs_dir = os.path.join(validation_dir, 'dogs') ###Output _____no_output_____ ###Markdown Now let's count the number of images in each directory. ###Code num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val print('Total training cat images:', num_cats_tr) print('Total training dog images:', num_dogs_tr) print('Total validation cat images:', num_cats_val) print('Total validation dog images:', num_dogs_val) print('---') print("Total training images:", total_train) print("Total validation images:", total_val) ###Output _____no_output_____ ###Markdown You should see that we have 3,000 total images (2,000 in train and 1,000 in validation). Note that this dataset is balanced (we have an equal number of cats and dogs). Tip: in addition to Python, you can run shell commands in Colab (for example, ```!ls $train_cats_dir```). ###Code !ls $train_cats_dir ###Output _____no_output_____ ###Markdown Let's display a couple images. ###Code import matplotlib.pyplot as plt _ = plt.imshow(plt.imread(os.path.join(train_cats_dir, "cat.0.jpg"))) _ = plt.imshow(plt.imread(os.path.join(train_cats_dir, "cat.1.jpg"))) ###Output _____no_output_____ ###Markdown Note that the images are different sizes. Before feeding them into a CNN, we'll need to reshape them all to the same dimensions. We'll take care of that in the next section. Data preprocessing Next, we will need a way to read these images off disk, and to preprocess them. Specifically, we will need to:- Read the image off disk.- Decode contents of these images and convert them into RGB arrays.- Convert the pixels values from integer to floating point types.- Rescale the pixel from values between 0 and 255 to values between 0 and 1 (neural networks work better with small input values - under the hood, each input is multiplied by a weight, large inputs could result in overflow).Fortunately, all of these tasks can be done with the `ImageDataGenerator` class provided by `tf.keras`. It can read images from disk and preprocess them into proper arrays. ###Code from tensorflow.keras.preprocessing.image import ImageDataGenerator # Let's resize images to this size IMG_HEIGHT = 150 IMG_WIDTH = 150 # Rescale the pixel values to range between 0 and 1 train_generator = ImageDataGenerator(rescale=1./255) val_generator = ImageDataGenerator(rescale=1./255) ###Output _____no_output_____ ###Markdown After defining the generators for training and validation images, the `flow_from_directory` method load images from the disk, applies rescaling, and resizes the images into the required dimensions. ###Code batch_size = 32 # Read a batch of 64 images at each step train_data_gen = train_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') val_data_gen = val_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') ###Output _____no_output_____ ###Markdown Use the generators to display a few images and their labelsNext, we will extract a batch of images from the training generator, then plot several of them with `matplotlib`. The `next` function returns a batch from the dataset. The return value of `next` function is in form of `(x_train, y_train)` where x_train is the pixel values and y_train is the labels. ###Code image_batch, labels_batch = next(train_data_gen) # The shape will be (32, 150, 150, 3) # This means a list of 32 images, each of which is 150x150x3. # The 3 at the end refers to the R,G,B color channels. # A grayscale image would be (for example) 150x150x1 print(image_batch.shape) # The shape (32,) means a list of 64 numbers # each of these will either be 0 or 1 print(labels_batch.shape) # This function will plot images returned by the generator # in a grid with 1 row and 5 columns def plot_images(images): fig, axes = plt.subplots(1, 5, figsize=(10,10)) axes = axes.flatten() for img, ax in zip(images, axes): ax.imshow(img) ax.axis('off') plt.tight_layout() plt.show() plot_images(image_batch[:5]) ###Output _____no_output_____ ###Markdown Next, let's retrieve the labels. All images will be labeled either 0 or 1, since this is a binary classification problem. ###Code # Here are the first 5 labels from the dataset # that correspond to the images above print(labels_batch[:5]) # Here, we can see that "0" maps to cat, # and "1" maps to dog print(train_data_gen.class_indices) ###Output _____no_output_____ ###Markdown Create the modelYour model will consist of three convolutional blocks followed by max pooling. There's a fully connected layer with 256 units on top. This model will output class probabilities (between 0 and 1) based on the `sigmoid` activation function. If the output is closer to 1, the image will be classified as a dog, otherwise a cat. ###Code from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D from tensorflow.keras.models import Sequential model = Sequential([ Conv2D(32, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)), MaxPooling2D(), Conv2D(32, 3, padding='same', activation='relu'), MaxPooling2D(), Conv2D(64, 3, padding='same', activation='relu'), MaxPooling2D(), Flatten(), Dense(256, activation='relu'), Dense(1, activation='sigmoid') ]) ###Output _____no_output_____ ###Markdown Compile the model, and select the adam optimizer for gradient descent, and binary cross entropy for the loss function (roughly, cross entropy is a way to measure the distance between the prediction we wanted the network to make, and the prediction it made). ###Code model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Let's look at a diagram of all the layers of the network using the `summary` method: ###Code model.summary() ###Output _____no_output_____ ###Markdown This model has about 5M parameters (or weights) to learn. Our model is ready to go, and next we can train it using the data generators we created earlier. Train the model Use the `fit` method to train the network. You will train the model for 15 epochs (an epoch is one "sweep" over the training set, where each image is used once to perform a round of gradient descent, and update the models parameters). This will take one to two minutes, so let's start it now: ###Code epochs = 15 history = model.fit( train_data_gen, epochs=epochs, validation_data=val_data_gen, ) ###Output _____no_output_____ ###Markdown Inside `model.fit`, TensorFlow uses gradient descent to find useful values for all the weights in the model. When you create the model, the weights are initialized randomly, then gradually improved over time. The data generator is used to load batches of data off disk. Then, for each batch:- The model performs a forward pass (the images are classified by the network).- Then, the model performs a backward pass (the error is computed, then each weight is slightly adjusted using gradient descent to improve the accuracy on the next iteration).Gradient descent is an iterative process. The longer you train the model, the more accurate it will become on the training set. But, the more likely it is to overfit! Meaning, the model will begin to memorize the training images, rather than learn patterns that enable it generalize to new images not included in the training set. - We can see whether overfitting is present by comparing the accuracy on the training and validation data.If you look at the accuracy figures reported above, you should see that training accuracy is over 90%, while validation accuracy is only around 70%. Create plots to check for overfittingAccuracy on the validation data is important: it helps you estimate how well our model is likely to work on new, unseen data in the future. To see how much overfitting is present (and when it occurs), we will create two plots, one for accuracy, and another for loss. Roughly, loss (or error) is the inverse of accuracy (lower is better). Unlike accuracy, loss takes the confidence of a prediction into account (a confidently wrong predicitions has a higher loss than one that is only slightly wrong). ###Code acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() ###Output _____no_output_____ ###Markdown Overfitting occurs when the validation loss stops decreasing. In this case, that occurs around epoch 5 (give or take). Your results may be slightly different each time you run this code (since the weights are initialized randomly).Why does overfitting happen? When there are only a "small" number of training examples, the model sometimes learns from noises or unwanted details, to an extent that it negatively impacts the performance of the model on new examples. It means that the model will have a difficult time "generalizing" on a new dataset (making accurate predictions on images that weren't included in the training set). Game break: Quick, Draw!If you'd like, now would be a good time to take a break from coding and try: https://quickdraw.withgoogle.com/ Exercise: Reduce overfitting InstructionsIn this exercise, you will use data augmentation and dropout to improve your model. Follow along by reading and running the code below. There are two **TODOs** for you to complete, and a solution is given below. Data augmentationOverfitting occurs when there are a "small" number of training examples. One way to fix this problem is to increase the size of the training set, by gathering more data (the larger and more diverse the dataset, the better!)We can also use a technique called "data augmentation" to increase the size of the training set, by generating new examples from existing ones by applying random transformations (for example, rotation) that yield believable-looking images. This is especially effective when working with images. For example, our training set may only contain images of cats that are right side up. If our validation set contains images of cats that are upside down, our model may have trouble classifying them correctly. To help teach it that cats can appear in any orientation, we will randomly rotate images from our training set during training. This helps expose the model to more aspects of the data, and can lead to better generalization.Data augmentation is built into the ImageDataGenerator. You can specifiy different transformations, and it will take care of applying then during the training. ###Code # Let's create new data generators, this time with # data augmentation enabled train_generator = ImageDataGenerator( rescale=1./255, rotation_range=45, width_shift_range=.15, height_shift_range=.15, horizontal_flip=True, zoom_range=0.5 ) train_data_gen = train_generator.flow_from_directory(batch_size=32, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') ###Output _____no_output_____ ###Markdown The next cell will show how the same training image appears when used with five different types of data augmentation. ###Code augmented_images = [train_data_gen[0][0][0] for i in range(5)] plot_images(augmented_images) ###Output _____no_output_____ ###Markdown We only apply data augmentation to the training examples, so our validation generator looks the same as before. ###Code val_generator = ImageDataGenerator(rescale=1./255) val_data_gen = val_generator.flow_from_directory(batch_size=32, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') ###Output _____no_output_____ ###Markdown Dropout Another technique to reduce overfitting is to introduce dropout to the network. Dropout is a form of regularization that makes it more difficult for the network to memorize rare details (instead, it is forced to learn more general patterns).When you apply dropout to a layer it randomly drops out (set to zero) a number of activations during training. Dropout takes a fractional number as its input value, in the form such as 0.1, 0.2, 0.4, etc. This means dropping out 10%, 20% or 40% of the output units randomly from the applied layer.When appling 0.1 dropout to a certain layer, it randomly deactivates 10% of the output units in each training epoch.Create a new model using Dropout. You'll reuse the model definition from above, and add a Dropout layer. ###Code from tensorflow.keras.layers import Dropout # TODO: Your code here # Create a new CNN that takes advantage of Dropout. # 1) Reuse the model declared in tutorial above. # 2) Add a new line that says "Dropout(0.2)," immediately # before the line that says "Flatten()". ###Output _____no_output_____ ###Markdown Solution ###Code #@title model = Sequential([ Conv2D(32, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)), MaxPooling2D(), Conv2D(32, 3, padding='same', activation='relu'), MaxPooling2D(), Conv2D(64, 3, padding='same', activation='relu'), MaxPooling2D(), Dropout(0.2), Flatten(), Dense(256, activation='relu'), Dense(1, activation='sigmoid') ]) ###Output _____no_output_____ ###Markdown After introducing dropout to the network, compile your model and view the layers summary. You should see a Dropout layer right before flatten. ###Code model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() ###Output _____no_output_____ ###Markdown Train your new modelAdd code to train your new model. Previously, we trained for 15 epochs. You will need to train this new modek for more epochs, as data augmentation and dropout make it more difficult for a CNN to memorize the training data (this is what we want!).Here, you'll train this model for 25 epochs. This may take a few minutes, and you may need to train it for longer to reach peak accuracy. If you like, you can continue experimenting with that at home. ###Code epochs = 25 # TODO: your code here # Add code to call model.fit, using your new # data generators with image augmentation # For reference, see the "Train the model" # section above ###Output _____no_output_____ ###Markdown Solution ###Code #@title history = model.fit( train_data_gen, epochs=epochs, validation_data=val_data_gen, ) ###Output _____no_output_____ ###Markdown Evaluate your new modelFinally, let's again create plots of accuracy and loss (we use these plots often in practice!) Now, compare the loss and accuracy curves for the training and validation data. Were you able to achieve a higher validation accuracy than before? Note that even this model will eventually overfit. To prevent that, we use a technique called early stopping (we stop training when the validation loss is no longer decreasing). ###Code acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() ###Output _____no_output_____ ###Markdown Game break: Sketch-RNNIf you'd like, now would be a good time to take a break from coding and try: https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html Exercise: FlowersIn this exercise, you write a CNN and use it to classify five different types of flowers (sunflowers, tulips, etc). The dataset contains 1000 images in the training set, and 500 in the validation set.You will download the dataset, read and preprocess the images using ImageDataGenerator, then create, train and evaluate a model. A code outline is written for you, and there are several sections for you to complete, using the same pattern as the tutorial above. Download the dataset ###Code origin = 'https://storage.googleapis.com/tensorflow-blog/datasets/mini_flowers.zip' path_to_zip = tf.keras.utils.get_file('mini_flowers.zip', origin=origin, extract=True) path_to_folder = os.path.join(os.path.dirname(path_to_zip)) train_dir = os.path.join(path_to_folder, "train/") val_dir = os.path.join(path_to_folder, "val/") ###Output _____no_output_____ ###Markdown Read the images off disk ###Code train_image_generator = ImageDataGenerator(rescale=1./255) train_data_gen = train_image_generator.flow_from_directory(batch_size=32, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') ###Output _____no_output_____ ###Markdown Plot images and their labels ###Code image_batch, labels_batch = next(train_data_gen) plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image_batch[i]) plt.xlabel(str(labels_batch[i])) plt.show() ###Output _____no_output_____ ###Markdown Understanding one-hot labels Notice the labels are in one-hot format. Let's add some code to display the class names. ###Code print(train_data_gen.class_indices) class_names = {v:k for k,v in train_data_gen.class_indices.items()} plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image_batch[i]) plt.xlabel(class_names[tf.argmax(labels_batch[i]).numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Read the validation images ###Code # Above, you created a ImageDataGenerator for the training set # Next, create one to read the validation images # For example: # validation_image_generator = ImageDataGenerator ... # val_data_gen = validation_image_generator.flow_from_directory ... ###Output _____no_output_____ ###Markdown Create a CNNNow, it's time to define your model. You can create a similar model to the CNN used in the tutorial above.The only difference is that the final Dense layer of your model (which classifies the data based on the features provided by the convolutional base) must use softmax activation and have five output classes:```model.add(Dense(5, activation='softmax'))```This is because we now have five different types of flowers, instead of just cats and dogs. ###Code # TODO: your code here # Define a CNN using code similar to the above # For example # model = Sequential() # model.add ... # ... # The last line of your model should be: # model.add(Dense(5, activation='softmax')) ###Output _____no_output_____ ###Markdown After you have defined your model, compile it by uncommenting and running this code. Important: notice that the loss has changed to ```categorical_crossentropy```. This is necessary because the labels are in one-hot format. Finally, although these loss functions sound complicated, there are only a handful for you to learn. ###Code #model.compile(optimizer='adam', # loss='categorical_crossentropy', # metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Now train your model for 10 epochs using ```model.fit```. If you like, you can try to create plots of the training and validation accuracy and loss. ###Code # TODO: your code here # For example # model.fit ... ###Output _____no_output_____ ###Markdown If all has gone well, your model should be about 90% accurate on the training data. Solution``` Read the validation imagesvalidation_image_generator = ImageDataGenerator(rescale=1./255)val_data_gen = validation_image_generator.flow_from_directory(batch_size=32, directory=val_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical')`````` Define a modelmodel = Sequential()model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)))model.add(MaxPooling2D())model.add(Conv2D(32, (3, 3), activation='relu'))model.add(MaxPooling2D())model.add(Conv2D(32, (3, 3), activation='relu'))model.add(MaxPooling2D())model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dense(5, activation='softmax'))`````` Train the modelhistory = model.fit( train_data_gen, epochs=10, validation_data=val_data_gen,)``` An advanced example: DeepDreamIf time remains, in this tutorial your instructor will walk you through a minimal version of DeepDream, an experiment to visualize some of the features a convolutional neural network has learned to detect. DeepDream is an advanced tutorial, and our goal is to introduce you to some of the fascinating (and unexpected) things you can explore with Deep Learning. Normally, when training a model we use gradient descent to minimize classification loss. In a CNN, this means we adjust the weights in the filters. In DeepDream, we start with a large, pretrained CNN (and leave the filters fixed!) We then use gradient descent to modify the input image to increasingly activate the filters. For example, if there is a filter that recognizes a certain kind of texture, we can progressively modify the image to contain more and more examples of that texture. ###Code import numpy as np from IPython.display import clear_output ###Output _____no_output_____ ###Markdown Download and display an image ###Code url = 'https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg' def download(url, target_size=None): name = url.split('/')[-1] image_path = tf.keras.utils.get_file(name, origin=url) return tf.keras.preprocessing.image.load_img(image_path, target_size) def show(img): plt.figure(figsize=(8,8)) plt.grid(False) plt.axis('off') plt.imshow(img) plt.show() original_img = download(url, target_size=[225, 375]) original_img = np.array(original_img) show(original_img) ###Output _____no_output_____ ###Markdown Rescale the pixel values ###Code def preprocess(img): """ Convert RGB values from [0, 255] to [-1, 1] """ img = tf.cast(img, tf.float32) img /= 128.0 img -= 1. return img def unprocess(img): """ Undo the preprocessing above """ img = 255 * (img + 1.0) / 2.0 return tf.cast(img, tf.uint8) ###Output _____no_output_____ ###Markdown Import a large, pretrained CNNThis model has been trained on ImageNet, a dataset with about 1M images in about 1K classes ###Code conv_base = tf.keras.applications.InceptionV3(weights='imagenet', include_top=False) ###Output _____no_output_____ ###Markdown Choose layers to activateNormally, when you train a neural network, you use gradient descent to adjust the weights to minimize loss, in order to accurately classify images. In DeepDream, the trick is to use gradient descent to adjust the **image**, in order to increasingly activate certain layers from the network. You can explore different layers and see how this affects the results. You can find all the layer names using ```model.summary()```. ###Code names = ['mixed2', 'mixed3', 'mixed4', 'mixed5'] layers = [conv_base.get_layer(name).output for name in names] model = tf.keras.Model(inputs=conv_base.input, outputs=layers) ###Output _____no_output_____ ###Markdown Custom loss functionNormally, we would use cross-entropy loss (for classification), or mean squared error (for regression). Here, we'll write a loss function that describes how activated our layers were by the image. ###Code def calc_loss(img): img_batch = tf.expand_dims(img, axis=0) layer_activations = model(img_batch) losses = [tf.math.reduce_mean(act) for act in layer_activations] return tf.reduce_sum(losses) ###Output _____no_output_____ ###Markdown Use gradient ascent to progressively activate the layersNormally, when training a model you use gradient *descent* to adjust the weights to reduce the loss. In DeepDream, you will use gradient *ascent* to maximize the activation of the layers you selected by modifying the image, while leaving the weights of the network fixed. ###Code @tf.function def step(img, lr=0.001): with tf.GradientTape() as tape: loss = calc_loss(img) gradients = tape.gradient(loss, img) gradients /= tf.math.reduce_std(gradients) + 1e-8 # Because the gradients are in the same shape # as the image, we can directly add them to it! img.assign_add(gradients * lr) img.assign(tf.clip_by_value(img, -1, 1)) img = tf.Variable(preprocess(original_img)) steps = 1000 for i in range(steps): step(img) if i % 200 == 0: clear_output(wait=True) print ("Step {}".format(i)) show(unprocess(img.numpy())) clear_output(wait=True) show(unprocess(img.numpy())) ###Output _____no_output_____
Learn Python/04. Assign Variables.ipynb
###Markdown Assign variables No need to tell the type ###Code my_age = 42 my_age type(my_age) ?type pi = 3.14159 type(pi) π = 3.14149 π 🌵 = 1 ###Output _____no_output_____ ###Markdown We can reassign a value of a different type. ###Code pi = 3.14 pi = 3 ###Output _____no_output_____
sst2_models/ML/SST2_Gensim_Pretrainded_Word2Vec.ipynb
###Markdown Introduction In this notebook we will use a pre-trained Word2Vec model from Gensim to extract the word embeddings that ML algorithms will use to as features to learn how to predict sentiment polarity in English tweets. Import packages ###Code !pip install -U -q Unidecode import sys import unidecode import re import numpy as np from nltk.tokenize import word_tokenize from nltk import pos_tag from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.preprocessing import LabelEncoder from collections import defaultdict from nltk.corpus import wordnet as wn import nltk nltk.download('stopwords') nltk.download('wordnet') nltk.download('punkt') from sklearn.feature_extraction.text import TfidfVectorizer ###Output [?25l  |█▍ | 10kB 22.2MB/s eta 0:00:01  |██▊ | 20kB 11.9MB/s eta 0:00:01  |████ | 30kB 8.3MB/s eta 0:00:01  |█████▌ | 40kB 6.8MB/s eta 0:00:01  |██████▉ | 51kB 4.4MB/s eta 0:00:01  |████████▏ | 61kB 4.9MB/s eta 0:00:01  |█████████▋ | 71kB 5.1MB/s eta 0:00:01  |███████████ | 81kB 5.2MB/s eta 0:00:01  |████████████▎ | 92kB 5.3MB/s eta 0:00:01  |█████████████▊ | 102kB 4.3MB/s eta 0:00:01  |███████████████ | 112kB 4.3MB/s eta 0:00:01  |████████████████▍ | 122kB 4.3MB/s eta 0:00:01  |█████████████████▊ | 133kB 4.3MB/s eta 0:00:01  |███████████████████▏ | 143kB 4.3MB/s eta 0:00:01  |████████████████████▌ | 153kB 4.3MB/s eta 0:00:01  |█████████████████████▉ | 163kB 4.3MB/s eta 0:00:01  |███████████████████████▎ | 174kB 4.3MB/s eta 0:00:01  |████████████████████████▋ | 184kB 4.3MB/s eta 0:00:01  |██████████████████████████ | 194kB 4.3MB/s eta 0:00:01  |███████████████████████████▍ | 204kB 4.3MB/s eta 0:00:01  |████████████████████████████▊ | 215kB 4.3MB/s eta 0:00:01  |██████████████████████████████ | 225kB 4.3MB/s eta 0:00:01  |███████████████████████████████▍| 235kB 4.3MB/s eta 0:00:01  |████████████████████████████████| 245kB 4.3MB/s [?25h[nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Unzipping corpora/stopwords.zip. [nltk_data] Downloading package wordnet to /root/nltk_data... [nltk_data] Unzipping corpora/wordnet.zip. [nltk_data] Downloading package punkt to /root/nltk_data... [nltk_data] Unzipping tokenizers/punkt.zip. ###Markdown Load the SST2 data Clone the GitHub repository ###Code # Clone the repository and all the dependencies !git clone https://github.com/Huertas97/Sentiment_Analysis.git ###Output Cloning into 'Sentiment_Analysis'... remote: Enumerating objects: 30, done. remote: Counting objects: 100% (30/30), done. remote: Compressing objects: 100% (24/24), done. remote: Total 30 (delta 8), reused 23 (delta 4), pack-reused 0 Unpacking objects: 100% (30/30), done. ###Markdown Extract the SST2 train set ###Code import io import pandas as pd # Load the data from SST2 def loadFile(fpath): sst_data = {'X': [], 'y': []} with io.open(fpath, 'r', encoding='utf-8') as f: for line in f: sample = line.strip().split('\t') sst_data['y'].append(int(sample[1])) sst_data['X'].append(sample[0]) assert max(sst_data['y']) == 2 - 1 return sst_data sst2_train = loadFile("/content/Sentiment_Analysis/sst_2_data/sentiment-train") sst2_df_train = pd.DataFrame( {"text": sst2_train["X"], "labels": sst2_train["y"]} ) sst2_dev = loadFile("/content/Sentiment_Analysis/sst_2_data/sentiment-dev") sst2_df_dev = pd.DataFrame( {"text": sst2_dev["X"], "labels": sst2_dev["y"]} ) sst2_test = loadFile("/content/Sentiment_Analysis/sst_2_data/sentiment-test") sst2_df_test = pd.DataFrame( {"text": sst2_test["X"], "labels": sst2_test["y"]} ) ###Output _____no_output_____ ###Markdown Preprocess the text data For TF-IDF and Word2Vec is important to preprocess the text. This step is important because the quality of the sentence embedding depends on the words that belong to the sentence. If stopwords (i.e, but, and, so) are not removed we will have noise in the embedding since this words do not represent properly our task problem. ###Code def preprocessor(text, stoptext = "nltk", lemmatizer = "nltk"): # sys.stdout.write('.') # sys.stdout.flush() # Text to unicode text = unidecode.unidecode(text) # Remove introduction words for sections text = re.sub("[A-Z]{0,}\s[A-Z]+:", "", text) # Lowercase and remove extra spaces text = text.strip().lower() # E mail text = re.sub(r"e\s?-\s?mail", "email", text) # Substitute p value text = re.sub('p\s?[<=]\s?0?[.,]0[0-5]+', 'hppv', text) # Significant text = re.sub('p\s?[>=]\s?[\d]+[.,]?\d*', 'lppv', text) # Non-significant # Separate punctation to replace numbers for NUM better from string import punctuation punctuation_marks = set(punctuation) punctuation_marks.update(chr(177)) for i in punctuation_marks: element = "\\"+i # scape the character sub_element = " "+i+" " # Example "=" --> " = " text = re.sub(element, sub_element, text) # Substitute irrelevant (isolated) numbers by NUM text = re.sub( '[^A-Za-z][\-~]?[0-9][0-9]*\s?[.,]?\s?[0-9]+[^A-Za-z]', " num ", text) text = re.sub( "\s[0-9]+\s", " num ", text) # Tokenize the text tokenized_text = nltk.word_tokenize(text) # Delete Punctuation tokenized_text = [i for i in tokenized_text if i not in punctuation_marks] # Delete stop words if stoptext == "spacy": stop_words = sorted(spacy_stopwords) if stoptext == "nltk": nltk_stopwords = nltk.corpus.stopwords.words('english') stop_words = sorted(nltk_stopwords) if stoptext == "clinical": stop_words = sorted(clinical_stopwords) if stoptext == "long": stop_words = sorted(long_stopwords) tokenized_text = [i for i in tokenized_text if i not in stop_words] # Lemmanization if lemmatizer == "nltk": lemmatizer = WordNetLemmatizer().lemmatize lemmatized_text = [lemmatizer(word) for word in tokenized_text] if lemmatizer == "spacy": nlp = spacy.load('en', disable=['parser', 'ner']) doc = nlp(" ".join(tokenized_text)) lemmatized_text = [token.lemma_ for token in doc] # Join all the text full_text = " ".join(lemmatized_text) return full_text from tqdm.auto import tqdm clean_sst2_train = [preprocessor(text, stoptext="nltk", lemmatizer="nltk") for text in tqdm(sst2_df_train.text.to_list(), desc = "Train cleaning")] clean_sst2_dev = [preprocessor(text, stoptext="nltk", lemmatizer="nltk") for text in tqdm(sst2_df_dev.text.to_list(), desc = "Dev cleaning")] clean_sst2_test = [preprocessor(text, stoptext="nltk", lemmatizer="nltk") for text in tqdm(sst2_df_test.text.to_list(), desc = "Test cleaning")] ###Output _____no_output_____ ###Markdown Create Word2Vec model ###Code import gensim # pip install gensim from gensim.models.word2vec import Word2Vec # word2vec model gensim class TaggedDocument = gensim.models.doc2vec.TaggedDocument from sklearn.model_selection import train_test_split tokenized_tr = [ nltk.word_tokenize(text) for text in tqdm(clean_sst2_train, desc= "Tokenize train")] print(tokenized_tr[0]) tokenized_dev = [ nltk.word_tokenize(text) for text in tqdm(clean_sst2_dev, "Tokenize dev")] tokenized_te = [ nltk.word_tokenize(text) for text in tqdm(clean_sst2_test, "Tokenize test")] ###Output _____no_output_____ ###Markdown TF-IDF embeddings TF-IDF has several parameters `max_features` (words that will be used as features. This is the vocabulary extracted for computing TF-IDF), `min_df` and `man_df` (words below or above these thresholds will be omitted for building the vocabulary), `ngram_range` (select if considering unigrams, bigrams, trigrams...). ###Code from sklearn.feature_extraction.text import TfidfVectorizer print('building tf-idf matrix ...') max_features = 5000 vectorizer = TfidfVectorizer(max_features=max_features, min_df=0, max_df=0.8, strip_accents='unicode', ngram_range=(1, 3)) vectorizer.fit(clean_sst2_train) IDFs = dict(zip(vectorizer.get_feature_names(), vectorizer.idf_)) print('size of vocabulary obtained with TfidfVectorizer:', len(IDFs)) # print('size of vocabulary obtained with word2vec:', len(w2v.wv.vocab)) print("Some idfs:") aux = list(IDFs.items()) for i in list(range(3))+list(range(1000,1005)): print(" ", aux[i]) ###Output building tf-idf matrix ... size of vocabulary obtained with TfidfVectorizer: 5000 Some idfs: ('19th', 9.284444837782294) ('19th century', 9.284444837782294) ('20th', 9.026615728480195) ('debt', 9.227286423942346) ('debut', 7.183184248707819) ('decade', 7.760949355148918) ('decent', 7.313637137105253) ('decent performance', 9.227286423942346) ###Markdown Combine TF-IDF and Word2Vec ###Code def Text2Vec(tokens, size): vec = np.zeros(size).reshape((1, size)) count = 0. for word in tokens: try: vec += glove_vectors.wv[word].reshape((1, size)) * IDFs[word] # el embedding lo multiplica por el IDF count += 1. except KeyError: # handling the case where the token is not # in the corpus. useful for testing. continue if count != 0: vec /= count return vec # Download the pre-trained model from Gensim import gensim.downloader glove_vectors = gensim.downloader.load('word2vec-google-news-300') vec_dim = 300 vecs_train = np.zeros((len(tokenized_tr), vec_dim)) for i,x in tqdm(enumerate(tokenized_tr), total=len(tokenized_tr), desc="Train vecs"): vecs_train[i] = Text2Vec(x, vec_dim) vecs_dev = np.zeros((len(tokenized_dev), vec_dim)) for i,x in tqdm(enumerate(tokenized_dev), total=len(tokenized_dev), desc="Dev vecs"): vecs_dev[i] = Text2Vec(x, vec_dim) vecs_test = np.zeros((len(tokenized_te), vec_dim)) for i,x in tqdm(enumerate(tokenized_te), total=len(tokenized_te), desc="Test vecs"): vecs_test[i] = Text2Vec(x, vec_dim) ###Output _____no_output_____ ###Markdown ML models ###Code from sklearn import model_selection, naive_bayes, svm from sklearn import metrics from sklearn.preprocessing import LabelEncoder from sklearn import model_selection, naive_bayes, svm from sklearn.metrics import accuracy_score, matthews_corrcoef from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV !pip install wandb -qq ###Output _____no_output_____ ###Markdown Naive Bayes ###Code y_tr = sst2_df_train.labels.to_list() y_te = sst2_df_test.labels.to_list() from sklearn.naive_bayes import GaussianNB import wandb wandb.init(project="sklearn-sst2-gensim") y_tr = sst2_df_train.labels.to_list() y_te = sst2_df_test.labels.to_list() Naive = naive_bayes.GaussianNB() Naive.fit(vecs_train, y_tr) # predict the labels on validation dataset predictions_NB = Naive.predict(vecs_test) # Use accuracy_score function to get the accuracy print("Naive Bayes Accuracy Score -> ",accuracy_score(y_te, predictions_NB)*100) # Print the precision and recall, among other metrics print(metrics.classification_report(y_te, predictions_NB, digits=3)) # Print the confusion matrix print(metrics.confusion_matrix(y_te, predictions_NB)) print("MCC", matthews_corrcoef(y_te, predictions_NB)) # Visualize all classifier plots wandb.sklearn.plot_classifier(Naive, vecs_train, vecs_test, y_tr, y_te, predictions_NB, y_probas=Naive.predict_proba(vecs_test), labels= ["Negative", "Positive"], model_name='Naive Bayes', feature_names= None) wandb.finish() ###Output _____no_output_____ ###Markdown Logistic Regression ###Code from sklearn.linear_model import LogisticRegression model = LogisticRegression(fit_intercept=True, random_state=0, max_iter=1000, penalty='l1', solver = "liblinear") model.fit(vecs_train, y_tr) # predict the labels on validation dataset predictions_LR = model.predict(vecs_test) # Use accuracy_score function to get the accuracy print("Logistic Regression Accuracy Score -> ",accuracy_score(y_te, predictions_LR)*100) print(metrics.classification_report(y_te, predictions_LR)) ###Output _____no_output_____ ###Markdown L1 ###Code from sklearn.metrics import make_scorer # Set the parameters by cross-validation tuned_parameters = [{'C': np.logspace(-3, 1, 6), "max_iter": [1000]}] scores = ["accuracy"] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() knn = GridSearchCV( LogisticRegression(penalty='l1', solver = "liblinear"), cv=5, param_grid=tuned_parameters, scoring=make_scorer(accuracy_score), n_jobs = 2 ) knn.fit(vecs_train, y_tr) print("Best parameters set found on development set:") print() print(knn.best_params_) print() print("Grid scores on development set:") print() means = knn.cv_results_['mean_test_score'] stds = knn.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, knn.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_te, knn.predict(vecs_test) print("Accuracy Score -> ",accuracy_score(y_true, y_pred)*100) print("MCC", matthews_corrcoef(y_true, y_pred)) print(metrics.classification_report(y_true, y_pred)) print() import wandb wandb.init(project="sklearn-sst2-gensim") log_l1 = LogisticRegression(penalty='l1', solver = "liblinear", max_iter = 1000, C=0.039810717055349734) log_l1.fit(vecs_train, y_tr) y_true, y_pred = y_te, log_l1.predict(vecs_test) print("Accuracy Score -> ",accuracy_score(y_true, y_pred)*100) # predict the labels on validation dataset predictions_LR = log_l1.predict(vecs_test) # Visualize all classifier plots wandb.sklearn.plot_classifier(log_l1, vecs_train, vecs_test, y_tr, y_te, predictions_LR, y_probas=log_l1.predict_proba(vecs_test), labels= ["Negative", "Positive"], model_name='Log Reg L1', feature_names= None) wandb.finish() ###Output _____no_output_____ ###Markdown KNN ###Code from sklearn.metrics import make_scorer from sklearn.neighbors import KNeighborsClassifier # Set the parameters by cross-validation tuned_parameters = [{'n_neighbors':[1, 3, 5, 7, 11, 15, 20, 25, 30, 50, 100, 150, 200]}] scores = ["accuracy"] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() knn = GridSearchCV( KNeighborsClassifier(), tuned_parameters, scoring=make_scorer(accuracy_score), cv = 5 ) knn.fit(vecs_train, y_tr) print("Best parameters set found on development set:") print() print(knn.best_params_) print() print("Grid scores on development set:") print() means = knn.cv_results_['mean_test_score'] stds = knn.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, knn.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_te, knn.predict(vecs_test) print("Accuracy Score -> ",accuracy_score(y_true, y_pred)*100) print("MCC", matthews_corrcoef(y_true, y_pred)) print(metrics.classification_report(y_true, y_pred)) print() ###Output # Tuning hyper-parameters for accuracy Best parameters set found on development set: {'n_neighbors': 1} Grid scores on development set: 0.879 (+/-0.010) for {'n_neighbors': 1} 0.864 (+/-0.005) for {'n_neighbors': 3} 0.850 (+/-0.005) for {'n_neighbors': 5} 0.839 (+/-0.007) for {'n_neighbors': 7} 0.823 (+/-0.009) for {'n_neighbors': 11} 0.814 (+/-0.008) for {'n_neighbors': 15} 0.810 (+/-0.007) for {'n_neighbors': 20} 0.800 (+/-0.005) for {'n_neighbors': 25} 0.800 (+/-0.004) for {'n_neighbors': 30} 0.790 (+/-0.004) for {'n_neighbors': 50} 0.778 (+/-0.003) for {'n_neighbors': 100} 0.773 (+/-0.004) for {'n_neighbors': 150} 0.771 (+/-0.004) for {'n_neighbors': 200} Detailed classification report: The model is trained on the full development set. The scores are computed on the full evaluation set. Accuracy Score -> 65.40362438220758 MCC 0.3166991832162829 precision recall f1-score support 0 0.70 0.54 0.61 912 1 0.62 0.77 0.69 909 accuracy 0.65 1821 macro avg 0.66 0.65 0.65 1821 weighted avg 0.66 0.65 0.65 1821 ###Markdown RF ###Code from sklearn.metrics import make_scorer from sklearn.ensemble import RandomForestClassifier # Set the parameters by cross-validation tuned_parameters = [{'n_estimators':[50, 100, 150, 200, 300, 400, 500], 'max_depth': [10, 20, 30, 40]}] scores = ["accuracy"] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() knn = GridSearchCV( RandomForestClassifier( max_depth=3, random_state=0), tuned_parameters, scoring=make_scorer(accuracy_score), cv = 2 ) knn.fit( vecs_train, y_tr) print("Best parameters set found on development set:") print() print(knn.best_params_) print() print("Grid scores on development set:") print() means = knn.cv_results_['mean_test_score'] stds = knn.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, knn.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_te, knn.predict(vecs_test) print("Accuracy Score -> ",accuracy_score(y_true, y_pred)*100) print("MCC", matthews_corrcoef(y_true, y_pred)) print(metrics.classification_report(y_true, y_pred)) print() ###Output # Tuning hyper-parameters for accuracy Best parameters set found on development set: {'max_depth': 30, 'n_estimators': 400} Grid scores on development set: 0.823 (+/-0.002) for {'max_depth': 10, 'n_estimators': 50} 0.828 (+/-0.005) for {'max_depth': 10, 'n_estimators': 100} 0.830 (+/-0.006) for {'max_depth': 10, 'n_estimators': 150} 0.831 (+/-0.005) for {'max_depth': 10, 'n_estimators': 200} 0.831 (+/-0.004) for {'max_depth': 10, 'n_estimators': 300} 0.832 (+/-0.004) for {'max_depth': 10, 'n_estimators': 400} 0.833 (+/-0.003) for {'max_depth': 10, 'n_estimators': 500} 0.849 (+/-0.003) for {'max_depth': 20, 'n_estimators': 50} 0.854 (+/-0.003) for {'max_depth': 20, 'n_estimators': 100} 0.856 (+/-0.004) for {'max_depth': 20, 'n_estimators': 150} 0.857 (+/-0.004) for {'max_depth': 20, 'n_estimators': 200} 0.859 (+/-0.004) for {'max_depth': 20, 'n_estimators': 300} 0.859 (+/-0.003) for {'max_depth': 20, 'n_estimators': 400} 0.860 (+/-0.003) for {'max_depth': 20, 'n_estimators': 500} 0.850 (+/-0.005) for {'max_depth': 30, 'n_estimators': 50} 0.854 (+/-0.004) for {'max_depth': 30, 'n_estimators': 100} 0.858 (+/-0.004) for {'max_depth': 30, 'n_estimators': 150} 0.859 (+/-0.002) for {'max_depth': 30, 'n_estimators': 200} 0.860 (+/-0.003) for {'max_depth': 30, 'n_estimators': 300} 0.861 (+/-0.003) for {'max_depth': 30, 'n_estimators': 400} 0.861 (+/-0.004) for {'max_depth': 30, 'n_estimators': 500} 0.850 (+/-0.006) for {'max_depth': 40, 'n_estimators': 50} 0.855 (+/-0.004) for {'max_depth': 40, 'n_estimators': 100} 0.858 (+/-0.004) for {'max_depth': 40, 'n_estimators': 150} 0.859 (+/-0.003) for {'max_depth': 40, 'n_estimators': 200} 0.860 (+/-0.003) for {'max_depth': 40, 'n_estimators': 300} 0.861 (+/-0.003) for {'max_depth': 40, 'n_estimators': 400} 0.861 (+/-0.003) for {'max_depth': 40, 'n_estimators': 500} Detailed classification report: The model is trained on the full development set. The scores are computed on the full evaluation set. Accuracy Score -> 75.39813289401428 MCC 0.5281323492859495 precision recall f1-score support 0 0.85 0.62 0.72 912 1 0.70 0.89 0.78 909 accuracy 0.75 1821 macro avg 0.77 0.75 0.75 1821 weighted avg 0.77 0.75 0.75 1821
cursos_alura/corretor_ortografico_aplicando_tecnicas_de_nlp/code/corretor.ipynb
###Markdown Criando meu banco de palavras ###Code len(artigo) len('olá') len('olá ') texto_exemplo = 'Olá, tudo bem?' tokens = texto_exemplo.split() print(tokens) print(len(tokens)) !pip install nltk import nltk nltk.download('punkt') palavras_separadas = nltk.tokenize.word_tokenize(texto_exemplo) print(palavras_separadas) len(palavras_separadas) 'palavra'.isalpha() #isalpha é uma função que retorna um verdadeiro quando o conteudo for alphanumerico 'palavra1'.isalpha() def separa_palavras(lista_tokens): lista_palavras = [] for token in lista_tokens: if token.isalpha(): lista_palavras.append(token) return lista_palavras separa_palavras(palavras_separadas) lista_tokens = nltk.tokenize.word_tokenize(artigo) lista_palavras = separa_palavras(lista_tokens) print('O número de palavras é: {}'.format(len(lista_palavras))) print(lista_palavras[:5]) def normalizacao(lista_palavras): lista_normalizada = [] for palavra in lista_palavras: lista_normalizada.append(palavra.lower()) return lista_normalizada lista_normalizada = normalizacao(lista_palavras) print(lista_normalizada[:5]) set([1,2,3,3,3,4,5,6]) len(set(lista_normalizada)) ###Output _____no_output_____ ###Markdown Criando meu gerador de palavras ###Code palavra_exemplo = 'lgica' def insere_letras(fatias): novas_palavras = [] letras = 'abcdefghijklmnopqrstuvwxyzàáâãèéêìíîòóôõùúûç' for E, D in fatias: for letra in letras: novas_palavras.append(E + letra + D) return novas_palavras def gerador_palavras(palavra): fatias = [] for i in range(len(palavra)+1): fatias.append((palavra[:i],palavra[i:])) palavras_geradas = insere_letras(fatias) return palavras_geradas palavras_geradas = gerador_palavras(palavra_exemplo) print(palavras_geradas) ###Output ['algica', 'blgica', 'clgica', 'dlgica', 'elgica', 'flgica', 'glgica', 'hlgica', 'ilgica', 'jlgica', 'klgica', 'llgica', 'mlgica', 'nlgica', 'olgica', 'plgica', 'qlgica', 'rlgica', 'slgica', 'tlgica', 'ulgica', 'vlgica', 'wlgica', 'xlgica', 'ylgica', 'zlgica', 'àlgica', 'álgica', 'âlgica', 'ãlgica', 'èlgica', 'élgica', 'êlgica', 'ìlgica', 'ílgica', 'îlgica', 'òlgica', 'ólgica', 'ôlgica', 'õlgica', 'ùlgica', 'úlgica', 'ûlgica', 'çlgica', 'lagica', 'lbgica', 'lcgica', 'ldgica', 'legica', 'lfgica', 'lggica', 'lhgica', 'ligica', 'ljgica', 'lkgica', 'llgica', 'lmgica', 'lngica', 'logica', 'lpgica', 'lqgica', 'lrgica', 'lsgica', 'ltgica', 'lugica', 'lvgica', 'lwgica', 'lxgica', 'lygica', 'lzgica', 'làgica', 'lágica', 'lâgica', 'lãgica', 'lègica', 'légica', 'lêgica', 'lìgica', 'lígica', 'lîgica', 'lògica', 'lógica', 'lôgica', 'lõgica', 'lùgica', 'lúgica', 'lûgica', 'lçgica', 'lgaica', 'lgbica', 'lgcica', 'lgdica', 'lgeica', 'lgfica', 'lggica', 'lghica', 'lgiica', 'lgjica', 'lgkica', 'lglica', 'lgmica', 'lgnica', 'lgoica', 'lgpica', 'lgqica', 'lgrica', 'lgsica', 'lgtica', 'lguica', 'lgvica', 'lgwica', 'lgxica', 'lgyica', 'lgzica', 'lgàica', 'lgáica', 'lgâica', 'lgãica', 'lgèica', 'lgéica', 'lgêica', 'lgìica', 'lgíica', 'lgîica', 'lgòica', 'lgóica', 'lgôica', 'lgõica', 'lgùica', 'lgúica', 'lgûica', 'lgçica', 'lgiaca', 'lgibca', 'lgicca', 'lgidca', 'lgieca', 'lgifca', 'lgigca', 'lgihca', 'lgiica', 'lgijca', 'lgikca', 'lgilca', 'lgimca', 'lginca', 'lgioca', 'lgipca', 'lgiqca', 'lgirca', 'lgisca', 'lgitca', 'lgiuca', 'lgivca', 'lgiwca', 'lgixca', 'lgiyca', 'lgizca', 'lgiàca', 'lgiáca', 'lgiâca', 'lgiãca', 'lgièca', 'lgiéca', 'lgiêca', 'lgiìca', 'lgiíca', 'lgiîca', 'lgiòca', 'lgióca', 'lgiôca', 'lgiõca', 'lgiùca', 'lgiúca', 'lgiûca', 'lgiçca', 'lgicaa', 'lgicba', 'lgicca', 'lgicda', 'lgicea', 'lgicfa', 'lgicga', 'lgicha', 'lgicia', 'lgicja', 'lgicka', 'lgicla', 'lgicma', 'lgicna', 'lgicoa', 'lgicpa', 'lgicqa', 'lgicra', 'lgicsa', 'lgicta', 'lgicua', 'lgicva', 'lgicwa', 'lgicxa', 'lgicya', 'lgicza', 'lgicàa', 'lgicáa', 'lgicâa', 'lgicãa', 'lgicèa', 'lgicéa', 'lgicêa', 'lgicìa', 'lgicía', 'lgicîa', 'lgicòa', 'lgicóa', 'lgicôa', 'lgicõa', 'lgicùa', 'lgicúa', 'lgicûa', 'lgicça', 'lgicaa', 'lgicab', 'lgicac', 'lgicad', 'lgicae', 'lgicaf', 'lgicag', 'lgicah', 'lgicai', 'lgicaj', 'lgicak', 'lgical', 'lgicam', 'lgican', 'lgicao', 'lgicap', 'lgicaq', 'lgicar', 'lgicas', 'lgicat', 'lgicau', 'lgicav', 'lgicaw', 'lgicax', 'lgicay', 'lgicaz', 'lgicaà', 'lgicaá', 'lgicaâ', 'lgicaã', 'lgicaè', 'lgicaé', 'lgicaê', 'lgicaì', 'lgicaí', 'lgicaî', 'lgicaò', 'lgicaó', 'lgicaô', 'lgicaõ', 'lgicaù', 'lgicaú', 'lgicaû', 'lgicaç'] ###Markdown Criando a avaliação de qual é a palavra correta ###Code total_palavras = len(lista_normalizada) frequencia = nltk.FreqDist(lista_normalizada) def probabilidade(palavra_gerada): return frequencia[palavra_gerada] / total_palavras def corretor(palavra): palavras_geradas = gerador_palavras(palavra) palavra_correta = max(palavras_geradas, key=probabilidade) return palavra_correta corretor(palavra_exemplo) def cria_dados_teste(nome_arquivo): lista_palavras_teste = [] f = open(nome_arquivo, 'r', encoding='utf8') for linha in f: correta, errada = linha.split() lista_palavras_teste.append((correta, errada)) f.close() return lista_palavras_teste lista_teste = cria_dados_teste('../sample_data/for_modeling/palavras.txt') lista_teste def avaliador(testes): numero_palavras = len(testes) acertou = 0 for correta, errada in teste: corretor(errada) taxa_acerto = acertou/numero_palavras print("Taxa de acerto" taxa_de_acerto) ###Output _____no_output_____
notebooks/DNNRegression.ipynb
###Markdown Barebones example of DNNRegressor in TensorflowIn this notebook a DNNRegressor is used through [TensorFlow](https://www.tensorflow.org/)'s tf.contrib.learn library. The example shows how to generate the feature_columns and feed the input using input_fn argument. ###Code # Used to clear up the workspace. %reset -f import numpy as np import pickle import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import estimator from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error # Load the data. data = pickle.load(open('../data/data-ant.pkl', 'rb')) observations = data['observations'] actions = data['actions'] # We will only look at the first label column, since multiple regression is not supported for some reason... actions = actions[:, 0] # Split the data. X_train, X_test, y_train, y_test = train_test_split(observations, actions, test_size=10, random_state=42) num_train = X_train.shape[0] num_test = X_test.shape[0] ###Output _____no_output_____ ###Markdown *pred_fn* and *feed_fn* functions take lists or numpy arrays as input and generate feature columns or labels. Feature columns takes the form of a dictionary with column names as Keys and tf.constant of columns as Values, while the label is simply a tf.constant of labels.np.newaxis is added in order to address TensorFlow's warning that the input should be a two instead of one dimensional tensor. ###Code def pred_fn(X): return {str("my_col" + str(k)): tf.constant(X[:, k][:, np.newaxis]) for k in range(X.shape[1])} def input_fn(X, y): feature_cols = pred_fn(X) label = tf.constant(y) return feature_cols, label feature_cols = [tf.contrib.layers.real_valued_column(str("my_col") + str(i)) for i in range(X_train.shape[1])] # This does not work for some reason. #feature_cols = tf.contrib.learn.infer_real_valued_columns_from_input(X_train) regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols, hidden_units=[100, 100]) regressor.fit(input_fn=lambda: input_fn(X_train, y_train), steps=1000); pred = list(regressor.predict_scores(input_fn=lambda: pred_fn(X_test))) print pred print y_test print mean_squared_error(pred, y_test) ###Output [0.39723414, -0.027354294, -0.061233871, -0.017296148, -0.37245646, 0.1132348, 0.1976911, -0.1596929, 0.38804257, 0.0017217866] [ 0.50300872 0.04458803 -0.07244712 0.00861396 -0.49456769 -0.03319729 0.18001977 -0.25375277 0.25746021 -0.05760179] 0.00832451
squad20/preprocess.ipynb
###Markdown Word, token lengths ###Code %%time col = "qc_length" df[col] = df["question"].str.len() + df["context"].str.len() df[col] = df[col].astype(np.int32) %%time col = "a_length" df[col] = df["answer_text"].str.len() df[col] = df[col].astype(np.int32) def word_length(cols: Iterable) -> Callable: def f(row) -> int: res = 0 for col in cols: res += len(row[col].split()) return res return f %%time col = "qc_word_length" df[col] = df.progress_apply(word_length(["question", "context"]), axis=1) df[col] = df[col].astype(np.int32) %%time col = "a_word_length" df[col] = df.progress_apply(word_length(["answer_text"]), axis=1) df[col] = df[col].astype(np.int32) #pretrained_dir = "../pretrained/google/electra-small-discriminator" #tokenizer = AutoTokenizer.from_pretrained(pretrained_dir, model_max_length=512) #print(f"{repr(tokenizer)}\n{tokenizer.model_input_names}") #pretrained_dir = "../pretrained/albert-base-v2" #sp_tokenizer = AutoTokenizer.from_pretrained(pretrained_dir, model_max_length=512) #print(f"{repr(sp_tokenizer)}\n{sp_tokenizer.model_input_names}") #pretrained_dir = "../pretrained/distilroberta-base" #bpe_tokenizer = AutoTokenizer.from_pretrained(pretrained_dir, model_max_length=512) #print(f"{repr(bpe_tokenizer)}\n{bpe_tokenizer.model_input_names}") #%%time #x = tokenizer(questions, contexts) #print(f"{repr(x.keys())}\nlen={len(x['input_ids'])}") #col = "qc_wp_length" #df[col] = [len(v) for v in x["input_ids"]] #df[col] = df[col].astype(np.int16) #%%time #x = sp_tokenizer(questions, contexts) #print(f"{repr(x.keys())}\nlen={len(x['input_ids'])}") #col = "qc_sp_length" #df[col] = [len(v) for v in x["input_ids"]] #df[col] = df[col].astype(np.int16) #%%time #x = bpe_tokenizer(questions, contexts) #print(f"{repr(x.keys())}\nlen={len(x['input_ids'])}") #col = "qc_bpe_length" #df[col] = [len(v) for v in x["input_ids"]] #df[col] = df[col].astype(np.int16) #cols = ["qc_length", "a_length", "qc_word_length", "a_word_length", # "qc_wp_length", "qc_sp_length", "qc_bpe_length"] #df[cols].describe(percentiles=percentiles) df.info() %%time df.to_parquet("output/train.parquet", index=False) ###Output Wall time: 323 ms
figure_making/Fig_3_SLA.ipynb
###Markdown Setup ###Code # import packages %run ../global_packages.py # get the global parameters %run ../global_pars.py # import your local functions sys.path.insert(1, '../') from global_functions import * # make sure the figures plot inline rather than at the end %matplotlib inline ###Output _____no_output_____ ###Markdown Paths ###Code figpath = '../figures/' ###Output _____no_output_____ ###Markdown Get Data ###Code # SLA ds_SLA = xr.open_dataset('../data_processing/2_SLA/sla_processed.nc') ds_SLA mon_sla = ds_SLA['mon_sla'] mon_sla_mon_anom = ds_SLA['mon_sla_mon_anom'] mon_sla_mon_clim = ds_SLA['mon_sla_mon_clim'] lat = mon_sla.lat.values lon = mon_sla.lon.values ###Output _____no_output_____ ###Markdown Get DMI ###Code # load DMI data ds_DMI= xr.open_dataset('../data_processing/3_DMI/dmi_processed.nc') posIODyears = list(np.array(ds_DMI.pos_IOD_years)) negIODyears = list(np.array(ds_DMI.neg_IOD_years)) neuIODyears = list(np.array(ds_DMI.neu_IOD_years)) sposIODyears = list(np.array(ds_DMI.spos_IOD_years)) snegIODyears = list(np.array(ds_DMI.sneg_IOD_years)) wposIODyears = list(np.array(ds_DMI.wpos_IOD_years)) wnegIODyears = list(np.array(ds_DMI.wneg_IOD_years)) ds_DMI ###Output _____no_output_____ ###Markdown Group Anomalies Into IOD Phases ###Code var = mon_sla_mon_anom # ------------------------------------------------------------# # Anomaly # ------------------------------------------------------------# # average over the positive IOD years -------------------------------------------# posIOD_mon_sla_mon_anom,_ = IOD_year_group_grid(var,IODyear_begin,IODyear_end,posIODyears) # average over the negative IOD years -------------------------------------------# negIOD_mon_sla_mon_anom,_ = IOD_year_group_grid(var,IODyear_begin,IODyear_end,negIODyears) # average over the neutral IOD years -------------------------------------------# neuIOD_mon_sla_mon_anom,_ = IOD_year_group_grid(var,IODyear_begin,IODyear_end,neuIODyears) # ------------------------------------------------------------# # Strong Anomaly # ------------------------------------------------------------# # average over the strong positive IOD years -------------------------------------------# sposIOD_mon_sla_mon_anom,_ = IOD_year_group_grid(var,IODyear_begin,IODyear_end,sposIODyears) # average over the strong negative IOD years -------------------------------------------# snegIOD_mon_sla_mon_anom,_ = IOD_year_group_grid(var,IODyear_begin,IODyear_end,snegIODyears) # ------------------------------------------------------------# # Weak Anomaly # ------------------------------------------------------------# # average over the weak positive IOD years -------------------------------------------# wposIOD_mon_sla_mon_anom,_ = IOD_year_group_grid(var,IODyear_begin,IODyear_end,wposIODyears) # average over the weak negative IOD years -------------------------------------------# wnegIOD_mon_sla_mon_anom,_ = IOD_year_group_grid(var,IODyear_begin,IODyear_end,wnegIODyears) # ------------------------------------------------------------# # Annual Cycle # ------------------------------------------------------------# mon_sla_mon_clim = mon_sla_mon_clim.roll(month=-5,roll_coords = False) ###Output /home/jennap/anaconda3/lib/python3.7/site-packages/xarray/core/nanops.py:161: RuntimeWarning: Mean of empty slice return np.nanmean(a, axis=axis, dtype=dtype) ###Markdown Hovmueller Diagrams ###Code # create list of integer years IODphases = list([mon_sla_mon_clim,posIOD_mon_sla_mon_anom, negIOD_mon_sla_mon_anom,sposIOD_mon_sla_mon_anom]) titles = ['Monthly\nClimatology','Interannual Anomaly\nPositive IOD Phases', 'Interannual Anomaly\nNegative IOD Phases','Interannual Anomaly\nStrong Positive Phases'] # plt.rcParams.update({'font.size': 20}) fig = plt.figure(figsize=(17.8/2.54, 3), dpi = 200) cmin = -0.15 cmax = 0.15 letters = ['a','b','c','d','e','f'] params = {'legend.fontsize': 6, 'axes.labelsize': 8, 'axes.titlesize': 8, 'xtick.labelsize':6.15, 'ytick.labelsize':7.5, 'hatch.linewidth':0.5, 'hatch.color':'#3A3B3C', 'axes.linewidth':0.35, 'xtick.major.width':0, 'xtick.major.size':1.5, 'ytick.major.width':0.75, 'ytick.major.size':1.5} pylab.rcParams.update(params) ######################### for ii,phase in enumerate(IODphases): # Get times and make array of datetime objects vtimes = phase.month data = np.zeros([vtimes.shape[0],ds_SLA.sta_loninds.shape[0]]) ac = np.zeros([vtimes.shape[0],ds_SLA.sta_loninds.shape[0]]) for jj in range(ds_SLA.sta_loninds.shape[0]): data[:,jj] = phase[:,ds_SLA.sta_latinds[jj],ds_SLA.sta_loninds[jj]] ac[:,jj] = mon_sla_mon_clim[:,ds_SLA.sta_latinds[jj],ds_SLA.sta_loninds[jj]] # colorbar limits levels = np.round(np.linspace(cmin, cmax, 10),2) # Specify longitude values for chosen domain sta = np.arange(len(ds_SLA.sta_loninds)) ax = fig.add_subplot(1,4,ii+1) # Plot of chosen variable averaged over latitude and slightly smoothed # cf = ax.contourf(sta,vtimes,data,levels = levels,cmap=plt.cm.PuOr_r, extend="both") cf = ax.contourf(sta,vtimes,data,levels = levels,cmap=plt.cm.PuOr_r, extend="both") if ii >0: ss = np.ma.array(data, mask= np.sign(ac) * np.sign(data)>=0) # maintains opposite condition css = ax.contourf(sta,vtimes,ss,levels = levels,cmap=plt.cm.PuOr_r, extend="both", hatches=['//////'], alpha=0.5) for loc in ds_SLA.loc_list: plt.axvline(x=loc,color = 'k', linewidth = 0.5) plt.plot(ds_SLA.loc_list,np.full(ds_SLA.loc_list.shape,1), markersize = 2, markerfacecolor = 'k', marker = 's', color = 'g',markeredgecolor = 'k', clip_on=False) # plt.xlabel('Station') # if ii == 0: # plt.ylabel('Month') plt.title(titles[ii]) ax2 = ax.twinx() # if ii == 0: # ax.set_yticklabels(['','','','','summer/fall','','','','', '', '','winter/spring']) # else: # ax.set_yticklabels([]) # plt.yticks(rotation=90) # if ii == 3: # ax2.set_yticks(np.arange(1,13)) # ax2.set_yticklabels(['Jun','Jul','Aug','Sep','Oct','Nov','Dec','Jan','Feb','Mar', 'Apr', 'May']) # else: # ax2.set_yticklabels([]) if ii == 3: ax2.set_yticks(np.arange(0,12)) ax2.set_yticklabels(['Jun','Jul','Aug','Sep','Oct','Nov','Dec','Jan','Feb','Mar', 'Apr', 'May'], fontsize = 6) else: ax2.set_yticks(np.arange(0,12)) ax2.set_yticklabels([]) if ii == 0: ax.set_yticks(np.arange(1,13)) ax.set_yticklabels(['',' ',' ','','','Summer/Fall ','','','', '', '','Winter/Spring '], rotation = 90) else: ax.set_yticks(np.arange(1,13)) ax.set_yticklabels([]) ax.axhline(y = 6.5, color = 'dimgray',linestyle = '--', linewidth = 1) xticks = (np.array(ds_SLA.loc_list[:-1]) + np.array(ds_SLA.loc_list[1:]))*0.5 ax.set_xticks(xticks) ax.set_xticklabels(['EQ', 'EBoB','WBoB', 'EAS','WAS']) ax.tick_params(axis='x', which='major', pad=5) # ax.set_yticks(list(np.arange(0,12))) cf.set_clim(cmin, cmax)# reset lims because contourf does weird things. add_letter(ax, letters[ii], x = 0.01,y=0.95, fontsize = 7) # add coasta waveguide inset left, bottom, width, height = [0.845, 0.715, 0.11, 0.155] axi = fig.add_axes([left, bottom, width, height],projection= ccrs.PlateCarree()) axi.scatter(ds_SLA.sta_lon,ds_SLA.sta_lat,s=7,marker = '.',c='g', edgecolor = 'none',transform=ccrs.PlateCarree(), zorder = 3) axi.scatter(ds_SLA.sta_lon[ds_SLA.loc_list],ds_SLA.sta_lat[ds_SLA.loc_list],s=7, edgecolor = 'none',marker = 's',c='k',transform=ccrs.PlateCarree(), zorder = 3) g = add_land(axi, bounds = [49,104,-5,30], lcolor = 'dimgray') g.xlocator = mticker.FixedLocator([]) g.ylocator = mticker.FixedLocator([]) add_text(axi, 'WAS', x = 0.1,y=0.5, fontsize = 6, color = 'k', weight = 'bold') add_text(axi, 'EAS', x = 0.3,y=0.71, fontsize = 6, color = 'k', weight = 'bold') add_text(axi, 'WBoB', x = 0.5,y=0.46, fontsize = 6, color = 'k', weight = 'bold') add_text(axi, 'EBoB', x = 0.67,y=0.85, fontsize = 6, color = 'k', weight = 'bold') add_text(axi, 'EQ', x = 0.3,y=0.1, fontsize = 6, color = 'k', weight = 'bold') # cbar_ax = fig.add_axes([0.91, 0.125, 0.015, 0.75]) cbar_ax = fig.add_axes([0.045, 0.14, 0.9, 0.025]) cbar = fig.colorbar(cf,cax=cbar_ax, pad=0.04, orientation = 'horizontal') cbar.set_label('Sea-level Anomaly ($m$)', size = 7) plt.subplots_adjust(wspace = 0.12, bottom = 0.265, left = 0.03, right = 0.96) plt.savefig(figpath + 'Fig_3_sla.pdf', format='pdf', dpi = 400) ###Output _____no_output_____