path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
MidtermExam_Number1.ipynb
###Markdown Program 1: Modify the program below by adding two conversion methods - Fahrenheit to Celsius and Kelvin to Celsius (50 points) ###Code def main(): class TemperatureConversion: def __init__(self, temp=1): self._temp = temp class FahrenheitToCelsius(TemperatureConversion): def conversion(self): return ((self._temp - 32) * 5)/9 class KelvinToCelsius(TemperatureConversion): def conversion(self): return self._temp - 273.15 tempInCelsius = float(input("Enter the temperature : ")) convert = KelvinToCelsius(tempInCelsius) print("In kelvin to Celsius : " + str(convert.conversion()) + " c " ) convert = FahrenheitToCelsius(tempInCelsius) print("In Fahrenheit to Celsius : " +str(convert.conversion()) + " c ") main() ###Output Enter the temperature : 45 In kelvin to Celsius : -228.14999999999998 c In Fahrenheit to Celsius : 7.222222222222222 c
nbs/12_cluster_analysis/000_01-kmeans-pca.ipynb
###Markdown Description Runs k-means on the pca version of the data. Environment variables ###Code from IPython.display import display import conf N_JOBS = conf.GENERAL["N_JOBS"] display(N_JOBS) %env MKL_NUM_THREADS=$N_JOBS %env OPEN_BLAS_NUM_THREADS=$N_JOBS %env NUMEXPR_NUM_THREADS=$N_JOBS %env OMP_NUM_THREADS=$N_JOBS ###Output env: MKL_NUM_THREADS=2 env: OPEN_BLAS_NUM_THREADS=2 env: NUMEXPR_NUM_THREADS=2 env: OMP_NUM_THREADS=2 ###Markdown Modules loading ###Code %load_ext autoreload %autoreload 2 from pathlib import Path import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from utils import generate_result_set_name ###Output _____no_output_____ ###Markdown Settings ###Code np.random.seed(0) INITIAL_RANDOM_STATE = 10000 ###Output _____no_output_____ ###Markdown Input data ###Code INPUT_SUBSET = "pca" INPUT_STEM = "z_score_std-projection-smultixcan-efo_partial-mashr-zscores" DR_OPTIONS = { "n_components": 50, "svd_solver": "full", "random_state": 0, } input_filepath = Path( conf.RESULTS["DATA_TRANSFORMATIONS_DIR"], INPUT_SUBSET, generate_result_set_name( DR_OPTIONS, prefix=f"{INPUT_SUBSET}-{INPUT_STEM}-", suffix=".pkl" ), ).resolve() display(input_filepath) assert input_filepath.exists(), "Input file does not exist" input_filepath_stem = input_filepath.stem display(input_filepath_stem) ###Output _____no_output_____ ###Markdown Clustering ###Code from sklearn.cluster import KMeans CLUSTERING_ATTRIBUTES_TO_SAVE = ["n_clusters"] CLUSTERING_OPTIONS = {} CLUSTERING_OPTIONS["K_MIN"] = 2 CLUSTERING_OPTIONS["K_MAX"] = 60 # sqrt(3749) CLUSTERING_OPTIONS["N_REPS_PER_K"] = 5 CLUSTERING_OPTIONS["KMEANS_N_INIT"] = 10 display(CLUSTERING_OPTIONS) CLUSTERERS = {} idx = 0 random_state = INITIAL_RANDOM_STATE for k in range(CLUSTERING_OPTIONS["K_MIN"], CLUSTERING_OPTIONS["K_MAX"] + 1): for i in range(CLUSTERING_OPTIONS["N_REPS_PER_K"]): clus = KMeans( n_clusters=k, n_init=CLUSTERING_OPTIONS["KMEANS_N_INIT"], random_state=random_state, ) method_name = type(clus).__name__ CLUSTERERS[f"{method_name} #{idx}"] = clus random_state = random_state + 1 idx = idx + 1 display(len(CLUSTERERS)) _iter = iter(CLUSTERERS.items()) display(next(_iter)) display(next(_iter)) clustering_method_name = method_name display(clustering_method_name) ###Output _____no_output_____ ###Markdown Output directory ###Code # output dir for this notebook RESULTS_DIR = Path( conf.RESULTS["CLUSTERING_RUNS_DIR"], f"{INPUT_SUBSET}-{INPUT_STEM}", ).resolve() RESULTS_DIR.mkdir(parents=True, exist_ok=True) display(RESULTS_DIR) ###Output _____no_output_____ ###Markdown Load input file ###Code data = pd.read_pickle(input_filepath) data.shape data.head() assert not data.isna().any().any() ###Output _____no_output_____ ###Markdown Clustering Generate ensemble ###Code from clustering.ensembles.utils import generate_ensemble ensemble = generate_ensemble( data, CLUSTERERS, attributes=CLUSTERING_ATTRIBUTES_TO_SAVE, ) # the number should be close to 295 (the number of partitions generated by k-means/spectral clustering) ensemble.shape ensemble.head() ensemble["n_clusters"].value_counts().head() ensemble_stats = ensemble["n_clusters"].describe() display(ensemble_stats) ###Output _____no_output_____ ###Markdown Testing ###Code assert ensemble_stats["min"] > 1 assert not ensemble["n_clusters"].isna().any() assert ensemble.shape[0] == len(CLUSTERERS) # all partitions have the right size assert np.all( [part["partition"].shape[0] == data.shape[0] for idx, part in ensemble.iterrows()] ) # no partition has negative clusters (noisy points) assert not np.any([(part["partition"] < 0).any() for idx, part in ensemble.iterrows()]) ###Output _____no_output_____ ###Markdown Add clustering quality measures ###Code from sklearn.metrics import calinski_harabasz_score ensemble = ensemble.assign( ch_score=ensemble["partition"].apply(lambda x: calinski_harabasz_score(data, x)) ) ensemble.shape ensemble.head() ###Output _____no_output_____ ###Markdown Save ###Code output_filename = Path( RESULTS_DIR, generate_result_set_name( CLUSTERING_OPTIONS, prefix=f"{clustering_method_name}-", suffix=".pkl", ), ).resolve() display(output_filename) ensemble.to_pickle(output_filename) ###Output _____no_output_____ ###Markdown Cluster quality ###Code with pd.option_context("display.max_rows", None, "display.max_columns", None): _df = ensemble.groupby(["n_clusters"]).mean() display(_df) with sns.plotting_context("talk", font_scale=0.75), sns.axes_style( "whitegrid", {"grid.linestyle": "--"} ): fig = plt.figure(figsize=(14, 6)) ax = sns.pointplot(data=ensemble, x="n_clusters", y="ch_score") ax.set_ylabel("Calinski-Harabasz index") ax.set_xlabel("Number of clusters ($k$)") ax.set_xticklabels(ax.get_xticklabels(), rotation=45) plt.grid(True) plt.tight_layout() ###Output _____no_output_____ ###Markdown Stability Group ensemble by n_clusters ###Code parts = ensemble.groupby("n_clusters").apply( lambda x: np.concatenate(x["partition"].apply(lambda x: x.reshape(1, -1)), axis=0) ) parts.head() assert np.all( [ parts.loc[k].shape == (CLUSTERING_OPTIONS["N_REPS_PER_K"], data.shape[0]) for k in parts.index ] ) ###Output _____no_output_____ ###Markdown Compute stability ###Code from sklearn.metrics import adjusted_rand_score as ari from scipy.spatial.distance import pdist parts_ari = pd.Series( {k: pdist(parts.loc[k], metric=ari) for k in parts.index}, name="k" ) parts_ari_stability = parts_ari.apply(lambda x: x.mean()) display(parts_ari_stability.sort_values(ascending=False).head(15)) parts_ari_df = pd.DataFrame.from_records(parts_ari.tolist()).set_index( parts_ari.index.copy() ) parts_ari_df.shape assert ( int( (CLUSTERING_OPTIONS["N_REPS_PER_K"] * (CLUSTERING_OPTIONS["N_REPS_PER_K"] - 1)) / 2 ) == parts_ari_df.shape[1] ) parts_ari_df.head() ###Output _____no_output_____ ###Markdown Save ###Code output_filename = Path( RESULTS_DIR, generate_result_set_name( CLUSTERING_OPTIONS, prefix=f"{clustering_method_name}-stability-", suffix=".pkl", ), ).resolve() display(output_filename) parts_ari_df.to_pickle(output_filename) ###Output _____no_output_____ ###Markdown Stability plot ###Code parts_ari_df_plot = ( parts_ari_df.stack() .reset_index() .rename(columns={"level_0": "k", "level_1": "idx", 0: "ari"}) ) parts_ari_df_plot.dtypes parts_ari_df_plot.head() # with sns.axes_style('whitegrid', {'grid.linestyle': '--'}): with sns.plotting_context("talk", font_scale=0.75), sns.axes_style( "whitegrid", {"grid.linestyle": "--"} ): fig = plt.figure(figsize=(14, 6)) ax = sns.pointplot(data=parts_ari_df_plot, x="k", y="ari") ax.set_ylabel("Averange ARI") ax.set_xlabel("Number of clusters ($k$)") ax.set_xticklabels(ax.get_xticklabels(), rotation=45) # ax.set_ylim(0.0, 1.0) # ax.set_xlim(CLUSTERING_OPTIONS['K_MIN'], CLUSTERING_OPTIONS['K_MAX']) plt.grid(True) plt.tight_layout() ###Output _____no_output_____
forks/MIT_OCW_Linear_Algebra_18_06-master/II_08_Eigenvalues_and_eigenvectors.ipynb
###Markdown + This notebook is part of lecture 21 *Eigenvalues and eigenvectors* in the OCW MIT course 18.06 by Prof Gilbert Strang [1]+ Created by me, Dr Juan H Klopper + Head of Acute Care Surgery + Groote Schuur Hospital + University Cape Town + Email me with your thoughts, comments, suggestions and corrections Linear Algebra OCW MIT18.06 IPython notebook [2] study notes by Dr Juan H Klopper is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.+ [1] OCW MIT 18.06+ [2] Fernando Pérez, Brian E. Granger, IPython: A System for Interactive Scientific Computing, Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007, doi:10.1109/MCSE.2007.53. URL: http://ipython.org ###Code from IPython.core.display import HTML, Image css_file = 'style.css' HTML(open(css_file, 'r').read()) from sympy import init_printing, Matrix, symbols, eye from warnings import filterwarnings init_printing(use_latex = 'mathjax') filterwarnings('ignore') lamda = symbols('lamda') # Note that lambda is a reserved word in python, so we use lamda (without the b) ###Output _____no_output_____ ###Markdown Eigenvalues and eigenvectors What are eigenvectors? * A Matrix is a mathematical object that acts on a (column) vector, resulting in a new vector, i.e. A**x**=**b*** An eigenvector is the resulting vector that is parallel to **x** (some multiple of **x**)$$ {A}\underline{x}=\lambda \underline{x} $$ * The eigenvectors with an eigenvalue of zero are the vectors in the nullspace* If A is singular (takes some non-zero vector into 0) then &955;=0 What are the eigenvectors and eigenvalues for projection matrices? * A projection matrix P projects some vector (**b**) onto a subspace (in 3-space we are talking about a plane through the origin)* P**b** is not in the same direction as **b*** A vector **x** that is already in the subspace will result in P**x**=**x**, so &955;=1* Another good **x** would be one perpendicular to the subspace, i.e. P**x**=0**x**, so &955;=0 What are the eigenvectors and eigenvalues for permutation matrices? * A permutation matrix such as the one below changes the order of the elements in a (column) vector$$ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} $$* A good example of a vector that would remain in the same direction after multiplication by the permutation matrix above would the following vector$$ \begin{bmatrix} 1 \\ 1 \end{bmatrix} $$* The eigenvalue would just be &955;=1* The next (eigen)vector would also work$$ \begin{bmatrix} -1 \\ 1 \end{bmatrix} $$* It would have an eigenvalue of &955;=-1 The trace and the determinant * The trace is the sum of the values down the main diagonal of a square matrix* Note how this is the same as the sum of the eigenvalues (look at the permutation matrix above and its eigenvalues)* The determinant of A is the product of the eigenvalues How to solve A**x**=&955;**x** $$ A\underline { x } =\lambda \underline { x } \\ \left( A-\lambda I \right) \underline { x } =\underline { 0 } $$ * The only solution to this equation is for A-&955;I to be singular and therefor have a determinant of zero$$ \left|{A}-\lambda{I}\right|=0 $$ * This is called the characteristic (or eigenvalue) equation* There will be *n* &955;'s for a *n*&215;*n* matrix(some of which may be of equal value) ###Code A = Matrix([[3, 1], [1, 3]]) I = eye(2) A, I # Printing A and the 2-by-2 identity matrix to the screen (A - lamda * I) # Printing A minus lambda times the identity matrix to the screen ###Output _____no_output_____ ###Markdown * This will have the following determinant ###Code (A - lamda * I).det() ###Output _____no_output_____ ###Markdown * For this 2&215;2 matrix the absolute value of the -6 is the trace of A and the 8 is the determinant of A ###Code ((A - lamda * I).det()).factor() ###Output _____no_output_____ ###Markdown * I now have two eigenvalues of 2 and 4 * In python we could also use the .*eigenvals()* statement ###Code A.eigenvals() # There is one value of 2 and one value of 4 ###Output _____no_output_____ ###Markdown * The eigenvectors are calculated by substituting the two values of &955; into the original equation$$ \left( {A}-\lambda{I} \right)\underline{x}=\underline{0} $$ ###Code A.eigenvects() ###Output _____no_output_____ ###Markdown * The results above is interpreted as follows * The first eigenvalue has one eigenvector and the second eigenvalue also has a single eigenvector * Note the similarity between the eigenvectors of the two examples above* It is easy to see that adding a constant multiple of the identity matrix to another matrix (above we added 3I to the initial matrix) doesn't change the eigenvectors; it does add that constant to the eigenvalues though (we went from -1 and 1 to 2 and 4)$$ A\underline { x } =\lambda \underline { x } \\ \therefore \quad \left( A+cI \right) \underline { x } =\left( \lambda +c \right) \underline { x } $$ * If we add another matrix to A (not a constant multiple of I) or even multiply them, then the influence on the original eigenvalues and eigenvectors of A is NOT so predictable (as above) The eigenvalues and eigenvectors of a rotation matrix * Consider this rotation matrix that rotates a vector by 90o (it is orthogonal) * Think about it, though: what vector can come out parallel to itself after a 90o rotation? ###Code Q = Matrix([[0, -1], [1, 0]]) Q ###Output _____no_output_____ ###Markdown * From the trace and determinant above we know that we will have the following equation$$ {\lambda}^{2}-{0}{\lambda}+{1}={0} \\ {\lambda}^{2}=-{1} $$ ###Code Q.eigenvals() Q.eigenvects() ###Output _____no_output_____ ###Markdown * Note how the eigenvalues are complex conjugates* Symmetric matrices will only have real eigenvalues* An *anti*-symmetric matrix (where the transpose is the original matrix times the scalar -1, as our example above) will only have complex eigenvalues* Matrices in between can have a mix of these Eigenvalues and eigenvectors of an upper triangular matrix * Compute the eigenvalues and eigenvectors of the following matrix (note it is upper triangular) ###Code A = Matrix([[3, 1], [0, 3]]) A A.eigenvals() ###Output _____no_output_____ ###Markdown * We have two eigenvalues, both equal to 3 ###Code A.eigenvects() ###Output _____no_output_____ ###Markdown * This is a degenerate matrix; it does not have independent eigenvectors * Look at this upper triangular matrix ###Code A = Matrix([[3, 1, 1], [0, 3, 4], [0, 0, 3]]) A A.eigenvals() A.eigenvects() ###Output _____no_output_____ ###Markdown Example problems Example problem 1 * Find the eigenvalues and eigenvectors of the square of the following matrix as well as the inverse of the matrix minus the identity matrix$$ {A}=\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix} $$ Solution * Notice the following$$ A\underline { x } =\lambda \underline { x } \\ { A }^{ 2 }\underline { x } =A\left( A\underline { x } \right) =A\left( \lambda \underline { x } \right) =\lambda \left( A\underline { x } \right) ={ \lambda }^{ 2 }\underline { x } $$* Once we know the eigenvalues for A we than simply square them to get the eigenvalues of the matrix squared * Similarly for the inverse of the matrix we have the following (for a non-zero &955;, which is fine as A must be invertible for this problem)$$ { A }^{ -1 }\underline { x } ={ A }^{ -1 }\frac { A\underline { x } }{ \lambda } ={ A }^{ -1 }A\frac { 1 }{ \lambda } \underline { x } =\frac { 1 }{ \lambda } \underline { x} $$ ###Code A = Matrix([[1, 2, 3], [0, 1, -2], [0, 1, 4]]) A A.eigenvals() A.eigenvects() ###Output _____no_output_____ ###Markdown * From this it is clear that the eigenvalues of A2 will be 1, 4, and 9 and for A-1 would be a 1, a half and a third ###Code (A ** 2).eigenvals() (A.inv()).eigenvals() ###Output _____no_output_____ ###Markdown * The eigenvectors will be as follows (exactly the same) ###Code (A ** 2).eigenvects() (A.inv()).eigenvects() ###Output _____no_output_____
LR_as_Elo.ipynb
###Markdown Logistic Regression as Elo[Benjamin Morris](https://twitter.com/skepticalsports/status/1147225488273788929) set me on the right path. The previous experiments used a general purpose classifier that just looked at the rating difference between teams to predict a winner. You can use the logistic regression framework to solve for optimal Elo ratings. So let's do that here ###Code from collections import defaultdict, deque import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model plt.style.use('fivethirtyeight') plt.style.use('seaborn-white') # load the data and drop the away games df = pd.read_csv('nbaallelo.csv',index_col='game_id') df = df[df['game_location']!='A'] # teams moved around a lot from_new_to_old_team = { 'CHO':'CHA','NOP':'NOH','BRK':'NJN','OKC':'SEA','NOK':'NOH','NOH':'CHH','MEM':'VAN','WAS':'WSB','SAC':'KCK','LAC':'SDC','UTA':'NOJ','SDC':'BUF','NJN':'NYN','GSW':'SFW','DLC':'TEX','HOU':'SDR','CHA':'CHH','SAA':'TEX','SAS':'SAA','DEN':'DNA','DNA':'DNR','WSB':'CAP','CAP':'BAL','BAL':'CHZ','CHZ':'CHP','SDS':'SDA','FLO':'MMF','MMF':'MNM','SFW':'PHW','LAL':'MNL','LAS':'ANA','UTS':'LAS','CAR':'HSM','SSL':'CAR','DET':'FTW','MLH':'TRI','STL':'MLH','ATL':'STL','PHI':'SYR','CIN':'ROC','PTC':'PTP','MNP':'PTP','PTP':'MNP','MMP':'NOB','MMT':'MMP','MMS':'MMT','VIR':'WSA','WSA':'OAK' } # the basic 538 Elo def get_elo_ratings(df_local,start_year = 1947): K=20 HFA=100 SW=0.75 MOVM=3 ELOW=400 INTERCEPT=7.5 SLOPE=0.006 POW=0.8 NEW_TEAM=1300 year_id = start_year ELOW=400 df_local = df_local[df_local.year_id >= start_year] team_year_elo = defaultdict(lambda : defaultdict(list)) elo = {} for i,row in enumerate(df_local.itertuples()): # skip duplicates if row[3] != 0: continue # update the year if row[4] != year_id: for k in elo: elo[k] = SW*elo[k] + (1-SW)*1505 year_id +=1 # update teams that renamed themselves teams1 = set(list(df[df.year_id == year_id-1].team_id.unique()) + list(df[df.year_id == year_id-1].opp_id.unique())) teams2 = set(list(df[df.year_id == year_id].team_id.unique()) + list(df[df.year_id == year_id].opp_id.unique())) for t in [_ for _ in teams2 if not _ in teams1]: if t in from_new_to_old_team and not t in elo and from_new_to_old_team[t] in elo: elo[t] = elo[from_new_to_old_team[t]] team_year_elo[t].update(team_year_elo[from_new_to_old_team[t]]) # get the stats t1,t2=row[8],row[14] elo_i,elo_n = row[11],row[12] opp_elo_i,opp_elo_n = row[17],row[18] p1,p2 = row[10],row[16] # get the Elo elo1 = elo.get(t1,NEW_TEAM) + HFA if row[-4] == 'N': elo1 -= HFA elo2 = elo.get(t2,NEW_TEAM) # get the win % winp = 1.0 / (10 ** (-(elo1-elo2)/ELOW) + 1) # compute margin of victory correction mov = abs(p1-p2) elo_diff_w = (elo2 - elo1) mofv_m1 = ((mov+MOVM) ** POW)/(INTERCEPT + SLOPE*(-elo_diff_w)) mofv_m2 = ((mov+MOVM) ** POW)/(INTERCEPT + SLOPE*(elo_diff_w)) # find the elo update amount if p1 > p2: hm,am = 1,-1 add_t = K*(1-winp)*mofv_m1 else: hm,am = -1,1 add_t = K*(winp)*mofv_m2 # apply it if row[-4] == 'N': elo[t1] = elo1 + hm*add_t else: elo[t1] = elo1 + hm*add_t - HFA elo[t2] = elo2 + am*add_t # save it team_year_elo[t1][year_id].append(elo[t1] - hm*add_t) team_year_elo[t2][year_id].append(elo[t2] - am*add_t) return team_year_elo team_year_elo = get_elo_ratings(df) import warnings warnings.simplefilter(action='ignore', category=FutureWarning) if False: import autograd.numpy as np import autograd def generate_ratings2(dset,teams,weight_recent = 0,HFA=75/173): N = len(teams) X = [] Y = [] for t1,games in dset.items(): for t2,tW in games: v = np.zeros(N) v[teams[t1]] = 1 v[teams[t2]] = -1 #v[-1] = 70/173 Y.append(tW) X.append(v) try: w = np.ones_like(Y) if weight_recent != 0: w = [np.exp(-(i*i/weight_recent)) for i in range(len(Y))] w = np.array(w)[::-1] w /= w.mean() X = np.array(X).astype(np.float) Y = np.array(Y).astype(np.float) W = 1e-2*np.random.normal(size=(X.shape[1])) def loss_f(xt): p = 1/(1+np.exp(- (X @ xt + HFA))) loss = np.mean(w*(-Y * np.log(p) - (1-Y) *np.log(1-p+1e-12))) return loss GRAD = autograd.grad(loss_f) alpha = 3e-1 v = np.zeros_like(W) for i in range(1000): loss = loss_f(W) v = 0.9*v - GRAD(W) W += (alpha) * v #if (i%1000== 0): # break if (np.linalg.norm(v) < 1e-2): print('early') break if (i%50) == 0: print(loss,) if i > 0 and (i%250) ==0: alpha /= 4 return (W * 173 + 1500,HFA) except: return ([1500 for i in range(N)],0) import scipy.optimize as opt prev_w = None def log_logit(xs): xs = np.array(xs) return np.choose(xs > 0,[-np.log(1. + np.exp(-xs)),xs - np.log(1. + np.exp(xs))]) def generate_ratings2(dset,teams,weight_recent = 0,HFA=75/173): global prev_w N = len(teams) X = [] Y = [] for t1,games in dset.items(): for t2,tW in games: v = np.zeros(N) v[teams[t1]] = 1 v[teams[t2]] = -1 #v[-1] = 70/173 Y.append(tW) X.append(v) try: w = np.ones_like(Y) if weight_recent != 0: w = [np.exp(-(i*i/weight_recent)) for i in range(len(Y))] w = np.array(w)[::-1] w /= w.mean() X = np.array(X).astype(np.float) Y = np.array(Y).astype(np.float) if prev_w is None or prev_w.shape[0] != X.shape[1]: prev_w = 1e-2*np.random.normal(size=(X.shape[1])) W = prev_w def loss_f(xt): V = X @ xt + HFA loss = np.mean(w*(-Y * log_logit(V) - (1-Y) *log_logit(-V))) return loss res = opt.minimize(loss_f,W) W = res.x prev_w = W return (W * 173 + 1500,HFA) except KeyboardInterrupt: raise except: return ([1500 for i in range(N)],0) def generate_ratings(dset,teams,weight_recent = 0): N = len(teams) X = [] Y = [] for t1,games in dset.items(): for t2,tW in games: v = np.zeros(N) v[teams[t1]] = 1 v[teams[t2]] = -1 #v[-1] = 70/173 Y.append(tW) X.append(v) try: clf = linear_model.LogisticRegression() if weight_recent != 0: w = [np.exp(-(i*i/weight_recent)) for i in range(len(Y))] w = np.array(w)[::-1] w /= w.mean() clf.fit(X,Y,w) else: clf.fit(X,Y) return (clf.coef_[0] * 173 + 1500,clf.intercept_[0]) except: return ([1500 for i in range(N)],0) hfa_vals = [] def get_lr_ratings(df_local,start_year = 2011,games_std_dev=0): correct_r = 0 total_r = 0 MAX_HOME_GAMES_PER_TEAM = 30 # 30 year_id = start_year-1 df_local = df_local[df_local.year_id >= start_year] team_year_elo = defaultdict(lambda : defaultdict(list)) dataset = defaultdict(lambda : deque(maxlen=MAX_HOME_GAMES_PER_TEAM)) for i,row in enumerate(df_local.itertuples()): # skip duplicates if row[3] != 0: continue # update the year if row[4] != year_id: year_id +=1 teams1 = set(list(df[df.year_id == year_id-1].team_id.unique()) + list(df[df.year_id == year_id-1].opp_id.unique())) teams2 = set(list(df[df.year_id == year_id].team_id.unique()) + list(df[df.year_id == year_id].opp_id.unique())) old_to_new = {} for t in [_ for _ in teams2 if not _ in teams1]: if t in from_new_to_old_team: old_team = from_new_to_old_team[t] team_year_elo[t].update(team_year_elo[old_team]) dataset[t] = dataset[old_team] old_to_new[old_team] = t # remove the old team for t in [t for t in dataset if not t in teams2]: del dataset[t] # correct the entries for team in dataset: replaced_teams = [(old_to_new.get(g[0],g[0]),g[1]) for g in dataset[team]] dataset[team] = deque(replaced_teams,maxlen=MAX_HOME_GAMES_PER_TEAM) teams = {t: i for i,t in enumerate(sorted(teams2))} t1,t2=row[8],row[14] p1,p2 = row[10],row[16] # generate a rating rate,hfa = generate_ratings(dataset,teams,games_std_dev) hfa_vals.append(hfa) team_year_elo[t1][year_id].append(rate[teams[t1]]) team_year_elo[t2][year_id].append(rate[teams[t2]]) if year_id >= 2013: correct_r += int(((rate[teams[t1]] - rate[teams[t2]] +hfa) > 0) == (p1 > p2)) total_r += 1 # just store the other team and the result dataset[t1].append((t2,p1>p2)) #print('.',end='') print(correct_r/total_r) return team_year_elo,dataset team_year_elo_reg,dataset = get_lr_ratings(df,2010,0) #_ = plt.plot([np.exp(-(i*i/(200**2))) for i in range(100)]) #plt.figure() _ = plt.plot(173*np.array(hfa_vals)[100*10:]) plt.xlabel('Game Number') plt.ylabel('Elo Home Court Advantage') plt.title('Regressed HCA (Last 30 Games weighted)') _ = plt.hist(173*np.array(hfa_vals[41*15:]),50,density=True) plt.title('{:.3f}'.format(173*np.array(hfa_vals[41*15:]).mean())) for ds,hfa in zip([team_year_elo_reg,team_year_elo],[75,100]): correct = 0 total = 0 for yr in range(2013,2016): ds = {_:ds[_] for _ in ds if yr in ds[_]} counter = {k:0 for k in ds} for i,row in enumerate(df[df.year_id == yr].itertuples()): # skip duplicates if row[3] != 0: continue t1,t2=row[8],row[14] p1,p2 = row[10],row[16] elo1 = ds[t1][yr][counter[t1]] elo2 = ds[t2][yr][counter[t2]] correct += int(((elo1-elo2 + hfa) > 0) == (p1 > p2)) total += 1 counter[t1] += 1 counter[t2] += 1 print(correct/total) from scipy.ndimage.filters import gaussian_filter1d teams = ['GSW','HOU','CLE','MIL','SAS','LAL'] plt.figure(figsize=(10,5)) plt.subplot(2,1,1) plt.vlines(82,0,2500,linestyles='dashed',color=(0.1,0.1,0.1),lw=3,alpha=0.8) plt.vlines(82*2,0,2500,linestyles='dashed',color=(0.1,0.1,0.1),lw=3,alpha=0.8) plt.hlines(1500,0,82*3,linestyles='dashed',color=(0.1,0.1,0.1),lw=3,alpha=0.8) for t in teams: plt.plot(np.concatenate([team_year_elo[t][y][:82] for y in range(2013,2016)]),label=t) plt.xticks([42,82+42,42+82*2],['12-13','13-14','14-15']) plt.xlim(0,82*3) plt.ylabel('538 Elo') plt.xlim(0,82*3) plt.ylim(1250,1800) plt.subplot(2,1,2) plt.vlines(82,0,2500,linestyles='dashed',color=(0.1,0.1,0.1),lw=3,alpha=0.8) plt.vlines(82*2,0,2500,linestyles='dashed',color=(0.1,0.1,0.1),lw=3,alpha=0.8) plt.hlines(1500,0,82*3,linestyles='dashed',color=(0.1,0.1,0.1),lw=3,alpha=0.8) for t in teams: plt.plot(np.concatenate([team_year_elo_reg[t][y][:82] for y in range(2013,2016)]),label=t) plt.xticks([42,82+42,42+82*2],['12-13','13-14','14-15']) plt.xlim(0,82*3) plt.ylim(1200,1800) plt.ylabel('Regressed Elo (30 G)') plt.tight_layout() plt.legend(loc=8,ncol=3,borderaxespad=0,bbox_to_anchor=(0,1.0,1,0),frameon=True,fontsize=10) #plt.savefig('elo4.png',edgecolor='w',facecolor='w') teams = {k:i for i,k in enumerate(sorted([_ for _ in team_year_elo if 2015 in team_year_elo[_]]))} rate,hfa = generate_ratings(dataset,teams,0) coeffs = rate col_names = sorted(dataset.keys()) v = np.argsort(abs(coeffs))[::-1] coeffs2 = [(coeffs[i2],col_names[i2]) for i2 in v] print(hfa*173.0) print('| Variable | Coeff |') print('|----------|-------|') for v,n in sorted(coeffs2,reverse=True): print('|{:25s}|{:.2f}|'.format(n, v)) df.iloc[-4:] if False: import autograd.numpy as np import autograd def generate_ratings2(dset,teams,weight_recent = 0,HFA=75/173): N = len(teams) X = [] Y = [] for t1,games in dset.items(): for t2,tW in games: v = np.zeros(N) v[teams[t1]] = 1 v[teams[t2]] = -1 #v[-1] = 70/173 Y.append(tW) X.append(v) try: w = np.ones_like(Y) if weight_recent != 0: w = [np.exp(-(i*i/weight_recent)) for i in range(len(Y))] w = np.array(w)[::-1] w /= w.mean() X = np.array(X).astype(np.float) Y = np.array(Y).astype(np.float) W = 1e-2*np.random.normal(size=(X.shape[1])) def loss_f(xt): p = 1/(1+np.exp(- (X @ xt + HFA))) loss = np.mean(w*(-Y * np.log(p) - (1-Y) *np.log(1-p+1e-12))) return loss GRAD = autograd.grad(loss_f) alpha = 3e-1 v = np.zeros_like(W) for i in range(1000): loss = loss_f(W) v = 0.9*v - GRAD(W) W += (alpha) * v #if (i%1000== 0): # break if (np.linalg.norm(v) < 1e-2): print('early') break if (i%50) == 0: print(loss,) return (W * 173 + 1500,HFA) except: return ([1500 for i in range(N)],0) import scipy.optimize as opt def generate_ratings2(dset,teams,weight_recent = 0,HFA=75/173): N = len(teams) X = [] Y = [] for t1,games in dset.items(): for t2,tW in games: v = np.zeros(N) v[teams[t1]] = 1 v[teams[t2]] = -1 #v[-1] = 70/173 Y.append(tW) X.append(v) try: w = np.ones_like(Y) if weight_recent != 0: w = [np.exp(-(i*i/weight_recent)) for i in range(len(Y))] w = np.array(w)[::-1] w /= w.mean() X = np.array(X).astype(np.float) Y = np.array(Y).astype(np.float) W = 1e-2*np.random.normal(size=(X.shape[1])) def loss_f(xt): V = X @ xt + HFA loss = np.mean(w*(-Y * log_logit(V) - (1-Y) *log_logit(-V))) return loss res = opt.minimize(loss_f,W) W = res.x return (W * 173 + 1500,HFA) except: return ([1500 for i in range(N)],0) teams = {k:i for i,k in enumerate(sorted([_ for _ in team_year_elo if 2015 in team_year_elo[_]]))} rate,hfa = generate_ratings2(dataset,teams,0) coeffs = rate col_names = sorted(dataset.keys()) v = np.argsort(abs(coeffs))[::-1] coeffs2 = [(coeffs[i2],col_names[i2]) for i2 in v] print(hfa*173.0) print('| Variable | Coeff |') print('|----------|-------|') for v,n in sorted(coeffs2,reverse=True): print('|{:25s}|{:.2f}|'.format(n, v)) ###Output 75.0 | Variable | Coeff | |----------|-------| |GSW |1780.67| |CLE |1720.58| |SAS |1675.20| |LAC |1667.05| |HOU |1664.00| |ATL |1645.98| |MEM |1644.10| |OKC |1591.79| |DAL |1569.49| |POR |1559.28| |CHI |1558.85| |UTA |1542.78| |NOP |1538.96| |WAS |1521.82| |BOS |1505.14| |TOR |1500.75| |IND |1491.56| |MIL |1482.98| |PHO |1475.21| |BRK |1474.54| |DET |1468.82| |MIA |1452.55| |CHO |1445.49| |DEN |1377.89| |SAC |1334.34| |ORL |1297.18| |PHI |1281.79| |LAL |1275.94| |NYK |1228.70| |MIN |1224.77|
dqo/datasets/stats.ipynb
###Markdown Tree Data ###Code def tree_density(n, h): return (n - h)/(2 ** (h + 1) - h - 1) def calc_query_stat(_df): query_stats_df = pd.DataFrame() for index, row in tqdm(_df.iterrows(), total=_df.shape[0]): query = row['query'].strip() try: rel_tree = SQLParser.to_relational_tree(query) copied = row.copy() copied['tree'] = rel_tree copied['nodes'] = len(rel_tree) copied['relations'] = len(rel_tree.relations) copied['projections'] = len(rel_tree.get_projections()) copied['selections'] = len(rel_tree.get_selections(include_joins=False)) copied['joins'] = len(rel_tree.get_joins()) copied['depth'] = rel_tree.depth() copied['density'] = tree_density(copied['nodes'], copied['depth']) query_stats_df = query_stats_df.append(copied) except Exception as e: print(e) break return query_stats_df imdb_query_stats = calc_query_stat(df_imdb) tpch_query_stats = calc_query_stat(df_tpch) tpcds_query_stats = calc_query_stat(df_tpcds) tpcd_query_stats = calc_query_stat(df_tpcd) ###Output _____no_output_____ ###Markdown Relationalimdb_schema = ds_imdb.schema() ###Code imdb_schema = ds_imdb.schema() for i,r in tqdm(imdb_query_stats.iterrows(), total=len(imdb_query_stats)): numbers = False strings = False for n in r['tree'].nodes(): t = str(type(n).__name__) if t in ['JoinNode','SelectionNode']: for operand in n.operands: if type(operand).__name__ == 'RelationColumn': col = imdb_schema[operand.relation.name][operand.column] if col.data_type.value in ['number','float']: numbers = True elif col.data_type.value == 'string': strings = True imdb_query_stats.loc[i, 'only_strings'] = strings and not numbers imdb_query_stats.loc[i, 'only_numbers'] = numbers and not strings imdb_query_stats.loc[i, 'mixed'] = numbers and strings only_strings = imdb_query_stats.query('only_strings == True') only_numbers = imdb_query_stats.query('only_numbers == True') only_strings.runtime.apply(np.log2).apply(np.round).apply(int).hist() ds = QueriesDataset('imdb:only_strings') ds.df = only_strings ds.save(schema=imdb_schema) only_numbers.runtime.apply(np.log2).apply(np.round).apply(int).hist() ds = QueriesDataset('imdb:only_numbers') ds.df = only_numbers ds.save(schema=imdb_schema) ###Output _____no_output_____ ###Markdown TPCD ###Code tpcd_schema = ds_tpcd.schema() for i,r in tqdm(tpcd_query_stats.iterrows(), total=len(tpcd_query_stats)): numbers = False strings = False for n in r['tree'].nodes(): t = str(type(n).__name__) if t in ['JoinNode','SelectionNode']: for operand in n.operands: if type(operand).__name__ == 'RelationColumn': col = tpcd_schema[operand.relation.name][operand.column] if col.data_type.value in ['number','float']: numbers = True elif col.data_type.value == 'string': strings = True tpcd_query_stats.loc[i, 'only_strings'] = strings and not numbers tpcd_query_stats.loc[i, 'only_numbers'] = numbers and not strings tpcd_query_stats.loc[i, 'mixed'] = numbers and strings tpcd_only_strings = tpcd_query_stats.query('only_strings == True') tpcd_only_numbers = tpcd_query_stats.query('only_numbers == True') tpcd_only_strings.runtime.apply(np.log2).apply(np.round).apply(int).hist() tpcd_only_numbers.runtime.apply(np.log2).apply(np.round).apply(int).hist() ds = QueriesDataset('tpcd:only_strings') ds.df = tpcd_only_strings ds.save(schema=tpcd_schema) ds = QueriesDataset('tpcd:only_numbers') ds.df = tpcd_only_numbers ds.save(schema=tpcd_schema) ###Output _____no_output_____ ###Markdown DEPTH & NODES ###Code imdb_query_stats.depth.describe(), tpch_query_stats.depth.describe(), tpcds_query_stats.depth.describe(), tpcd_query_stats.depth.describe() len(tpcd_query_stats.query('nodes < 125')) # import os # ds_tpcd.df.to_csv(os.path.join(ds_tpcd.input_path, 'part_00.csv'), header=False, index=False, columns=['query', 'runtime']) imdb_query_stats.hist() tpch_query_stats.hist() tpcds_query_stats.hist() tpcd_query_stats.hist() ###Output _____no_output_____ ###Markdown Density ###Code fig, axes = plt.subplots(1, 4) bins = [-250,-200,-150,-100, -50, 0] fig.suptitle("density") axes[0].title.set_text('imdb') axes[1].title.set_text('tpch') axes[2].title.set_text('tpcds') axes[3].title.set_text('tpcd') imdb_query_stats.density.apply(np.log2).hist(bins=bins,ax=axes[0]) tpch_query_stats.density.apply(np.log2).hist(bins=bins, ax=axes[1]) tpcds_query_stats.density.apply(np.log2).hist(bins=bins, ax=axes[2]) tpcd_query_stats.density.apply(np.log2).hist(bins=bins, ax=axes[3]) ###Output _____no_output_____ ###Markdown Depth ###Code fig, axes = plt.subplots(1, 4) bins = [0, 50, 100, 150, 200] fig.suptitle("depth") axes[0].title.set_text('imdb') axes[1].title.set_text('tpch') axes[2].title.set_text('tpcds') axes[3].title.set_text('tpcd') imdb_query_stats.depth.hist(bins=bins,ax=axes[0]) tpch_query_stats.depth.hist(bins=bins, ax=axes[1]) tpcds_query_stats.depth.hist(bins=bins, ax=axes[2]) tpcd_query_stats.depth.hist(bins=bins, ax=axes[3]) ###Output _____no_output_____ ###Markdown Nodes ###Code fig, axes = plt.subplots(1, 4) bins = [0, 20, 40, 60, 80, 100, 120] fig.suptitle("nodes") axes[0].title.set_text('imdb') axes[1].title.set_text('tpch') axes[2].title.set_text('tpcds') axes[3].title.set_text('tpcd') imdb_query_stats.nodes.hist(bins=bins,ax=axes[0]) tpch_query_stats.nodes.hist(bins=bins, ax=axes[1]) tpcds_query_stats.nodes.hist(bins=bins, ax=axes[2]) tpcd_query_stats.nodes.hist(bins=bins, ax=axes[3]) ###Output _____no_output_____ ###Markdown --- Dataset Stats ###Code imdb_schema = ds_imdb.schema() tpch_schema = ds_tpch.schema() tpcds_schema = ds_tpcds.schema() tpcd_schema = ds_tpcs.schema() def describe_schema(s): stats = {} stats['tables'] = len(s.tables) stats['columns'] = len(s.columns) dtypes = [] rows = [] distincts = [] nulls = [] cols_per_table = [] table_size = [] for t in s.tables: cols_per_table.append(len(t.columns)) for i, col in enumerate(t.columns): if i == 0: rows.append(col.stats.total) table_size.append(col.stats.total * len(t.columns)) distincts.append(col.stats.distinct / col.stats.total) nulls.append(col.stats.nulls / col.stats.total) dtypes.append(str(col.data_type)) c = Counter(dtypes) stats['dtypes'] = [(v, f'{c[v] / len(dtypes) * 100.0:.2f}%', c[v]) for v in c] stats['rows'] = np.histogram(np.log10(np.array(rows)), bins=5) stats['distincts'] = scipy.stats.describe(np.array(distincts)) stats['nulls'] = scipy.stats.describe(np.array(nulls)) stats['cols_per_table'] = np.histogram((np.array(cols_per_table)), bins=5) stats['table_size'] = np.histogram(np.log10(np.array(table_size)), bins=5) return stats from pprint import pprint print('imdb: \n') pprint(describe_schema(imdb_schema)) print('') print('tpch: \n') pprint(describe_schema(tpch_schema)) print('') print('tpcds: \n') pprint(describe_schema(tpcds_schema)) ###Output imdb: {'cols_per_table': (array([8, 6, 3, 2, 2]), array([ 2., 4., 6., 8., 10., 12.])), 'columns': 108, 'distincts': DescribeResult(nobs=108, minmax=(0.0, 1.0), mean=0.4143007662470856, variance=0.2074871588778503, skewness=0.3766570715988044, kurtosis=-1.7483771943052444), 'dtypes': [('DataType.NUMBER', '54.63%', 59), ('DataType.STRING', '45.37%', 49)], 'nulls': DescribeResult(nobs=108, minmax=(0.0, 1.0), mean=0.19641912711343756, variance=0.12737557397561525, skewness=1.5327831580385185, kurtosis=0.6401177469580346), 'rows': (array([5, 1, 1, 6, 8]), array([0.60205999, 1.99349604, 3.38493209, 4.77636814, 6.16780419, 7.55924024])), 'table_size': (array([6, 0, 1, 6, 8]), array([0.90308999, 2.40333965, 3.90358931, 5.40383897, 6.90408862, 8.40433828])), 'tables': 21} tpch: {'cols_per_table': (array([3, 2, 2, 0, 1]), array([ 3. , 5.6, 8.2, 10.8, 13.4, 16. ])), 'columns': 61, 'distincts': DescribeResult(nobs=61, minmax=(4.5211441478649234e-07, 1.0), mean=0.42496627631600975, variance=0.22097731565310086, skewness=0.35011577808030864, kurtosis=-1.8034580748060471), 'dtypes': [('DataType.NUMBER', '32.79%', 20), ('DataType.STRING', '47.54%', 29), ('DataType.FLOAT', '13.11%', 8), ('DataType.TIME', '6.56%', 4)], 'nulls': DescribeResult(nobs=61, minmax=(0.0, 0.0), mean=0.0, variance=0.0, skewness=0.0, kurtosis=-3.0), 'rows': (array([2, 0, 1, 2, 3]), array([0.69897 , 1.88833233, 3.07769466, 4.26705699, 5.45641931, 6.64578164])), 'table_size': (array([2, 0, 1, 2, 3]), array([1.17609126, 2.51085333, 3.84561541, 5.18037748, 6.51513955, 7.84990162])), 'tables': 8} tpcds: {'cols_per_table': (array([7, 4, 3, 5, 5]), array([ 3. , 9.2, 15.4, 21.6, 27.8, 34. ])), 'columns': 425, 'distincts': DescribeResult(nobs=425, minmax=(0.0, 1.0), mean=0.29583259551013413, variance=0.12007663747868011, skewness=0.9152223639198206, kurtosis=-0.6155131253247768), 'dtypes': [('DataType.NUMBER', '44.24%', 188), ('DataType.STRING', '34.35%', 146), ('DataType.FLOAT', '18.82%', 80), ('DataType.TIME', '2.59%', 11)], 'nulls': DescribeResult(nobs=425, minmax=(0.0, 1.0), mean=0.02963484734449726, variance=0.011003336341396682, skewness=6.46622982559804, kurtosis=46.51403629181248), 'rows': (array([8, 1, 3, 7, 5]), array([0.69897 , 1.97314661, 3.24732321, 4.52149981, 5.79567642, 7.06985302])), 'table_size': (array([8, 1, 2, 7, 6]), array([1.77815125, 2.98675725, 4.19536325, 5.40396924, 6.61257524, 7.82118124])), 'tables': 24} ###Markdown Relational Data ###Code def describe_relational(_df): stats = {} stats['tables'] = len(s.tables) stats['columns'] = len(s.columns) dtypes = [] rows = [] distincts = [] nulls = [] cols_per_table = [] table_size = [] for t in s.tables: cols_per_table.append(len(t.columns)) for i, col in enumerate(t.columns): if i == 0: rows.append(col.stats.total) table_size.append(col.stats.total * len(t.columns)) distincts.append(col.stats.distinct / col.stats.total) nulls.append(col.stats.nulls / col.stats.total) dtypes.append(str(col.data_type)) c = Counter(dtypes) stats['dtypes'] = [(v, f'{c[v] / len(dtypes) * 100.0:.2f}%', c[v]) for v in c] stats['rows'] = np.histogram(np.log10(np.array(rows)), bins=5) stats['distincts'] = scipy.stats.describe(np.array(distincts)) stats['nulls'] = scipy.stats.describe(np.array(nulls)) stats['cols_per_table'] = np.histogram((np.array(cols_per_table)), bins=5) stats['table_size'] = np.histogram(np.log10(np.array(table_size)), bins=5) return stats from pprint import pprint print('imdb: \n') pprint(describe_schema(imdb_df)) print('') print('tpch: \n') pprint(describe_schema(tpch_df)) print('') print('tpcds: \n') pprint(describe_schema(tpcds_df)) ###Output _____no_output_____
hackerRank/.ipynb_checkpoints/dataStructures easy-checkpoint.ipynb
###Markdown Arrays reverse array ###Code array=[1,2,3,4] array array[::-1] ###Output _____no_output_____ ###Markdown 2d array-DS ###Code array=[[1,1,1,0,0,0],[0,1,0,0,0,0],[1,1,1,0,0,0],[0,0,2,4,4,0],[0,0,0,2,0,0],[0,0,1,2,4,0]] array ###Output _____no_output_____ ###Markdown first hourglass ###Code array[0][:3] array[1][1] array[2][:3] ###Output _____no_output_____ ###Markdown second hourglass ###Code array[0][1:4] array[1][2] array[2][1:4] print(max([sum(array[i-1][j-1:j+2] + [array[i][j]] + array[i+1][j-1:j+2]) for j in range(1, 5) for i in range(1, 5)])) temp=[] for i in range(1,5): for j in range(1,5): print(array[i-1][j-1:j+2]) print(array[i][j]) print(array[i+1][j-1:j+2]) temp=[] for i in range(1,5): for j in range(1,5): #sum(array[i-1][j-1:j+2]) + sum(array[i][j]) + sum(array[i+1][j-1:j+2]) top=sum(array[i-1][j-1:j+2]) middle=array[i][j] bottom=sum(array[i+1][j-1:j+2]) temp.append(top+middle+bottom) max(temp) ###Output _____no_output_____ ###Markdown rotation left array ###Code x=list(range(1,6)) x x_r=x[4:]+x[:4] x_r ###Output _____no_output_____ ###Markdown linked lists print linked list ###Code class LinkedList(object): def __init__(self,value,next=None): self.value=value self.next=next nodo1=LinkedList(13) nodo2= LinkedList(16,nodo1) head=nodo2 def printLinkedList(head): current=head while current: print(current.value) current=current.next printLinkedList(head) def append_linked_list(head,data): current=head if head: while current.next: current=current.next current.next=LinkedList(data) else: head=LinkedList(data) return head append_linked_list(head,15) printLinkedList(head) ###Output 16 13 15 ###Markdown insert element at the begging of a linked list ###Code def insert_begin_linked_list(head,data): nodo=LinkedList(data) if head: nodo.next=head head= nodo else: head=nodo return head head=insert_begin_linked_list(head,2) printLinkedList(head) ###Output 2 16 13 15 ###Markdown insert element on any position ###Code def insertNodeAtPosition(head, data, position): counter=1 nodo=LinkedList(data) current=head if position>1: while current and counter<position: if counter==position-1: nodo.next=current.next current.next=nodo current=current.next counter+=1 elif position==1: nodo.next=head head=nodo return head head=insertNodeAtPosition(head,78,3) printLinkedList(head) head=insertNodeAtPosition(head,78,1) printLinkedList(head) head2=head printLinkedList(head2) ###Output 78 2 16 78 13 15 ###Markdown delete node ###Code def deleteNode(head,position): current=head prev_node=None for i in range(position+1): if prev_node==None: prev_node=head if i==position: prev_node.next=current.next current=current.next else: prev_node=current current=current.next return head def deleteNode2(head,position): if position==0: head=head.next else: current=head prev_node=head for i in range(position+1): if i==position: prev_node.next=current.next current=current.next else: prev_node=current current=current.next return head printLinkedList(head) deleteNode2(head,1) printLinkedList(head) resultado=deleteNode2(head,0) printLinkedList(resultado) head=head.next printLinkedList(head) ###Output 16 78 13 15 ###Markdown reverse a linked list ###Code n1=LinkedList(5,None) n2=LinkedList(4,n1) n3=LinkedList(3,n2) n4=LinkedList(2,n3) n5=LinkedList(1,n4) head=n5 printLinkedList(head) def reverseLinkedList(head): temp=None current=head while current: temp=LinkedList(current.value,temp) current=current.next return temp reverse=reverseLinkedList(head) printLinkedList(reverse) # hacker rank solution def reverse_(head): current = head stack =[] while current: stack.append(current.data) current = current.next s = stack[::-1] nlist = SinglyLinkedList() for el in s: nlist.insert_node(el) return nlist.head printLinkedList(head) ###Output 1 2 3 4 5 ###Markdown print reverse ###Code def print_reverse_ll(head): current=head stack=[] while current: stack.append(current.value) current=current.next s=stack[::-1] for i in s: print(i) print_reverse_ll(head) ## hacker rank solution def reversedPrint(head): if head is None: return None else: stack = [] while head: stack.append(head.value) head = head.next while stack: print(stack.pop()) reversedPrint(head) ###Output 5 4 3 2 1 ###Markdown obtener k nodo desde el ultimo elemento ###Code ## hacker rank solution def getNode(head, positionFromTail): tracked = head while positionFromTail > 0: head = head.next positionFromTail -= 1 while head.next: head = head.next tracked = tracked.next return tracked.value def getNodeEmma(head,positionFromTail): fast=head slow=head for i in range(positionFromTail): fast=fast.next while fast.next: fast=fast.next slow=slow.next return slow.value ###Output _____no_output_____ ###Markdown comparar dos listas enlazadas ###Code def listToArray(head): if head==None: return None current=head stack=[] while current: stack.append(current.value) current=current.next return stack def compararListas(lista1,lista2): linkedList1=listToArray(lista1) linkedList2=listToArray(lista2) if len(linkedList1)!=len(linkedList2) : return False else: return (linkedList1==linkedList2) printLinkedList(head) printLinkedList(reverse) compararListas(head,reverse) l1=[5, 4, 3, 2, 1] l2=[1,2,3,4,5] l1 ==l2 def compararListas2(lista1,lista2): currentA = lista1 currentB = lista2 while currentA and currentB: if currentA.value != currentB.value: return False currentA = currentA.next currentB = currentB.next return True if currentA == currentB else False compararListas2(head,head) compararListas2(head,reverse) n01=LinkedList(5,None) n02=LinkedList(4,n01) n04=LinkedList(2,n02) n05=LinkedList(1,n04) lista3=n05 printLinkedList(lista3) compararListas2(head,lista3) compararListas(head,head) ###Output _____no_output_____ ###Markdown merge two sorted linked lists ###Code def MergeLists(head1,head2): if head1 is None: return head2 elif head2 is None: return head1 if head1.value<=head2.value: result=head1 result.next=MergeLists(head1.next,head2) else: result=head2 result.next=MergeLists(head1,head2.next) return result ## hacker ranks solution because iterative run out of time def MergeLists(head1, head2): if not head1 or not head2: return head1 or head2 head, head1, head2 = (head1, head1.next, head2) if min([head1.data, head2.data]) == head1.data else (head2, head1, head2.next) curr = head while head1 or head2: if not head1 or not head2: curr.next = head1 or head2 return head curr.next, head1, head2 = (head1, head1.next, head2) if min([head1.data, head2.data]) == head1.data else (head2, head1, head2.next) curr = curr.next return head ###Output _____no_output_____ ###Markdown delete duplicate value nodes from sorted linked list ###Code def deleteDuplicate(head): current=head while current: if current.value==current.next.value: current.next=current.next.next else: current=current.next return head ###Output _____no_output_____ ###Markdown find node to merge two linked lists def findMergeNode(head1, head2): current1=head1 current2=head2 while not current1==current2: if current1.next is None: current1=head2 else: current1=current1.next if current2.next is None: current2=head1 else: current2=current2.next return current1.value insert element in sorted double linked list ###Code class DoubleNodo(object): def __init__(self,value,prev=None,next=None): self.value=value self.prev=prev self.next=next nod3=DoubleNodo(10) nod2=DoubleNodo(4) nod1=DoubleNodo(3) nod0=DoubleNodo(1) nod0.next=nod1 nod1.next=nod2 nod1.prev=nod0 nod2.next=nod3 nod2.prev=nod1 nod3.prev=nod2 head_double=nod0 printLinkedList(head_double) def insertNodeDouble(head, data): new_node = DoubleNodo(data) # in the unlikely event new node data < 0? if new_node.value < head.value: new_node.next = head head.prev = new_node return new_node else: current = head current_next = head.next while current_next and (new_node.value > current_next.value): current = current_next current_next = current_next.next if current_next == None: current.next = new_node new_node.prev = current else: current.next = new_node current_next.prev = new_node new_node.prev = current new_node.next = current_next current = head while current: current = current.next return head insertNodeDouble(head_double,5) printLinkedList(head_double) def reverseDoubleLinkedList(head): temp=None current=head while current: temp=DoubleNodo(current.value,current,temp) current=current.next return temp reverse_head=reverseDoubleLinkedList(head_double) printLinkedList(reverse_head) def ReverseLL(head): if not head: return head head.next, head.prev = head.prev, head.next if not head.prev: return head return ReverseLL(head.prev) hacker=ReverseLL(head_double) printLinkedList(hacker) ###Output 10 5 4 3 1 ###Markdown trees ###Code class treeNode(object): def __init__(self,value,right=None,left=None): self.value=value self.right=right self.left=left hoja7=treeNode(7) hoja6=treeNode(6) hoja5=treeNode(4) hoja4=treeNode(1) hoja3=treeNode(5) hoja2=treeNode(2) hoja1=treeNode(3) hoja1.right=hoja2 hoja1.left=hoja3 hoja2.right=hoja4 hoja3.right=hoja5 hoja3.left=hoja6 hoja6.left=hoja7 root=hoja1 def preOrder(root,nodos=[]): nodos.append(root.value) if root and root.left: preOrder(root.left,nodos) if root and root.right: preOrder(root.right,nodos) return nodos print(preOrder(root)) def inOrder(root,nodos=[]): if root and root.left: inOrder(root.left,nodos) nodos.append(root.value) if root and root.right: inOrder(root.right,nodos) return nodos print(inOrder(root)) def postOrder(root,nodos=[]): if root and root.left: postOrder(root.left,nodos) if root and root.right: postOrder(root.right,nodos) nodos.append(root.value) return nodos print(postOrder(root,nodos=[])) ###Output [7, 6, 4, 5, 1, 2, 3] ###Markdown height of tree ###Code def heightTree(root): if root is None: return -1 else: left_height=heightTree(root.left) right_height=heightTree(root.right) if left_height>right_height: return left_height+1 else: return right_height+1 heightTree(root) ###Output _____no_output_____ ###Markdown tree level order traversal ###Code # esto breadth first search def bfs(root): queue=[] queue.append(root) while len(queue)>0: node=queue.pop(0) print(node.value,end=' ') if node.left: queue.append(node.left) if node.right: queue.append(node.right) bfs(root) ###Output 3 5 2 6 4 1 7 ###Markdown Top vieweste problema no le he entendido, es una solucion que usa diccionarios (O(n^2)) ###Code def topView(root): # Initialize the level this_level = [(root, 0)] scores = {} while this_level: # Basically iterate over the nodes on a single level for _ in range(len(this_level)): node, score = this_level.pop(0) # Skip empty nodes if not node: continue # Store the score if it's a new one! if score not in scores: scores[score] = node.value # Add the node children to the next level this_level.extend( [(node.left, score - 1), (node.right, score + 1)]) # Sort the scores and print their values # (By default the sort is on the tuple first element: the score) for _, value in sorted(list(scores.items())): print(value, end=' ') topView(root) ###Output 7 6 5 3 2 1 ###Markdown insert node in a binary Tree ###Code head_bin_1=treeNode(4) head_bin_2=treeNode(2) head_bin_3=treeNode(7) head_bin_4=treeNode(1) head_bin_5=treeNode(3) head_bin_1.left=head_bin_2 head_bin_1.right=head_bin_3 head_bin_2.left=head_bin_4 head_bin_2.right=head_bin_5 root_bin=head_bin_1 print(inOrder(root_bin,nodos=[])) def insertBin(root,value): if root is None: root=treeNode(value) if value<root.value: if root.left is None: root.left=treeNode(value) else: insertBin(root.left,value) else: if root.right is None: root.right=treeNode(value) else: insertBin(root.right,value) return root root_bin2=insertBin(root_bin,10) print(preOrder(root_bin2,nodos=[])) #### hacker rank class Noderank: def __init__(self, info): self.info = info self.left = None self.right = None self.level = None def __str__(self): return str(self.info) def preOrder2(root): if root == None: return print (root.info, end=" ") preOrder(root.left) preOrder(root.right) class BinarySearchTree: def __init__(self): self.root = None #Node is defined as #self.left (the left child of the node) #self.right (the right child of the node) #self.info (the value of the node) def insert(self, val): if self.root is None: self.root=Noderank(val) else: current=self.root if val<current.info: if current.left is None: current.left=Noderank(val) else: current.left.insert(val) else: if current.right is None: current.right=Noderank(val) else: current.right.insert(val) # if self.root == None: # self.root = Noderank(val) # else: # current = self.root # # while True: # if val < current.info: # if current.left: # current = current.left # else: # current.left = Noderank(val) # break # elif val > current.info: # if current.right: # current = current.right # else: # current.right = Noderank(val) # break # else: # break array=[1,2,3,4,7] ###Output _____no_output_____ ###Markdown first common ancestor ###Code def lca(root, v1, v2): seek = root while seek: n = seek.value if v1 > n and v2 > n: seek = seek.right elif v1 < n and v2 < n: seek = seek.left else: return(seek) ###Output _____no_output_____ ###Markdown Dynamic Array ###Code def dynamicArray(n, queries): lastNumber = 0 seqList=[]; for i in range(n): seqList.append([]) res = []; for k, x, y in queries: index = (x^lastNumber)%n if k==1: seqList[index].append(y) else: size = len(seqList[index]) lastNumber = seqList[index][y%size] res.append(lastNumber) return res ## no lo he entendido ###Output _____no_output_____ ###Markdown Stacks ###Code 10 1 97 2 1 20 2 1 26 1 20 2 3 1 91 3 ## hackerrank solution #python 3 items = [0] for i in range(int(input())): nums = list(map(int, input().split())) if nums[0] == 1: items.append(max(nums[1], items[-1])) elif nums[0] == 2: items.pop() else: print(items[-1]) items=[] for i in range(int(input())): nums=list(map(int,input().split())) if nums[0]==1: items.append(nums[1]) elif nums[0]==2: items.pop() elif nums[0]==3: print(max(items)) from collections import deque items=deque for i in range(int(input())): nums=list(map(int,input().split())) if nums[0]==1: items.append(nums[1]) elif nums[0]==2: items.pop() elif nums[0]==3: print(max(items)) ###Output _____no_output_____ ###Markdown Equal stacks ###Code stack1=[3, 2, 1, 1, 1] stack2=[4, 3, 2] stack3=[1, 1, 4, 1] stack4=[3, 2, 1, 1, 1] from collections import deque stack1_v2=deque() stack1_v2=stack1 print(stack1_v2) print(sum(stack1_v2)) stack1_v2.pop(0) print(stack1_v2) print(sum(stack1_v2)) # esta solucion es la mas lenta por lo de volver a calcular la suma def equalStacks(stack1,stack2,stack3): sum1=sum(stack1) sum2=sum(stack2) sum3=sum(stack3) n1=len(stack1) n2=len(stack2) n3=len(stack3) top1,top2,top3=0,0,0 while(1): if (top1==n1 and top2==n2 and top3==n3): return 0 if (sum1==sum2 and sum2==sum3): return sum1 if (sum1>=sum2 and sum1>=sum3): stack1.pop(0) sum1=sum(stack1) top1+=1 elif (sum2>=sum3): stack2.pop(0) sum2=sum(stack2) top2+=1 elif (sum3>=sum2 and sum3>=sum1): stack3.pop(0) sum3=sum(stack3) top3+=1 equalStacks(stack1,stack2,stack3) ## geeks for geeks solution def equalStacks(h1, h2, h3): # # Write your code here. # sum1=sum(h1) sum2=sum(h2) sum3=sum(h3) n1=len(h1) n2=len(h2) n3=len(h3) top1, top2, top3 = 0, 0, 0 while(1): if(top1==n1 and top2==n2 and top3==n3): return 0 if(sum1==sum2 and sum2==sum3): return sum1 if (sum1 >= sum2 and sum1 >= sum3): sum1-=h2[top1] top1+=1 elif (sum2 >= sum3): sum2 -= h2[top2] top2+=1 elif (sum3 >= sum2 and sum3 >= sum1): sum3 -= h3[top3] top3+=1 ###Output _____no_output_____
lvBERT/cleaned_lowercase/cleaned_lowercase.ipynb
###Markdown Get data ###Code df = pd.read_csv('./../../../labeledTweets/allLabeledTweets.csv') df = df[['id', 'message', 'label']] df = df.drop_duplicates() print(df.shape[0]) df.head() df['label'].value_counts() newLine ="\\n|\\r" urls = '(https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|www\.[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9]+\.[^\s]{2,}|www\.[a-zA-Z0-9]+\.[^\s]{2,})' numbers = '\d+((\.|\-)\d+)?' mentions = '\B\@([\w\-]+)' hashtag = '#' whitespaces = '\s+' leadTrailWhitespace = '^\s+|\s+?$' df['clean_message'] = df['message'] df['clean_message'] = df['clean_message'].str.replace(newLine,' ',regex=True) df['clean_message'] = df['clean_message'].str.replace(urls,' URL ',regex=True) df['clean_message'] = df['clean_message'].str.replace(mentions,' MENTION ',regex=True) df['clean_message'] = df['clean_message'].str.replace(numbers,' NMBR ',regex=True) df['clean_message'] = df['clean_message'].str.replace(hashtag,' ',regex=True) df['clean_message'] = df['clean_message'].str.replace(whitespaces,' ',regex=True) df['clean_message'] = df['clean_message'].str.replace(leadTrailWhitespace,'',regex=True) df.head() ###Output _____no_output_____ ###Markdown Train, validate split (balanced) ###Code df_0 = df[df['label']==0] df_1 = df[df['label']==1] df_2 = df[df['label']==2] trainLabelSize = round(df_1.shape[0]*0.85) trainLabelSize df_0 = df_0.sample(trainLabelSize, random_state=42) df_1 = df_1.sample(trainLabelSize, random_state=42) df_2 = df_2.sample(trainLabelSize, random_state=42) df_train = pd.concat([df_0, df_1, df_2]) # Shuffle rows df_train = sklearn.utils.shuffle(df_train, random_state=42) df_train['label'].value_counts() df_val = df.merge(df_train, on=['id', 'message', 'label', 'clean_message'], how='left', indicator=True) df_val = df_val[df_val['_merge']=='left_only'] df_val = df_val[['id', 'message', 'label', 'clean_message']] df_val['label'].value_counts() ###Output _____no_output_____ ###Markdown Tokenizer "lvBERT" ###Code tokenizer = BertTokenizer.from_pretrained('./../lvbert_pytorch/', do_lower_case=True) ###Output _____no_output_____ ###Markdown Find max length for tokenizer ###Code token_lens = [] for txt in list(df.clean_message.values): tokens = tokenizer.encode(txt, max_length=512, truncation=True) token_lens.append(len(tokens)) max_length = max(token_lens) max_length ###Output _____no_output_____ ###Markdown Encode messages ###Code encoded_data_train = tokenizer.batch_encode_plus( df_train["clean_message"].values, add_special_tokens=True, return_attention_mask=True, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt' ) encoded_data_val = tokenizer.batch_encode_plus( df_val["clean_message"].values, add_special_tokens=True, return_attention_mask=True, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt' ) input_ids_train = encoded_data_train['input_ids'] attention_masks_train = encoded_data_train['attention_mask'] labels_train = torch.tensor(df_train.label.values) input_ids_val = encoded_data_val['input_ids'] attention_masks_val = encoded_data_val['attention_mask'] labels_val = torch.tensor(df_val.label.values) dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train) dataset_val = TensorDataset(input_ids_val, attention_masks_val, labels_val) len(dataset_train), len(dataset_val) ###Output _____no_output_____ ###Markdown Model "bert-base-multilingual-cased" ###Code model = BertForSequenceClassification.from_pretrained('./../lvbert_pytorch/', num_labels=3, output_attentions=False, output_hidden_states=False) from torch.utils.data import DataLoader, RandomSampler, SequentialSampler batch_size = 32 dataloader_train = DataLoader(dataset_train, sampler=RandomSampler(dataset_train), batch_size=batch_size) dataloader_validation = DataLoader(dataset_val, sampler=SequentialSampler(dataset_val), batch_size=batch_size) from transformers import get_linear_schedule_with_warmup optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5, eps=1e-8) # optimizer = torch.optim.SGD(model.parameters(), lr=0.0001) epochs = 5 scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=len(dataloader_train)*epochs) # Function to measure weighted F1 from sklearn.metrics import f1_score def f1_score_func(preds, labels): preds_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return f1_score(labels_flat, preds_flat, average='weighted') import random seed_val = 17 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device('cpu') model.to(device) print(device) # Function to evaluate model. Returns average validation loss, predictions, true values def evaluate(dataloader_val): model.eval() loss_val_total = 0 predictions, true_vals = [], [] progress_bar = tqdm(dataloader_val, desc='Validating:', leave=False, disable=False) for batch in progress_bar: batch = tuple(b.to(device) for b in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2]} with torch.no_grad(): outputs = model(**inputs) loss = outputs[0] logits = outputs[1] loss_val_total += loss.item() logits = logits.detach().cpu().numpy() label_ids = inputs['labels'].cpu().numpy() predictions.append(logits) true_vals.append(label_ids) loss_val_avg = loss_val_total/len(dataloader_val) predictions = np.concatenate(predictions, axis=0) true_vals = np.concatenate(true_vals, axis=0) return loss_val_avg, predictions, true_vals ###Output _____no_output_____ ###Markdown Evaluate untrained model ###Code _, predictions, true_vals = evaluate(dataloader_validation) from sklearn.metrics import classification_report, confusion_matrix preds_flat = np.argmax(predictions, axis=1).flatten() print(classification_report(true_vals, preds_flat)) print(f1_score_func(predictions, true_vals)) pd.DataFrame(confusion_matrix(true_vals, preds_flat), index = [['actual', 'actual', 'actual'], ['neutral', 'positive', 'negative']], columns = [['predicted', 'predicted', 'predicted'], ['neutral', 'positive', 'negative']]) ###Output _____no_output_____ ###Markdown Train ###Code for epoch in tqdm(range(1, epochs+1)): model.train() loss_train_total = 0 progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False) for batch in progress_bar: model.zero_grad() batch = tuple(b.to(device) for b in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2]} outputs = model(**inputs) loss = outputs[0] loss_train_total += loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() scheduler.step() progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))}) torch.save(model.state_dict(), f'modelsCleaned/finetuned_lvBERT_epoch_{epoch}.model') tqdm.write(f'\nEpoch {epoch}') loss_train_avg = loss_train_total/len(dataloader_train) tqdm.write(f'Training loss: {loss_train_avg}') val_loss, predictions, true_vals = evaluate(dataloader_validation) val_f1 = f1_score_func(predictions, true_vals) tqdm.write(f'Validation loss: {val_loss}') tqdm.write(f'F1 Score (Weighted): {val_f1}') preds_flat = np.argmax(predictions, axis=1).flatten() print('Classification report:') print(classification_report(true_vals, preds_flat)) print('Confusion matrix:') print(pd.DataFrame(confusion_matrix(true_vals, preds_flat), index = [['actual', 'actual', 'actual'], ['neutral', 'positive', 'negative']], columns = [['predicted', 'predicted', 'predicted'], ['neutral', 'positive', 'negative']])) ###Output _____no_output_____ ###Markdown Evaluate best model ###Code model.load_state_dict(torch.load('modelsBase/finetuned_BERT_epoch_X.model', map_location=torch.device('cpu'))) _, predictions, true_vals = evaluate(dataloader_validation) preds_flat = np.argmax(predictions, axis=1).flatten() print(f1_score_func(predictions, true_vals)) print(classification_report(true_vals, preds_flat)) pd.DataFrame(confusion_matrix(true_vals, preds_flat), index = [['actual', 'actual', 'actual'], ['neutral', 'positive', 'negative']], columns = [['predicted', 'predicted', 'predicted'], ['neutral', 'positive', 'negative']]) ###Output _____no_output_____
notebooks/python/L03_image_classification_with_cnn.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Lab 03: Image Classification with Convolutional Neural Networks Run in Google Colab View source on GitHub In this tutorial, we'll build and train a neural network to classify images of clothing, like sneakers and shirts. Install and import dependenciesWe'll need [TensorFlow Datasets](https://www.tensorflow.org/datasets/), an API that simplifies downloading and accessing datasets, and provides several sample datasets to work with. We're also using a few helper libraries. ###Code import tensorflow as tf # Import TensorFlow Datasets import tensorflow_datasets as tfds tfds.disable_progress_bar() # Helper libraries import math import numpy as np import matplotlib.pyplot as plt import logging logger = tf.get_logger() logger.setLevel(logging.ERROR) ###Output _____no_output_____ ###Markdown Import the Fashion MNIST dataset This guide uses the [Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset, which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 $\times$ 28 pixels), as seen here: <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNIST is intended as a drop-in replacement for the classic [MNIST](http://yann.lecun.com/exdb/mnist/) dataset—often used as the "Hello, World" of machine learning programs for computer vision. The MNIST dataset contains images of handwritten digits (0, 1, 2, etc) in an identical format to the articles of clothing we'll use here.This guide uses Fashion MNIST for variety, and because it's a slightly more challenging problem than regular MNIST. Both datasets are relatively small and are used to verify that an algorithm works as expected. They're good starting points to test and debug code.We will use 60,000 images to train the network and 10,000 images to evaluate how accurately the network learned to classify images. You can access the Fashion MNIST directly from TensorFlow, using the [Datasets](https://www.tensorflow.org/datasets) API: ###Code dataset, metadata = tfds.load('fashion_mnist', as_supervised=True, with_info=True) train_dataset, test_dataset = dataset['train'], dataset['test'] ###Output _____no_output_____ ###Markdown Loading the dataset returns metadata as well as a *training dataset* and *test dataset*.* The model is trained using `train_dataset`.* The model is tested against `test_dataset`.The images are 28 $\times$ 28 arrays, with pixel values in the range `[0, 255]`. The *labels* are an array of integers, in the range `[0, 9]`. These correspond to the *class* of clothing the image represents: Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot Each image is mapped to a single label. Since the *class names* are not included with the dataset, store them here to use later when plotting the images: ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown Explore the dataLet's explore the format of the dataset before training the model. The following shows there are 60,000 images in the training set, and 10000 images in the test set: ###Code num_train_examples = metadata.splits['train'].num_examples num_test_examples = metadata.splits['test'].num_examples print("Number of training examples: {}".format(num_train_examples)) print("Number of test examples: {}".format(num_test_examples)) ###Output _____no_output_____ ###Markdown Preprocess the dataThe value of each pixel in the image data is an integer in the range `[0,255]`. For the model to work properly, these values need to be normalized to the range `[0,1]`. So here we create a normalization function, and then apply it to each image in the test and train datasets. ###Code def normalize(images, labels): images = tf.cast(images, tf.float32) images /= 255 return images, labels # The map function applies the normalize function to each element in the train # and test datasets train_dataset = train_dataset.map(normalize) test_dataset = test_dataset.map(normalize) # The first time you use the dataset, the images will be loaded from disk # Caching will keep them in memory, making training faster train_dataset = train_dataset.cache() test_dataset = test_dataset.cache() ###Output _____no_output_____ ###Markdown Explore the processed dataLet's plot an image to see what it looks like. ###Code # Take a single image, and remove the color dimension by reshaping for image, label in test_dataset.take(1): break image = image.numpy().reshape((28,28)) # Plot the image - voila a piece of fashion clothing plt.figure() plt.imshow(image, cmap=plt.cm.binary) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown Display the first 25 images from the *training set* and display the class name below each image. Verify that the data is in the correct format and we're ready to build and train the network. ###Code plt.figure(figsize=(10,10)) i = 0 for (image, label) in test_dataset.take(25): image = image.numpy().reshape((28,28)) plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image, cmap=plt.cm.binary) plt.xlabel(class_names[label]) i += 1 plt.show() ###Output _____no_output_____ ###Markdown Build the modelBuilding the neural network requires configuring the layers of the model, then compiling the model. Exercise 3.1 Setup the layersThe basic building block of a neural network is the *layer*. A layer extracts a representation from the data fed into it. Hopefully, a series of connected layers results in a representation that is meaningful for the problem at hand.Much of deep learning consists of chaining together simple layers. Most layers, like `tf.keras.layers.Dense`, have internal parameters which are adjusted ("learned") during training.For this exercise, we'll be using two new layers, the Convolution layer (`tf.keras.layers.Conv2D`) and the Max Pooling layer (`tf.keras.layers.MaxPool2D`). Refer to the slides and official documentation on how to use these layers:* [tf.keras.layers.Conv2D reference](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D)* [tf.keras.layers.MaxPool2D reference](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D)**Our network layers are:*** 2D Convolution layer - 32 filters, 3x3 kernel, ReLU activation, padding with same values* Max pooling layer - 2x2 kernel, 2 stride* 2D Convolution layer - 64 filters, 3x3 kernel, ReLU activation, padding with same values* Max pooling layer - 2x2 kernel, 2 stride* Flatten layer* Dense layer - 128 nodes output, ReLU activation* Dense layer - 10 nodes output ###Code model = tf.keras.Sequential([ #TODO - Add model layers as described above ]) ###Output _____no_output_____ ###Markdown Exercise 3.1 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.1.ipynb) Exercise 3.2 Compile the model with `Model.compile`Before the model is ready for training, it needs a few more settings. These are added during the model's *compile* step:**Compile the model below with the following settings*** *Loss function* — SparseCategoricalCrossentropy* *Optimizer* — Adam* *Metrics* — accuracyRefer to the [official documentation](https://www.tensorflow.org/api_docs/python/tf/keras/Modelcompile) if you've forgotten the function. ###Code # TODO - Compile the model ###Output _____no_output_____ ###Markdown Exercise 3.2 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.2.ipynb) Exercise 3.3 Train the model with `Model.fit`First, we define the iteration behavior for the train dataset:1. Repeat forever by specifying `dataset.repeat()` (the `epochs` parameter described below limits how long we perform training).2. The `dataset.shuffle(60000)` randomizes the order so our model cannot learn anything from the order of the examples.3. And `dataset.batch(32)` tells `model.fit` to use batches of 32 images and labels when updating the model variables.Training is performed by calling the `model.fit` method:1. Feed the training data to the model using `train_dataset`.2. The model learns to associate images and labels.3. The `epochs=5` parameter limits training to 5 full iterations of the training dataset, so a total of 5 * 60000 = 300000 examples. ###Code BATCH_SIZE = 32 train_dataset = train_dataset.cache().shuffle(num_train_examples).batch(BATCH_SIZE) test_dataset = test_dataset.cache().batch(BATCH_SIZE) ###Output _____no_output_____ ###Markdown Start training the model in the code box below for **10 epochs**.Refer to the [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/Model) if you've forgotten the function. ###Code # TODO - Train the model ###Output _____no_output_____ ###Markdown As the model trains, the loss and accuracy metrics are displayed. This model reaches an accuracy of about 0.97 (or 97%) on the training data. Exercise 3.3 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.3.ipynb) Exercise 3.4 Evaluate accuracy with `Model.evaluate`Next, compare how the model performs on the test dataset. Use all examples we have in the test dataset to assess accuracy.Refer to the [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/Model) on how to use the function. ###Code # TODO - Evaluate the model ###Output _____no_output_____ ###Markdown As it turns out, the accuracy on the test dataset is smaller than the accuracy on the training dataset. This is completely normal, since the model was trained on the `train_dataset`. When the model sees images it has never seen during training, (that is, from the `test_dataset`), we can expect performance to go down. Exercise 3.4 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.4.ipynb) Make predictions and exploreWith the model trained, we can use it to make predictions about some images. ###Code for test_images, test_labels in test_dataset.take(1): test_images = test_images.numpy() test_labels = test_labels.numpy() predictions = model.predict(test_images) predictions.shape ###Output _____no_output_____ ###Markdown Here, the model has predicted the label for each image in the testing set. Let's take a look at the first prediction: ###Code predictions[0] ###Output _____no_output_____ ###Markdown A prediction is an array of 10 numbers. These describe the "confidence" of the model that the image corresponds to each of the 10 different articles of clothing. We can see which label has the highest confidence value: ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown So the model is usually most confident that this image is a Shirt, or `class_names[6]`. Let's check the label: ###Code test_labels[0] ###Output _____no_output_____ ###Markdown We can graph this to look at the full set of 10 class predictions ###Code def plot_image(i, predictions_array, true_labels, images): predictions_array, true_label, img = predictions_array[i], true_labels[i], images[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img[...,0], cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown Let's look at the 0th image, predictions, and prediction array. ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) ###Output _____no_output_____ ###Markdown Let's plot several images with their predictions. Correct prediction labels are blue and incorrect prediction labels are red. The number gives the percent (out of 100) for the predicted label. Note that it can be wrong even when very confident. ###Code # Plot the first X test images, their predicted label, and the true label # Color correct predictions in blue, incorrect predictions in red num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) ###Output _____no_output_____ ###Markdown Finally, use the trained model to make a prediction about a single image. ###Code # Grab an image from the test dataset img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` models are optimized to make predictions on a *batch*, or collection, of examples at once. So even though we're using a single image, we need to add it to a list: ###Code # Add the image to a batch where it's the only member. img = np.array([img]) print(img.shape) ###Output _____no_output_____ ###Markdown Now predict the image: ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` returns a list of lists, one for each image in the batch of data. Grab the predictions for our (only) image in the batch: ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown And, as before, the model predicts a label of 6 (shirt). Exercise 3.5Experiment with different models and see how the accuracy results differ. In particular change the following parameters:* Set training epochs set to 1* Number of neurons in the Dense layer following the Flatten one. For example, go really low (e.g. 10) in ranges up to 512 and see how accuracy changes* Add additional Dense layers between the Flatten and the final Dense(10), experiment with different units in these layers* Don't normalize the pixel values, and see the effect that has Exercise 3.6 - CIFAR-10 Dataset with CNNsLet's apply what we've learned to another dataset.The [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.As our input is a colour image, we have now 3 values per pixel. When flattened, our input array is is 3072 long ($32\times32\times3$). * What happens when you use the same network as above?* What is the best accuracy that you can achieve? Like in the previous lab, download, extract and load the dataset.The extracted folder `cifar-10-batches-py` contains (in Python's pickle format):* Training dataset: `data_batch_1 - 5` * Test dataset: `test_batch`* Dataset metadata: `batches.meta` ###Code import os import glob # Download the data _URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' zip_dir = tf.keras.utils.get_file('cifar-10-python.tar.gz', origin=_URL, extract=True) # Get the data and meta file names data_dir = os.path.join(os.path.dirname(zip_dir), 'cifar-10-batches-py') train_files = glob.glob(os.path.join(data_dir,"data_batch_*")) test_file = os.path.join(data_dir,"test_batch") meta_file = os.path.join(data_dir,"batches.meta") def unpickle(file): import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def build_dataset(files): x = [] y = [] for file in files: dict = unpickle(file) for image in dict[b'data']: # Image in the dataset is stored as a 3072 length 1D array x.append(image) for label in dict[b'labels']: y.append(label) return tf.data.Dataset.from_tensor_slices((x,y)) # Build the training dataset train_dataset = build_dataset(train_files) # Build the testing dataset test_dataset = build_dataset([test_file]) # Get the metadata meta = unpickle(meta_file) ###Output _____no_output_____ ###Markdown **Now that we've got a dataset, use what you've learned in this lab to build a CNN model for classifying these images.*** Don't forget to pre-process your data * You'll want change the shape of the input image from 1D to a 3D array inside your mapping function (hint: [use the reshape function](https://www.tensorflow.org/api_docs/python/tf/reshape)) * The image is stored as `[colour channel, width, height]`, you'll need to change this odering to `[width, height, colour channel]` (hint: [use the transpose function](https://www.tensorflow.org/api_docs/python/tf/transpose))* Remember to check our input shape as it's different from the fashion mnist dataset ###Code # TODO - Create a CNN model and train it using the CIFAR-10 dataset ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown Lab 03: Image Classification with Convolutional Neural Networks Run in Google Colab View source on GitHub In this tutorial, we'll build and train a neural network to classify images of clothing, like sneakers and shirts. Install and import dependenciesWe'll need [TensorFlow Datasets](https://www.tensorflow.org/datasets/), an API that simplifies downloading and accessing datasets, and provides several sample datasets to work with. We're also using a few helper libraries. ###Code import tensorflow as tf # Import TensorFlow Datasets import tensorflow_datasets as tfds tfds.disable_progress_bar() # Helper libraries import math import numpy as np import matplotlib.pyplot as plt import logging logger = tf.get_logger() logger.setLevel(logging.ERROR) ###Output _____no_output_____ ###Markdown Import the Fashion MNIST dataset This guide uses the [Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset, which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothing at low resolution (28 $\times$ 28 pixels), as seen here: <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNIST is intended as a drop-in replacement for the classic [MNIST](http://yann.lecun.com/exdb/mnist/) dataset—often used as the "Hello, World" of machine learning programs for computer vision. The MNIST dataset contains images of handwritten digits (0, 1, 2, etc) in an identical format to the articles of clothing we'll use here.This guide uses Fashion MNIST for variety, and because it's a slightly more challenging problem than regular MNIST. Both datasets are relatively small and are used to verify that an algorithm works as expected. They're good starting points to test and debug code.We will use 60,000 images to train the network and 10,000 images to evaluate how accurately the network learned to classify images. You can access the Fashion MNIST directly from TensorFlow, using the [Datasets](https://www.tensorflow.org/datasets) API: ###Code dataset, metadata = tfds.load('fashion_mnist', as_supervised=True, with_info=True) train_dataset, test_dataset = dataset['train'], dataset['test'] ###Output _____no_output_____ ###Markdown Loading the dataset returns metadata as well as a *training dataset* and *test dataset*.* The model is trained using `train_dataset`.* The model is tested against `test_dataset`.The images are 28 $\times$ 28 arrays, with pixel values in the range `[0, 255]`. The *labels* are an array of integers, in the range `[0, 9]`. These correspond to the *class* of clothing the image represents: Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot Each image is mapped to a single label. Since the *class names* are not included with the dataset, store them here to use later when plotting the images: ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown Explore the dataLet's explore the format of the dataset before training the model. The following shows there are 60,000 images in the training set, and 10000 images in the test set: ###Code num_train_examples = metadata.splits['train'].num_examples num_test_examples = metadata.splits['test'].num_examples print("Number of training examples: {}".format(num_train_examples)) print("Number of test examples: {}".format(num_test_examples)) ###Output _____no_output_____ ###Markdown Preprocess the dataThe value of each pixel in the image data is an integer in the range `[0,255]`. For the model to work properly, these values need to be normalized to the range `[0,1]`. So here we create a normalization function, and then apply it to each image in the test and train datasets. ###Code def normalize(images, labels): images = tf.cast(images, tf.float32) images /= 255 return images, labels # The map function applies the normalize function to each element in the train # and test datasets train_dataset = train_dataset.map(normalize) test_dataset = test_dataset.map(normalize) # The first time you use the dataset, the images will be loaded from disk # Caching will keep them in memory, making training faster train_dataset = train_dataset.cache() test_dataset = test_dataset.cache() ###Output _____no_output_____ ###Markdown Explore the processed dataLet's plot an image to see what it looks like. ###Code # Take a single image, and remove the color dimension by reshaping for image, label in test_dataset.take(1): break image = image.numpy().reshape((28,28)) # Plot the image - voila a piece of fashion clothing plt.figure() plt.imshow(image, cmap=plt.cm.binary) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown Display the first 25 images from the *training set* and display the class name below each image. Verify that the data is in the correct format and we're ready to build and train the network. ###Code plt.figure(figsize=(10,10)) i = 0 for (image, label) in test_dataset.take(25): image = image.numpy().reshape((28,28)) plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image, cmap=plt.cm.binary) plt.xlabel(class_names[label]) i += 1 plt.show() ###Output _____no_output_____ ###Markdown Build the modelBuilding the neural network requires configuring the layers of the model, then compiling the model. Exercise 3.1 Setup the layersThe basic building block of a neural network is the *layer*. A layer extracts a representation from the data fed into it. Hopefully, a series of connected layers results in a representation that is meaningful for the problem at hand.Much of deep learning consists of chaining together simple layers. Most layers, like `tf.keras.layers.Dense`, have internal parameters which are adjusted ("learned") during training.For this exercise, we'll be using two new layers, the Convolution layer (`tf.keras.layers.Conv2D`) and the Max Pooling layer (`tf.keras.layers.MaxPool2D`). Refer to the slides and official documentation on how to use these layers:* [tf.keras.layers.Conv2D reference](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D)* [tf.keras.layers.MaxPool2D reference](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D)**Our network layers are:*** 2D Convolution layer - 32 filters, 3x3 kernel, ReLU activation, padding with same values* Max pooling layer - 2x2 kernel, 2 stride* 2D Convolution layer - 64 filters, 3x3 kernel, ReLU activation, padding with same values* Max pooling layer - 2x2 kernel, 2 stride* Flatten layer* Dense layer - 128 nodes output, ReLU activation* Dense layer - 10 nodes output ###Code model = tf.keras.Sequential([ #TODO - Add model layers as described above ]) ###Output _____no_output_____ ###Markdown Exercise 3.1 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.1.ipynb) Exercise 3.2 Compile the model with `Model.compile`Before the model is ready for training, it needs a few more settings. These are added during the model's *compile* step:**Compile the model below with the following settings*** *Loss function* — SparseCategoricalCrossentropy* *Optimizer* — Adam* *Metrics* — accuracyRefer to the [official documentation](https://www.tensorflow.org/api_docs/python/tf/keras/Modelcompile) if you've forgotten the function. ###Code # TODO - Compile the model ###Output _____no_output_____ ###Markdown Exercise 3.2 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.2.ipynb) Exercise 3.3 Train the model with `Model.fit`First, we define the iteration behavior for the train dataset:1. Repeat forever by specifying `dataset.repeat()` (the `epochs` parameter described below limits how long we perform training).2. The `dataset.shuffle(60000)` randomizes the order so our model cannot learn anything from the order of the examples.3. And `dataset.batch(32)` tells `model.fit` to use batches of 32 images and labels when updating the model variables.Training is performed by calling the `model.fit` method:1. Feed the training data to the model using `train_dataset`.2. The model learns to associate images and labels.3. The `epochs=5` parameter limits training to 5 full iterations of the training dataset, so a total of 5 * 60000 = 300000 examples.(Don't worry about `steps_per_epoch`, the requirement to have this flag will soon be removed.) ###Code BATCH_SIZE = 32 train_dataset = train_dataset.cache().repeat().shuffle(num_train_examples).batch(BATCH_SIZE) test_dataset = test_dataset.cache().batch(BATCH_SIZE) ###Output _____no_output_____ ###Markdown Start training the model in the code box below for **10 epochs**. Dont' forget to add the parameter `steps_per_epoch=math.ceil(num_train_examples/BATCH_SIZE)`.Refer to the [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/Model) if you've forgotten the the function. ###Code # TODO - Train the model ###Output _____no_output_____ ###Markdown As the model trains, the loss and accuracy metrics are displayed. This model reaches an accuracy of about 0.97 (or 97%) on the training data. Exercise 3.3 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.3.ipynb) Exercise 3.4 Evaluate accuracy with `Model.evaluate`Next, compare how the model performs on the test dataset. Use all examples we have in the test dataset to assess accuracy.Refer to the [documentation](https://www.tensorflow.org/api_docs/python/tf/keras/Model) on how to use the function. ###Code # TODO - Evaluate the model ###Output _____no_output_____ ###Markdown As it turns out, the accuracy on the test dataset is smaller than the accuracy on the training dataset. This is completely normal, since the model was trained on the `train_dataset`. When the model sees images it has never seen during training, (that is, from the `test_dataset`), we can expect performance to go down. Exercise 3.4 SolutionThe solution for the exercise can be found [here](https://colab.research.google.com/github/rses-dl-course/rses-dl-course.github.io/blob/master/notebooks/python/solutions/E3.4.ipynb) Make predictions and exploreWith the model trained, we can use it to make predictions about some images. ###Code for test_images, test_labels in test_dataset.take(1): test_images = test_images.numpy() test_labels = test_labels.numpy() predictions = model.predict(test_images) predictions.shape ###Output _____no_output_____ ###Markdown Here, the model has predicted the label for each image in the testing set. Let's take a look at the first prediction: ###Code predictions[0] ###Output _____no_output_____ ###Markdown A prediction is an array of 10 numbers. These describe the "confidence" of the model that the image corresponds to each of the 10 different articles of clothing. We can see which label has the highest confidence value: ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown So the model is usually most confident that this image is a Shirt, or `class_names[6]`. Let's check the label: ###Code test_labels[0] ###Output _____no_output_____ ###Markdown We can graph this to look at the full set of 10 class predictions ###Code def plot_image(i, predictions_array, true_labels, images): predictions_array, true_label, img = predictions_array[i], true_labels[i], images[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img[...,0], cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown Let's look at the 0th image, predictions, and prediction array. ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) ###Output _____no_output_____ ###Markdown Let's plot several images with their predictions. Correct prediction labels are blue and incorrect prediction labels are red. The number gives the percent (out of 100) for the predicted label. Note that it can be wrong even when very confident. ###Code # Plot the first X test images, their predicted label, and the true label # Color correct predictions in blue, incorrect predictions in red num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) ###Output _____no_output_____ ###Markdown Finally, use the trained model to make a prediction about a single image. ###Code # Grab an image from the test dataset img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` models are optimized to make predictions on a *batch*, or collection, of examples at once. So even though we're using a single image, we need to add it to a list: ###Code # Add the image to a batch where it's the only member. img = np.array([img]) print(img.shape) ###Output _____no_output_____ ###Markdown Now predict the image: ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` returns a list of lists, one for each image in the batch of data. Grab the predictions for our (only) image in the batch: ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown And, as before, the model predicts a label of 6 (shirt). Exercise 3.5Experiment with different models and see how the accuracy results differ. In particular change the following parameters:* Set training epochs set to 1* Number of neurons in the Dense layer following the Flatten one. For example, go really low (e.g. 10) in ranges up to 512 and see how accuracy changes* Add additional Dense layers between the Flatten and the final Dense(10), experiment with different units in these layers* Don't normalize the pixel values, and see the effect that has Exercise 3.6 - CIFAR-10 Dataset with CNNsLet's apply what we've learned to another dataset.The [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.As our input is a colour image, we have now 3 values per pixel. When flattened, our input array is is 3072 long ($32\times32\times3$). * What happens when you use the same network as above?* What is the best accuracy that you can achieve? Like in the previous lab, download, extract and load the dataset.The extracted folder `cifar-10-batches-py` contains (in Python's pickle format):* Training dataset: `data_batch_1 - 5` * Test dataset: `test_batch`* Dataset metadata: `batches.meta` ###Code import os import glob # Download the data _URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' zip_dir = tf.keras.utils.get_file('cifar-10-python.tar.gz', origin=_URL, extract=True) # Get the data and meta file names data_dir = os.path.join(os.path.dirname(zip_dir), 'cifar-10-batches-py') train_files = glob.glob(os.path.join(data_dir,"data_batch_*")) test_file = os.path.join(data_dir,"test_batch") meta_file = os.path.join(data_dir,"batches.meta") def unpickle(file): import pickle with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def build_dataset(files): x = [] y = [] for file in files: dict = unpickle(file) for image in dict[b'data']: # Image in the dataset is stored as a 3072 length 1D array x.append(image) for label in dict[b'labels']: y.append(label) return tf.data.Dataset.from_tensor_slices((x,y)) # Build the training dataset train_dataset = build_dataset(train_files) # Build the testing dataset test_dataset = build_dataset([test_file]) # Get the metadata meta = unpickle(meta_file) ###Output _____no_output_____ ###Markdown **Now that we've got a dataset, use what you've learned in this lab to build a CNN model for classifying these images.*** Don't forget to pre-process your data * You'll want change the shape of the input image from 1D to a 3D array inside your mapping function (hint: [use the reshape function](https://www.tensorflow.org/api_docs/python/tf/reshape)) * The image is stored as `[colour channel, width, height]`, you'll need to change this odering to `[width, height, colour channel]` (hint: [use the transpose function](https://www.tensorflow.org/api_docs/python/tf/transpose))* Remember to check our input shape as it's different from the fashion mnist dataset ###Code # TODO - Create a CNN model and train it using the CIFAR-10 dataset ###Output _____no_output_____
notebooks/dl-training.ipynb
###Markdown MTL ResNet Model ###Code from torchvision.models.utils import load_state_dict_from_url class ResNet(nn.Module): def __init__( self, block, layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer(self, block, planes: int, blocks: int, stride: int = 1, dilate: bool = False) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( torchvision.models.resnet.conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x: torch.Tensor) -> torch.Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) x1 = self.fc_task1(x) x2 = self.fc_task2(x) return x1, x2 def forward(self, x: torch.Tensor) -> torch.Tensor: return self._forward_impl(x) def _resnet( arch: str, block, layers: List[int], pretrained:bool, progress: bool, **kwargs: Any ): model = ResNet(block, layers, **kwargs) if pretrained: state_dict = torchvision.models.resnet.load_state_dict_from_url(torchvision.models.resnet.model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: return _resnet('resnet18', torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: return _resnet('resnet50', torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def get_mtl_resnet50(num_classes: int): _m = resnet50(pretrained=True) #num_classes=3) _m.fc = nn.Sequential(nn.Flatten(), nn.Linear(2048, 512), nn.ReLU(), nn.Dropout(0.2)) _m.fc_task1 = nn.Sequential(nn.Linear(512, num_classes), nn.LogSoftmax(dim=1)) _m.fc_task2 = nn.Sequential(nn.Linear(512, num_classes), nn.LogSoftmax(dim=1)) return _m _m = get_mtl_resnet50(3) x1, x2 = _m(torch.Tensor(np.random.random((1, 3, 100, 100)))) print(x1, x2) def _forward_impl_custom(self, x: torch.Tensor) -> torch.Tensor: pass m = resnet50(pretrained=True) m._forward_impl = _forward_impl_custom ###Output _____no_output_____ ###Markdown Mobilenet v3 (large) | Model | Acc@1 | Acc@5 ||---|---|---|| MobileNet V2 | 71.878 | 90.286 | | MobileNet V3 Large | 74.042 | 91.340 | | MobileNet V3 Small | 67.668 | 87.402 | ###Code class MTL_MobileNetV3(torchvision.models.MobileNetV3): def __init__(self, inverted_residual_setting, last_channel): super().__init__(inverted_residual_setting, last_channel) arch = "mobilenet_v3_large" self.inverted_residual_setting = inverted_residual_setting self.last_channel = last_channel lastconv_input_channels = inverted_residual_setting[-1].out_channels self.lastconv_output_channels = 6 * lastconv_input_channels def add_mtl_head(self, num_classes=3): self.classifier = nn.Sequential( nn.Linear(self.lastconv_output_channels, self.last_channel), nn.Hardswish(inplace=True), nn.Dropout(p=0.2, inplace=True)) self.classifier1 = nn.Sequential(nn.Linear(self.last_channel, num_classes), nn.LogSoftmax(dim=1)) self.classifier2 = nn.Sequential(nn.Linear(self.last_channel, num_classes), nn.LogSoftmax(dim=1)) def _forward_impl(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) x1 = self.classifier1(x) x2 = self.classifier2(x) return x1, x2 def my_mobilenet_v3_model( arch: str, inverted_residual_setting, last_channel: int, pretrained: bool, progress: bool, **kwargs: Any ): model = MTL_MobileNetV3(inverted_residual_setting, last_channel) if pretrained: if torchvision.models.mobilenetv3.model_urls.get(arch, None) is None: raise ValueError("No checkpoint is available for model type {}".format(arch)) state_dict = torchvision.models.mobilenetv3.load_state_dict_from_url(torchvision.models.mobilenetv3.model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def mtl_mobilenet_v3_large(pretrained: bool = True, num_classes: int = 3): arch = "mobilenet_v3_large" inverted_residual_setting, last_channel = torchvision.models.mobilenetv3._mobilenet_v3_conf(arch) m = my_mobilenet_v3_model(arch, inverted_residual_setting, last_channel, pretrained, progress=True) m.add_mtl_head(num_classes=3) return m m = mtl_mobilenet_v3_large(pretrained=True, num_classes=3) x1, x2 = m(torch.Tensor(np.random.random((1, 3, 100, 100)))) print(x1, x2) ###Output tensor([[-0.0337, 0.0108, 0.0853]], grad_fn=<AddmmBackward>) tensor([[-0.0209, -0.1206, -0.0302]], grad_fn=<AddmmBackward>) ###Markdown Training ###Code def get_metric_dict(mode: str = "train", num_classes: int = 3) -> dict: kwargs = {"num_classes": num_classes, "average": "weighted"} metric_dict = {f"accuracy_{mode}_surface": torchmetrics.Accuracy(**kwargs), f"precision_{mode}_surface": torchmetrics.Precision(**kwargs), f"accuracy_{mode}_smoothness": torchmetrics.Accuracy(**kwargs), f"precision_{mode}_smoothness": torchmetrics.Precision(**kwargs), f"f1_{mode}_surface": torchmetrics.F1(**kwargs), f"f1_{mode}_smoothness": torchmetrics.F1(**kwargs), } return metric_dict class CargoRocketModel(pl.LightningModule): def __init__(self, num_classes: int = 10): super().__init__() self.num_classes = num_classes self.model = mtl_mobilenet_v3_large(pretrained=True, num_classes=self.num_classes) self.criterion1 = nn.NLLLoss() self.criterion2 = nn.NLLLoss() self.learning_rate = 1e-3 self.train_metrics = get_metric_dict(mode="train", num_classes=self.num_classes) self.val_metrics = get_metric_dict(mode="val", num_classes=self.num_classes) print("Using", self.num_classes, "classes") def forward(self, x): # in lightning, forward defines the prediction/inference actions prediction = self.model(x) return prediction def training_step(self, batch, batch_idx): # training_step defined the train loop. # It is independent of forward x = batch["image"] y1 = batch["surface"] y2 = batch["smoothness"] y_hat1, y_hat2 = self.model(x) loss1 = self.criterion1(y_hat1, y1) loss2 = self.criterion2(y_hat2, y2) loss = loss1 + loss2 self.log('train_loss', loss) for metric_name, metric in self.train_metrics.items(): if "surface" in metric_name: metric(y_hat1.cpu(), y1.cpu()) self.log(metric_name, metric, on_epoch=True) elif "smoothness" in metric_name: metric(y_hat2.cpu(), y2.cpu()) self.log(metric_name, metric, on_epoch=True) return loss def validation_step(self, batch, batch_idx): x = batch["image"] y1 = batch["surface"] y2 = batch["smoothness"] y_hat1, y_hat2 = self.model(x) loss1 = self.criterion1(y_hat1, y1) loss2 = self.criterion2(y_hat2, y2) loss = loss1 + loss2 self.log('val_loss', loss) for metric_name, metric in self.val_metrics.items(): if "surface" in metric_name: metric(y_hat1.cpu(), y1.cpu()) self.log(metric_name, metric, on_epoch=True, prog_bar=True) elif "smoothness" in metric_name: metric(preds=y_hat2.cpu(), target=y2.cpu()) self.log(metric_name, metric, on_epoch=True, prog_bar=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer print("Cuda avail:", torch.cuda.is_available()) torch.cuda.set_device("cuda:1") model = CargoRocketModel(num_classes=3) def get_checkpoint_callback(metric: str) -> ModelCheckpoint: callback = ModelCheckpoint(monitor=metric, mode="max", filename='{epoch}-{val_loss:.2f}-{' + metric + ':.4f}') return callback checkpoint = "/home/trossber/street-image-classification/training_run_logs/lightning_logs/version_34/checkpoints/last.ckpt" trainer = pl.Trainer(#gpus=1, gpus=[1], default_root_dir="/home/trossber/street-image-classification/training_run_logs/", max_epochs=100, callbacks=[ModelCheckpoint(save_last=True), get_checkpoint_callback(metric="f1_val_surface"), get_checkpoint_callback(metric="f1_val_smoothness"), get_checkpoint_callback(metric="accuracy_val_surface"), get_checkpoint_callback(metric="accuracy_val_smoothness"), ], #callbacks=[EarlyStopping(monitor='val_loss', patience=20)] #resume_from_checkpoint=checkpoint ) trainer.fit(model, train_loader, val_dataloaders=val_loader) ###Output GPU available: True, used: True TPU available: False, using: 0 TPU cores LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1] | Name | Type | Params ----------------------------------------------- 0 | model | MTL_MobileNetV3 | 4.2 M 1 | criterion1 | NLLLoss | 0 2 | criterion2 | NLLLoss | 0 ----------------------------------------------- 4.2 M Trainable params 0 Non-trainable params 4.2 M Total params 16.839 Total estimated model params size (MB) ###Markdown Checkpoint loader ###Code checkpoint_path = "/home/trossber/street-image-classification/training_run_logs/lightning_logs/version_51/checkpoints/" checkpoint_path += "epoch=97-val_loss=0.93-f1_val_surface=0.9231.ckpt" model_loaded = CargoRocketModel.load_from_checkpoint(checkpoint_path, num_classes=3) x1, x2 = model_loaded(torch.Tensor(np.random.random((1, 3, 256, 256)))) print(x1, x2) ###Output Using 3 classes tensor([[-0.1754, -3.9359, -1.9565]], grad_fn=<LogSoftmaxBackward>) tensor([[-1.2401, -0.7259, -1.4839]], grad_fn=<LogSoftmaxBackward>) ###Markdown Broken img ###Code broken_img = "/home/trossber/street-image-classification/data/raw/images/rJN7Gii8NfYROj8P4t8WbY.jpg" with Image.open(broken_img) as img: img_data = np.asarray(img) plt.imshow(img_data) ###Output _____no_output_____ ###Markdown Predict for validation ###Code val_batch = next(iter(val_loader)) x = val_batch["image"] y1 = val_batch["surface"] y2 = val_batch["smoothness"] y_hat1, y_hat2 = model(x) y_hat1.argmax(axis=1) y1 tp /(tp+fp) tp, fp, tn, fn, sup = torchmetrics.StatScores(num_classes=3)(y_hat1, y1) torchmetrics.StatScores(num_classes=3)(y_hat1.argmax(axis=1), y1) # true positives, false positives, true negatives, false negatives # TP, FP, TN, FN, sup torchmetrics.Accuracy(average="weighted", num_classes=3)(y_hat1, y1) torchmetrics.ConfusionMatrix(num_classes=3)(y_hat1, y1) sum(y_hat1.detach().numpy().argmax(axis=1) == y1.numpy()) / len(y1.numpy()) for pred, true in zip(list(y_hat1.detach().numpy().argmax(axis=1)), list(y1.numpy())): print(pred, true) next(iter(val_loader)) checkpoint_path = "/home/trossber/street-image-classification/training_run_logs/lightning_logs/version_23/checkpoints/last.ckpt" model_trained = CargoRocketModel().load_from_checkpoint(checkpoint_path, num_classes=3).to("cuda:1") model_trained.eval() df_preds = pd.DataFrame() for batch in tqdm(val_loader): x = batch["image"].to(model_trained.device) label_surface = batch["surface"] label_smoothness = batch["smoothness"] image_path = batch["image_path"] preds_surface, preds_smoothness = model_trained(x) label_surface_pred = np.exp(preds_surface.detach().cpu().numpy()).argmax(axis=1) label_smoothness_pred = np.exp(preds_smoothness.detach().cpu().numpy()).argmax(axis=1) df_batch = pd.DataFrame({ "image_id": [Path(i).stem for i in image_path], "surface_true": label_surface.numpy(), "smoothness_true": label_smoothness.numpy(), "surface_pred": label_surface_pred, "smoothness_pred": label_smoothness_pred, }) df_preds = df_preds.append(df_batch) print(df_preds.shape) df_preds.to_csv("predictions_checkpoint_last.csv") df_preds["surface_correct"] = df_preds["surface_true"] == df_preds["surface_pred"] df_preds["smoothness_correct"] = df_preds["smoothness_true"] == df_preds["smoothness_pred"] df_preds["smoothness_correct"].value_counts() df_preds["surface_correct"].value_counts() ###Output _____no_output_____
research/fatal-encounters.ipynb
###Markdown Fatal Encounters. Justified? ProblemUsing the [fatal encounters dataset](https://docs.google.com/spreadsheets/d/1dKmaV_JiWcG8XBoRgP8b4e9Eopkpgt7FL7nyspvzAsE/editgid=0),create a classifier that takes as input text and other attributes and triesto predict the target variable `Official disposition of death (justified or other)`. Questions- What are the relevant socially sensitive (including `protected_class_attribute`) in the dataset?- Does the data contain `potentially discriminatory` patterns? With respect to which definition of fairness?- Which features are being chosen to predict the target? Get Data ###Code import numpy as np import pandas as pd import seaborn as sns from IPython.display import Markdown, display sns.set_style("white") %matplotlib inline data = pd.read_csv("data/fatal_encounters_dataset.csv") # clean data column names data.columns = ( data.columns .str.replace("'", "") .str.replace("[^a-zA-Z]", "_") .str.replace("_+", "_") .str.strip("_") .str.lower() .str.strip() ) data = data[data.columns[~data.columns.str.startswith("unnamed")]] def examine(df, n_sample=3): return ( df.describe(include="all").T [["count", "unique", "mean", "std"]] .merge( df.apply( lambda s: s.sample( n_sample, random_state=90).reset_index(drop=True)) .T.rename(columns={ i: "sample_%s" % (i + 1) for i in range(n_sample)}), how="left", left_index=True, right_index=True)) examine(data, n_sample=2) ###Output _____no_output_____ ###Markdown Exploration ###Code # TARGET VARIABLE JUSTIFIED = "official_disposition_of_death_justified_or_other" # Features of interest SENSITIVE_ATTRIBUTES = [ "subjects_name", "subjects_age", "subjects_gender", "subjects_race", "url_of_image_of_deceased", "symptoms_of_mental_illness" ] FEATURES = [ "agency_responsible_for_death", "cause_of_death", "a_brief_description_of_the_circumstances_surrounding_the_death", "location_of_death_city", "location_of_death_state", "location_of_death_zip_code", "location_of_death_county", ] def plot_categorical(s, top_n=15, **kwargs): ax = s.value_counts().sort_values().tail(top_n).plot.barh(**kwargs) ax.set_xlabel("frequency"); sns.despine() return ax plot_categorical(data[JUSTIFIED], figsize=(8, 7)); ###Output _____no_output_____ ###Markdown Preprocessencode target variable into buckets: `justified`, `other`, and`unknown`. For modeling throw `unknown` data out for the first pass. Target Variable ###Code JUSTIFIED_STRINGS = [ "Justified", "Justifed", "Jusified", "Justified by internal review", "Justified by outside agency", "Justified by District Attorney", "Other justified (Civilian board/Prosecutor/District Attorney/Coroner)" ] UNKNOWN_STRINGS = [ "Unreported", "Unknown", ] RACE = "subjects_race" GENDER = "subjects_gender" def encode_target(s): if pd.isnull(s): return "UNKNOWN" s = s.strip() if s in JUSTIFIED_STRINGS: return "JUSTIFIED" elif s in UNKNOWN_STRINGS: return "UNKNOWN" else: return "OTHER" gender_encoding_map = { "Female": "FEMALE", "Femalr": "FEMALE", "Transgender": "TRANSGENDER", "Male": "MALE", } race_encoding_map = { "Race unspecified": "RACE_UNSPECIFIED", "European-American/White": "WHITE", "African-American/Black": "BLACK", "Hispanic/Latino": "LATINO", "Asian/Pacific Islander": "ASIAN_PACIFIC_ISLANDER", "Native American/Alaskan": "NATIVE_AMERICAN_ALASKAN", "Middle Eastern": "MIDDLE_EASTERN", } clean_data = data.copy() clean_data[JUSTIFIED] = data[JUSTIFIED].map(encode_target) clean_data[JUSTIFIED].value_counts().to_frame() clean_data[GENDER] = data[GENDER].map(gender_encoding_map) clean_data[RACE] = data[RACE].map(race_encoding_map) # exclude records with "UNKNOWN" disposition and "UNSPECIFIED RACE" clean_data = clean_data[clean_data[JUSTIFIED] != "UNKNOWN"] clean_data = clean_data[clean_data[RACE] != "RACE_UNSPECIFIED"] clean_data[JUSTIFIED].value_counts().to_frame() ###Output _____no_output_____ ###Markdown Sensitive Attributes: Gender and Race ###Code clean_data.subjects_gender.value_counts().to_frame() clean_data.subjects_race.value_counts().to_frame() ###Output _____no_output_____ ###Markdown Features ###Code examine(clean_data[FEATURES]) clean_data.cause_of_death.value_counts().to_frame() ###Output _____no_output_____ ###Markdown TODO: tokenize `a_brief_description_of_the_circumstances_surrounding_the_death`so that text is represented as a word vector. Assess Potentially Discriminatory (PD) PatternsGet `mean_difference` score for the following sensitive attributes:- subjects_gender- subjects_race ###Code from themis_ml.metrics import mean_difference, mean_confidence_interval def report_mean_difference(y, s_list): report = [] index = [] for s_name, s in s_list: s_notnull = s.notnull() report.append( map(lambda x: x * 100, mean_difference(y[s_notnull], s[s_notnull]))) index.append("{s_name} vs. NOT {s_name}".format(s_name=s_name)) return pd.DataFrame( report, columns=["mean difference", "lower bound", "upper bound"], index=index) is_justified = clean_data[JUSTIFIED] == "JUSTIFIED" gender_vectors = [ (g, (clean_data.subjects_gender == g).astype(int)) for g in clean_data.subjects_gender.dropna().unique()] gender_report = report_mean_difference(is_justified, gender_vectors) gender_report def plot_report(report): margin = (report["mean difference"] - report["lower bound"]).abs() ax = report[["mean difference"]].plot( kind="barh", xerr=margin, legend=False) ax.axvline(0, color="k") ax.set_xlabel("mean difference") sns.despine(bottom=True, left=True) plot_report(gender_report) ###Output _____no_output_____ ###Markdown If `mean difference` is negative with respect to some sensitive attribute value$s \in \{d, a\}$ and some outcome $y \in \{y^{+}, y^{-}\}$ , it implies thatthe members of the putatively disadvantaged class $d$ experiences thebeneficial outcome $y^{+}$ more often compared to the advantaged class $a$.Conversely, if `mean difference` is positive with respect to some sensitiveattribute value $s \in \{d, a\}$ and some outcome $y \in \{y^{+}, y^{-}\}$ ,it implies that members the putatively disadvantaged class $d$ experiencesthe harmful outcome $y^{-}$ more often compared to the advantaged class $a$.Interestingly, `MALE`s experience `JUSTIFIED` fatal encounters more thantheir `NON MALE` counterparts ###Code race_vectors = [ (r, (clean_data.subjects_race == r).astype(int)) for r in clean_data.subjects_race.dropna().unique()] race_report = report_mean_difference(is_justified, race_vectors) race_report plot_report(race_report) mental_illness_vectors = [ (r, (clean_data.symptoms_of_mental_illness == r).astype(int)) for r in clean_data.symptoms_of_mental_illness.dropna().unique()] mental_illness_report = report_mean_difference( is_justified, mental_illness_vectors) mental_illness_report plot_report(mental_illness_report) ###Output _____no_output_____ ###Markdown Interestingly, `MALE` and `BLACK` people experience `JUSTIFIED` fatal encounters more thantheir `NON MALE` and `NON BLACK` counterparts, respectively.This leads me to suspect that the labels `official_disposition_of_death_justified_or_other`are somehow skewed against these two sensitive attribute value.**WHO LABELLED THESE RECORDS?** Train ModelsTrain a logistic regression model to predict `JUSTIFIED = 1`, `OTHER = 0`. ###Code import itertools import numpy as np import pandas as pd from sklearn.model_selection import RepeatedKFold, RepeatedStratifiedKFold from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from themis_ml.linear_model import LinearACFClassifier from sklearn.metrics import ( accuracy_score, roc_auc_score, f1_score) FAIRNESS_UNAWARE_FEATURES = [ ("subjects_age", "NUMERIC"), ("subjects_gender", "CATEGORICAL"), ("subjects_race", "CATEGORICAL"), ("symptoms_of_mental_illness", "CATEGORICAL"), ("agency_responsible_for_death", "CATEGORICAL"), ("cause_of_death", "CATEGORICAL"), ("location_of_death_city", "CATEGORICAL"), ("location_of_death_state", "CATEGORICAL"), ("location_of_death_zip_code", "CATEGORICAL"), ("location_of_death_county", "CATEGORICAL"), ] training_data = [] for feature, dtype in FAIRNESS_UNAWARE_FEATURES: if dtype == "NUMERIC": f = clean_data[feature].str.replace("[^0-9]", "").astype(float) training_data.append(f.where(f.notnull(), f.mean())) elif dtype == "CATEGORICAL": training_data.append(pd.get_dummies(clean_data[[feature]].fillna("NULL"))) training_data = pd.concat(training_data, axis=1) features = training_data.columns training_data = training_data.assign( target=(clean_data[JUSTIFIED] == "JUSTIFIED").astype(int)) assert training_data.notnull().all().all() training_data.head() cv = RepeatedStratifiedKFold(n_splits=3, n_repeats=10) estimators = [ ("logistic_regression", LogisticRegression()), ("linear_acf", LinearACFClassifier()), ] X = training_data[features].values y = training_data["target"].values s = training_data["subjects_race_BLACK"].values strata = training_data["target"].astype(int).astype(str).str.cat( training_data["subjects_race_BLACK"].astype(int).astype(str), sep="_") preds = [] for i, (train, test) in enumerate(cv.split(X, strata, groups=strata)): print("."), X_train, X_test = X[train], X[test] y_train, y_test = y[train], y[test] s_train, s_test = s[train], s[test] for est_name, estimator in estimators: fit_args = (X_train, y_train, s_train) if est_name == "linear_acf" \ else (X_train, y_train) predict_args = (X_test, s_test) if est_name == "linear_acf" \ else (X_test, ) estimator.fit(*fit_args) preds.append( pd.DataFrame({ "pred_y": estimator.predict_proba(*predict_args)[:, 1], "pred_label": estimator.predict(*predict_args).astype(int), "true_y": y_test.astype(int), "sensitive_attribute": s_test, "rep_fold": i, "estimator": est_name, })) preds = pd.concat(preds) def compute_metrics(df): accuracy = accuracy_score(df.true_y, df.pred_label) mean_diff, lower, upper = mean_difference(df.pred_label, df.sensitive_attribute) return pd.Series({ "accuracy": accuracy, "mean difference": mean_diff, }) metrics = ( preds .groupby(["estimator", "rep_fold"]) .apply(compute_metrics) .reset_index(0) .pipe(pd.melt, id_vars="estimator", var_name="metric", value_name="value") ) sns.factorplot( x="value", y="estimator", hue="metric", row="metric", sharex=False, data=metrics, size=3, aspect=1.5, join=False); ( metrics .groupby(["metric", "estimator"]) .agg([np.mean, np.std])) ###Output _____no_output_____
td_semaine_4/Filtres convolutifs - Partie 2.ipynb
###Markdown $\newcommand{\xbf}{{\bf x}}\newcommand{\ybf}{{\bf y}}\newcommand{\wbf}{{\bf w}}\newcommand{\Ibf}{\mathbf{I}}\newcommand{\Xbf}{\mathbf{X}}\newcommand{\Rbb}{\mathbb{R}}\newcommand{\vec}[1]{\left[\begin{array}{c}1\end{array}\right]}$ Les filtres convolutifs (partie 2)Matériel de cours rédigé par Pascal Germain, 2019************ ###Code %matplotlib inline from matplotlib import pyplot as plt import numpy as np import torch from torch import nn torch.__version__ # Ce notebook a été conçu avec la version '1.2.0' de pytorch ###Output _____no_output_____ ###Markdown L'ensemble CIFARNous vous fournissons un sous-ensemble du jeu de données CIFAR10. Le jeu de donnée original provient de : https://www.cs.toronto.edu/~kriz/cifar.htmlIl s’agit d’un problème de classification multi-classes; le jeu de données contient des images couleurs de taille32 × 32 pixels représentant 10 catégories d’objets. Pour simplifier le problème et réduire le temps d’ap-prentissage requis, nous vous suggérons de conserver seulement les trois premières catégories : «avion»,«automobile» et «oiseau». Le répertoire `data/cifar` contient un fichier compressé par catégorie, chacun regroupant les images en format *PNG*.La méthode `charger_cifar` du fichier `cifar_utils` permet d’extraire les images compressées du jeu de données et de les transformer en vecteur de 3 × 32 × 32 = 3072 nombres réels compris entre 0.0 et 1.0, qui sont la concaténation des valeurs des canaux rouge, vert et bleu. ###Code from cifar_utils import charger_cifar, afficher_grille_cifar from sklearn.metrics import accuracy_score repertoire_cifar = '../data/cifar/' classes_cifar = [0, 1, 2] data_x, data_y = charger_cifar(repertoire_cifar, classes_cifar) np.shape(data_x) data_y ###Output _____no_output_____ ###Markdown Séparons les images en un ensemble d'apprentissage et un ensemble de test ###Code from sklearn.model_selection import train_test_split train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, test_size=0.5, random_state=42) print('train_x:', train_x.shape) print('test_x:', test_x.shape) print('train_y:', train_y.shape) print('test_y:', test_y.shape) ###Output _____no_output_____ ###Markdown La méthode `afficher_grille_cifar` du fichier `cifar_utils` permet visualiser un ensemble d'images. ###Code indices_aleatoires = np.random.randint(len(train_y), size=40) afficher_grille_cifar(train_x[indices_aleatoires]) ###Output _____no_output_____ ###Markdown Apprentissage d'un réseau pleinement connecté ###Code from reseau_classif_generique import ReseauClassifGenerique nb_entrees = 3 * 32 * 32 nb_sorties = 3 nb_neurones_cachees = 50 archi_pleinement_connectee = nn.Sequential( nn.Linear(nb_entrees, nb_neurones_cachees), nn.ReLU(), nn.Linear(nb_neurones_cachees, nb_sorties), nn.LogSoftmax(dim=1) ) reseau_pc = ReseauClassifGenerique(archi_pleinement_connectee, eta=0.01, alpha=0.1, nb_epoques=500, taille_batch=32, fraction_validation=.1, patience=20) reseau_pc.apprentissage(train_x, train_y) train_pred = reseau_pc.prediction(train_x) test_pred = reseau_pc.prediction(test_x) print('Précision train:', accuracy_score(train_y, train_pred) ) print('Précision test :', accuracy_score(test_y, test_pred)) ###Output _____no_output_____
wei/p06.ipynb
###Markdown p.6 Chinking ###Code from IPython.display import YouTubeVideo YouTubeVideo('EymPQgCtcAE') ###Output _____no_output_____ ###Markdown 1. Chinking(1) Remove from the groups those things you don't want but are picked up during chunking. (2) A chick that is the thing we want to remove is defined in a similar fashion to how we define a chunk. 2. ExampleChunk with chinking ###Code import nltk from nltk.corpus import state_union from nltk.tokenize import PunktSentenceTokenizer train_text = state_union.raw("2005-GWBush.txt") sample_text = state_union.raw("2006-GWBush.txt") custom_sent_tokenizer = PunktSentenceTokenizer(train_text) tokenized = custom_sent_tokenizer.tokenize(sample_text) def process_content(): try: for i in tokenized: words = nltk.word_tokenize(i) tagged = nltk.pos_tag(words) chunkGram = r"""Chunk: {<.*>+} # This chunk rule will basically group everything into one chunk. }<VB.?|IN|DT|TO>+{""" # This chink rule will break the chunk at either verbs, preposition or conjunction, determiner, or "to" as preposition or infinitive marker. chunkParser = nltk.RegexpParser(chunkGram) chunked = chunkParser.parse(tagged) chunked.draw() except Exception as e: print(str(e)) process_content() ###Output _____no_output_____
notebooks/Distance to land - dfsu.ipynb
###Markdown Get a list of land nodes ###Code xnland = xn[c == 1] ynland = yn[c == 1] plt.scatter(xnland,ynland) ###Output _____no_output_____ ###Markdown Calculate element coordinates ###Code ne = mesh.NumberOfElements xe = np.zeros(ne) ye = np.zeros(ne) # Node coordinates xn = np.array(list(mesh.X)) yn = np.array(list(mesh.Y)) for j in range(ne): nodes = mesh.ElementTable[j] xcoords = np.empty(nodes.Length) ycoords = np.empty(nodes.Length) for i in range(nodes.Length): nidx = nodes[i]-1 xcoords[i] = xn[nidx] ycoords[i] = yn[nidx] xe[j] = xcoords.mean() ye[j] = ycoords.mean() ###Output _____no_output_____ ###Markdown Calculate distance to closest land node ###Code i = 0 d = np.zeros(ne) for i in range(ne): d[i] = np.min(np.sqrt((xe[i] - xnland)**2 + (ye[i] - ynland)**2)) from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection patches = [] for j in range(ne): nodes = mesh.ElementTable[j] pcoords = np.empty([nodes.Length, 2]) for i in range(nodes.Length): nidx = nodes[i] - 1 pcoords[i, 0] = xn[nidx] pcoords[i, 1] = yn[nidx] polygon = Polygon(pcoords, True) patches.append(polygon) fig, ax = plt.subplots() p = PatchCollection(patches, alpha=0.8) p.set_array(d) ax.add_collection(p) fig.colorbar(p, ax=ax) ax.set_xlim(xn.min(), xn.max()) ax.set_ylim(yn.min(), yn.max()) ###Output _____no_output_____ ###Markdown Store result in a new Dfsu file ###Code data = list() data.append(d.reshape(1,-1)) data[0].shape from mikeio.dfsu import dfsu dfs = dfsu() dfsufilename = r"distance.dfsu" dfs.create(meshfilename, dfsufilename, data, names=["Distance to land"]) ###Output _____no_output_____
Evaluation/Model_Evaluation_Phase_1.ipynb
###Markdown **Import the Data** ###Code # Import necessary libraries. import pandas as pd import os import csv import io import requests import numpy as np import matplotlib.pyplot as plt import re %matplotlib inline # Set up URLs. circuits_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/circuits.csv' constructor_results_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/constructor_results.csv' constructor_standings_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/constructor_standings.csv' constructors_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/constructors.csv' driver_standings_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/driver_standings.csv' drivers_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/drivers.csv' lap_times_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/lap_times.csv' pit_stop_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/pit_stops.csv' qualifying_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/qualifying.csv' races_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/races.csv' results_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/results.csv' seasons_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/seasons.csv' status_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/status.csv' race_status_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/race_status.csv' MasterData1_url = 'https://raw.githubusercontent.com/georgetown-analytics/Formula1/main/data/MasterData1.csv' # Set up dataframes. circuits_df = pd.read_csv(circuits_url, sep = ',', encoding = 'latin-1') constructor_results_df = pd.read_csv(constructor_results_url, sep = ',', engine = 'python') constructor_standings_df = pd.read_csv(constructor_standings_url, sep = ',', engine = 'python') constructors_df = pd.read_csv(constructor_standings_url, sep = ',', engine = 'python') driver_standings_df = pd.read_csv(driver_standings_url, sep = ',', engine = 'python') lap_times_df = pd.read_csv(lap_times_url, sep = ',', engine = 'python') pit_stop_df = pd.read_csv(pit_stop_url, sep = ',', engine = 'python') qualifying_df = pd.read_csv(constructor_standings_url, sep = ',', engine = 'python') results_df = pd.read_csv(results_url, sep = ',', engine = 'python') seasons_df = pd.read_csv(seasons_url, sep = ',', engine = 'python') status_df = pd.read_csv(status_url, sep = ',', engine = 'python') races_df = pd.read_csv(races_url, sep = ',', engine = 'c') drivers_df = pd.read_csv(drivers_url, sep = ',', encoding = 'latin-1') race_status_df = pd.read_csv(race_status_url, sep = ',', engine = 'python') MasterData1_df = pd.read_csv(MasterData1_url, sep = ',', engine = 'python', encoding = 'latin-1') ###Output _____no_output_____ ###Markdown **MasterData1 Evaluation** ###Code MasterData1_df.head() # Assuming that Index is by Driver print(MasterData1_df.columns.tolist()) # Are we working with null values? MasterData1_df.isnull() # It does not seem like we are, but upon attempting to model, we were left with an error. #Replace \N with null value MasterData1_df = MasterData1_df.replace(r'\N', np.NaN) #Replace null values with median value of that column MasterData1_df["position"] = MasterData1_df["position"].fillna(MasterData1_df["position"].median()) MasterData1_df["circuitId"] = MasterData1_df["circuitId"].fillna(MasterData1_df["circuitId"].median()) MasterData1_df["rank"] = MasterData1_df["rank"].fillna(MasterData1_df["rank"].median()) MasterData1_df["grid"] = MasterData1_df["grid"].fillna(MasterData1_df["grid"].median()) ###Output _____no_output_____ ###Markdown **Modeling Objectives**- Start off with Logistic Regression Model for Classification- At first we want to predict Completion Status (Binary)- Finished the race = 1- Did not finish the race = 0- Use small amount of variables based on intuition i.e:- grid, position, circuitId, rank- Visualize Findings & Evaluate Model- Run data through a series of models and evaluate- Evaluate Features, determine alterations for a better performing model. **Evaluating Classifiers** ###Code from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from yellowbrick.classifier import ClassificationReport from yellowbrick.classifier import ROCAUC X = MasterData1_df[["grid", "position", "circuitId", "rank"]] y = MasterData1_df["Completion Status"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Instantiate the classification model and visualizer logreg = LogisticRegression() visualizer = ClassificationReport( logreg, classes=[0,1], support=True, size=(1080, 720) ) visualizer.fit(X_train, y_train) # Fit the visualizer and the model visualizer.score(X_test, y_test) # Evaluate the model on the test data visualizer.show() # Draw the data ###Output _____no_output_____ ###Markdown **Findings**- For all instances that were actually positive, 78% percent was classified correctly- 78% of the time the model is able to accurately predict when a driver would finish a race. - Why are the results for predicting non-finishes, "0", so poor?- Messing with the classes object in visualizer greatly alters results, did I make a mistake with this? **Evaluating Multiple Classifiers at Once** ###Code from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC, NuSVC, SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split as tts from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier from yellowbrick.classifier import ClassificationReport def score_model(X, y, estimator, **kwargs): """ Test various estimators. """ X = MasterData1_df[["grid", "position", "circuitId", "rank"]] y = MasterData1_df["Completion Status"] # Instantiate the classification model and visualizer model.fit(X, y, **kwargs) expected = y predicted = model.predict(X) # Compute and return F1 (harmonic mean of precision and recall) print("{}: {}".format(estimator.__class__.__name__, f1_score(expected, predicted))) models = [ SVC(gamma='auto'), NuSVC(gamma='auto'), LinearSVC(), SGDClassifier(max_iter=100, tol=1e-3), KNeighborsClassifier(), LogisticRegression(solver='lbfgs'), LogisticRegressionCV(cv=3), BaggingClassifier(), ExtraTreesClassifier(n_estimators=100), RandomForestClassifier(n_estimators=100) ] for model in models: score_model(X, y, model) #Based on this series of tests, the model that returned the highest F1 Score is the RandomForestClassifier with a score of 0.9682886216466235 #It seems so far that the most viable models are: RandomForestClassifier, ExtraTreesClassifier, and BaggingClassifier ###Output _____no_output_____ ###Markdown **Visual Model Evaluation** ###Code def visualize_model(X, y, estimator): """ Test various estimators. """ X = MasterData1_df[["grid", "position", "circuitId", "rank"]] y = MasterData1_df["Completion Status"] # Instantiate the classification model and visualizer visualizer = ClassificationReport( model, classes=[0,1], cmap="Reds", support=True, size=(600, 360) ) X_train, X_test, y_train, y_test = tts(X, y, test_size=0.20) visualizer.fit(X_train, y_train) visualizer.score(X_test, y_test) visualizer.show() for model in models: visualize_model(X, y, model) ###Output _____no_output_____ ###Markdown **Evaluating Features** - We have intuitively selected features and have gotten certain models to run well based on these features. - This is good, but it would be better to arrive at these results via a systematic approach. - It is hard to come to conclusions about our data and what our features explain about our hypothesis.- To get a better sense of our data we will use Recursive Feature Elimination, LASSO, or Tree Based evaluations. ###Code #Recursive Feature Analysis MasterData1_df.head() print(MasterData1_df.columns.tolist()) #Replace \N with null value MasterData1_df = MasterData1_df.replace(r'\N', np.NaN) #Replace null values with median value of that column MasterData1_df["position"] = MasterData1_df["position"].fillna(MasterData1_df["position"].median()) MasterData1_df["circuitId"] = MasterData1_df["circuitId"].fillna(MasterData1_df["circuitId"].median()) MasterData1_df["rank"] = MasterData1_df["rank"].fillna(MasterData1_df["rank"].median()) MasterData1_df["grid"] = MasterData1_df["grid"].fillna(MasterData1_df["grid"].median()) MasterData1_df["milliseconds"] = MasterData1_df["milliseconds"].fillna(MasterData1_df["milliseconds"].median()) MasterData1_df["fastestLap"] = MasterData1_df["fastestLap"].fillna(MasterData1_df["fastestLap"].median()) MasterData1_df["fastestLapSpeed"] = MasterData1_df["fastestLapSpeed"].fillna(MasterData1_df["fastestLapSpeed"].median()) MasterData1_df["year"] = MasterData1_df["year"].fillna(MasterData1_df["year"].median()) MasterData1_df["alt"] = MasterData1_df["alt"].fillna(MasterData1_df["alt"].median()) from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC, NuSVC, SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split as tts from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.linear_model import LogisticRegressionCV, LogisticRegression, SGDClassifier from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier from sklearn.linear_model import Ridge, Lasso, ElasticNet from sklearn.feature_selection import SelectFromModel from yellowbrick.classifier import ClassificationReport from sklearn.feature_selection import RFE #set variables X = MasterData1_df[["alt", "year", "fastestLapSpeed", "fastestLap", "milliseconds", "grid", "rank", "circuitId", "position"]] y = MasterData1_df["Completion Status"] #LASSO- Regularization model = Lasso() model.fit(X, y) print(list(zip(X, model.coef_.tolist()))) #What does this mean? #Transformer model = Lasso() sfm = SelectFromModel(model) sfm.fit(X, y) print(list(X.iloc[:, sfm.get_support(indices=True)])) ###Output ['year']
examples/homomorphic-encryption/Tutorial_0_TenSEAL_Syft_Data_Owner.ipynb
###Markdown Homomorphic Encryption using Duet: Data Owner Tutorial 0: Basic operationsWelcome!This tutorial will show you how to use Duet with homomorphic encryption and some use cases. This notebook illustrates the Data Owner view on the operations.We will focus on Duet's integration with [TenSEAL](https://github.com/OpenMined/TenSEAL). TenSEAL is a Python library for doing homomorphic encryption operations on tensors. It's built on top of [Microsoft SEAL](https://github.com/Microsoft/SEAL), a C++ library implementing the BFV and CKKS homomorphic encryption schemes.If you want to learn more about TenSEAL, we recommend the following tutorials:- ['Tutorial 0 - Getting Started'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%200%20-%20Getting%20Started.ipynb).- ['Tutorial 1: Training and Evaluation of Logistic Regression on Encrypted Data'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%201%20-%20Training%20and%20Evaluation%20of%20Logistic%20Regression%20on%20Encrypted%20Data.ipynb).- ['Tutorial 2: Working with Approximate Numbers'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%202%20-%20Working%20with%20Approximate%20Numbers.ipynb).Let's now start the tutorial with a brief review of what homomorphic encryption is, but keep in mind that you don't need to be a crypto expert to use these features. Homomorphic Encryption__Definition__ : Homomorphic encryption (HE) is a technique that allows computations to be made on ciphertexts and generates results that when decrypted, corresponds to the result of the same computations made on plaintexts.This means that an HE scheme lets you encrypt two numbers *X* and *Y*, add their encrypted versions so that it gets decrypted to *X + Y*, the addition could have been a multiplication as well. SetupAll modules are imported here, make sure everything is installed by running the cell below. ###Code import syft as sy import tenseal as ts import pytest sy.load("tenseal") ###Output _____no_output_____ ###Markdown Start Duet Data Owner instance ###Code # Start Duet local instance duet = sy.launch_duet(loopback=True) ###Output _____no_output_____ ###Markdown Theory: Homomorphic encryption schemes__TenSEAL__ supports two encryption schemes: - __BFV__, a scheme for operations on integers. - __CKKS__, a scheme for operations on approximate numbers. This scheme is much better suited for ML applications and we will focus more on it. There are a few major steps for each scheme: 1. __Keys Generation__: in this step, we generate public and private keys that will be used for encryption/decryption. 2. __Encryption__: this is the process of converting a plaintext into an encrypted ciphertext. This step requires an encryption key(or a public key). 3. __Decryption__: this is the process of converting a ciphertext back into a plaintext. This step requires a decryption key(or a secret key). This step cannot be done on the Data Scientist endpoint. Theory: Homomorphic encryption parameters__TenSEAL__ requires a few parameters to set the keys up: - __The polynomial modulus degree(poly_modulus_degree).__ This parameter directly affects the size of the ciphertext, the security of the scheme(bigger is better), but also the computational performance of the scheme(bigger is worse) - __The coefficient modulus sizes(coeff_mod_bit_sizes).__ This parameter is an array of bit sizes and directly affects the size of the ciphertext, the security of the scheme(bigger is worse), and the depth of computation allowed in the encrypted space(longer is better). - __The scaling factor(global_scale).__ This parameter is only used for the approximate schemes(CKKS) and directly affects the precision of computation and decryption. Theory: Homomorphic encryption keys__TenSEAL__ generates a few keys internally, each with another use case: - __The Private Key(or the secret/decryption key)__. This key is used for decrypting ciphertexts, and it is used to derive the other keys. __DO NOT SHARE IT OUTSIDE THE DATA OWNER PROCESS__. - __The Public key(or the encryption key)__. This key is used for encrypting the plain data to a ciphertext. You can safely share it with the Data Scientist. - __The Relinearization Keys(optional)__. This key is used for controlling the quality of the ciphertexts after encrypted multiplications. Generate it only if you are doing encrypted multiplications. You can safely share it with the Data Scientist. - __The Galois Keys(optional)__. This key is needed to perform encrypted vector rotation operations on ciphertexts. Generate it only if you are evaluating convolutions on encrypted data. You can safely share it with the Data Scientist. TenSEAL ContextNow that we had a short introduction, let's get to work.The first step to do for a Data Owner is to generate a security context containing security parameters and encryption keys. ###Code context = ts.Context( ts.SCHEME_TYPE.CKKS, poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40, 60] ) context.global_scale = 2**40 context ###Output _____no_output_____ ###Markdown Encrypt the data ###Code v1 = [0, 1, 2, 3, 4] v2 = [4, 3, 2, 1, 0] enc_v1 = ts.ckks_vector(context, v1) enc_v2 = ts.ckks_vector(context, v2) (enc_v1, enc_v2) ###Output _____no_output_____ ###Markdown Make Context and Encrypted Vectors Referenceable over Duet ###Code # tag them so our partner can easily reference it ctx_ptr = context.send(duet, pointable=True, tags=["context"]) enc_v1_ptr = enc_v1.send(duet, pointable=True, tags=["enc_v1"]) enc_v2_ptr = enc_v2.send(duet, pointable=True, tags=["enc_v2"]) # we can see that our three objects are now inside the store we control duet.store.pandas ###Output _____no_output_____ ###Markdown Checkpoint 1 : Now STOP and run the Data Scientist notebook until the same checkpoint. ###Code # We can see our duet partner has requested the two encrypted vectors and the public context duet.requests.pandas ###Output _____no_output_____ ###Markdown Approve the requests ###Code duet.requests[0].accept() duet.requests[0].accept() duet.requests[0].accept() # The requests should have been handled duet.requests.pandas ###Output _____no_output_____ ###Markdown Checkpoint 2 : Now STOP and run the Data Scientist notebook until the same checkpoint. Get the computation results from store and decrypt them locally ###Code # Validate the encrypted add result_add = duet.store["result_add"].get(delete_obj=False) result_add.link_context(context) result_add decrypted_result = result_add.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted - plain add result_iadd = duet.store["result_iadd"].get(delete_obj=False) result_iadd.link_context(context) decrypted_result = result_iadd.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, [10, 10, 10, 10, 10])] decrypted_result # Validate the encrypted subtraction result_sub = duet.store["result_sub"].get(delete_obj=False) result_sub.link_context(context) decrypted_result = result_sub.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 - v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted multiplication result_mul = duet.store["result_mul"].get(delete_obj=False) result_mul.link_context(context) decrypted_result = result_mul.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 * v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted power result_pow = duet.store["result_pow"].get(delete_obj=False) result_pow.link_context(context) decrypted_result = result_pow.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v ** 3 for v in v1] decrypted_result # Validate the encrypted negation result_neg = duet.store["result_neg"].get(delete_obj=False) result_neg.link_context(context) decrypted_result = result_neg.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [-v for v in v1] decrypted_result # Validate the encrypted polynomial evaluation for 1 + X^2 + X^3 result_poly = duet.store["result_poly"].get(delete_obj=False) result_poly.link_context(context) decrypted_result = result_poly.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [1 + v**2 + v**3 for v in v1] decrypted_result ###Output _____no_output_____ ###Markdown Homomorphic Encryption using Duet: Data Owner Tutorial 0: Basic operationsWelcome!This tutorial will show you how to use Duet with homomorphic encryption and some use cases. This notebook illustrates the Data Owner view on the operations.We will focus on Duet's integration with [TenSEAL](https://github.com/OpenMined/TenSEAL). TenSEAL is a Python library for doing homomorphic encryption operations on tensors. It's built on top of [Microsoft SEAL](https://github.com/Microsoft/SEAL), a C++ library implementing the BFV and CKKS homomorphic encryption schemes.If you want to learn more about TenSEAL, we recommend the following tutorials:- ['Tutorial 0 - Getting Started'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%200%20-%20Getting%20Started.ipynb).- ['Tutorial 1: Training and Evaluation of Logistic Regression on Encrypted Data'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%201%20-%20Training%20and%20Evaluation%20of%20Logistic%20Regression%20on%20Encrypted%20Data.ipynb).- ['Tutorial 2: Working with Approximate Numbers'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%202%20-%20Working%20with%20Approximate%20Numbers.ipynb).Let's now start the tutorial with a brief review of what homomorphic encryption is, but keep in mind that you don't need to be a crypto expert to use these features. Homomorphic Encryption__Definition__ : Homomorphic encryption (HE) is a technique that allows computations to be made on ciphertexts and generates results that when decrypted, corresponds to the result of the same computations made on plaintexts.This means that an HE scheme lets you encrypt two numbers *X* and *Y*, add their encrypted versions so that it gets decrypted to *X + Y*, the addition could have been a multiplication as well. SetupAll modules are imported here, make sure everything is installed by running the cell below. ###Code import syft as sy import tenseal as ts import pytest sy.load_lib("tenseal") ###Output _____no_output_____ ###Markdown Start Duet Data Owner instance ###Code # Start Duet local instance duet = sy.launch_duet(loopback=True) ###Output _____no_output_____ ###Markdown Theory: Homomorphic encryption schemes__TenSEAL__ supports two encryption schemes: - __BFV__, a scheme for operations on integers. - __CKKS__, a scheme for operations on approximate numbers. This scheme is much better suited for ML applications and we will focus more on it. There are a few major steps for each scheme: 1. __Keys Generation__: in this step, we generate public and private keys that will be used for encryption/decryption. 2. __Encryption__: this is the process of converting a plaintext into an encrypted ciphertext. This step requires an encryption key(or a public key). 3. __Decryption__: this is the process of converting a ciphertext back into a plaintext. This step requires a decryption key(or a secret key). This step cannot be done on the Data Scientist endpoint. Theory: Homomorphic encryption parameters__TenSEAL__ requires a few parameters to set the keys up: - __The polynomial modulus degree(poly_modulus_degree).__ This parameter directly affects the size of the ciphertext, the security of the scheme(bigger is better), but also the computational performance of the scheme(bigger is worse) - __The coefficient modulus sizes(coeff_mod_bit_sizes).__ This parameter is an array of bit sizes and directly affects the size of the ciphertext, the security of the scheme(bigger is worse), and the depth of computation allowed in the encrypted space(longer is better). - __The scaling factor(global_scale).__ This parameter is only used for the approximate schemes(CKKS) and directly affects the precision of computation and decryption. Theory: Homomorphic encryption keys__TenSEAL__ generates a few keys internally, each with another use case: - __The Private Key(or the secret/decryption key)__. This key is used for decrypting ciphertexts, and it is used to derive the other keys. __DO NOT SHARE IT OUTSIDE THE DATA OWNER PROCESS__. - __The Public key(or the encryption key)__. This key is used for encrypting the plain data to a ciphertext. You can safely share it with the Data Scientist. - __The Relinearization Keys(optional)__. This key is used for controlling the quality of the ciphertexts after encrypted multiplications. Generate it only if you are doing encrypted multiplications. You can safely share it with the Data Scientist. - __The Galois Keys(optional)__. This key is needed to perform encrypted vector rotation operations on ciphertexts. Generate it only if you are evaluating convolutions on encrypted data. You can safely share it with the Data Scientist. TenSEAL ContextNow that we had a short introduction, let's get to work.The first step to do for a Data Owner is to generate a security context containing security parameters and encryption keys. ###Code context = ts.Context( ts.SCHEME_TYPE.CKKS, poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40, 60] ) context.global_scale = 2**40 context ###Output _____no_output_____ ###Markdown Encrypt the data ###Code v1 = [0, 1, 2, 3, 4] v2 = [4, 3, 2, 1, 0] enc_v1 = ts.ckks_vector(context, v1) enc_v2 = ts.ckks_vector(context, v2) (enc_v1, enc_v2) ###Output _____no_output_____ ###Markdown Make Context and Encrypted Vectors Referenceable over Duet ###Code # tag them so our partner can easily reference it ctx_ptr = context.send(duet, searchable=True, tags=["context"]) enc_v1_ptr = enc_v1.send(duet, searchable=True, tags=["enc_v1"]) enc_v2_ptr = enc_v2.send(duet, searchable=True, tags=["enc_v2"]) # we can see that our three objects are now inside the store we control duet.store.pandas ###Output _____no_output_____ ###Markdown Checkpoint 1 : Now STOP and run the Data Scientist notebook until the same checkpoint. ###Code # We can see our duet partner has requested the two encrypted vectors and the public context duet.requests.pandas ###Output _____no_output_____ ###Markdown Approve the requests ###Code duet.requests[0].accept() duet.requests[0].accept() duet.requests[0].accept() # The requests should have been handled duet.requests.pandas ###Output _____no_output_____ ###Markdown Checkpoint 2 : Now STOP and run the Data Scientist notebook until the same checkpoint. Get the computation results from store and decrypt them locally ###Code # Validate the encrypted add result_add = duet.store["result_add"].get(delete_obj=False) result_add.link_context(context) result_add decrypted_result = result_add.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted - plain add result_iadd = duet.store["result_iadd"].get(delete_obj=False) result_iadd.link_context(context) decrypted_result = result_iadd.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, [10, 10, 10, 10, 10])] decrypted_result # Validate the encrypted subtraction result_sub = duet.store["result_sub"].get(delete_obj=False) result_sub.link_context(context) decrypted_result = result_sub.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 - v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted multiplication result_mul = duet.store["result_mul"].get(delete_obj=False) result_mul.link_context(context) decrypted_result = result_mul.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 * v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted power result_pow = duet.store["result_pow"].get(delete_obj=False) result_pow.link_context(context) decrypted_result = result_pow.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v ** 3 for v in v1] decrypted_result # Validate the encrypted negation result_neg = duet.store["result_neg"].get(delete_obj=False) result_neg.link_context(context) decrypted_result = result_neg.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [-v for v in v1] decrypted_result # Validate the encrypted polynomial evaluation for 1 + X^2 + X^3 result_poly = duet.store["result_poly"].get(delete_obj=False) result_poly.link_context(context) decrypted_result = result_poly.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [1 + v**2 + v**3 for v in v1] decrypted_result ###Output _____no_output_____ ###Markdown Homomorphic Encryption using Duet: Data Owner Tutorial 0: Basic operationsWelcome!This tutorial will show you how to use Duet with homomorphic encryption and some use cases. This notebook illustrates the Data Owner view on the operations.We will focus on Duet's integration with [TenSEAL](https://github.com/OpenMined/TenSEAL). TenSEAL is a Python library for doing homomorphic encryption operations on tensors. It's built on top of [Microsoft SEAL](https://github.com/Microsoft/SEAL), a C++ library implementing the BFV and CKKS homomorphic encryption schemes.If you want to learn more about TenSEAL, we recommend the following tutorials:- ['Tutorial 0 - Getting Started'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%200%20-%20Getting%20Started.ipynb).- ['Tutorial 1: Training and Evaluation of Logistic Regression on Encrypted Data'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%201%20-%20Training%20and%20Evaluation%20of%20Logistic%20Regression%20on%20Encrypted%20Data.ipynb).- ['Tutorial 2: Working with Approximate Numbers'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%202%20-%20Working%20with%20Approximate%20Numbers.ipynb).Let's now start the tutorial with a brief review of what homomorphic encryption is, but keep in mind that you don't need to be a crypto expert to use these features. Homomorphic Encryption__Definition__ : Homomorphic encryption (HE) is a technique that allows computations to be made on ciphertexts and generates results that when decrypted, corresponds to the result of the same computations made on plaintexts.This means that an HE scheme lets you encrypt two numbers *X* and *Y*, add their encrypted versions so that it gets decrypted to *X + Y*, the addition could have been a multiplication as well. COLAB ###Code %%capture # This only runs in colab and clones the code sets it up and fixes a few issues, # you can skip this if you are running Jupyter Notebooks import sys if "google.colab" in sys.modules: branch = "grace_dev" # change to the branch you want ! git clone --single-branch --branch $branch https://github.com/godormad/PySyft.git ! cd PySyft && ./scripts/colab.sh # fixes some colab python issues sys.path.append("/content/PySyft/src") # prevents needing restart ###Output _____no_output_____ ###Markdown SetupAll modules are imported here, make sure everything is installed by running the cell below. ###Code !pip install tenseal !pip show tenseal import syft as sy import tenseal as ts import pytest sy.load_lib("tenseal") ###Output Collecting tenseal [?25l Downloading https://files.pythonhosted.org/packages/35/20/a4106c3eff920eccbe040276ed869193fadd8fbbc52307dd6922a453f085/tenseal-0.3.0-cp36-cp36m-manylinux2014_x86_64.whl (4.4MB)  |████████████████████████████████| 4.4MB 4.2MB/s [?25hInstalling collected packages: tenseal Successfully installed tenseal-0.3.0 Name: tenseal Version: 0.3.0 Summary: A Library for Homomorphic Encryption Operations on Tensors Home-page: https://github.com/OpenMined/TenSEAL Author: Ayoub Benaissa Author-email: [email protected] License: Apache-2.0 Location: /usr/local/lib/python3.6/dist-packages Requires: Required-by: ###Markdown Start Duet Data Owner instance ###Code # Start Duet local instance duet = sy.launch_duet(loopback=False) ###Output _____no_output_____ ###Markdown Theory: Homomorphic encryption schemes__TenSEAL__ supports two encryption schemes: - __BFV__, a scheme for operations on integers. - __CKKS__, a scheme for operations on approximate numbers. This scheme is much better suited for ML applications and we will focus more on it. There are a few major steps for each scheme: 1. __Keys Generation__: in this step, we generate public and private keys that will be used for encryption/decryption. 2. __Encryption__: this is the process of converting a plaintext into an encrypted ciphertext. This step requires an encryption key(or a public key). 3. __Decryption__: this is the process of converting a ciphertext back into a plaintext. This step requires a decryption key(or a secret key). This step cannot be done on the Data Scientist endpoint. Theory: Homomorphic encryption parameters__TenSEAL__ requires a few parameters to set the keys up: - __The polynomial modulus degree(poly_modulus_degree).__ This parameter directly affects the size of the ciphertext, the security of the scheme(bigger is better), but also the computational performance of the scheme(bigger is worse) - __The coefficient modulus sizes(coeff_mod_bit_sizes).__ This parameter is an array of bit sizes and directly affects the size of the ciphertext, the security of the scheme(bigger is worse), and the depth of computation allowed in the encrypted space(longer is better). - __The scaling factor(global_scale).__ This parameter is only used for the approximate schemes(CKKS) and directly affects the precision of computation and decryption. Theory: Homomorphic encryption keys__TenSEAL__ generates a few keys internally, each with another use case: - __The Private Key(or the secret/decryption key)__. This key is used for decrypting ciphertexts, and it is used to derive the other keys. __DO NOT SHARE IT OUTSIDE THE DATA OWNER PROCESS__. - __The Public key(or the encryption key)__. This key is used for encrypting the plain data to a ciphertext. You can safely share it with the Data Scientist. - __The Relinearization Keys(optional)__. This key is used for controlling the quality of the ciphertexts after encrypted multiplications. Generate it only if you are doing encrypted multiplications. You can safely share it with the Data Scientist. - __The Galois Keys(optional)__. This key is needed to perform encrypted vector rotation operations on ciphertexts. Generate it only if you are evaluating convolutions on encrypted data. You can safely share it with the Data Scientist. TenSEAL ContextNow that we had a short introduction, let's get to work.The first step to do for a Data Owner is to generate a security context containing security parameters and encryption keys. ###Code context = ts.Context( ts.SCHEME_TYPE.CKKS, poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40, 60] ) context.global_scale = 2**40 context ###Output _____no_output_____ ###Markdown Encrypt the data ###Code v1 = [0, 1, 2, 3, 4] v2 = [4, 3, 2, 1, 0] enc_v1 = ts.ckks_vector(context, v1) enc_v2 = ts.ckks_vector(context, v2) (enc_v1, enc_v2) ###Output _____no_output_____ ###Markdown Make Context and Encrypted Vectors Referenceable over Duet ###Code # tag them so our partner can easily reference it ctx_ptr = context.send(duet, searchable=True, tags=["context"]) enc_v1_ptr = enc_v1.send(duet, searchable=True, tags=["enc_v1"]) enc_v2_ptr = enc_v2.send(duet, searchable=True, tags=["enc_v2"]) # we can see that our three objects are now inside the store we control duet.store.pandas ###Output _____no_output_____ ###Markdown Checkpoint 1 : Now STOP and run the Data Scientist notebook until the same checkpoint. ###Code # We can see our duet partner has requested the two encrypted vectors and the public context duet.requests.pandas ###Output _____no_output_____ ###Markdown Approve the requests ###Code duet.requests[0].accept() duet.requests[0].accept() duet.requests[0].accept() # The requests should have been handled duet.requests.pandas ###Output _____no_output_____ ###Markdown Checkpoint 2 : Now STOP and run the Data Scientist notebook until the same checkpoint. Get the computation results from store and decrypt them locally ###Code # Validate the encrypted add result_add = duet.store["result_add"].get(delete_obj=False) result_add.link_context(context) result_add decrypted_result = result_add.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted - plain add result_iadd = duet.store["result_iadd"].get(delete_obj=False) result_iadd.link_context(context) decrypted_result = result_iadd.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, [10, 10, 10, 10, 10])] decrypted_result # Validate the encrypted subtraction result_sub = duet.store["result_sub"].get(delete_obj=False) result_sub.link_context(context) decrypted_result = result_sub.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 - v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted multiplication result_mul = duet.store["result_mul"].get(delete_obj=False) result_mul.link_context(context) decrypted_result = result_mul.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 * v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted power result_pow = duet.store["result_pow"].get(delete_obj=False) result_pow.link_context(context) decrypted_result = result_pow.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v ** 3 for v in v1] decrypted_result # Validate the encrypted negation result_neg = duet.store["result_neg"].get(delete_obj=False) result_neg.link_context(context) decrypted_result = result_neg.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [-v for v in v1] decrypted_result # Validate the encrypted polynomial evaluation for 1 + X^2 + X^3 result_poly = duet.store["result_poly"].get(delete_obj=False) result_poly.link_context(context) decrypted_result = result_poly.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [1 + v**2 + v**3 for v in v1] decrypted_result ###Output _____no_output_____ ###Markdown Homomorphic Encryption using Duet: Data Owner Tutorial 0: Basic operationsWelcome!This tutorial will show you how to use Duet with homomorphic encryption and some use cases. This notebook illustrates the Data Owner view on the operations.We will focus on Duet's integration with [TenSEAL](https://github.com/OpenMined/TenSEAL). TenSEAL is a Python library for doing homomorphic encryption operations on tensors. It's built on top of [Microsoft SEAL](https://github.com/Microsoft/SEAL), a C++ library implementing the BFV and CKKS homomorphic encryption schemes.If you want to learn more about TenSEAL, we recommend the following tutorials:- ['Tutorial 0 - Getting Started'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%200%20-%20Getting%20Started.ipynb).- ['Tutorial 1: Training and Evaluation of Logistic Regression on Encrypted Data'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%201%20-%20Training%20and%20Evaluation%20of%20Logistic%20Regression%20on%20Encrypted%20Data.ipynb).- ['Tutorial 2: Working with Approximate Numbers'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%202%20-%20Working%20with%20Approximate%20Numbers.ipynb).Let's now start the tutorial with a brief review of what homomorphic encryption is, but keep in mind that you don't need to be a crypto expert to use these features. Homomorphic Encryption__Definition__ : Homomorphic encryption (HE) is a technique that allows computations to be made on ciphertexts and generates results that when decrypted, corresponds to the result of the same computations made on plaintexts.This means that an HE scheme lets you encrypt two numbers *X* and *Y*, add their encrypted versions so that it gets decrypted to *X + Y*, the addition could have been a multiplication as well. SetupAll modules are imported here, make sure everything is installed by running the cell below. ###Code import syft as sy import tenseal as ts import pytest sy.load_lib("tenseal") ###Output _____no_output_____ ###Markdown Start Duet Data Owner instance ###Code # Start Duet local instance duet = sy.launch_duet(loopback=True) ###Output _____no_output_____ ###Markdown Theory: Homomorphic encryption schemes__TenSEAL__ supports two encryption schemes: - __BFV__, a scheme for operations on integers. - __CKKS__, a scheme for operations on approximate numbers. This scheme is much better suited for ML applications and we will focus more on it. There are a few major steps for each scheme: 1. __Keys Generation__: in this step, we generate public and private keys that will be used for encryption/decryption. 2. __Encryption__: this is the process of converting a plaintext into an encrypted ciphertext. This step requires an encryption key(or a public key). 3. __Decryption__: this is the process of converting a ciphertext back into a plaintext. This step requires a decryption key(or a secret key). This step cannot be done on the Data Scientist endpoint. Theory: Homomorphic encryption parameters__TenSEAL__ requires a few parameters to set the keys up: - __The polynomial modulus degree(poly_modulus_degree).__ This parameter directly affects the size of the ciphertext, the security of the scheme(bigger is better), but also the computational performance of the scheme(bigger is worse) - __The coefficient modulus sizes(coeff_mod_bit_sizes).__ This parameter is an array of bit sizes and directly affects the size of the ciphertext, the security of the scheme(bigger is worse), and the depth of computation allowed in the encrypted space(longer is better). - __The scaling factor(global_scale).__ This parameter is only used for the approximate schemes(CKKS) and directly affects the precision of computation and decryption. Theory: Homomorphic encryption keys__TenSEAL__ generates a few keys internally, each with another use case: - __The Private Key(or the secret/decryption key)__. This key is used for decrypting ciphertexts, and it is used to derive the other keys. __DO NOT SHARE IT OUTSIDE THE DATA OWNER PROCESS__. - __The Public key(or the encryption key)__. This key is used for encrypting the plain data to a ciphertext. You can safely share it with the Data Scientist. - __The Relinearization Keys(optional)__. This key is used for controlling the quality of the ciphertexts after encrypted multiplications. Generate it only if you are doing encrypted multiplications. You can safely share it with the Data Scientist. - __The Galois Keys(optional)__. This key is needed to perform encrypted vector rotation operations on ciphertexts. Generate it only if you are evaluating convolutions on encrypted data. You can safely share it with the Data Scientist. TenSEAL ContextNow that we had a short introduction, let's get to work.The first step to do for a Data Owner is to generate a security context containing security parameters and encryption keys. ###Code context = ts.Context( ts.SCHEME_TYPE.CKKS, poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40, 60] ) context.global_scale = 2**40 context ###Output _____no_output_____ ###Markdown Encrypt the data ###Code v1 = [0, 1, 2, 3, 4] v2 = [4, 3, 2, 1, 0] enc_v1 = ts.ckks_vector(context, v1) enc_v2 = ts.ckks_vector(context, v2) (enc_v1, enc_v2) ###Output _____no_output_____ ###Markdown Make Context and Encrypted Vectors Referenceable over Duet ###Code # tag them so our partner can easily reference it ctx_ptr = context.send(duet, searchable=True, tags=["context"]) enc_v1_ptr = enc_v1.send(duet, searchable=True, tags=["enc_v1"]) enc_v2_ptr = enc_v2.send(duet, searchable=True, tags=["enc_v2"]) # we can see that our three objects are now inside the store we control duet.store.pandas ###Output _____no_output_____ ###Markdown Checkpoint 1 : Now STOP and run the Data Scientist notebook until the same checkpoint. ###Code # We can see our duet partner has requested the two encrypted vectors and the public context duet.requests.pandas ###Output _____no_output_____ ###Markdown Approve the requests ###Code duet.requests[0].accept() duet.requests[0].accept() duet.requests[0].accept() # The requests should have been handled duet.requests.pandas ###Output _____no_output_____ ###Markdown Checkpoint 2 : Now STOP and run the Data Scientist notebook until the same checkpoint. Get the computation results from store and decrypt them locally ###Code # Validate the encrypted add result_add = duet.store["result_add"].get(delete_obj=False) result_add.link_context(context) result_add decrypted_result = result_add.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted - plain add result_iadd = duet.store["result_iadd"].get(delete_obj=False) result_iadd.link_context(context) decrypted_result = result_iadd.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, [10, 10, 10, 10, 10])] decrypted_result # Validate the encrypted subtraction result_sub = duet.store["result_sub"].get(delete_obj=False) result_sub.link_context(context) decrypted_result = result_sub.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 - v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted multiplication result_mul = duet.store["result_mul"].get(delete_obj=False) result_mul.link_context(context) decrypted_result = result_mul.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 * v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted power result_pow = duet.store["result_pow"].get(delete_obj=False) result_pow.link_context(context) decrypted_result = result_pow.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v ** 3 for v in v1] decrypted_result # Validate the encrypted negation result_neg = duet.store["result_neg"].get(delete_obj=False) result_neg.link_context(context) decrypted_result = result_neg.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [-v for v in v1] decrypted_result # Validate the encrypted polynomial evaluation for 1 + X^2 + X^3 result_poly = duet.store["result_poly"].get(delete_obj=False) result_poly.link_context(context) decrypted_result = result_poly.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [1 + v**2 + v**3 for v in v1] decrypted_result ###Output _____no_output_____ ###Markdown Homomorphic Encryption using Duet: Data Owner Tutorial 0: Basic operationsWelcome!This tutorial will show you how to use Duet with homomorphic encryption and some use cases. This notebook illustrates the Data Owner view on the operations.We will focus on Duet's integration with [TenSEAL](https://github.com/OpenMined/TenSEAL). TenSEAL is a Python library for doing homomorphic encryption operations on tensors. It's built on top of [Microsoft SEAL](https://github.com/Microsoft/SEAL), a C++ library implementing the BFV and CKKS homomorphic encryption schemes.If you want to learn more about TenSEAL, we recommend the following tutorials:- ['Tutorial 0 - Getting Started'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%200%20-%20Getting%20Started.ipynb).- ['Tutorial 1: Training and Evaluation of Logistic Regression on Encrypted Data'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%201%20-%20Training%20and%20Evaluation%20of%20Logistic%20Regression%20on%20Encrypted%20Data.ipynb).- ['Tutorial 2: Working with Approximate Numbers'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%202%20-%20Working%20with%20Approximate%20Numbers.ipynb).Let's now start the tutorial with a brief review of what homomorphic encryption is, but keep in mind that you don't need to be a crypto expert to use these features. Homomorphic Encryption__Definition__ : Homomorphic encryption (HE) is a technique that allows computations to be made on ciphertexts and generates results that when decrypted, corresponds to the result of the same computations made on plaintexts.This means that an HE scheme lets you encrypt two numbers *X* and *Y*, add their encrypted versions so that it gets decrypted to *X + Y*, the addition could have been a multiplication as well. SetupAll modules are imported here, make sure everything is installed by running the cell below. ###Code %%capture !pip install tenseal==0.3.0a5 import syft as sy import tenseal as ts import pytest sy.load_lib("tenseal") ###Output _____no_output_____ ###Markdown Start Duet Data Owner instance ###Code # Start Duet local instance duet = sy.launch_duet(loopback=True) ###Output _____no_output_____ ###Markdown Theory: Homomorphic encryption schemes__TenSEAL__ supports two encryption schemes: - __BFV__, a scheme for operations on integers. - __CKKS__, a scheme for operations on approximate numbers. This scheme is much better suited for ML applications and we will focus more on it. There are a few major steps for each scheme: 1. __Keys Generation__: in this step, we generate public and private keys that will be used for encryption/decryption. 2. __Encryption__: this is the process of converting a plaintext into an encrypted ciphertext. This step requires an encryption key(or a public key). 3. __Decryption__: this is the process of converting a ciphertext back into a plaintext. This step requires a decryption key(or a secret key). This step cannot be done on the Data Scientist endpoint. Theory: Homomorphic encryption parameters__TenSEAL__ requires a few parameters to set the keys up: - __The polynomial modulus degree(poly_modulus_degree).__ This parameter directly affects the size of the ciphertext, the security of the scheme(bigger is better), but also the computational performance of the scheme(bigger is worse) - __The coefficient modulus sizes(coeff_mod_bit_sizes).__ This parameter is an array of bit sizes and directly affects the size of the ciphertext, the security of the scheme(bigger is worse), and the depth of computation allowed in the encrypted space(longer is better). - __The scaling factor(global_scale).__ This parameter is only used for the approximate schemes(CKKS) and directly affects the precision of computation and decryption. Theory: Homomorphic encryption keys__TenSEAL__ generates a few keys internally, each with another use case: - __The Private Key(or the secret/decryption key)__. This key is used for decrypting ciphertexts, and it is used to derive the other keys. __DO NOT SHARE IT OUTSIDE THE DATA OWNER PROCESS__. - __The Public key(or the encryption key)__. This key is used for encrypting the plain data to a ciphertext. You can safely share it with the Data Scientist. - __The Relinearization Keys(optional)__. This key is used for controlling the quality of the ciphertexts after encrypted multiplications. Generate it only if you are doing encrypted multiplications. You can safely share it with the Data Scientist. - __The Galois Keys(optional)__. This key is needed to perform encrypted vector rotation operations on ciphertexts. Generate it only if you are evaluating convolutions on encrypted data. You can safely share it with the Data Scientist. TenSEAL ContextNow that we had a short introduction, let's get to work.The first step to do for a Data Owner is to generate a security context containing security parameters and encryption keys. ###Code context = ts.Context( ts.SCHEME_TYPE.CKKS, poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40, 60] ) context.global_scale = 2**40 context ###Output _____no_output_____ ###Markdown Encrypt the data ###Code v1 = [0, 1, 2, 3, 4] v2 = [4, 3, 2, 1, 0] enc_v1 = ts.ckks_vector(context, v1) enc_v2 = ts.ckks_vector(context, v2) (enc_v1, enc_v2) ###Output _____no_output_____ ###Markdown Make Context and Encrypted Vectors Referenceable over Duet ###Code # tag them so our partner can easily reference it ctx_ptr = context.send(duet, searchable=True, tags=["context"]) enc_v1_ptr = enc_v1.send(duet, searchable=True, tags=["enc_v1"]) enc_v2_ptr = enc_v2.send(duet, searchable=True, tags=["enc_v2"]) # we can see that our three objects are now inside the store we control duet.store.pandas ###Output _____no_output_____ ###Markdown Checkpoint 0.1 : Now STOP and run the Data Scientist notebook until the same checkpoint. ###Code # We can see our duet partner has requested the two encrypted vectors and the public context duet.requests.pandas ###Output _____no_output_____ ###Markdown Approve the requests ###Code duet.requests[0].accept() duet.requests[0].accept() duet.requests[0].accept() # The requests should have been handled duet.requests.pandas ###Output _____no_output_____ ###Markdown Checkpoint 0.2 : Now STOP and run the Data Scientist notebook until the same checkpoint. Get the computation results from store and decrypt them locally ###Code # Validate the encrypted add result_add = duet.store["result_add"].get(delete_obj=False) result_add.link_context(context) result_add decrypted_result = result_add.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted - plain add result_iadd = duet.store["result_iadd"].get(delete_obj=False) result_iadd.link_context(context) decrypted_result = result_iadd.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, [10, 10, 10, 10, 10])] decrypted_result # Validate the encrypted subtraction result_sub = duet.store["result_sub"].get(delete_obj=False) result_sub.link_context(context) decrypted_result = result_sub.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 - v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted multiplication result_mul = duet.store["result_mul"].get(delete_obj=False) result_mul.link_context(context) decrypted_result = result_mul.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 * v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted power result_pow = duet.store["result_pow"].get(delete_obj=False) result_pow.link_context(context) decrypted_result = result_pow.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v ** 3 for v in v1] decrypted_result # Validate the encrypted negation result_neg = duet.store["result_neg"].get(delete_obj=False) result_neg.link_context(context) decrypted_result = result_neg.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [-v for v in v1] decrypted_result # Validate the encrypted polynomial evaluation for 1 + X^2 + X^3 result_poly = duet.store["result_poly"].get(delete_obj=False) result_poly.link_context(context) decrypted_result = result_poly.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [1 + v**2 + v**3 for v in v1] decrypted_result ###Output _____no_output_____ ###Markdown Homomorphic Encryption using Duet: Data Owner Tutorial 0: Basic operationsWelcome!This tutorial will show you how to use Duet with homomorphic encryption and some use cases. This notebook illustrates the Data Owner view on the operations.We will focus on Duet's integration with [TenSEAL](https://github.com/OpenMined/TenSEAL). TenSEAL is a Python library for doing homomorphic encryption operations on tensors. It's built on top of [Microsoft SEAL](https://github.com/Microsoft/SEAL), a C++ library implementing the BFV and CKKS homomorphic encryption schemes.If you want to learn more about TenSEAL, we recommend the following tutorials:- ['Tutorial 0 - Getting Started'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%200%20-%20Getting%20Started.ipynb).- ['Tutorial 1: Training and Evaluation of Logistic Regression on Encrypted Data'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%201%20-%20Training%20and%20Evaluation%20of%20Logistic%20Regression%20on%20Encrypted%20Data.ipynb).- ['Tutorial 2: Working with Approximate Numbers'](https://github.com/OpenMined/TenSEAL/blob/master/tutorials/Tutorial%202%20-%20Working%20with%20Approximate%20Numbers.ipynb).Let's now start the tutorial with a brief review of what homomorphic encryption is, but keep in mind that you don't need to be a crypto expert to use these features. Homomorphic Encryption__Definition__ : Homomorphic encryption (HE) is a technique that allows computations to be made on ciphertexts and generates results that when decrypted, corresponds to the result of the same computations made on plaintexts.This means that an HE scheme lets you encrypt two numbers *X* and *Y*, add their encrypted versions so that it gets decrypted to *X + Y*, the addition could have been a multiplication as well. SetupAll modules are imported here, make sure everything is installed by running the cell below. ###Code import syft as sy import tenseal as ts import pytest sy.load_lib("tenseal") ###Output _____no_output_____ ###Markdown Start Duet Data Owner instance ###Code # Start Duet local instance duet = sy.launch_duet(loopback=True) ###Output _____no_output_____ ###Markdown Theory: Homomorphic encryption schemes__TenSEAL__ supports two encryption schemes: - __BFV__, a scheme for operations on integers. - __CKKS__, a scheme for operations on approximate numbers. This scheme is much better suited for ML applications and we will focus more on it. There are a few major steps for each scheme: 1. __Keys Generation__: in this step, we generate public and private keys that will be used for encryption/decryption. 2. __Encryption__: this is the process of converting a plaintext into an encrypted ciphertext. This step requires an encryption key(or a public key). 3. __Decryption__: this is the process of converting a ciphertext back into a plaintext. This step requires a decryption key(or a secret key). This step cannot be done on the Data Scientist endpoint. Theory: Homomorphic encryption parameters__TenSEAL__ requires a few parameters to set the keys up: - __The polynomial modulus degree(poly_modulus_degree).__ This parameter directly affects the size of the ciphertext, the security of the scheme(bigger is better), but also the computational performance of the scheme(bigger is worse) - __The coefficient modulus sizes(coeff_mod_bit_sizes).__ This parameter is an array of bit sizes and directly affects the size of the ciphertext, the security of the scheme(bigger is worse), and the depth of computation allowed in the encrypted space(longer is better). - __The scaling factor(global_scale).__ This parameter is only used for the approximate schemes(CKKS) and directly affects the precision of computation and decryption. Theory: Homomorphic encryption keys__TenSEAL__ generates a few keys internally, each with another use case: - __The Private Key(or the secret/decryption key)__. This key is used for decrypting ciphertexts, and it is used to derive the other keys. __DO NOT SHARE IT OUTSIDE THE DATA OWNER PROCESS__. - __The Public key(or the encryption key)__. This key is used for encrypting the plain data to a ciphertext. You can safely share it with the Data Scientist. - __The Relinearization Keys(optional)__. This key is used for controlling the quality of the ciphertexts after encrypted multiplications. Generate it only if you are doing encrypted multiplications. You can safely share it with the Data Scientist. - __The Galois Keys(optional)__. This key is needed to perform encrypted vector rotation operations on ciphertexts. Generate it only if you are evaluating convolutions on encrypted data. You can safely share it with the Data Scientist. TenSEAL ContextNow that we had a short introduction, let's get to work.The first step to do for a Data Owner is to generate a security context containing security parameters and encryption keys. ###Code context = ts.Context( ts.SCHEME_TYPE.CKKS, poly_modulus_degree=8192, coeff_mod_bit_sizes=[60, 40, 40, 60] ) context.global_scale = 2**40 context ###Output _____no_output_____ ###Markdown Encrypt the data ###Code v1 = [0, 1, 2, 3, 4] v2 = [4, 3, 2, 1, 0] enc_v1 = ts.ckks_vector(context, v1) enc_v2 = ts.ckks_vector(context, v2) (enc_v1, enc_v2) ###Output _____no_output_____ ###Markdown Make Context and Encrypted Vectors Referenceable over Duet ###Code # tag them so our partner can easily reference it ctx_ptr = context.send(duet, pointable=True, tags=["context"]) enc_v1_ptr = enc_v1.send(duet, pointable=True, tags=["enc_v1"]) enc_v2_ptr = enc_v2.send(duet, pointable=True, tags=["enc_v2"]) # we can see that our three objects are now inside the store we control duet.store.pandas ###Output _____no_output_____ ###Markdown Checkpoint 1 : Now STOP and run the Data Scientist notebook until the same checkpoint. ###Code # We can see our duet partner has requested the two encrypted vectors and the public context duet.requests.pandas ###Output _____no_output_____ ###Markdown Approve the requests ###Code duet.requests[0].accept() duet.requests[0].accept() duet.requests[0].accept() # The requests should have been handled duet.requests.pandas ###Output _____no_output_____ ###Markdown Checkpoint 2 : Now STOP and run the Data Scientist notebook until the same checkpoint. Get the computation results from store and decrypt them locally ###Code # Validate the encrypted add result_add = duet.store["result_add"].get(delete_obj=False) result_add.link_context(context) result_add decrypted_result = result_add.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted - plain add result_iadd = duet.store["result_iadd"].get(delete_obj=False) result_iadd.link_context(context) decrypted_result = result_iadd.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 + v2 for v1, v2 in zip(v1, [10, 10, 10, 10, 10])] decrypted_result # Validate the encrypted subtraction result_sub = duet.store["result_sub"].get(delete_obj=False) result_sub.link_context(context) decrypted_result = result_sub.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 - v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted multiplication result_mul = duet.store["result_mul"].get(delete_obj=False) result_mul.link_context(context) decrypted_result = result_mul.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v1 * v2 for v1, v2 in zip(v1, v2)] decrypted_result # Validate the encrypted power result_pow = duet.store["result_pow"].get(delete_obj=False) result_pow.link_context(context) decrypted_result = result_pow.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [v ** 3 for v in v1] decrypted_result # Validate the encrypted negation result_neg = duet.store["result_neg"].get(delete_obj=False) result_neg.link_context(context) decrypted_result = result_neg.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [-v for v in v1] decrypted_result # Validate the encrypted polynomial evaluation for 1 + X^2 + X^3 result_poly = duet.store["result_poly"].get(delete_obj=False) result_poly.link_context(context) decrypted_result = result_poly.decrypt() assert pytest.approx(decrypted_result, abs=10**-3) == [1 + v**2 + v**3 for v in v1] decrypted_result ###Output _____no_output_____
nbs/demo_kde_pyhf.ipynb
###Markdown KDE demo, with histosys!> It works :) ![](assets/kde_pyhf_animation.gif) ###Code import time import jax import jax.experimental.optimizers as optimizers import jax.experimental.stax as stax import jax.random from jax.random import PRNGKey import numpy as np from functools import partial import pyhf pyhf.set_backend('jax') pyhf.default_backend = pyhf.tensor.jax_backend(precision='64b') from neos import data, makers from relaxed import infer rng = PRNGKey(22) # regression net init_random_params, predict = stax.serial( stax.Dense(1024), stax.Relu, stax.Dense(1024), stax.Relu, stax.Dense(1), stax.Sigmoid, ) ###Output _____no_output_____ ###Markdown Compose differentiable workflow ###Code dgen = data.generate_blobs(rng,blobs=4) # Specify our hyperparameters ahead of time for the kde histograms bins = np.linspace(0,1,4) bandwidth=0.27 reflect_infinite_bins = True hmaker = makers.hists_from_nn(dgen, predict, hpar_dict = dict(bins=bins,bandwidth=bandwidth),method='kde', reflect_infinities=reflect_infinite_bins) nnm = makers.histosys_model_from_hists(hmaker) get_cls = infer.make_hypotest(nnm, solver_kwargs=dict(pdf_transform=True)) # loss returns a list of metrics -- let's just index into one (CLs) def loss(params, test_mu): return get_cls(params, test_mu)["CLs"] ###Output _____no_output_____ ###Markdown Randomly initialise nn weights and check that we can get the gradient of the loss wrt nn params ###Code _, network = init_random_params(jax.random.PRNGKey(2), (-1, 2)) # gradient wrt nn weights jax.value_and_grad(loss)(network, test_mu=1.0) ###Output _____no_output_____ ###Markdown Define training loop! ###Code opt_init, opt_update, opt_params = optimizers.adam(1e-3) def train_network(N): cls_vals = [] _, network = init_random_params(jax.random.PRNGKey(1), (-1, 2)) state = opt_init(network) losses = [] # parameter update function # @jax.jit def update_and_value(i, opt_state, mu): net = opt_params(opt_state) value, grad = jax.value_and_grad(loss)(net, mu) return opt_update(i, grad, state), value, net for i in range(N): start_time = time.time() state, value, network = update_and_value(i, state, 1.0) epoch_time = time.time() - start_time losses.append(value) metrics = {"loss": losses} yield network, metrics, epoch_time ###Output _____no_output_____ ###Markdown Plotting helper function for awesome animations :) ###Code def plot(axarr, network, metrics, maxN): ax = axarr[0] g = np.mgrid[-5:5:101j, -5:5:101j] levels = bins ax.contourf( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], levels=levels, cmap="binary", ) ax.contour( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], colors="w", levels=levels, ) sig, bkg_nom, bkg_up, bkg_down = dgen() ax.scatter(sig[:, 0], sig[:, 1], alpha=0.3, c="C9") ax.scatter(bkg_up[:, 0], bkg_up[:, 1], alpha=0.1, c="C1", marker=6) ax.scatter(bkg_down[:, 0], bkg_down[:, 1], alpha=0.1, c="C1", marker=7) ax.scatter(bkg_nom[:, 0], bkg_nom[:, 1], alpha=0.3, c="C1") ax.set_xlim(-5, 5) ax.set_ylim(-5, 5) ax.set_xlabel("x") ax.set_ylabel("y") ax = axarr[1] # ax.axhline(0.05, c="slategray", linestyle="--") ax.plot(metrics["loss"], c="steelblue", linewidth=2.0) ax.set_yscale("log") ax.set_ylim(1e-4, 0.06) ax.set_xlim(0, maxN) ax.set_xlabel("epoch") ax.set_ylabel(r"$CL_s$") ax = axarr[2] s, b, bup, bdown = hmaker(network) bin_width = 1 / (len(bins) - 1) centers = bins[:-1] + np.diff(bins) / 2.0 ax.bar(centers, b, color="C1", width=bin_width) ax.bar(centers, s, bottom=b, color="C9", width=bin_width) bunc = np.asarray([[x, y] if x > y else [y, x] for x, y in zip(bup, bdown)]) plot_unc = [] for unc, be in zip(bunc, b): if all(unc > be): plot_unc.append([max(unc), be]) elif all(unc < be): plot_unc.append([be, min(unc)]) else: plot_unc.append(unc) plot_unc = np.asarray(plot_unc) b_up, b_down = plot_unc[:, 0], plot_unc[:, 1] ax.bar(centers, bup - b, bottom=b, alpha=0.4, color="red", width=bin_width, hatch="+") ax.bar( centers, b - bdown, bottom=bdown, alpha=0.4, color="green", width=bin_width, hatch="-" ) ax.set_ylim(0, 120) ax.set_ylabel("frequency") ax.set_xlabel("nn output") ###Output _____no_output_____ ###Markdown Let's run it!! ###Code # slow import numpy as np from IPython.display import HTML from matplotlib import pyplot as plt plt.rcParams.update( { "axes.labelsize": 13, "axes.linewidth": 1.2, "xtick.labelsize": 13, "ytick.labelsize": 13, "figure.figsize": [13.0, 4.0], "font.size": 13, "xtick.major.size": 3, "ytick.major.size": 3, "legend.fontsize": 11, } ) fig, axarr = plt.subplots(1, 3, dpi=120) maxN = 500 # make me bigger for better results! animate = True # animations fail tests... if animate: from celluloid import Camera camera = Camera(fig) # Training for i, (network, metrics, epoch_time) in enumerate(train_network(maxN)): # print(f"epoch {i}:", f'CLs = {metrics["loss"][-1]}, took {epoch_time}s') if animate: plot(axarr, network, metrics, maxN=maxN) plt.tight_layout() camera.snap() # if i % 10 == 0: # camera.animate().save("animation.gif", writer="imagemagick", fps=8) # HTML(camera.animate().to_html5_video()) # break if animate: camera.animate().save("animationinfesoft.gif", writer="imagemagick", fps=15) ###Output _____no_output_____ ###Markdown KDE demo, with histosys!> It works :) ![](assets/kde_pyhf_animation.gif) ###Code import time import jax import jax.experimental.optimizers as optimizers import jax.experimental.stax as stax import jax.random from jax.random import PRNGKey import numpy as np from functools import partial import pyhf pyhf.set_backend('jax') pyhf.default_backend = pyhf.tensor.jax_backend(precision='64b') from neos import data, makers from relaxed import infer rng = PRNGKey(22) # regression net init_random_params, predict = stax.serial( stax.Dense(1024), stax.Relu, stax.Dense(1024), stax.Relu, stax.Dense(1), stax.Sigmoid, ) ###Output _____no_output_____ ###Markdown Compose differentiable workflow ###Code dgen = data.generate_blobs(rng,blobs=4) # Specify our hyperparameters ahead of time for the kde histograms bins = np.linspace(0,1,4) bandwidth=0.27 reflect_infinite_bins = True hmaker = makers.hists_from_nn(dgen, predict, hpar_dict = dict(bins=bins,bandwidth=bandwidth),method='kde', reflect_infinities=reflect_infinite_bins) nnm = makers.histosys_model_from_hists(hmaker) get_cls = infer.make_hypotest(nnm, solver_kwargs=dict(pdf_transform=True)) # loss returns a list of metrics -- let's just index into one (CLs) def loss(params, test_mu): return get_cls(params, test_mu)["CLs"] ###Output _____no_output_____ ###Markdown Randomly initialise nn weights and check that we can get the gradient of the loss wrt nn params ###Code _, network = init_random_params(jax.random.PRNGKey(2), (-1, 2)) # gradient wrt nn weights jax.value_and_grad(loss)(network, test_mu=1.0) ###Output _____no_output_____ ###Markdown Define training loop! ###Code opt_init, opt_update, opt_params = optimizers.adam(1e-3) def train_network(N): cls_vals = [] _, network = init_random_params(jax.random.PRNGKey(1), (-1, 2)) state = opt_init(network) losses = [] # parameter update function # @jax.jit def update_and_value(i, opt_state, mu): net = opt_params(opt_state) value, grad = jax.value_and_grad(loss)(net, mu) return opt_update(i, grad, state), value, net for i in range(N): start_time = time.time() state, value, network = update_and_value(i, state, 1.0) epoch_time = time.time() - start_time losses.append(value) metrics = {"loss": losses} yield network, metrics, epoch_time ###Output _____no_output_____ ###Markdown Plotting helper function for awesome animations :) ###Code def plot(axarr, network, metrics, maxN): ax = axarr[0] g = np.mgrid[-5:5:101j, -5:5:101j] levels = bins ax.contourf( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], levels=levels, cmap="binary", ) ax.contour( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], colors="w", levels=levels, ) sig, bkg_nom, bkg_up, bkg_down = dgen() ax.scatter(sig[:, 0], sig[:, 1], alpha=0.3, c="C9") ax.scatter(bkg_up[:, 0], bkg_up[:, 1], alpha=0.1, c="C1", marker=6) ax.scatter(bkg_down[:, 0], bkg_down[:, 1], alpha=0.1, c="C1", marker=7) ax.scatter(bkg_nom[:, 0], bkg_nom[:, 1], alpha=0.3, c="C1") ax.set_xlim(-5, 5) ax.set_ylim(-5, 5) ax.set_xlabel("x") ax.set_ylabel("y") ax = axarr[1] # ax.axhline(0.05, c="slategray", linestyle="--") ax.plot(metrics["loss"], c="steelblue", linewidth=2.0) ax.set_yscale("log") ax.set_ylim(1e-4, 0.06) ax.set_xlim(0, maxN) ax.set_xlabel("epoch") ax.set_ylabel(r"$CL_s$") ax = axarr[2] s, b, bup, bdown = hmaker(network) bin_width = 1 / (len(bins) - 1) centers = bins[:-1] + np.diff(bins) / 2.0 ax.bar(centers, b, color="C1", width=bin_width) ax.bar(centers, s, bottom=b, color="C9", width=bin_width) bunc = np.asarray([[x, y] if x > y else [y, x] for x, y in zip(bup, bdown)]) plot_unc = [] for unc, be in zip(bunc, b): if all(unc > be): plot_unc.append([max(unc), be]) elif all(unc < be): plot_unc.append([be, min(unc)]) else: plot_unc.append(unc) plot_unc = np.asarray(plot_unc) b_up, b_down = plot_unc[:, 0], plot_unc[:, 1] ax.bar(centers, bup - b, bottom=b, alpha=0.4, color="red", width=bin_width, hatch="+") ax.bar( centers, b - bdown, bottom=bdown, alpha=0.4, color="green", width=bin_width, hatch="-" ) ax.set_ylim(0, 120) ax.set_ylabel("frequency") ax.set_xlabel("nn output") ###Output _____no_output_____ ###Markdown Let's run it!! ###Code # slow import numpy as np from IPython.display import HTML from matplotlib import pyplot as plt plt.rcParams.update( { "axes.labelsize": 13, "axes.linewidth": 1.2, "xtick.labelsize": 13, "ytick.labelsize": 13, "figure.figsize": [13.0, 4.0], "font.size": 13, "xtick.major.size": 3, "ytick.major.size": 3, "legend.fontsize": 11, } ) fig, axarr = plt.subplots(1, 3, dpi=120) maxN = 500 # make me bigger for better results! animate = True # animations fail tests... if animate: from celluloid import Camera camera = Camera(fig) # Training for i, (network, metrics, epoch_time) in enumerate(train_network(maxN)): # print(f"epoch {i}:", f'CLs = {metrics["loss"][-1]}, took {epoch_time}s') if animate: plot(axarr, network, metrics, maxN=maxN) plt.tight_layout() camera.snap() # if i % 10 == 0: # camera.animate().save("animation.gif", writer="imagemagick", fps=8) # HTML(camera.animate().to_html5_video()) # break if animate: camera.animate().save("animationinfesoft.gif", writer="imagemagick", fps=15) ###Output _____no_output_____ ###Markdown KDE demo, with histosys!> It works :) ![](assets/kde_pyhf_animation.gif) ###Code import time import jax import jax.experimental.optimizers as optimizers import jax.experimental.stax as stax import jax.random from jax.random import PRNGKey import numpy as np from functools import partial import pyhf pyhf.set_backend("jax") pyhf.default_backend = pyhf.tensor.jax_backend(precision="64b") from neos import data, makers from relaxed import infer rng = PRNGKey(22) # regression net init_random_params, predict = stax.serial( stax.Dense(1024), stax.Relu, stax.Dense(1024), stax.Relu, stax.Dense(1), stax.Sigmoid, ) ###Output _____no_output_____ ###Markdown Compose differentiable workflow ###Code dgen = data.generate_blobs(rng, blobs=4) # Specify our hyperparameters ahead of time for the kde histograms bins = np.linspace(0, 1, 4) bandwidth = 0.27 reflect_infinite_bins = True hmaker = makers.hists_from_nn( dgen, predict, hpar_dict=dict(bins=bins, bandwidth=bandwidth), method="kde", reflect_infinities=reflect_infinite_bins, ) nnm = makers.histosys_model_from_hists(hmaker) get_cls = infer.make_hypotest(nnm, solver_kwargs=dict(pdf_transform=True)) # loss returns a list of metrics -- let's just index into one (CLs) def loss(params, test_mu): return get_cls(params, test_mu)["CLs"] ###Output _____no_output_____ ###Markdown Randomly initialise nn weights and check that we can get the gradient of the loss wrt nn params ###Code _, network = init_random_params(jax.random.PRNGKey(2), (-1, 2)) # gradient wrt nn weights jax.value_and_grad(loss)(network, test_mu=1.0) ###Output _____no_output_____ ###Markdown Define training loop! ###Code opt_init, opt_update, opt_params = optimizers.adam(1e-3) def train_network(N): cls_vals = [] _, network = init_random_params(jax.random.PRNGKey(1), (-1, 2)) state = opt_init(network) losses = [] # parameter update function # @jax.jit def update_and_value(i, opt_state, mu): net = opt_params(opt_state) value, grad = jax.value_and_grad(loss)(net, mu) return opt_update(i, grad, state), value, net for i in range(N): start_time = time.time() state, value, network = update_and_value(i, state, 1.0) epoch_time = time.time() - start_time losses.append(value) metrics = {"loss": losses} yield network, metrics, epoch_time ###Output _____no_output_____ ###Markdown Plotting helper function for awesome animations :) ###Code def plot(axarr, network, metrics, maxN): ax = axarr[0] g = np.mgrid[-5:5:101j, -5:5:101j] levels = bins ax.contourf( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], levels=levels, cmap="binary", ) ax.contour( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], colors="w", levels=levels, ) sig, bkg_nom, bkg_up, bkg_down = dgen() ax.scatter(sig[:, 0], sig[:, 1], alpha=0.3, c="C9") ax.scatter(bkg_up[:, 0], bkg_up[:, 1], alpha=0.1, c="C1", marker=6) ax.scatter(bkg_down[:, 0], bkg_down[:, 1], alpha=0.1, c="C1", marker=7) ax.scatter(bkg_nom[:, 0], bkg_nom[:, 1], alpha=0.3, c="C1") ax.set_xlim(-5, 5) ax.set_ylim(-5, 5) ax.set_xlabel("x") ax.set_ylabel("y") ax = axarr[1] # ax.axhline(0.05, c="slategray", linestyle="--") ax.plot(metrics["loss"], c="steelblue", linewidth=2.0) ax.set_yscale("log") ax.set_ylim(1e-4, 0.06) ax.set_xlim(0, maxN) ax.set_xlabel("epoch") ax.set_ylabel(r"$CL_s$") ax = axarr[2] s, b, bup, bdown = hmaker(network) bin_width = 1 / (len(bins) - 1) centers = bins[:-1] + np.diff(bins) / 2.0 ax.bar(centers, b, color="C1", width=bin_width) ax.bar(centers, s, bottom=b, color="C9", width=bin_width) bunc = np.asarray([[x, y] if x > y else [y, x] for x, y in zip(bup, bdown)]) plot_unc = [] for unc, be in zip(bunc, b): if all(unc > be): plot_unc.append([max(unc), be]) elif all(unc < be): plot_unc.append([be, min(unc)]) else: plot_unc.append(unc) plot_unc = np.asarray(plot_unc) b_up, b_down = plot_unc[:, 0], plot_unc[:, 1] ax.bar( centers, bup - b, bottom=b, alpha=0.4, color="red", width=bin_width, hatch="+" ) ax.bar( centers, b - bdown, bottom=bdown, alpha=0.4, color="green", width=bin_width, hatch="-", ) ax.set_ylim(0, 120) ax.set_ylabel("frequency") ax.set_xlabel("nn output") ###Output _____no_output_____ ###Markdown Let's run it!! ###Code # slow import numpy as np from IPython.display import HTML from matplotlib import pyplot as plt plt.rcParams.update( { "axes.labelsize": 13, "axes.linewidth": 1.2, "xtick.labelsize": 13, "ytick.labelsize": 13, "figure.figsize": [13.0, 4.0], "font.size": 13, "xtick.major.size": 3, "ytick.major.size": 3, "legend.fontsize": 11, } ) fig, axarr = plt.subplots(1, 3, dpi=120) maxN = 500 # make me bigger for better results! animate = True # animations fail tests... if animate: from celluloid import Camera camera = Camera(fig) # Training for i, (network, metrics, epoch_time) in enumerate(train_network(maxN)): # print(f"epoch {i}:", f'CLs = {metrics["loss"][-1]}, took {epoch_time}s') if animate: plot(axarr, network, metrics, maxN=maxN) plt.tight_layout() camera.snap() # if i % 10 == 0: # camera.animate().save("animation.gif", writer="imagemagick", fps=8) # HTML(camera.animate().to_html5_video()) # break if animate: camera.animate().save("animationinfesoft.gif", writer="imagemagick", fps=15) ###Output _____no_output_____ ###Markdown KDE demo, with histosys!> It works :) ![](assets/pyhf_3.gif) This depends on a *very* experimental fork of pyhf, install it by running the cell below: ###Code !python -m pip install git+https://github.com/phinate/pyhf.git@diffable_json # import jax import neos.makers as makers import neos.cls as cls import numpy as np import jax.experimental.stax as stax import jax.experimental.optimizers as optimizers import jax.random import time import pyhf pyhf.set_backend(pyhf.tensor.jax_backend()) # regression net init_random_params, predict = stax.serial( stax.Dense(1024), stax.Relu, stax.Dense(1024), stax.Relu, stax.Dense(1), stax.Sigmoid ) ###Output _____no_output_____ ###Markdown Compose differentiable workflow ###Code # choose hyperparams bins = np.linspace(0,1,4) centers = bins[:-1] + np.diff(bins)/2. bandwidth = 0.8 * 1/(len(bins)-1) # compose functions from neos to define workflow hmaker = makers.kde_bins_from_nn_histosys(predict,bins=bins,bandwidth=bandwidth) nnm = makers.nn_histosys(hmaker) loss = cls.cls_maker(nnm, solver_kwargs=dict(pdf_transform=True)) bandwidth # print bw ###Output _____no_output_____ ###Markdown Randomly initialise nn weights and check that we can get the gradient of the loss wrt nn params ###Code _, network = init_random_params(jax.random.PRNGKey(13), (-1, 2)) jax.grad(loss)(network, 1.0) ###Output _____no_output_____ ###Markdown Define training loop! ###Code #jit_loss = jax.jit(loss) opt_init, opt_update, opt_params = optimizers.adam(1e-3) @jax.jit def update_and_value(i, opt_state, mu): net = opt_params(opt_state) value, grad = jax.value_and_grad(loss)(net, mu) return opt_update(i, grad, state), value, net def train_network(N): cls_vals = [] _, network = init_random_params(jax.random.PRNGKey(1), (-1, 2)) state = opt_init(network) losses = [] # parameter update function #@jax.jit def update_and_value(i, opt_state, mu): net = opt_params(opt_state) value, grad = jax.value_and_grad(loss)(net, mu) return opt_update(i, grad, state), value, net for i in range(N): start_time = time.time() state, value, network = update_and_value(i,state,1.0) epoch_time = time.time() - start_time losses.append(value) metrics = {"loss": losses} yield network, metrics, epoch_time ###Output _____no_output_____ ###Markdown Plotting helper function for awesome animations :) ###Code def plot(axarr, network, metrics, hm, maxN): ax = axarr[0] g = np.mgrid[-5:5:101j, -5:5:101j] levels = bins ax.contourf( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], levels=levels, cmap="binary", ) ax.contour( g[0], g[1], predict(network, np.moveaxis(g, 0, -1)).reshape(101, 101, 1)[:, :, 0], colors="w", levels=levels, ) ax.scatter(hm.sig[:, 0], hm.sig[:, 1], alpha=0.3, c="C9") ax.scatter(hm.bkg_up[:, 0], hm.bkg_up[:, 1], alpha=0.1, c="C1", marker = 6) ax.scatter(hm.bkg_down[:, 0], hm.bkg_down[:, 1], alpha=0.1, c="C1", marker = 7) ax.scatter(hm.bkg_nom[:, 0], hm.bkg_nom[:, 1], alpha=0.3, c="C1") ax.set_xlim(-5, 5) ax.set_ylim(-5, 5) ax.set_xlabel("x") ax.set_ylabel("y") ax = axarr[1] ax.axhline(0.05, c="slategray", linestyle="--") ax.plot(metrics["loss"], c="steelblue", linewidth=2.0) ax.set_ylim(0, 0.15) ax.set_xlim(0, maxN) ax.set_xlabel("epoch") ax.set_ylabel(r"$CL_s$") ax = axarr[2] s, b, bup, bdown = hm(network) bin_width = 1/(len(bins)-1) ax.bar(centers, b, color="C1", width=bin_width) ax.bar(centers, s, bottom=b, color="C9", width=bin_width) bunc = np.asarray([[x,y] if x>y else [y,x] for x,y in zip(bup,bdown)]) plot_unc = [] for unc, be in zip(bunc,b): if all(unc > be): plot_unc.append([max(unc),be]) elif all(unc < be): plot_unc.append([be, min(unc)]) else: plot_unc.append(unc) plot_unc = np.asarray(plot_unc) b_up, b_down = plot_unc[:,0], plot_unc[:,1] ax.bar(centers, b_up-b, bottom=b, alpha=0.4, color="black",width=bin_width) ax.bar(centers, b-b_down, bottom=b_down, alpha=0.4, color="black", width=bin_width) ax.set_ylim(0, 60) ax.set_ylabel("frequency") ax.set_xlabel("nn output") ###Output _____no_output_____ ###Markdown Install celluloid to create animations if you haven't already by running this next cell: ###Code !python -m pip install celluloid ###Output Requirement already satisfied: celluloid in /Users/phinate/envs/neos/lib/python3.7/site-packages/celluloid-0.2.0-py3.7.egg (0.2.0) Requirement already satisfied: matplotlib in /Users/phinate/envs/neos/lib/python3.7/site-packages/matplotlib-3.2.0-py3.7-macosx-10.15-x86_64.egg (from celluloid) (3.2.0) Requirement already satisfied: cycler>=0.10 in /Users/phinate/envs/neos/lib/python3.7/site-packages (from matplotlib->celluloid) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /Users/phinate/envs/neos/lib/python3.7/site-packages (from matplotlib->celluloid) (1.1.0) Requirement already satisfied: numpy>=1.11 in /Users/phinate/envs/neos/lib/python3.7/site-packages/numpy-1.18.1-py3.7-macosx-10.15-x86_64.egg (from matplotlib->celluloid) (1.18.1) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Users/phinate/envs/neos/lib/python3.7/site-packages (from matplotlib->celluloid) (2.4.6) Requirement already satisfied: python-dateutil>=2.1 in /Users/phinate/envs/neos/lib/python3.7/site-packages (from matplotlib->celluloid) (2.8.1) Requirement already satisfied: six in /Users/phinate/envs/neos/lib/python3.7/site-packages (from cycler>=0.10->matplotlib->celluloid) (1.14.0) Requirement already satisfied: setuptools in /Users/phinate/envs/neos/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->celluloid) (41.2.0) ###Markdown Let's run it!! ###Code #slow import numpy as np from matplotlib import pyplot as plt from IPython.display import HTML plt.rcParams.update( { "axes.labelsize": 13, "axes.linewidth": 1.2, "xtick.labelsize": 13, "ytick.labelsize": 13, "figure.figsize": [13., 4.0], "font.size": 13, "xtick.major.size": 3, "ytick.major.size": 3, "legend.fontsize": 11, } ) fig, axarr = plt.subplots(1, 3, dpi=120) maxN = 50 # make me bigger for better results! animate = False # animations fail tests... if animate: from celluloid import Camera camera = Camera(fig) # Training for i, (network, metrics, epoch_time) in enumerate(train_network(maxN)): print(f"epoch {i}:", f'CLs = {metrics["loss"][-1]}, took {epoch_time}s') if animate: plot(axarr, network, metrics, nnm.hm, maxN=maxN) plt.tight_layout() camera.snap() if i % 10 == 0: camera.animate().save("animation.gif", writer="imagemagick", fps=8) #HTML(camera.animate().to_html5_video()) if animate: camera.animate().save("animation.gif", writer="imagemagick", fps=8) ###Output epoch 0: CLs = 0.06838154482072967, took 1.60487699508667s epoch 1: CLs = 0.03329781502172735, took 2.0166208744049072s epoch 2: CLs = 0.015110551170142816, took 2.0455799102783203s epoch 3: CLs = 0.008083692178301183, took 2.0034470558166504s epoch 4: CLs = 0.0049504634741244224, took 2.0266478061676025s epoch 5: CLs = 0.003409642162911286, took 2.073227882385254s epoch 6: CLs = 0.0025668480224632084, took 2.056434154510498s epoch 7: CLs = 0.0020664966892849357, took 1.9783759117126465s epoch 8: CLs = 0.001795572196163553, took 1.257340908050537s epoch 9: CLs = 0.001556316101668731, took 1.2828562259674072s epoch 10: CLs = 0.0013830857487930892, took 1.9847660064697266s epoch 11: CLs = 0.0012744173832954786, took 2.057671070098877s epoch 12: CLs = 0.0011956050063779422, took 1.9829719066619873s epoch 13: CLs = 0.0011379882817992293, took 1.9814558029174805s epoch 14: CLs = 0.0010955022703085238, took 2.0655109882354736s epoch 15: CLs = 0.001063696054614427, took 1.9597313404083252s epoch 16: CLs = 0.0010385283826592762, took 1.9722530841827393s epoch 17: CLs = 0.0010167467255659535, took 2.054440975189209s epoch 18: CLs = 0.000995951081921742, took 1.9948761463165283s epoch 19: CLs = 0.0009745685857311948, took 2.0465872287750244s epoch 20: CLs = 0.000952238973602304, took 1.9752001762390137s epoch 21: CLs = 0.0009294113561868489, took 2.0399250984191895s epoch 22: CLs = 0.0009069997853758949, took 2.068655014038086s epoch 23: CLs = 0.0008858131774971412, took 1.9675908088684082s epoch 24: CLs = 0.0008665640563871868, took 1.986894130706787s epoch 25: CLs = 0.000849618963856047, took 2.0341649055480957s epoch 26: CLs = 0.0008350320433831993, took 1.9940309524536133s epoch 27: CLs = 0.0008225663879890543, took 2.0009779930114746s epoch 28: CLs = 0.0008118405770869419, took 2.0324268341064453s epoch 29: CLs = 0.000802443073251391, took 2.0389211177825928s epoch 30: CLs = 0.0007939733262334325, took 1.9717748165130615s epoch 31: CLs = 0.0007860802796573196, took 2.0695040225982666s epoch 32: CLs = 0.0007784894056508396, took 2.0261731147766113s epoch 33: CLs = 0.0007710721958871236, took 2.0273730754852295s epoch 34: CLs = 0.0007637933706159394, took 2.129802942276001s epoch 35: CLs = 0.0007567171962739039, took 1.9799671173095703s epoch 36: CLs = 0.0007499962734278665, took 1.978816032409668s epoch 37: CLs = 0.0007437523385873668, took 1.995072841644287s epoch 38: CLs = 0.0007380663432652312, took 2.0848560333251953s epoch 39: CLs = 0.0007329783541036861, took 1.9978752136230469s epoch 40: CLs = 0.0007285053769783278, took 1.975020170211792s epoch 41: CLs = 0.0007245641147743953, took 2.090196132659912s epoch 42: CLs = 0.0007209943152786114, took 1.9991321563720703s epoch 43: CLs = 0.0007176400295669794, took 1.9755010604858398s epoch 44: CLs = 0.0007143650257970258, took 2.0589888095855713s epoch 45: CLs = 0.0007110598235580134, took 2.0370700359344482s epoch 46: CLs = 0.000707657986960486, took 1.9755001068115234s epoch 47: CLs = 0.0007041661610163175, took 2.080190896987915s epoch 48: CLs = 0.0007006291471818304, took 1.986905813217163s epoch 49: CLs = 0.0006971251819183344, took 1.9537162780761719s
notebooks/asian_barrier_option/deep_learning_option_2.ipynb
###Markdown Deep Learning Model for Asian Barrier OptionsAs shown in the previous notebook, there are a few problems to generate data on the fly 1. There is no model serialization so the trained model is not saved 2. There is no validation dataset to check the training progress 3. Most of the time is spent on Monte Carlo simulation hence the training is slow 4. We use a few paths(1024) for each option parameter set which is noise and the model cannot converge to a low cost value.The solution is to save the Monte Carlo simulation data on the disk. This allows us to 1. Reuse the same dataset for different models and save the Monte Carlo simulation time 2. Generate more accurate pricing data by increasing the number of paths We will use CuPy to run the Monte Carlo simulation as it is the most efficient way. Taking the same OptionDataSet defined in the previous notebook:- ###Code from cupy_dataset import OptionDataSet ###Output _____no_output_____ ###Markdown Making the directories for the saved data files and the model check points:- ###Code !mkdir -p datafiles !mkdir -p check_points ###Output _____no_output_____ ###Markdown Defining a function to generate the dataset file:- ###Code import torch def gen_data(n_files = 630, options_per_file = 10000, seed=3): counter = 0 ds = OptionDataSet(max_len=n_files * options_per_file, number_path=8192000, batch=1, seed=seed) x = [] y = [] for i in ds: if counter!=0 and counter % options_per_file == 0: filename = 'datafiles/'+str(seed) + '_' + str(counter//options_per_file) + '.pth' state = (torch.cat(x, 0), torch.cat(y, 0)) torch.save(state, filename) x = [] y = [] x.append(i[0].cpu()) y.append(i[1].cpu()) counter += 1 return seed ###Output _____no_output_____ ###Markdown It will generate files that contain `X` and `Y` matrix of size `option_per_file` and the filenames are in the format of `seed_group.pth`, we can test run with `n_files` = 5 and `options_per_file` = 16 ###Code gen_data(n_files=5, options_per_file = 16, seed=3) X, Y = torch.load('datafiles/3_1.pth') print(X) print(Y) ###Output tensor([[1.7910e+02, 6.8079e+01, 1.0688e+02, 2.5889e-01, 1.7393e-01, 1.4359e-01], [1.3597e+02, 5.8014e+01, 1.0772e+02, 1.1119e-01, 1.1278e-01, 3.3107e-03], [4.7951e+01, 3.6957e+01, 8.0480e+01, 2.6536e-01, 5.3653e-02, 7.2782e-02], [1.0026e+02, 8.1533e+00, 6.6216e+01, 3.8491e-02, 5.5396e-02, 1.4566e-01], [1.0416e+02, 7.9586e+01, 1.0620e+02, 1.2557e-01, 1.9639e-02, 3.0966e-02], [1.6851e+02, 9.7813e+01, 1.2468e+02, 1.1845e-01, 7.9473e-02, 1.0369e-01], [1.6673e+02, 7.4595e+01, 6.4872e+01, 3.8445e-01, 4.0116e-02, 1.5097e-01], [3.2400e+01, 1.4736e+01, 9.4934e+01, 2.5872e-01, 6.7174e-02, 1.0737e-01], [1.2953e+02, 8.5337e+01, 1.2570e+02, 1.6452e-01, 7.1083e-02, 1.9993e-01], [1.5920e+02, 1.3722e+02, 6.4502e+01, 3.5891e-01, 1.5036e-01, 1.8909e-01], [4.7439e+00, 6.8898e-01, 1.7892e+01, 1.6206e-02, 1.1772e-01, 1.1536e-01], [1.4590e+02, 5.5645e+00, 9.4114e+00, 9.8751e-02, 7.2455e-03, 1.2266e-01], [1.0537e+02, 4.6149e+01, 7.2182e+01, 2.0814e-01, 1.5636e-02, 4.7667e-02], [1.9498e+02, 1.4687e+02, 5.9092e+01, 5.9770e-02, 4.7395e-02, 8.9560e-02], [5.4070e+00, 4.4146e+00, 1.3971e+02, 3.4593e-01, 1.8324e-01, 1.3890e-01], [6.1022e+01, 3.5528e+01, 3.8339e+01, 1.4686e-01, 1.2386e-01, 1.2188e-01]]) tensor([2.1621e-02, 1.0037e-02, 3.2299e+01, 0.0000e+00, 4.7080e+00, 2.7595e-04, 0.0000e+00, 5.9109e+01, 4.3838e+00, 0.0000e+00, 1.2694e+01, 0.0000e+00, 4.3242e-03, 0.0000e+00, 1.2877e+02, 2.6165e-06]) ###Markdown We will use DASK to generate dataset on multipe GPUs in this notebook ###Code import dask import dask_cudf from dask.delayed import delayed from dask_cuda import LocalCUDACluster cluster = LocalCUDACluster() from dask.distributed import Client client = Client(cluster) client ###Output _____no_output_____ ###Markdown Following code is an example that generates `100x5x16` data points on 4 GPUs. For serious Deep Learning model training, we need millions of data points. You can try to change `n_files` and `options_per_file` to larger numbers ###Code futures = [] for i in range(0, 100): future = client.submit(gen_data, 5, 16, i) futures.append(future) results = client.gather(futures) results ###Output _____no_output_____ ###Markdown Once millions of data points are generated, we can combine the data points together and split them into training and validation datasets. ###Code import pathlib files = list(pathlib.Path('datafiles/').glob('*.pth')) trn_size = int(len(files)*0.7) trn_files = files[:trn_size] val_files = files[trn_size:] trn_x = [] trn_y = [] count = 0 for i in trn_files: tensor = torch.load(i) if count % 10 == 0: print(count,'/',len(trn_files)) trn_x.append(tensor[0]) trn_y.append(tensor[1]) count += 1 X = torch.cat(trn_x) Y = torch.cat(trn_y) torch.save((X,Y), 'trn.pth') val_x = [] val_y = [] count = 0 for i in val_files: tensor = torch.load(i) if count % 10 == 0: print(count,'/',len(val_files)) val_x.append(tensor[0]) val_y.append(tensor[1]) count += 1 X = torch.cat(val_x) Y = torch.cat(val_y) torch.save((X,Y), 'val.pth') ###Output 0 / 350 10 / 350 20 / 350 30 / 350 40 / 350 50 / 350 60 / 350 70 / 350 80 / 350 90 / 350 100 / 350 110 / 350 120 / 350 130 / 350 140 / 350 150 / 350 160 / 350 170 / 350 180 / 350 190 / 350 200 / 350 210 / 350 220 / 350 230 / 350 240 / 350 250 / 350 260 / 350 270 / 350 280 / 350 290 / 350 300 / 350 310 / 350 320 / 350 330 / 350 340 / 350 0 / 150 10 / 150 20 / 150 30 / 150 40 / 150 50 / 150 60 / 150 70 / 150 80 / 150 90 / 150 100 / 150 110 / 150 120 / 150 130 / 150 140 / 150 ###Markdown We created two data files `trn.pth` and `val.pth` for training and validation. We can define a new PyTorch Dataset to load data from file and write it to file. This dataset takes rank and world_size arguments for distributed training. It loads the whole dataset into the GPU memory and samples the data points according to the rank id so that dataset of different rank_id gives different data. ###Code %%writefile filedataset.py import torch class OptionDataSet(torch.utils.data.Dataset): def __init__(self, filename, rank=0, world_size=5): tensor = torch.load(filename) self.tensor = (tensor[0].cuda(), tensor[1].cuda()) self.length = len(self.tensor[0]) // world_size self.world_size = world_size self.rank = rank def __getitem__(self, index): index = index * self.world_size + self.rank return self.tensor[0][index], self.tensor[1][index] def __len__(self): return self.length ###Output Writing filedataset.py ###Markdown When training the deep learning models, one effective way to prevent over-fitting is to have separate validation dataset to monitor the out of sample performance. When the validation dataset performance declines, it means over-fitting is happening so we can stop the training. We put everything together into one script that can train the model efficiently in multiple GPUs: ###Code %%writefile distributed_training.py import torch from ignite.engine import Engine, Events from torch.nn import MSELoss from ignite.contrib.handlers.param_scheduler import CosineAnnealingScheduler from apex import amp import argparse import os from apex.parallel import DistributedDataParallel import apex from apex.optimizers import FusedLAMB from model import Net from filedataset import OptionDataSet from ignite.metrics import MeanAbsoluteError import ignite import shutil import torch.distributed as dist parser = argparse.ArgumentParser() parser.add_argument("--local_rank", default=0, type=int) parser.add_argument("--path", default=None) parser.add_argument("--mae_improv_tol", default=0.002, type=float) args = parser.parse_args() args.distributed = False if 'WORLD_SIZE' in os.environ: args.distributed = int(os.environ['WORLD_SIZE']) > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') torch.backends.cudnn.benchmark = True trn_dataset = OptionDataSet(filename='./trn.pth', rank=dist.get_rank(), world_size=int(os.environ['WORLD_SIZE'])) trn_dataset = torch.utils.data.DataLoader(trn_dataset, batch_size=1024, shuffle=True, num_workers=0) val_dataset = OptionDataSet(filename='./val.pth', rank=dist.get_rank(), world_size=int(os.environ['WORLD_SIZE'])) val_dataset = torch.utils.data.DataLoader(val_dataset, batch_size=1024, shuffle=False, num_workers=0) model = Net().cuda() optimizer = FusedLAMB(model.parameters(), lr=1e-3) loss_fn = MSELoss() model = apex.parallel.convert_syncbn_model(model, channel_last=True) model, optimizer = amp.initialize(model, optimizer, opt_level='O1') best_mae = 100000 if args.path is not None: def resume(): global best_mae checkpoint = torch.load(args.path) best_mae = checkpoint['best_mae'] model.load_state_dict(checkpoint['state_dict']) amp.load_state_dict(checkpoint['amp']) optimizer.load_state_dict(checkpoint['optimizer']) resume() if args.distributed: model = DistributedDataParallel(model) def train_update(engine, batch): model.train() optimizer.zero_grad() x = batch[0] y = batch[1] y_pred = model(x) loss = loss_fn(y, y_pred[:, 0]) with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() optimizer.step() return loss.item() trainer = Engine(train_update) log_interval = 500 scheduler = CosineAnnealingScheduler(optimizer, 'lr', 1e-5, 5e-6, len(trn_dataset), start_value_mult=0.999, end_value_mult=0.999, save_history=False ) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'check_points/model_best.pth.tar') @trainer.on(Events.ITERATION_COMPLETED) def log_training_loss(engine): iter = (engine.state.iteration - 1) % len(trn_dataset) + 1 if iter % log_interval == 0: print('loss', engine.state.output, 'iter', engine.state.iteration, 'lr', scheduler.get_param()) metric = MeanAbsoluteError() loss_m = ignite.metrics.Loss(loss_fn) # run eval at one process only def eval_update(engine, batch): model.eval() x = batch[0] y = batch[1] y_pred = model(x) return y, y_pred[:, 0] evaluator = Engine(eval_update) metric.attach(evaluator, "MAE") loss_m.attach(evaluator, "loss") @trainer.on(Events.EPOCH_COMPLETED) def log_evalnumber(engine): global best_mae mae_improv_tol = args.mae_improv_tol # default 0.002 or 0.2% improvement evaluator.run(val_dataset, max_epochs=1) metrics = evaluator.state.metrics average_tensor = torch.tensor([metrics['MAE'], metrics['loss']]).cuda() torch.distributed.reduce(average_tensor, 0, op=torch.distributed.ReduceOp.SUM) torch.distributed.broadcast(average_tensor, 0) average_tensor = average_tensor/int(os.environ['WORLD_SIZE']) mae = average_tensor[0].item() is_best = False if (1 - mae / best_mae) >= mae_improv_tol or \ (engine.state.epoch == engine.state.max_epochs and mae < best_mae): best_mae = mae is_best = True # print("RANK {} Val Results - Epoch: {} Avg MAE: {:.5f} loss: {:.5f} BEST MAE: {:.5f}" # .format(dist.get_rank(), trainer.state.epoch, metrics['MAE'], metrics['loss'], best_mae)) if dist.get_rank() == 0: print('Epoch {}/{}'.format(engine.state.epoch, engine.state.max_epochs)) print('Best MAE Improvement Tolerance for checkpointing: {}%'.format(100 * mae_improv_tol)) print("RANK {} AVG {} NGPUs, best-mae: {:.5f} mae: {:.5f} loss: {:.5f}".format( dist.get_rank(), int(os.environ['WORLD_SIZE']), best_mae, average_tensor[0].item(), average_tensor[1].item())) fname = 'check_points/current_pth.tar' if is_best: save_checkpoint({'epoch': trainer.state.epoch, 'state_dict': model.module.state_dict(), 'best_mae': best_mae, 'optimizer': optimizer.state_dict(), 'amp': amp.state_dict() }, is_best, filename=fname) inputs = torch.tensor([[110.0, 100.0, 120.0, 0.35, 0.1, 0.05]]).cuda() res = model(inputs) print('test one example:', res.item()) trainer.run(trn_dataset, max_epochs=2000) ###Output Overwriting distributed_training.py ###Markdown Compared to the last notebook, it is a little complicated because * it handles the validation dataset evaluation* it serializes the model into a file and keeps track of the best performed model based on the mean absolute error(MAE)* it resumes the training from the fileWe can launch the distributed training by the following command:- ###Code ngpus=!echo $(nvidia-smi -L | wc -l) !python -m torch.distributed.launch --nproc_per_node={ngpus[0]} distributed_training.py ###Output _____no_output_____ ###Markdown We need some patience to train the pricing model until it converges. Inference and GreeksOnce the training is converged, the best performed model is saved into `check_points/` directory. To get a good model, you need millions of data points to train the model until it converges. Usually it takes 10-20 hours in a single 8 GPUs DGX-1 machine. We trained the model with 10 million training data points and 5 million validation data points. We didn't explore what is the minimum number of training samples but simply use large number of data samples. You may get away by using less data points for training. To save your time, you can run the following commands to download the weights and use them for the inference ###Code ! ((test ! -f './check_points/model_best.pth.tar' || test ! -f './check_points/512/model_best.pth.tar') && \ bash ./download_data.sh) || echo "Dataset is already present. No need to re-download it." ###Output Dataset is already present. No need to re-download it. ###Markdown We can load the model parameters and use it to do inference ###Code from model import Net import torch checkpoint = torch.load('check_points/model_best.pth.tar') model = Net().cuda() model.load_state_dict(checkpoint['state_dict']) inputs = torch.tensor([[110.0, 100.0, 120.0, 0.35, 0.1, 0.05]]).cuda() model(inputs) ###Output _____no_output_____ ###Markdown One of the benefits of building a deep learning model is that the [Greeks]() can be easily computed. We just need to take advantage of the auto-grad feature in Pytorch. Following is an example to compute the first order differentiation for a multiple variable polynomial function. ###Code import torch from torch.autograd import grad ''' z = (xy)^2 x = 3, y =2 first order deriv [24 36] ''' inputs = torch.tensor([3.0,2.0], requires_grad=True) z = (inputs[0]*inputs[1])**2 first_order_grad = grad(z, inputs, create_graph=True) print(first_order_grad) ###Output (tensor([24., 36.], grad_fn=<AddBackward0>),) ###Markdown We can use `grad` function to compute the first order differentiation for parameters 'K, B, S0, sigma, mu, r' ###Code inputs = torch.tensor([[110.0, 100.0, 120.0, 0.35, 0.1, 0.05]]).cuda() inputs.requires_grad = True x = model(inputs) x.backward() first_order_gradient = inputs.grad first_order_gradient ###Output _____no_output_____ ###Markdown Here we are going to plot the Delta graph:- ###Code %matplotlib inline import pylab import numpy as np def compute_delta(S): inputs = torch.tensor([[110.0, 100.0, S, 0.35, 0.1, 0.05]]).cuda() inputs.requires_grad = True x = model(inputs) x.backward() first_order_gradient = inputs.grad return first_order_gradient[0][2] prices = np.arange(10, 200, 0.1) deltas = [] for p in prices: deltas.append(compute_delta(p).item()) fig = pylab.plot(prices, deltas) pylab.xlabel('prices') pylab.ylabel('Delta') fig ###Output _____no_output_____ ###Markdown Calculating the second order derivative is easy in PyTorch too. We just need to apply the `grad` function twice. Following is an example to calculate the second order derivative for the same polynomial function as above: ###Code import torch from torch.autograd import grad ''' z = (xy)^2 x = 3, y =2 first order deriv [24 36] d2z/dx2 = 8 d2z/dxdy = 24 d2z/dy2 = 18 ''' inputs = torch.tensor([3.0,2.0], requires_grad=True) z = (inputs[0]*inputs[1])**2 first_order_grad = grad(z, inputs, create_graph=True) second_order_grad_x, = grad(first_order_grad[0][0], inputs, retain_graph=True) # second_order_grad_y, = grad(first_order_grad[0][1], inputs) print(second_order_grad_x) print(second_order_grad_y) ###Output tensor([ 8., 24.]) tensor([24., 18.]) ###Markdown Use this mechanism, we can calculate the second order derivatives $\frac{\partial^2 P}{\partial K \partial S_0}$, $\frac{\partial^2 P}{\partial B \partial S_0}$, $\frac{\partial^2 P}{\partial S_0^2}$, $\frac{\partial^2 P}{\partial \sigma \partial S_0}$, $\frac{\partial^2 P}{\partial \mu \partial S_0}$, $\frac{\partial^2 P}{\partial r \partial S_0}$ in the following example. ###Code import torch from torch import Tensor from torch.autograd import Variable from torch.autograd import grad from torch import nn inputs = torch.tensor([[110.0, 100.0, 120.0, 0.35, 0.1, 0.05]]).cuda() inputs.requires_grad = True x = model(inputs) # instead of using loss.backward(), use torch.autograd.grad() to compute gradients # https://pytorch.org/docs/stable/autograd.html#torch.autograd.grad loss_grads = grad(x, inputs, create_graph=True) drv = grad(loss_grads[0][0][2], inputs) drv ###Output _____no_output_____ ###Markdown Gamma is the second order differenation of `S`. We can plot the the Gamma curve as a function of the stock price ###Code import pylab import numpy as np def compute_gamma(S): inputs = torch.tensor([[110.0, 100.0, S, 0.35, 0.1, 0.05]]).cuda() inputs.requires_grad = True x = model(inputs) loss_grads = grad(x, inputs, create_graph=True) drv = grad(loss_grads[0][0][2], inputs) return drv[0][0][2] prices = np.arange(10, 200, 0.1) deltas = [] for p in prices: deltas.append(compute_gamma(p).item()) fig2 = pylab.plot(prices, deltas) pylab.xlabel('prices') pylab.ylabel('Gamma') fig2 ###Output _____no_output_____ ###Markdown [Implied volatility](https://en.wikipedia.org/wiki/Implied_volatility) is the forecasted volatility of the underlying asset based on the quoted prices of the option. It is the reverse mapping of price to the option parameter given the model which is hard to do with the Monte Carlo simulation approach. But if we have the deep learning pricing model, it is an easy task. We can first plot the relationship between volatility and the option price ###Code import pylab import numpy as np def compute_price(sigma): inputs = torch.tensor([[110.0, 100.0, 120.0, sigma, 0.1, 0.05]]).cuda() x = model(inputs) return x.item() sigmas = np.arange(0, 0.5, 0.1) prices = [] for s in sigmas: prices.append(compute_price(s)) fig3 = pylab.plot(sigmas, prices) pylab.xlabel('Sigma') pylab.ylabel('Price') fig3 ###Output _____no_output_____ ###Markdown Given the prices `P`, the implied volatility is the root of the function `compute_price`. We can use bisection to find the root. ###Code def bisection_root(small, large, fun, target, EPS=1e-6): if fun(large) - target < 0: print('upper bound is too small') return None if fun(small) - target > 0: print('lower bound is too large') return None while large - small > EPS: mid = (large + small) / 2.0 if fun(mid) - target >= 0: large = mid else: small = mid mid = (large + small) / 2.0 return mid, abs(fun(mid) - target) quoted_price = 16.0 sigma, err = bisection_root(0, 0.5, compute_price, quoted_price) print('implied volativity', sigma, 'error', err) ###Output implied volativity 0.18517351150512695 error 4.76837158203125e-06
notebooks/project_eda.ipynb
###Markdown This dataset is from an October 2017 Kaggle competition and it contains text from the works of three well known horror authors whose work is in the public domain. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import spacy from spacy.symbols import ORTH, LEMMA nlp = spacy.load("en_core_web_sm") import nltk from nltk.sentiment import SentimentIntensityAnalyzer from wordcloud import WordCloud, STOPWORDS from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from collections import Counter from sklearn.feature_extraction.text import CountVectorizer df = pd.read_csv('../data/train.csv') df.head() eap_df = df[df['author'] == 'EAP'] hpl_df = df[df['author'] == 'HPL'] mws_df = df[df['author'] == 'MWS'] corpus = df['text'].dropna() print(corpus[3]) stopwords_lst = set(stopwords.words('english')) from collections import Counter print Counter(.split()) vectorizer = CountVectorizer(stop_words = stopwords_lst, analyzer='word', token_pattern= '[a-zA-Z]+', max_features = 5000) X = vectorizer.fit_transform(corpus) print(vectorizer.get_feature_names()) categories = ['EAP', 'HPL', 'MWS'] freqs = zip(vectorizer.get_feature_names(), matrix.sum(axis=0)) # sort from largest to smallest print (sorted(freqs, key=lambda x: -x[1])) corpus_string = df.text.str.cat(sep=' ') split_it = corpus_string.split() filtered = [word for word in split_it if word not in stopwords.words('english')] Counter = Counter(filtered) # most_common() produces k frequently encountered # input values and their respective counts. most_occur = Counter.most_common(20) print(most_occur) ###Output _____no_output_____
Training-Code/Morpheus_Maker.ipynb
###Markdown Morpheus Maker (ver. 2.0)***Powered by tegridy-tools TMIDIX Optimus Processors: https://github.com/asigalov61/tegridy-tools***Credit for GPT2-RGA code used in this colab goes out @ Sashmark97 https://github.com/Sashmark97/midigen and @ Damon Gwinn https://github.com/gwinndr/MusicTransformer-Pytorch***WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/*** Project Los Angeles Tegridy Code 2022*** (Setup Environment) ###Code #@title nvidia-smi gpu check !nvidia-smi #@title Install all dependencies (run only once per session) !git clone https://github.com/asigalov61/tegridy-tools !pip install torch !pip install tqdm !pip install matplotlib #@title Import all needed modules print('Loading needed modules. Please wait...') import os from datetime import datetime import secrets import copy import tqdm as tqdm from tqdm import tqdm if not os.path.exists('/notebooks/Dataset'): os.makedirs('/notebooks/Dataset') print('Loading TMIDIX module...') os.chdir('/notebooks/tegridy-tools/tegridy-tools') import TMIDIX os.chdir('/notebooks/tegridy-tools/tegridy-tools') from GPT2RGAX import * import matplotlib.pyplot as plt os.chdir('/notebooks/') ###Output _____no_output_____ ###Markdown (FROM SCRATCH) Download and process MIDI dataset ###Code #@title Download original LAKH/clean_midi MIDI subset (Recommended) #@markdown Works best stand-alone/as-is for the optimal results %cd /notebooks/ !wget 'http://hog.ee.columbia.edu/craffel/lmd/clean_midi.tar.gz' !tar -xvf 'clean_midi.tar.gz' !rm 'clean_midi.tar.gz' %cd /notebooks/ #@title Process MIDIs to special MIDI dataset with TMIDIX MIDI Processor #@title Process MIDIs sorted_or_random_file_loading_order = False # Sorted order is NOT recommended dataset_ratio = 0.02 # Change this if you need more data print('TMIDIX MIDI Processor') print('Starting up...') ########### files_count = 0 gfiles = [] melody_chords_f = [] ########### print('Loading MIDI files...') print('This may take a while on a large dataset in particular.') dataset_addr = "./clean_midi/" # os.chdir(dataset_addr) filez = list() for (dirpath, dirnames, filenames) in os.walk(dataset_addr): filez += [os.path.join(dirpath, file) for file in filenames] print('=' * 70) if filez == []: print('Could not find any MIDI files. Please check Dataset dir...') print('=' * 70) if sorted_or_random_file_loading_order: print('Sorting files...') filez.sort() print('Done!') print('=' * 70) else: print('Randomizing file list...') random.shuffle(filez) stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] print('Processing MIDI files. Please wait...') for f in tqdm(filez[:int(len(filez) * dataset_ratio)]): try: fn = os.path.basename(f) fn1 = fn.split('.')[0] files_count += 1 #print('Loading MIDI file...') score = TMIDIX.midi2ms_score(open(f, 'rb').read()) events_matrix = [] itrack = 1 patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] patch_map = [[0, 1, 2, 3, 4, 5, 6, 7], # Piano [24, 25, 26, 27, 28, 29, 30], # Guitar [32, 33, 34, 35, 36, 37, 38, 39], # Bass [40, 41], # Violin [42, 43], # Cello [46], # Harp [56, 57, 58, 59, 60], # Trumpet [71, 72], # Clarinet [73, 74, 75], # Flute [-1], # Fake Drums [52, 53] # Choir ] while itrack < len(score): for event in score[itrack]: if event[0] == 'note' or event[0] == 'patch_change': events_matrix.append(event) itrack += 1 events_matrix1 = [] for event in events_matrix: if event[0] == 'patch_change': patches[event[2]] = event[3] if event[0] == 'note': event.extend([patches[event[3]]]) once = False for p in patch_map: if event[6] in p and event[3] != 9: # Except the drums event[3] = patch_map.index(p) once = True if not once and event[3] != 9: # Except the drums event[3] = 0 # All other instruments/patches channel event[5] = max(80, event[5]) if event[3] < 11: # We won't write chans 11-16 for now... events_matrix1.append(event) stats[event[3]] += 1 # recalculating timings for e in events_matrix1: e[1] = int(e[1] / 10) e[2] = int(e[2] / 10) # final processing... #======================= if len(events_matrix1) > 0: events_matrix1.sort(key=lambda x: (x[1], x[4])) cho = [] pe = events_matrix1[0] melody_chords = [] for e in events_matrix1: time = min(255, e[1]-pe[1]) dur = max(1, min(255, e[2])) cha = e[3] ptc = min(127, e[4]) vel = min(127, e[5]) melody_chords.append([time, dur, ptc, cha, vel]) pe = e melody_chords_f.append(melody_chords) gfiles.append(f) except KeyboardInterrupt: print('Saving current progress and quitting...') break except: print('Bad MIDI:', f) continue print('=' * 70) print('Done!') print('=' * 70) print('Resulting Stats:') print('=' * 70) print('Piano:', stats[0]) print('Guitar:', stats[1]) print('Bass:', stats[2]) print('Violin:', stats[3]) print('Cello:', stats[4]) print('Harp:', stats[5]) print('Trumpet:', stats[6]) print('Clarinet:', stats[7]) print('Flute:', stats[8]) print('Drums:', stats[9]) print('Choir:', stats[10]) print('=' * 70) # Process and mark INTs... INTS_f1 = [] for chords_list in tqdm(melody_chords_f): INTS_f1.append([-1, -1, -1, -1, -1]) # Intro pe = chords_list[0] count = 0 for i in chords_list: INTS_f1.append(i) if count == len(chords_list)-50: INTS_f1.append([-2, -2, -2, -2, -2]) # Outro count += 1 pe = i INTS_f1.append([-3, -3, -3, -3, -3]) # End INTS_f1[:15] TMIDIX.Tegridy_Any_Pickle_File_Writer(INTS_f1, '/notebooks/Morpheus_INTS') INTS_f1 = TMIDIX.Tegridy_Any_Pickle_File_Reader('/notebooks/Morpheus_INTS') #@title Load processed INTs datasets number_of_batches = 64 # Change this to your specs n_workers = 30 # Change this to your specs dataset_ratio = 1 # Change this if you want to limit input data val_dataset_ratio = 0.03 # Change this if you want to limit input data print('=' * 50) print('Prepping INTs datasets...') train_data1 = [] avg_vel = int(sum([y[4] for y in INTS_f1]) / len(INTS_f1)) pe = INTS_f1[0] for i in tqdm(INTS_f1): if min(i) >= 0: if i[0] != 0: train_data1.extend([i[0] + (int(i[1] / 25) * 256)]) if i[4] > avg_vel: train_data1.extend([(256 * 11) + 128 + (256 * i[3])+i[2]]) else: train_data1.extend([(256 * 11) + (256 * i[3])+i[2]]) pe = i if i == [-1, -1, -1, -1, -1]: # Intro train_data1.extend([(256 * 11)+(256 * 11)-3]) if i == [-2, -2, -2, -2, -2]: # Outro train_data1.extend([(256 * 11)+(256 * 11)-2]) if i == [-3, -3, -3, -3, -3]: # End train_data1.extend([(256 * 11)+(256 * 11)-1]) train_data = train_data1[:int(len(train_data1) * dataset_ratio)] val_dataset = train_data[:int(len(train_data) * val_dataset_ratio)] test_dataset = train_data[:int(len(train_data) * val_dataset_ratio)] train_list = train_data val_list = val_dataset test_list = [] print('=' * 50) print('Processing INTs datasets...') train_dataset = EPianoDataset(train_list, max_seq, random_seq) val_dataset = EPianoDataset(val_list, max_seq) test_dataset = EPianoDataset(test_list, max_seq) print('=' * 50) print('Loading INTs datasets...') batch_size = number_of_batches train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=n_workers, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, num_workers=n_workers) test_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=n_workers) print('=' * 50) print('Total INTs in the dataset', len(train_data)) print('Total unique INTs in the dataset', len(set(train_data))) print('Max INT in the dataset', max(train_data)) print('Min INT in the dataset', min(train_data)) print('=' * 50) print('Checking datasets shapes...') print('=' * 50) print('Train loader') for x, tgt in train_loader: print(f'X shape: {x.shape}') print(f'Target shape: {tgt.shape}') break print('=' * 50) print('Validation loader') for x, tgt in val_loader: print(f'X shape: {x.shape}') print(f'Target shape: {tgt.shape}') break print('=' * 50) print('Test loader') for x, tgt in test_loader: print(f'X shape: {x.shape}') print(f'Target shape: {tgt.shape}') break print('=' * 50) print('Done! Enjoy! :)') print('=' * 50) ###Output _____no_output_____ ###Markdown Test the resulting INTs dataset... ###Code train_data[:15] out = train_data[:16000] if len(out) != 0: song = [] song = out song_f = [] time = 0 dur = 0 vel = 0 pitch = 0 duration = 0 for s in song: if s >= 0 and s < 256 * 11: time += s % 256 dur = ((s // 256) + 1) * 250 if s >= 256 * 11 and s < (256 * 21): if (s // 128) % 2 != 0: vel = 90 channel = ((s-128-(256*11)) // 256) else: vel = 60 channel = ((s-(256*11)) // 256) pitch = s % 256 song_f.append(['note', (abs(time))*10, dur, channel, pitch, vel ]) detailed_stats = TMIDIX.Tegridy_SONG_to_MIDI_Converter(song_f, output_signature = 'Morpheus', output_file_name = '/notebooks/Morpheus-Music-Composition', track_name='Project Los Angeles', number_of_ticks_per_quarter=500) print('Done!') ###Output _____no_output_____ ###Markdown (TRAIN) Train the model ###Code #@title Train config = GPTConfig(5640, max_seq, dim_feedforward=1024, n_layer=8, n_head=8, n_embd=1024, enable_rpr=True, er_len=max_seq) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = GPT(config) model = nn.DataParallel(model) model.to(device) #===== init_step = 0 lr = LR_DEFAULT_START lr_stepper = LrStepTracker(d_model, SCHEDULER_WARMUP_STEPS, init_step) eval_loss_func = nn.CrossEntropyLoss(ignore_index=TOKEN_PAD) train_loss_func = eval_loss_func opt = Adam(model.parameters(), lr=lr, betas=(ADAM_BETA_1, ADAM_BETA_2), eps=ADAM_EPSILON) lr_scheduler = LambdaLR(opt, lr_stepper.step) #=== best_eval_acc = 0.0 best_eval_acc_epoch = -1 best_eval_loss = float("inf") best_eval_loss_epoch = -1 best_acc_file = '/notebooks/gpt2_rpr_acc.pth' best_loss_file = '/notebooks/gpt2_rpr_loss.pth' loss_train, loss_val, acc_val = [], [], [] for epoch in range(0, epochs): new_best = False loss = train(epoch+1, model, train_loader, train_loss_func, opt, lr_scheduler, num_iters=-1, save_checkpoint_steps=4000) loss_train.append(loss) eval_loss, eval_acc = eval_model(model, val_loader, eval_loss_func, num_iters=-1) loss_val.append(eval_loss) acc_val.append(eval_acc) if(eval_acc > best_eval_acc): best_eval_acc = eval_acc best_eval_acc_epoch = epoch+1 torch.save(model.state_dict(), best_acc_file) new_best = True if(eval_loss < best_eval_loss): best_eval_loss = eval_loss best_eval_loss_epoch = epoch+1 torch.save(model.state_dict(), best_loss_file) new_best = True if(new_best): print("Best eval acc epoch:", best_eval_acc_epoch) print("Best eval acc:", best_eval_acc) print("") print("Best eval loss epoch:", best_eval_loss_epoch) print("Best eval loss:", best_eval_loss) # Eval funct to eval separately if needed #===== init_step = 0 lr = LR_DEFAULT_START lr_stepper = LrStepTracker(d_model, SCHEDULER_WARMUP_STEPS, init_step) eval_loss_func = nn.CrossEntropyLoss(ignore_index=5640) train_loss_func = eval_loss_func opt = Adam(model.parameters(), lr=lr, betas=(ADAM_BETA_1, ADAM_BETA_2), eps=ADAM_EPSILON) lr_scheduler = LambdaLR(opt, lr_stepper.step) eval_loss, eval_acc = eval_model(model, val_loader, eval_loss_func, num_iters=-1) #@title Plot resulting training loss graph tr_loss_list = [item for sublist in loss_train for item in sublist] plt.plot([i for i in range(len(tr_loss_list))] ,tr_loss_list, 'b') plt.savefig('/notebooks/Morpheus-Training-Loss-Graph.png') ###Output _____no_output_____ ###Markdown (SAVE) ###Code #@title Save the model print('Saving the model...') full_path_to_model_checkpoint = "/notebooks/Morpheus-Trained-Model.pth" #@param {type:"string"} torch.save(model.state_dict(), full_path_to_model_checkpoint) print('Done!') ###Output _____no_output_____
cvnd/P3_Implement_SLAM/3. Landmark Detection and Tracking.ipynb
###Markdown Project 3: Implement SLAM --- Project OverviewIn this project, you'll implement SLAM for robot that moves and senses in a 2 dimensional, grid world!SLAM gives us a way to both localize a robot and build up a map of its environment as a robot moves and senses in real-time. This is an active area of research in the fields of robotics and autonomous systems. Since this localization and map-building relies on the visual sensing of landmarks, this is a computer vision problem. Using what you've learned about robot motion, representations of uncertainty in motion and sensing, and localization techniques, you will be tasked with defining a function, `slam`, which takes in six parameters as input and returns the vector `mu`. > `mu` contains the (x,y) coordinate locations of the robot as it moves, and the positions of landmarks that it senses in the worldYou can implement helper functions as you see fit, but your function must return `mu`. The vector, `mu`, should have (x, y) coordinates interlaced, for example, if there were 2 poses and 2 landmarks, `mu` will look like the following, where `P` is the robot position and `L` the landmark position:```mu = matrix([[Px0], [Py0], [Px1], [Py1], [Lx0], [Ly0], [Lx1], [Ly1]])```You can see that `mu` holds the poses first `(x0, y0), (x1, y1), ...,` then the landmark locations at the end of the matrix; we consider a `nx1` matrix to be a vector. Generating an environmentIn a real SLAM problem, you may be given a map that contains information about landmark locations, and in this example, we will make our own data using the `make_data` function, which generates a world grid with landmarks in it and then generates data by placing a robot in that world and moving and sensing over some numer of time steps. The `make_data` function relies on a correct implementation of robot move/sense functions, which, at this point, should be complete and in the `robot_class.py` file. The data is collected as an instantiated robot moves and senses in a world. Your SLAM function will take in this data as input. So, let's first create this data and explore how it represents the movement and sensor measurements that our robot takes.--- Create the worldUse the code below to generate a world of a specified size with randomly generated landmark locations. You can change these parameters and see how your implementation of SLAM responds! `data` holds the sensors measurements and motion of your robot over time. It stores the measurements as `data[i][0]` and the motion as `data[i][1]`. Helper functionsYou will be working with the `robot` class that may look familiar from the first notebook, In fact, in the `helpers.py` file, you can read the details of how data is made with the `make_data` function. It should look very similar to the robot move/sense cycle you've seen in the first notebook. ###Code import numpy as np from helpers import make_data # your implementation of slam should work with the following inputs # feel free to change these input values and see how it responds! # world parameters num_landmarks = 5 # number of landmarks N = 20 # time steps world_size = 100.0 # size of world (square) # robot parameters measurement_range = 50.0 # range at which we can sense landmarks motion_noise = 2.0 # noise in robot motion measurement_noise = 2.0 # noise in the measurements distance = 20.0 # distance by which robot (intends to) move each iteratation # make_data instantiates a robot, AND generates random landmarks for a given world size and number of landmarks data = make_data(N, num_landmarks, world_size, measurement_range, motion_noise, measurement_noise, distance) ###Output Landmarks: [[72, 100], [24, 45], [25, 66], [7, 39], [59, 41]] Robot: [x=50.13139 y=14.69737] ###Markdown A note on `make_data`The function above, `make_data`, takes in so many world and robot motion/sensor parameters because it is responsible for:1. Instantiating a robot (using the robot class)2. Creating a grid world with landmarks in it**This function also prints out the true location of landmarks and the *final* robot location, which you should refer back to when you test your implementation of SLAM.**The `data` this returns is an array that holds information about **robot sensor measurements** and **robot motion** `(dx, dy)` that is collected over a number of time steps, `N`. You will have to use *only* these readings about motion and measurements to track a robot over time and find the determine the location of the landmarks using SLAM. We only print out the true landmark locations for comparison, later.In `data` the measurement and motion data can be accessed from the first and second index in the columns of the data array. See the following code for an example, where `i` is the time step:```measurement = data[i][0]motion = data[i][1]``` ###Code # print out some stats about the data # total time steps : N-1 # for time_step in range(N-1): for time_step in range(3): print('Example measurements: \n', data[time_step][0]) print('Example motion: \n', data[time_step][1]) print('\n') ###Output Example measurements: [[1, -25.637804129691425, -6.20347355373945], [2, -24.991509048178585, 15.02131162678203], [3, -44.90012278440724, -11.121288210391182], [4, 8.1275673525483, -7.318720905431141]] Example motion: [19.712394326773566, -3.37957244422802] Example measurements: [[1, -47.803689326817064, 0.4388879827833345], [4, -9.323226832117305, -5.625437074240885]] Example motion: [19.712394326773566, -3.37957244422802] Example measurements: [[4, -29.529373080316233, -2.124716575448025]] Example motion: [0.6457875860247203, 19.98957124086798] ###Markdown Try changing the value of `time_step`, you should see that the list of measurements varies based on what in the world the robot sees after it moves. As you know from the first notebook, the robot can only sense so far and with a certain amount of accuracy in the measure of distance between its location and the location of landmarks. The motion of the robot always is a vector with two values: one for x and one for y displacement. This structure will be useful to keep in mind as you traverse this data in your implementation of slam. Initialize ConstraintsOne of the most challenging tasks here will be to create and modify the constraint matrix and vector: omega and xi. In the second notebook, you saw an example of how omega and xi could hold all the values the define the relationships between robot poses `xi` and landmark positions `Li` in a 1D world, as seen below, where omega is the blue matrix and xi is the pink vector.In *this* project, you are tasked with implementing constraints for a 2D world. We are referring to robot poses as `Px, Py` and landmark positions as `Lx, Ly`, and one way to approach this challenge is to add *both* x and y locations in the constraint matrices.You may also choose to create two of each omega and xi (one for x and one for y positions). TODO: Write a function that initializes omega and xiComplete the function `initialize_constraints` so that it returns `omega` and `xi` constraints for the starting position of the robot. Any values that we do not yet know should be initialized with the value `0`. You may assume that our robot starts out in exactly the middle of the world with 100% confidence (no motion or measurement noise at this point). The inputs `N` time steps, `num_landmarks`, and `world_size` should give you all the information you need to construct intial constraints of the correct size and starting values.*Depending on your approach you may choose to return one omega and one xi that hold all (x,y) positions *or* two of each (one for x values and one for y); choose whichever makes most sense to you!* ###Code def initialize_constraints(N, num_landmarks, world_size): ''' This function takes in a number of time steps N, number of landmarks, and a world_size, and returns initialized constraint matrices, omega and xi.''' ## Recommended: Define and store the size (rows/cols) of the constraint matrix in a variable ## TODO: Define the constraint matrix, Omega, with two initial "strength" values ## for the initial x, y location of our robot # omega = [0] center = world_size // 2 dim = ( N + num_landmarks ) * 2 omega = np.zeros((dim, dim)) omega[0][0] = 1 omega[1][1] = 1 ## TODO: Define the constraint *vector*, xi ## you can assume that the robot starts out in the middle of the world with 100% confidence # xi = [0] xi = np.zeros((dim, 1)) xi[0][0] = center xi[1][0] = center return omega, xi omega_test, xi_test = initialize_constraints(3, 2, 100) print(omega_test) print(xi_test) ###Output [[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] [[50.] [50.] [ 0.] [ 0.] [ 0.] [ 0.] [ 0.] [ 0.] [ 0.] [ 0.]] ###Markdown Test as you goIt's good practice to test out your code, as you go. Since `slam` relies on creating and updating constraint matrices, `omega` and `xi` to account for robot sensor measurements and motion, let's check that they initialize as expected for any given parameters.Below, you'll find some test code that allows you to visualize the results of your function `initialize_constraints`. We are using the [seaborn](https://seaborn.pydata.org/) library for visualization.**Please change the test values of N, landmarks, and world_size and see the results**. Be careful not to use these values as input into your final smal function.This code assumes that you have created one of each constraint: `omega` and `xi`, but you can change and add to this code, accordingly. The constraints should vary in size with the number of time steps and landmarks as these values affect the number of poses a robot will take `(Px0,Py0,...Pxn,Pyn)` and landmark locations `(Lx0,Ly0,...Lxn,Lyn)` whose relationships should be tracked in the constraint matrices. Recall that `omega` holds the weights of each variable and `xi` holds the value of the sum of these variables, as seen in Notebook 2. You'll need the `world_size` to determine the starting pose of the robot in the world and fill in the initial values for `xi`. ###Code # import data viz resources import matplotlib.pyplot as plt from pandas import DataFrame import seaborn as sns %matplotlib inline # define a small N and world_size (small for ease of visualization) N_test = 5 num_landmarks_test = 2 small_world = 10 # initialize the constraints initial_omega, initial_xi = initialize_constraints(N_test, num_landmarks_test, small_world) # define figure size plt.rcParams["figure.figsize"] = (10,7) # display omega sns.heatmap(DataFrame(initial_omega), cmap='Blues', annot=True, linewidths=.5) # define figure size plt.rcParams["figure.figsize"] = (1,7) # display xi sns.heatmap(DataFrame(initial_xi), cmap='Oranges', annot=True, linewidths=.5) ###Output _____no_output_____ ###Markdown --- SLAM inputs In addition to `data`, your slam function will also take in:* N - The number of time steps that a robot will be moving and sensing* num_landmarks - The number of landmarks in the world* world_size - The size (w/h) of your world* motion_noise - The noise associated with motion; the update confidence for motion should be `1.0/motion_noise`* measurement_noise - The noise associated with measurement/sensing; the update weight for measurement should be `1.0/measurement_noise` A note on noiseRecall that `omega` holds the relative "strengths" or weights for each position variable, and you can update these weights by accessing the correct index in omega `omega[row][col]` and *adding/subtracting* `1.0/noise` where `noise` is measurement or motion noise. `Xi` holds actual position values, and so to update `xi` you'll do a similar addition process only using the actual value of a motion or measurement. So for a vector index `xi[row][0]` you will end up adding/subtracting one measurement or motion divided by their respective `noise`. TODO: Implement Graph SLAMFollow the TODO's below to help you complete this slam implementation (these TODO's are in the recommended order), then test out your implementation! Updating with motion and measurementsWith a 2D omega and xi structure as shown above (in earlier cells), you'll have to be mindful about how you update the values in these constraint matrices to account for motion and measurement constraints in the x and y directions. Recall that the solution to these matrices (which holds all values for robot poses `P` and landmark locations `L`) is the vector, `mu`, which can be computed at the end of the construction of omega and xi as the inverse of omega times xi: $\mu = \Omega^{-1}\xi$**You may also choose to return the values of `omega` and `xi` if you want to visualize their final state!** ###Code ## TODO: Complete the code to implement SLAM ## slam takes in 6 arguments and returns mu, ## mu is the entire path traversed by a robot (all x,y poses) *and* all landmarks locations def slam(data, N, num_landmarks, world_size, motion_noise, measurement_noise): ## TODO: Use your initilization to create constraint matrices, omega and xi omega, xi = initialize_constraints(N, num_landmarks, world_size) ## TODO: Iterate through each time step in the data ## get all the motion and measurement data as you iterate for i in range(N-1): robo_x = 2*i robo_y = robo_x + 1 measurements = data[i][0] motion = data[i][1] msm_increment = 1./measurement_noise mon_increment = 1./motion_noise ## TODO: update the constraint matrix/vector to account for all *measurements* ## this should be a series of additions that take into account the measurement noise for measurement in measurements: land_x = (N + measurement[0]) * 2 land_y = land_x + 1 omega[robo_x][robo_x] += msm_increment omega[robo_y][robo_y] += msm_increment omega[land_x][land_x] += msm_increment omega[land_y][land_y] += msm_increment omega[robo_x][land_x] -= msm_increment omega[land_x][robo_x] -= msm_increment omega[robo_y][land_y] -= msm_increment omega[land_y][robo_y] -= msm_increment xi[robo_x][0] -= measurement[1] * msm_increment xi[robo_y][0] -= measurement[2] * msm_increment xi[land_x][0] += measurement[1] * msm_increment xi[land_y][0] += measurement[2] * msm_increment ## TODO: update the constraint matrix/vector to account for all *motion* and motion noise omega[robo_x][robo_x] += mon_increment omega[robo_y][robo_y] += mon_increment omega[robo_x+2][robo_x+2] += mon_increment omega[robo_y+2][robo_y+2] += mon_increment omega[robo_x][robo_x+2] -= mon_increment omega[robo_x+2][robo_x] -= mon_increment omega[robo_y][robo_y+2] -= mon_increment omega[robo_y+2][robo_y] -= mon_increment xi[robo_x][0] -= motion[0] * mon_increment xi[robo_y][0] -= motion[1] * mon_increment xi[robo_x+2][0] += motion[0] * mon_increment xi[robo_y+2][0] += motion[1] * mon_increment ## TODO: After iterating through all the data ## Compute the best estimate of poses and landmark positions ## using the formula, omega_inverse * Xi omega_inv = np.linalg.inv(np.matrix(omega)) # calculate the solution, mu mu = np.dot(omega_inv, xi) return mu # return `mu` ###Output _____no_output_____ ###Markdown Helper functionsTo check that your implementation of SLAM works for various inputs, we have provided two helper functions that will help display the estimated pose and landmark locations that your function has produced. First, given a result `mu` and number of time steps, `N`, we define a function that extracts the poses and landmarks locations and returns those as their own, separate lists. Then, we define a function that nicely print out these lists; both of these we will call, in the next step. ###Code # a helper function that creates a list of poses and of landmarks for ease of printing # this only works for the suggested constraint architecture of interlaced x,y poses def get_poses_landmarks(mu, N): # create a list of poses poses = [] for i in range(N): poses.append((mu[2*i].item(), mu[2*i+1].item())) # create a list of landmarks landmarks = [] for i in range(num_landmarks): landmarks.append((mu[2*(N+i)].item(), mu[2*(N+i)+1].item())) # return completed lists return poses, landmarks def print_all(poses, landmarks): print('\n') print('Estimated Poses:') for i in range(len(poses)): print('['+', '.join('%.3f'%p for p in poses[i])+']') print('\n') print('Estimated Landmarks:') for i in range(len(landmarks)): print('['+', '.join('%.3f'%l for l in landmarks[i])+']') ###Output _____no_output_____ ###Markdown Run SLAMOnce you've completed your implementation of `slam`, see what `mu` it returns for different world sizes and different landmarks! What to ExpectThe `data` that is generated is random, but you did specify the number, `N`, or time steps that the robot was expected to move and the `num_landmarks` in the world (which your implementation of `slam` should see and estimate a position for. Your robot should also start with an estimated pose in the very center of your square world, whose size is defined by `world_size`.With these values in mind, you should expect to see a result that displays two lists:1. **Estimated poses**, a list of (x, y) pairs that is exactly `N` in length since this is how many motions your robot has taken. The very first pose should be the center of your world, i.e. `[50.000, 50.000]` for a world that is 100.0 in square size.2. **Estimated landmarks**, a list of landmark positions (x, y) that is exactly `num_landmarks` in length. Landmark LocationsIf you refer back to the printout of *exact* landmark locations when this data was created, you should see values that are very similar to those coordinates, but not quite (since `slam` must account for noise in motion and measurement). ###Code # call your implementation of slam, passing in the necessary parameters mu = slam(data, N, num_landmarks, world_size, motion_noise, measurement_noise) # print out the resulting landmarks and poses if(mu is not None): # get the lists of poses and landmarks # and print them out poses, landmarks = get_poses_landmarks(mu, N) print_all(poses, landmarks) # Landmarks: [[72, 100], [24, 45], [25, 66], [7, 39], [59, 41]] # Robot: [x=50.13139 y=14.69737] ###Output Estimated Poses: [50.000, 50.000] [69.405, 45.952] [88.525, 42.219] [88.921, 60.547] [89.225, 79.563] [97.163, 98.018] [89.153, 79.789] [80.502, 62.930] [70.378, 45.599] [60.212, 28.875] [51.813, 9.432] [46.265, 28.334] [41.662, 47.569] [36.164, 64.678] [30.757, 83.931] [10.857, 83.983] [20.759, 67.476] [30.387, 48.998] [38.864, 31.589] [47.853, 13.723] Estimated Landmarks: [71.090, 100.067] [23.311, 45.001] [24.607, 65.656] [6.334, 38.987] [58.655, 41.402] ###Markdown Visualize the constructed worldFinally, using the `display_world` code from the `helpers.py` file (which was also used in the first notebook), we can actually visualize what you have coded with `slam`: the final position of the robot and the positon of landmarks, created from only motion and measurement data!**Note that these should be very similar to the printed *true* landmark locations and final pose from our call to `make_data` early in this notebook.** ###Code # import the helper function from helpers import display_world # Display the final world! # define figure size plt.rcParams["figure.figsize"] = (20,20) # check if poses has been created if 'poses' in locals(): # print out the last pose print('Last pose: ', poses[-1]) # display the last position of the robot *and* the landmark positions display_world(int(world_size), poses[-1], landmarks) ###Output Last pose: (47.85295592820569, 13.723173393297415) ###Markdown Trial with different paramenters ###Code # world parameters num_landmarks = 5 # number of landmarks N = 60 # time steps world_size = 100.0 # size of world (square) # robot parameters measurement_range = 50.0 # range at which we can sense landmarks motion_noise = 2.0 # noise in robot motion measurement_noise = 2.0 # noise in the measurements distance = 20.0 # distance by which robot (intends to) move each iteratation # make_data instantiates a robot, AND generates random landmarks for a given world size and number of landmarks data = make_data(N, num_landmarks, world_size, measurement_range, motion_noise, measurement_noise, distance) # initialize the constraints initial_omega, initial_xi = initialize_constraints(N_test, num_landmarks_test, small_world) # call your implementation of slam, passing in the necessary parameters mu = slam(data, N, num_landmarks, world_size, motion_noise, measurement_noise) # print out the resulting landmarks and poses if(mu is not None): # get the lists of poses and landmarks # and print them out poses, landmarks = get_poses_landmarks(mu, N) print_all(poses, landmarks) # Display the final world! # define figure size plt.rcParams["figure.figsize"] = (20,20) # check if poses has been created if 'poses' in locals(): # print out the last pose print('Last pose: ', poses[-1]) # display the last position of the robot *and* the landmark positions display_world(int(world_size), poses[-1], landmarks) ###Output Last pose: (41.31542135934828, 32.769081764352705) ###Markdown Question: How far away is your final pose (as estimated by `slam`) compared to the *true* final pose? Why do you think these poses are different?You can find the true value of the final pose in one of the first cells where `make_data` was called. You may also want to look at the true landmark locations and compare them to those that were estimated by `slam`. Ask yourself: what do you think would happen if we moved and sensed more (increased N)? Or if we had lower/higher noise parameters. **Answer**: When N is increased from 30 to 60, the MSE for Landmarks' position is decreased. (see below) I think this is because the signal of noises are spread over randomly while the information of the true location would be stacked at the same position over the time. ###Code N30_landmark = [[72, 100], [24, 45], [25, 66], [7, 39], [59, 41]] N30_estimated = [[71.090, 100.067], [23.311, 45.001], [24.607, 65.656] , [6.334, 38.987] , [58.655, 41.402]] mse = 0 for idx in range(5): mse += (N30_landmark[idx][0] - N30_estimated[idx][0])**2 mse += (N30_landmark[idx][1] - N30_estimated[idx][1])**2 mse /= 5 print("N=30 :", mse) N60_landmark = [[7, 55], [93, 92], [10, 52], [43, 78], [7, 97]] N60_estimated = [[6.929, 55.189], [92.860, 91.724], [9.437, 52.287], [42.954, 78.376], [6.141, 97.720]] mse = 0 for idx in range(5): mse += (N60_landmark[idx][0] - N60_estimated[idx][0])**2 mse += (N60_landmark[idx][1] - N60_estimated[idx][1])**2 mse /= 5 print("N=60 :", mse) ###Output N=30 : 0.4608899999999981 N=60 : 0.3871298 ###Markdown TestingTo confirm that your slam code works before submitting your project, it is suggested that you run it on some test data and cases. A few such cases have been provided for you, in the cells below. When you are ready, uncomment the test cases in the next cells (there are two test cases, total); your output should be **close-to or exactly** identical to the given results. If there are minor discrepancies it could be a matter of floating point accuracy or in the calculation of the inverse matrix. Submit your projectIf you pass these tests, it is a good indication that your project will pass all the specifications in the project rubric. Follow the submission instructions to officially submit! ###Code # Here is the data and estimated outputs for test case 1 test_data1 = [[[[1, 19.457599255548065, 23.8387362100849], [2, -13.195807561967236, 11.708840328458608], [3, -30.0954905279171, 15.387879242505843]], [-12.2607279422326, -15.801093326936487]], [[[2, -0.4659930049620491, 28.088559771215664], [4, -17.866382374890936, -16.384904503932]], [-12.2607279422326, -15.801093326936487]], [[[4, -6.202512900833806, -1.823403210274639]], [-12.2607279422326, -15.801093326936487]], [[[4, 7.412136480918645, 15.388585962142429]], [14.008259661173426, 14.274756084260822]], [[[4, -7.526138813444998, -0.4563942429717849]], [14.008259661173426, 14.274756084260822]], [[[2, -6.299793150150058, 29.047830407717623], [4, -21.93551130411791, -13.21956810989039]], [14.008259661173426, 14.274756084260822]], [[[1, 15.796300959032276, 30.65769689694247], [2, -18.64370821983482, 17.380022987031367]], [14.008259661173426, 14.274756084260822]], [[[1, 0.40311325410337906, 14.169429532679855], [2, -35.069349468466235, 2.4945558982439957]], [14.008259661173426, 14.274756084260822]], [[[1, -16.71340983241936, -2.777000269543834]], [-11.006096015782283, 16.699276945166858]], [[[1, -3.611096830835776, -17.954019226763958]], [-19.693482634035977, 3.488085684573048]], [[[1, 18.398273354362416, -22.705102332550947]], [-19.693482634035977, 3.488085684573048]], [[[2, 2.789312482883833, -39.73720193121324]], [12.849049222879723, -15.326510824972983]], [[[1, 21.26897046581808, -10.121029799040915], [2, -11.917698965880655, -23.17711662602097], [3, -31.81167947898398, -16.7985673023331]], [12.849049222879723, -15.326510824972983]], [[[1, 10.48157743234859, 5.692957082575485], [2, -22.31488473554935, -5.389184118551409], [3, -40.81803984305378, -2.4703329790238118]], [12.849049222879723, -15.326510824972983]], [[[0, 10.591050242096598, -39.2051798967113], [1, -3.5675572049297553, 22.849456408289125], [2, -38.39251065320351, 7.288990306029511]], [12.849049222879723, -15.326510824972983]], [[[0, -3.6225556479370766, -25.58006865235512]], [-7.8874682868419965, -18.379005523261092]], [[[0, 1.9784503557879374, -6.5025974151499]], [-7.8874682868419965, -18.379005523261092]], [[[0, 10.050665232782423, 11.026385307998742]], [-17.82919359778298, 9.062000642947142]], [[[0, 26.526838150174818, -0.22563393232425621], [4, -33.70303936886652, 2.880339841013677]], [-17.82919359778298, 9.062000642947142]]] ## Test Case 1 ## # Estimated Pose(s): # [50.000, 50.000] # [37.858, 33.921] # [25.905, 18.268] # [13.524, 2.224] # [27.912, 16.886] # [42.250, 30.994] # [55.992, 44.886] # [70.749, 59.867] # [85.371, 75.230] # [73.831, 92.354] # [53.406, 96.465] # [34.370, 100.134] # [48.346, 83.952] # [60.494, 68.338] # [73.648, 53.082] # [86.733, 38.197] # [79.983, 20.324] # [72.515, 2.837] # [54.993, 13.221] # [37.164, 22.283] # Estimated Landmarks: # [82.679, 13.435] # [70.417, 74.203] # [36.688, 61.431] # [18.705, 66.136] # [20.437, 16.983] ### Uncomment the following three lines for test case 1 and compare the output to the values above ### mu_1 = slam(test_data1, 20, 5, 100.0, 2.0, 2.0) poses, landmarks = get_poses_landmarks(mu_1, 20) print_all(poses, landmarks) # Here is the data and estimated outputs for test case 2 test_data2 = [[[[0, 26.543274387283322, -6.262538160312672], [3, 9.937396825799755, -9.128540360867689]], [18.92765331253674, -6.460955043986683]], [[[0, 7.706544739722961, -3.758467215445748], [1, 17.03954411948937, 31.705489938553438], [3, -11.61731288777497, -6.64964096716416]], [18.92765331253674, -6.460955043986683]], [[[0, -12.35130507136378, 2.585119104239249], [1, -2.563534536165313, 38.22159657838369], [3, -26.961236804740935, -0.4802312626141525]], [-11.167066095509824, 16.592065417497455]], [[[0, 1.4138633151721272, -13.912454837810632], [1, 8.087721200818589, 20.51845934354381], [3, -17.091723454402302, -16.521500551709707], [4, -7.414211721400232, 38.09191602674439]], [-11.167066095509824, 16.592065417497455]], [[[0, 12.886743222179561, -28.703968411636318], [1, 21.660953298391387, 3.4912891084614914], [3, -6.401401414569506, -32.321583037341625], [4, 5.034079343639034, 23.102207946092893]], [-11.167066095509824, 16.592065417497455]], [[[1, 31.126317672358578, -10.036784369535214], [2, -38.70878528420893, 7.4987265861424595], [4, 17.977218575473767, 6.150889254289742]], [-6.595520680493778, -18.88118393939265]], [[[1, 41.82460922922086, 7.847527392202475], [3, 15.711709540417502, -30.34633659912818]], [-6.595520680493778, -18.88118393939265]], [[[0, 40.18454208294434, -6.710999804403755], [3, 23.019508919299156, -10.12110867290604]], [-6.595520680493778, -18.88118393939265]], [[[3, 27.18579315312821, 8.067219022708391]], [-6.595520680493778, -18.88118393939265]], [[], [11.492663265706092, 16.36822198838621]], [[[3, 24.57154567653098, 13.461499960708197]], [11.492663265706092, 16.36822198838621]], [[[0, 31.61945290413707, 0.4272295085799329], [3, 16.97392299158991, -5.274596836133088]], [11.492663265706092, 16.36822198838621]], [[[0, 22.407381798735177, -18.03500068379259], [1, 29.642444125196995, 17.3794951934614], [3, 4.7969752441371645, -21.07505361639969], [4, 14.726069092569372, 32.75999422300078]], [11.492663265706092, 16.36822198838621]], [[[0, 10.705527984670137, -34.589764174299596], [1, 18.58772336795603, -0.20109708164787765], [3, -4.839806195049413, -39.92208742305105], [4, 4.18824810165454, 14.146847823548889]], [11.492663265706092, 16.36822198838621]], [[[1, 5.878492140223764, -19.955352450942357], [4, -7.059505455306587, -0.9740849280550585]], [19.628527845173146, 3.83678180657467]], [[[1, -11.150789592446378, -22.736641053247872], [4, -28.832815721158255, -3.9462962046291388]], [-19.841703647091965, 2.5113335861604362]], [[[1, 8.64427397916182, -20.286336970889053], [4, -5.036917727942285, -6.311739993868336]], [-5.946642674882207, -19.09548221169787]], [[[0, 7.151866679283043, -39.56103232616369], [1, 16.01535401373368, -3.780995345194027], [4, -3.04801331832137, 13.697362774960865]], [-5.946642674882207, -19.09548221169787]], [[[0, 12.872879480504395, -19.707592098123207], [1, 22.236710716903136, 16.331770792606406], [3, -4.841206109583004, -21.24604435851242], [4, 4.27111163223552, 32.25309748614184]], [-5.946642674882207, -19.09548221169787]]] ## Test Case 2 ## # Estimated Pose(s): # [50.000, 50.000] # [69.035, 45.061] # [87.655, 38.971] # [76.084, 55.541] # [64.283, 71.684] # [52.396, 87.887] # [44.674, 68.948] # [37.532, 49.680] # [31.392, 30.893] # [24.796, 12.012] # [33.641, 26.440] # [43.858, 43.560] # [54.735, 60.659] # [65.884, 77.791] # [77.413, 94.554] # [96.740, 98.020] # [76.149, 99.586] # [70.211, 80.580] # [64.130, 61.270] # [58.183, 42.175] # Estimated Landmarks: # [76.777, 42.415] # [85.109, 76.850] # [13.687, 95.386] # [59.488, 39.149] # [69.283, 93.654] ### Uncomment the following three lines for test case 2 and compare to the values above ### mu_2 = slam(test_data2, 20, 5, 100.0, 2.0, 2.0) poses, landmarks = get_poses_landmarks(mu_2, 20) print_all(poses, landmarks) ###Output Estimated Poses: [50.000, 50.000] [69.181, 45.665] [87.743, 39.703] [76.270, 56.311] [64.317, 72.176] [52.257, 88.154] [44.059, 69.401] [37.002, 49.918] [30.924, 30.955] [23.508, 11.419] [34.180, 27.133] [44.155, 43.846] [54.806, 60.920] [65.698, 78.546] [77.468, 95.626] [96.802, 98.821] [75.957, 99.971] [70.200, 81.181] [64.054, 61.723] [58.107, 42.628] Estimated Landmarks: [76.779, 42.887] [85.065, 77.438] [13.548, 95.652] [59.449, 39.595] [69.263, 94.240]
notebooks/predict-for-clinvar.ipynb
###Markdown clinvar* only use consistent positions ###Code import pandas, numpy import pydot, pydotplus, graphviz import matplotlib.pyplot as plt import seaborn as sns from sklearn import linear_model, metrics, tree, svm from sklearn.neural_network import MLPClassifier from sklearn.externals.six import StringIO from IPython.display import HTML %matplotlib inline def calc_path_frac(rows): pfam = list(rows['pfam'].values)[0] pathogenic = len(rows[ (rows.clin_class=='PATHOGENIC') | (rows.clin_class=='LIKLEY_PATHOGENIC')]) benign = len(rows[ (rows.clin_class=='LIKELY_BENIGN') | (rows.clin_class=='BENIGN')]) frac = -1 if pathogenic+benign: frac = pathogenic/(pathogenic+benign) return pandas.Series([frac, len(rows)], index=['path_frac', 'size']) dat_file = '../data/interim/EPIv6.eff.dbnsfp.anno.hHack.dat.xls' df_pre = pandas.read_csv(dat_file, sep='\t') df = (df_pre['pfam'].str.split(',', expand=True) .stack() .reset_index(level=0) .set_index('level_0') .rename(columns={0:'pfam'}) .join(df_pre.drop('pfam',1), how='left') ) dd = df.groupby('pfam').apply(calc_path_frac) ff = dd.reset_index() # mk domain features def match(row, domain_info): ls = [] for pfam in row['pfam'].split(','): if pfam in domain_info: if domain_info[pfam][2] == 0: ls.append(domain_info[pfam]) if len(ls) == 0: for pfam in row['pfam'].split(','): if pfam in domain_info: return domain_info[pfam] if len(ls): return ls[0] else: return (0, 0, 1) ff.loc[:, 'path_na'] = ff.apply(lambda row: 1 if row['path_frac']==-1 else 0, axis=1) domain_info = {pfam:[path_frac, size, path_na] for pfam, path_frac, size, path_na in ff.values} df_pre.loc[:, 'path_frac_t'] = df_pre.apply(lambda row: match(row, domain_info)[0], axis=1) df_pre.loc[:, 'size_t'] = df_pre.apply(lambda row: match(row, domain_info)[1], axis=1) df_pre.loc[:, 'path_na_t'] = df_pre.apply(lambda row: match(row, domain_info)[2], axis=1) df_x_pre = df_pre[ (df_pre.clin_class != 'VUS') & (df_pre.mpc>0) & (df_pre.pfam != 'none')] df_s = df_x_pre.groupby('pfam').size().reset_index() multi_pfam = set( df_s[df_s[0]>1]['pfam'].values ) df_x_pre.loc[:, 'multi_pfam'] = df_x_pre.apply(lambda row: row['pfam'] in multi_pfam, axis=1) df_x = df_x_pre[df_x_pre.multi_pfam] df_x.loc[:, 'y'] = df_x.apply(lambda row: 1 if row['clin_class'] in ('PATHOGENIC', 'LIKLEY_PATHOGENIC') else 0, axis=1) df_x.head() clin_file = '../data/interim/clinvar/clinvar.dat' clinvar_df_pre = pandas.read_csv(clin_file, sep='\t') def calc_final_sig(row): sig_set = set(str(row['clinSig'].split('|'))) has_benign = '2' in sig_set or '3' in sig_set has_path = '4' in sig_set or '5' in sig_set if has_path and not has_benign: return 1 if not has_path and has_benign: return 0 return -1 clinvar_df_pre.loc[:, "y"] = clinvar_df_pre.apply(calc_final_sig, axis=1) clinvar_df = clinvar_df_pre[(clinvar_df_pre.y!=-1) & (clinvar_df_pre.pfam!='none') & (clinvar_df_pre.mpc>0)].drop_duplicates() clinvar_df.loc[:, 'path_frac_t'] = clinvar_df.apply(lambda row: match(row, domain_info)[0], axis=1) clinvar_df.loc[:, 'size_t'] = clinvar_df.apply(lambda row: match(row, domain_info)[1], axis=1) clinvar_df.loc[:, 'path_na_t'] = clinvar_df.apply(lambda row: match(row, domain_info)[2], axis=1) # need a smarter match to domain here #m = pandas.merge(clinvar_df, ff, on='pfam', how='left') #m.head() print(len(clinvar_df)) print(len(clinvar_df[clinvar_df.y==1])) print(len(clinvar_df[clinvar_df.y==0])) scores = clinvar_df['mpc'].values truth = clinvar_df['y'].values fpr_mpc, tpr_mpc, _ = metrics.roc_curve(truth, scores, pos_label=1) #plt.plot(fpr_mpc, tpr_mpc, label='mpc', color='black') mpc_auc = metrics.auc(fpr_mpc, tpr_mpc) # train new tree and apply to clinvar tree_clf = tree.DecisionTreeClassifier(max_depth=4) all_preds = [] all_truth = [] cols = ['mpc', 'size_t', 'path_na_t', 'path_frac_t'] X, y = df_x[cols], df_x['y'] tree_clf.fit(X, y) dot_data = StringIO() tree.export_graphviz(tree_clf, feature_names=cols, out_file=dot_data) graph = pydotplus.graph_from_dot_data( dot_data.getvalue() ) graph.write_pdf('mtr_tree.full.pdf') X_clin, y_clin = clinvar_df[cols], clinvar_df['y'] preds = tree_clf.predict_proba(X_clin) fpr_tree, tpr_tree, _ = metrics.roc_curve(y_clin, [x[1] for x in preds], pos_label=1) tree_auc = metrics.auc(fpr_tree, tpr_tree) HTML('<iframe src=./mtr_tree.full.pdf width=1000 height=500></iframe>') # train new tree and apply to clinvar: just pathogenic frac tree_clf = tree.DecisionTreeClassifier(max_depth=3) all_preds = [] all_truth = [] cols = ['size_t', 'path_na_t', 'path_frac_t'] X, y = df_x[cols], df_x['y'] tree_clf.fit(X, y) dot_data = StringIO() tree.export_graphviz(tree_clf, feature_names=cols, out_file=dot_data) graph = pydotplus.graph_from_dot_data( dot_data.getvalue() ) graph.write_pdf('mtr_tree.full.nompc.pdf') X_clin, y_clin = clinvar_df[cols], clinvar_df['y'] preds = tree_clf.predict_proba(X_clin) fpr_tree_nm, tpr_tree_nm, _ = metrics.roc_curve(y_clin, [x[1] for x in preds], pos_label=1) tree_auc_nm = metrics.auc(fpr_tree_nm, tpr_tree_nm) HTML('<iframe src=./mtr_tree.full.nompc.pdf width=1000 height=500></iframe>') #X_clin, y_clin = clinvar_df[cols], clinvar_df['y'] #preds = tree_clf.predict_proba(X_clin) #fpr_tree, tpr_tree, _ = metrics.roc_curve(y_clin, [x[1] for x in preds], pos_label=1) #tree_auc = metrics.auc(fpr_tree, tpr_tree) #mpc_auc = metrics.auc(fpr_mpc, tpr_mpc) print('mpc auc', mpc_auc) print('tree auc', tree_auc) print('tree-no-mpc auc', tree_auc_nm) plt.plot(fpr_tree, tpr_tree, label='tree', color='green') plt.plot(fpr_tree_nm, tpr_tree_nm, label='tree-no-mpc', color='orange') plt.plot(fpr_mpc, tpr_mpc, label='mpc', color='black') plt.legend(loc=4) plt.savefig('../docs/plots/clinvar_roc.png') ###Output mpc auc 0.854802406183 tree auc 0.876005895945 tree-no-mpc auc 0.841307465541
2. Numpy, Pandas, Matplotlib/Lesson 5. Matplotlib and Seaborn - Part 2/1. Scatterplot_Practice.ipynb
###Markdown In this workspace, you'll make use of this data set describing various car attributes, such as fuel efficiency. The cars in this dataset represent about 3900 sedans tested by the EPA from 2013 to 2018. This dataset is a trimmed-down version of the data found [here](https://catalog.data.gov/dataset/fuel-economy-data). ###Code fuel_econ = pd.read_csv('./data/fuel_econ.csv') fuel_econ.head() ###Output _____no_output_____ ###Markdown **Task 1**: Let's look at the relationship between fuel mileage ratings for city vs. highway driving, as stored in the 'city' and 'highway' variables (in miles per gallon, or mpg). Use a _scatter plot_ to depict the data. What is the general relationship between these variables? Are there any points that appear unusual against these trends? ###Code # YOUR CODE HERE plt.scatter(data = fuel_econ, x = "city", y="highway", alpha = 0.1) plt.xlabel("City fuel eff. (mpg)") plt.ylabel("Highway fuel eff. (mpg)") # run this cell to check your work against ours scatterplot_solution_1() ###Output Most of the data falls in a large blob between 10 and 30 mpg city and 20 to 40 mpg highway. Some transparency is added via 'alpha' to show the concentration of data. Interestingly, for most cars highway mileage is clearly higher than city mileage, but for those cars with city mileage above about 30 mpg, the distinction is less pronounced. In fact, most cars above 45 mpg city have better city mileage than highway mileage, contrary to the main trend. It might be good to call out this trend by adding a diagonal line to the figure using the `plot` function. (See the solution file for that code!) ###Markdown **Task 2**: Let's look at the relationship between two other numeric variables. How does the engine size relate to a car's CO2 footprint? The 'displ' variable has the former (in liters), while the 'co2' variable has the latter (in grams per mile). Use a heat map to depict the data. How strong is this trend? ###Code # YOUR CODE HERE x_bins = np.arange(0.6, 7+0.4, 0.4) y_bins = np.arange(0, 692 + 50 ,50) plt.hist2d(data = fuel_econ, x="displ", y="co2", cmin=0.5, bins=[x_bins, y_bins], cmap = "viridis_r" ) plt.colorbar(); fuel_econ[["displ", "co2"]].describe() # run this cell to check your work against ours scatterplot_solution_2() ###Output In the heat map, I've set up a color map that goes from light to dark, and made it so that any cells without count don't get colored in. The visualization shows that most cars fall in a line where larger engine sizes correlate with higher emissions. The trend is somewhat broken by those cars with the lowest emissions, which still have engine sizes shared by most cars (between 1 and 3 liters).
notebook/08t-resnext50-512.ipynb.ipynb
###Markdown GPU ###Code gpu_info = !nvidia-smi gpu_info = '\n'.join(gpu_info) print(gpu_info) ###Output Fri Jan 8 09:04:20 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.27.04 Driver Version: 418.67 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla P100-PCIE... Off | 00000000:00:04.0 Off | 0 | | N/A 32C P0 25W / 250W | 0MiB / 16280MiB | 0% Default | | | | ERR! | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ ###Markdown CFG ###Code CONFIG_NAME = 'config08.yml' TITLE = '08t-resnext50-512' ! git clone https://github.com/raijin0704/cassava.git # ==================================================== # CFG # ==================================================== import yaml CONFIG_PATH = f'./cassava/config/{CONFIG_NAME}' with open(CONFIG_PATH) as f: config = yaml.load(f) INFO = config['info'] TAG = config['tag'] CFG = config['cfg'] CFG['train'] = True CFG['inference'] = False # CFG['debug'] = True if CFG['debug']: CFG['epochs'] = 1 assert INFO['TITLE'] == TITLE ###Output Cloning into 'cassava'... remote: Enumerating objects: 55, done. remote: Counting objects: 100% (55/55), done. remote: Compressing objects: 100% (48/48), done. remote: Total 55 (delta 33), reused 10 (delta 5), pack-reused 0 Unpacking objects: 100% (55/55), done. ###Markdown colab & kaggle notebookでの環境面の処理 colab ###Code def _colab_kaggle_authority(): from googleapiclient.discovery import build import io, os from googleapiclient.http import MediaIoBaseDownload drive_service = build('drive', 'v3') results = drive_service.files().list( q="name = 'kaggle.json'", fields="files(id)").execute() kaggle_api_key = results.get('files', []) filename = "/root/.kaggle/kaggle.json" os.makedirs(os.path.dirname(filename), exist_ok=True) request = drive_service.files().get_media(fileId=kaggle_api_key[0]['id']) fh = io.FileIO(filename, 'wb') downloader = MediaIoBaseDownload(fh, request) done = False while done is False: status, done = downloader.next_chunk() print("Download %d%%." % int(status.progress() * 100)) os.chmod(filename, 600) def _install_apex(): import os import subprocess import sys # import time subprocess.run('git clone https://github.com/NVIDIA/apex'.split(' ')) # time.sleep(10) os.chdir('apex') subprocess.run('pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .'.split(' ')) os.chdir('..') def process_colab(): import subprocess # ドライブのマウント from google.colab import drive drive.mount('/content/drive') # Google Cloudの権限設定 from google.colab import auth auth.authenticate_user() # kaggle設定 # _colab_kaggle_authority() # subprocess.run('pip install --upgrade --force-reinstall --no-deps kaggle'.split(' ')) # ライブラリ関係 subprocess.run('pip install --upgrade opencv-python'.split(' ')) subprocess.run('pip install --upgrade albumentations'.split(' ')) subprocess.run('pip install timm'.split(' ')) # if CFG['apex']: # print('installing apex') # _install_apex() # print('done') # 各種pathの設定 DATA_PATH = '/content/drive/Shareddrives/便利用/kaggle/cassava/input/' OUTPUT_DIR = './output/' NOTEBOOK_PATH = f'/content/drive/Shareddrives/便利用/kaggle/cassava/notebook/{TITLE}.ipynb' return DATA_PATH, OUTPUT_DIR, NOTEBOOK_PATH ###Output _____no_output_____ ###Markdown kaggle notebook ###Code def _kaggle_gcp_authority(): from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() user_credential = user_secrets.get_gcloud_credential() user_secrets.set_tensorflow_credential(user_credential) def process_kaggle(): # GCP設定 _kaggle_gcp_authority() # 各種pathの設定 DATA_PATH = '../input/cassava-leaf-disease-classification/' OUTPUT_DIR = './' NOTEBOOK_PATH = './__notebook__.ipynb' # system path import sys sys.path.append('../input/pytorch-image-models/pytorch-image-models-master') return DATA_PATH, OUTPUT_DIR, NOTEBOOK_PATH ###Output _____no_output_____ ###Markdown 共通 ###Code def process_common(): # ライブラリ関係 import subprocess subprocess.run('pip install mlflow'.split(' ')) # 環境変数 import os os.environ["GCLOUD_PROJECT"] = INFO['PROJECT_ID'] try: from google.colab import auth except ImportError: DATA_PATH, OUTPUT_DIR, NOTEBOOK_PATH = process_kaggle() else: DATA_PATH, OUTPUT_DIR, NOTEBOOK_PATH = process_colab() finally: process_common() ###Output Mounted at /content/drive ###Markdown install apex ###Code if CFG['apex']: try: import apex except Exception: ! git clone https://github.com/NVIDIA/apex.git % cd apex !pip install --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . %cd .. ###Output Cloning into 'apex'... remote: Enumerating objects: 7872, done. remote: Total 7872 (delta 0), reused 0 (delta 0), pack-reused 7872 Receiving objects: 100% (7872/7872), 13.98 MiB | 29.04 MiB/s, done. Resolving deltas: 100% (5374/5374), done. /content/apex /usr/local/lib/python3.6/dist-packages/pip/_internal/commands/install.py:283: UserWarning: Disabling all use of wheels due to the use of --build-options / --global-options / --install-options. cmdoptions.check_install_build_global(options) Processing /content/apex Skipping wheel build for apex, due to binaries being disabled for it. Installing collected packages: apex Running setup.py install for apex ... [?25l[?25hdone Successfully installed apex-0.1 /content ###Markdown Library ###Code # ==================================================== # Library # ==================================================== import os import datetime import math import time import random import glob import shutil from pathlib import Path from contextlib import contextmanager from collections import defaultdict, Counter import scipy as sp import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns from sklearn import preprocessing from sklearn.metrics import accuracy_score from sklearn.model_selection import StratifiedKFold from tqdm.auto import tqdm from functools import partial import cv2 from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam, SGD import torchvision.models as models from torch.nn.parameter import Parameter from torch.utils.data import DataLoader, Dataset from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, CosineAnnealingLR, ReduceLROnPlateau from albumentations import ( Compose, OneOf, Normalize, Resize, RandomResizedCrop, RandomCrop, HorizontalFlip, VerticalFlip, RandomBrightness, RandomContrast, RandomBrightnessContrast, Rotate, ShiftScaleRotate, Cutout, IAAAdditiveGaussianNoise, Transpose ) from albumentations.pytorch import ToTensorV2 from albumentations import ImageOnlyTransform import timm import mlflow import warnings warnings.filterwarnings('ignore') if CFG['apex']: from apex import amp if CFG['debug']: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') else: device = torch.device('cuda') start_time = datetime.datetime.now() start_time_str = start_time.strftime('%m%d%H%M') ###Output _____no_output_____ ###Markdown Directory settings ###Code # ==================================================== # Directory settings # ==================================================== if os.path.exists(OUTPUT_DIR): shutil.rmtree(OUTPUT_DIR) if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) ###Output _____no_output_____ ###Markdown save basic files ###Code # with open(f'{OUTPUT_DIR}/{start_time_str}_TAG.json', 'w') as f: # json.dump(TAG, f, indent=4) # with open(f'{OUTPUT_DIR}/{start_time_str}_CFG.json', 'w') as f: # json.dump(CFG, f, indent=4) import shutil notebook_path = f'{OUTPUT_DIR}/{start_time_str}_{TITLE}.ipynb' shutil.copy2(NOTEBOOK_PATH, notebook_path) ###Output _____no_output_____ ###Markdown Data Loading ###Code train = pd.read_csv(f'{DATA_PATH}/train.csv') test = pd.read_csv(f'{DATA_PATH}/sample_submission.csv') label_map = pd.read_json(f'{DATA_PATH}/label_num_to_disease_map.json', orient='index') if CFG['debug']: train = train.sample(n=1000, random_state=CFG['seed']).reset_index(drop=True) ###Output _____no_output_____ ###Markdown Utils ###Code # ==================================================== # Utils # ==================================================== def get_score(y_true, y_pred): return accuracy_score(y_true, y_pred) @contextmanager def timer(name): t0 = time.time() LOGGER.info(f'[{name}] start') yield LOGGER.info(f'[{name}] done in {time.time() - t0:.0f} s.') def init_logger(log_file=OUTPUT_DIR+'train.log'): from logging import getLogger, FileHandler, Formatter, StreamHandler from logging import INFO as INFO_ logger = getLogger(__name__) logger.setLevel(INFO_) handler1 = StreamHandler() handler1.setFormatter(Formatter("%(message)s")) handler2 = FileHandler(filename=log_file) handler2.setFormatter(Formatter("%(message)s")) logger.addHandler(handler1) logger.addHandler(handler2) return logger logger_path = OUTPUT_DIR+f'{start_time_str}_train.log' LOGGER = init_logger(logger_path) def seed_torch(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True seed_torch(seed=CFG['seed']) class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, save_path='checkpoint.pt', counter=0, best_score=None, save_latest_path=None): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False save_path (str): Directory for saving a model. Default: "'checkpoint.pt'" """ self.patience = patience self.verbose = verbose self.save_path = save_path self.counter = counter self.best_score = best_score self.save_latest_path = save_latest_path self.early_stop = False self.val_loss_min = np.Inf def __call__(self, val_loss, model, preds, epoch): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model, preds, epoch) elif score >= self.best_score: self.best_score = score self.save_checkpoint(val_loss, model, preds, epoch) self.counter = 0 # nanになったら学習ストップ elif math.isnan(score): self.early_stop = True else: self.counter += 1 if self.save_latest_path is not None: self.save_latest(val_loss, model, preds, epoch, score) if self.verbose: print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True def save_checkpoint(self, val_loss, model, preds, epoch): '''Saves model when validation loss decrease.''' if self.verbose: print(f'Validation loss decreased ({self.val_loss_min:.10f} --> {val_loss:.10f}). Saving model ...') torch.save({'model': model.state_dict(), 'preds': preds, 'epoch' : epoch, 'best_score' : self.best_score, 'counter' : self.counter}, self.save_path) self.val_loss_min = val_loss def save_latest(self, val_loss, model, preds, epoch, score): '''Saves latest model.''' torch.save({'model': model.state_dict(), 'preds': preds, 'epoch' : epoch, 'score' : score, 'counter' : self.counter}, self.save_latest_path) self.val_loss_min = val_loss ###Output _____no_output_____ ###Markdown CV split ###Code folds = train.copy() Fold = StratifiedKFold(n_splits=CFG['n_fold'], shuffle=True, random_state=CFG['seed']) for n, (train_index, val_index) in enumerate(Fold.split(folds, folds[CFG['target_col']])): folds.loc[val_index, 'fold'] = int(n) folds['fold'] = folds['fold'].astype(int) print(folds.groupby(['fold', CFG['target_col']]).size()) ###Output fold label 0 0 218 1 438 2 477 3 2631 4 516 1 0 218 1 438 2 477 3 2631 4 516 2 0 217 1 438 2 477 3 2632 4 515 3 0 217 1 438 2 477 3 2632 4 515 4 0 217 1 437 2 478 3 2632 4 515 dtype: int64 ###Markdown Dataset ###Code # ==================================================== # Dataset # ==================================================== class TrainDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.file_names = df['image_id'].values self.labels = df['label'].values self.transform = transform def __len__(self): return len(self.df) def __getitem__(self, idx): file_name = self.file_names[idx] file_path = f'{DATA_PATH}/train_images/{file_name}' image = cv2.imread(file_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.transform: augmented = self.transform(image=image) image = augmented['image'] label = torch.tensor(self.labels[idx]).long() return image, label class TestDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.file_names = df['image_id'].values self.transform = transform def __len__(self): return len(self.df) def __getitem__(self, idx): file_name = self.file_names[idx] file_path = f'{DATA_PATH}/test_images/{file_name}' image = cv2.imread(file_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.transform: augmented = self.transform(image=image) image = augmented['image'] return image # train_dataset = TrainDataset(train, transform=None) # for i in range(1): # image, label = train_dataset[i] # plt.imshow(image) # plt.title(f'label: {label}') # plt.show() ###Output _____no_output_____ ###Markdown Transforms ###Code def _get_augmentations(aug_list): process = [] for aug in aug_list: if aug == 'Resize': process.append(Resize(CFG['size'], CFG['size'])) elif aug == 'RandomResizedCrop': process.append(RandomResizedCrop(CFG['size'], CFG['size'])) elif aug == 'Transpose': process.append(Transpose(p=0.5)) elif aug == 'HorizontalFlip': process.append(HorizontalFlip(p=0.5)) elif aug == 'VerticalFlip': process.append(VerticalFlip(p=0.5)) elif aug == 'ShiftScaleRotate': process.append(ShiftScaleRotate(p=0.5)) elif aug == 'Normalize': process.append(Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], )) else: raise ValueError(f'{aug} is not suitable') process.append(ToTensorV2()) return process # ==================================================== # Transforms # ==================================================== def get_transforms(*, data): if data == 'train': return Compose( _get_augmentations(TAG['augmentation']) ) elif data == 'valid': return Compose( _get_augmentations(['Resize', 'Normalize']) ) # train_dataset = TrainDataset(train, transform=get_transforms(data='train')) # for i in range(1): # image, label = train_dataset[i] # plt.imshow(image[0]) # plt.title(f'label: {label}') # plt.show() ###Output _____no_output_____ ###Markdown Bi-tempered logistic loss ###Code def log_t(u, t): """Compute log_t for `u'.""" if t==1.0: return u.log() else: return (u.pow(1.0 - t) - 1.0) / (1.0 - t) def exp_t(u, t): """Compute exp_t for `u'.""" if t==1: return u.exp() else: return (1.0 + (1.0-t)*u).relu().pow(1.0 / (1.0 - t)) def compute_normalization_fixed_point(activations, t, num_iters): """Returns the normalization value for each example (t > 1.0). Args: activations: A multi-dimensional tensor with last dimension `num_classes`. t: Temperature 2 (> 1.0 for tail heaviness). num_iters: Number of iterations to run the method. Return: A tensor of same shape as activation with the last dimension being 1. """ mu, _ = torch.max(activations, -1, keepdim=True) normalized_activations_step_0 = activations - mu normalized_activations = normalized_activations_step_0 for _ in range(num_iters): logt_partition = torch.sum( exp_t(normalized_activations, t), -1, keepdim=True) normalized_activations = normalized_activations_step_0 * \ logt_partition.pow(1.0-t) logt_partition = torch.sum( exp_t(normalized_activations, t), -1, keepdim=True) normalization_constants = - log_t(1.0 / logt_partition, t) + mu return normalization_constants def compute_normalization_binary_search(activations, t, num_iters): """Returns the normalization value for each example (t < 1.0). Args: activations: A multi-dimensional tensor with last dimension `num_classes`. t: Temperature 2 (< 1.0 for finite support). num_iters: Number of iterations to run the method. Return: A tensor of same rank as activation with the last dimension being 1. """ mu, _ = torch.max(activations, -1, keepdim=True) normalized_activations = activations - mu effective_dim = \ torch.sum( (normalized_activations > -1.0 / (1.0-t)).to(torch.int32), dim=-1, keepdim=True).to(activations.dtype) shape_partition = activations.shape[:-1] + (1,) lower = torch.zeros(shape_partition, dtype=activations.dtype, device=activations.device) upper = -log_t(1.0/effective_dim, t) * torch.ones_like(lower) for _ in range(num_iters): logt_partition = (upper + lower)/2.0 sum_probs = torch.sum( exp_t(normalized_activations - logt_partition, t), dim=-1, keepdim=True) update = (sum_probs < 1.0).to(activations.dtype) lower = torch.reshape( lower * update + (1.0-update) * logt_partition, shape_partition) upper = torch.reshape( upper * (1.0 - update) + update * logt_partition, shape_partition) logt_partition = (upper + lower)/2.0 return logt_partition + mu class ComputeNormalization(torch.autograd.Function): """ Class implementing custom backward pass for compute_normalization. See compute_normalization. """ @staticmethod def forward(ctx, activations, t, num_iters): if t < 1.0: normalization_constants = compute_normalization_binary_search(activations, t, num_iters) else: normalization_constants = compute_normalization_fixed_point(activations, t, num_iters) ctx.save_for_backward(activations, normalization_constants) ctx.t=t return normalization_constants @staticmethod def backward(ctx, grad_output): activations, normalization_constants = ctx.saved_tensors t = ctx.t normalized_activations = activations - normalization_constants probabilities = exp_t(normalized_activations, t) escorts = probabilities.pow(t) escorts = escorts / escorts.sum(dim=-1, keepdim=True) grad_input = escorts * grad_output return grad_input, None, None def compute_normalization(activations, t, num_iters=5): """Returns the normalization value for each example. Backward pass is implemented. Args: activations: A multi-dimensional tensor with last dimension `num_classes`. t: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support). num_iters: Number of iterations to run the method. Return: A tensor of same rank as activation with the last dimension being 1. """ return ComputeNormalization.apply(activations, t, num_iters) def tempered_sigmoid(activations, t, num_iters = 5): """Tempered sigmoid function. Args: activations: Activations for the positive class for binary classification. t: Temperature tensor > 0.0. num_iters: Number of iterations to run the method. Returns: A probabilities tensor. """ internal_activations = torch.stack([activations, torch.zeros_like(activations)], dim=-1) internal_probabilities = tempered_softmax(internal_activations, t, num_iters) return internal_probabilities[..., 0] def tempered_softmax(activations, t, num_iters=5): """Tempered softmax function. Args: activations: A multi-dimensional tensor with last dimension `num_classes`. t: Temperature > 1.0. num_iters: Number of iterations to run the method. Returns: A probabilities tensor. """ if t == 1.0: return activations.softmax(dim=-1) normalization_constants = compute_normalization(activations, t, num_iters) return exp_t(activations - normalization_constants, t) def bi_tempered_binary_logistic_loss(activations, labels, t1, t2, label_smoothing = 0.0, num_iters=5, reduction='mean'): """Bi-Tempered binary logistic loss. Args: activations: A tensor containing activations for class 1. labels: A tensor with shape as activations, containing probabilities for class 1 t1: Temperature 1 (< 1.0 for boundedness). t2: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support). label_smoothing: Label smoothing num_iters: Number of iterations to run the method. Returns: A loss tensor. """ internal_activations = torch.stack([activations, torch.zeros_like(activations)], dim=-1) internal_labels = torch.stack([labels.to(activations.dtype), 1.0 - labels.to(activations.dtype)], dim=-1) return bi_tempered_logistic_loss(internal_activations, internal_labels, t1, t2, label_smoothing = label_smoothing, num_iters = num_iters, reduction = reduction) def bi_tempered_logistic_loss(activations, labels, t1, t2, label_smoothing=0.0, num_iters=5, reduction = 'mean'): """Bi-Tempered Logistic Loss. Args: activations: A multi-dimensional tensor with last dimension `num_classes`. labels: A tensor with shape and dtype as activations (onehot), or a long tensor of one dimension less than activations (pytorch standard) t1: Temperature 1 (< 1.0 for boundedness). t2: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support). label_smoothing: Label smoothing parameter between [0, 1). Default 0.0. num_iters: Number of iterations to run the method. Default 5. reduction: ``'none'`` | ``'mean'`` | ``'sum'``. Default ``'mean'``. ``'none'``: No reduction is applied, return shape is shape of activations without the last dimension. ``'mean'``: Loss is averaged over minibatch. Return shape (1,) ``'sum'``: Loss is summed over minibatch. Return shape (1,) Returns: A loss tensor. """ if len(labels.shape)<len(activations.shape): #not one-hot labels_onehot = torch.zeros_like(activations) labels_onehot.scatter_(1, labels[..., None], 1) else: labels_onehot = labels if label_smoothing > 0: num_classes = labels_onehot.shape[-1] labels_onehot = ( 1 - label_smoothing * num_classes / (num_classes - 1) ) \ * labels_onehot + \ label_smoothing / (num_classes - 1) probabilities = tempered_softmax(activations, t2, num_iters) loss_values = labels_onehot * log_t(labels_onehot + 1e-10, t1) \ - labels_onehot * log_t(probabilities, t1) \ - labels_onehot.pow(2.0 - t1) / (2.0 - t1) \ + probabilities.pow(2.0 - t1) / (2.0 - t1) loss_values = loss_values.sum(dim = -1) #sum over classes if reduction == 'none': return loss_values if reduction == 'sum': return loss_values.sum() if reduction == 'mean': return loss_values.mean() ###Output _____no_output_____ ###Markdown MODEL ###Code # ==================================================== # MODEL # ==================================================== class CustomModel(nn.Module): def __init__(self, model_name, pretrained=False): super().__init__() self.model = timm.create_model(model_name, pretrained=pretrained) if hasattr(self.model, 'classifier'): n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, CFG['target_size']) elif hasattr(self.model, 'fc'): n_features = self.model.fc.in_features self.model.fc = nn.Linear(n_features, CFG['target_size']) def forward(self, x): x = self.model(x) return x model = CustomModel(model_name=TAG['model_name'], pretrained=False) train_dataset = TrainDataset(train, transform=get_transforms(data='train')) train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) for image, label in train_loader: output = model(image) print(output) break ###Output tensor([[ 0.1942, -0.0228, 0.0547, 0.3079, -0.0856], [ 0.1010, 0.0974, 0.0921, 0.5386, 0.1265], [ 0.1124, 0.0810, 0.0548, 0.4364, -0.0349], [ 0.1089, 0.0594, 0.0561, 0.5599, 0.1196]], grad_fn=<AddmmBackward>) ###Markdown Helper functions ###Code # ==================================================== # Helper functions # ==================================================== class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (remain %s)' % (asMinutes(s), asMinutes(rs)) # ==================================================== # loss # ==================================================== def get_loss(criterion, y_preds, labels): if TAG['criterion']=='CrossEntropyLoss': loss = criterion(y_preds, labels) elif TAG['criterion'] == 'bi_tempered_logistic_loss': loss = criterion(y_preds, labels, t1=CFG['bi_tempered_loss_t1'], t2=CFG['bi_tempered_loss_t2']) return loss # ==================================================== # Helper functions # ==================================================== def train_fn(train_loader, model, criterion, optimizer, epoch, scheduler, device): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() scores = AverageMeter() # switch to train mode model.train() start = end = time.time() global_step = 0 for step, (images, labels) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) images = images.to(device) labels = labels.to(device) batch_size = labels.size(0) y_preds = model(images) loss = get_loss(criterion, y_preds, labels) # record loss losses.update(loss.item(), batch_size) if CFG['gradient_accumulation_steps'] > 1: loss = loss / CFG['gradient_accumulation_steps'] if CFG['apex']: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CFG['max_grad_norm']) if (step + 1) % CFG['gradient_accumulation_steps'] == 0: optimizer.step() optimizer.zero_grad() global_step += 1 # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % CFG['print_freq'] == 0 or step == (len(train_loader)-1): print('Epoch: [{0}][{1}/{2}] ' 'Data {data_time.val:.3f} ({data_time.avg:.3f}) ' 'Elapsed {remain:s} ' 'Loss: {loss.val:.4f}({loss.avg:.4f}) ' 'Grad: {grad_norm:.4f} ' #'LR: {lr:.6f} ' .format( epoch+1, step, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, remain=timeSince(start, float(step+1)/len(train_loader)), grad_norm=grad_norm, #lr=scheduler.get_lr()[0], )) return losses.avg def valid_fn(valid_loader, model, criterion, device): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() scores = AverageMeter() # switch to evaluation mode model.eval() preds = [] start = end = time.time() for step, (images, labels) in enumerate(valid_loader): # measure data loading time data_time.update(time.time() - end) images = images.to(device) labels = labels.to(device) batch_size = labels.size(0) # compute loss with torch.no_grad(): y_preds = model(images) loss = get_loss(criterion, y_preds, labels) losses.update(loss.item(), batch_size) # record accuracy preds.append(y_preds.softmax(1).to('cpu').numpy()) if CFG['gradient_accumulation_steps'] > 1: loss = loss / CFG['gradient_accumulation_steps'] # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % CFG['print_freq'] == 0 or step == (len(valid_loader)-1): print('EVAL: [{0}/{1}] ' 'Data {data_time.val:.3f} ({data_time.avg:.3f}) ' 'Elapsed {remain:s} ' 'Loss: {loss.val:.4f}({loss.avg:.4f}) ' .format( step, len(valid_loader), batch_time=batch_time, data_time=data_time, loss=losses, remain=timeSince(start, float(step+1)/len(valid_loader)), )) predictions = np.concatenate(preds) return losses.avg, predictions def inference(model, states, test_loader, device): model.to(device) tk0 = tqdm(enumerate(test_loader), total=len(test_loader)) probs = [] for i, (images) in tk0: images = images.to(device) avg_preds = [] for state in states: # model.load_state_dict(state['model']) model.load_state_dict(state) model.eval() with torch.no_grad(): y_preds = model(images) avg_preds.append(y_preds.softmax(1).to('cpu').numpy()) avg_preds = np.mean(avg_preds, axis=0) probs.append(avg_preds) probs = np.concatenate(probs) return probs ###Output _____no_output_____ ###Markdown Train loop ###Code # ==================================================== # scheduler # ==================================================== def get_scheduler(optimizer): if TAG['scheduler']=='ReduceLROnPlateau': scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=CFG['factor'], patience=CFG['patience'], verbose=True, eps=CFG['eps']) elif TAG['scheduler']=='CosineAnnealingLR': scheduler = CosineAnnealingLR(optimizer, T_max=CFG['T_max'], eta_min=CFG['min_lr'], last_epoch=-1) elif TAG['scheduler']=='CosineAnnealingWarmRestarts': scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=CFG['T_0'], T_mult=1, eta_min=CFG['min_lr'], last_epoch=-1) return scheduler # ==================================================== # criterion # ==================================================== def get_criterion(): if TAG['criterion']=='CrossEntropyLoss': criterion = nn.CrossEntropyLoss() elif TAG['criterion'] == 'bi_tempered_logistic_loss': criterion = bi_tempered_logistic_loss return criterion # ==================================================== # Train loop # ==================================================== def train_loop(folds, fold): LOGGER.info(f"========== fold: {fold} training ==========") if not CFG['debug']: mlflow.set_tag('running.fold', str(fold)) # ==================================================== # loader # ==================================================== trn_idx = folds[folds['fold'] != fold].index val_idx = folds[folds['fold'] == fold].index train_folds = folds.loc[trn_idx].reset_index(drop=True) valid_folds = folds.loc[val_idx].reset_index(drop=True) train_dataset = TrainDataset(train_folds, transform=get_transforms(data='train')) valid_dataset = TrainDataset(valid_folds, transform=get_transforms(data='valid')) train_loader = DataLoader(train_dataset, batch_size=CFG['batch_size'], shuffle=True, num_workers=CFG['num_workers'], pin_memory=True, drop_last=True) valid_loader = DataLoader(valid_dataset, batch_size=CFG['batch_size'], shuffle=False, num_workers=CFG['num_workers'], pin_memory=True, drop_last=False) # ==================================================== # model & optimizer & criterion # ==================================================== best_model_path = OUTPUT_DIR+f'{TAG["model_name"]}_fold{fold}_best.pth' latest_model_path = OUTPUT_DIR+f'{TAG["model_name"]}_fold{fold}_latest.pth' model = CustomModel(TAG['model_name'], pretrained=True) model.to(device) # 学習途中の重みがあれば読み込み if os.path.isfile(latest_model_path): state_latest = torch.load(latest_model_path) state_best = torch.load(best_model_path) model.load_state_dict(state_latest['model']) epoch_start = state_latest['epoch']+1 # er_best_score = state_latest['score'] er_counter = state_latest['counter'] er_best_score = state_best['best_score'] LOGGER.info(f'Retrain model in epoch:{epoch_start}, best_score:{er_best_score:.3f}, counter:{er_counter}') else: epoch_start = 0 er_best_score = None er_counter = 0 optimizer = Adam(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay'], amsgrad=False) scheduler = get_scheduler(optimizer) criterion = get_criterion() # ==================================================== # apex # ==================================================== if CFG['apex']: model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0) # ==================================================== # loop # ==================================================== # best_score = 0. # best_loss = np.inf early_stopping = EarlyStopping( patience=CFG['early_stopping_round'], verbose=True, save_path=best_model_path, counter=er_counter, best_score=er_best_score, save_latest_path=latest_model_path) for epoch in range(epoch_start, CFG['epochs']): start_time = time.time() # train avg_loss = train_fn(train_loader, model, criterion, optimizer, epoch, scheduler, device) # eval avg_val_loss, preds = valid_fn(valid_loader, model, criterion, device) valid_labels = valid_folds[CFG['target_col']].values # early stopping early_stopping(avg_val_loss, model, preds, epoch) if early_stopping.early_stop: print(f'Epoch {epoch+1} - early stopping') break if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(avg_val_loss) elif isinstance(scheduler, CosineAnnealingLR): scheduler.step() elif isinstance(scheduler, CosineAnnealingWarmRestarts): scheduler.step() # scoring score = get_score(valid_labels, preds.argmax(1)) elapsed = time.time() - start_time LOGGER.info(f'Epoch {epoch+1} - avg_train_loss: {avg_loss:.4f} avg_val_loss: {avg_val_loss:.4f} time: {elapsed:.0f}s') LOGGER.info(f'Epoch {epoch+1} - Accuracy: {score}') # log mlflow if not CFG['debug']: mlflow.log_metric(f"fold{fold} avg_train_loss", avg_loss, step=epoch) mlflow.log_metric(f"fold{fold} avg_valid_loss", avg_val_loss, step=epoch) mlflow.log_metric(f"fold{fold} score", score, step=epoch) mlflow.log_metric(f"fold{fold} lr", scheduler.get_last_lr()[0], step=epoch) mlflow.log_artifact(best_model_path) if os.path.isfile(latest_model_path): mlflow.log_artifact(latest_model_path) check_point = torch.load(best_model_path) valid_folds[[str(c) for c in range(5)]] = check_point['preds'] valid_folds['preds'] = check_point['preds'].argmax(1) return valid_folds # ==================================================== # main # ==================================================== def get_result(result_df): preds = result_df['preds'].values labels = result_df[CFG['target_col']].values score = get_score(labels, preds) LOGGER.info(f'Score: {score:<.5f}') return score def main(): """ Prepare: 1.train 2.test 3.submission 4.folds """ if CFG['train']: # train oof_df = pd.DataFrame() for fold in range(CFG['n_fold']): if fold in CFG['trn_fold']: _oof_df = train_loop(folds, fold) oof_df = pd.concat([oof_df, _oof_df]) LOGGER.info(f"========== fold: {fold} result ==========") _ = get_result(_oof_df) # CV result LOGGER.info(f"========== CV ==========") score = get_result(oof_df) # save result oof_df.to_csv(OUTPUT_DIR+'oof_df.csv', index=False) # log mlflow if not CFG['debug']: mlflow.log_metric('oof score', score) mlflow.delete_tag('running.fold') mlflow.log_artifact(OUTPUT_DIR+'oof_df.csv') if CFG['inference']: # inference model = CustomModel(TAG['model_name'], pretrained=False) states = [torch.load(OUTPUT_DIR+f'{TAG["model_name"]}_fold{fold}_best.pth') for fold in CFG['trn_fold']] test_dataset = TestDataset(test, transform=get_transforms(data='valid')) test_loader = DataLoader(test_dataset, batch_size=CFG['batch_size'], shuffle=False, num_workers=CFG['num_workers'], pin_memory=True) predictions = inference(model, states, test_loader, device) # submission test['label'] = predictions.argmax(1) test[['image_id', 'label']].to_csv(OUTPUT_DIR+'submission.csv', index=False) ###Output _____no_output_____ ###Markdown rerun ###Code def _load_save_point(run_id): # どこで中断したか取得 stop_fold = int(mlflow.get_run(run_id=run_id).to_dictionary()['data']['tags']['running.fold']) # 学習対象のfoldを変更 CFG['trn_fold'] = [fold for fold in CFG['trn_fold'] if fold>=stop_fold] # 学習済みモデルがあれば.pthファイルを取得(学習中も含む) client = mlflow.tracking.MlflowClient() artifacts = [artifact for artifact in client.list_artifacts(run_id) if ".pth" in artifact.path] for artifact in artifacts: client.download_artifacts(run_id, artifact.path, OUTPUT_DIR) def check_have_run(): results = mlflow.search_runs(INFO['EXPERIMENT_ID']) run_id_list = results[results['tags.mlflow.runName']==TITLE]['run_id'].tolist() # 初めて実行する場合 if len(run_id_list) == 0: run_id = None # 既に実行されている場合 else: assert len(run_id_list)==1 run_id = run_id_list[0] _load_save_point(run_id) return run_id if __name__ == '__main__': if CFG['debug']: main() else: mlflow.set_tracking_uri(INFO['TRACKING_URI']) mlflow.set_experiment('single model') # 既に実行済みの場合は続きから実行する run_id = check_have_run() with mlflow.start_run(run_id=run_id, run_name=TITLE): if run_id is None: mlflow.log_artifact(CONFIG_PATH) mlflow.log_param('device', device) mlflow.set_tags(TAG) mlflow.log_params(CFG) mlflow.log_artifact(notebook_path) main() mlflow.log_artifacts(OUTPUT_DIR) shutil.copytree(OUTPUT_DIR, f'{INFO["SHARE_DRIVE_PATH"]}/{TITLE}') shutil.copy2(CONFIG_PATH, f'{INFO["SHARE_DRIVE_PATH"]}/{TITLE}/{CONFIG_NAME}') ###Output ========== fold: 0 training ==========
example/multiple_figure/multiple_figure.ipynb
###Markdown Import modules ###Code import matplotlib.pyplot as plt from ternary_diagram import TernaryDiagram import pandas as pd import os ###Output _____no_output_____ ###Markdown If you want to arrange them horizontally, you may be able to solve the problem of broken layout by specifying a figsize that is large enough. ###Code fig, axes = plt.subplots(1, 2, dpi=72, facecolor='white', figsize=(10, 3.6)) fpath_example = '..' fpath_contour = os.path.join(fpath_example, 'contour', 'example_contour.csv') fpath_mono_scatter = os.path.join(fpath_example, 'mono_scatter', 'example_mono_scatter.csv') df_contour = pd.read_csv(fpath_contour) df_mono_scatter = pd.read_csv(fpath_mono_scatter) display(df_contour.head(), df_mono_scatter.head()) materials = df_contour.columns[0:3] td1 = TernaryDiagram(materials=materials, ax=axes[0]) td1.contour(vector=df_contour[materials], z=df_contour['z']) fig materials = df_mono_scatter.columns[0:3] td2 = TernaryDiagram(materials=materials, ax=axes[1]) td2.scatter(vector=df_mono_scatter[materials]) fig fig.savefig('multiple_figure.png', dpi=144) ###Output _____no_output_____ ###Markdown Import modules ###Code import matplotlib.pyplot as plt from ternary_diagram import TernaryDiagram import pandas as pd import os ###Output _____no_output_____ ###Markdown If you want to arrange them horizontally, you may be able to solve the problem of broken layout by specifying a figsize that is large enough. ###Code fig, axes = plt.subplots(1, 2, dpi=72, facecolor='white', figsize=(10, 3.6)) fpath_example = '..' fpath_contour = os.path.join(fpath_example, 'contour', 'example_contour.csv') fpath_mono_scatter = os.path.join(fpath_example, 'mono_scatter', 'example_mono_scatter.csv') df_contour = pd.read_csv(fpath_contour) df_mono_scatter = pd.read_csv(fpath_mono_scatter) display(df_contour.head(), df_mono_scatter.head()) materials = df_contour.columns[0:3] td1 = TernaryDiagram(materials=materials, ax=axes[0]) td1.contour(vector=df_contour[materials], z=df_contour['z']) fig materials = df_mono_scatter.columns[0:3] td2 = TernaryDiagram(materials=materials, ax=axes[1]) td2.scatter(vector=df_mono_scatter[materials]) fig td2.fig.savefig('multiple_figure.png', dpi=144) ###Output _____no_output_____
Tree-based_IDS_GlobeCom19.ipynb
###Markdown Tree-Based Intelligent Intrusion Detection System in Internet of Vehicles This is the code for the paper entitled "[**Tree-Based Intelligent Intrusion Detection System in Internet of Vehicles**](https://arxiv.org/pdf/1910.08635.pdf)" published in IEEE GlobeCom 2019. Authors: Li Yang ([email protected]), Abdallah Moubayed, Ismail Hamieh, and Abdallah Shami Organization: The Optimized Computing and Communications (OC2) Lab, ECE Department, Western UniversityL. Yang, A. Moubayed, I. Hamieh and A. Shami, "Tree-Based Intelligent Intrusion Detection System in Internet of Vehicles," 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/GLOBECOM38437.2019.9013892. Import libraries ###Code import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder,Imputer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,precision_recall_fscore_support from sklearn.metrics import f1_score from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier from sklearn.tree import DecisionTreeClassifier import xgboost as xgb from xgboost import plot_importance ###Output _____no_output_____ ###Markdown Read the CICIDS2017 datasetThe CICIDS2017 dataset is publicly available at: https://www.unb.ca/cic/datasets/ids-2017.html Due to the large size of this dataset, the sampled subsets of CICIDS2017 is used. The subsets are in the "data" folder. ###Code #Read dataset df = pd.read_csv('./data/CICIDS2017.csv') df df.Label.value_counts() ###Output _____no_output_____ ###Markdown Data samplingDue to the space limit of GitHub files, we sample a small-sized subset for model learning using random sampling ###Code # Randomly sample instances from majority classes df_minor = df[(df['Label']=='WebAttack')|(df['Label']=='Bot')|(df['Label']=='Infiltration')] df_BENIGN = df[(df['Label']=='BENIGN')] df_BENIGN = df_BENIGN.sample(n=None, frac=0.01, replace=False, weights=None, random_state=None, axis=0) df_DoS = df[(df['Label']=='DoS')] df_DoS = df_DoS.sample(n=None, frac=0.05, replace=False, weights=None, random_state=None, axis=0) df_PortScan = df[(df['Label']=='PortScan')] df_PortScan = df_PortScan.sample(n=None, frac=0.05, replace=False, weights=None, random_state=None, axis=0) df_BruteForce = df[(df['Label']=='BruteForce')] df_BruteForce = df_BruteForce.sample(n=None, frac=0.2, replace=False, weights=None, random_state=None, axis=0) df_s = df_BENIGN.append(df_DoS).append(df_PortScan).append(df_BruteForce).append(df_minor) df_s = df_s.sort_index() # Save the sampled dataset df_s.to_csv('./data/CICIDS2017_sample.csv',index=0) ###Output _____no_output_____ ###Markdown Preprocessing (normalization and padding values) ###Code df = pd.read_csv('./data/CICIDS2017_sample.csv') # Min-max normalization numeric_features = df.dtypes[df.dtypes != 'object'].index df[numeric_features] = df[numeric_features].apply( lambda x: (x - x.min()) / (x.max()-x.min())) # Fill empty values by 0 df = df.fillna(0) ###Output C:\Users\41364\AppData\Roaming\Python\Python35\site-packages\pandas\compat\_optional.py:106: UserWarning: Pandas requires version '2.6.2' or newer of 'numexpr' (version '2.6.1' currently installed). warnings.warn(msg, UserWarning) ###Markdown split train set and test set ###Code labelencoder = LabelEncoder() df.iloc[:, -1] = labelencoder.fit_transform(df.iloc[:, -1]) X = df.drop(['Label'],axis=1).values y = df.iloc[:, -1].values.reshape(-1,1) y=np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X,y, train_size = 0.8, test_size = 0.2, random_state = 0,stratify = y) X_train.shape pd.Series(y_train).value_counts() ###Output _____no_output_____ ###Markdown Oversampling by SMOTE ###Code from imblearn.over_sampling import SMOTE smote=SMOTE(n_jobs=-1,sampling_strategy={4:1500}) # Create 1500 samples for the minority class "4" X_train, y_train = smote.fit_sample(X_train, y_train) pd.Series(y_train).value_counts() ###Output _____no_output_____ ###Markdown Machine learning model training Training four base learners: decision tree, random forest, extra trees, XGBoost ###Code # Decision tree training and prediction dt = DecisionTreeClassifier(random_state = 0) dt.fit(X_train,y_train) dt_score=dt.score(X_test,y_test) y_predict=dt.predict(X_test) y_true=y_test print('Accuracy of DT: '+ str(dt_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of DT: '+(str(precision))) print('Recall of DT: '+(str(recall))) print('F1-score of DT: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() dt_train=dt.predict(X_train) dt_test=dt.predict(X_test) # Random Forest training and prediction rf = RandomForestClassifier(random_state = 0) rf.fit(X_train,y_train) rf_score=rf.score(X_test,y_test) y_predict=rf.predict(X_test) y_true=y_test print('Accuracy of RF: '+ str(rf_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of RF: '+(str(precision))) print('Recall of RF: '+(str(recall))) print('F1-score of RF: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() rf_train=rf.predict(X_train) rf_test=rf.predict(X_test) # Extra trees training and prediction et = ExtraTreesClassifier(random_state = 0) et.fit(X_train,y_train) et_score=et.score(X_test,y_test) y_predict=et.predict(X_test) y_true=y_test print('Accuracy of ET: '+ str(et_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of ET: '+(str(precision))) print('Recall of ET: '+(str(recall))) print('F1-score of ET: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() et_train=et.predict(X_train) et_test=et.predict(X_test) # XGboost training and prediction xg = xgb.XGBClassifier(n_estimators = 10) xg.fit(X_train,y_train) xg_score=xg.score(X_test,y_test) y_predict=xg.predict(X_test) y_true=y_test print('Accuracy of XGBoost: '+ str(xg_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of XGBoost: '+(str(precision))) print('Recall of XGBoost: '+(str(recall))) print('F1-score of XGBoost: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() xg_train=xg.predict(X_train) xg_test=xg.predict(X_test) ###Output _____no_output_____ ###Markdown Stacking model construction (ensemble for 4 base learners) ###Code # Use the outputs of 4 base models to construct a new ensemble model base_predictions_train = pd.DataFrame( { 'DecisionTree': dt_train.ravel(), 'RandomForest': rf_train.ravel(), 'ExtraTrees': et_train.ravel(), 'XgBoost': xg_train.ravel(), }) base_predictions_train.head(5) dt_train=dt_train.reshape(-1, 1) et_train=et_train.reshape(-1, 1) rf_train=rf_train.reshape(-1, 1) xg_train=xg_train.reshape(-1, 1) dt_test=dt_test.reshape(-1, 1) et_test=et_test.reshape(-1, 1) rf_test=rf_test.reshape(-1, 1) xg_test=xg_test.reshape(-1, 1) x_train = np.concatenate(( dt_train, et_train, rf_train, xg_train), axis=1) x_test = np.concatenate(( dt_test, et_test, rf_test, xg_test), axis=1) stk = xgb.XGBClassifier().fit(x_train, y_train) y_predict=stk.predict(x_test) y_true=y_test stk_score=accuracy_score(y_true,y_predict) print('Accuracy of Stacking: '+ str(stk_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of Stacking: '+(str(precision))) print('Recall of Stacking: '+(str(recall))) print('F1-score of Stacking: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() ###Output Accuracy of Stacking: 0.9960292949792641 Precision of Stacking: 0.9960126519428796 Recall of Stacking: 0.9960292949792641 F1-score of Stacking: 0.9960148981765187 precision recall f1-score support 0 1.00 0.99 1.00 4547 1 0.99 0.98 0.98 393 2 0.99 1.00 1.00 554 3 1.00 1.00 1.00 3807 4 0.83 0.71 0.77 7 5 1.00 1.00 1.00 1589 6 0.99 0.99 0.99 436 accuracy 1.00 11333 macro avg 0.97 0.95 0.96 11333 weighted avg 1.00 1.00 1.00 11333 ###Markdown Feature Selection Feature importance ###Code # Save the feature importance lists generated by four tree-based algorithms dt_feature = dt.feature_importances_ rf_feature = rf.feature_importances_ et_feature = et.feature_importances_ xgb_feature = xg.feature_importances_ # calculate the average importance value of each feature avg_feature = (dt_feature + rf_feature + et_feature + xgb_feature)/4 feature=(df.drop(['Label'],axis=1)).columns.values print ("Features sorted by their score:") print (sorted(zip(map(lambda x: round(x, 4), avg_feature), feature), reverse=True)) f_list = sorted(zip(map(lambda x: round(x, 4), avg_feature), feature), reverse=True) len(f_list) # Select the important features from top-importance to bottom-importance until the accumulated importance reaches 0.9 (out of 1) Sum = 0 fs = [] for i in range(0, len(f_list)): Sum = Sum + f_list[i][0] fs.append(f_list[i][1]) if Sum>=0.9: break X_fs = df[fs].values X_train, X_test, y_train, y_test = train_test_split(X_fs,y, train_size = 0.8, test_size = 0.2, random_state = 0,stratify = y) X_train.shape pd.Series(y_train).value_counts() ###Output _____no_output_____ ###Markdown Oversampling by SMOTE ###Code from imblearn.over_sampling import SMOTE smote=SMOTE(n_jobs=-1,sampling_strategy={4:1500}) X_train, y_train = smote.fit_sample(X_train, y_train) pd.Series(y_train).value_counts() ###Output _____no_output_____ ###Markdown Machine learning model training after feature selection ###Code dt = DecisionTreeClassifier(random_state = 0) dt.fit(X_train,y_train) dt_score=dt.score(X_test,y_test) y_predict=dt.predict(X_test) y_true=y_test print('Accuracy of DT: '+ str(dt_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of DT: '+(str(precision))) print('Recall of DT: '+(str(recall))) print('F1-score of DT: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() dt_train=dt.predict(X_train) dt_test=dt.predict(X_test) rf = RandomForestClassifier(random_state = 0) rf.fit(X_train,y_train) # modelin veri üzerinde öğrenmesi fit fonksiyonuyla yapılıyor rf_score=rf.score(X_test,y_test) y_predict=rf.predict(X_test) y_true=y_test print('Accuracy of RF: '+ str(rf_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of RF: '+(str(precision))) print('Recall of RF: '+(str(recall))) print('F1-score of RF: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() rf_train=rf.predict(X_train) rf_test=rf.predict(X_test) et = ExtraTreesClassifier(random_state = 0) et.fit(X_train,y_train) et_score=et.score(X_test,y_test) y_predict=et.predict(X_test) y_true=y_test print('Accuracy of ET: '+ str(et_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of ET: '+(str(precision))) print('Recall of ET: '+(str(recall))) print('F1-score of ET: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() et_train=et.predict(X_train) et_test=et.predict(X_test) xg = xgb.XGBClassifier(n_estimators = 10) xg.fit(X_train,y_train) xg_score=xg.score(X_test,y_test) y_predict=xg.predict(X_test) y_true=y_test print('Accuracy of XGBoost: '+ str(xg_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of XGBoost: '+(str(precision))) print('Recall of XGBoost: '+(str(recall))) print('F1-score of XGBoost: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() xg_train=xg.predict(X_train) xg_test=xg.predict(X_test) ###Output _____no_output_____ ###Markdown Stacking model construction ###Code base_predictions_train = pd.DataFrame( { 'DecisionTree': dt_train.ravel(), 'RandomForest': rf_train.ravel(), 'ExtraTrees': et_train.ravel(), 'XgBoost': xg_train.ravel(), }) base_predictions_train.head(5) dt_train=dt_train.reshape(-1, 1) et_train=et_train.reshape(-1, 1) rf_train=rf_train.reshape(-1, 1) xg_train=xg_train.reshape(-1, 1) dt_test=dt_test.reshape(-1, 1) et_test=et_test.reshape(-1, 1) rf_test=rf_test.reshape(-1, 1) xg_test=xg_test.reshape(-1, 1) x_train = np.concatenate(( dt_train, et_train, rf_train, xg_train), axis=1) x_test = np.concatenate(( dt_test, et_test, rf_test, xg_test), axis=1) stk = xgb.XGBClassifier().fit(x_train, y_train) y_predict=stk.predict(x_test) y_true=y_test stk_score=accuracy_score(y_true,y_predict) print('Accuracy of Stacking: '+ str(stk_score)) precision,recall,fscore,none= precision_recall_fscore_support(y_true, y_predict, average='weighted') print('Precision of Stacking: '+(str(precision))) print('Recall of Stacking: '+(str(recall))) print('F1-score of Stacking: '+(str(fscore))) print(classification_report(y_true,y_predict)) cm=confusion_matrix(y_true,y_predict) f,ax=plt.subplots(figsize=(5,5)) sns.heatmap(cm,annot=True,linewidth=0.5,linecolor="red",fmt=".0f",ax=ax) plt.xlabel("y_pred") plt.ylabel("y_true") plt.show() ###Output Accuracy of Stacking: 0.9955881055325156 Precision of Stacking: 0.9955944258266153 Recall of Stacking: 0.9955881055325156 F1-score of Stacking: 0.9955625491897051 precision recall f1-score support 0 0.99 1.00 1.00 4547 1 1.00 0.97 0.98 393 2 0.99 1.00 1.00 554 3 1.00 1.00 1.00 3807 4 1.00 0.71 0.83 7 5 0.99 1.00 1.00 1589 6 1.00 0.98 0.99 436 accuracy 1.00 11333 macro avg 1.00 0.95 0.97 11333 weighted avg 1.00 1.00 1.00 11333
Model/Test Models/GRU with Attentionn_4,000_records_40_Epochs.ipynb
###Markdown Italian to English Language Translation (NMT) using GRU & Attention**Import All the neccessary Libraries which we will be requiring to run this notebook and the project**This is seq2seq model by using GRU and Attention. let us import all the necessary libraries that is needed to run this notebookthe tensorflow GPU version must be updated before running this notebook and eager_execution of the tensorflow should be enabled ###Code from __future__ import absolute_import, division, print_function import tensorflow as tf tf.enable_eager_execution() import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import unicodedata import re import numpy as np import os from numpy import array, argmax, random, take import time import pandas as pd import string print(tf.__version__) ###Output 1.13.1 ###Markdown Creating a function which will read the file, encode it and save it and then the funtion to_lines wil split the data into Italian & English part seperately by '\n' and build it in the form of sentences ###Code def read_text(filename): file = open(filename, mode='rt', encoding='utf-8') text = file.read() file.close() return text # split a text into sentences def to_lines(text): sents = text.strip().split('\n') sents = [i.split('\t') for i in sents] return sents from google.colab import files uploaded = files.upload() for fn in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format( name=fn, length=len(uploaded[fn]))) ###Output User uploaded file "ita.txt" with length 19184787 bytes ###Markdown By using the function we wrote the text file is imported to the jupyter notebook. Once the notebook is opened and read using the function Read_TextFile we will pass it to the to_lines to split and to build the sentences of the same ###Code data = read_text(uploaded['ita.txt']) ItalianNEng = to_lines(data) ItalianNEng ###Output _____no_output_____ ###Markdown The ItalianEng has the data which we just imported and then ran through a funtion is now converted to the array by using the Python's inbuilt function "array" ###Code data = read_text("ita.txt") ItalianNEng = to_lines(data) ItalianNEng = array(ItalianNEng) ###Output _____no_output_____ ###Markdown PreProcessing the data/ Cleaning the data**remove all the punctuation and then change the case of every word to lower case**we will remove the punctuation in the below code by going through each line of the data and storing it in the same variable ItalianEng ###Code # Remove punctuation ItalianNEng[:,0] = [s.translate(str.maketrans('', '', string.punctuation)) for s in ItalianNEng[:,0]] ItalianNEng[:,1] = [s.translate(str.maketrans('', '', string.punctuation)) for s in ItalianNEng[:,1]] ###Output _____no_output_____ ###Markdown Here all the punctuation is removed/cleaned and the data looks like below ###Code ItalianNEng ###Output _____no_output_____ ###Markdown Now we will convert the data into lower case by using python's inbuilt function lower() and save the data to its original variable ItalianEng ###Code # convert to lowercase for i in range(len(ItalianNEng)): ItalianNEng[i,0] = ItalianNEng[i,0].lower() ItalianNEng[i,1] = ItalianNEng[i,1].lower() ItalianNEng ItalianNEng[0][0] ###Output _____no_output_____ ###Markdown we convert the data into pandas dataframe and save it in the variable ita_eng_df ###Code ita_eng_df = pd.DataFrame(ItalianNEng.tolist(), columns = ['English', 'Italian']) ita_eng_df.head() ###Output _____no_output_____ ###Markdown let us split the data into English and Italian part seperately and save it in their respective variable ###Code english_sentences = ita_eng_df.iloc[:,0:1] italian_sentences = ita_eng_df.iloc[:,1:2] print(english_sentences.columns) print(italian_sentences.columns) ###Output Index(['English'], dtype='object') Index(['Italian'], dtype='object') ###Markdown As the dataset is very large we will sample the model with only 2000 rows, later we can play around the data size and see how the model performs ###Code n = 4000 italian_sample = italian_sentences.iloc[:n,:] english_sample = english_sentences.iloc[:n,:] ###Output _____no_output_____ ###Markdown we will now convert any row which is not of string type, if there is any row with different datatype we will convert it into string so that everything is of same datatypewe will do this for both English and Italian data ###Code english_sample.columns english_sample['English'] for i in range(len(english_sample['English'].index)): if type(english_sample['English'][i]) != str: english_sample['English'][i] = str(english_sample['English'][i]) italian_sample['Italian'] for i in range(len(italian_sample['Italian'].index)): if type(italian_sample['Italian'][i]) != str: italian_sample['Italian'][i] = str(italian_sample['Italian'][i]) ###Output _____no_output_____ ###Markdown create a fucntion to add start and end token of each row as a identifier to the model and convert the data into lower case ###Code def preprocess_sentence(w): w = w.lower().strip() w = '<start> ' + w + ' <end>' return w def cleaning_sentence(data, column): sentence = [preprocess_sentence(i) for i in data[column]] return sentence ###Output _____no_output_____ ###Markdown We will continue to create a class which has function which will create word to index and then index to word ###Code class LanguageIndex(): def __init__(self, lang): self.lang = lang self.word2idx = {} self.idx2word = {} self.vocab = set() self.create_index() def create_index(self): for phrase in self.lang: self.vocab.update(phrase.split(' ')) self.vocab = sorted(self.vocab) self.word2idx['<pad>'] = 0 for index, word in enumerate(self.vocab): self.word2idx[word] = index + 1 for word, index in self.word2idx.items(): self.idx2word[index] = word def max_length(tensor): return max(len(t) for t in tensor) ###Output _____no_output_____ ###Markdown **Cleaning the data**we will make use of the funciton such as cleaning_sentence, LanguageIndex, and word2idx which we have written to clean, process, Index and padd the datawe use Keras's inbuil function which performs sequence padding to the each sentence to the maximum data length ###Code #Cleaning Sentences italian_sent = cleaning_sentence(italian_sample, 'Italian') english_sent = cleaning_sentence(english_sample, 'English') # index language using the class defined above inp_lang = LanguageIndex(it for it in italian_sent) targ_lang = LanguageIndex(en for en in english_sent) #Italian Sentences which will be indexed input_tensor = [[inp_lang.word2idx[s] for s in it.split(' ')] for it in italian_sent] #English sentences which will be indexed target_tensor = [[targ_lang.word2idx[s] for s in en.split(' ')] for en in english_sent] max_length_inp, max_length_tar = max_length(input_tensor), max_length(target_tensor) # Padding the input and output tensor to the maximum length input_tensor = tf.keras.preprocessing.sequence.pad_sequences(input_tensor, maxlen=max_length_inp, padding='post') target_tensor = tf.keras.preprocessing.sequence.pad_sequences(target_tensor, maxlen=max_length_tar, padding='post') ###Output _____no_output_____ ###Markdown **split the data into training data and test data by using Sklearn.Model_selection's train_test_split function**Split the whole data which we saved in the variable ItalianNEng as 80% to train and 20% to the test. ###Code ax_train, ay_train, ax_test, ay_test = train_test_split(input_tensor, target_tensor, test_size=0.2) ###Output _____no_output_____ ###Markdown after we split the training data and the testing data we will check the length and the data in it, if we see the below data its vectorized which we did using the word2idx and Keras's inbuilt function sequence_padding and is in the array format ###Code ax_train # Show length len(ax_train), len(ay_train), len(ax_test), len(ay_test) ###Output _____no_output_____ ###Markdown Create the parameters where we can modify and pass later to tune the model and we will create the tensorflow dataset using the tf's function tf.data.dataset ###Code BUFFER_SIZE = len(ax_train) BATCH_SIZE = 64 N_BATCH = BUFFER_SIZE//BATCH_SIZE embedding_dim = 256 units = 1024 vocab_inp_size = len(inp_lang.word2idx) vocab_tar_size = len(targ_lang.word2idx) print(BUFFER_SIZE) print(BATCH_SIZE) print(N_BATCH) print(vocab_inp_size) print(vocab_tar_size) dataset = tf.data.Dataset.from_tensor_slices((ax_train, ax_test)).shuffle(BUFFER_SIZE) dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) dataset ###Output _____no_output_____ ###Markdown We will build the encoder and decoder model by implementing "attention equation"attention overcomes the limitation in the encode-decoder architecture by allowing the network to learn where to pay attention to the input for each item in the output sequence.this approach has been used across different types sequence prediction problems include text translation, speech recognition, and more. ###Code def gru(units): return tf.keras.layers.GRU(units, return_sequences=True, return_state=True, recurrent_activation='sigmoid', recurrent_initializer='glorot_uniform') class Encoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz): super(Encoder, self).__init__() self.batch_sz = batch_sz self.enc_units = enc_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = gru(self.enc_units) def call(self, x, hidden): x = self.embedding(x) output, state = self.gru(x, initial_state = hidden) return output, state def initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.enc_units)) class Decoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz): super(Decoder, self).__init__() self.batch_sz = batch_sz self.dec_units = dec_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = gru(self.dec_units) self.fc = tf.keras.layers.Dense(vocab_size) # used for attention self.W1 = tf.keras.layers.Dense(self.dec_units) self.W2 = tf.keras.layers.Dense(self.dec_units) self.V = tf.keras.layers.Dense(1) def call(self, x, hidden, enc_output): # enc_output shape == (batch_size, max_length, hidden_size) # hidden shape == (batch_size, hidden size) # hidden_with_time_axis shape == (batch_size, 1, hidden size) # we are doing this to perform addition to calculate the score hidden_with_time_axis = tf.expand_dims(hidden, 1) # score shape == (batch_size, max_length, 1) # we get 1 at the last axis because we are applying tanh(FC(EO) + FC(H)) to self.V score = self.V(tf.nn.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))) # attention_weights shape == (batch_size, max_length, 1) attention_weights = tf.nn.softmax(score, axis=1) # context_vector shape after sum == (batch_size, hidden_size) context_vector = attention_weights * enc_output context_vector = tf.reduce_sum(context_vector, axis=1) # x shape after passing through embedding == (batch_size, 1, embedding_dim) x = self.embedding(x) # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size) x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) # passing the concatenated vector to the GRU output, state = self.gru(x) # output shape == (batch_size * 1, hidden_size) output = tf.reshape(output, (-1, output.shape[2])) # output shape == (batch_size * 1, vocab) x = self.fc(output) return x, state, attention_weights def initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.dec_units)) encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE) decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE) ###Output _____no_output_____ ###Markdown **Optimizer and Loss Function**We are using "Adam" as the optimizer for the model and sparse_softmax_cross_entropy as the loss function.we can play around with these to see which is better suitable for our model, but to train the model we will be going with the above mentoned optimizer and the loss function ###Code optimizer = tf.train.AdamOptimizer() def loss_function(real, pred): mask = 1 - np.equal(real, 0) loss_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=real, logits=pred) * mask return tf.reduce_mean(loss_) ###Output _____no_output_____ ###Markdown Training the modelwe will train the model by passing the training data which we split and passed it through the funtion. we will be saving out model on each iteration of the epochs We will be running this model with **30 Epochs**we will play around with the number of epochs to see what best works for the model ###Code EPOCHS = 40 for epoch in range(EPOCHS): start = time.time() hidden = encoder.initialize_hidden_state() total_loss = 0 for (batch, (inp, targ)) in enumerate(dataset): loss = 0 with tf.GradientTape() as tape: enc_output, enc_hidden = encoder(inp, hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([targ_lang.word2idx['<start>']] * BATCH_SIZE, 1) # Teacher forcing - feeding the target as the next input for t in range(1, targ.shape[1]): # passing enc_output to the decoder predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output) loss += loss_function(targ[:, t], predictions) # using teacher forcing dec_input = tf.expand_dims(targ[:, t], 1) batch_loss = (loss / int(targ.shape[1])) total_loss += batch_loss variables = encoder.variables + decoder.variables gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) if batch % 100 == 0: print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1, batch, batch_loss.numpy())) print('Epoch {} Loss {:.4f}'.format(epoch + 1, total_loss / N_BATCH)) print('Time taken for 1 epoch {} sec\n'.format(time.time() - start)) ###Output WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/iterator_ops.py:532: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. Epoch 1 Batch 0 Loss 3.6454 Epoch 1 Loss 2.5360 Time taken for 1 epoch 9.944748163223267 sec Epoch 2 Batch 0 Loss 1.9223 Epoch 2 Loss 1.8720 Time taken for 1 epoch 8.805859565734863 sec Epoch 3 Batch 0 Loss 1.7307 Epoch 3 Loss 1.7082 Time taken for 1 epoch 9.48662543296814 sec Epoch 4 Batch 0 Loss 1.5072 Epoch 4 Loss 1.5026 Time taken for 1 epoch 8.954044580459595 sec Epoch 5 Batch 0 Loss 1.4262 Epoch 5 Loss 1.2997 Time taken for 1 epoch 8.833491802215576 sec Epoch 6 Batch 0 Loss 1.1589 Epoch 6 Loss 1.1484 Time taken for 1 epoch 8.69847846031189 sec Epoch 7 Batch 0 Loss 1.0229 Epoch 7 Loss 1.0363 Time taken for 1 epoch 8.853046417236328 sec Epoch 8 Batch 0 Loss 0.9543 Epoch 8 Loss 0.9238 Time taken for 1 epoch 8.750823974609375 sec Epoch 9 Batch 0 Loss 0.7996 Epoch 9 Loss 0.8197 Time taken for 1 epoch 8.902754068374634 sec Epoch 10 Batch 0 Loss 0.7619 Epoch 10 Loss 0.7445 Time taken for 1 epoch 8.692206859588623 sec Epoch 11 Batch 0 Loss 0.6503 Epoch 11 Loss 0.6723 Time taken for 1 epoch 8.646382093429565 sec Epoch 12 Batch 0 Loss 0.5428 Epoch 12 Loss 0.6044 Time taken for 1 epoch 9.473032712936401 sec Epoch 13 Batch 0 Loss 0.5566 Epoch 13 Loss 0.5469 Time taken for 1 epoch 8.906400442123413 sec Epoch 14 Batch 0 Loss 0.4571 Epoch 14 Loss 0.4824 Time taken for 1 epoch 8.779704809188843 sec Epoch 15 Batch 0 Loss 0.4145 Epoch 15 Loss 0.4292 Time taken for 1 epoch 8.7562735080719 sec Epoch 16 Batch 0 Loss 0.3186 Epoch 16 Loss 0.3694 Time taken for 1 epoch 9.722482442855835 sec Epoch 17 Batch 0 Loss 0.2717 Epoch 17 Loss 0.3141 Time taken for 1 epoch 9.086331129074097 sec Epoch 18 Batch 0 Loss 0.2053 Epoch 18 Loss 0.2676 Time taken for 1 epoch 8.70476484298706 sec Epoch 19 Batch 0 Loss 0.2077 Epoch 19 Loss 0.2372 Time taken for 1 epoch 8.663342237472534 sec Epoch 20 Batch 0 Loss 0.2257 Epoch 20 Loss 0.1914 Time taken for 1 epoch 8.741352319717407 sec Epoch 21 Batch 0 Loss 0.1347 Epoch 21 Loss 0.1585 Time taken for 1 epoch 9.414800882339478 sec Epoch 22 Batch 0 Loss 0.1262 Epoch 22 Loss 0.1400 Time taken for 1 epoch 8.973430871963501 sec Epoch 23 Batch 0 Loss 0.0934 Epoch 23 Loss 0.1284 Time taken for 1 epoch 8.72501254081726 sec Epoch 24 Batch 0 Loss 0.1024 Epoch 24 Loss 0.1261 Time taken for 1 epoch 8.555520296096802 sec Epoch 25 Batch 0 Loss 0.1167 Epoch 25 Loss 0.1142 Time taken for 1 epoch 8.650434017181396 sec Epoch 26 Batch 0 Loss 0.0614 Epoch 26 Loss 0.1074 Time taken for 1 epoch 8.618392705917358 sec Epoch 27 Batch 0 Loss 0.0791 Epoch 27 Loss 0.0931 Time taken for 1 epoch 8.639946460723877 sec Epoch 28 Batch 0 Loss 0.0854 Epoch 28 Loss 0.0784 Time taken for 1 epoch 8.617584466934204 sec Epoch 29 Batch 0 Loss 0.0498 Epoch 29 Loss 0.0723 Time taken for 1 epoch 8.559330224990845 sec Epoch 30 Batch 0 Loss 0.0810 Epoch 30 Loss 0.0688 Time taken for 1 epoch 9.288172245025635 sec Epoch 31 Batch 0 Loss 0.0751 Epoch 31 Loss 0.0665 Time taken for 1 epoch 9.042842388153076 sec Epoch 32 Batch 0 Loss 0.0479 Epoch 32 Loss 0.0616 Time taken for 1 epoch 8.523797512054443 sec Epoch 33 Batch 0 Loss 0.0442 Epoch 33 Loss 0.0621 Time taken for 1 epoch 9.351551055908203 sec Epoch 34 Batch 0 Loss 0.0479 Epoch 34 Loss 0.0609 Time taken for 1 epoch 8.494425773620605 sec Epoch 35 Batch 0 Loss 0.0912 Epoch 35 Loss 0.0610 Time taken for 1 epoch 8.608481407165527 sec Epoch 36 Batch 0 Loss 0.0423 Epoch 36 Loss 0.0576 Time taken for 1 epoch 8.638583660125732 sec Epoch 37 Batch 0 Loss 0.0692 Epoch 37 Loss 0.0570 Time taken for 1 epoch 8.421333312988281 sec Epoch 38 Batch 0 Loss 0.0477 Epoch 38 Loss 0.0552 Time taken for 1 epoch 8.54841160774231 sec Epoch 39 Batch 0 Loss 0.0571 Epoch 39 Loss 0.0553 Time taken for 1 epoch 8.925658226013184 sec Epoch 40 Batch 0 Loss 0.0605 Epoch 40 Loss 0.0551 Time taken for 1 epoch 9.23789644241333 sec ###Markdown PredictionOnce the model is trained we can translate the Italian sentences by passing it to the below function ###Code def Prediction_eval(sentence, encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ): attention_plot = np.zeros((max_length_targ, max_length_inp)) sentence = preprocess_sentence(sentence) inputs = [inp_lang.word2idx[i] for i in sentence.split(' ')] inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs], maxlen=max_length_inp, padding='post') inputs = tf.convert_to_tensor(inputs) result = '' hidden = [tf.zeros((1, units))] enc_out, enc_hidden = encoder(inputs, hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([targ_lang.word2idx['<start>']], 0) for t in range(max_length_targ): predictions, dec_hidden, attention_weights = decoder(dec_input, dec_hidden, enc_out) # storing the attention weigths to plot later on attention_weights = tf.reshape(attention_weights, (-1, )) attention_plot[t] = attention_weights.numpy() predicted_id = tf.argmax(predictions[0]).numpy() result += targ_lang.idx2word[predicted_id] + ' ' if targ_lang.idx2word[predicted_id] == '<end>': return result, sentence, attention_plot # the predicted ID is fed back into the model dec_input = tf.expand_dims([predicted_id], 0) return result, sentence, attention_plot def translate(sentence, encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ): result, sentence, attention_plot = Prediction_eval(sentence, encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ) print('Input: {}'.format(sentence)) print('Predicted translation: {}'.format(result)) english_sample.iloc[:1,:].values[0][0] translate(italian_sample.iloc[:1,:].values[0][0], encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_tar) test = 'venire' translate(sentence=test, encoder=encoder, decoder=decoder, inp_lang= inp_lang, targ_lang= targ_lang, max_length_inp= max_length_inp, max_length_targ= max_length_tar ) ###Output Input: <start> venire <end> Predicted translation: come over <end>
ETL Pipelines/10_imputation_exercise/10_imputations_exercise.ipynb
###Markdown Imputing DataWhen a dataset has missing values, you can either remove those values or fill them in. In this exercise, you'll work with World Bank GDP (Gross Domestic Product) data to fill in missing values. ###Code # run this code cell to read in the data set import pandas as pd df = pd.read_csv('../data/gdp_data.csv', skiprows=4) df.drop('Unnamed: 62', axis=1, inplace=True) # run this code cell to see what the data looks like df.head() # Run this code cell to check how many null values are in the data set df.isnull().sum() ###Output _____no_output_____ ###Markdown There are quite a few null values. Run the code below to plot the data for a few countries in the data set. ###Code import matplotlib.pyplot as plt %matplotlib inline # put the data set into long form instead of wide df_melt = pd.melt(df, id_vars=['Country Name', 'Country Code', 'Indicator Name', 'Indicator Code'], var_name='year', value_name='GDP') # convert year to a date time df_melt['year'] = pd.to_datetime(df_melt['year']) def plot_results(column_name): # plot the results for Afghanistan, Albania, and Honduras fig, ax = plt.subplots(figsize=(8,6)) df_melt[(df_melt['Country Name'] == 'Afghanistan') | (df_melt['Country Name'] == 'Albania') | (df_melt['Country Name'] == 'Honduras')].groupby('Country Name').plot('year', column_name, legend=True, ax=ax) ax.legend(labels=['Afghanistan', 'Albania', 'Honduras']) plot_results('GDP') ###Output _____no_output_____ ###Markdown Afghanistan and Albania are missing data, which show up as gaps in the results. Exercise - Part 1Your first task is to calculate mean GDP for each country and fill in missing values with the country mean. This is a bit tricky to do in pandas. Here are a few links that should be helpful:* https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.DataFrame.groupby.html* https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.transform.html* https://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.DataFrame.fillna.html ###Code # TODO: Use the df_melt dataframe and fill in missing values with a country's mean GDP # If you aren't sure how to do this, # look up something like "how to group data and fill in nan values in pandas" in a search engine # Put the results in a new column called 'GDP_filled'. # HINT: You can do this with these methods: groupby(), transform(), a lambda function, fillna(), and mean() df_melt['GDP_filled'] = df_melt.groupby(['Country Name'])['GDP'].transform(lambda x: x.fillna(x.mean())) # Plot the results plot_results('GDP_filled') ###Output _____no_output_____ ###Markdown This is somewhat of an improvement. At least there is no missing data; however, because GDP tends to increase over time, the mean GDP is probably not the best way to fill in missing values for this particular case. Next, try using forward fill to deal with any missing values. Excercise - Part 2Use the fillna forward fill method to fill in the missing data. Here is the [documentation](https://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.DataFrame.fillna.html). As explained in the course video, forward fill takes previous values to fill in nulls.The pandas fillna method has a forward fill option. For example, if you wanted to use forward fill on the GDP dataset, you could execute `df_melt['GDP'].fillna(method='ffill')`. However, there are two issues with that code. 1. You want to first make sure the data is sorted by year2. You need to group the data by country name so that the forward fill stays within each countryWrite code to first sort the df_melt dataframe by year, then group by 'Country Name', and finally use the forward fill method. ###Code # TODO: Use forward fill to fill in missing GDP values # HINTS: use the sort_values(), groupby(), and fillna() methods df_melt['GDP_ffill'] = df_melt.sort_values('year').groupby(['Country Name'])['GDP'].fillna(method='ffill') # plot the results plot_results('GDP_ffill') ###Output _____no_output_____ ###Markdown This looks better at least for the Afghanistan data; however, the Albania data is still missing values. You can fill in the Albania data using back fill. That is what you'll do next. Exercise - Part 3This part is similar to Part 2, but now you will use backfill. Write code that backfills the missing GDP data. ###Code # TODO: Use back fill to fill in missing GDP values # HINTS: use the sort_values(), groupby(), and fillna() methods df_melt['GDP_bfill'] = df_melt.sort_values('year').groupby(['Country Name'])['GDP'].fillna(method='bfill') # plot the results plot_results('GDP_bfill') ###Output _____no_output_____ ###Markdown Conclusion In this case, the GDP data for all three countries is now complete. Note that forward fill did not fill all the Albania data because the first data entry in 1960 was NaN. Forward fill would try to fill the 1961 value with the NaN value from 1960.To completely fill the entire GDP data for all countries, you might have to run both forward fill and back fill. Note as well that the results will be slightly different depending on if you run forward fill first or back fill first. Afghanistan, for example, is missing data in the middle of the data set. Hence forward fill and back fill will have slightly different results.Run this next code cell to see if running both forward fill and back fill end up filling all the GDP NaN values. ###Code # Run forward fill and backward fill on the GDP data df_melt['GDP_ff_bf'] = df_melt.sort_values('year').groupby('Country Name')['GDP'].fillna(method='ffill').fillna(method='bfill') # Check if any GDP values are null df_melt['GDP_ff_bf'].isnull().sum() ###Output _____no_output_____
notebooks/GravLook.ipynb
###Markdown First Look at Gravity Data Import Data Files ###Code %reset -f import pandas as pd import numpy as np import matplotlib.dates as dates import warnings warnings.filterwarnings('ignore') import glob, os from time import sleep def inc(x): sleep(1) return x + 1 def add(x, y): sleep(1) return x + y import datetime def dateparse (date_string): return datetime.datetime.strptime(date_string, '%d-%m-%Y %H:%M:%S') def dateparseSPAIN (date_string): return datetime.datetime.strptime(date_string, '%Y-%m-%d-%H:%M:%S') !head ~jovyan/data/bravoseis/gravity/gravimetro_bruto/21012019.gravimetro_bruto.proc !ls /home/jovyan/data/bravoseis_data/SADO/jan_2019/gravimetro_bruto.proc/ !head /home/jovyan/data/bravoseis_data/SADO/jan_2019/gravimetro_bruto.proc/17012019.gravimetro_bruto.proc ###Output fecha,status,gravimetria_bruta,spring_tension,longitud,latitud,velocidad,rumbo,fecha_telegrama 17-01-2019 00:00:00,0,15303.49,15305.59,-58.905947,-62.2022067,0.12,177.08,17-01-2019 00:00:00 17-01-2019 00:00:01,0,15303.51,15305.58,-58.905947,-62.2022068,0.12,177.43,17-01-2019 00:00:01 17-01-2019 00:00:02,0,15303.53,15305.58,-58.905947,-62.2022069,0.12,177.759,17-01-2019 00:00:02 17-01-2019 00:00:03,0,15303.55,15305.57,-58.9059471,-62.202207,0.12,178.068,17-01-2019 00:00:03 17-01-2019 00:00:04,0,15303.57,15305.57,-58.9059471,-62.2022072,0.12,178.356,17-01-2019 00:00:04 17-01-2019 00:00:05,0,15303.59,15305.56,-58.9059471,-62.2022072,0.12,178.624,17-01-2019 00:00:05 17-01-2019 00:00:06,0,15303.61,15305.56,-58.9059471,-62.2022073,0.12,178.873,17-01-2019 00:00:06 17-01-2019 00:00:07,0,15303.63,15305.55,-58.9059471,-62.2022074,0.12,179.103,17-01-2019 00:00:07 17-01-2019 00:00:08,0,15303.65,15305.55,-58.9059471,-62.2022075,0.12,179.315,17-01-2019 00:00:08 ###Markdown Read Gravity Files ###Code %%time path = '/home/jovyan/data/bravoseis_data/SADO/jan_2019/gravimetro_bruto.proc/' # use your path all_files = glob.glob(os.path.join(path, "*.proc")) # advisable to use os.path.join as this makes concatenation OS independent df_from_each_file = (pd.read_csv(f, parse_dates=True, date_parser=dateparse, index_col='fecha', dtype = {'Date': object,'status': np.float64, 'gravimetria_bruta': np.float64, 'spring_tension': np.float64, 'longitud': np.float64, 'latitud': np.float64, 'velocidad': np.float64,'rumbo': np.float64 }) for f in all_files) concatenated_df = pd.concat(df_from_each_file, ignore_index=False) df_grav = concatenated_df.sort_values(by='fecha_telegrama') df_grav.head() del df_grav['fecha_telegrama'] del df_grav['rumbo'] del df_grav['velocidad'] del df_grav['spring_tension'] del df_grav['status'] df_grav = df_grav.resample('s').mean() df_grav.head() ###Output _____no_output_____ ###Markdown Read Bathy Files ###Code #!head /home/jovyan/data/bravoseis_data/SADO/jan_2019/posicion.proc/01012019.posicion.proc %%time path = '/home/jovyan/data/bravoseis_data/SADO/jan_2019/posicion.proc/' # use your path all_files = glob.glob(os.path.join(path, "*.proc")) # advisable to use os.path.join as this makes concatenation OS independent df_from_each_Bath = (pd.read_csv(f, parse_dates=True, date_parser=dateparse, index_col='fecha', dtype = {'Date': object,'longitud': np.float64, 'latitud': np.float64, 'rumbo': np.float64, 'velocidad': np.float64, 'profundidad': np.float64, 'cog': np.float64,'sog': np.float64 }) for f in all_files) concatBathy_df = pd.concat(df_from_each_Bath, ignore_index=False) df_bath = concatBathy_df.sort_values(by='fecha_telegrama') df_bath.head() del df_bath['fecha_telegrama'] del df_bath['rumbo'] del df_bath['velocidad'] df_bath = df_bath.resample('s').mean() df_bath.head() ###Output _____no_output_____ ###Markdown Merge Dataframes ###Code test = pd.merge(df_bath, df_grav,how='inner', indicator=True, left_index=True, right_index=True, suffixes=('_B', '_G')) del df_bath del df_grav df_gravMerge = pd.DataFrame() df_gravMerge = test[test['_merge'] == 'both'] del df_gravMerge['_merge'] df_gravMerge['longitud'] = df_gravMerge['longitud_G'] df_gravMerge['latitud'] = df_gravMerge['latitud_G'] del df_gravMerge['longitud_B'] del df_gravMerge['latitud_B'] del df_gravMerge['longitud_G'] del df_gravMerge['latitud_G'] df_gravMerge.head() df_gravMerge['survey']= np.nan # Survey Part df_gravMerge['loca'] = np.nan # Survey Location df_gravMerge['line']= np.nan # Line Number df_gravMerge['date']=df_gravMerge.index.date df_gravMerge['time']=df_gravMerge.index.time del test !tail bravoseis_tables.csv df_lineNumbers = (pd.read_csv('bravoseis_tables.csv', parse_dates=[3, 4], date_parser=dateparseSPAIN)) df_lineNumbers.columns = ['survey','loca','line', 's_time','e_time'] #df_lineNumbers.head(50) df_lineNumbers.dtypes pd.to_datetime(df_lineNumbers.e_time, format = "%Y-%m-%d-%H:%M:%S"); for index, row in df_lineNumbers.iterrows(): mask = (df_gravMerge.index > row.s_time) & (df_gravMerge.index <= row.e_time) df_gravMerge.survey[mask]= row.survey df_gravMerge.loca[mask]= row.loca df_gravMerge.line[mask]= row.line gravimetria = df_gravMerge.dropna() del df_gravMerge gravimetria['profundidad']= gravimetria.profundidad.round(2) gravimetria['cog']= gravimetria.cog.round(2) gravimetria['sog']= gravimetria.sog.round(2) gravimetria['gravimetria_bruta']= gravimetria.gravimetria_bruta.round(3) gravimetria.head() gravimetria = gravimetria[gravimetria.loca != 'EdifaceA']; gravimetria = gravimetria[gravimetria.loca != 'Transit']; gravimetria = gravimetria[gravimetria.line != 'RIF12']; gravimetria = gravimetria[gravimetria.line != 'RIF11']; gravimetria = gravimetria[gravimetria.line != 'RIF11b']; gravimetria = gravimetria[gravimetria.line != 'RIF10']; gravimetria = gravimetria[gravimetria.line != 'RIF04']; gravimetria = gravimetria[gravimetria.line != 'RIF03']; gravimetria = gravimetria[gravimetria.line != 'RIF02']; gravimetria = gravimetria[gravimetria.line != 'ORK10']; gravimetria = gravimetria[gravimetria.line != 'ORK17']; gravimetria = gravimetria[gravimetria.line != 'ORK02']; #Start of line for OR_2 at 08:59 UTC. The streamer is completely outside the line (Feather angle of -13 º in the good part of the line). At 1300 UTC end of line for OR_2 gravimetria = gravimetria[gravimetria.line != 'ORK05']; gravimetria = gravimetria[gravimetria.line != 'ORK18b'];#We begin the Turn B with the line OR18. There is a large iceberg 4 km away, at the moment we will not deviate from the line. At 15:10 (UTC) the guns have tangled with the streamer. They stopped the acquisition of data. At 18:05 we returned to the initial point to redo the survey of the line 2300 UTC bad weather, large waves make multibeam data poor quality. gravimetria = gravimetria[gravimetria.line != 'T10']; gravimetria = gravimetria.rename(columns={"profundidad": "depth", "longitud": "Longitude", "latitud": "Latitude"}); ###Output _____no_output_____ ###Markdown Calculate Local Gravity for Reduction http://the-mostly.ru/misc/local_gravity_online_calculator.htmlγ = 9.7803267714*(1 + 0.00193185138639*sin2θ)/(1 - 0.00669437999013*sin2θ)1/2 * (1 + z/a)-2 ###Code gravimetria['depth_na']=gravimetria.depth * -1 gravimetria['normal_grav']=(9.7803267714*(1 + 0.00193185138639*np.sin(2*gravimetria.Latitude.values))\ /(1 - 0.00669437999013*np.sin(2*gravimetria.Latitude.values))**(1/2) * (1 + -0.5/6371000)**-2)*100000 gravimetria['normal_grav']= gravimetria.normal_grav.round(2) gravimetria['normal_mean']= gravimetria.normal_grav.mean() gravimetria['normal_mean']=gravimetria.normal_mean.round(0) gravimetria['Normal_Geoff'] = 982104 gravimetria['elevation']= -0.5 gravimetria['FaCor']= (0.3087691 - 0.0004398)*np.sin(gravimetria.Latitude.values)**2 * gravimetria.elevation.values + (7.2125e-8 * gravimetria.elevation.values**2) gravimetria['relGrav'] = gravimetria.gravimetria_bruta.values.astype(float)- gravimetria.gravimetria_bruta.values.mean() gravimetria['relGrav']= gravimetria.relGrav.round(2) gravimetria['Abs_Gravity']= gravimetria['normal_grav'] + gravimetria['relGrav'] gravimetria['Abs_Gravity']= gravimetria.Abs_Gravity.round(2) gravimetria['Abs_Geoff']= gravimetria['Normal_Geoff'] + gravimetria['relGrav'] gravimetria['Abs_Geoff']= gravimetria.Abs_Geoff.round(2) gravimetria = gravimetria.rename(columns={"gravimetria_bruta": "raw_grav"}); gravimetria.head() ###Output _____no_output_____ ###Markdown Exact: E = (-2*Ws*ve*cos(lat))-(ve^2)/(ra)*(1-(h/ra)-())-()Where:E Eötvös correctionV Velocity in knots = sogα Heading = cogφ Latitude e Correction for Earth’s flattening towards the poles = 0.0818191908426ra Earth’s major axis = 6378137.0 mrb Earth’s minor axis = 6356752.3141 mε Earth’s eccentricity = (ra-rb)/(ra)Ws Angular velocity of Earth’s rotation = 7.2921158533 E-5 rad/secνe & νn Velocities in easting & northing directions calculated from the heading and velocity channels ###Code # e= 0.0818191908426 # Correction for Earth’s flattening towards the poles # ra = 6378137.0 # (m) earth's major axis # rb = 6356752.3141 # (m) earth's minor axis # ecc = (ra - rb)/ ra # Ws = 7.2921158533e-5 # Angular velocity of Earth’s rotation rad/sec gravimetria.to_csv('gravimetria13.csv'); #gravimetria.sample(100) gravimetria.hvplot.points('fecha', 'gravimetria_bruta', color='gravimetria_bruta', cmap='colorwheel', size=.5, hover_cols=['cog', 'line'], title= 'proc_gravity') gravimetria.hvplot.scatter('Longitude', 'Latitude', height=500, color ='gravimetria_bruta', cmap='colorwheel', size=50, hover_cols=['line'], title= 'proc_gravity subset') df_minuteGrav2.hvplot.points('index', 'proc_gravity', color='proc_gravity', cmap='colorwheel', size=.5, hover_cols=['cog'], title= 'proc_gravity') df_minuteGrav.hvplot.scatter('lon ', 'lat', height=500, color ='gravimetria_bruta', cmap='colorwheel', size=50, hover_cols=['depth'], title= 'proc_gravity subset') ###Output _____no_output_____ ###Markdown Gravity is measured in MGals ###Code df_gravMerge['eotvos'] = 4.040 * df_gravMerge['sog'].values * df_gravMerge['cog'].apply(np.sin)* df_gravMerge['latitud'].apply(np.cos) + (0.001211 * df_gravMerge['sog']**2 ) df_gravMerge.head() ###Output _____no_output_____ ###Markdown Latitude Correction https://rallen.berkeley.edu/teaching/F04_GEO594_IntroAppGeophys/Lectures/L03_GravCorrAnalysis.pdf Geodetic Reference System (GRS-1967) formula gφ =9.780318(1+0.0053024sin2φ−0.0000059sin2 2φ) m/s2 Bouguer correction Accounts for rock thickness between current and base station elevation Treat the rock as an infinite horizontal slab: CB = 0.000419∆hρ where ∆h is in m and ρ is in km/m3 ###Code #df_gravMerge.size df_minuteGrav.size df_minuteGrav2=df_minuteGrav.loc['2019-01-20 00:00:00':'2019-01-24 00:00:00'] df_temp=df_minuteGrav.loc['2019-01-26 21:00:00':'2019-02-05 23:58:00'] df_minuteGrav2=df_minuteGrav2.append(df_temp) df_minuteGrav2.hvplot.points('lon', 'lat', height=500, color='proc_gravity', cmap='colorwheel', size=3, hover_cols=['depth'], title= 'proc_gravity', fontsize={'title': 16, 'labels': 14, 'xticks': 12, 'yticks': 12}) #df_minuteGrav2.hvplot.heatmap(x='lon', y='lat', C='proc_gravity', reduce_function=np.mean, colorbar=True) ###Output _____no_output_____ ###Markdown Things to notice:1. The depth signiature is visable2. Examine crossing paths... there is a directioal dependence to our readings related to ship direction. 3. Is the difference between these lines just the ETVOS correction or are their other corrections that need to be applied? 4. Whould you please share the processing stream? ###Code df_minuteGrav2.hvplot.points('index', 'proc_gravity', color='proc_gravity', cmap='colorwheel', size=.5, hover_cols=['cog'], title= 'proc_gravity') df_minuteGrav2.head(1) cond1 = df_minuteGrav2["lat"] < -62.44 cond2 = df_minuteGrav2["lat"] > -62.45 cond3 = df_minuteGrav2["lon"] > -58.42 cond4 = df_minuteGrav2["lon"] < -58.36 df_minuteGrav3 = df_minuteGrav2[cond1 & cond2 & cond3 & cond4] del df_minuteGrav3['eotvos'] del df_minuteGrav3['grav_corr'] df_minuteGrav3.head() df_minuteGrav3.hvplot.scatter('lon', 'lat', height=500, color='proc_gravity', cmap='colorwheel', size=50, hover_cols=['depth'], title= 'proc_gravity subset').opts(bgcolor= grey) df_minuteGrav3.to_csv('proc_gravity_subset.csv') ###Output _____no_output_____ ###Markdown The gravitational constant in SI units :math:`m^3 kg^{-1} s^{-1}` GRAVITATIONAL_CONST = 0.00000000006673 If terrain corrections (see below) are not applied, the term simple Bouguer anomaly is used. If they have, the term complete Bouguer anomaly is used. A second order correction to account for the curvature of the Earth is often added to this calculation. ###Code ellipsoid = get_ellipsoid() #Convert latitude to radians latitude_rad = np.radians(latitude) prime_vertical_radius = ellipsoid.semimajor_axis / np.sqrt(1 - ellipsoid.first_eccentricity ** 2 * np.sin(latitude_rad) ** 2) # Instead of computing X and Y, we only comupute the projection on the XY plane: # xy_projection = sqrt( X**2 + Y**2 ) xy_projection = (height + prime_vertical_radius) * np.cos(latitude_rad) z_cartesian = (height + (1 - ellipsoid.first_eccentricity ** 2) * prime_vertical_radius) * np.sin(latitude_rad) radius = np.sqrt(xy_projection ** 2 + z_cartesian ** 2) geocentric_latitude = 180 / np.pi * np.arcsin(z_cartesian / radius) return geocentric_latitude, radius ###Output _____no_output_____
naukri-scrapper.ipynb
###Markdown to get all search result jobs rather than only top 10 pages(if exists) follow: to get all jobs get total no in serach reesults and then keep a counter in inner for loop. then stop when counter passes totla search result no. ###Code # store in whatever formate you want to for further implementation of methos # json, csv, or ..... ###Output _____no_output_____
answers/Worksheet 1.2 - Exploring One Dimensional Data - Answers.ipynb
###Markdown Worksheet 1.2: Exploring One Dimensional Data - AnswersThis worksheet covers concepts covered in the first half of Module 1 - Exploratory Data Analysis in One Dimension. It should take no more than 20-30 minutes to complete. Please raise your hand if you get stuck. There are many ways to accomplish the tasks that you are presented with, however you will find that by using the techniques covered in class, the exercises should be relatively simple. Import the LibrariesFor this exercise, we will be using:* Pandas (http://pandas.pydata.org/pandas-docs/stable/)* Numpy (https://docs.scipy.org/doc/numpy/reference/)* Matplotlib (http://matplotlib.org/api/pyplot_api.html) ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') %pylab inline ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown Exercise 1: Summarize the DataFor this exercise, you are given a Series of random numbers creatively names `random_numbers`. For the first exercise please do the following:1. Remove all the numbers less than 102. Sort the series3. Calculate the Tukey 5 number summary for this dataset4. Count the number of even and odd numbers5. Find the five largest and 5 smallest numbers in the series ###Code #Generate a series of random numbers between 1 and 100. random_numbers = pd.Series( np.random.randint(1, 100, 50) ) # Your code here... #Filter the Series random_numbers = random_numbers[random_numbers >= 10] #Sort the Series random_numbers.sort_values(inplace=True) #Calculate the Tukey 5 Number Summary random_numbers.describe() #Count the number of even and odd numbers even_numbers = random_numbers[random_numbers % 2 == 0].count() odd_numbers = random_numbers[random_numbers % 2 != 0].count() print( "Even numbers: " + str(even_numbers)) print( "Odd numbers: " + str(odd_numbers)) #Find the five largest and smallest numbers print( "Smallest Numbers:") print( random_numbers.head(5)) print( "Largest Numbers:") print( random_numbers.tail(5)) ###Output Even numbers: 17 Odd numbers: 27 Smallest Numbers: 11 13 3 15 4 16 48 19 47 19 dtype: int64 Largest Numbers: 38 94 46 97 43 98 32 99 20 99 dtype: int64 ###Markdown Exercise 2: Using the random number Series create a histogram with 8 bins. ###Code random_numbers.hist(bins=8) ###Output _____no_output_____ ###Markdown Exercise 3:You have been given a list of US phone numbers. The area code is the first three digits. Your task is to produce a summary of how many times each area code appears in the list. To do this you will need to:1. Extract the area code from each phone number2. Count the unique occurances. ###Code phone_numbers = [ '(833) 759-6854', '(811) 268-9951', '(855) 449-4648', '(833) 212-2929', '(833) 893-7475', '(822) 346-3086', '(844) 259-9074', '(855) 975-8945', '(811) 385-8515', '(811) 523-5090', '(844) 593-5677', '(833) 534-5793', '(899) 898-3043', '(833) 662-7621', '(899) 146-8244', '(822) 793-4965', '(822) 641-7853', '(833) 153-7848', '(811) 958-2930', '(822) 332-3070', '(833) 223-1776', '(811) 397-1451', '(844) 096-0377', '(822) 000-0717', '(899) 311-1880'] phone_number_series = pd.Series(phone_numbers) area_codes = phone_number_series.str.slice(1,4) area_codes2 = phone_number_series.str.extract( '\((\d{3})\)', expand=False) area_codes3 = phone_number_series.str.split(')').str[0].str.replace('(','') area_codes.value_counts() area_codes2.value_counts() area_codes3.value_counts() ###Output _____no_output_____ ###Markdown Worksheet 1.2: Exploring One Dimensional Data - AnswersThis worksheet covers concepts covered in the first half of Module 1 - Exploratory Data Analysis in One Dimension. It should take no more than 20-30 minutes to complete. Please raise your hand if you get stuck. There are many ways to accomplish the tasks that you are presented with, however you will find that by using the techniques covered in class, the exercises should be relatively simple. Import the LibrariesFor this exercise, we will be using:* Pandas (http://pandas.pydata.org/pandas-docs/stable/)* Numpy (https://docs.scipy.org/doc/numpy/reference/)* Matplotlib (http://matplotlib.org/api/pyplot_api.html) ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') %pylab inline ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown Exercise 1: Summarize the DataFor this exercise, you are given a Series of random numbers creatively names `random_numbers`. For the first exercise please do the following:1. Remove all the numbers less than 102. Sort the series3. Calculate the Tukey 5 number summary for this dataset4. Count the number of even and odd numbers5. Find the five largest and 5 smallest numbers in the series ###Code #Generate a series of random numbers between 1 and 100. random_numbers = pd.Series( np.random.randint(1, 100, 50) ) # Your code here... #Filter the Series random_numbers = random_numbers[random_numbers >= 10] #Sort the Series random_numbers.sort_values(inplace=True) #Calculate the Tukey 5 Number Summary random_numbers.describe() #Count the number of even and odd numbers even_numbers = random_numbers[random_numbers % 2 == 0].count() odd_numbers = random_numbers[random_numbers % 2 != 0].count() print( "Even numbers: " + str(even_numbers)) print( "Odd numbers: " + str(odd_numbers)) #Find the five largest and smallest numbers print( "Smallest Numbers:") print( random_numbers.head(5)) print( "Largest Numbers:") print( random_numbers.tail(5)) ###Output Even numbers: 17 Odd numbers: 27 Smallest Numbers: 11 13 3 15 4 16 48 19 47 19 dtype: int64 Largest Numbers: 38 94 46 97 43 98 32 99 20 99 dtype: int64 ###Markdown Exercise 2: Using the random number Series create a histogram with 8 bins. ###Code random_numbers.hist(bins=8) ###Output _____no_output_____ ###Markdown Exercise 3:You have been given a list of US phone numbers. The area code is the first three digits. Your task is to produce a summary of how many times each area code appears in the list. To do this you will need to:1. Extract the area code from each phone number2. Count the unique occurances. ###Code phone_numbers = [ '(833) 759-6854', '(811) 268-9951', '(855) 449-4648', '(833) 212-2929', '(833) 893-7475', '(822) 346-3086', '(844) 259-9074', '(855) 975-8945', '(811) 385-8515', '(811) 523-5090', '(844) 593-5677', '(833) 534-5793', '(899) 898-3043', '(833) 662-7621', '(899) 146-8244', '(822) 793-4965', '(822) 641-7853', '(833) 153-7848', '(811) 958-2930', '(822) 332-3070', '(833) 223-1776', '(811) 397-1451', '(844) 096-0377', '(822) 000-0717', '(899) 311-1880'] phone_number_series = pd.Series(phone_numbers) area_codes = phone_number_series.str.slice(1,4) area_codes2 = phone_number_series.str.extract( '\((\d{3})\)', expand=False) area_codes3 = phone_number_series.str.split(')').str[0].str.replace('(','') area_codes.value_counts() area_codes2.value_counts() area_codes3.value_counts() ###Output _____no_output_____
notebooks/neuron_view_gpt2.ipynb
###Markdown Neuron ViewThe attention-head view visualizes attention, as well as query and key values, in a particuler attention head. ###Code from bertviz.transformers_neuron_view import GPT2Model, GPT2Tokenizer from bertviz.neuron_view import show ###Output _____no_output_____ ###Markdown Usage* **Hover** over any of the tokens on the left side of the visualization to filter attention from that token.* Then **click** on the **plus** icon that is revealed when hovering. This shows the query vectors, key vectors, and intermediate computations for the attention weights (blue=positive, orange=negative). * Once in the expanded view, **hover** over any other **token** on the left to see the associated attention computations.* **Click** on the **Layer** or **Head** drop-downs to change the model layer or head (zero-indexed). ###Code model_type = 'gpt2' model_version = 'gpt2' model = GPT2Model.from_pretrained(model_version) tokenizer = GPT2Tokenizer.from_pretrained(model_version) text = "At the store, she bought apples, oranges, bananas," show(model, model_type, tokenizer, text, display_mode='dark') ###Output _____no_output_____ ###Markdown Neuron ViewThe attention-head view visualizes attention, as well as query and key values, in a particuler attention head. ###Code from bertviz.transformers_neuron_view import GPT2Model, GPT2Tokenizer from bertviz.neuron_view import show ###Output _____no_output_____ ###Markdown Usage* **Hover** over any of the tokens on the left side of the visualization to filter attention from that token.* Then **click** on the **plus** icon that is revealed when hovering. This shows the query vectors, key vectors, and intermediate computations for the attention weights (blue=positive, orange=negative). * Once in the expanded view, **hover** over any other **token** on the left to see the associated attention computations.* **Click** on the **Layer** or **Head** drop-downs to change the model layer or head (zero-indexed). ###Code model_type = 'gpt2' model_version = 'gpt2' model = GPT2Model.from_pretrained(model_version) tokenizer = GPT2Tokenizer.from_pretrained(model_version) text = "At the store, she bought apples, oranges, bananas," show(model, model_type, tokenizer, text, display_mode='dark') ###Output _____no_output_____
finmath/termstructure/curve_bootstrap_example.ipynb
###Markdown Brazilian bond and the Curve Bootstrap class Author: Gustavo Soares ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline from finmath.brazilian_bonds.government_bonds import LTN, NTNF from finmath.termstructure.curve_models import CurveBootstrap as CB ###Output _____no_output_____ ###Markdown LTNs (zero coupon bonds) ###Code ref_date = pd.to_datetime('2021-02-05').date() ltn_expires = [ '2021-04-01', '2021-07-01', '2021-10-01', '2022-01-01', '2022-04-01', '2022-07-01', '2022-10-01', '2023-01-01', '2023-07-01', '2024-01-01', '2024-07-01', ] ltn_yields = [ 0.020580, 0.023885, 0.029904, 0.034463, 0.040148, 0.044847, 0.049137, 0.052500, 0.057519, 0.061150, 0.064247, ] ltn_prices = [] ltn_cash_flows = [] for T, y in zip(ltn_expires, ltn_yields): ltn = LTN(expiry=T, rate=y, ref_date=ref_date) ltn_prices += [ltn.price] ltn_cash_flows += [pd.Series(index=[pd.to_datetime(T)], data=[ltn.principal])] ###Output _____no_output_____ ###Markdown NTNFs (coupon paying bonds) ###Code ntnf_expires = [ '2023-01-01', '2025-01-01', '2027-01-01', '2029-01-01', '2031-01-01', ] ntnf_yields = [ 0.05113, 0.06215, 0.06869, 0.07317, 0.07639, ] ntnf_prices = [] ntnf_cash_flows = [] for T, y in zip(ntnf_expires, ntnf_yields): ntnf = NTNF(expiry=T, rate=y, ref_date=ref_date) ntnf_prices += [ntnf.price] ntnf_cash_flows += [ntnf.cash_flows] ###Output _____no_output_____ ###Markdown Curve Bootstrap ###Code all_bond_prices = ltn_prices + ntnf_prices all_bond_cash_flows = ltn_cash_flows + ntnf_cash_flows cb = CB(prices=all_bond_prices, cash_flows=all_bond_cash_flows, ref_date=ref_date) ###Output _____no_output_____ ###Markdown Plot curves ###Code ntnf_curve = pd.DataFrame(index=[cb.dc.tf(cb.ref_date, x) for x in pd.to_datetime(ntnf_expires)], columns=['ntnfs'], data=ntnf_yields).sort_index() ltn_curve = pd.DataFrame(index=[cb.dc.tf(cb.ref_date, x) for x in pd.to_datetime(ltn_expires)], columns=['ltns'], data=ltn_yields).sort_index() zero_curve = (cb.zero_curve).to_frame('zero') curves = pd.concat([zero_curve, ltn_curve, ntnf_curve], join='outer', axis=1, sort=True) curves.plot(figsize=(15,10), fontsize=16, marker='o') plt.title('Bootstrap (using flat-forward) curves on %s' % cb.ref_date.strftime('%d-%b-%y'),fontsize=20) plt.legend(fontsize=20) plt.show() ###Output _____no_output_____
docs/source/tutorials/02-recover-a-planet.ipynb
###Markdown How to recover a known planet in Kepler data? This tutorial will demonstrate the basic steps required to recover the signal of [Kepler-10b](https://en.wikipedia.org/wiki/Kepler-10b), the first rocky planet that was discovered by Kepler!Let's start by downloading the pixel data for this target for one of Kepler's observing quarters: ###Code import lightkurve as lk tpf = lk.search_targetpixelfile("Kepler-10", quarter=3).download() ###Output _____no_output_____ ###Markdown Let's use the `plot` method to show the pixel data at one point in time (frame index 100). We'll also pass along a few plotting arguments. ###Code tpf.plot(frame=100, scale='log', show_colorbar=True); ###Output _____no_output_____ ###Markdown The target pixel file appears to show one bright star with a core brightness of approximately 50,000 electrons/seconds. Now, we will use the ``to_lightcurve`` method to create a simple aperture photometry lightcurve using themask defined by the pipeline which is stored in `tpf.pipeline_mask`. ###Code lc = tpf.to_lightcurve(aperture_mask=tpf.pipeline_mask) ###Output _____no_output_____ ###Markdown Let's take a look at the output lightcurve. ###Code lc.plot(); ###Output _____no_output_____ ###Markdown Now let's use the `flatten` method, which removes long-term variability that we are not interested in using a high-pass filter called *Savitzky-Golay*. ###Code flat, trend = lc.flatten(window_length=301, return_trend=True) ###Output _____no_output_____ ###Markdown Let's plot the trend estimated in red: ###Code ax = lc.errorbar(label="Kepler-10") # plot() returns a matplotlib axes ... trend.plot(ax=ax, color='red', lw=2, label='Trend'); # which we can pass to the next plot() to use the same axes ###Output _____no_output_____ ###Markdown and the flat lightcurve: ###Code flat.errorbar(label="Kepler-10"); ###Output _____no_output_____ ###Markdown Now, let's run a period search function using the well-known Box-Least Squares algorithm (BLS), which was added to the [AstroPy package](http://docs.astropy.org) in version 3.1.We will use the BLS algorithm to search a pre-defined grid of transit periods: ###Code import numpy as np periodogram = flat.to_periodogram(method="bls", period=np.arange(0.3, 1.5, 0.001)) periodogram.plot(); ###Output _____no_output_____ ###Markdown It looks like we found a strong signal with a periodicity of 0.8 days! ###Code best_fit_period = periodogram.period_at_max_power print('Best fit period: {:.3f}'.format(best_fit_period)) flat.fold(period=best_fit_period, t0=periodogram.transit_time_at_max_power).errorbar(); ###Output _____no_output_____ ###Markdown How to recover a known planet in Kepler data? This tutorial demonstrates the basic steps required to recover a transiting planet candidate in the Kepler data.We will show how you can recover the signal of [Kepler-10b](https://en.wikipedia.org/wiki/Kepler-10b), the first rocky planet that was discovered by Kepler! ###Code from lightkurve import search_targetpixelfile tpf = search_targetpixelfile("Kepler-10", quarter=3).download() tpf.shape ###Output _____no_output_____ ###Markdown Let's use the `plot` method and pass along an aperture mask and a few plotting arguments. ###Code tpf.plot(scale='log'); ###Output _____no_output_____ ###Markdown The target pixel file contains one bright star with approximately 50,000 counts. Now, we will use the ``to_lightcurve`` method to create a simple aperture photometry lightcurve using themask defined by the pipeline which is stored in `tpf.pipeline_mask`. ###Code lc = tpf.to_lightcurve(aperture_mask=tpf.pipeline_mask) ###Output _____no_output_____ ###Markdown Let's take a look at the output lightcurve. ###Code lc.plot(); ###Output _____no_output_____ ###Markdown Now let's use the `flatten` method, removes long-term variability that we are not interested in. ###Code flat, trend = lc.flatten(window_length=301, return_trend=True) ###Output _____no_output_____ ###Markdown Let's plot the trend estimated by the Savitzky-Golay filter: ###Code ax = lc.errorbar() # plot() returns a matplotlib axes ... trend.plot(ax=ax, color='red', label='Trend'); # which we can pass to the next plot() to use the same axes ###Output _____no_output_____ ###Markdown and the flat lightcurve: ###Code flat.errorbar(); ###Output _____no_output_____ ###Markdown Now, let's run a period search function using the [Box-Least Squares algorithm](http://docs.astropy.org/en/latest/stats/bls.html), which was added to the [AstroPy package](http://docs.astropy.org) in version 3.1. ###Code from astropy.stats import BoxLeastSquares bls = BoxLeastSquares(flat.time, flat.flux, flat.flux_err) ###Output _____no_output_____ ###Markdown We will use the BLS algorithm to search a pre-defined grid of transit periods and durations: ###Code import numpy as np periods = np.arange(0.3, 1.5, 0.001) durations = np.arange(0.005, 0.15, 0.001) periodogram = bls.power(periods, durations) import matplotlib.pyplot as plt plt.plot(periodogram.period, periodogram.power) plt.ylabel("Power") plt.xlabel("Period [day]"); best_fit = periods[np.argmax(periodogram.power)] print('Best Fit Period: {:0.4f} days'.format(best_fit)) flat.fold(best_fit).errorbar(); ###Output _____no_output_____ ###Markdown How to recover a known planet in Kepler data? This tutorial will demonstrate the basic steps required to recover the signal of [Kepler-10b](https://en.wikipedia.org/wiki/Kepler-10b), the first rocky planet that was discovered by Kepler!Let's start by downloading the pixel data for this target for one of Kepler's observing quarters: ###Code import lightkurve as lk tpf = lk.search_targetpixelfile("Kepler-10", quarter=3).download() ###Output _____no_output_____ ###Markdown Let's use the `plot` method to show the pixel data at one point in time (frame index 100). We'll also pass along a few plotting arguments. ###Code tpf.plot(frame=100, scale='log', show_colorbar=True); ###Output _____no_output_____ ###Markdown The target pixel file appears to show one bright star with a core brightness of approximately 50,000 electrons/seconds. Now, we will use the ``to_lightcurve`` method to create a simple aperture photometry lightcurve using themask defined by the pipeline which is stored in `tpf.pipeline_mask`. ###Code lc = tpf.to_lightcurve(aperture_mask=tpf.pipeline_mask) ###Output _____no_output_____ ###Markdown Let's take a look at the output lightcurve. ###Code lc.plot(); ###Output _____no_output_____ ###Markdown Now let's use the `flatten` method, which removes long-term variability that we are not interested in using a high-pass filter called *Savitzky-Golay*. ###Code flat, trend = lc.flatten(window_length=301, return_trend=True) ###Output _____no_output_____ ###Markdown Let's plot the trend estimated in red: ###Code ax = lc.errorbar(label="Kepler-10") # plot() returns a matplotlib axes ... trend.plot(ax=ax, color='red', lw=2, label='Trend'); # which we can pass to the next plot() to use the same axes ###Output _____no_output_____ ###Markdown and the flat lightcurve: ###Code flat.errorbar(label="Kepler-10"); ###Output _____no_output_____ ###Markdown Now, let's run a period search function using the well-known Box-Least Squares algorithm (BLS), which was added to the [AstroPy package](http://docs.astropy.org) in version 3.1.We will use the BLS algorithm to search a pre-defined grid of transit periods: ###Code import numpy as np periodogram = flat.to_periodogram(method="bls", period=np.arange(0.3, 1.5, 0.001)) periodogram.plot(); ###Output _____no_output_____ ###Markdown It looks like we found a strong signal with a periodicity of 0.8 days! ###Code best_fit_period = periodogram.period_at_max_power print('Best fit period: {:.3f}'.format(best_fit_period)) flat.fold(period=best_fit_period, t0=periodogram.transit_time_at_max_power).errorbar(); ###Output _____no_output_____ ###Markdown How to recover a known planet in Kepler data? This tutorial will demonstrate the basic steps required to recover the signal of [Kepler-10b](https://en.wikipedia.org/wiki/Kepler-10b), the first rocky planet that was discovered by Kepler!Let's start by downloading the pixel data for this target for one of Kepler's observing quarters: ###Code import lightkurve as lk tpf = lk.search_targetpixelfile("Kepler-10", quarter=3).download() ###Output _____no_output_____ ###Markdown Let's use the `plot` method to show the pixel data at one point in time (frame index 100). We'll also pass along a few plotting arguments. ###Code tpf.plot(frame=100, scale='log', show_colorbar=True); ###Output _____no_output_____ ###Markdown The target pixel file appears to show one bright star with a core brightness of approximately 50,000 electrons/seconds. Now, we will use the ``to_lightcurve`` method to create a simple aperture photometry lightcurve using themask defined by the pipeline which is stored in `tpf.pipeline_mask`. ###Code lc = tpf.to_lightcurve(aperture_mask=tpf.pipeline_mask) ###Output _____no_output_____ ###Markdown Let's take a look at the output lightcurve. ###Code lc.plot(); ###Output _____no_output_____ ###Markdown Now let's use the `flatten` method, which removes long-term variability that we are not interested in using a high-pass filter called *Savitzky-Golay*. ###Code flat, trend = lc.flatten(window_length=301, return_trend=True) ###Output _____no_output_____ ###Markdown Let's plot the trend estimated in red: ###Code ax = lc.errorbar(label="Kepler-10") # plot() returns a matplotlib axes ... trend.plot(ax=ax, color='red', lw=2, label='Trend'); # which we can pass to the next plot() to use the same axes ###Output _____no_output_____ ###Markdown and the flat lightcurve: ###Code flat.errorbar(label="Kepler-10"); ###Output _____no_output_____ ###Markdown Now, let's run a period search function using the well-known Box-Least Squares algorithm (BLS), which was added to the [AstroPy package](http://docs.astropy.org) in version 3.1.We will use the BLS algorithm to search a pre-defined grid of transit periods: ###Code import numpy as np periodogram = flat.to_periodogram(method="bls", period=np.arange(0.3, 1.5, 0.001)) periodogram.plot(); ###Output _____no_output_____ ###Markdown It looks like we found a strong signal with a periodicity of 0.8 days! ###Code best_fit_period = periodogram.period_at_max_power print('Best fit period: {:.3f}'.format(best_fit_period)) flat.fold(period=best_fit_period, t0=periodogram.transit_time_at_max_power).errorbar(); ###Output _____no_output_____
9-dictionary-and-set/dictionary.ipynb
###Markdown DictionariesA dictionary is an unordered collection of elements where each element has two parts: a key and a value. Or you can say that an element is a key-value pair.A dictioinary is unordered. It means that when you iterate over or print a dictionary, the order of elements is not guaranteed. It may change when elements are added or removed from the dictionary. The key can be any object as long as it is immutable. Common key types include `int` and `string`.People use dictionaries to store key-value pairs thus it is easy to find out a value. For example, you use `student_id` to retrieve a student object. 1 Creating a DictionaryYou use `{}` to create a dictionary. The `{}` creates an empty dictionary. To create elements, create a sequnce of `key: value` pairs separated by `,`. ###Code empty_dict = {} print(empty_dict) students = {90: 'Alice', 27: 'Bob', 50: 'Cindy'} print(students) more_students = {90: 'Alice', 27: 'Bob', 90: 'Cindy', 200: 'Mike'} print(more_students) ###Output _____no_output_____ ###Markdown In the above examples, `more_students` has two elements that have the same key of `90`. Python only store the last element that has the same key.You can use a dictionary variable as a boolean expression to check if it is empty 2 Basic OperationsYou can use a dictionary variable as a boolean expression to check if it is empty. The built-in `len` function tells how many elements in a dictionary. ###Code if empty_dict: print('empty_dict is NOT empty') else: print('empty_dict is empty') print(f'empty_dict has {len(empty_dict)} elements') if students: print('students is NOT empty') else: print('students is empty') print(f'students has {len(students)} elements') ###Output _____no_output_____ ###Markdown The `in` and `not in` operators test whether a key exists in a dictionary. ###Code month_days = {'Jan': 31, 'Apr': 30, 'Jul': 31} if 'Jan' in month_days: print('Jan is in the dictionary') if 'Feb' not in month_days: print('Feb is not in the dictionary') ###Output _____no_output_____ ###Markdown The `del` operator delete a key-value pair from a dictionary if the specified key exists, otherwise, it throws a `KeyError` exception. The syntax is `del dictionary_name[key]`. To avoid exception, use `in` to make sure the key is there before `del`. ###Code month_days = {'Jan': 31, 'Apr': 30, 'Jul': 31} if 'Jan' in month_days: del month_days['Jan'] print(month_days) # throw a KeyError exception because the key doesn't exist del month_days['Jan'] print(month_days) ###Output _____no_output_____ ###Markdown 3 Reading or Writing a Dictionary ElementYou uses the `dictionary_name[key]` to access an individual element. You can read or update the value in the key-value pair. There is no way to change the key because it is immutable. However, you can delete an element and insert another element if that's what you want. ###Code students = {90: 'Alice', 27: 'Bob', 50: 'Cindy'} # read a value for a key name_with_id_90 = students[90] print(name_with_id_90) # change a value for a key students[90] = 'Mike' print(students[90]) # add a new key-value pair because 97 doesn't exist students[97] = 'Bill' print(students) # reading a value for a non-exist key throws a KeyError exception name_nobody = students[404] ###Output _____no_output_____ ###Markdown Becareful, there are two cases that could be wrong in using dictionries: - A non exist key throws a `KeyError` exception. To avoid it, use `get` method with a specified default value. For example: `students.get(42, 'Unknown')`- when the `dictionary_name[key]` is on the left hand side, you set a new value for an existing key or create a new key-value pair if the key doesn't exist. Any typo in the key name could be a big bug. 4 Iterating a DictionaryYou can use `for key in dictionary_name:` to iterate over all keys of a dictionary. Then you use `dictionary_name[key]` to access each value. ###Code month_days = {'Jan': 31, 'Apr': 30, 'Jul': 31} for month in month_days: print(f'{month} has {month_days[month]} days') ###Output _____no_output_____ ###Markdown The `items` method returns a sequence of key-value pairs. Therefore, you can use `for key, value in dictionary_name.items():` to iterate over a dictionary. ###Code month_days = {'Jan': 31, 'Apr': 30, 'Jul': 31} for month, days in month_days.items(): print(f'{month} has {days} days') ###Output _____no_output_____ ###Markdown The `values()` method returns all values correspondingly. Don't assume any order of the return values ! ###Code month_days = {'Jan': 31, 'Apr': 30, 'Jul': 31} days_sequence = month_days.values() for days in days_sequence: print(days, end=' ') ###Output _____no_output_____ ###Markdown The `items()`, `keys()` and `values()` return an iterable collection. It is a bultin-object. You can convert an iterable collection to a list using the `list(iterable)` built-in funciton. In the following example, the `key-value` pair of `items()` method is a tuple of `(key, value)`. ###Code month_days = {'Jan': 31, 'Apr': 30, 'Jul': 31} item_list = list(month_days.items()) print(item_list) key_list = list(month_days.keys()) print(key_list) value_list = list(month_days.values()) print(value_list) ###Output _____no_output_____
python/.ipynb_checkpoints/Grafos-checkpoint.ipynb
###Markdown Resolução de problemas computacionais com Grafos Vetices são os pontos, arestas são as linhas $$ F + V = A + C$$ Matriz de adjacencia ###Code matriz = [[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0]] def calc_vertice(matriz): return len(matriz[0]) def calc_aresta(matriz): if matriz == []: return 0 return sum(matriz[0]) + calc_aresta(matriz[1:]) def vertices_arestas(matriz): return (calc_vertice(matriz), calc_vertice(matriz)) vertices_arestas(matriz) matriz matriz[1:] ###Output _____no_output_____
sem06-asm-x86/asm_x86.ipynb
###Markdown Assembler x86* Мало регистров* Много команд* Много легаси* Много соглашений о вызовах* Разные синтаксисы Syntaxes AT&T ###Code %%cpp att_example.c %run gcc -m32 -masm=att -O3 att_example.c -S -o att_example.S %run cat att_example.S | grep -v "^\s*\." #include <stdint.h> int32_t sum(int32_t a, int32_t b) { return a + b; } ###Output _____no_output_____ ###Markdown IntelDWORD PTR — это переменная типа двойного слова. Слово — это 16 бит. Термин получил распространение в эпоху 16-ти битных процессоров, тогда в регистр помещалось ровно 16 бит. Такой объем информации стали называть словом (word). Т. е. в нашем случае dword (double word) 2*16 = 32 бита = 4 байта (обычный int). https://habr.com/ru/post/344896/ ###Code %%cpp att_example.c %run gcc -m32 -masm=intel -O3 att_example.c -S -o att_example.S %run cat att_example.S | grep -v "^\s*\." #include <stdint.h> int32_t sum(int32_t a, int32_t b) { return a + b; } ###Output _____no_output_____ ###Markdown Пишем функцию clamp тремя способами ###Code %%asm clamp_disasm.S .intel_syntax noprefix .text .globl clamp clamp: mov edx, DWORD PTR [esp+4] mov eax, DWORD PTR [esp+8] cmp edx, eax jl .L2 cmp edx, DWORD PTR [esp+12] mov eax, edx cmovg eax, DWORD PTR [esp+12] .L2: rep ret %%asm clamp_if.S .intel_syntax noprefix .text .globl clamp clamp: mov edx, DWORD PTR [esp + 4] // X mov eax, DWORD PTR [esp + 8] // A cmp edx, eax jl return_eax // return A if X < A mov eax, DWORD PTR [esp + 12] // B cmp edx, eax jg return_eax // return B if X > B mov eax, edx return_eax: ret %%asm clamp_cmov.S .intel_syntax noprefix .text .globl clamp clamp: mov eax, DWORD PTR [esp + 4] // X mov edx, DWORD PTR [esp + 8] // A cmp eax, edx cmovl eax, edx // if (X < A) X = A mov edx, DWORD PTR [esp + 12] // B cmp eax, edx cmovg eax, edx // if (X > B) X = B ret %%cpp clamp_test.c // compile and test using all three asm clamp implementations %run gcc -m32 -masm=intel -O2 clamp.S clamp_test.c -o clamp_test.exe %run ./clamp_test.exe %run gcc -m32 -masm=intel -O2 clamp_if.S clamp_test.c -o clamp_if_test.exe %run ./clamp_if_test.exe %run gcc -m32 -masm=intel -O2 clamp_cmov.S clamp_test.c -o clamp_cmov_test.exe %run ./clamp_cmov_test.exe #include <stdint.h> #include <stdio.h> #include <assert.h> int32_t clamp(int32_t a, int32_t b, int32_t c); int main() { assert(clamp(1, 10, 20) == 10); assert(clamp(100, 10, 20) == 20); assert(clamp(15, 10, 20) == 15); fprintf(stderr, "All is OK"); return 0; } ###Output _____no_output_____ ###Markdown Inline ASMhttp://asm.sourceforge.net/articles/linasm.html ###Code %%cpp clamp_inline_test.c %run gcc -m32 -masm=intel -O2 clamp_inline_test.c -o clamp_inline_test.exe %run ./clamp_inline_test.exe #include <stdint.h> #include <stdio.h> #include <assert.h> int32_t clamp(int32_t a, int32_t b, int32_t c); __asm__(R"( clamp: mov eax, DWORD PTR [esp + 4] mov edx, DWORD PTR [esp + 8] cmp eax, edx cmovl eax, edx mov edx, DWORD PTR [esp + 12] cmp eax, edx cmovg eax, edx ret )"); int main() { assert(clamp(1, 10, 20) == 10); assert(clamp(100, 10, 20) == 20); assert(clamp(15, 10, 20) == 15); fprintf(stderr, "All is OK"); return 0; } ###Output _____no_output_____ ###Markdown Поработаем с памятьюДаны n, x. Посчитаем $\sum_{i=0}^{n - 1} (-1)^i \cdot x[i]$ ###Code %%asm my_sum.S .intel_syntax noprefix .text .globl my_sum my_sum: push ebx mov eax, 0 mov edx, DWORD PTR [esp + 8] mov ebx, DWORD PTR [esp + 12] start_loop: cmp edx, 0 jle return_eax add eax, DWORD PTR [ebx] add ebx, 4 dec edx cmp edx, 0 jle return_eax sub eax, DWORD PTR [ebx] add ebx, 4 dec edx jmp start_loop return_eax: pop ebx ret %%cpp my_sum_test.c %run gcc -g3 -m32 -masm=intel my_sum_test.c my_sum.S -o my_sum_test.exe %run ./my_sum_test.exe #include <stdint.h> #include <stdio.h> #include <assert.h> int32_t my_sum(int32_t n, int32_t* x); int main() { int32_t x[] = {100, 2, 200, 3}; assert(my_sum(sizeof(x) / sizeof(int32_t), x) == 100 - 2 + 200 - 3); int32_t y[] = {100, 2, 200}; assert(my_sum(sizeof(y) / sizeof(int32_t), y) == 100 - 2 + 200); return 0; } ###Output _____no_output_____ ###Markdown Развлекательно-познавательная часть ###Code %%cpp mul.c %run gcc -m32 -masm=intel -O3 mul.c -S -o mul.S %run cat mul.S | grep -v "^\s*\." #include <stdint.h> int32_t mul(int32_t a) { return a * 13; } %%cpp div.c %run gcc -m32 -masm=intel -O3 div.c -S -o div.S %run cat div.S | grep -v "^\s*\." | grep -v "^\s*\#" #include <stdint.h> int32_t div(int32_t a) { return a / 4; } uint32_t udiv(uint32_t a) { return a / 2; } %%cpp simdiv.c %run gcc -m32 -masm=intel -O3 simdiv.c -o simdiv.exe %run ./simdiv.exe #include <stdint.h> #include <assert.h> int32_t simdiv(int32_t a) { uint32_t eax = ((uint32_t)a >> 31) + a; __asm__("sar %0" : "=a"(eax) : "a"(eax)); return eax; } int main() { assert(simdiv(1) == 0); assert(simdiv(5) == 2); assert(simdiv(-1) == 0); assert(simdiv(-5) == -2); } ###Output _____no_output_____ ###Markdown Assembler x86* Мало регистров* Много команд* Много легаси* Много соглашений о вызовах* Разные синтаксисы Syntaxes AT&T ###Code %%cpp att_example.c %run gcc -m32 -masm=att -O3 att_example.c -S -o att_example.S %run cat att_example.S | grep -v "^\s*\." #include <stdint.h> int32_t sum(int32_t a, int32_t b) { return a + b; } ###Output _____no_output_____ ###Markdown IntelDWORD PTR — это переменная типа двойного слова. Слово — это 16 бит. Термин получил распространение в эпоху 16-ти битных процессоров, тогда в регистр помещалось ровно 16 бит. Такой объем информации стали называть словом (word). Т. е. в нашем случае dword (double word) 2*16 = 32 бита = 4 байта (обычный int). https://habr.com/ru/post/344896/ ###Code %%cpp att_example.c %run gcc -m32 -masm=intel -O3 att_example.c -S -o att_example.S %run cat att_example.S | grep -v "^\s*\." #include <stdint.h> int32_t sum(int32_t a, int32_t b) { return a + b; } ###Output _____no_output_____ ###Markdown Пишем функцию clamp тремя способами ###Code %%asm clamp_disasm.S .intel_syntax noprefix .text .globl clamp clamp: mov edx, DWORD PTR [esp+4] mov eax, DWORD PTR [esp+8] cmp edx, eax jl .L2 cmp edx, DWORD PTR [esp+12] mov eax, edx cmovg eax, DWORD PTR [esp+12] .L2: rep ret %%asm clamp_if.S .intel_syntax noprefix .text .globl clamp clamp: mov edx, DWORD PTR [esp + 4] // X mov eax, DWORD PTR [esp + 8] // A cmp edx, eax jl return_eax // return A if X < A mov eax, DWORD PTR [esp + 12] // B cmp edx, eax jg return_eax // return B if X > B mov eax, edx return_eax: ret %%asm clamp_cmov.S .intel_syntax noprefix .text .globl clamp clamp: mov eax, DWORD PTR [esp + 4] // X mov edx, DWORD PTR [esp + 8] // A cmp eax, edx cmovl eax, edx // if (X < A) X = A mov edx, DWORD PTR [esp + 12] // B cmp eax, edx cmovg eax, edx // if (X > B) X = B ret %%cpp clamp_test.c // compile and test using all three asm clamp implementations %run gcc -m32 -masm=intel -O2 clamp.S clamp_test.c -o clamp_test.exe %run ./clamp_test.exe %run gcc -m32 -masm=intel -O2 clamp_if.S clamp_test.c -o clamp_if_test.exe %run ./clamp_if_test.exe %run gcc -m32 -masm=intel -O2 clamp_cmov.S clamp_test.c -o clamp_cmov_test.exe %run ./clamp_cmov_test.exe #include <stdint.h> #include <stdio.h> #include <assert.h> int32_t clamp(int32_t a, int32_t b, int32_t c); int main() { assert(clamp(1, 10, 20) == 10); assert(clamp(100, 10, 20) == 20); assert(clamp(15, 10, 20) == 15); fprintf(stderr, "All is OK"); return 0; } ###Output _____no_output_____ ###Markdown Inline ASMhttp://asm.sourceforge.net/articles/linasm.html ###Code %%cpp clamp_inline_test.c %run gcc -m32 -masm=intel -O2 clamp_inline_test.c -o clamp_inline_test.exe %run ./clamp_inline_test.exe #include <stdint.h> #include <stdio.h> #include <assert.h> int32_t clamp(int32_t a, int32_t b, int32_t c); __asm__(R"( clamp: mov eax, DWORD PTR [esp + 4] mov edx, DWORD PTR [esp + 8] cmp eax, edx cmovl eax, edx mov edx, DWORD PTR [esp + 12] cmp eax, edx cmovg eax, edx ret )"); int main() { assert(clamp(1, 10, 20) == 10); assert(clamp(100, 10, 20) == 20); assert(clamp(15, 10, 20) == 15); fprintf(stderr, "All is OK"); return 0; } ###Output _____no_output_____ ###Markdown Поработаем с памятьюДаны n, x. Посчитаем $\sum_{i=0}^{n - 1} (-1)^i \cdot x[i]$ ###Code %%asm my_sum.S .intel_syntax noprefix .text .globl my_sum my_sum: push ebx mov eax, 0 mov edx, DWORD PTR [esp + 8] mov ebx, DWORD PTR [esp + 12] start_loop: cmp edx, 0 jle return_eax add eax, DWORD PTR [ebx] add ebx, 4 dec edx cmp edx, 0 jle return_eax sub eax, DWORD PTR [ebx] add ebx, 4 dec edx jmp start_loop return_eax: pop ebx ret %%cpp my_sum_test.c %run gcc -g3 -m32 -masm=intel my_sum_test.c my_sum.S -o my_sum_test.exe %run ./my_sum_test.exe #include <stdint.h> #include <stdio.h> #include <assert.h> int32_t my_sum(int32_t n, int32_t* x); int main() { int32_t x[] = {100, 2, 200, 3}; assert(my_sum(sizeof(x) / sizeof(int32_t), x) == 100 - 2 + 200 - 3); int32_t y[] = {100, 2, 200}; assert(my_sum(sizeof(y) / sizeof(int32_t), y) == 100 - 2 + 200); return 0; } ###Output _____no_output_____ ###Markdown Развлекательно-познавательная часть ###Code %%cpp mul.c %run gcc -m32 -masm=intel -O3 mul.c -S -o mul.S %run cat mul.S | grep -v "^\s*\." #include <stdint.h> int32_t mul(int32_t a) { return a * 14; } %%cpp div_0.c %run gcc -m64 -masm=intel -O3 div_0.c -S -o div_0.S %run cat div_0.S | grep -v "^\s*\." #include <stdint.h> uint32_t div(uint32_t a) { return a / 11; } uint32_t div2(uint32_t a, uint32_t b) { return a / b; } %%cpp div.c %run gcc -m32 -masm=intel -O3 div.c -S -o div.S %run cat div.S | grep -v "^\s*\." | grep -v "^\s*\#" #include <stdint.h> int32_t div(int32_t a) { return a / 4; } uint32_t udiv(uint32_t a) { return a / 2; } %%cpp simdiv.c %run gcc -m32 -masm=intel -O3 simdiv.c -o simdiv.exe %run ./simdiv.exe #include <stdint.h> #include <assert.h> int32_t simdiv(int32_t a) { uint32_t eax = ((uint32_t)a >> 31) + a; __asm__("sar %0" : "=a"(eax) : "a"(eax)); return eax; } int main() { assert(simdiv(1) == 0); assert(simdiv(5) == 2); assert(simdiv(-1) == 0); assert(simdiv(-5) == -2); } ###Output _____no_output_____
res/Python-for-Data-Visualization/Seaborn/Grids.ipynb
###Markdown ___ ___ GridsGrids are general types of plots that allow you to map plot types to rows and columns of a grid, this helps you create similar plots separated by features. ###Code import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline iris = sns.load_dataset('iris') iris.head() ###Output _____no_output_____ ###Markdown PairGridPairgrid is a subplot grid for plotting pairwise relationships in a dataset. ###Code # Just the Grid sns.PairGrid(iris) # Then you map to the grid g = sns.PairGrid(iris) g.map(plt.scatter) # Map to upper,lower, and diagonal g = sns.PairGrid(iris) g.map_diag(plt.hist) g.map_upper(plt.scatter) g.map_lower(sns.kdeplot) ###Output _____no_output_____ ###Markdown pairplotpairplot is a simpler version of PairGrid (you'll use quite often) ###Code sns.pairplot(iris) sns.pairplot(iris,hue='species',palette='rainbow') ###Output _____no_output_____ ###Markdown Facet GridFacetGrid is the general way to create grids of plots based off of a feature: ###Code tips = sns.load_dataset('tips') tips.head() # Just the Grid g = sns.FacetGrid(tips, col="time", row="smoker") g = sns.FacetGrid(tips, col="time", row="smoker") g = g.map(plt.hist, "total_bill") g = sns.FacetGrid(tips, col="time", row="smoker",hue='sex') # Notice hwo the arguments come after plt.scatter call g = g.map(plt.scatter, "total_bill", "tip").add_legend() ###Output _____no_output_____ ###Markdown JointGridJointGrid is the general version for jointplot() type grids, for a quick example: ###Code g = sns.JointGrid(x="total_bill", y="tip", data=tips) g = sns.JointGrid(x="total_bill", y="tip", data=tips) g = g.plot(sns.regplot, sns.distplot) ###Output /Users/marci/anaconda/lib/python3.5/site-packages/statsmodels/nonparametric/kdetools.py:20: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j
data/Data to MongoDB.ipynb
###Markdown Populate the DB with CSV dataset Modules needed and configMake sure you have a valid .env file to load the correct MONGO_URL ###Code import os from dotenv import load_dotenv load_dotenv() import pandas as pd from pymongo import MongoClient client = MongoClient(os.getenv("MONGO_URL")) from datetime import datetime ###Output _____no_output_____ ###Markdown Import Dataset ###Code df_lter = pd.read_csv("./source/penguins_lter.csv") ###Output _____no_output_____ ###Markdown Setup MongoDB client and collection for data ###Code db = client["palmer-penguins"] collection_kpl = db["kaggle-penguins-lter"] ###Output _____no_output_____ ###Markdown Dataset cleaning and formatting ###Code df_lter["Date Egg"]=df_lter["Date Egg"].apply(lambda e: datetime.strptime(e,'%m/%d/%y')) df_lter = df_lter.drop("Comments", 1) df_lter = df_lter.rename(columns=lambda x: x.split( "(")[0].strip().replace(" ", "_").lower()) df_lter["clutch_completion"] = df_lter["clutch_completion"].apply( lambda x: True if x == "Yes" else False) ###Output _____no_output_____ ###Markdown Transform DataFrame to MongoDB documents and insertOutput is the documents inserted on the database ###Code documents = df_lter.to_dict("records") collection_kpl.drop() result = collection_kpl.insert_many(documents) len(result.inserted_ids) client.close() ###Output _____no_output_____
slides/04_scikit_learn/transformers.ipynb
###Markdown Transformer are stateful as well ###Code transformer.categories_ race ###Output _____no_output_____ ###Markdown Scikit-learn provides utilities to transform a whole dataframe ###Code from sklearn.compose import make_column_transformer from sklearn.preprocessing import OneHotEncoder categorical_columns = ['RACE', 'OCCUPATION', 'SECTOR', 'MARR', 'UNION', 'SEX', 'SOUTH'] numerical_columns = ['EDUCATION', 'EXPERIENCE', 'AGE'] preprocessor = make_column_transformer( (OneHotEncoder(), categorical_columns), remainder='passthrough' ) preprocessor.fit(survey['data']) X = preprocessor.transform(survey['data']) ###Output _____no_output_____ ###Markdown We may now feed this to an estimator ###Code X ###Output _____no_output_____
tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb
###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) 6. Context Spell Checker - Medical ###Code import json from google.colab import files license_keys = files.upload() with open(list(license_keys.keys())[0]) as f: license_keys = json.load(f) license_keys.keys() license_keys['JSL_VERSION'] import os # Install java ! apt-get update -qq ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"] ! java -version secret = license_keys['SECRET'] os.environ['SPARK_NLP_LICENSE'] = license_keys['SPARK_NLP_LICENSE'] os.environ['AWS_ACCESS_KEY_ID']= license_keys['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] = license_keys['AWS_SECRET_ACCESS_KEY'] jsl_version = license_keys['JSL_VERSION'] version = license_keys['PUBLIC_VERSION'] ! pip install --ignore-installed -q pyspark==2.4.4 ! python -m pip install --upgrade spark-nlp-jsl==$jsl_version --extra-index-url https://pypi.johnsnowlabs.com/$secret ! pip install --ignore-installed -q spark-nlp==$version import sparknlp print (sparknlp.version()) import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl params = {"spark.driver.memory":"16G", "spark.kryoserializer.buffer.max":"2000M", "spark.driver.maxResultSize":"2000M"} spark = sparknlp_jsl.start(secret, params=params) documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,___Witth__ the __hell__ of __phisical__ __terapy__ the patient was __imbulated__ and on posoperative, the __impatient__ tolerating a post __curgical__ soft diet.__With __paint__ __wel__ controlled on __orall__ pain medications, she was discharged __too__ __reihabilitation__ __facilitay__.__She is to also call the __ofice__ if she has any __ever__ greater than 101, or __leeding__ __form__ the surgical wounds.__Abdomen is __sort__, nontender, and __nonintended__.__Patient not showing pain or any __wealth__ problems._ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["Witth the hell of phisical terapy the patient was imbulated and on posoperative, the impatient tolerating a post curgical soft diet.", "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.", "She is to also call the ofice if she has any ever greater than 101, or leeding form the surgical wounds.", "Abdomen is sort, nontender, and nonintended.", "Patient not showing pain or any wealth problems.", "No cute distress" ] for pairs in lp.annotate(example): print (list(zip(pairs['token'],pairs['checked']))) ###Output [('Witth', 'With'), ('the', 'the'), ('hell', 'cell'), ('of', 'of'), ('phisical', 'physical'), ('terapy', 'therapy'), ('the', 'the'), ('patient', 'patient'), ('was', 'was'), ('imbulated', 'ambulated'), ('and', 'and'), ('on', 'on'), ('posoperative', 'postoperative'), (',', ','), ('the', 'the'), ('impatient', 'patient'), ('tolerating', 'tolerating'), ('a', 'a'), ('post', 'post'), ('curgical', 'surgical'), ('soft', 'soft'), ('diet', 'diet'), ('.', '.')] [('With', 'With'), ('paint', 'pain'), ('wel', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('pain', 'pain'), ('medications', 'medications'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('too', 'to'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('She', 'She'), ('is', 'is'), ('to', 'to'), ('also', 'also'), ('call', 'call'), ('the', 'the'), ('ofice', 'once'), ('if', 'if'), ('she', 'she'), ('has', 'has'), ('any', 'any'), ('ever', 'fever'), ('greater', 'greater'), ('than', 'than'), ('101', '101'), (',', ','), ('or', 'or'), ('leeding', 'leading'), ('form', 'from'), ('the', 'the'), ('surgical', 'surgical'), ('wounds', 'wounds'), ('.', '.')] [('Abdomen', 'Abdomen'), ('is', 'is'), ('sort', 'sort'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'unintended'), ('.', '.')] [('Patient', 'Patient'), ('not', 'not'), ('showing', 'showing'), ('pain', 'pain'), ('or', 'or'), ('any', 'any'), ('wealth', 'health'), ('problems', 'problems'), ('.', '.')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')] ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) 6. Context Spell Checker - Medical ###Code import json from google.colab import files license_keys = files.upload() with open(list(license_keys.keys())[0]) as f: license_keys = json.load(f) %%capture for k,v in license_keys.items(): %set_env $k=$v !wget https://raw.githubusercontent.com/JohnSnowLabs/spark-nlp-workshop/master/jsl_colab_setup.sh !bash jsl_colab_setup.sh import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl import sparknlp params = {"spark.driver.memory":"16G", "spark.kryoserializer.buffer.max":"2000M", "spark.driver.maxResultSize":"2000M"} spark = sparknlp_jsl.start(license_keys['SECRET'],params=params) print ("Spark NLP Version :", sparknlp.version()) print ("Spark NLP_JSL Version :", sparknlp_jsl.version()) documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,___Witth__ the __hell__ of __phisical__ __terapy__ the patient was __imbulated__ and on posoperative, the __impatient__ tolerating a post __curgical__ soft diet.__With __paint__ __wel__ controlled on __orall__ pain medications, she was discharged __too__ __reihabilitation__ __facilitay__.__She is to also call the __ofice__ if she has any __ever__ greater than 101, or __leeding__ __form__ the surgical wounds.__Abdomen is __sort__, nontender, and __nonintended__._ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["Witth the hell of phisical terapy the patient was imbulated and on posoperative, the impatient tolerating a post curgical soft diet.", "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.", "She is to also call the ofice if she has any ever greater than 101, or leeding form the surgical wounds.", "Abdomen is sort, nontender, and nonintended.", "Patient not showing pain or any wealth problems.", "No cute distress" ] for pairs in lp.annotate(example): print (list(zip(pairs['token'],pairs['checked']))) ###Output [('Witth', 'With'), ('the', 'the'), ('hell', 'cell'), ('of', 'of'), ('phisical', 'physical'), ('terapy', 'therapy'), ('the', 'the'), ('patient', 'patient'), ('was', 'was'), ('imbulated', 'ambulated'), ('and', 'and'), ('on', 'on'), ('posoperative', 'postoperative'), (',', ','), ('the', 'the'), ('impatient', 'inpatient'), ('tolerating', 'tolerating'), ('a', 'a'), ('post', 'post'), ('curgical', 'surgical'), ('soft', 'soft'), ('diet', 'diet'), ('.', '.')] [('With', 'With'), ('paint', 'paint'), ('wel', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('pain', 'pain'), ('medications', 'medications'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('too', 'too'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('She', 'She'), ('is', 'is'), ('to', 'to'), ('also', 'also'), ('call', 'call'), ('the', 'the'), ('ofice', 'office'), ('if', 'if'), ('she', 'she'), ('has', 'has'), ('any', 'any'), ('ever', 'ever'), ('greater', 'greater'), ('than', 'than'), ('101', '101'), (',', ','), ('or', 'or'), ('leeding', 'leading'), ('form', 'form'), ('the', 'the'), ('surgical', 'surgical'), ('wounds', 'wounds'), ('.', '.')] [('Abdomen', 'Abdomen'), ('is', 'is'), ('sort', 'sort'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'unintended'), ('.', '.')] [('Patient', 'Patient'), ('not', 'not'), ('showing', 'showing'), ('pain', 'pain'), ('or', 'or'), ('any', 'any'), ('wealth', 'wealth'), ('problems', 'problems'), ('.', '.')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')] ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) 6. Context Spell Checker - Medical ###Code import json, os from google.colab import files license_keys = files.upload() with open(list(license_keys.keys())[0]) as f: license_keys = json.load(f) # Defining license key-value pairs as local variables locals().update(license_keys) # Adding license key-value pairs to environment variables os.environ.update(license_keys) # Installing pyspark and spark-nlp ! pip install --upgrade -q pyspark==3.1.2 spark-nlp==$PUBLIC_VERSION # Installing Spark NLP Healthcare ! pip install --upgrade -q spark-nlp-jsl==$JSL_VERSION --extra-index-url https://pypi.johnsnowlabs.com/$SECRET import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl import sparknlp params = {"spark.driver.memory":"16G", "spark.kryoserializer.buffer.max":"2000M", "spark.driver.maxResultSize":"2000M"} spark = sparknlp_jsl.start(license_keys['SECRET'],params=params) print ("Spark NLP Version :", sparknlp.version()) print ("Spark NLP_JSL Version :", sparknlp_jsl.version()) documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,___Witth__ the __hell__ of __phisical__ __terapy__ the patient was __imbulated__ and on posoperative, the __impatient__ tolerating a post __curgical__ soft diet.__With __paint__ __wel__ controlled on __orall__ pain medications, she was discharged __too__ __reihabilitation__ __facilitay__.__She is to also call the __ofice__ if she has any __ever__ greater than 101, or __leeding__ __form__ the surgical wounds.__Abdomen is __sort__, nontender, and __nonintended__._ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["Witth the hell of phisical terapy the patient was imbulated and on posoperative, the impatient tolerating a post curgical soft diet.", "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.", "She is to also call the ofice if she has any ever greater than 101, or leeding form the surgical wounds.", "Abdomen is sort, nontender, and nonintended.", "Patient not showing pain or any wealth problems.", "No cute distress" ] for pairs in lp.annotate(example): print (list(zip(pairs['token'],pairs['checked']))) ###Output [('Witth', 'With'), ('the', 'the'), ('hell', 'cell'), ('of', 'of'), ('phisical', 'physical'), ('terapy', 'therapy'), ('the', 'the'), ('patient', 'patient'), ('was', 'was'), ('imbulated', 'ambulated'), ('and', 'and'), ('on', 'on'), ('posoperative', 'postoperative'), (',', ','), ('the', 'the'), ('impatient', 'inpatient'), ('tolerating', 'tolerating'), ('a', 'a'), ('post', 'post'), ('curgical', 'surgical'), ('soft', 'soft'), ('diet', 'diet'), ('.', '.')] [('With', 'With'), ('paint', 'paint'), ('wel', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('pain', 'pain'), ('medications', 'medications'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('too', 'too'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('She', 'She'), ('is', 'is'), ('to', 'to'), ('also', 'also'), ('call', 'call'), ('the', 'the'), ('ofice', 'office'), ('if', 'if'), ('she', 'she'), ('has', 'has'), ('any', 'any'), ('ever', 'ever'), ('greater', 'greater'), ('than', 'than'), ('101', '101'), (',', ','), ('or', 'or'), ('leeding', 'leading'), ('form', 'form'), ('the', 'the'), ('surgical', 'surgical'), ('wounds', 'wounds'), ('.', '.')] [('Abdomen', 'Abdomen'), ('is', 'is'), ('sort', 'sort'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'unintended'), ('.', '.')] [('Patient', 'Patient'), ('not', 'not'), ('showing', 'showing'), ('pain', 'pain'), ('or', 'or'), ('any', 'any'), ('wealth', 'wealth'), ('problems', 'problems'), ('.', '.')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')] ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) Context Spell Checker - Medical ###Code import json with open('workshop_license_keys_Aug2020.json') as f: license_keys = json.load(f) license_keys.keys() license_keys['JSL_VERSION'] import os # Install java ! apt-get update -qq ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"] ! java -version secret = license_keys['SECRET'] os.environ['SPARK_NLP_LICENSE'] = license_keys['SPARK_NLP_LICENSE'] os.environ['AWS_ACCESS_KEY_ID']= license_keys['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] = license_keys['AWS_SECRET_ACCESS_KEY'] jsl_version = license_keys['JSL_VERSION'] version = license_keys['PUBLIC_VERSION'] ! pip install --ignore-installed -q pyspark==2.4.4 ! python -m pip install --upgrade spark-nlp-jsl==$jsl_version --extra-index-url https://pypi.johnsnowlabs.com/$secret ! pip install --ignore-installed -q spark-nlp==$version import sparknlp print (sparknlp.version()) import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl spark = sparknlp_jsl.start(secret) documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,___Witth__ the __hell__ of __phisical__ __terapy__ the patient was __imbulated__ and on posoperative, the __impatient__ tolerating a post __curgical__ soft diet.__With __paint__ __wel__ controlled on __orall__ pain medications, she was discharged __too__ __reihabilitation__ __facilitay__.__She is to also call the __ofice__ if she has any __ever__ greater than 101, or __leeding__ __form__ the surgical wounds.__Abdomen is __sort__, nontender, and __nonintended__.__Patient not showing pain or any __wealth__ problems._ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["Witth the hell of phisical terapy the patient was imbulated and on posoperative, the impatient tolerating a post curgical soft diet.", "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.", "She is to also call the ofice if she has any ever greater than 101, or leeding form the surgical wounds.", "Abdomen is sort, nontender, and nonintended.", "Patient not showing pain or any wealth problems.", "No cute distress" ] for pairs in lp.annotate(example): print (list(zip(pairs['token'],pairs['checked']))) ###Output [('Witth', 'With'), ('the', 'the'), ('hell', 'cell'), ('of', 'of'), ('phisical', 'physical'), ('terapy', 'therapy'), ('the', 'the'), ('patient', 'patient'), ('was', 'was'), ('imbulated', 'ambulated'), ('and', 'and'), ('on', 'on'), ('posoperative', 'postoperative'), (',', ','), ('the', 'the'), ('impatient', 'patient'), ('tolerating', 'tolerating'), ('a', 'a'), ('post', 'post'), ('curgical', 'surgical'), ('soft', 'soft'), ('diet', 'diet'), ('.', '.')] [('With', 'With'), ('paint', 'pain'), ('wel', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('pain', 'pain'), ('medications', 'medications'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('too', 'to'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('She', 'She'), ('is', 'is'), ('to', 'to'), ('also', 'also'), ('call', 'call'), ('the', 'the'), ('ofice', 'once'), ('if', 'if'), ('she', 'she'), ('has', 'has'), ('any', 'any'), ('ever', 'fever'), ('greater', 'greater'), ('than', 'than'), ('101', '101'), (',', ','), ('or', 'or'), ('leeding', 'leading'), ('form', 'from'), ('the', 'the'), ('surgical', 'surgical'), ('wounds', 'wounds'), ('.', '.')] [('Abdomen', 'Abdomen'), ('is', 'is'), ('sort', 'sort'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'unintended'), ('.', '.')] [('Patient', 'Patient'), ('not', 'not'), ('showing', 'showing'), ('pain', 'pain'), ('or', 'or'), ('any', 'any'), ('wealth', 'health'), ('problems', 'problems'), ('.', '.')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')] ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) Context Spell Checker - Medical ###Code import json with open('workshop_license_keys_Aug2020.json') as f: license_keys = json.load(f) license_keys.keys() license_keys['JSL_VERSION'] import os # Install java ! apt-get update -qq ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"] ! java -version secret = license_keys['SECRET'] os.environ['SPARK_NLP_LICENSE'] = license_keys['SPARK_NLP_LICENSE'] os.environ['SPARK_OCR_LICENSE'] = license_keys['SPARK_OCR_LICENSE'] os.environ['AWS_ACCESS_KEY_ID']= license_keys['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] = license_keys['AWS_SECRET_ACCESS_KEY'] jsl_version = license_keys['JSL_VERSION'] version = license_keys['PUBLIC_VERSION'] ! pip install --ignore-installed -q pyspark==2.4.4 ! python -m pip install --upgrade spark-nlp-jsl==$jsl_version --extra-index-url https://pypi.johnsnowlabs.com/$secret ! pip install --ignore-installed -q spark-nlp==$version import sparknlp print (sparknlp.version()) import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl spark = sparknlp_jsl.start(secret) documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,___Witth__ the __hell__ of __phisical__ __terapy__ the patient was __imbulated__ and on posoperative, the __impatient__ tolerating a post __curgical__ soft diet.__With __paint__ __wel__ controlled on __orall__ pain medications, she was discharged __too__ __reihabilitation__ __facilitay__.__She is to also call the __ofice__ if she has any __ever__ greater than 101, or __leeding__ __form__ the surgical wounds.__Abdomen is __sort__, nontender, and __nonintended__.__Patient not showing pain or any __wealth__ problems._ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["Witth the hell of phisical terapy the patient was imbulated and on posoperative, the impatient tolerating a post curgical soft diet.", "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.", "She is to also call the ofice if she has any ever greater than 101, or leeding form the surgical wounds.", "Abdomen is sort, nontender, and nonintended.", "Patient not showing pain or any wealth problems.", "No cute distress" ] for pairs in lp.annotate(example): print (list(zip(pairs['token'],pairs['checked']))) ###Output [('Witth', 'With'), ('the', 'the'), ('hell', 'cell'), ('of', 'of'), ('phisical', 'physical'), ('terapy', 'therapy'), ('the', 'the'), ('patient', 'patient'), ('was', 'was'), ('imbulated', 'ambulated'), ('and', 'and'), ('on', 'on'), ('posoperative', 'postoperative'), (',', ','), ('the', 'the'), ('impatient', 'patient'), ('tolerating', 'tolerating'), ('a', 'a'), ('post', 'post'), ('curgical', 'surgical'), ('soft', 'soft'), ('diet', 'diet'), ('.', '.')] [('With', 'With'), ('paint', 'pain'), ('wel', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('pain', 'pain'), ('medications', 'medications'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('too', 'to'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('She', 'She'), ('is', 'is'), ('to', 'to'), ('also', 'also'), ('call', 'call'), ('the', 'the'), ('ofice', 'once'), ('if', 'if'), ('she', 'she'), ('has', 'has'), ('any', 'any'), ('ever', 'fever'), ('greater', 'greater'), ('than', 'than'), ('101', '101'), (',', ','), ('or', 'or'), ('leeding', 'leading'), ('form', 'from'), ('the', 'the'), ('surgical', 'surgical'), ('wounds', 'wounds'), ('.', '.')] [('Abdomen', 'Abdomen'), ('is', 'is'), ('sort', 'sort'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'unintended'), ('.', '.')] [('Patient', 'Patient'), ('not', 'not'), ('showing', 'showing'), ('pain', 'pain'), ('or', 'or'), ('any', 'any'), ('wealth', 'health'), ('problems', 'problems'), ('.', '.')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')] ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) 6. Context Spell Checker - Medical ###Code import json, os from google.colab import files if 'spark_jsl.json' not in os.listdir(): license_keys = files.upload() os.rename(list(license_keys.keys())[0], 'spark_jsl.json') with open('spark_jsl.json') as f: license_keys = json.load(f) # Defining license key-value pairs as local variables locals().update(license_keys) os.environ.update(license_keys) # Installing pyspark and spark-nlp ! pip install --upgrade -q pyspark==3.1.2 spark-nlp==$PUBLIC_VERSION # Installing Spark NLP Healthcare ! pip install --upgrade -q spark-nlp-jsl==$JSL_VERSION --extra-index-url https://pypi.johnsnowlabs.com/$SECRET import json import os import sparknlp import sparknlp_jsl from sparknlp.base import * from sparknlp.annotator import * from sparknlp_jsl.annotator import * from pyspark.ml import Pipeline from pyspark.sql import SparkSession params = {"spark.driver.memory":"16G", "spark.kryoserializer.buffer.max":"2000M", "spark.driver.maxResultSize":"2000M"} spark = sparknlp_jsl.start(license_keys['SECRET'],params=params) print("Spark NLP Version :", sparknlp.version()) print("Spark NLP_JSL Version :", sparknlp_jsl.version()) spark documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,_She was **treathed** with a five day course of **amoxicilin** for a **resperatory** **truct** infection.__With pain well controlled on **orall** **meditation**, she was discharged to **reihabilitation** **facilitay**.__Her **adominal** examination is soft, nontender, and **nonintended**__The patient was seen by the **entocrinology** service and she was discharged on 40 units of **unsilin** glargine at night_ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["She was treathed with a five day course of amoxicilin for a resperatory truct infection . ", "With pain well controlled on orall meditation, she was discharged to reihabilitation facilitay.", "Her adominal examination is soft, nontender, and nonintended.", "The patient was seen by the entocrinology service and she was discharged on 40 units of unsilin glargine at night", "No cute distress", ] for pairs in lp.annotate(example): print(list(zip(pairs['token'],pairs['checked']))) ###Output [('She', 'She'), ('was', 'was'), ('treathed', 'treated'), ('with', 'with'), ('a', 'a'), ('five', 'five'), ('day', 'day'), ('course', 'course'), ('of', 'of'), ('amoxicilin', 'amoxicillin'), ('for', 'for'), ('a', 'a'), ('resperatory', 'respiratory'), ('truct', 'tract'), ('infection', 'infection'), ('.', '.')] [('With', 'With'), ('pain', 'pain'), ('well', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('meditation', 'medication'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('to', 'to'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('Her', 'Her'), ('adominal', 'abdominal'), ('examination', 'examination'), ('is', 'is'), ('soft', 'soft'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'nondistended'), ('.', '.')] [('The', 'The'), ('patient', 'patient'), ('was', 'was'), ('seen', 'seen'), ('by', 'by'), ('the', 'the'), ('entocrinology', 'endocrinology'), ('service', 'service'), ('and', 'and'), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('on', 'on'), ('40', '40'), ('units', 'units'), ('of', 'of'), ('unsilin', 'insulin'), ('glargine', 'glargine'), ('at', 'at'), ('night', 'night')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')] ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) 6. Context Spell Checker - Medical ###Code import json, os from google.colab import files license_keys = files.upload() with open(list(license_keys.keys())[0]) as f: license_keys = json.load(f) # Defining license key-value pairs as local variables locals().update(license_keys) # Adding license key-value pairs to environment variables os.environ.update(license_keys) # Installing pyspark and spark-nlp ! pip install --upgrade -q pyspark==3.1.2 spark-nlp==$PUBLIC_VERSION # Installing Spark NLP Healthcare ! pip install --upgrade -q spark-nlp-jsl==$JSL_VERSION --extra-index-url https://pypi.johnsnowlabs.com/$SECRET import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl import sparknlp params = {"spark.driver.memory":"16G", "spark.kryoserializer.buffer.max":"2000M", "spark.driver.maxResultSize":"2000M"} spark = sparknlp_jsl.start(license_keys['SECRET'],params=params) print ("Spark NLP Version :", sparknlp.version()) print ("Spark NLP_JSL Version :", sparknlp_jsl.version()) documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,___Witth__ the __hell__ of __phisical__ __terapy__ the patient was __imbulated__ and on posoperative, the __impatient__ tolerating a post __curgical__ soft diet.__With __paint__ __wel__ controlled on __orall__ pain medications, she was discharged __too__ __reihabilitation__ __facilitay__.__She is to also call the __ofice__ if she has any __ever__ greater than 101, or __leeding__ __form__ the surgical wounds.__Abdomen is __sort__, nontender, and __nonintended__._ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["Witth the hell of phisical terapy the patient was imbulated and on posoperative, the impatient tolerating a post curgical soft diet.", "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.", "She is to also call the ofice if she has any ever greater than 101, or leeding form the surgical wounds.", "Abdomen is sort, nontender, and nonintended.", "Patient not showing pain or any wealth problems.", "No cute distress" ] for pairs in lp.annotate(example): print (list(zip(pairs['token'],pairs['checked']))) ###Output [('Witth', 'With'), ('the', 'the'), ('hell', 'cell'), ('of', 'of'), ('phisical', 'physical'), ('terapy', 'therapy'), ('the', 'the'), ('patient', 'patient'), ('was', 'was'), ('imbulated', 'ambulated'), ('and', 'and'), ('on', 'on'), ('posoperative', 'postoperative'), (',', ','), ('the', 'the'), ('impatient', 'inpatient'), ('tolerating', 'tolerating'), ('a', 'a'), ('post', 'post'), ('curgical', 'surgical'), ('soft', 'soft'), ('diet', 'diet'), ('.', '.')] [('With', 'With'), ('paint', 'paint'), ('wel', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('pain', 'pain'), ('medications', 'medications'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('too', 'too'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('She', 'She'), ('is', 'is'), ('to', 'to'), ('also', 'also'), ('call', 'call'), ('the', 'the'), ('ofice', 'office'), ('if', 'if'), ('she', 'she'), ('has', 'has'), ('any', 'any'), ('ever', 'ever'), ('greater', 'greater'), ('than', 'than'), ('101', '101'), (',', ','), ('or', 'or'), ('leeding', 'leading'), ('form', 'form'), ('the', 'the'), ('surgical', 'surgical'), ('wounds', 'wounds'), ('.', '.')] [('Abdomen', 'Abdomen'), ('is', 'is'), ('sort', 'sort'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'unintended'), ('.', '.')] [('Patient', 'Patient'), ('not', 'not'), ('showing', 'showing'), ('pain', 'pain'), ('or', 'or'), ('any', 'any'), ('wealth', 'wealth'), ('problems', 'problems'), ('.', '.')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')] ###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Healthcare/6.Clinical_Context_Spell_Checker.ipynb) Context Spell Checker - Medical ###Code import json from google.colab import files license_keys = files.upload() with open(list(license_keys.keys())[0]) as f: license_keys = json.load(f) license_keys.keys() license_keys['JSL_VERSION'] import os # Install java ! apt-get update -qq ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"] ! java -version secret = license_keys['SECRET'] os.environ['SPARK_NLP_LICENSE'] = license_keys['SPARK_NLP_LICENSE'] os.environ['AWS_ACCESS_KEY_ID']= license_keys['AWS_ACCESS_KEY_ID'] os.environ['AWS_SECRET_ACCESS_KEY'] = license_keys['AWS_SECRET_ACCESS_KEY'] jsl_version = license_keys['JSL_VERSION'] version = license_keys['PUBLIC_VERSION'] ! pip install --ignore-installed -q pyspark==2.4.4 ! python -m pip install --upgrade spark-nlp-jsl==$jsl_version --extra-index-url https://pypi.johnsnowlabs.com/$secret ! pip install --ignore-installed -q spark-nlp==$version import sparknlp print (sparknlp.version()) import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp_jsl.annotator import * from sparknlp.base import * import sparknlp_jsl spark = sparknlp_jsl.start(secret) documentAssembler = DocumentAssembler()\ .setInputCol("text")\ .setOutputCol("document") tokenizer = RecursiveTokenizer()\ .setInputCols(["document"])\ .setOutputCol("token")\ .setPrefixes(["\"", "(", "[", "\n"])\ .setSuffixes([".", ",", "?", ")","!", "'s"]) spellModel = ContextSpellCheckerModel\ .pretrained('spellcheck_clinical', 'en', 'clinical/models')\ .setInputCols("token")\ .setOutputCol("checked") pipeline = Pipeline( stages = [ documentAssembler, tokenizer, spellModel ]) empty_ds = spark.createDataFrame([[""]]).toDF("text") lp = LightPipeline(pipeline.fit(empty_ds)) ###Output _____no_output_____ ###Markdown Ok!, at this point we have our spell checking pipeline as expected. Let's see what we can do with it, see these errors,___Witth__ the __hell__ of __phisical__ __terapy__ the patient was __imbulated__ and on posoperative, the __impatient__ tolerating a post __curgical__ soft diet.__With __paint__ __wel__ controlled on __orall__ pain medications, she was discharged __too__ __reihabilitation__ __facilitay__.__She is to also call the __ofice__ if she has any __ever__ greater than 101, or __leeding__ __form__ the surgical wounds.__Abdomen is __sort__, nontender, and __nonintended__.__Patient not showing pain or any __wealth__ problems._ _No __cute__ distress_Check that some of the errors are valid English words, only by considering the context the right choice can be made. ###Code example = ["Witth the hell of phisical terapy the patient was imbulated and on posoperative, the impatient tolerating a post curgical soft diet.", "With paint wel controlled on orall pain medications, she was discharged too reihabilitation facilitay.", "She is to also call the ofice if she has any ever greater than 101, or leeding form the surgical wounds.", "Abdomen is sort, nontender, and nonintended.", "Patient not showing pain or any wealth problems.", "No cute distress" ] for pairs in lp.annotate(example): print (list(zip(pairs['token'],pairs['checked']))) ###Output [('Witth', 'With'), ('the', 'the'), ('hell', 'cell'), ('of', 'of'), ('phisical', 'physical'), ('terapy', 'therapy'), ('the', 'the'), ('patient', 'patient'), ('was', 'was'), ('imbulated', 'ambulated'), ('and', 'and'), ('on', 'on'), ('posoperative', 'postoperative'), (',', ','), ('the', 'the'), ('impatient', 'patient'), ('tolerating', 'tolerating'), ('a', 'a'), ('post', 'post'), ('curgical', 'surgical'), ('soft', 'soft'), ('diet', 'diet'), ('.', '.')] [('With', 'With'), ('paint', 'pain'), ('wel', 'well'), ('controlled', 'controlled'), ('on', 'on'), ('orall', 'oral'), ('pain', 'pain'), ('medications', 'medications'), (',', ','), ('she', 'she'), ('was', 'was'), ('discharged', 'discharged'), ('too', 'to'), ('reihabilitation', 'rehabilitation'), ('facilitay', 'facility'), ('.', '.')] [('She', 'She'), ('is', 'is'), ('to', 'to'), ('also', 'also'), ('call', 'call'), ('the', 'the'), ('ofice', 'once'), ('if', 'if'), ('she', 'she'), ('has', 'has'), ('any', 'any'), ('ever', 'fever'), ('greater', 'greater'), ('than', 'than'), ('101', '101'), (',', ','), ('or', 'or'), ('leeding', 'leading'), ('form', 'from'), ('the', 'the'), ('surgical', 'surgical'), ('wounds', 'wounds'), ('.', '.')] [('Abdomen', 'Abdomen'), ('is', 'is'), ('sort', 'sort'), (',', ','), ('nontender', 'nontender'), (',', ','), ('and', 'and'), ('nonintended', 'unintended'), ('.', '.')] [('Patient', 'Patient'), ('not', 'not'), ('showing', 'showing'), ('pain', 'pain'), ('or', 'or'), ('any', 'any'), ('wealth', 'health'), ('problems', 'problems'), ('.', '.')] [('No', 'No'), ('cute', 'acute'), ('distress', 'distress')]
DEEP LEARNING/Kaggle: Avito Demand Prediction Challenge (bronze solution)/ridge regression XGBOOST.ipynb
###Markdown from sklearn.model_selection import KFoldimport datetimeprint(datetime.datetime.now())folds = KFold(n_splits=5, shuffle=True, random_state=50001)oof_preds = np.zeros(X.shape[0])sub_preds = np.zeros(testing.shape[0])for n_fold, (trn_idx, val_idx) in enumerate(folds.split(X)): dtrain =lgb.Dataset(X.tocsr()[trn_idx], y.iloc[trn_idx]) dval =lgb.Dataset(X.tocsr()[val_idx], y.iloc[val_idx]) m_gbm=lgb.train(params=lgbm_params,train_set=dtrain,num_boost_round=1300,verbose_eval=400, valid_sets=[dtrain,dval],valid_names=['train','valid']) oof_preds[val_idx] = m_gbm.predict(X.tocsr()[val_idx]) sub_preds += m_gbm.predict(testing) / folds.n_splits print('Fold %2d rmse : %.6f' % (n_fold + 1, rmse(y.iloc[val_idx],oof_preds[val_idx]))) del dtrain,dval gc.collect() print('Full RMSE score %.6f' % rmse(y, oof_preds)) del X; gc.collect()sub_preds[sub_preds<0]=0sub_preds[sub_preds>1]=1 Mixing lightgbm with ridge. I haven't really tested if this improves the score or notblend = 0.95*lgpred + 0.05*ridge_oof_test[:,0]Submission=pd.read_csv("sample_submission.csv")Submission['deal_probability']=sub_predsSubmission.to_csv("split5.csv", index=False)print(datetime.datetime.now()) import xgboost as xgbclf = xgb.XGBRegressor( params) n_estimators=999, learning_rate=0.02, gamma =0.3, min_child_weight = 3,nthread = 15,max_depth=30, subsample=0.9, colsample_bytree=0.8, seed=2100, eval_metric = "rmse") ###Code params = { #'objective' : 'gpu:reg:linear', #'tree_method':'gpu_hist', 'learning_rate': 0.016, 'gamma' : 0.3, 'min_child_weight' : 3, 'nthread' : 15, 'max_depth' : 12, 'subsample' : 0.9, 'colsample_bytree' : 0.75, 'seed':2100, 'eval_metric' : "rmse", 'num_boost_round' : 500, 'n_estimators':999, 'max_leaves': 90 } import xgboost as xgb VALID = True if VALID == True: X_train, X_valid, y_train, y_valid = train_test_split( X, y, test_size = 0.06, random_state=23) tr_data = xgb.DMatrix(X_train, y_train) va_data = xgb.DMatrix(X_valid, y_valid) #del X_train, X_valid, y_train, y_valid ; gc.collect() watchlist = [(tr_data, 'train'), (va_data, 'valid')] model = xgb.train(params, tr_data, 500, watchlist, maximize=False, early_stopping_rounds = 30, verbose_eval=50) print("Model Evaluation Stage") print('RMSE valid:', np.sqrt(metrics.mean_squared_error(y_valid, model.predict(xgb.DMatrix(X_valid))))) print('RMSE train:', np.sqrt(metrics.mean_squared_error(y_train, model.predict(xgb.DMatrix(X_train))))) else: # Go Go Go del tr_data, va_data, X_train, X_valid, y_train, y_valid; gc.collect() tr_data = xgb.DMatrix(X, y) model = xgb.train(params,tr_data, 1000, verbose_eval=100) print("Model Evaluation Stage") lgpred = model.predict(xgb.DMatrix(testing)) print('RMSE train:', np.sqrt(metrics.mean_squared_error(y_train, model.predict(xgb.DMatrix(X_train))))) #Mixing lightgbm with ridge. I haven't really tested if this improves the score or not #blend = 0.95*lgpred + 0.05*ridge_oof_test[:,0] lgsub = pd.DataFrame(lgpred,columns=["deal_probability"],index=testdex) lgsub['deal_probability'].clip(0.0, 1.0, inplace=True) # Between 0 and 1 lgsub.to_csv("xgsub_tf.csv",index=True,header=True) #print("Model Runtime: %0.2f Minutes"%((time.time() - modelstart)/60)) import matplotlib.pyplot as plt f, ax = plt.subplots(figsize=[10,15]) xgb.plot_importance(model, ax=ax) import matplotlib.pyplot as plt f, ax = plt.subplots(figsize=[10,15]) xgb.plot_importance(model, ax=ax ) ###Output _____no_output_____ ###Markdown RMSE valid: 0.22568683979923207RMSE train: 0.21163101254549618Model Evaluation Stageparams = { 'objective' : 'gpu:reg:linear', 'tree_method':'gpu_hist', 'learning_rate': 0.015, 'gamma' : 0.3, 'min_child_weight' : 3, 'nthread' : 15, 'max_depth' : 12, 'subsample' : 0.9, 'colsample_bytree' : 0.75, 'seed':2100, 'eval_metric' : "rmse", 'num_boost_round' : 300, 'n_estimators':999, 'max_leaves': 120} Model Evaluation StageRMSE valid: 0.22405721827050518 params = { 'objective' : 'gpu:reg:linear', 'tree_method':'gpu_hist', 'learning_rate': 0.015, 'gamma' : 0.3, 'min_child_weight' : 3, 'nthread' : 15, 'max_depth' : 15, 'subsample' : 0.9, 'colsample_bytree' : 0.75, 'seed':2100, 'eval_metric' : "rmse", 'num_boost_round' : 300, 'n_estimators':999, 'max_leaves': 100 RMSE valid: 0.23508655812191442RMSE train: 0.234600064596860 params = { 'objective' : 'gpu:reg:linear', 'tree_method':'gpu_hist', 'learning_rate': 0.015, 'gamma' : 0.3, 'min_child_weight' : 3, 'nthread' : 15, 'max_depth' : 15, 'subsample' : 0.9, 'colsample_bytree' : 0.75, 'seed':2100, 'eval_metric' : "rmse", 'num_boost_round' : 300, 'n_estimators':999, 'max_leaves': 100} Will train until valid-rmse hasn't improved in 30 rounds.[50] train-rmse:0.269386 valid-rmse:0.270039[100] train-rmse:0.234934 valid-rmse:0.236262[150] train-rmse:0.228136 valid-rmse:0.230054[200] train-rmse:0.225995 valid-rmse:0.228401[250] train-rmse:0.224621 valid-rmse:0.227503[299] train-rmse:0.223569 valid-rmse:0.226906 'learning_rate': 0.015, 'gamma' : 0.3, 'min_child_weight' : 3, 'nthread' : 15, 'max_depth' : 8, 'subsample' : 0.9, 'colsample_bytree' : 0.75, 'seed':2100, 'eval_metric' : "rmse", 'num_boost_round' : 300, 'n_estimators':999, 'max_leaves': 100 299] train-rmse:0.223569 valid-rmse:0.226906clf = xgb.XGBRegressor( n_estimators=999, learning_rate=0.015, gamma =0.3, min_child_weight = 3,nthread = 15,max_depth=150, subsample=0.9, colsample_bytree=0.8, seed=2100, eval_metric = "rmse")[0] validation_0-rmse:0.440045Will train until validation_0-rmse hasn't improved in 50 rounds.[50] validation_0-rmse:0.288205[100] validation_0-rmse:0.239962[150] validation_0-rmse:0.22704[200] validation_0-rmse:0.223603[250] validation_0-rmse:0.222562[300] validation_0-rmse:0.222139 ###Code import datetime datetime.datetime.now() clf.feature_importances_ ###Output _____no_output_____
Clase 9 - Ejercicios score y NBA spark.ipynb
###Markdown 2016 2C 1 Parcial En este ejercicio queremos programar un sistema que recomiende textos a usuarios en base a sus gustos sobre ciertos términos (palabras).Se cuenta con un RDD de textos de la forma (docId, texto) donde texto es un string de longitud variable.Además contamos con un RDD que indica qué términos le gustan o no a cada usuario de la forma (userId, término, score) por ejemplo (23, “calesita”, -2).Se pide programar en Spark un programa que calcule el score total de cada documento para cada usuario generando un RDD de la forma (userId, docId, score) en donde el score es simplemente la suma de los scores del usuario para los términos que aparecen en el documento.Puede haber términos en los documentos para los cuales no exista score de algunos usuarios, en estos casos simplemente los consideramos neutros (score=0) ###Code documents_raw = [ (1, 'pablo honey'), (2, 'the bends'), (3, 'ok computer'), (4, 'kid a'), (5, 'amnesiac'), (6, 'hail to the thief'), (7, 'in rainbows'), (8, 'the king of limbs'), (9, 'a moon shaped pool') ] scores_raw = [ ('thom', 'pablo', 1), ('thom', 'honey', 1), ('martin', 'pablo', -1), ('martin', 'honey', -1), ('martin', 'ok', 30), ('martin', 'computer', 30), ] documents = sc.parallelize(documents_raw) scores = sc.parallelize(scores_raw) terms = documents.flatMap(lambda x: [(word, x[0]) for word in x[1].split()]) scores_by_word = scores.map(lambda x: (x[1], (x[0], x[2]))) total = terms.join(scores_by_word) total.collect() by_user = total.map(lambda x: ((x[1][1][0], x[1][0]), x[1][1][1])).reduceByKey(lambda x, y: x + y).cache() by_user.first() users = scores.map(lambda x: x[0]).distinct() # Usuarios unicos docs = documents.map(lambda x: x[0]) users_docs = users.cartesian(docs).map(lambda x: ((x[0],x[1]), 0)).cache() users_docs.collect() by_user.rightOuterJoin(users_docs).map(lambda x: (x[0][0], x[0][1], 0 if x[1][0] is None else x[1][0])).collect() ###Output _____no_output_____ ###Markdown 2017 1C 1 Parcial Se tiene información estadística de la temporada regular de todos los jugadores de la NBA en un RDD de tuplas con el siguiente formato: (id_jugador, nombre, promedio_puntos, promedio_asistencias, promedio_robos, promedio_bloqueos, promedio_rebotes, promedio_faltas).Un analista de la cadena ESPN está trabajando con un RDD que corresponde a la primera ronda de playoffs y que tiene el siguiente formato: (id_jugador, id_partido, timestamp, cantidad_puntos, cantidad_rebotes, cantidad_bloqueos, cantidad_robos, cantidad_asistencias, cantidad_faltas).En base a estos RDDs se quiere programar en PySpark un programa que genere un RDD con los nombres (sin duplicados) de los jugadores que lograron en algún partido de playoffs una cantidad de asistencias mayor a su promedio histórico. ###Code # (id_jugador, nombre, promedio_asistencias) players_all_time_stats = [ (1, 'Manu Ginobili', 800), (2, 'Kobe Bryant', 100), (3, 'Marc Gasol', 25), (4, 'James Harden', 1000)] # (id_jugador, id_partido, timestamp, cantidad_asistencias) scores = [ (1, 1, 1, 100), (1, 1, 3, 100), (2, 1, 1, 150), (2, 1, 3, 150), (3, 2, 2, 50), (3, 2, 3, 50), (1, 2, 1, 150), (1, 2, 3, 150), ] stats = sc.parallelize(players_all_time_stats) scores = sc.parallelize(scores) stats = stats.map(lambda x: (x[0], (x[1],x[2]))) stats.first() scores_by_match = scores.map(lambda x: ((x[0], x[1]), x[3])).reduceByKey(lambda x, y: x + y)\ .map(lambda x: (x[0][0], x[1])) scores_by_match.first() resul = scores_by_match.join(stats).filter(lambda x: x[1][0] > x[1][1][1]).map(lambda x: (x[1][1][0])).distinct() resul.collect() ###Output _____no_output_____
nice_figure.ipynb
###Markdown Then we define an array of angles and their sines and cosines using numpy. This time we will use linspace. ###Code x = np.linspace(0, 2*np.pi, 100) print (x[-1], 2*np.pi) y = np.sin(x) z = np.cos(x) w = np.sin(4*x) v = np.cos(4*x) ###Output _____no_output_____ ###Markdown Now, let's make a two panel plot side-by-side. ###Code # call subplots to generate a multipanel figure. This means 1 row, 2 columns of figures f, axarr = plt.subplots(1, 2) # treat axarr as an array, from left to right # first panel axarr[0].plot(x, y) axarr[0].set_xlabel('x') axarr[0].set_ylabel('sin(x)') axarr[0].set_title(r'$\sin(x)$') #latech using a math mode, two dollar signs make it a special plot, fancy sin(x) # second panel axarr[1].plot(x, z) axarr[1].set_xlabel('x') axarr[1].set_ylabel('cos(x)') axarr[1].set_title(r'$\cos(x)$') ###Output _____no_output_____ ###Markdown Here we can see that matplotlib has the panels too close together.We can adjust that using the subplot_adjust() functions. Enables use to move the panels further apart/closer together. ###Code # call subplots to generate a multipanel figure. This means 1 row, 2 columns of figures f, axarr = plt.subplots(1, 2) # treat axarr as an array, from left to right # first panel axarr[0].plot(x, y) axarr[0].set_xlabel('x') axarr[0].set_ylabel('sin(x)') axarr[0].set_title(r'$\sin(x)$') #latech using a math mode, two dollar signs make it a special plot, fancy sin(x) # second panel axarr[1].plot(x, z) axarr[1].set_xlabel('x') axarr[1].set_ylabel('cos(x)') axarr[1].set_title(r'$\cos(x)$') #add more space between the figures f.subplots_adjust(wspace = 0.4) #using hspace will put space between them if they were stacked vertically ###Output _____no_output_____ ###Markdown Set_aspect can be used to change the axis ratio.The axis ratios are squished so we can fix that. ###Code # call subplots to generate a multipanel figure. This means 1 row, 2 columns of figures f, axarr = plt.subplots(1, 2) # treat axarr as an array, from left to right # first panel axarr[0].plot(x, y) axarr[0].set_xlabel('x') axarr[0].set_ylabel('sin(x)') axarr[0].set_title(r'$\sin(x)$') #latech using a math mode, two dollar signs make it a special plot, fancy sin(x) # second panel axarr[1].plot(x, z) axarr[1].set_xlabel('x') axarr[1].set_ylabel('cos(x)') axarr[1].set_title(r'$\cos(x)$') #add more space between the figures f.subplots_adjust(wspace = 0.4) #using hspace will put space between them if they were stacked vertically #fix the axis ratio #here are two possible options axarr[0].set_aspect('equal') #make the ratio of the tick units equal, a bit counter intuitive axarr[1].set_aspect(np.pi) #make a square by setting the aspect to be the ratio of the tick unit range ###Output _____no_output_____ ###Markdown Legends are an easy way to notate a complicated figure.Let's keep the square figure, merge them into one, remove the titles and add legends. ###Code #adjust the size of the figure fig = plt.figure(figsize=(6,6)) plt.plot(x, y, label=r'$y =\sin(x)$') #add a label to the line plt.plot(x, z, label=r'$y =\cos(x)$') #add a label to the second line plt.plot(x, w, label=r'$y =\sin(4x)$') #add a label to the third line plt.plot(x, v, label=r'$y =\cos(4x)$') #add a label to the fourth line plt.xlabel(r'$x$') #note set_xlabel vs. xlabel plt.ylabel(r'$y(x)$') #note set_ylabel vs. ylabel plt.xlim ([0, 2*np.pi]) #note set_xlim vs. xlim plt.ylim ([-1.2,1.2]) #note set_ylim vs. ylim plt.legend (loc=1, framealpha=0.95) #add a legend with a semi-transparent fram in the upper RH corner #fix the axis ratio plt.gca().set_aspect(np.pi/1.2) #use "gca" to get current axis() ###Output _____no_output_____
files/Review Generator.ipynb
###Markdown Boy Names: ###Code boy_names = """""""""Liam Noah Oliver Elijah William James Benjamin Lucas Henry Alexander Mason Michael Ethan Daniel Jacob Logan Jackson Levi Sebastian Mateo Jack Owen Theodore Aiden Samuel Joseph John David Wyatt Matthew Luke Asher Carter Julian Grayson Leo Jayden Gabriel Isaac Lincoln Anthony Hudson Dylan Ezra Thomas Charles Christopher Jaxon Maverick Josiah Isaiah Andrew Elias Joshua Nathan Caleb Ryan Adrian Miles Eli Nolan Christian Aaron Cameron Ezekiel Colton Luca Landon Hunter Jonathan Santiago Axel Easton Cooper Jeremiah Angel Roman Connor Jameson Robert Greyson Jordan Ian Carson Jaxson Leonardo Nicholas Dominic Austin Everett Brooks Xavier Kai Jose Parker Adam Jace Wesley Kayden Silas Bennett Declan Waylon Weston Evan Emmett Micah Ryder Beau Damian Brayden Gael Rowan Harrison Bryson Sawyer Amir Kingston Jason Giovanni Vincent Ayden Chase Myles Diego Nathaniel Legend Jonah River Tyler Cole Braxton George Milo Zachary Ashton Luis Jasper Kaiden Adriel Gavin Bentley Calvin Zion Juan Maxwell Max Ryker Carlos Emmanuel Jayce Lorenzo Ivan Jude August Kevin Malachi Elliott Rhett Archer Karter Arthur Luka Elliot Thiago Brandon Camden Justin Jesus Maddox King Theo Enzo Matteo Emiliano Dean Hayden Finn Brody Antonio Abel Alex Tristan Graham Zayden Judah Xander Miguel Atlas Messiah Barrett Tucker Timothy Alan Edward Leon Dawson Eric Ace Victor Abraham Nicolas Jesse Charlie Patrick Walker Joel Richard Beckett Blake Alejandro Avery Grant Peter Oscar Matias Amari Lukas Andres Arlo Colt Adonis Kyrie Steven Felix Preston Marcus Holden Emilio Remington Jeremy Kaleb Brantley Bryce Mark Knox Israel Phoenix Kobe Nash Griffin Caden Kenneth Kyler Hayes Jax Rafael Beckham Javier Maximus Simon Paul Omar Kaden Kash Lane Bryan Riley Zane Louis Aidan Paxton Maximiliano Karson Cash Cayden Emerson Tobias Ronan Brian Dallas Bradley Jorge Walter Josue Khalil Damien Jett Kairo Zander Andre Cohen Crew Hendrix Colin Chance Malakai Clayton Daxton Malcolm Lennox Martin Jaden Kayson Bodhi Francisco Cody Erick Kameron Atticus Dante Jensen Cruz Finley Brady Joaquin Anderson Gunner Muhammad Zayn Derek Raymond Kyle Angelo Reid Spencer Nico Jaylen Jake Prince Manuel Ali Gideon Stephen Ellis Orion Rylan Eduardo Mario Rory Cristian Odin Tanner Julius Callum Sean Kane Ricardo Travis Wade Warren Fernando Titus Leonel Edwin Cairo Corbin Dakota Ismael Colson Killian Major Tate Gianni Elian Remy Lawson Niko Nasir Kade Armani Ezequiel Marshall Hector Desmond Kason Garrett Jared Cyrus Russell Cesar Tyson Malik Donovan Jaxton Cade Romeo Nehemiah Sergio Iker Caiden Jay Pablo Devin Jeffrey Otto Kamari Ronin Johnny Clark Ari Marco Edgar Bowen Jaiden Grady Zayne Sullivan Jayceon Sterling Andy Conor Raiden Royal Royce Solomon Trevor Winston Emanuel Finnegan Pedro Luciano Harvey Franklin Noel Troy Princeton Johnathan Erik Fabian Oakley Rhys Porter Hugo Frank Damon Kendrick Mathias Milan Peyton Wilder Callan Gregory Seth Matthias Briggs Ibrahim Roberto Conner Quinn Kashton Sage Santino Kolton Alijah Dominick Zyaire Apollo Kylo Reed Philip Kian Shawn Kaison Leonidas Ayaan Lucca Memphis Ford Baylor Kyson Uriel Allen Collin Ruben Archie Dalton Esteban Adan Forrest Alonzo Isaias Leland Jase Dax Kasen Gage Kamden Marcos Jamison Francis Hank Alexis Tripp Frederick Jonas Stetson Cassius Izaiah Eden Maximilian Rocco Tatum Keegan Aziel Moses Bruce Lewis Braylen Omari""" boy_names = boy_names.replace(" ","") boy_names = boy_names.split("\n") #print(boy_names) ###Output _____no_output_____ ###Markdown Girl Names: ###Code girl_names = """""""""Olivia Emma Ava Charlotte Sophia Amelia Isabella Mia Evelyn Harper Camila Gianna Abigail Luna Ella Elizabeth Sofia Emily Avery Mila Scarlett Eleanor Madison Layla Penelope Aria Chloe Grace Ellie Nora Hazel Zoey Riley Victoria Lily Aurora Violet Nova Hannah Emilia Zoe Stella Everly Isla Leah Lillian Addison Willow Lucy Paisley Natalie Naomi Eliana Brooklyn Elena Aubrey Claire Ivy Kinsley Audrey Maya Genesis Skylar Bella Aaliyah Madelyn Savannah Anna Delilah Serenity Caroline Kennedy Valentina Ruby Sophie Alice Gabriella Sadie Ariana Allison Hailey Autumn Nevaeh Natalia Quinn Josephine Sarah Cora Emery Samantha Piper Leilani Eva Everleigh Madeline Lydia Jade Peyton Brielle Adeline Vivian Rylee Clara Raelynn Melanie Melody Julia Athena Maria Liliana Hadley Arya Rose Reagan Eliza Adalynn Kaylee Lyla Mackenzie Alaia Isabelle Charlie Arianna Mary Remi Margaret Iris Parker Ximena Eden Ayla Kylie Elliana Josie Katherine Faith Alexandra Eloise Adalyn Amaya Jasmine Amara Daisy Reese Valerie Brianna Cecilia Andrea Summer Valeria Norah Ariella Esther Ashley Emerson Aubree Isabel Anastasia Ryleigh Khloe Taylor Londyn Lucia Emersyn Callie Sienna Blakely Kehlani Genevieve Alina Bailey Juniper Maeve Molly Harmony Georgia Magnolia Catalina Freya Juliette Sloane June Sara Ada Kimberly River Ember Juliana Aliyah Millie Brynlee Teagan Morgan Jordyn London Alaina Olive Rosalie Alyssa Ariel Finley Arabella Journee Hope Leila Alana Gemma Vanessa Gracie Noelle Marley Elise Presley Kamila Zara Amy Kayla Payton Blake Ruth Alani Annabelle Sage Aspen Laila Lila Rachel Trinity Daniela Alexa Lilly Lauren Elsie Margot Adelyn Zuri Brooke Sawyer Lilah Lola Selena Mya Sydney Diana Ana Vera Alayna Nyla Elaina Rebecca Angela Kali Alivia Raegan Rowan Phoebe Camilla Joanna Malia Vivienne Dakota Brooklynn Evangeline Camille Jane Nicole Catherine Jocelyn Julianna Lena Lucille Mckenna Paige Adelaide Charlee Mariana Myla Mckenzie Tessa Miriam Oakley Kailani Alayah Amira Adaline Phoenix Milani Annie Lia Angelina Harley Cali Maggie Hayden Leia Fiona Briella Journey Lennon Saylor Jayla Kaia Thea Adriana Mariah Juliet Oaklynn Kiara Alexis Haven Aniyah Delaney Gracelynn Kendall Winter Lilith Logan Amiyah Evie Alexandria Gracelyn Gabriela Sutton Harlow Madilyn Makayla Evelynn Gia Nina Amina Giselle Brynn Blair Amari Octavia Michelle Talia Demi Alaya Kaylani Izabella Fatima Tatum Makenzie Lilliana Arielle Palmer Melissa Willa Samara Destiny Dahlia Celeste Ainsley Rylie Reign Laura Adelynn Gabrielle Remington Wren Brinley Amora Lainey Collins Lexi Aitana Alessandra Kenzie Raelyn Elle Everlee Haisley Hallie Wynter Daleyza Gwendolyn Paislee Ariyah Veronica Heidi Anaya Cataleya Kira Avianna Felicity Aylin Miracle Sabrina Lana Ophelia Elianna Royalty Madeleine Esmeralda Joy Kalani Esme Jessica Leighton Ariah Makenna Nylah Viviana Camryn Cassidy Dream Luciana Maisie Stevie Kate Lyric Daniella Alicia Daphne Frances Charli Raven Paris Nayeli Serena Heaven Bianca Helen Hattie Averie Mabel Selah Allie Marlee Kinley Regina Carmen Jennifer Jordan Alison Stephanie Maren Kayleigh Angel Annalise Jacqueline Braelynn Emory Rosemary Scarlet Amanda Danielle Emelia Ryan Carolina Astrid Kensley Shiloh Maci Francesca Rory Celine Kamryn Zariah Liana Poppy Maliyah Keira Skyler Noa Skye Nadia Addilyn Rosie Eve Sarai Edith Jolene Maddison Meadow Charleigh Matilda Elliott Madelynn Bergen Leona Azalea Katie Mira Ari Kaitlyn Danna Cameron Kyla Bristol Kora Armani Nia Malani Dylan Remy Maia Dior Legacy""" girl_names = girl_names.replace(" ","") girl_names = girl_names.split("\n") #print(girl_names) ###Output _____no_output_____ ###Markdown Last Names: ###Code last_names = """"""""" Smith Johnson Williams Brown Jones Garcia Miller Davis Rodriguez Martinez Hernandez Lopez Gonzalez Wilson Anderson Thomas Taylor Moore Jackson Martin Lee Perez Thompson White Harris Sanchez Clark Ramirez Lewis Robinson Walker Young Allen King Wright Scott Torres Nguyen Hill Flores Green Adams Nelson Baker Hall Rivera Campbell Mitchell Carter Roberts Gomez Phillips Evans Turner Diaz Parker Cruz Edwards Collins Reyes Stewart Morris Morales Murphy Cook Rogers Gutierrez Ortiz Morgan Cooper Peterson Bailey Reed Kelly Howard Ramos Kim Cox Ward Richardson Watson Brooks Chavez Wood James Bennett Gray Mendoza Ruiz Hughes Price Alvarez Castillo Sanders Patel Myers Long Ross Foster Jimenez Powell Jenkins Perry Russell Sullivan Bell Coleman Butler Henderson Barnes Gonzales Fisher Vasquez Simmons Romero Jordan Patterson Alexander Hamilton Graham Reynolds Griffin Wallace Moreno West Cole Hayes Bryant Herrera Gibson Ellis Tran Medina Aguilar Stevens Murray Ford Castro Marshall Owens Harrison Fernandez Mcdonald Woods Washington Kennedy Wells Vargas Henry Chen Freeman Webb Tucker Guzman Burns Crawford Olson Simpson Porter Hunter Gordon Mendez Silva Shaw Snyder Mason Dixon Munoz Hunt Hicks Holmes Palmer Wagner Black Robertson Boyd Rose Stone Salazar Fox Warren Mills Meyer Rice Schmidt Garza Daniels Ferguson Nichols Stephens Soto Weaver Ryan Gardner Payne Grant Dunn Kelley Spencer Hawkins Arnold Pierce Vazquez Hansen Peters Santos Hart Bradley Knight Elliott Cunningham Duncan Armstrong Hudson Carroll Lane Riley Andrews Alvarado Ray Delgado Berry Perkins Hoffman Johnston Matthews Pena Richards Contreras Willis Carpenter Lawrence Sandoval Guerrero George Chapman Rios Estrada Ortega Watkins Greene Nunez Wheeler Valdez Harper Burke Larson Santiago Maldonado Morrison Franklin Carlson Austin Dominguez Carr Lawson Jacobs Obrien Lynch Singh Vega Bishop Montgomery Oliver Jensen Harvey Williamson Gilbert Dean Sims Espinoza Howell Li Wong Reid Hanson Le Mccoy Garrett Burton Fuller Wang Weber Welch Rojas Lucas Marquez Fields Park Yang Little Banks Padilla Day Walsh Bowman Schultz Luna Fowler Mejia Davidson Acosta Brewer –221 Holland Juarez Newman Pearson Curtis Cortez Douglas Schneider Joseph Barrett Navarro Figueroa Keller Avila Wade Molina Stanley Hopkins Campos Barnett Bates Chambers Caldwell Beck Lambert Miranda Byrd Craig Ayala Lowe Frazier Powers Neal Leonard Gregory Carrillo Sutton Fleming Rhodes Shelton Schwartz Norris Jennings Watts Duran Walters Cohen Mcdaniel Moran Parks Steele Vaughn Becker Holt Deleon Barker Terry Hale Leon Hail Benson Haynes Horton Miles Lyons Pham Graves Bush Thornton Wolfe Warner Cabrera Mckinney Mann Zimmerman Dawson Lara Fletcher Page Mccarthy Love Robles Cervantes Solis Erickson Reeves Chang Klein Salinas Fuentes Baldwin Daniel Simon Velasquez Hardy Higgins Aguirre Lin Cummings Chandler Sharp Barber Bowen Ochoa Dennis Robbins Liu Ramsey Francis Griffith Paul Blair Oconnor Cardenas Pacheco Cross Calderon Quinn Moss Swanson Chan Rivas Khan Rodgers Serrano Fitzgerald Rosales Stevenson Christensen Manning Gill Curry Mclaughlin Harmon Mcgee Gross Doyle Garner Newton Burgess Reese Walton Blake Trujillo Adkins Brady Goodman Roman Webster Goodwin Fischer Huang Potter Delacruz Montoya Todd Wu Hines Mullins Castaneda Malone Cannon Tate Mack Sherman Hubbard Hodges Zhang Guerra Wolf Valencia Franco Saunders Rowe Gallagher Farmer Hammond Hampton Townsend Ingram Wise Gallegos Clarke Barton Schroeder Maxwell Waters Logan Camacho Strickland Norman Person Colon Parsons Frank Harrington Glover Osborne Buchanan Casey Floyd Patton Ibarra Ball Tyler Suarez Bowers Orozco Salas Cobb Gibbs Andrade Bauer Conner Moody Escobar Mcguire Lloyd Mueller Hartman French Kramer Mcbride Pope Lindsey Velazquez Norton Mccormick Sparks Flynn Yates Hogan Marsh Macias Villanueva Zamora Pratt Stokes Owen Ballard Lang Brock Villarreal Charles Drake Barrera Cain Patrick Pineda Burnett Mercado Santana Shepherd Bautista Ali Shaffer Lamb Trevino Mckenzie Hess Beil Olsen Cochran Morton Nash Wilkins Petersen Briggs Shah Roth Nicholson Holloway Lozano Flowers Rangel Hoover Arias Short Mora Valenzuela Bryan Meyers Weiss Underwood Bass Greer Summers Houston Carson Morrow Clayton Whitaker Decker Yoder Collier Zuniga Carey Wilcox Melendez Poole Roberson Larsen Conley Davenport Copeland Massey Lam Huff Rocha Cameron Jefferson Hood Monroe Anthony Pittman Huynh Randall Singleton Kirk Combs Mathis Christian Skinner Bradford Richard Galvan Wall Boone Kirby Wilkinson Bridges Bruce Atkinson Velez Meza Roy Vincent York Hodge Villa Abbott Allison Tapia Gates Chase Sosa Sweeney Farrell Wyatt Dalton Horn Barron Phelps Yu Dickerson Heath Foley Atkins Mathews Bonilla Acevedo Benitez Zavala Hensley Glenn Cisneros Harrell Shields Rubio Choi Huffman Boyer Garrison Arroyo Bond Kane Hancock Callahan Dillon Cline Wiggins Grimes Arellano Melton Oneill Savage Ho Beltran Pitts Parrish Ponce Rich Booth Koch Golden Ware Brennan Mcdowell Marks Cantu Humphrey Baxter Sawyer Clay Tanner Hutchinson Kaur Berg Wiley Gilmore Russo Villegas Hobbs Keith Wilkerson Ahmed Beard Mcclain Montes Mata Rosario Vang Walter Henson Oneal Mosley Mcclure Beasley Stephenson Snow Huerta Preston Vance Barry Johns Eaton Blackwell Dyer Prince Macdonald Solomon Guevara Stafford English Hurst Woodard Cortes Shannon Kemp Nolan Mccullough Merritt Murillo Moon Salgado Strong Kline Cordova Barajas Roach Rosas Winters Jacobson Lester Knox Bullock Kerr Leach Meadows Davila Orr Whitehead Pruitt Kent Conway Mckee Barr David Dejesus Marin Berger Mcintyre Blankenship Gaines Palacios Cuevas Bartlett Durham Dorsey Mccall Odonnell Stein Browning Stout Lowery Sloan Mclean Hendricks Calhoun Sexton Chung Gentry Hull Duarte Ellison Nielsen Gillespie Buck Middleton Sellers Leblanc Esparza Hardin Bradshaw Mcintosh Howe Livingston Frost Glass Morse Knapp Herman Stark Bravo Noble Spears Weeks Corona Frederick Buckley Mcfarland Hebert Enriquez Hickman Quintero Randolph Schaefer Walls Trejo House Reilly Pennington Michael Conrad Giles Benjamin Crosby Fitzpatrick Donovan Mays Mahoney Valentine Raymond Medrano Hahn Mcmillan Small Bentley Felix Peck Lucero Boyle Hanna Pace Rush Hurley Harding Mcconnell Bernal Nava Ayers Everett Ventura Avery Pugh Mayer Bender Shepard Mcmahon Landry Case Sampson Moses Magana Blackburn Dunlap Gould Duffy Vaughan Herring Mckay Espinosa Rivers Farley Bernard Ashley Friedman Potts Truong Costa Correa Blevins Nixon Clements Fry Delarosa Best Benton Lugo Portillo Dougherty Crane Haley Phan Villalobos Blanchard Horne Finley Quintana Lynn Esquivel Bean Dodson Mullen Xiong Hayden Cano Levy Huber Richmond Moyer Lim Frye Sheppard Mccarty Avalos Booker Waller Parra Woodward Jaramillo Krueger Rasmussen Brandt Peralta Donaldson Stuart Faulkner Maynard Galindo Coffey Estes Sanford Burch Maddox Vo Oconnell Vu Andersen Spence Mcpherson Church Schmitt Stanton Leal Cherry Compton Dudley Sierra Pollard Alfaro Hester Proctor Lu Hinton Novak Good Madden Mccann Terrell Jarvis Dickson Reyna Cantrell Mayo Branch Hendrix Rollins Rowland Whitney Duke Odom Daugherty Travis Tang Archer """ last_names = last_names.replace(" ","") last_names = last_names.split("\n") #print(last_names) ###Output _____no_output_____ ###Markdown Sentence Generator ###Code import random for i in range(40): sent_count_index = random.randint(0,10) sent_count = [1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3] sent_count = sent_count[sent_count_index] #print(sent_count) sent_struct_index = [1, 2, 3] # we loved the product; it's so affordable and effective; works great sent_struct = [] for j in range(sent_count): index = random.randint(0,len(sent_struct_index)-1) sent_struct.append(sent_struct_index[index]) sent_struct_index.pop(index) #print(sent_struct) sentence = "" for j in range(len(sent_struct)): product = [" the product", " insert_product_name", " it"] if sent_struct[j] == 1: # we loved the product person = ["we", "we", "we", "we", "we", "we", "we", "we", "i", "i", "i", "i", "i", "i", "i", "i", "i", "i", "i", "my friend referred me and I", "my friend told me about this brand and I", "my best friend", "my husband", "my mom", "my dad", "my brother", "my sister", "my wife"] person = person[random.randint(0,len(person)-1)] verb_num = random.randint(1,3) verb1 = [" loved", " enjoyed", " recommended", " liked", " appreciated"] verb2 = [" thought"] if verb_num != 2: verb = verb1[random.randint(0,len(verb1)-1)] if verb_num == 2: verb = verb2[random.randint(0,len(verb2)-1)] product = product[random.randint(0, len(product)-1)] sentence1 = person + verb + product if verb_num == 2: verb_end1 = [" was", " is"] verb_end2 = [" awesome", " great"] verb_end = verb_end1[random.randint(0, len(verb_end1)-1)] + verb_end2[random.randint(0, len(verb_end2)-1)] sentence1 += verb_end elif random.randint(0,3) < 3: end = [" so much", " a lot"] end = end[random.randint(0, len(end)-1)] sentence1 += end sentence1 = sentence1[0].upper() + sentence1[1:] punctuation = [".", "!"] punctuation = punctuation[random.randint(0, len(punctuation)-1)] sentence1 += punctuation #print(sentence1) sentence += " " sentence += sentence1 if sent_struct[j] == 2: # it's so affordable and effective product = product[random.randint(0, len(product)-1)] if random.randint(0,2) < 2: adverb = [" so", " very"] adverb = adverb[random.randint(0, len(adverb)-1)] adj_num = random.randint(1,3) adjs = [" affordable", " effective", " easy to use", " helpful", " fantastic", " satisfying", " efficient"] adj = adjs[random.randint(0, len(adjs)-1)] if adj_num == 2: adjs.remove(adj) adj += " and" adj += adjs[random.randint(0, len(adjs)-1)] if adj_num == 3: adjs.remove(adj) adj += "," temp = adjs[random.randint(0, len(adjs)-1)] adj += temp adjs.remove(temp) just = "" if random.randint(0,10) == 10: just += " just" adj += ", and" + just + adjs[random.randint(0, len(adjs)-1)] verb = ["'s", " is", " was"] verb = verb[random.randint(0, len(verb)-1)] sentence2 = product + verb + adj sentence2 = sentence2[1:] sentence2 = sentence2[0].upper() + sentence2[1:] punctuation = [".", "!"] punctuation = punctuation[random.randint(0, len(punctuation)-1)] sentence2 += punctuation #print(sentence2) sentence += " " sentence += sentence2 if sent_struct[j] == 3: # works great sentence3 = ["works great", "works super quick", "works fast", "works so fast", "good quality", "great quality", "love it", "loved it", "can't believe how good it is", "remarkable", "super effective"] sentence3 = sentence3[random.randint(0, len(sentence3)-1)] sentence3 = sentence3[0].upper() + sentence3[1:] punctuation = [".", "!"] punctuation = punctuation[random.randint(0, len(punctuation)-1)] sentence3 += punctuation sentence += " " sentence += sentence3 if random.randint(0,20) == 20: rating = [" 9/10", " 10/10", " 5 stars", " 5 stars", " You need to try this brand", " You gotta try them", " These are a must buy" " 11/10", " Amazing", " Awesome", " I'm telling all my friends"] rating = rating[random.randint(0, len(rating)-1)] if random.randint(0,3) == 0: rating += "!" sentence += rating sentence = sentence[1:] girl_boy_index = random.randint(1,2) if girl_boy_index == 1: # boy boy_index = random.randint(0,len(boy_names)-1) name = boy_names[boy_index] if girl_boy_index == 2: # girl girl_index = random.randint(0,len(girl_names)-1) name = girl_names[girl_index] if random.randint(1,10) < 7: last_index = random.randint(0,len(last_names)-1) name += " " + last_names[last_index] sentence += "\n -" + name + "\n" print(sentence) ###Output It was fantastic, helpful, and effective. -Rosie Can't believe how good it is. -Vanessa I thought the product is great. -Austin Aguirre My sister thought the product is great! -Paisley Stafford Insert_product_name was efficient. -Tate Byrd We enjoyed insert_product_name a lot! The product was easy to use. -Karson Zamora Insert_product_name's effective, satisfying, and fantastic! -Sullivan Rowland The product is fantastic, efficient, and effective. Works fast! -Lilly My friend told me about this brand and I thought insert_product_name is great! It's effective. -Elizabeth It's easy to use, helpful, and effective! My sister thought it is great! -Parker It was effective. We thought it was awesome! -Josephine We appreciated it a lot. -Chance Works super quick! I appreciated insert_product_name so much. -Mabel Great quality! I thought it is great! The product is helpful, efficient, and easy to use! -Joaquin Sosa The product is effective and affordable. I appreciated insert_product_name. -Jeremiah We thought the product was awesome! -Riley Reeves Loved it. It is affordable and efficient! -Juliette Insert_product_name is effective and affordable! -Nia Works fast. Insert_product_name is efficient. -Theo Can't believe how good it is! -Karter Loved it! Insert_product_name's effective and helpful! -Mathias Walter The product is effective, helpful, and efficient. Super effective! I recommended the product a lot! -Carolina Love it. -Lillian We recommended it a lot. Super effective! Insert_product_name was affordable and fantastic. -Collins Clayton Loved it! -Gael Zavala We appreciated the product so much! Good quality. -Ronan Works super quick. I loved it. It is effective! -Atlas Collins Super effective! -Jorge Davis Works great! I recommended the product a lot. -Eric My sister thought the product was great. Can't believe how good it is. The product is satisfying! -Ivy Sheppard We thought it was great! -Makenna Insert_product_name's affordable, helpful, and effective! -Savannah I thought insert_product_name is awesome. Insert_product_name is efficient. -Lyla Dalton My husband appreciated insert_product_name. The product is satisfying and fantastic! Loved it. -Felix It is fantastic, effective, and satisfying. -Cassius Works super quick! The product is easy to use and satisfying. -Felicity Woodward It is easy to use. Super effective! -Everly Becker Insert_product_name was easy to use! I appreciated insert_product_name a lot. Great quality! -Kyrie Steele It is effective! I thought it is great. Works super quick! -Lena Herring Insert_product_name was efficient. I thought the product was great. -Prince
Chapter7/online_driftdetc_PWPAE/globecom2021_PWPAE_IoTID20.ipynb
###Markdown PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data StreamsThis is the code for the paper entitled "**PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams**" accepted in 2021 IEEE Global Communications Conference (GLOBECOM). Authors: Li Yang ([email protected]), Dimitrios Michael Manias ([email protected]), and Abdallah Shami ([email protected]) Organization: The Optimized Computing and Communications (OC2) Lab, ECE Department, Western UniversityL. Yang, D. M. Manias, and A. Shami, “PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams,” in 2021 IEEE Glob. Commun. Conf. (GLOBECOM), Madrid, Spain, Dec. 2021. Import libraries ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,confusion_matrix,accuracy_score, precision_score, recall_score, f1_score import lightgbm as lgb import time ###Output _____no_output_____ ###Markdown Read the sampled IoTIDS20 dataset ###Code df = pd.read_csv("./data/IoT_2020_b_0.01_fs.csv") # df = df.sample(n=None, frac=0.1, replace=False, weights=None, random_state=None, axis=0) # df = df.sort_index() ###Output _____no_output_____ ###Markdown Train-test split10% training set, and 90% test set ###Code X = df.drop(['Label'],axis=1) y = df['Label'] X_train, X_test, y_train, y_test = train_test_split(X,y, train_size = 0.1, test_size = 0.9, shuffle=False,random_state = 0) ###Output _____no_output_____ ###Markdown Online Learning Four base online learners for ensemble: * Adaptive Random Forest (ARF) model with ADWIN drift detector (ARF-ADWIN)* Adaptive Random Forest (ARF) model with DDM drift detector (ARF-DDM)* Streaming Random Patches (SRP) model with ADWIN drift detector (SRP-ADWIN)* Streaming Random Patches (SRP) model with DDM drift detector (SRP-DDM)Three other online learners for comparison:* Extremely Fast Decision Tree (EFDT)* Hoeffding Tree (HT)* Leveraging Bagging (LB)An ensemble online learner proposed in the paper:* Performance Weighted Probability Averaging Ensemble (PWPAE) * It combines the 4 base online learners by weighting them based on their accuracy and classification probabilities ###Code # Import the online learning metrics and algorithms from the River library from river import metrics from river import stream from river import tree,neighbors,naive_bayes,ensemble,linear_model from river.drift import DDM, ADWIN # Define a generic adaptive learning function # The argument "model" means an online adaptive learning algorithm def adaptive_learning(model, X_train, y_train, X_test, y_test): metric = metrics.Accuracy() # Use accuracy as the metric i = 0 # count the number of evaluated data points t = [] # record the number of evaluated data points m = [] # record the real-time accuracy yt = [] # record all the true labels of the test set yp = [] # record all the predicted labels of the test set # Learn the training set for xi1, yi1 in stream.iter_pandas(X_train, y_train): model.learn_one(xi1,yi1) # Predict the test set for xi, yi in stream.iter_pandas(X_test, y_test): y_pred= model.predict_one(xi) # Predict the test sample model.learn_one(xi,yi) # Learn the test sample metric = metric.update(yi, y_pred) # Update the real-time accuracy t.append(i) m.append(metric.get()*100) yt.append(yi) yp.append(y_pred) i = i+1 print("Accuracy: "+str(round(accuracy_score(yt,yp),4)*100)+"%") print("Precision: "+str(round(precision_score(yt,yp),4)*100)+"%") print("Recall: "+str(round(recall_score(yt,yp),4)*100)+"%") print("F1-score: "+str(round(f1_score(yt,yp),4)*100)+"%") return t, m ###Output _____no_output_____ ###Markdown Base model learning ###Code # Define a figure function that shows the real-time accuracy changes def acc_fig(t, m, name): plt.rcParams.update({'font.size': 15}) plt.figure(1,figsize=(10,6)) sns.set_style("darkgrid") plt.clf() plt.plot(t,m,'-b',label='Avg Accuracy: %.2f%%'%(m[-1])) plt.legend(loc='best') plt.title(name+' on IoTID20 dataset', fontsize=15) plt.xlabel('Number of samples') plt.ylabel('Accuracy (%)') plt.draw() %%time # Use the Adaptive Random Forest (ARF) model with ADWIN drift detector name1 = "ARF-ADWIN model" model1 = ensemble.AdaptiveRandomForestClassifier(n_models = 3, drift_detector = ADWIN()) # Define the model t, m1 = adaptive_learning(model1, X_train, y_train, X_test, y_test) # Learn the model on the dataset acc_fig(t, m1, name1) # Draw the figure of how the real-time accuracy changes with the number of samples %%time # Use the Adaptive Random Forest (ARF) model with DDM drift detector name2 = "ARF-DDM model" model2 = ensemble.AdaptiveRandomForestClassifier(n_models = 3, drift_detector = DDM()) # Define the model t, m2 = adaptive_learning(model2, X_train, y_train, X_test, y_test) # Learn the model on the dataset acc_fig(t, m2, name2) # Draw the figure of how the real-time accuracy changes with the number of samples # %%time # # Use the Streaming Random Patches (SRP) model with ADWIN drift detector # name3 = "SRP-ADWIN model" # model3 = ensemble.SRPClassifier(n_models = 3, drift_detector = ADWIN()) # Define the model # t, m3 = adaptive_learning(model3, X_train, y_train, X_test, y_test) # Learn the model on the dataset # acc_fig(t, m3, name3) # Draw the figure of how the real-time accuracy changes with the number of samples %%time # Use the Streaming Random Patches (SRP) model with DDM drift detector name4 = "SRP-DDM model" model4 = ensemble.SRPClassifier(n_models = 3, drift_detector = DDM()) # Define the model t, m4 = adaptive_learning(model4, X_train, y_train, X_test, y_test) # Learn the model on the dataset acc_fig(t, m4, name4) # Draw the figure of how the real-time accuracy changes with the number of samples ###Output Accuracy: 98.54% Precision: 98.9% Recall: 99.57000000000001% F1-score: 99.22999999999999% CPU times: user 59.6 s, sys: 1.36 s, total: 1min Wall time: 1min 53s ###Markdown Comparison model learning ###Code # %%time # # Use the Extremely Fast Decision Tree (EFDT) model # name5 = "EFDT model" # model5 = tree.ExtremelyFastDecisionTreeClassifier() # Define the model # t, m5 = adaptive_learning(model5, X_train, y_train, X_test, y_test) # Learn the model on the dataset # acc_fig(t, m5, name5) # Draw the figure of how the real-time accuracy changes with the number of samples %%time # Use the Hoeffding Tree (HT) model name6 = "HT model" model6 = tree.HoeffdingTreeClassifier() # Define the model t, m6 = adaptive_learning(model6, X_train, y_train, X_test, y_test) # Learn the model on the dataset acc_fig(t, m6, name6) # Draw the figure of how the real-time accuracy changes with the number of samples %%time # Use the Leveraging Bagging (LB) model name7 = "LB model" model7 = ensemble.LeveragingBaggingClassifier(model=tree.HoeffdingTreeClassifier(),n_models=3) # Define the model t, m7 = adaptive_learning(model7, X_train, y_train, X_test, y_test) # Learn the model on the dataset acc_fig(t, m7, name7) # Draw the figure of how the real-time accuracy changes with the number of samples ###Output Accuracy: 97.65% Precision: 98.1% Recall: 99.42999999999999% F1-score: 98.76% CPU times: user 1min 3s, sys: 1.86 s, total: 1min 5s Wall time: 2min 37s ###Markdown PWPAE ensemble model learning ###Code # Define the Performance Weighted Probability Averaging Ensemble (PWPAE) model def PWPAE(X_train, y_train, X_test, y_test): # Record the real-time accuracy of PWPAE and 4 base learners metric = metrics.Accuracy() metric1 = metrics.Accuracy() metric2 = metrics.Accuracy() metric3 = metrics.Accuracy() metric4 = metrics.Accuracy() i=0 t = [] m = [] m1 = [] m2 = [] m3 = [] m4 = [] yt = [] yp = [] hat1 = ensemble.AdaptiveRandomForestClassifier(n_models=3) # ARF-ADWIN hat2 = ensemble.SRPClassifier(n_models=3) # SRP-ADWIN hat3 = ensemble.AdaptiveRandomForestClassifier(n_models=3,drift_detector=DDM(),warning_detector=DDM()) # ARF-DDM hat4 = ensemble.SRPClassifier(n_models=3,drift_detector=DDM(),warning_detector=DDM()) # SRP-DDM # The four base learners learn the training set for xi1, yi1 in stream.iter_pandas(X_train, y_train): hat1.learn_one(xi1,yi1) hat2.learn_one(xi1,yi1) hat3.learn_one(xi1,yi1) hat4.learn_one(xi1,yi1) # Predict the test set for xi, yi in stream.iter_pandas(X_test, y_test): # The four base learner predict the labels y_pred1= hat1.predict_one(xi) y_prob1= hat1.predict_proba_one(xi) hat1.learn_one(xi,yi) y_pred2= hat2.predict_one(xi) y_prob2= hat2.predict_proba_one(xi) hat2.learn_one(xi,yi) y_pred3= hat3.predict_one(xi) y_prob3= hat3.predict_proba_one(xi) hat3.learn_one(xi,yi) y_pred4= hat4.predict_one(xi) y_prob4= hat4.predict_proba_one(xi) hat4.learn_one(xi,yi) # Record their real-time accuracy metric1 = metric1.update(yi, y_pred1) metric2 = metric2.update(yi, y_pred2) metric3 = metric3.update(yi, y_pred3) metric4 = metric4.update(yi, y_pred4) # Calculate the real-time error rates of four base learners e1 = 1-metric1.get() e2 = 1-metric2.get() e3 = 1-metric3.get() e4 = 1-metric4.get() ep = 0.001 # The epsilon used to avoid dividing by 0 # Calculate the weight of each base learner by the reciprocal of its real-time error rate ea = 1/(e1+ep)+1/(e2+ep)+1/(e3+ep)+1/(e4+ep) w1 = 1/(e1+ep)/ea w2 = 1/(e2+ep)/ea w3 = 1/(e3+ep)/ea w4 = 1/(e4+ep)/ea # Make ensemble predictions by the classification probabilities if y_pred1 == 1: ypro10=1-y_prob1[1] ypro11=y_prob1[1] else: ypro10=y_prob1[0] ypro11=1-y_prob1[0] if y_pred2 == 1: ypro20=1-y_prob2[1] ypro21=y_prob2[1] else: ypro20=y_prob2[0] ypro21=1-y_prob2[0] if y_pred3 == 1: ypro30=1-y_prob3[1] ypro31=y_prob3[1] else: ypro30=y_prob3[0] ypro31=1-y_prob3[0] if y_pred4 == 1: ypro40=1-y_prob4[1] ypro41=y_prob4[1] else: ypro40=y_prob4[0] ypro41=1-y_prob4[0] # Calculate the final probabilities of classes 0 & 1 to make predictions y_prob_0 = w1*ypro10+w2*ypro20+w3*ypro30+w4*ypro40 y_prob_1 = w1*ypro11+w2*ypro21+w3*ypro31+w4*ypro41 if (y_prob_0>y_prob_1): y_pred = 0 y_prob = y_prob_0 else: y_pred = 1 y_prob = y_prob_1 # Update the real-time accuracy of the ensemble model metric = metric.update(yi, y_pred) t.append(i) m.append(metric.get()*100) yt.append(yi) yp.append(y_pred) i=i+1 print("Accuracy: "+str(round(accuracy_score(yt,yp),4)*100)+"%") print("Precision: "+str(round(precision_score(yt,yp),4)*100)+"%") print("Recall: "+str(round(recall_score(yt,yp),4)*100)+"%") print("F1-score: "+str(round(f1_score(yt,yp),4)*100)+"%") return t, m %%time # Use the Performance Weighted Probability Averaging Ensemble (PWPAE) model name = "Proposed PWPAE model" t, m = PWPAE(X_train, y_train, X_test, y_test) # Learn the model on the dataset acc_fig(t, m, name) # Draw the figure of how the real-time accuracy changes with the number of samples ###Output Accuracy: 99.06% Precision: 99.1% Recall: 99.91% F1-score: 99.5% CPU times: user 2min 6s, sys: 2.47 s, total: 2min 8s Wall time: 4min 10s ###Markdown Model comparison ###Code # Draw a comprehensive figure to compare the performance of all models plt.rcParams.update({'font.size': 30}) plt.figure(1,figsize=(24,15)) sns.set_style("darkgrid") plt.clf() # Plot the accuracy change of each learner plt.plot(t,m,'-r',label=name+', Avg Accuracy: %.2f%%'%(m[-1])) plt.plot(t,m1,'-b',label=name1+', Avg Accuracy: %.2f%%'%(m1[-1])) plt.plot(t,m2,'-g',label=name2+', Avg Accuracy: %.2f%%'%(m2[-1])) #plt.plot(t,m3,'orange',label=name3+', Avg Accuracy: %.2f%%'%(m3[-1])) plt.plot(t,m4,'black',label=name4+', Avg Accuracy: %.2f%%'%(m4[-1])) #plt.plot(t,m5,'magenta',label=name5+', Avg Accuracy: %.2f%%'%(m5[-1])) plt.plot(t,m6,'grey',label=name6+', Avg Accuracy: %.2f%%'%(m6[-1])) plt.plot(t,m7,'brown',label=name7+', Avg Accuracy: %.2f%%'%(m7[-1])) # Draw the drift points/time dr = [0,270,600] for i in range(len(dr)): if i!=0: plt.text(dr[i]-500, 100.8, 'Drift '+str(i), c = "red", fontsize = 25) plt.vlines(dr[i], 0, 100, colors = "red", linewidth=4, linestyles = "dashed") plt.legend(loc='lower right') plt.ylim(85, 102) plt.title('IoTID20', fontsize=40) plt.xlabel('Number of samples') plt.ylabel('Accuracy (%)') plt.draw() ###Output _____no_output_____
harness.ipynb
###Markdown Using 2a method with head size ratio ###Code run(videosArray,videosHeadSizeRatio,'2a') ###Output plotting for Videos\high-score-cat.mp4 with ratio 0.044 with threshold 14 ###Markdown Using 2b method with head size ratio ###Code #run(videosArray,videosHeadSizeRatio,'2b') - this method is not working. the mag vlaues become really small (less than 2) and # when we count the precentage of movement (for instance cells above 10, we get 0) ###Output _____no_output_____ ###Markdown Using 2c method with head size ratio ###Code run(videosArray,videosHeadSizeRatio,'2c') ###Output plotting for Videos\high-score-cat.mp4 with ratio 0.044 with threshold 10 ###Markdown Using 2a method with relative head size ###Code run(videosArray,videosHeadSizeRelativeRatio,'2a') ###Output plotting for Videos\high-score-cat.mp4 with ratio 2 with threshold 18.0 ###Markdown Using 2b method with relative head size ###Code # run(videosArray,videosHeadSizeRelativeRatio,'2b') ###Output _____no_output_____ ###Markdown Using 2c method with relative head size ###Code run(videosArray,videosHeadSizeRelativeRatio,'2c') ###Output plotting for Videos\high-score-cat.mp4 with ratio 2 with threshold 10 ###Markdown Using 2a method with head size ratio with same scale ###Code run(videosArray,videosHeadSizeRatio,'2a',1) ###Output plotting for Videos\high-score-cat.mp4 with ratio 0.044 with threshold 14 ###Markdown Using 2c method with head size ratio with same scale ###Code run(videosArray,videosHeadSizeRatio,'2c',1) #Sort results # videosAndScore = dict(zip(videosArray,videosScore)) # {k: v for k, v in sorted(videosAndScore.items(), key=lambda item: item[1],reverse=True)} ###Output _____no_output_____
week 4/Building+your+Deep+Neural+Network+-+Step+by+Step+v5.ipynb
###Markdown Building your Deep Neural Network: Step by StepWelcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!- In this notebook, you will implement all the functions required to build a deep neural network.- In the next assignment, you will use these functions to build a deep neural network for image classification.**After this assignment you will be able to:**- Use non-linear units like ReLU to improve your model- Build a deeper neural network (with more than 1 hidden layer)- Implement an easy-to-use neural network class**Notation**:- Superscript $[l]$ denotes a quantity associated with the $l^{th}$ layer. - Example: $a^{[L]}$ is the $L^{th}$ layer activation. $W^{[L]}$ and $b^{[L]}$ are the $L^{th}$ layer parameters.- Superscript $(i)$ denotes a quantity associated with the $i^{th}$ example. - Example: $x^{(i)}$ is the $i^{th}$ training example.- Lowerscript $i$ denotes the $i^{th}$ entry of a vector. - Example: $a^{[l]}_i$ denotes the $i^{th}$ entry of the $l^{th}$ layer's activations).Let's get started! 1 - PackagesLet's first import all the packages that you will need during this assignment. - [numpy](www.numpy.org) is the main package for scientific computing with Python.- [matplotlib](http://matplotlib.org) is a library to plot graphs in Python.- dnn_utils provides some necessary functions for this notebook.- testCases provides some test cases to assess the correctness of your functions- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don't change the seed. ###Code import numpy as np import h5py import matplotlib.pyplot as plt from testCases_v3 import * from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward %matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload %autoreload 2 np.random.seed(1) ###Output /opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') /opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') ###Markdown 2 - Outline of the AssignmentTo build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:- Initialize the parameters for a two-layer network and for an $L$-layer neural network.- Implement the forward propagation module (shown in purple in the figure below). - Complete the LINEAR part of a layer's forward propagation step (resulting in $Z^{[l]}$). - We give you the ACTIVATION function (relu/sigmoid). - Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function. - Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer $L$). This gives you a new L_model_forward function.- Compute the loss.- Implement the backward propagation module (denoted in red in the figure below). - Complete the LINEAR part of a layer's backward propagation step. - We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward) - Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function. - Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function- Finally update the parameters. **Figure 1****Note** that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps. 3 - InitializationYou will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to $L$ layers. 3.1 - 2-layer Neural Network**Exercise**: Create and initialize the parameters of the 2-layer neural network.**Instructions**:- The model's structure is: *LINEAR -> RELU -> LINEAR -> SIGMOID*. - Use random initialization for the weight matrices. Use `np.random.randn(shape)*0.01` with the correct shape.- Use zero initialization for the biases. Use `np.zeros(shape)`. ###Code # GRADED FUNCTION: initialize_parameters def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: parameters -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(1) ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h, n_x) * 0.01 b1 = np.zeros((n_h, 1)) * 0.01 W2 = np.random.randn(n_y, n_h) * 0.01 b2 = np.zeros((n_y, 1)) * 0.01 ### END CODE HERE ### assert(W1.shape == (n_h, n_x)) assert(b1.shape == (n_h, 1)) assert(W2.shape == (n_y, n_h)) assert(b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters parameters = initialize_parameters(3,2,1) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0.01624345 -0.00611756 -0.00528172] [-0.01072969 0.00865408 -0.02301539]] b1 = [[ 0.] [ 0.]] W2 = [[ 0.01744812 -0.00761207]] b2 = [[ 0.]] ###Markdown **Expected output**: **W1** [[ 0.01624345 -0.00611756 -0.00528172] [-0.01072969 0.00865408 -0.02301539]] **b1** [[ 0.] [ 0.]] **W2** [[ 0.01744812 -0.00761207]] **b2** [[ 0.]] 3.2 - L-layer Neural NetworkThe initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the `initialize_parameters_deep`, you should make sure that your dimensions match between each layer. Recall that $n^{[l]}$ is the number of units in layer $l$. Thus for example if the size of our input $X$ is $(12288, 209)$ (with $m=209$ examples) then: **Shape of W** **Shape of b** **Activation** **Shape of Activation** **Layer 1** $(n^{[1]},12288)$ $(n^{[1]},1)$ $Z^{[1]} = W^{[1]} X + b^{[1]} $ $(n^{[1]},209)$ **Layer 2** $(n^{[2]}, n^{[1]})$ $(n^{[2]},1)$ $Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]}$ $(n^{[2]}, 209)$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ **Layer L-1** $(n^{[L-1]}, n^{[L-2]})$ $(n^{[L-1]}, 1)$ $Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]}$ $(n^{[L-1]}, 209)$ **Layer L** $(n^{[L]}, n^{[L-1]})$ $(n^{[L]}, 1)$ $Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]}$ $(n^{[L]}, 209)$ Remember that when we compute $W X + b$ in python, it carries out broadcasting. For example, if: $$ W = \begin{bmatrix} j & k & l\\ m & n & o \\ p & q & r \end{bmatrix}\;\;\; X = \begin{bmatrix} a & b & c\\ d & e & f \\ g & h & i \end{bmatrix} \;\;\; b =\begin{bmatrix} s \\ t \\ u\end{bmatrix}\tag{2}$$Then $WX + b$ will be:$$ WX + b = \begin{bmatrix} (ja + kd + lg) + s & (jb + ke + lh) + s & (jc + kf + li)+ s\\ (ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t\\ (pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri)+ u\end{bmatrix}\tag{3} $$ **Exercise**: Implement initialization for an L-layer Neural Network. **Instructions**:- The model's structure is *[LINEAR -> RELU] $ \times$ (L-1) -> LINEAR -> SIGMOID*. I.e., it has $L-1$ layers using a ReLU activation function followed by an output layer with a sigmoid activation function.- Use random initialization for the weight matrices. Use `np.random.rand(shape) * 0.01`.- Use zeros initialization for the biases. Use `np.zeros(shape)`.- We will store $n^{[l]}$, the number of units in different layers, in a variable `layer_dims`. For example, the `layer_dims` for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means `W1`'s shape was (4,2), `b1` was (4,1), `W2` was (1,4) and `b2` was (1,1). Now you will generalize this to $L$ layers! - Here is the implementation for $L=1$ (one layer neural network). It should inspire you to implement the general case (L-layer neural network).```python if L == 1: parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01 parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))``` ###Code # GRADED FUNCTION: initialize_parameters_deep def initialize_parameters_deep(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) ### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters parameters = initialize_parameters_deep([5,4,3]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]] b2 = [[ 0.] [ 0.] [ 0.]] ###Markdown **Expected output**: **W1** [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]] **b2** [[ 0.] [ 0.] [ 0.]] 4 - Forward propagation module 4.1 - Linear Forward Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:- LINEAR- LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid. - [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID (whole model)The linear forward module (vectorized over all the examples) computes the following equations:$$Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}\tag{4}$$where $A^{[0]} = X$. **Exercise**: Build the linear part of forward propagation.**Reminder**:The mathematical representation of this unit is $Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}$. You may also find `np.dot()` useful. If your dimensions don't match, printing `W.shape` may help. ###Code # GRADED FUNCTION: linear_forward def linear_forward(A, W, b): """ Implement the linear part of a layer's forward propagation. Arguments: A -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) Returns: Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently """ ### START CODE HERE ### (≈ 1 line of code) Z = np.dot(W, A) + b ### END CODE HERE ### assert(Z.shape == (W.shape[0], A.shape[1])) cache = (A, W, b) return Z, cache A, W, b = linear_forward_test_case() Z, linear_cache = linear_forward(A, W, b) print("Z = " + str(Z)) ###Output Z = [[ 3.26295337 -1.23429987]] ###Markdown **Expected output**: **Z** [[ 3.26295337 -1.23429987]] 4.2 - Linear-Activation ForwardIn this notebook, you will use two activation functions:- **Sigmoid**: $\sigma(Z) = \sigma(W A + b) = \frac{1}{ 1 + e^{-(W A + b)}}$. We have provided you with the `sigmoid` function. This function returns **two** items: the activation value "`a`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call: ``` pythonA, activation_cache = sigmoid(Z)```- **ReLU**: The mathematical formula for ReLu is $A = RELU(Z) = max(0, Z)$. We have provided you with the `relu` function. This function returns **two** items: the activation value "`A`" and a "`cache`" that contains "`Z`" (it's what we will feed in to the corresponding backward function). To use it you could just call:``` pythonA, activation_cache = relu(Z)``` For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.**Exercise**: Implement the forward propagation of the *LINEAR->ACTIVATION* layer. Mathematical relation is: $A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]})$ where the activation "g" can be sigmoid() or relu(). Use linear_forward() and the correct activation function. ###Code # GRADED FUNCTION: linear_activation_forward def linear_activation_forward(A_prev, W, b, activation): """ Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments: A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently """ if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b); A, activation_cache = sigmoid(Z); ### END CODE HERE ### elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". ### START CODE HERE ### (≈ 2 lines of code) Z, linear_cache = linear_forward(A_prev, W, b); A, activation_cache = relu(Z); ### END CODE HERE ### assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache) return A, cache A_prev, W, b = linear_activation_forward_test_case() A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid") print("With sigmoid: A = " + str(A)) A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu") print("With ReLU: A = " + str(A)) ###Output With sigmoid: A = [[ 0.96890023 0.11013289]] With ReLU: A = [[ 3.43896131 0. ]] ###Markdown **Expected output**: **With sigmoid: A ** [[ 0.96890023 0.11013289]] **With ReLU: A ** [[ 3.43896131 0. ]] **Note**: In deep learning, the "[LINEAR->ACTIVATION]" computation is counted as a single layer in the neural network, not two layers. d) L-Layer Model For even more convenience when implementing the $L$-layer Neural Net, you will need a function that replicates the previous one (`linear_activation_forward` with RELU) $L-1$ times, then follows that with one `linear_activation_forward` with SIGMOID. **Figure 2** : *[LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model**Exercise**: Implement the forward propagation of the above model.**Instruction**: In the code below, the variable `AL` will denote $A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]} A^{[L-1]} + b^{[L]})$. (This is sometimes also called `Yhat`, i.e., this is $\hat{Y}$.) **Tips**:- Use the functions you had previously written - Use a for loop to replicate [LINEAR->RELU] (L-1) times- Don't forget to keep track of the caches in the "caches" list. To add a new value `c` to a `list`, you can use `list.append(c)`. ###Code # GRADED FUNCTION: L_model_forward def L_model_forward(X, parameters): """ Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2) the cache of linear_sigmoid_forward() (there is one, indexed L-1) """ caches = [] A = X L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A ### START CODE HERE ### (≈ 2 lines of code) A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu" ) caches.append(cache); ### END CODE HERE ### # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. ### START CODE HERE ### (≈ 2 lines of code) AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid" ) caches.append(cache); ### END CODE HERE ### assert(AL.shape == (1,X.shape[1])) return AL, caches X, parameters = L_model_forward_test_case_2hidden() AL, caches = L_model_forward(X, parameters) print("AL = " + str(AL)) print("Length of caches list = " + str(len(caches))) ###Output AL = [[ 0.03921668 0.70498921 0.19734387 0.04728177]] Length of caches list = 3 ###Markdown **AL** [[ 0.03921668 0.70498921 0.19734387 0.04728177]] **Length of caches list ** 3 Great! Now you have a full forward propagation that takes the input X and outputs a row vector $A^{[L]}$ containing your predictions. It also records all intermediate values in "caches". Using $A^{[L]}$, you can compute the cost of your predictions. 5 - Cost functionNow you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.**Exercise**: Compute the cross-entropy cost $J$, using the following formula: $$-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)) \tag{7}$$ ###Code # GRADED FUNCTION: compute_cost def compute_cost(AL, Y): """ Implement the cost function defined by equation (7). Arguments: AL -- probability vector corresponding to your label predictions, shape (1, number of examples) Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns: cost -- cross-entropy cost """ m = Y.shape[1] # Compute loss from aL and y. ### START CODE HERE ### (≈ 1 lines of code) cost = Y * np.log(AL) + (1-Y) * np.log(1-AL); cost = - np.sum(cost, keepdims= True)/m; ### END CODE HERE ### cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17). assert(cost.shape == ()) return cost Y, AL = compute_cost_test_case() print("cost = " + str(compute_cost(AL, Y))) ###Output cost = 0.414931599615397 ###Markdown **Expected Output**: **cost** 0.41493159961539694 6 - Backward propagation moduleJust like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters. **Reminder**: **Figure 3** : Forward and Backward propagation for *LINEAR->RELU->LINEAR->SIGMOID* *The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.* <!-- For those of you who are expert in calculus (you don't need to be to do this assignment), the chain rule of calculus can be used to derive the derivative of the loss $\mathcal{L}$ with respect to $z^{[1]}$ in a 2-layer network as follows:$$\frac{d \mathcal{L}(a^{[2]},y)}{{dz^{[1]}}} = \frac{d\mathcal{L}(a^{[2]},y)}{{da^{[2]}}}\frac{{da^{[2]}}}{{dz^{[2]}}}\frac{{dz^{[2]}}}{{da^{[1]}}}\frac{{da^{[1]}}}{{dz^{[1]}}} \tag{8} $$In order to calculate the gradient $dW^{[1]} = \frac{\partial L}{\partial W^{[1]}}$, you use the previous chain rule and you do $dW^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial W^{[1]}}$. During the backpropagation, at each step you multiply your current gradient by the gradient corresponding to the specific layer to get the gradient you wanted.Equivalently, in order to calculate the gradient $db^{[1]} = \frac{\partial L}{\partial b^{[1]}}$, you use the previous chain rule and you do $db^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial b^{[1]}}$.This is why we talk about **backpropagation**.!-->Now, similar to forward propagation, you are going to build the backward propagation in three steps:- LINEAR backward- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation- [LINEAR -> RELU] $\times$ (L-1) -> LINEAR -> SIGMOID backward (whole model) 6.1 - Linear backwardFor layer $l$, the linear part is: $Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]}$ (followed by an activation).Suppose you have already calculated the derivative $dZ^{[l]} = \frac{\partial \mathcal{L} }{\partial Z^{[l]}}$. You want to get $(dW^{[l]}, db^{[l]} dA^{[l-1]})$. **Figure 4** The three outputs $(dW^{[l]}, db^{[l]}, dA^{[l]})$ are computed using the input $dZ^{[l]}$.Here are the formulas you need:$$ dW^{[l]} = \frac{\partial \mathcal{L} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} \tag{8}$$$$ db^{[l]} = \frac{\partial \mathcal{L} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}\tag{9}$$$$ dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} \tag{10}$$ **Exercise**: Use the 3 formulas above to implement linear_backward(). ###Code # GRADED FUNCTION: linear_backward def linear_backward(dZ, cache): """ Implement the linear portion of backward propagation for a single layer (layer l) Arguments: dZ -- Gradient of the cost with respect to the linear output (of current layer l) cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ A_prev, W, b = cache m = A_prev.shape[1] ### START CODE HERE ### (≈ 3 lines of code) dW = np.dot(dZ, A_prev.T) / m; db = np.sum(dZ, axis = 1, keepdims= True) / m ; # forgot the sum, let see what happens dA_prev = np.dot(W.T, dZ); ### END CODE HERE ### assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) #print("current db, b shape", db.shape, b.shape); assert (db.shape == b.shape) return dA_prev, dW, db # Set up some test inputs dZ, linear_cache = linear_backward_test_case() dA_prev, dW, db = linear_backward(dZ, linear_cache) print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) ###Output dA_prev = [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]] dW = [[-0.10076895 1.40685096 1.64992505]] db = [[ 0.50629448]] ###Markdown **Expected Output**: **dA_prev** [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]] **dW** [[-0.10076895 1.40685096 1.64992505]] **db** [[ 0.50629448]] 6.2 - Linear-Activation backwardNext, you will create a function that merges the two helper functions: **`linear_backward`** and the backward step for the activation **`linear_activation_backward`**. To help you implement `linear_activation_backward`, we provided two backward functions:- **`sigmoid_backward`**: Implements the backward propagation for SIGMOID unit. You can call it as follows:```pythondZ = sigmoid_backward(dA, activation_cache)```- **`relu_backward`**: Implements the backward propagation for RELU unit. You can call it as follows:```pythondZ = relu_backward(dA, activation_cache)```If $g(.)$ is the activation function, `sigmoid_backward` and `relu_backward` compute $$dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}) \tag{11}$$. **Exercise**: Implement the backpropagation for the *LINEAR->ACTIVATION* layer. ###Code # GRADED FUNCTION: linear_activation_backward def linear_activation_backward(dA, cache, activation): """ Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments: dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ linear_cache, activation_cache = cache if activation == "relu": ### START CODE HERE ### (≈ 2 lines of code) dZ = relu_backward(dA, activation_cache); dA_prev, dW, db = linear_backward(dZ, linear_cache); ### END CODE HERE ### elif activation == "sigmoid": ### START CODE HERE ### (≈ 2 lines of code) dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache); ### END CODE HERE ### return dA_prev, dW, db AL, linear_activation_cache = linear_activation_backward_test_case() dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid") print ("sigmoid:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db) + "\n") dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu") print ("relu:") print ("dA_prev = "+ str(dA_prev)) print ("dW = " + str(dW)) print ("db = " + str(db)) ###Output sigmoid: dA_prev = [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]] dW = [[ 0.10266786 0.09778551 -0.01968084]] db = [[-0.05729622]] relu: dA_prev = [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]] dW = [[ 0.44513824 0.37371418 -0.10478989]] db = [[-0.20837892]] ###Markdown **Expected output with sigmoid:** dA_prev [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]] dW [[ 0.10266786 0.09778551 -0.01968084]] db [[-0.05729622]] **Expected output with relu:** dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]] dW [[ 0.44513824 0.37371418 -0.10478989]] db [[-0.20837892]] 6.3 - L-Model Backward Now you will implement the backward function for the whole network. Recall that when you implemented the `L_model_forward` function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the `L_model_backward` function, you will iterate through all the hidden layers backward, starting from layer $L$. On each step, you will use the cached values for layer $l$ to backpropagate through layer $l$. Figure 5 below shows the backward pass. **Figure 5** : Backward pass ** Initializing backpropagation**:To backpropagate through this network, we know that the output is, $A^{[L]} = \sigma(Z^{[L]})$. Your code thus needs to compute `dAL` $= \frac{\partial \mathcal{L}}{\partial A^{[L]}}$.To do so, use this formula (derived using calculus which you don't need in-depth knowledge of):```pythondAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) derivative of cost with respect to AL```You can then use this post-activation gradient `dAL` to keep going backward. As seen in Figure 5, you can now feed in `dAL` into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a `for` loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula : $$grads["dW" + str(l)] = dW^{[l]}\tag{15} $$For example, for $l=3$ this would store $dW^{[l]}$ in `grads["dW3"]`.**Exercise**: Implement backpropagation for the *[LINEAR->RELU] $\times$ (L-1) -> LINEAR -> SIGMOID* model. ###Code # GRADED FUNCTION: L_model_backward def L_model_backward(AL, Y, caches): """ Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments: AL -- probability vector, output of the forward propagation (L_model_forward()) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) caches -- list of caches containing: every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2) the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1]) Returns: grads -- A dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... """ grads = {} L = len(caches) # the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation ### START CODE HERE ### (1 line of code) dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) assert (dAL.shape == AL.shape) ### END CODE HERE ### # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"] ### START CODE HERE ### (approx. 2 lines) current_cache = caches[L-1]; grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid"); ### END CODE HERE ### for l in reversed(range(L-1)): # lth layer: (RELU -> LINEAR) gradients. # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines) current_cache = caches[l]; dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, "relu"); grads["dA" + str(l + 1)] = dA_prev_temp; grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp ### END CODE HERE ### return grads AL, Y_assess, caches = L_model_backward_test_case() grads = L_model_backward(AL, Y_assess, caches) print_grads(grads) ###Output dW1 = [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 = [[-0.22007063] [ 0. ] [-0.02835349]] dA1 = [[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]] ###Markdown **Expected Output** dW1 [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 [[-0.22007063] [ 0. ] [-0.02835349]] dA1 [[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]] 6.4 - Update ParametersIn this section you will update the parameters of the model, using gradient descent: $$ W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{16}$$$$ b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{17}$$where $\alpha$ is the learning rate. After computing the updated parameters, store them in the parameters dictionary. **Exercise**: Implement `update_parameters()` to update your parameters using gradient descent.**Instructions**:Update parameters using gradient descent on every $W^{[l]}$ and $b^{[l]}$ for $l = 1, 2, ..., L$. ###Code # GRADED FUNCTION: update_parameters def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop. ### START CODE HERE ### (≈ 3 lines of code) for l in range(L): parameters["W" + str(l+1)] -= learning_rate * grads["dW" + str(l + 1)]; parameters["b" + str(l+1)] -= learning_rate * grads["db" + str(l + 1)]; ### END CODE HERE ### return parameters parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads, 0.1) print ("W1 = "+ str(parameters["W1"])) print ("b1 = "+ str(parameters["b1"])) print ("W2 = "+ str(parameters["W2"])) print ("b2 = "+ str(parameters["b2"])) ###Output W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]] b1 = [[-0.04659241] [-1.28888275] [ 0.53405496]] W2 = [[-0.55569196 0.0354055 1.32964895]] b2 = [[-0.84610769]]
notebooks/hotel_bookings.ipynb
###Markdown *BUSINESS PROBLEM: explore a hotel booking dataset and predict cancellation* STAGE 1: preprecessing and EDA Load Data and Explore ###Code import pandas as pd df_hotel = pd.read_csv('~/Downloads/hotel_bookings.csv') df_hotel.head(1) # Check Columns df_hotel.columns ###Output _____no_output_____ ###Markdown CONSIDERATIONS: Our target feature to predict is 'is canceled'. We should treat and select all other features. First we need to explore it. ###Code # Check missing values import numpy as np import pandas as pd def missing_zero_values_table(df): zero_val = (df == 0.00).astype(int).sum(axis=0) mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mz_table = pd.concat([zero_val, mis_val, mis_val_percent], axis=1) mz_table = mz_table.rename( columns = {0 : 'Zero Values', 1 : 'Missing Values', 2 : '% of Total Values'}) mz_table['Total Zero Missing Values'] = mz_table['Zero Values'] + mz_table['Missing Values'] mz_table['% Total Zero Missing Values'] = 100 * mz_table['Total Zero Missing Values'] / len(df) mz_table['Data Type'] = df.dtypes mz_table = mz_table[ mz_table.iloc[:,1] != 0].sort_values( '% of Total Values', ascending=False).round(1) print ("Your selected dataframe has " + str(df.shape[1]) + " columns and " + str(df.shape[0]) + " Rows.\n" "There are " + str(mz_table.shape[0]) + " columns that have missing values.") # mz_table.to_excel('D:/sampledata/missing_and_zero_values.xlsx', freeze_panes=(1,0), index = False) return mz_table missing_zero_values_table(df_hotel) ###Output Your selected dataframe has 32 columns and 119390 Rows. There are 4 columns that have missing values. ###Markdown CONSIDERATIONS: country and children doesn't have many missing values ('0' in children means it's not a missing value); our problem is with company and agent, we should explore and treat it. ###Code # count of id companies when made reservation len(df_hotel['company'].unique()) # Aggregate and check distribution from the variable df_company_agg = df_hotel.groupby('company')['company'].count().sort_values(ascending = False) df_company_agg.head(5) ###Output _____no_output_____ ###Markdown CONSIDERATIONS: we've too many missing values for company; probably those missing values mean that the reservation weren't scheduled by any company; it would be better to create a boolean feature to detect if it's a company reservation or not. ###Code import numpy as np # Create a new boolean feature considering if it's a company reservation or not df_hotel['is_company'] = np.where(df_hotel['company'].isna(), False, True) # Drop company column as we don't need it anymore and we can get rid from nan values df_hotel.drop(['company'], axis=1) # check the number of reservations by companies df_hotel['is_company'].sum() # Drop old column to clean our data (it will help plotting correlation matrix and fitting the model) df_hotel = df_hotel.drop(['company'], axis=1) ###Output _____no_output_____ ###Markdown CONSIDERATIONS: it's rare for companies to book! ###Code # Create a new boolean feature considering if it's a reservation made by an agent or not df_hotel['is_agent'] = np.where(df_hotel['agent'].isna(), False, True) df_hotel['is_agent'].sum() ###Output _____no_output_____ ###Markdown CONSIDERATIONS: booking by agents are much more common than by companies; but probably direct reservations are also important. ###Code # Aggegate and check which market segments cancels more by type of hotel df_hotel.groupby(['market_segment', 'is_canceled'])['hotel'].count() ###Output _____no_output_____ ###Markdown CONSIDERATIONS: Most cancelations are from ONLINE booking and GROUPS. ###Code # Check types of reservation status by cancelation type df_hotel.groupby(['reservation_status', 'is_canceled'])['hotel'].count() ###Output _____no_output_____ ###Markdown Transform Data ###Code # Correct datetime df_hotel[['reservation_status_date']] = df_hotel[['reservation_status_date']].astype('datetime64[ns]') # Correct all categorical (except our target 'is_canceled') features including booleans (we can't use bool type or target variable as categorical to fit the model) df_hotel[["hotel", "meal", "country", "market_segment", "distribution_channel", "reserved_room_type", "assigned_room_type", "deposit_type", "customer_type", "reservation_status"]] = df_hotel[["hotel", "meal", "country", "market_segment", "distribution_channel", "reserved_room_type", "assigned_room_type", "deposit_type", "customer_type", "reservation_status",]].astype('category') df_hotel['is_repeated_guest'] = df_hotel['is_repeated_guest'].astype(bool) # Fill missing values from agent column and transform it to a categorical column from statistics import mode df_hotel[["agent"]] = df_hotel[["agent"]].astype(pd.Int32Dtype()) df_hotel_list = df_hotel[["agent"]].values.tolist() def flatten(t): return [item for sublist in t for item in sublist] flat_hotel = flatten(df_hotel_list) flat_mode = mode(flat_hotel) df_hotel[["agent"]] = df_hotel[["agent"]].fillna(9) df_hotel[["agent"]] = df_hotel[["agent"]].astype('int64') # Fill na's from float column with the median df_hotel['children'] = df_hotel['children'].fillna(df_hotel['children'].median()).astype('int64') # Drop nan's rows from columns with inexpressive nan's count df_hotel = df_hotel.dropna(subset = ['country', 'children'], axis = 0) df_hotel.dtypes ###Output _____no_output_____ ###Markdown CONSIDERATION 1: We could have explored more our columns to set which could be ordinal encoded (such as months or year) but the time it would consume could be too much and it's not guaranteed it would help us; \CONSIDERATION 2: We could also have done one hot encoding for our categorical columns, but expand our dataframe and it would be more expensive to train the model or scale it if we would deploy based on big data;\CONSIDERATION 3: We could have predicted our missing values with a regression model, but in our case it wasn't necessary; \CONSIDERATION 4: We just need to treat datetimes and we are ready to fit for modelling! Let's create new features! ###Code # Create a new feature which corrects datetime from reservation_status_date df_hotel[['reservation_status_date_dt']] = df_hotel[['reservation_status_date']].astype('datetime64[ns]') # Create a new feature which contains the full date of arrival and convert it to datetime df_hotel['arrivel_date'] = df_hotel['arrival_date_year'].astype(str) + '-' + df_hotel['arrival_date_month'] + '-' + df_hotel['arrival_date_day_of_month'].astype(str) df_hotel[['arrivel_date_dt']] = df_hotel[['arrivel_date']].astype('datetime64[ns]') #Check transformation df_hotel[['arrivel_date','arrivel_date_dt', 'reservation_status_date', 'reservation_status_date_dt']].tail(5) from datetime import timedelta # Create a datetime feature which tells how many days before the reservations was cancelled and check if it matches df_hotel['lead_time_dt'] = df_hotel['lead_time'].apply(lambda x: timedelta(days = x)) df_hotel['booking_date'] = df_hotel['arrivel_date_dt'] - df_hotel['lead_time_dt'] df_hotel[['booking_date', 'arrivel_date', 'lead_time', 'lead_time_dt']].head(5) # Drop old columns after check # df_hotel = df_hotel.drop(['arrivel_date', 'lead_time', 'reservation_status_date'], axis=1) # Create a new feature to identify HIGH SEASON BY COUNTRY and if the reservation was made in high or low season df_hotel['n_rows_country'] = df_hotel.groupby(['country'])['country'].transform('count') # Filter by most relevant countries df_hotel['grouped_country'] = np.where(df_hotel['n_rows_country'] < 5000, 'other', df_hotel['country']) table = df_hotel.groupby(['grouped_country', 'arrival_date_year', 'arrival_date_month']).agg(n_canceled = pd.NamedAgg('is_canceled', 'sum'), n_total = pd.NamedAgg('is_canceled', 'count')).reset_index() table['country_year_total'] = (table.groupby(['grouped_country', 'arrival_date_year'])['n_total'].transform('sum')) / 12 # Set season by trheshold table['season_index'] = table['n_total'] / table['country_year_total'] table['high_season'] = np.where(table['season_index'] < 1, 0, 1) table_agg = table.sort_values(['grouped_country', 'arrival_date_year']).groupby(['grouped_country', 'arrival_date_month']).agg(n_high = pd.NamedAgg('high_season', 'sum'), n_total = pd.NamedAgg('high_season', 'count')).reset_index() table_agg['high_season'] = np.where(table_agg['n_high'] >= table_agg['n_total'], 1, 0) table_agg = table_agg[['grouped_country', 'arrival_date_month', 'high_season']] df_hotel['grouped_country'] = df_hotel['grouped_country'].astype('category') # Merge table created to define high season with original table df_hotel = df_hotel.merge(table_agg, how = 'left', on = ['grouped_country', 'arrival_date_month']) df_hotel df_hotel['grouped_country'] = df_hotel['grouped_country'].astype('category') df_hotel['grouped_country'].dtypes # BONUS: create new boolean feature which tells if it's deposit or not since it looks redundant df_hotel['is_deposit'] = np.where(df_hotel['deposit_type'] == 'No Deposit', 0, 1) df_hotel['deposit_type'].unique() df_hotel['deposit_type'].value_counts() # drop old column to help correlation plot and fitting the model df_hotel = df_hotel.drop(['is_deposit', 'n_rows_country'], axis=1) ###Output _____no_output_____ ###Markdown Plot, explore, transform and interpret ###Code import seaborn as sns sns.displot(df_hotel, x="is_canceled") ###Output _____no_output_____ ###Markdown Imbalanced distribution of our target variable. \We could have even better models if we would have a more data-centric approach and do more feature engineering. ###Code sns.clustermap(df_hotel.corr()) ###Output _____no_output_____ ###Markdown Correlation and dependencies between our features ###Code import seaborn as sns sns.boxplot(x = df_hotel['lead_time'] + 1) ###Output _____no_output_____ ###Markdown CONSIDERATION 1:boxplotting we can see that most bookings (our interquartile interval) is somewhere in between 1 and 180 days; above 400 are our outliers; \CONSIDERATION 2: boxplotting we can see that most bookings (our interquartile interval) is somewhere in between 1 and 180 days; above 400 are our outliers; \CONSIDERATION 3: we can see that most reservations are somewhere in between 80 and 180 days before; \CONSIDERATION 4: we can see that we still have a considerable ammount of bookings somewehere in between 1 and 10; ###Code df_hotel['log_lead_time'] = np.log(df_hotel['lead_time'] + 1) sns.histplot(df_hotel['lead_time'] + 1, log_scale = True) ###Output _____no_output_____ ###Markdown CONSIDERATION 1: On our histogram we've observed the same as before, a there's a considerable ammount of bookings betwen day 1 and 10; \CONSIDERATION 2: On our histogram we've observed an odd behaviour ('non-linearity'), a lot of bookings are on day 1; \CONSIDERATION 3: That means we've two populations and distributions, which we can use to create a new feature: who books at the last minute and who schedule; ###Code # Creating new feature: reservation_type df_hotel['reservation_type'] = np.where((df_hotel['lead_time'] + 1) < 10, 'last_minute', 'scheduled') df_hotel.groupby(['reservation_type', 'is_canceled'])['reservation_type'].count() enc_minute = {'last_minute': True, 'scheduled': False} df_hotel['is_last_minute'] = df_hotel['reservation_type'].map(enc_minute).astype(bool) df_hotel.dtypes import seaborn as sns import matplotlib.pyplot as plt #Using Pearson Correlation plt.figure(figsize=(22,20)) cor = df_hotel.corr() sns.heatmap(cor, annot=True, cmap=plt.cm.Reds) plt.show() ###Output _____no_output_____ ###Markdown LIST OF RELEVANT CORRELATIONS TO A BUSINESS SPECIALIST INTERPRET: \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1) Is canceled with lead time, special request, parking spaces and previous cancellations; some with booking changes; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2) Lead time with agent, days in waiting list, high season, adults and stays in week nights; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3) Arrival date year with average daily rate; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4) Adults and number of children with average daily rate; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5) Is repeated guest with previous booking not canceled, is company, average daily rate; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6) Previous booking not canceled with is company; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 7) Average daily rate with number of children, adults, special requests; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8) Is company with previous booking not cancelled, is repeated guest, adult; \&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 9) Is Last minute booking is related to stays in week nights; STAGE 2: Comparing two models Linear model: logistic regression ###Code import statsmodels.formula.api as fsm model = fsm.logit(formula = 'is_canceled ~ log_lead_time' , data = df_hotel) fit = model.fit() fit.summary() df_hotel['pred_baseline'] = fit.predict() sns.scatterplot(data = df_hotel, x = 'lead_time', y = 'pred_baseline') import matplotlib.pyplot as plt import statsmodels.formula.api as fsm model = fsm.logit(formula = 'is_canceled ~ log_lead_time : reservation_type * is_company * high_season', data = df_hotel) fit = model.fit() fit.summary() df_hotel['pred_m1'] = fit.predict() fig,ax = plt.subplots(1,2, figsize = (16,8)) sns.scatterplot(data = df_hotel, x = 'lead_time', y = 'pred_m1', hue = 'is_company', size = 'high_season', ax = ax[0]) sns.scatterplot(data = df_hotel, x = 'log_lead_time', y = 'pred_m1', hue = 'is_company', size = 'high_season', ax = ax[1]) ###Output Optimization terminated successfully. Current function value: 0.600648 Iterations 6 ###Markdown CONSIDERATION 1: We can see our break from two populations (last minute and scheduled) between day 0 and 10; \CONSIDERATION 2: We can assume that, when it is company, we've MUCH fewer cancellations; \CONSIDERATION 4: During high season, companies cancel more; \CONSIDERATION 5: During high season, cancellations done by non-companies slightly decrease; \CONSIDERATION 6: The gap between high season and low season cancellations get bigger as higher is the lead time; \CONSIDERATION 7: This gap is stronger when 'is company'; ###Code import matplotlib.pyplot as plt import statsmodels.formula.api as fsm model = fsm.logit(formula = 'is_canceled ~ log_lead_time : reservation_type * is_agent * high_season', data = df_hotel) fit = model.fit() fit.summary() df_hotel['pred_cancel'] = fit.predict() fig,ax = plt.subplots(1,2, figsize = (16,8)) sns.scatterplot(data = df_hotel, x = 'lead_time', y = 'pred_cancel', hue = 'is_agent', size = 'high_season', ax = ax[0]) sns.scatterplot(data = df_hotel, x = 'log_lead_time', y = 'pred_cancel', hue = 'is_agent', size = 'high_season', ax = ax[1]) ###Output Optimization terminated successfully. Current function value: 0.601806 Iterations 7 ###Markdown CONSIDERATION 1: After 10 days, when the book is done by an agent, it's more probable to cancel than when it's not booked by an agent. We can plot a ROC curve to check the performance of a classification model at all classification thresholds, \considering the trade-off between sensitivity (True Positive Rate) and specificity (True Negative Rate). ###Code from sklearn.metrics import f1_score threshold_list = np.linspace(0.05, 0.95, 200) f1_list = [] for threshold in threshold_list: pred_label = np.where(df_hotel['pred_cancel'] < threshold, 0, 1) f1 = f1_score(df_hotel['is_canceled'], pred_label) f1_list.append(f1) df_f1 = pd.DataFrame({'threshold':threshold_list, 'f1_score': f1_list}) df_f1[df_f1['f1_score'] == max(df_f1['f1_score'])] bt = df_f1[df_f1['f1_score'] == max(df_f1['f1_score'])]['threshold'].values[0] f1 = df_f1[df_f1['f1_score'] == max(df_f1['f1_score'])]['f1_score'].values[0] title = "Best Threshold: " + str(round(bt, 2)) + " w/ F-1: " + str(round(f1, 2)) sns.lineplot(data=df_f1, x='threshold', y='f1_score').set_title(title) ###Output _____no_output_____ ###Markdown F-1 score finds the best spot between Precision and Recall and it's reasonable to use with binary classification or with multiclass balanced data. \Most of the times our business problem determines if we should privilege Precision or Recall, but F-1 score is a good generalization to compare the performance of the models. \We can check and set the best threshold for our model based on the score. ###Code from sklearn.metrics import cohen_kappa_score, precision_score, roc_curve from sklearn.metrics import matthews_corrcoef, mean_squared_error, log_loss from sklearn.metrics import f1_score, recall_score, roc_auc_score threshold_list = np.linspace(0.05, 0.95, 200) score_list = [] for threshold in threshold_list: pred_label = np.where(df_hotel['pred_cancel'] < threshold, 0, 1) score = cohen_kappa_score(df_hotel['is_canceled'], pred_label) score_list.append(score) df_score = pd.DataFrame({'threshold':threshold_list, 'score_score': score_list}) df_score[df_score['score_score'] == max(df_score['score_score'])] bt = df_score[df_score['score_score'] == max(df_score['score_score'])]['threshold'].values[0] score = df_score[df_score['score_score'] == max(df_score['score_score'])]['score_score'].values[0] title = "Best Threshold: " + str(round(bt, 2)) + " w/ Kappa: " + str(round(score, 2)) sns.lineplot(data=df_score, x='threshold', y='score_score').set_title(title) ###Output _____no_output_____ ###Markdown Cohen's Kappa score is a good measure for a classification model since it considers imbalanced data. ###Code from sklearn.metrics import roc_curve #Plot ROC_Curve fpr, tpr, thresholds = roc_curve(df_hotel['is_canceled'], df_hotel['pred_cancel']) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111, aspect=1) sns.lineplot(x = fpr, y = fpr, ax = ax) sns.lineplot(x = fpr, y = tpr, ax = ax) ###Output _____no_output_____ ###Markdown An ROC curve shows the performance of one classification model at all classification thresholds. \It can be used to evaluate the strength of a model. ROC Curves can also be used to compare two models and we've this mind. CONCLUSIONS **We did a hard work to get here. We didn't achieve a reasonable score (0.6) for today parameters, though. But not all is about score.*** **Advantages** * Logistic regression is a simple linear model which is easy and fast to set; * It's not computationally expensive, you can run on ordinary hardware; * It's highly scalabe; * It's not a complex model, no black box, it's highly explainable and interpretable; you can even use it to explore more your data; * Excelent to plot, visualize and get insights that wouldn't be possible on complex models; * Excelent for risk analysis such as bookings, so we could infer the rate of daily room rate considering risk of cancellation;* **Disadvantage** * It's more handmade, demands more time, work and analytical capabilities from the data scientist who works as a craftsman; * It's sensible to outliers and you should be minimalist, to choose less and more important features and treat outliers without loosing data; * More dependant of a good feature engineering to get a better score; * You can also stratify you modelling and build regressions on top of regressions, but most of the times it's not worth the hard work; * You will never get a good result as state-of-art ensemble of hierarchical models and neural networks; Ensemble of hierarchical models: XGBoost Feature Selection: GridSearchCV ###Code %%time import numpy as np import xgboost as xgb from sklearn.experimental import enable_halving_search_cv from sklearn.model_selection import HalvingGridSearchCV from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from datetime import datetime # Automate best parameters search for XGBoost using GridSearch folds = 3 param_comb = 20 # Choose parameters to compare param_grid = { "max_depth": [6, 10, 20, 30], "min_child_weight": [1, 3, 10], "gamma" : [0.2 , 0.7, 1, 2], "alpha" : [1], "learning_rate": [0.10, 1, 3], "missing": [np.nan], "num_parallel_tree": [1, 2], # "use_rmm": True, "colsample_bytree" : [ 0.3, 0.4, 0.5 , 0.7], "scale_pos_weight": [1, 3], "reg_lambda": [1, 5, 10, 50], # "gradient_based": True, "subsample": [0.1, 0.5], } # skf = StratifiedKFold(n_splits=folds, shuffle = True, random_state = 1001) # Halving Grid Search CV implementation xgb_cl = xgb.XGBClassifier(n_estimators=1000, objective='binary:logistic', silent=True, nthread=40, tree_method='gpu_hist', eval_metric='auc') halving_cv = HalvingGridSearchCV(xgb_cl, param_grid, scoring="roc_auc", #n_jobs=4, min_resources="exhaust", factor=3, #scoring="neg_log_loss", #cv=skf.split(X_train,Y_train), verbose=1, random_state=1001, ) # # Here we go # start_time = timer(None) # timing starts from this point for "start_time" variable # halving_cv.fit(X_train, Y_train) # # Return set of parameters with the best performance # halving_cv.best_params_ # # Return the performance metric score # halving_cv.best_score_ # model.dump_model('dump.raw.txt') # timer(start_time) # timing ends here for "start_time" variable ###Output CPU times: user 80.7 ms, sys: 12.2 ms, total: 92.9 ms Wall time: 95.6 ms ###Markdown **CONSIDERATION: We would like to automate the search for the best parameters, but it takes more time than we had. \ We decided to securely set the parameters on a conservative approach as suggested by the community, after empirical testing.** BEST MODEL TO COMPARE: XGboost using all features with binary logistic and avoiding LEAKAGE ###Code %%time import os import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from xgboost import XGBClassifier from xgboost import XGBRegressor from sklearn.metrics import cohen_kappa_score, precision_score from sklearn.metrics import matthews_corrcoef, mean_squared_error, log_loss from sklearn.metrics import f1_score, recall_score, roc_auc_score # Define your features and your target to predict (selecting ALL columns WITHOUT LEAKAGE!) X = df_hotel[['hotel', 'lead_time', 'arrival_date_year', 'arrival_date_month', 'stays_in_weekend_nights', 'stays_in_week_nights', 'adults', 'children', 'babies', 'meal','country', 'market_segment', 'distribution_channel', 'is_repeated_guest', 'previous_cancellations', 'previous_bookings_not_canceled', 'reserved_room_type', 'assigned_room_type', 'booking_changes', 'deposit_type', 'days_in_waiting_list', 'customer_type', 'adr', 'required_car_parking_spaces', 'total_of_special_requests', 'is_company','is_agent']] Y = df_hotel['is_canceled'] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=7) Y_train = Y_train Y_test = Y_test full_pipeline = ColumnTransformer([('cat', OneHotEncoder(handle_unknown='ignore'), X_train.columns)], remainder='passthrough') encoder = full_pipeline.fit(X_train) X_train_enc = encoder.transform(X_train) X_test_enc = encoder.transform(X_test) # train the model model = XGBRegressor(n_estimators= 200, max_depth= 30, # Lower ratios avoid over-fitting. Default is 6. objective = 'binary:logistic', # Default is reg:squarederror. 'multi:softprob' for multiclass and get proba. #num_class = 2, # Use if softprob is set. reg_lambda = 10, # Larger ratios avoid over-fitting. Default is 1. gamma = 0.3, # Larger values avoid over-fitting. Default is 0. # Values from 0.3 to 0.8 if you have many columns (especially if you did one-hot encoding), or 0.8 to 1 if you only have a few columns. alpha = 1, # Larger ratios avoid over-fitting. Default is 0. learning_rate= 0.10, # Lower ratios avoid over-fitting. Default is 3. colsample_bytree= 0.7, # Lower ratios avoid over-fitting. scale_pos_weight = 1, # Default is 1. Control balance of positive and negative weights, for unbalanced classes. subsample = 0.1, # Lower ratios avoid over-fitting. Default 1. 0.5 recommended. # 0.1 if using GPU. min_child_weight = 3, # Larger ratios avoid over-fitting. Default is 1. missing = np.nan, # Deal with missing values num_parallel_tree = 2, # Parallel trees constructed during each iteration. Default is 1. importance_type = 'weight', eval_metric = 'auc', #use_label_encoder = True, #enable_categorical = True, verbosity = 1, nthread = -1, # Set -1 to use all threads. #use_rmm = True, # Use GPU if available tree_method = 'auto', # auto # 'gpu_hist'. Default is auto: analyze the data and chooses the fastest. #gradient_based = True, # If True you can set subsample as low as 0.1. Only use with gpu_hist ) # fit model model.fit(X_train_enc, Y_train.values.ravel(), # early_stopping_rounds=20 ) # check best ntree limit display(model.best_ntree_limit) # extract the training set predictions preds_train = model.predict(X_train_enc, ntree_limit=model.best_ntree_limit ) # extract the test set predictions preds_test = model.predict(X_test_enc, ntree_limit=model.best_ntree_limit ) # save model output_dir = "models" if not os.path.exists(output_dir): os.makedirs(output_dir) # save in JSON format model.save_model(f'{output_dir}/hotel_xgboost.json') # save in text format model.save_model(f'{output_dir}/hotel_xgboost.txt') print('FINISHED!') ###Output _____no_output_____ ###Markdown Setting our parameters at a conservative approach and with a number of steps of 200 took about 4 minutes. \We'll use this 'step' pattern to compare other settings. \If we would put this model in production we probably should expand our model to train for more time considering learning rate and steps. **Plot & Score** ###Code %%time # Plot F1-Score and Threshold from sklearn.metrics import f1_score threshold_list = np.linspace(0.05, 0.95, 200) f1_list = [] for threshold in threshold_list: pred_label = np.where(preds_test < threshold, 0, 1) f1 = f1_score(Y_test, pred_label) f1_list.append(f1) df_f1 = pd.DataFrame({'threshold':threshold_list, 'f1_score': f1_list}) df_f1[df_f1['f1_score'] == max(df_f1['f1_score'])] bt = df_f1[df_f1['f1_score'] == max(df_f1['f1_score'])]['threshold'].values[0] f1 = df_f1[df_f1['f1_score'] == max(df_f1['f1_score'])]['f1_score'].values[0] title = "Best Threshold: " + str(round(bt, 2)) + " w/ F-1: " + str(round(f1, 2)) sns.lineplot(data=df_f1, x='threshold', y='f1_score').set_title(title) plt.show() # Plot Kappa Score and threshold threshold_list = np.linspace(0.05, 0.95, 200) score_list = [] for threshold in threshold_list: pred_label = np.where(preds_test < threshold, 0, 1) score = cohen_kappa_score(Y_test, pred_label) score_list.append(score) df_score = pd.DataFrame({'threshold':threshold_list, 'score_score': score_list}) df_score[df_score['score_score'] == max(df_score['score_score'])] bt = df_score[df_score['score_score'] == max(df_score['score_score'])]['threshold'].values[0] score = df_score[df_score['score_score'] == max(df_score['score_score'])]['score_score'].values[0] title = "Best Threshold: " + str(round(bt, 2)) + " w/ Kappa: " + str(round(score, 2)) sns.lineplot(data=df_score, x='threshold', y='score_score').set_title(title) plt.show() from sklearn.metrics import roc_curve #Plot ROC_Curve fpr, tpr, thresholds = roc_curve(Y_test, preds_test) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111, aspect=1) sns.lineplot(x = fpr, y = fpr, ax = ax) sns.lineplot(x = fpr, y = tpr, ax = ax) plt.show() ###Output _____no_output_____ ###Markdown ***Our ROC curve is MUCH better on all thresholds compared with our logistic regression! We've a nice and even curve which doesn't appear to be overfitting!*** ###Code from sklearn.metrics import roc_auc_score best_preds = np.where(preds_test < bt, 0, 1) print("Roc_auc = {}".format(roc_auc_score(Y_test, best_preds))) print("Precision = {}".format(precision_score(Y_test, best_preds))) print("Recall = {}".format(recall_score(Y_test, best_preds))) print("F1 = {}".format(f1_score(Y_test, best_preds))) print("Kappa_score = {}".format(cohen_kappa_score(Y_test, best_preds))) print("Matthews_corrcoef = {}".format(matthews_corrcoef(Y_test, best_preds))) print("Mean_squared_error_test = {}".format(mean_squared_error(Y_test, best_preds))) print("Logloss_test = {}".format(log_loss(Y_test, best_preds))) ###Output Roc_auc = 0.8492998797960843 Precision = 0.8289085545722714 Recall = 0.7955832389580973 F1 = 0.8119040739670615 Kappa_score = 0.7043968112863238 Matthews_corrcoef = 0.704763163688087 Mean_squared_error_test = 0.13687397502207646 Logloss_test = 4.727508371460749 ###Markdown **Now we've a reasonable predictive model**! It could be even improved findind best parameters. \Using the best threshold for Kappa score improved our overall scores compared with best F-1 score threshold, probably due to imbalanced class. XGBoost with manually selected features using Patsy and Softprob ###Code %%time import xgboost as xgb from sklearn.metrics import cohen_kappa_score from sklearn.metrics import matthews_corrcoef from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split import patsy # Selecting features I manually found interesting analyzing matthew's correlation and using patsy to automatic interact between features. y, X = patsy.dmatrices('is_canceled ~ hotel + lead_time + arrival_date_year + arrival_date_month + stays_in_weekend_nights + \ stays_in_week_nights + adults + children + babies + meal + country + market_segment + distribution_channel + \ is_repeated_guest + previous_cancellations + previous_bookings_not_canceled + reserved_room_type + \ assigned_room_type + booking_changes + deposit_type + days_in_waiting_list + customer_type + adr + \ required_car_parking_spaces + total_of_special_requests + is_company + is_agent', data = df_hotel) # Display patsy features #display(X) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2) D_train = xgb.DMatrix(X_train, label=Y_train)#, enable_categorical=True) D_test = xgb.DMatrix(X_test, label=Y_test)#, enable_categorical=True) param = { 'eta': 0.10, # Lower ratios avoid over-fitting. Default is 3. 'max_depth': 30, # Lower ratios avoid over-fitting. Default is 6. "min_child_weight": 3, # Larger ratios avoid over-fitting. Default is 1. "gamma": 0.3, # Larger values avoid over-fitting. Default is 0. "colsample_bytree" : 0.7, # Lower ratios avoid over-fitting. Values from 0.3 to 0.8 if you have many columns (especially if you did one-hot encoding), or 0.8 to 1 if you only have a few columns. "scale_pos_weight": 1, # Default is 1. Control balance of positive and negative weights, for unbalanced classes. "reg_lambda": 10, # Larger ratios avoid over-fitting. Default is 1. "alpha": 1, # Larger ratios avoid over-fitting. Default is 0. 'subsample':0.5, # Lower ratios avoid over-fitting. Default 1. 0.5 recommended. 'num_parallel_tree': 2, # Parallel trees constructed during each iteration. Default is 1. 'objective': 'multi:softprob', # Default is reg:squarederror. 'multi:softprob' for multiclass. 'num_class': 2, # Use if softprob is set. 'verbosity':1, 'eval_metric': 'auc', 'use_rmm':False, # Use GPU if available 'nthread':-1, # Set -1 to use all threads. 'tree_method': 'auto', # 'gpu_hist'. Default is auto: analyze the data and chooses the fastest. 'gradient_based': False, # If True you can set subsample as low as 0.1. Only use with gpu_hist } steps = 200 # The number of training iterations model = xgb.train(param, D_train, steps) import numpy as np from sklearn.metrics import precision_score, recall_score, accuracy_score preds = model.predict(D_test) best_preds = np.asarray([np.argmax(line) for line in preds]) print("Precision = {}".format(precision_score(Y_test, best_preds))) print("Recall = {}".format(recall_score(Y_test, best_preds))) print("f1 = {}".format(f1_score(Y_test, best_preds))) print("kappa_score = {}".format(cohen_kappa_score(Y_test, best_preds))) print("matthews_corrcoef = {}".format(matthews_corrcoef(Y_test, best_preds))) #print("mean_squared_error_train = {}".format(mean_squared_error(Y_train, best_preds))) # print("mean_squared_error_test = {}".format(mean_squared_error(Y_test, best_preds))) print("logloss_test = {}".format(log_loss(Y_test, best_preds))) #print("logloss_train = {}".format(log_loss(Y_train, best_preds))) # from xgboost import plot_importance # import matplotlib.pyplot as pyplot # plot_importance(model) # pyplot.show() ###Output [20:49:33] WARNING: ../src/learner.cc:576: Parameters: { "gradient_based", "scale_pos_weight" } might not be used. This could be a false alarm, with some parameters getting used by language bindings but then being mistakenly passed down to XGBoost core, or some parameter actually being used but getting flagged wrongly here. Please open an issue if you find any such cases. Precision = 0.8658173592094297 Recall = 0.8151552516534021 f1 = 0.8397228637413394 kappa_score = 0.7480610552387499 matthews_corrcoef = 0.7489019304166113 logloss_test = 4.031812977527266 CPU times: user 1h 16min 6s, sys: 6.13 s, total: 1h 16min 12s Wall time: 10min 13s ###Markdown **Using patsy and softprob (contains predicted probability of each data point belonging to each class) improved our overall scores! And we didn't even explored our thresholds!** BONUS: Check for last_minute ###Code %%time from sklearn import datasets import os import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from xgboost import XGBClassifier from xgboost import XGBRegressor from sklearn.metrics import cohen_kappa_score, precision_score from sklearn.metrics import matthews_corrcoef, mean_squared_error, log_loss from sklearn.metrics import f1_score, recall_score, roc_auc_score import patsy df_filter = df_hotel.loc[df_hotel['reservation_type'] == 'last_minute'] # Use patsy to automatic interact between features y, X = patsy.dmatrices('is_canceled ~ hotel + lead_time + arrival_date_year + arrival_date_month + stays_in_weekend_nights + \ stays_in_week_nights + adults + children + babies + meal + country + market_segment + distribution_channel + \ is_repeated_guest + previous_cancellations + previous_bookings_not_canceled + reserved_room_type + \ assigned_room_type + booking_changes + deposit_type + days_in_waiting_list + customer_type + adr + \ required_car_parking_spaces + total_of_special_requests + is_company + is_agent', data = df_filter) # Display patsy features #display(X) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2) D_train = xgb.DMatrix(X_train, label=Y_train)#, enable_categorical=True) D_test = xgb.DMatrix(X_test, label=Y_test)#, enable_categorical=True) param = { 'eta': 0.10, # Lower ratios avoid over-fitting. Default is 3. 'max_depth': 30, # Lower ratios avoid over-fitting. Default is 6. "min_child_weight": 3, # Larger ratios avoid over-fitting. Default is 1. "gamma": 0.3, # Larger values avoid over-fitting. Default is 0. "colsample_bytree" : 0.7, # Lower ratios avoid over-fitting. Values from 0.3 to 0.8 if you have many columns (especially if you did one-hot encoding), or 0.8 to 1 if you only have a few columns. "scale_pos_weight": 1, # Default is 1. Control balance of positive and negative weights, for unbalanced classes. "reg_lambda": 10, # Larger ratios avoid over-fitting. Default is 1. "alpha": 1, # Larger ratios avoid over-fitting. Default is 0. 'subsample':0.5, # Lower ratios avoid over-fitting. Default 1. 0.5 recommended. 'num_parallel_tree': 2, # Parallel trees constructed during each iteration. Default is 1. 'objective': 'multi:softprob', # Default is reg:squarederror. 'multi:softprob' for multiclass. 'num_class': 2, # Use if softprob is set. 'verbosity':1, 'eval_metric': 'auc', 'use_rmm':False, # Use GPU if available 'nthread':-1, # Set -1 to use all threads. 'tree_method': 'auto', # 'gpu_hist'. Default is auto: analyze the data and chooses the fastest. 'gradient_based': False, # If True you can set subsample as low as 0.1. Only use with gpu_hist } steps = 200 # The number of training iterations model = xgb.train(param, D_train, steps) import numpy as np from sklearn.metrics import precision_score, recall_score, accuracy_score preds = model.predict(D_test) best_preds = np.asarray([np.argmax(line) for line in preds]) print("Precision = {}".format(precision_score(Y_test, best_preds))) print("Recall = {}".format(recall_score(Y_test, best_preds))) print("f1 = {}".format(f1_score(Y_test, best_preds))) print("kappa_score = {}".format(cohen_kappa_score(Y_test, best_preds))) print("matthews_corrcoef = {}".format(matthews_corrcoef(Y_test, best_preds))) # print("mean_squared_error_train = {}".format(mean_squared_error(Y_train, best_preds))) print("mean_squared_error_test = {}".format(mean_squared_error(Y_test, best_preds))) print("logloss_test = {}".format(log_loss(Y_test, best_preds))) #print("logloss_train = {}".format(log_loss(Y_train, best_preds))) # from xgboost import plot_importance # import matplotlib.pyplot as pyplot # plot_importance(model) %%time from sklearn import datasets import os import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from xgboost import XGBClassifier from xgboost import XGBRegressor from sklearn.metrics import cohen_kappa_score, precision_score from sklearn.metrics import matthews_corrcoef, mean_squared_error, log_loss from sklearn.metrics import f1_score, recall_score, roc_auc_score import patsy df_filter = df_hotel.loc[df_hotel['reservation_type'] == 'scheduled'] # Use patsy to automatic interact between features y, X = patsy.dmatrices('is_canceled ~ hotel + lead_time + arrival_date_year + arrival_date_month + stays_in_weekend_nights + \ stays_in_week_nights + adults + children + babies + meal + country + market_segment + distribution_channel + \ is_repeated_guest + previous_cancellations + previous_bookings_not_canceled + reserved_room_type + \ assigned_room_type + booking_changes + deposit_type + days_in_waiting_list + customer_type + adr + \ required_car_parking_spaces + total_of_special_requests + is_company + is_agent', data = df_filter) # Display patsy features #display(X) X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2) D_train = xgb.DMatrix(X_train, label=Y_train)#, enable_categorical=True) D_test = xgb.DMatrix(X_test, label=Y_test)#, enable_categorical=True) param = { 'eta': 0.10, # Lower ratios avoid over-fitting. Default is 3. 'max_depth': 30, # Lower ratios avoid over-fitting. Default is 6. "min_child_weight": 3, # Larger ratios avoid over-fitting. Default is 1. "gamma": 0.3, # Larger values avoid over-fitting. Default is 0. "colsample_bytree" : 0.7, # Lower ratios avoid over-fitting. Values from 0.3 to 0.8 if you have many columns (especially if you did one-hot encoding), or 0.8 to 1 if you only have a few columns. "scale_pos_weight": 1, # Default is 1. Control balance of positive and negative weights, for unbalanced classes. "reg_lambda": 10, # Larger ratios avoid over-fitting. Default is 1. "alpha": 1, # Larger ratios avoid over-fitting. Default is 0. 'subsample':0.5, # Lower ratios avoid over-fitting. Default 1. 0.5 recommended. 'num_parallel_tree': 2, # Parallel trees constructed during each iteration. Default is 1. 'objective': 'multi:softprob', # Default is reg:squarederror. 'multi:softprob' for multiclass. 'num_class': 2, # Use if softprob is set. 'verbosity':1, 'eval_metric': 'auc', 'use_rmm':False, # Use GPU if available 'nthread':-1, # Set -1 to use all threads. 'tree_method': 'auto', # 'gpu_hist'. Default is auto: analyze the data and chooses the fastest. 'gradient_based': False, # If True you can set subsample as low as 0.1. Only use with gpu_hist } steps = 200 # The number of training iterations model = xgb.train(param, D_train, steps) import numpy as np from sklearn.metrics import precision_score, recall_score, accuracy_score preds = model.predict(D_test) best_preds = np.asarray([np.argmax(line) for line in preds]) print("Precision = {}".format(precision_score(Y_test, best_preds))) print("Recall = {}".format(recall_score(Y_test, best_preds))) print("f1 = {}".format(f1_score(Y_test, best_preds))) print("kappa_score = {}".format(cohen_kappa_score(Y_test, best_preds))) print("matthews_corrcoef = {}".format(matthews_corrcoef(Y_test, best_preds))) # print("mean_squared_error_train = {}".format(mean_squared_error(Y_train, best_preds))) print("mean_squared_error_test = {}".format(mean_squared_error(Y_test, best_preds))) print("logloss_test = {}".format(log_loss(Y_test, best_preds))) # print("logloss_train = {}".format(log_loss(Y_train, best_preds))) # from xgboost import plot_importance # import matplotlib.pyplot as pyplot # plot_importance(model) ###Output [21:00:56] WARNING: ../src/learner.cc:576: Parameters: { "gradient_based", "scale_pos_weight" } might not be used. This could be a false alarm, with some parameters getting used by language bindings but then being mistakenly passed down to XGBoost core, or some parameter actually being used but getting flagged wrongly here. Please open an issue if you find any such cases. Precision = 0.87559926244622 Recall = 0.8473709255293838 f1 = 0.8612538540596095 kappa_score = 0.7606381582627613 matthews_corrcoef = 0.7609421707752342 mean_squared_error_test = 0.1166751398068124 logloss_test = 4.029857703046233 CPU times: user 1h 38s, sys: 3.5 s, total: 1h 42s Wall time: 8min 3s
TrashCode/Friendster_New_prepadata_ (1).ipynb
###Markdown Source des données http://socialcomputing.asu.edu/datasets/Friendster| Number of Nodes |Number of Edges |Missing Values? ||------|------|------||100199 |14067887|no|**Source:**N/A**Data Set Information:**2 files are included:1. nodes.csv-- it's the file of all the users. This file works as a dictionary of all the users in this data set. It's useful for fast reference. It containsall the node ids used in the dataset2. edges.csv-- this is the friendship network among the users. The users's friends are represented using edges. Here is an example. 1,2 This means user with id "1" is friend with user id "2".**Attribute Information:**Friendster is a social networking website.The service allows users to contact other members, maintain those contacts, and share online content and media with those contacts. This is the data set crawled by Stephen Booher ([email protected]) on Nov, 2010 from Friendster. This contains the friendship network crawled. For easier understanding, all the contents are organized in CSV file format.__Basic statistics__Number of users : 100,199Number of friendship pairs: 14,067,887 Découvertes des données - Lecture des fichiers téléchargés ###Code #Lecture du fichier des liens df_edges = pd.read_csv("/home/pb19121/datagraphx/edges_sans_boucle.csv",sep =',',header = None) df_edges.columns = ['FROM', 'TO'] df_edges.to_csv('/home/pb19121/datagraphx/friendsterallfollowers.txt', sep = ' ',index = False, header= False) df_edges.info() df_edges.head(5) #Lecture du fichier des noeuds df_nodes = pd.read_csv("/home/pb19121/mydata/nodes.csv",header = None) df_nodes.columns = ['NODE'] #Lecture du fichier des noeuds df_nodes_att = pd.read_csv("/home/pb19121/datagraphx/WITH_ATT_NODES.csv",header = None) df_nodes_att.columns = ['Node','name','Present'] df_nodes_att.info() df_nodes_att.head(5) ###Output _____no_output_____ ###Markdown - Vérification de l'exhaustivité et l'unicité des noeuds ###Code pd.DataFrame(df_nodes.NODE.unique()).count() df_TO =pd.DataFrame(df_edges.TO.unique()) df_TO.columns = ['NODE'] df_FROM = pd.DataFrame(df_edges.FROM.unique()) df_FROM.columns = ['NODE'] print("Sommets source :\n") print(df_FROM.info()) print("Sommets cible : \n") print(df_TO.info()) print(df_FROM.head(5) ,"\n", df_TO.head(5)) frames = [df_FROM, df_TO, df_nodes] df_union_nodes =pd.concat(frames) df_union_nodes.count() pd.DataFrame(df_union_nodes.NODE.unique()).count() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 5689497 entries, 0 to 5689496 Data columns (total 1 columns): NODE int64 dtypes: int64(1) memory usage: 43.4 MB ###Markdown > **Remarque 1** Tous les noeuds ne figurent pas dans le dictionnaire _"nodes"_ ###Code liste = df_nodes.NODE ###Output _____no_output_____ ###Markdown - Suppression des arretes dont les noeuds sont absents du fichiers nodes.csv ###Code df_edges_isNOTnode = pd.DataFrame(columns = ['FROM', 'TO']) df_edges_isNOTnode = df_edges[np.logical_not(df_edges['FROM'].isin(liste) )&(df_edges['TO'].isin(liste))] df_edges_isNOTnode.info() df_edges_isnode = pd.DataFrame(columns = ['FROM', 'TO']) df_edges_isnode = df_edges[(df_edges['FROM'].isin(liste) )& (df_edges['TO'].isin(liste))] df_edges_isnode.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 981920 entries, 90 to 14067886 Data columns (total 2 columns): FROM 981920 non-null int64 TO 981920 non-null int64 dtypes: int64(2) memory usage: 22.5 MB ###Markdown Ajout d'attributs calculé sur les noeuds ###Code import pickle import seaborn as sns import networkx as nx import collections import community import matplotlib.pyplot as plt %matplotlib inline import pandas as pd import numpy G_full = nx.Graph() G_isinDict = nx.Graph() G_isNOTinDict = nx.Graph() for item, row in df_edges_isnode.iterrows(): G_isinDict.add_edge(row['FROM'],row['TO'], weight=1) for item, row in df_edges_isNOTnode.iterrows(): G_isNOTinDict.add_edge(row['FROM'],row['TO'], weight=1) for item, row in df_edges.iterrows(): G_full.add_edge(row['FROM'],row['TO'], weight=1) #_SAUVEGARDE DU GRAPHE DANS UN FICHIER nx.write_edgelist(G_isinDict, "/home/pb19121/mydata/G_isinDict.edgelist") #_SAUVEGARDE DU GRAPHE DANS UN FICHIER nx.write_edgelist(G_full, "/home/pb19121/mydata/G_full.edgelist") #_SAUVEGARDE DU GRAPHE DANS UN FICHIER nx.write_edgelist(G_isNOTinDict, "/home/pb19121/mydata/G_isNOTinDict.edgelist") #_SAUVEGARDE DU GRAPHE DANS UN FICHIER nx.write_adjlist(G_isinDict, "/home/pb19121/mydata/G_isinDict.adjlist") #_SAUVEGARDE DU GRAPHE DANS UN FICHIER nx.write_adjlist(G_isNOTinDict, "/home/pb19121/mydata/G_isNOTinDict.adjlist") #_SAUVEGARDE DU GRAPHE DANS UN FICHIER nx.write_adjlist(G_full, "/home/pb19121/mydata/G_full.adjlist") print(nx.info(G_isinDict)) print(nx.info(G_full)) print(nx.info(G_isNOTinDict)) ###Output Name: Type: Graph Number of nodes: 139584 Number of edges: 1379904 Average degree: 19.7717 ###Markdown Ajout d'attributs ###Code # Calcul du degres des noeuds (graphe non orienté) att_deg = G_isinDict.degree() nx.set_node_attributes(G_isinDict, 'degres', att_deg) # Calcul du degres des noeuds (graphe non orienté) att_deg = G_isNOTinDict.degree() nx.set_node_attributes(G_isNOTinDict, 'degres', att_deg) att_cluster = nx.clustering(G_isNOTinDict) type(att_deg) nodeliste = G.nodes().to ###Output _____no_output_____ ###Markdown Preparation des données Graphx ###Code df_nodes_users = pd.DataFrame(columns = ['USERS']) df_nodes_users["USERS"] = df_nodes.apply( lambda row :( str(row["NODE"])+",N"+str(row["NODE"])+",n"+str(row["NODE"])) , axis = 1) df_nodes_users.head(10) df_nodes_users.drop(["NODE"], axis = 1, inplace = True) df_nodes_users.to_csv('/home/pb19121/datagraphx/friendsterusers.txt', sep = ' ',index = False, header= False) df_union_nodes.to_csv('/home/pb19121/datagraphx/friendsterallusers.txt', sep = ' ',index = False, header= False) df_edges_isnode.reindex(['TO', 'FROM'], axis=1).to_csv('/home/pb19121/datagraphx/friendsterfollowersReverse.txt', sep = ' ',index = False, header= False) df_edges_isnode.to_csv('/home/pb19121/datagraphx/friendsterfollowers.txt', sep = ' ',index = False, header= False) df_edges.reindex(['TO', 'FROM'], axis=1).to_csv('/home/pb19121/datagraphx/friendsterallfollowers.txt', sep = ' ',index = False, header= False) ###Output _____no_output_____
book/3-linear-scikitlearn.ipynb
###Markdown Linear Fitting with SciKit Learn========================= Overview Questions How can I fit a linear equation using scikitlearn? How can I fit a linear equation with multiple variables using scikitlearn? Objectives: Slice a pandas dataframe to get `X` and `Y` values and convert them to NumPy Arrays. Use the `LinearRegression` model in scikitlearn to perform a linear fit. Keypoints: You must import and create the model you want to use from scikitlearn. SciKitLearn models require `X` and `Y` values that are at least two dimensional. Use `.reshape` on your NumPy arrays to make sure they are the correct dimension. Fit SciKitLearn models by giving them data and using the `fit` method. Use the `predict` method after fitting to make predictions In this lesson, we are going to use the [scikitlearn](https://scikit-learn.org/) library to do a linear fit. When it comes to fitting equations in Python, you will encounter a lot of options. In this workshop, we will work with the library scikitlearn, and later the library statsmodels.Another library you might encounter when doing fitting is [scipy](https://www.scipy.org/). While functionalities available from theses libraries can be similar in some cases, each has different strengths. Scipy is used for scientific applications. Statsmodels provides rigourous statics while scipy has a lot of functionalities around science and engineering applications. SciKitLearn, which we use in this section, is geared toward machine learning.For this lesson, we will just be doing linear fits. However, scikitlearrn has many different models built in, some of which we will see in the next session. SciKitLearn might not be the easiest library to use for analysis depending on your use case. However, we start with it here so we can better understand how to use the library for more complicated examples and models. [API of scikitlearn](https://scikit-learn.org/stable/developers/develop.html) ###Code ls data ###Output PubChemElements_all.csv potts_table1.csv potts_table2.csv delaney-processed.csv potts_table1_clean.csv rxnpredict/ ###Markdown We start by reading in the data we worked to clean during the last session. We named this file `potts_table1_clean.csv`. Now that the data is clean, we should expect that it will load correctly with correct data types, and that we shouldn't have too many problems working with it. ###Code import os import pandas as pd path = os.path.join("data", "potts_table1_clean.csv") df = pd.read_csv(path) df.head() df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 37 entries, 0 to 36 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Compound 37 non-null object 1 log P 34 non-null float64 2 pi 37 non-null float64 3 Hd 37 non-null float64 4 Ha 37 non-null float64 5 MV 36 non-null float64 6 R_2 37 non-null float64 7 log K_oct 36 non-null float64 8 log K_hex 30 non-null float64 9 log K_hep 24 non-null float64 dtypes: float64(9), object(1) memory usage: 3.0+ KB ###Markdown Linear Regression using SciKitLearnSciKitLearn has a number of [linear models](https://scikit-learn.org/stable/modules/classes.html?highlight=linear_modelmodule-sklearn.linear_model) available. The purpose of this workshop is not to cover what linear models exist or in what context to use them. Rather, we are covering how to use these models in Python. We will do a simple linear fit using the ordinary least squares method. Preparing Data for Fitting with SciKitLearnBefore we do the fit, we will need to make sure our data is ready. Although this data is clean, we still have some missing `NaN` values. In the paper, the authors perform a multiple linear regression, meaning that they fit a line based on many variables. We will do this, but we will first fit a simple linear model with one variable.From our initial exploration with seaborn, we are going to decide to fit `log P` as a function of `MV`. SciKitLearn Models are going to require us to pass NumPy arrays to them as data. When we do this fit, it is also necessary to drop any values which are `NaN`. Check your understanding Prepare a dataframe which can be used for fitting. One approach to this would be to first slice the dataframe to have only the columns of interest, then to use `dropna` on the dataframe to drop the uneeded rows. Save your prepared data in a variable called `fit_data`. ```{admonition} Solution:class: dropdown```pythonfit_data = df[["log P", "MV"]]fit_data = fit_data.dropna(axis=0, how="any")``` ###Code fit_data = df[["log P", "MV"]] fit_data = fit_data.dropna(axis=0, how="any") fit_data.head() ###Output _____no_output_____ ###Markdown ```{note}We could have alternatively used the `dropna` function on the original dataframe with an additional argument of `subset` which says to only consider our two columns of interest. Then, we would have had a dataframe called `fit_data` which retained all of the columns, but had a value for every cell in both the `log P` and `MV` columns.```pythonfit_data = df.dropna(subset=["log P", "MV"], how="any")``````{admonition} When to use dropna:class: tipIt is important that when you use `dropna` on data you intend to fit that this is done at the same time with the argument `how=any`. This is because it is imperative that the values of X and Y match with one another and are of the same length.``` ###Code X = fit_data["MV"].to_numpy() Y = fit_data["log P"].to_numpy() ###Output _____no_output_____ ###Markdown SciKitLearn ModelsNow that we have prepared our X and Y variables, let's see how we would do a fit using scikitlearn.Typically when doing fitting with scikitlearn, the first thing you will do is to import the type of model you want to use. In our case, we are importing a `LinearRegression` model. This type of model performs ordinary least squares fitting. You will first import the model, then you will create a model object. After creation, you will give data to the model and tell it to perform a fit. Your model can then be used to make predictions. ###Code from sklearn.linear_model import LinearRegression ###Output _____no_output_____ ###Markdown Now that you have imported the model, you can read more about it either on the [SciKitLearn](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.htmlsklearn.linear_model.LinearRegression) website, or by using the built-in Python `help` function. ###Code help(LinearRegression) ###Output Help on class LinearRegression in module sklearn.linear_model._base: class LinearRegression(sklearn.base.MultiOutputMixin, sklearn.base.RegressorMixin, LinearModel) | LinearRegression(*, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False) | | Ordinary least squares Linear Regression. | | LinearRegression fits a linear model with coefficients w = (w1, ..., wp) | to minimize the residual sum of squares between the observed targets in | the dataset, and the targets predicted by the linear approximation. | | Parameters | ---------- | fit_intercept : bool, default=True | Whether to calculate the intercept for this model. If set | to False, no intercept will be used in calculations | (i.e. data is expected to be centered). | | normalize : bool, default=False | This parameter is ignored when ``fit_intercept`` is set to False. | If True, the regressors X will be normalized before regression by | subtracting the mean and dividing by the l2-norm. | If you wish to standardize, please use | :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` | on an estimator with ``normalize=False``. | | copy_X : bool, default=True | If True, X will be copied; else, it may be overwritten. | | n_jobs : int, default=None | The number of jobs to use for the computation. This will only provide | speedup for n_targets > 1 and sufficient large problems. | ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | ``-1`` means using all processors. See :term:`Glossary <n_jobs>` | for more details. | | positive : bool, default=False | When set to ``True``, forces the coefficients to be positive. This | option is only supported for dense arrays. | | .. versionadded:: 0.24 | | Attributes | ---------- | coef_ : array of shape (n_features, ) or (n_targets, n_features) | Estimated coefficients for the linear regression problem. | If multiple targets are passed during the fit (y 2D), this | is a 2D array of shape (n_targets, n_features), while if only | one target is passed, this is a 1D array of length n_features. | | rank_ : int | Rank of matrix `X`. Only available when `X` is dense. | | singular_ : array of shape (min(X, y),) | Singular values of `X`. Only available when `X` is dense. | | intercept_ : float or array of shape (n_targets,) | Independent term in the linear model. Set to 0.0 if | `fit_intercept = False`. | | See Also | -------- | Ridge : Ridge regression addresses some of the | problems of Ordinary Least Squares by imposing a penalty on the | size of the coefficients with l2 regularization. | Lasso : The Lasso is a linear model that estimates | sparse coefficients with l1 regularization. | ElasticNet : Elastic-Net is a linear regression | model trained with both l1 and l2 -norm regularization of the | coefficients. | | Notes | ----- | From the implementation point of view, this is just plain Ordinary | Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares | (scipy.optimize.nnls) wrapped as a predictor object. | | Examples | -------- | >>> import numpy as np | >>> from sklearn.linear_model import LinearRegression | >>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) | >>> # y = 1 * x_0 + 2 * x_1 + 3 | >>> y = np.dot(X, np.array([1, 2])) + 3 | >>> reg = LinearRegression().fit(X, y) | >>> reg.score(X, y) | 1.0 | >>> reg.coef_ | array([1., 2.]) | >>> reg.intercept_ | 3.0000... | >>> reg.predict(np.array([[3, 5]])) | array([16.]) | | Method resolution order: | LinearRegression | sklearn.base.MultiOutputMixin | sklearn.base.RegressorMixin | LinearModel | sklearn.base.BaseEstimator | builtins.object | | Methods defined here: | | __init__(self, *, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False) | Initialize self. See help(type(self)) for accurate signature. | | fit(self, X, y, sample_weight=None) | Fit linear model. | | Parameters | ---------- | X : {array-like, sparse matrix} of shape (n_samples, n_features) | Training data | | y : array-like of shape (n_samples,) or (n_samples, n_targets) | Target values. Will be cast to X's dtype if necessary | | sample_weight : array-like of shape (n_samples,), default=None | Individual weights for each sample | | .. versionadded:: 0.17 | parameter *sample_weight* support to LinearRegression. | | Returns | ------- | self : returns an instance of self. | | ---------------------------------------------------------------------- | Data and other attributes defined here: | | __abstractmethods__ = frozenset() | | ---------------------------------------------------------------------- | Data descriptors inherited from sklearn.base.MultiOutputMixin: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) | | ---------------------------------------------------------------------- | Methods inherited from sklearn.base.RegressorMixin: | | score(self, X, y, sample_weight=None) | Return the coefficient of determination :math:`R^2` of the | prediction. | | The coefficient :math:`R^2` is defined as :math:`(1 - \frac{u}{v})`, | where :math:`u` is the residual sum of squares ``((y_true - y_pred) | ** 2).sum()`` and :math:`v` is the total sum of squares ``((y_true - | y_true.mean()) ** 2).sum()``. The best possible score is 1.0 and it | can be negative (because the model can be arbitrarily worse). A | constant model that always predicts the expected value of `y`, | disregarding the input features, would get a :math:`R^2` score of | 0.0. | | Parameters | ---------- | X : array-like of shape (n_samples, n_features) | Test samples. For some estimators this may be a precomputed | kernel matrix or a list of generic objects instead with shape | ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted`` | is the number of samples used in the fitting for the estimator. | | y : array-like of shape (n_samples,) or (n_samples, n_outputs) | True values for `X`. | | sample_weight : array-like of shape (n_samples,), default=None | Sample weights. | | Returns | ------- | score : float | :math:`R^2` of ``self.predict(X)`` wrt. `y`. | | Notes | ----- | The :math:`R^2` score used when calling ``score`` on a regressor uses | ``multioutput='uniform_average'`` from version 0.23 to keep consistent | with default value of :func:`~sklearn.metrics.r2_score`. | This influences the ``score`` method of all the multioutput | regressors (except for | :class:`~sklearn.multioutput.MultiOutputRegressor`). | | ---------------------------------------------------------------------- | Methods inherited from LinearModel: | | predict(self, X) | Predict using the linear model. | | Parameters | ---------- | X : array-like or sparse matrix, shape (n_samples, n_features) | Samples. | | Returns | ------- | C : array, shape (n_samples,) | Returns predicted values. | | ---------------------------------------------------------------------- | Methods inherited from sklearn.base.BaseEstimator: | | __getstate__(self) | | __repr__(self, N_CHAR_MAX=700) | Return repr(self). | | __setstate__(self, state) | | get_params(self, deep=True) | Get parameters for this estimator. | | Parameters | ---------- | deep : bool, default=True | If True, will return the parameters for this estimator and | contained subobjects that are estimators. | | Returns | ------- | params : dict | Parameter names mapped to their values. | | set_params(self, **params) | Set the parameters of this estimator. | | The method works on simple estimators as well as on nested objects | (such as :class:`~sklearn.pipeline.Pipeline`). The latter have | parameters of the form ``<component>__<parameter>`` so that it's | possible to update each component of a nested object. | | Parameters | ---------- | **params : dict | Estimator parameters. | | Returns | ------- | self : estimator instance | Estimator instance. ###Markdown Before we do the fit, we first create the model. When we create this model, we specify settings for it such as if we want the linear model to have an intercept. It will have one by default, but if you wanted to do an ordinary least squares fit without an intercept, you would specify it when you create the model.After we create the model, we give it data and call the `fit` function. Then, the model will contain information about coefficients and an intercept.We will fit an equation for `log P` based on some other variable in the data frame. we have to get our data as numpy arrays. Next, we will create the linear model using `LinearRegression()`.To perform the fit, we do use the `fit` function on the linear model we created. As we have it now, it will not quite work. The error message is shown below for discussion. ###Code linear_model = LinearRegression() linear_model.fit(X, Y) ###Output _____no_output_____ ###Markdown It is at this point that the array's **shape** becomes important. Typically if you print the shape of a pandas Series or a one dimensional slice of a NumPy array, you will see something like `(n, )`. For example, ###Code X.shape ###Output _____no_output_____ ###Markdown This array is one dimensional, mean that its shape is specified with only one number. You can sort of think of this as a vector. Even though the shape would not seem different with a shape of `(33, 1)`, it is necessary for fitting with scikitlearn.You will see that scikitlearn even tells us this in the error function.```Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.```In NumPy, when we use a `-1` in a dimension it basically translates into whatever number is required in order for the array to have the other specified dimensions. Otherwise, we would have to specify the number of rows for each reshape command. We don't really know or care about the number of rows, what's important for us in that the data be in a single column. ###Code X = X.reshape(-1, 1) X.shape Y = Y.reshape(-1, 1) linear_model.fit(X, Y) ###Output _____no_output_____ ###Markdown The `linear_model` variable now contains our linear fit. We can check our fit coefficient and intercept. ###Code print(f"The intercept is {linear_model.coef_} and the intercept is {linear_model.intercept_}.") ###Output The intercept is [[0.02705618]] and the intercept is [-7.24687081]. ###Markdown Check your understanding Perform a second linear fit for `logP` vs `pi`. Save your variables as `X_pi`, `Y_pi`, and `linear_pi`. ```{admonition} Solution:class: dropdown```pythonfit_data_pi = df.dropna(subset=["log P", "pi"], how="any")linear_pi = LinearRegression()X_pi = fit_data_pi["pi"].to_numpy().reshape(-1, 1)Y_pi = fit_data_pi["log P"].to_numpy().reshape(-1, 1)linear_pi.fit(X_pi, Y_pi)print(f"The intercept is {linear_pi.coef_} and the intercept is {linear_pi.intercept_}.")``` ###Code fit_data_pi = df.dropna(subset=["log P", "pi"], how="any") linear_pi = LinearRegression() X_pi = fit_data_pi["pi"].to_numpy().reshape(-1, 1) Y_pi = fit_data_pi["log P"].to_numpy().reshape(-1, 1) linear_pi.fit(X_pi, Y_pi) print(f"The intercept is {linear_pi.coef_} and the intercept is {linear_pi.intercept_}.") ###Output The intercept is [[0.06416467]] and the intercept is [-5.59119251]. ###Markdown We might next be interested in how good these fits are, or fit metrics. We might evaluate that using an `R2` value. In scikitlearn for the linear model, this is accessible through `model.score`. ###Code r2 = linear_model.score(X, Y) print(f"The r2 score for log P vs MV is {r2}") r2_pi = linear_pi.score(X_pi, Y_pi) print(f"The r2 score for log P vs pi is {r2_pi}") ###Output The r2 score for log P vs pi is 0.000529506196607854 ###Markdown Making Predictions ###Code fit_data["model_prediction"] = linear_model.predict(X) fit_data.head() import seaborn as sns import matplotlib.pyplot as plt %matplotlib notebook sns.set_theme(font_scale=1.25) g = sns.lmplot(x="log P", y="model_prediction", data=fit_data) g.ax.annotate(rf"$r^2$={r2_pi:.3f}", xy=(-6, -4)) g.tight_layout() import numpy as np # Predict for single made up value linear_model.predict(np.array([0.75]).reshape(1, -1)) ###Output _____no_output_____ ###Markdown Multiple Linear Regression ###Code fit_data = df[["log P", "MV", "pi", "Ha", "Hd", "R_2"]].copy() fit_data.head() fit_data.dropna(axis=0, inplace=True) X = fit_data[["MV", "pi", "Ha", "Hd", "R_2"]].to_numpy() Y = fit_data["log P"].to_numpy() multiple_reg = LinearRegression().fit(X, Y) print(multiple_reg.coef_) print(multiple_reg.intercept_) r2_m = multiple_reg.score(X, Y) fit_data["model_prediction"] = multiple_reg.predict(X) g = sns.lmplot(x="log P", y="model_prediction", data=fit_data) g.ax.annotate(rf"$r^2$={r2_m:.3f}", xy=(-6, -4)) g.tight_layout() g.savefig("session3.png", dpi=250) ###Output _____no_output_____
Day_6/K_Nearest_Neighbors.ipynb
###Markdown K Nearest Neighbors Imports ###Code import matplotlib.pyplot as plt from sklearn import datasets from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn import neighbors ###Output _____no_output_____ ###Markdown Load Data ###Code iris = datasets.load_iris() ###Output _____no_output_____ ###Markdown Build Model Assign X and y to hold data and target ###Code X = iris.data y = iris.target ###Output _____no_output_____ ###Markdown Split X and y into training and test sets ###Code X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state = 2) ###Output _____no_output_____ ###Markdown Aside: Viualize data ###Code # Shows the different classes present in training data plt.scatter(X_train[:,0],X_train[:,1], c=y_train) # Shows the points that we are trying to classify in "magenta", notice how they are scattered throughout? # Our model will classify each of those magenta dots as belonging to one of the existing classes, # based on the colored points around the point being tested. plt.scatter(X_test[:,0], X_test[:,1], c='m') plt.show() ###Output _____no_output_____ ###Markdown Create Model ###Code m = neighbors.KNeighborsClassifier(n_neighbors=5) ###Output _____no_output_____ ###Markdown Fit model to training data ###Code m.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Model Score ###Code #Higher score is good! :) m.score(X_test, y_test) ###Output _____no_output_____ ###Markdown Make predictions! ###Code predictions = m.predict(X_test) ###Output _____no_output_____ ###Markdown "Eyeball" the accuracy of model. ###Code print("predictions:", predictions) print("actual clss:", y_test) #I adjusted the model to 5 nearest neighbors, now its a perfect match! ###Output _____no_output_____ ###Markdown Classification Report ###Code classification_report = metrics.classification_report(y_test, predictions) print(classification_report) ###Output _____no_output_____ ###Markdown Confusion Matrix ###Code confusion_matrix = metrics.confusion_matrix(y_test, predictions) print(confusion_matrix) ###Output _____no_output_____
Parameter_Search_Graph_5years.ipynb
###Markdown Parameter Search ###Code def ParameterSearch(X=None, Y=None, dateStart='2018-04-14', dateEnd='2018-06-01', Team_A=None, Team_B=None, param_name=None, param_list=None, model=None, title=None, **other_setting): total_acc = [] max_acc = -1 max_param_val = -1 total_len = len(param_list) count_prog = 0 for val in param_list: other_setting[param_name] = val model.set_params(**other_setting) model.fit(X, Y.values.ravel()) modelsLUT = { 'model': model } ret_acc = gamePrediction(dfFile, modelsLUT, dateStart, dateEnd, period, Team_A, Team_B, featureSel, 0) for model_name in modelsLUT: total_acc.append(ret_acc[model_name]) if(total_acc[-1] > max_acc): max_acc = total_acc[-1] max_param_val = val count_prog += 1 print('Progress = {x}%'.format(x = count_prog/total_len*100)) print(f'max_acc = {max_acc}, with {param_name} = {max_param_val}') plt.plot(param_list, total_acc) plt.xlabel(f' {title} ') plt.ylabel(' Accuracy ') plt.show() ###Output _____no_output_____ ###Markdown Logistic Regressor ###Code ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='C' , param_list=[x/100 for x in range(1, 100, 5)]+[x for x in range(1, 1000, 50)], model=LogisticRegression() , title = 'C', max_iter=300) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='max_iter' , param_list=[0.01, 0.1, 1, 10, 100, 1000, 10000], model=LogisticRegression() , title = 'max_iter', C=0.01) ###Output Progress = 14.285714285714285% Progress = 28.57142857142857% Progress = 42.857142857142854% Progress = 57.14285714285714% Progress = 71.42857142857143% Progress = 85.71428571428571% Progress = 100.0% max_acc = 0.7088607594936709, with max_iter = 10 ###Markdown Result : C = 0.01, max_iter = 10 SVM ###Code ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='C' , param_list=[0.01, 0.1, 1, 10, 100, 1000, 10000], model=SVC() , title='C, kernal=linear', kernel='linear', probability=True) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='C' , param_list=[x/100 for x in range(1, 200, 5)], model=SVC() , title='C, kernal=linear', kernel='linear', probability=True) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='C' , param_list=[0.01, 0.1, 1, 10, 100, 1000, 10000] , model=SVC(), title='C, kernal=rbf' , kernel='rbf', gamma=1, probability=True) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='gamma' , param_list=[0.01, 0.1, 1, 10, 100, 1000, 10000], model=SVC() , title='gamma, kernal=rbf', C=0.01, kernel='rbf', probability=True) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='gamma' , param_list=[x/100 for x in range(1, 100, 5)], model=SVC() , title='gamma, kernal=rbf', C=0.01, kernel='rbf', probability=True) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='C' , param_list=[0.01, 0.1, 1, 10, 100, 1000, 10000] , model=SVC(), title='C, kernal=rbf' , kernel='rbf', gamma=0.11, probability=True) ###Output Progress = 14.285714285714285% Progress = 28.57142857142857% Progress = 42.857142857142854% Progress = 57.14285714285714% Progress = 71.42857142857143% Progress = 85.71428571428571% Progress = 100.0% max_acc = 0.6835443037974683, with C = 0.01 ###Markdown Result = kernel='linear', C = 0.06 XGBClassifier ###Code ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='max_depth' , param_list=[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31], model=xgb.XGBClassifier() , title='max_depth', learning_rate=0.1, n_estimators=100) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='n_estimators' , param_list=[1, 10, 100, 1000, 10000], model=xgb.XGBClassifier() , title='n_estimators', learning_rate=0.1, max_depth=5) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='n_estimators' , param_list=range(10, 500, 10), model=xgb.XGBClassifier() , title='n_estimators', learning_rate=0.1, max_depth=5) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='max_depth' , param_list=[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31], model=xgb.XGBClassifier() , title='max_depth', learning_rate=0.1, n_estimators=230) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='learning_rate' , param_list=[0.01, 0.1, 1, 10, 100, 1000, 10000], model=xgb.XGBClassifier() , title='learning_rate', max_depth=5, n_estimators=230) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='learning_rate' , param_list=[x/100 for x in range(1, 100, 5)], model=xgb.XGBClassifier() , title='learning_rate', max_depth=5, n_estimators=230) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='max_depth' , param_list=[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31], model=xgb.XGBClassifier() , title='max_depth', learning_rate=0.06, n_estimators=230) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='n_estimators' , param_list=range(10, 500, 10), model=xgb.XGBClassifier() , title='n_estimators', learning_rate=0.06, max_depth=3) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='max_depth' , param_list=[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31], model=xgb.XGBClassifier() , title='max_depth', learning_rate=0.06, n_estimators=270) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='learning_rate' , param_list=[0.01, 0.1, 1, 10, 1000, 10000], model=xgb.XGBClassifier() , title='learning_rate', max_depth=3, n_estimators=270) ParameterSearch(X, Y, dateStart='2018-04-14', dateEnd='2018-06-01' , Team_A=None, Team_B=None, param_name='learning_rate' , param_list=range(1000, 3000, 50), model=xgb.XGBClassifier() , title='learning_rate', max_depth=3, n_estimators=270) ###Output /home/coslate/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty. if diff:
scripts/d21-en/pytorch/chapter_natural-language-processing-pretraining/word-embedding-dataset.ipynb
###Markdown The Dataset for Pretraining Word Embedding:label:`sec_word2vec_data`In this section, we will introduce how to preprocess a dataset withnegative sampling :numref:`sec_approx_train` and load into minibatches forword2vec training. The dataset we use is [Penn Tree Bank (PTB)]( https://catalog.ldc.upenn.edu/LDC99T42), which is a small but commonly-used corpus. It takes samples from Wall Street Journal articles and includes training sets, validation sets, and test sets.First, import the packages and modules required for the experiment. ###Code import math import os import random import torch from d2l import torch as d2l ###Output _____no_output_____ ###Markdown Reading and Preprocessing the DatasetThis dataset has already been preprocessed. Each line of the dataset acts as a sentence. All the words in a sentence are separated by spaces. In the word embedding task, each word is a token. ###Code #@save d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip', '319d85e578af0cdc590547f26231e4e31cdf1e42') #@save def read_ptb(): data_dir = d2l.download_extract('ptb') with open(os.path.join(data_dir, 'ptb.train.txt')) as f: raw_text = f.read() return [line.split() for line in raw_text.split('\n')] sentences = read_ptb() f'# sentences: {len(sentences)}' ###Output Downloading ../data/ptb.zip from http://d2l-data.s3-accelerate.amazonaws.com/ptb.zip... ###Markdown Next we build a vocabulary with words appeared not greater than 10 times mapped into a "&lt;unk&gt;" token. Note that the preprocessed PTB data also contains "&lt;unk&gt;" tokens presenting rare words. ###Code vocab = d2l.Vocab(sentences, min_freq=10) f'vocab size: {len(vocab)}' ###Output _____no_output_____ ###Markdown SubsamplingIn text data, there are generally some words that appear at high frequencies, such "the", "a", and "in" in English. Generally speaking, in a context window, it is better to train the word embedding model when a word (such as "chip") and a lower-frequency word (such as "microprocessor") appear at the same time, rather than when a word appears with a higher-frequency word (such as "the"). Therefore, when training the word embedding model, we can perform subsampling on the words :cite:`Mikolov.Sutskever.Chen.ea.2013`. Specifically, each indexed word $w_i$ in the dataset will drop out at a certain probability. The dropout probability is given as:$$ P(w_i) = \max\left(1 - \sqrt{\frac{t}{f(w_i)}}, 0\right),$$Here, $f(w_i)$ is the ratio of the instances of word $w_i$ to the total number of words in the dataset, and the constant $t$ is a hyperparameter (set to $10^{-4}$ in this experiment). As we can see, it is only possible to drop out the word $w_i$ in subsampling when $f(w_i) > t$. The higher the word's frequency, the higher its dropout probability. ###Code #@save def subsampling(sentences, vocab): # Map low frequency words into <unk> sentences = [[vocab.idx_to_token[vocab[tk]] for tk in line] for line in sentences] # Count the frequency for each word counter = d2l.count_corpus(sentences) num_tokens = sum(counter.values()) # Return True if to keep this token during subsampling def keep(token): return (random.uniform(0, 1) < math.sqrt( 1e-4 / counter[token] * num_tokens)) # Now do the subsampling return [[tk for tk in line if keep(tk)] for line in sentences] subsampled = subsampling(sentences, vocab) ###Output _____no_output_____ ###Markdown Compare the sequence lengths before and after sampling, we can see subsampling significantly reduced the sequence length. ###Code d2l.set_figsize() d2l.plt.hist([[len(line) for line in sentences], [len(line) for line in subsampled]]) d2l.plt.xlabel('# tokens per sentence') d2l.plt.ylabel('count') d2l.plt.legend(['origin', 'subsampled']); ###Output _____no_output_____ ###Markdown For individual tokens, the sampling rate of the high-frequency word "the" is less than 1/20. ###Code def compare_counts(token): return (f'# of "{token}": ' f'before={sum([line.count(token) for line in sentences])}, ' f'after={sum([line.count(token) for line in subsampled])}') compare_counts('the') ###Output _____no_output_____ ###Markdown But the low-frequency word "join" is completely preserved. ###Code compare_counts('join') ###Output _____no_output_____ ###Markdown Last, we map each token into an index to construct the corpus. ###Code corpus = [vocab[line] for line in subsampled] corpus[0:3] ###Output _____no_output_____ ###Markdown Loading the DatasetNext we read the corpus with token indicies into data batches for training. Extracting Central Target Words and Context WordsWe use words with a distance from the central target word not exceeding the context window size as the context words of the given center target word. The following definition function extracts all the central target words and their context words. It uniformly and randomly samples an integer to be used as the context window size between integer 1 and the `max_window_size` (maximum context window). ###Code #@save def get_centers_and_contexts(corpus, max_window_size): centers, contexts = [], [] for line in corpus: # Each sentence needs at least 2 words to form a "central target word # - context word" pair if len(line) < 2: continue centers += line for i in range(len(line)): # Context window centered at i window_size = random.randint(1, max_window_size) indices = list( range(max(0, i - window_size), min(len(line), i + 1 + window_size))) # Exclude the central target word from the context words indices.remove(i) contexts.append([line[idx] for idx in indices]) return centers, contexts ###Output _____no_output_____ ###Markdown Next, we create an artificial dataset containing two sentences of 7 and 3 words, respectively. Assume the maximum context window is 2 and print all the central target words and their context words. ###Code tiny_dataset = [list(range(7)), list(range(7, 10))] print('dataset', tiny_dataset) for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)): print('center', center, 'has contexts', context) ###Output dataset [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]] center 0 has contexts [1] center 1 has contexts [0, 2] center 2 has contexts [0, 1, 3, 4] center 3 has contexts [2, 4] center 4 has contexts [3, 5] center 5 has contexts [3, 4, 6] center 6 has contexts [5] center 7 has contexts [8, 9] center 8 has contexts [7, 9] center 9 has contexts [7, 8] ###Markdown We set the maximum context window size to 5. The following extracts all the central target words and their context words in the dataset. ###Code all_centers, all_contexts = get_centers_and_contexts(corpus, 5) f'# center-context pairs: {len(all_centers)}' ###Output _____no_output_____ ###Markdown Negative SamplingWe use negative sampling for approximate training. For a central and context word pair, we randomly sample $K$ noise words ($K=5$ in the experiment). According to the suggestion in the Word2vec paper, the noise word sampling probability $P(w)$ is the ratio of the word frequency of $w$ to the total word frequency raised to the power of 0.75 :cite:`Mikolov.Sutskever.Chen.ea.2013`.We first define a class to draw a candidate according to the sampling weights. It caches a 10000 size random number bank instead of calling `random.choices` every time. ###Code #@save class RandomGenerator: """Draw a random int in [0, n] according to n sampling weights.""" def __init__(self, sampling_weights): self.population = list(range(len(sampling_weights))) self.sampling_weights = sampling_weights self.candidates = [] self.i = 0 def draw(self): if self.i == len(self.candidates): self.candidates = random.choices(self.population, self.sampling_weights, k=10000) self.i = 0 self.i += 1 return self.candidates[self.i - 1] generator = RandomGenerator([2, 3, 4]) [generator.draw() for _ in range(10)] #@save def get_negatives(all_contexts, corpus, K): counter = d2l.count_corpus(corpus) sampling_weights = [counter[i]**0.75 for i in range(len(counter))] all_negatives, generator = [], RandomGenerator(sampling_weights) for contexts in all_contexts: negatives = [] while len(negatives) < len(contexts) * K: neg = generator.draw() # Noise words cannot be context words if neg not in contexts: negatives.append(neg) all_negatives.append(negatives) return all_negatives all_negatives = get_negatives(all_contexts, corpus, 5) ###Output _____no_output_____ ###Markdown Reading into BatchesWe extract all central target words `all_centers`, and the context words `all_contexts` and noise words `all_negatives` of each central target word from the dataset. We will read them in random minibatches.In a minibatch of data, the $i^\mathrm{th}$ example includes a central word and its corresponding $n_i$ context words and $m_i$ noise words. Since the context window size of each example may be different, the sum of context words and noise words, $n_i+m_i$, will be different. When constructing a minibatch, we concatenate the context words and noise words of each example, and add 0s for padding until the length of the concatenations are the same, that is, the length of all concatenations is $\max_i n_i+m_i$(`max_len`). In order to avoid the effect of padding on the loss function calculation, we construct the mask variable `masks`, each element of which corresponds to an element in the concatenation of context and noise words, `contexts_negatives`. When an element in the variable `contexts_negatives` is a padding, the element in the mask variable `masks` at the same position will be 0. Otherwise, it takes the value 1. In order to distinguish between positive and negative examples, we also need to distinguish the context words from the noise words in the `contexts_negatives` variable. Based on the construction of the mask variable, we only need to create a label variable `labels` with the same shape as the `contexts_negatives` variable and set the elements corresponding to context words (positive examples) to 1, and the rest to 0.Next, we will implement the minibatch reading function `batchify`. Its minibatch input `data` is a list whose length is the batch size, each element of which contains central target words `center`, context words `context`, and noise words `negative`. The minibatch data returned by this function conforms to the format we need, for example, it includes the mask variable. ###Code #@save def batchify(data): max_len = max(len(c) + len(n) for _, c, n in data) centers, contexts_negatives, masks, labels = [], [], [], [] for center, context, negative in data: cur_len = len(context) + len(negative) centers += [center] contexts_negatives += [context + negative + [0] * (max_len - cur_len)] masks += [[1] * cur_len + [0] * (max_len - cur_len)] labels += [[1] * len(context) + [0] * (max_len - len(context))] return (torch.tensor(centers).reshape( (-1, 1)), torch.tensor(contexts_negatives), torch.tensor(masks), torch.tensor(labels)) ###Output _____no_output_____ ###Markdown Construct two simple examples: ###Code x_1 = (1, [2, 2], [3, 3, 3, 3]) x_2 = (1, [2, 2, 2], [3, 3]) batch = batchify((x_1, x_2)) names = ['centers', 'contexts_negatives', 'masks', 'labels'] for name, data in zip(names, batch): print(name, '=', data) ###Output centers = tensor([[1], [1]]) contexts_negatives = tensor([[2, 2, 3, 3, 3, 3], [2, 2, 2, 3, 3, 0]]) masks = tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0]]) labels = tensor([[1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0]]) ###Markdown We use the `batchify` function just defined to specify the minibatch reading method in the `DataLoader` instance. Putting All Things TogetherLast, we define the `load_data_ptb` function that read the PTB dataset and return the data iterator. ###Code #@save def load_data_ptb(batch_size, max_window_size, num_noise_words): num_workers = d2l.get_dataloader_workers() sentences = read_ptb() vocab = d2l.Vocab(sentences, min_freq=10) subsampled = subsampling(sentences, vocab) corpus = [vocab[line] for line in subsampled] all_centers, all_contexts = get_centers_and_contexts( corpus, max_window_size) all_negatives = get_negatives(all_contexts, corpus, num_noise_words) class PTBDataset(torch.utils.data.Dataset): def __init__(self, centers, contexts, negatives): assert len(centers) == len(contexts) == len(negatives) self.centers = centers self.contexts = contexts self.negatives = negatives def __getitem__(self, index): return (self.centers[index], self.contexts[index], self.negatives[index]) def __len__(self): return len(self.centers) dataset = PTBDataset(all_centers, all_contexts, all_negatives) data_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True, collate_fn=batchify, num_workers=num_workers) return data_iter, vocab ###Output _____no_output_____ ###Markdown Let us print the first minibatch of the data iterator. ###Code data_iter, vocab = load_data_ptb(512, 5, 5) for batch in data_iter: for name, data in zip(names, batch): print(name, 'shape:', data.shape) break ###Output centers shape: torch.Size([512, 1]) contexts_negatives shape: torch.Size([512, 60]) masks shape: torch.Size([512, 60]) labels shape: torch.Size([512, 60])
III_DataEngineer_BDSE10/1905_MachineLearning/PySpark.ipynb
###Markdown Pandas vs. Pyspark ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown The Pandas DataFrame Object ###Code %%time flight = pd.read_csv("C:/temp/data2.csv") flight.dtypes flight.head() flight['TaxiOut'] flight['TaxiOut'].mean() ###Output _____no_output_____ ###Markdown Spark DataFrame ###Code from pyspark.sql import SparkSession # local mode spark = SparkSession\ .builder\ .appName("demo")\ .getOrCreate() %%time df = spark.read.csv("file:///C:/temp/data2.csv", header=True, inferSchema=True) df.printSchema() df.head() df.select('FlightDate','TaxiOut').show() df.select('TaxiOut').show() %%time df.createOrReplaceTempView('flight') spark.sql('select avg(TaxiOut) as average from flight').show() ###Output +------------------+ | average| +------------------+ |15.774657031107376| +------------------+ Wall time: 14.6 s
Covid19_Data_Analysis/Covid19_Data_Analysis.ipynb
###Markdown Covid19 Data Analysis 1. Importing the modules ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt print('Modules are imported.') ###Output Modules are imported. ###Markdown 2.1 Importing covid19 dataset importing "Covid19_dataset.csv" from "./datasets" folder. ###Code # Import dataset covid19_data = pd.read_csv("C:/Users/Arvind/Desktop/Covid19_Data_Analysis/datasets/covid19_dataset.csv") # Print the first 5 rows of dataframe covid19_data.head() ###Output _____no_output_____ ###Markdown Let's check the shape of the dataframe ###Code covid19_data.shape ###Output _____no_output_____ ###Markdown 2.2 Delete the useless columns ###Code covid19_data.drop(["Lat","Long"], axis = 1, inplace = True) covid19_data.head() ###Output _____no_output_____ ###Markdown 2.3 Aggregating the rows by the country ###Code covid19_data_aggregated = covid19_data.groupby("Country/Region").sum() covid19_data_aggregated.head() covid19_data_aggregated.shape ###Output _____no_output_____ ###Markdown 2.4 Visualizing data related to a country for example ChinaVisualization always helps for better understanding of our data. ###Code covid19_data_aggregated.loc["China"].plot() covid19_data_aggregated.loc["Egypt"].plot() covid19_data_aggregated.loc["Italy"].plot() plt.legend() ###Output _____no_output_____ ###Markdown 3. Calculating a good measureWe need to find a good measure reperestend as a number, describing the spread of the virus in a country. ###Code covid19_data_aggregated.loc['China'][:3].plot() ###Output _____no_output_____ ###Markdown 3.1 Caculating the first derivative of the curve ###Code # Calculating the rate of curve by finding the 1st derivative # This plot shows the change in infection rate day by day covid19_data_aggregated.loc['China'].diff().plot() ###Output _____no_output_____ ###Markdown 3.2 Finding maxmimum infection rate for China ###Code # In one day 15136 has been recorded covid19_data_aggregated.loc['China'].diff().max() covid19_data_aggregated.loc['Italy'].diff().max() covid19_data_aggregated.loc['Egypt'].diff().max() ###Output _____no_output_____ ###Markdown 3.3 Finding maximum infection rate for all of the countries ###Code # List of all countries countries = list(covid19_data_aggregated.index) # Calculate max infection rate for each country max_infection_rates = [] for country in countries: max_infection_rates.append(covid19_data_aggregated.loc[country].diff().max()) # Add max infection rate column to dataframe covid19_data_aggregated["Maximum infection rate"] = max_infection_rates covid19_data_aggregated.head() ###Output _____no_output_____ ###Markdown 3.4 Create a new dataframe with only needed column ###Code covid19_data_processed = pd.DataFrame(covid19_data_aggregated["Maximum infection rate"]) covid19_data_processed.head() ###Output _____no_output_____ ###Markdown Task4: - Importing the WorldHappinessReport.csv dataset- selecting needed columns for our analysis - join the datasets - calculate the correlations as the result of our analysis 4.1 Importing the dataset ###Code happiness_report_data = pd.read_csv("C:/Users/Arvind/Desktop/Covid19_Data_Analysis/datasets/worldwide_happiness_report.csv") happiness_report_data.head() ###Output _____no_output_____ ###Markdown 4.2 Delete the useless columns ###Code drop = ["Score","Overall rank","Generosity", "Perceptions of corruption"] happiness_report_data.drop(drop, axis = 1, inplace = True) happiness_report_data.head() ###Output _____no_output_____ ###Markdown 4.3 Changing the indices of the dataframe ###Code happiness_report_data.set_index("Country or region", inplace = True) happiness_report_data.head() ###Output _____no_output_____ ###Markdown 4.4 joining both dataset Corona Dataset : ###Code covid19_data_processed.head() covid19_data_processed.shape ###Output _____no_output_____ ###Markdown World happiness report Dataset : ###Code happiness_report_data.head() happiness_report_data.shape # Use inner join to join the two datasets # Because their rows aren't the same data = covid19_data_processed.join(happiness_report_data, how = "inner") data.head() ###Output _____no_output_____ ###Markdown 4.5 Correlation Matrix ###Code data.corr() ###Output _____no_output_____ ###Markdown 5. Visualization of the resultsOur Analysis is not finished unless we visualize the results in terms figures and graphs so that everyone can understand what you get out of our analysis. ###Code data.head() ###Output _____no_output_____ ###Markdown 5.1 Plotting GDP vs Maximum Infection Rate ###Code x = data["GDP per capita"] y = data["Maximum infection rate"] y_scaled = np.log(y) sns.scatterplot(x, y_scaled) sns.regplot(x,y_scaled) # The analysis shows that People who are living in developed countries are more prone to getting infected from coronavirus as compared to less developed countries ###Output C:\Users\Arvind\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn( ###Markdown 5.2 Plotting Social Support vs Maximum Infection Rate ###Code x = data["Social support"] y = data["Maximum infection rate"] y_scaled = np.log(y) sns.scatterplot(x, y_scaled) sns.regplot(x,y_scaled) ###Output C:\Users\Arvind\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn( ###Markdown 5.3 Plotting Healthy life Expectancy vs Maximum Infection Rate ###Code x = data["Healthy life expectancy"] y = data["Maximum infection rate"] y_scaled = np.log(y) sns.scatterplot(x, y_scaled) sns.regplot(x,y_scaled) ###Output C:\Users\Arvind\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn( ###Markdown 5.4 Plotting Freedom To Make Life Choices vs Maximum Infection Rate ###Code x = data["Freedom to make life choices"] y = data["Maximum infection rate"] y_scaled = np.log(y) sns.scatterplot(x, y_scaled) sns.regplot(x,y_scaled) ###Output C:\Users\Arvind\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(
diffpriv/ecg_train_2conv_diffpriv_ep1.ipynb
###Markdown 1D-CNN Model for ECG Classification- The model used has 2 Conv. layers and 2 FC layers.- This code repeat running the training process and produce all kinds of data which can be given, such as data needed for drawing loss and accuracy graph through epochs, and maximum test accuracy for each run. Get permission of Google Drive access ###Code root_path = '.' ###Output _____no_output_____ ###Markdown File name settings ###Code data_dir = 'mitdb' train_name = 'train_ecg.hdf5' test_name = 'test_ecg.hdf5' all_name = 'all_ecg.hdf5' model_dir = 'model' model_name = 'conv2' model_ext = '.pth' csv_dir = 'csv' csv_ext = '.csv' csv_name = 'conv2' csv_accs_name = 'accs_conv2' ###Output _____no_output_____ ###Markdown Import required packages ###Code import os import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torch.optim import Adam import numpy as np import pandas as pd import h5py from tqdm import tqdm import matplotlib.pyplot as plt from diffprivlib.mechanisms import Laplace ###Output _____no_output_____ ###Markdown GPU settings ###Code device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): print(torch.cuda.get_device_name(0)) ###Output _____no_output_____ ###Markdown Define `ECG` `Dataset` class ###Code class ECG(Dataset): def __init__(self, mode='train'): if mode == 'train': with h5py.File(os.path.join(root_path, data_dir, train_name), 'r') as hdf: self.x = hdf['x_train'][:] self.y = hdf['y_train'][:] elif mode == 'test': with h5py.File(os.path.join(root_path, data_dir, test_name), 'r') as hdf: self.x = hdf['x_test'][:] self.y = hdf['y_test'][:] elif mode == 'all': with h5py.File(os.path.join(root_path, data_dir, all_name), 'r') as hdf: self.x = hdf['x'][:] self.y = hdf['y'][:] else: raise ValueError('Argument of mode should be train, test, or all.') def __len__(self): return len(self.x) def __getitem__(self, idx): return torch.tensor(self.x[idx], dtype=torch.float), torch.tensor(self.y[idx]) ###Output _____no_output_____ ###Markdown Make Batch Generator Batch sizeYou can change it if you want. ###Code batch_size = 32 ###Output _____no_output_____ ###Markdown `DataLoader` for batch generating`torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)` ###Code train_dataset = ECG(mode='train') test_dataset = ECG(mode='test') train_loader = DataLoader(train_dataset, batch_size=batch_size) test_loader = DataLoader(test_dataset, batch_size=batch_size) ###Output _____no_output_____ ###Markdown Size check for single batch ###Code x_train, y_train = next(iter(train_loader)) print(x_train.size()) print(y_train.size()) ###Output torch.Size([32, 1, 128]) torch.Size([32]) ###Markdown Number of total batches ###Code total_batch = len(train_loader) print(total_batch) ###Output 414 ###Markdown Pytorch layer modules for **Conv1D** Network `Conv1d` layer- `torch.nn.Conv1d(in_channels, out_channels, kernel_size)` `MaxPool1d` layer- `torch.nn.MaxPool1d(kernel_size, stride=None)`- Parameter `stride` follows `kernel_size`. `ReLU` layer- `torch.nn.ReLU()` `Linear` layer- `torch.nn.Linear(in_features, out_features, bias=True)` `Softmax` layer- `torch.nn.Softmax(dim=None)`- Parameter `dim` is usually set to `1`. Training process settings ###Code run = 1 epoch = 400 lr = 0.001 epsilon = 1 min_diff = 1e-5 ###Output _____no_output_____ ###Markdown Construct 1D CNN ECG classification model ###Code class ECGConv1D(nn.Module): def __init__(self): super(ECGConv1D, self).__init__() self.conv1 = nn.Conv1d(1, 16, 7, padding=3) # 128 x 16 self.relu1 = nn.LeakyReLU() self.pool1 = nn.MaxPool1d(2) # 64 x 16 self.conv2 = nn.Conv1d(16, 16, 5, padding=2) # 64 x 16 self.relu2 = nn.LeakyReLU() self.pool2 = nn.MaxPool1d(2) # 32 x 16 self.linear3 = nn.Linear(32 * 16, 128) self.relu3 = nn.LeakyReLU() self.linear4 = nn.Linear(128, 5) self.softmax4 = nn.Softmax(dim=1) def forward(self, x): x = self.conv1(x) x = self.relu1(x) x = self.pool1(x) x = self.conv2(x) x = self.relu2(x) x = self.pool2(x) # differential privacy x_data = x.data.cpu().numpy() bound = np.dstack((np.max(x_data, axis=0), np.min(x_data, axis=0))) for i in range(bound.shape[0]): for j in range(bound.shape[1]): interval = bound[i][j] if interval[0] - interval[1] < min_diff: interval[0] += min_diff * 0.5 interval[1] -= min_diff * 0.5 for j in range(x_data.shape[1]): for k in range(x_data.shape[2]): dp = Laplace() dp = dp.set_epsilon(epsilon) dp = dp.set_sensitivity(bound[j][k][0] - bound[j][k][1]) for i in range(x_data.shape[0]): x_data[i][j][k] = dp.randomise(x_data[i][j][k]) x.data = torch.tensor(x_data).requires_grad_(True).to(device) x = x.view(-1, 32 * 16) x = self.linear3(x) x = self.relu3(x) x = self.linear4(x) x = self.softmax4(x) return x ###Output _____no_output_____ ###Markdown Traning function ###Code def train(nrun, model): criterion = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=lr) train_losses = list() train_accs = list() test_losses = list() test_accs = list() best_test_acc = 0 # best test accuracy for e in range(epoch): print("Epoch {} - ".format(e+1), end='') # train train_loss = 0.0 correct, total = 0, 0 for _, batch in enumerate(train_loader): x, label = batch # get feature and label from a batch x, label = x.to(device), label.to(device) # send to device optimizer.zero_grad() # init all grads to zero output = model(x) # forward propagation loss = criterion(output, label) # calculate loss loss.backward() # backward propagation optimizer.step() # weight update train_loss += loss.item() correct += torch.sum(output.argmax(dim=1) == label).item() total += len(label) train_losses.append(train_loss / len(train_loader)) train_accs.append(correct / total) print("loss: {:.4f}, acc: {:.2f}%".format(train_losses[-1], train_accs[-1]*100), end=' / ') # test with torch.no_grad(): test_loss = 0.0 correct, total = 0, 0 for _, batch in enumerate(test_loader): x, label = batch x, label = x.to(device), label.to(device) output = model(x) loss = criterion(output, label) test_loss += loss.item() correct += torch.sum(output.argmax(dim=1) == label).item() total += len(label) test_losses.append(test_loss / len(test_loader)) test_accs.append(correct / total) print("test_loss: {:.4f}, test_acc: {:.2f}%".format(test_losses[-1], test_accs[-1]*100)) # save model that has best validation accuracy if test_accs[-1] > best_test_acc: best_test_acc = test_accs[-1] torch.save(model.state_dict(), os.path.join(root_path, model_dir, '_'.join([model_name, str(nrun), 'best']) + model_ext)) # save model for each 10 epochs if (e + 1) % 10 == 0: torch.save(model.state_dict(), os.path.join(root_path, model_dir, '_'.join([model_name, str(nrun), str(e+1)]) + model_ext)) return train_losses, train_accs, test_losses, test_accs ###Output _____no_output_____ ###Markdown Training process Repeat for 10 times ###Code best_test_accs = list() for i in range(run): print('Run', i+1) seed = 0 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True ecgnet = ECGConv1D() # init new model train_losses, train_accs, test_losses, test_accs = train(i, ecgnet.to(device)) # train best_test_accs.append(max(test_accs)) # get best test accuracy best_test_acc_epoch = np.array(test_accs).argmax() + 1 print('Best test accuracy {:.2f}% in epoch {}.'.format(best_test_accs[-1]*100, best_test_acc_epoch)) print('-' * 100) df = pd.DataFrame({ # save model training process into csv file 'loss': train_losses, 'test_loss': test_losses, 'acc': train_accs, 'test_acc': test_accs }) df.to_csv(os.path.join(root_path, csv_dir, '_'.join([csv_name, str(i+1)]) + csv_ext)) df = pd.DataFrame({'best_test_acc': best_test_accs}) # save best test accuracy of each run df.to_csv(os.path.join(root_path, csv_dir, csv_accs_name + csv_ext)) ###Output Run 1 Epoch 1 - loss: 1.4663, acc: 41.82% / test_loss: 1.4075, test_acc: 48.89% Epoch 2 - loss: 1.4083, acc: 48.94% / test_loss: 1.4236, test_acc: 47.40% Epoch 3 - loss: 1.4148, acc: 48.49% / test_loss: 1.4119, test_acc: 48.74% Epoch 4 - loss: 1.4099, acc: 49.09% / test_loss: 1.4112, test_acc: 49.08% Epoch 5 - loss: 1.4264, acc: 47.51% / test_loss: 1.4097, test_acc: 49.23% Epoch 6 - loss: 1.4201, acc: 48.23% / test_loss: 1.3970, test_acc: 50.59% Epoch 7 - loss: 1.4198, acc: 48.34% / test_loss: 1.4181, test_acc: 48.51% Epoch 8 - loss: 1.4112, acc: 49.21% / test_loss: 1.4052, test_acc: 49.86% Epoch 9 - loss: 1.4205, acc: 48.27% / test_loss: 1.4241, test_acc: 47.90% Epoch 10 - loss: 1.4392, acc: 46.38% / test_loss: 1.4298, test_acc: 47.35% Epoch 11 - loss: 1.4187, acc: 48.48% / test_loss: 1.4195, test_acc: 48.43% Epoch 12 - loss: 1.4256, acc: 47.87% / test_loss: 1.4206, test_acc: 48.32% Epoch 13 - loss: 1.4326, acc: 47.12% / test_loss: 1.4191, test_acc: 48.49% Epoch 14 - loss: 1.4392, acc: 46.49% / test_loss: 1.4408, test_acc: 46.34% Epoch 15 - loss: 1.4254, acc: 47.88% / test_loss: 1.4179, test_acc: 48.66% Epoch 16 - loss: 1.4346, acc: 46.95% / test_loss: 1.4150, test_acc: 48.93% Epoch 17 - loss: 1.4412, acc: 46.30% / test_loss: 1.4439, test_acc: 46.08% Epoch 18 - loss: 1.4347, acc: 46.96% / test_loss: 1.4213, test_acc: 48.24% Epoch 19 - loss: 1.5004, acc: 40.38% / test_loss: 1.5005, test_acc: 40.42% Epoch 20 - loss: 1.4951, acc: 40.95% / test_loss: 1.4926, test_acc: 41.19% Epoch 21 - loss: 1.4762, acc: 42.82% / test_loss: 1.4228, test_acc: 48.16% Epoch 22 - loss: 1.4253, acc: 47.92% / test_loss: 1.4175, test_acc: 48.68% Epoch 23 - loss: 1.4403, acc: 46.39% / test_loss: 1.4583, test_acc: 44.62% Epoch 24 - loss: 1.4618, acc: 44.27% / test_loss: 1.4335, test_acc: 47.10% Epoch 25 - loss: 1.4447, acc: 45.96% / test_loss: 1.4426, test_acc: 46.20% Epoch 26 - loss: 1.4366, acc: 46.76% / test_loss: 1.4457, test_acc: 45.90% Epoch 27 - loss: 1.4421, acc: 46.27% / test_loss: 1.4317, test_acc: 47.31% Epoch 28 - loss: 1.4369, acc: 46.76% / test_loss: 1.4507, test_acc: 45.40% Epoch 29 - loss: 1.4499, acc: 45.49% / test_loss: 1.4669, test_acc: 43.79% Epoch 30 - loss: 1.4393, acc: 46.53% / test_loss: 1.4391, test_acc: 46.56% Epoch 31 - loss: 1.4401, acc: 46.45% / test_loss: 1.5109, test_acc: 39.38% Epoch 32 - loss: 1.4392, acc: 46.54% / test_loss: 1.4213, test_acc: 48.34% Epoch 33 - loss: 1.4291, acc: 47.57% / test_loss: 1.4206, test_acc: 48.43% Epoch 34 - loss: 1.4256, acc: 47.90% / test_loss: 1.4509, test_acc: 45.38% Epoch 35 - loss: 1.4724, acc: 43.24% / test_loss: 1.4679, test_acc: 43.68% Epoch 36 - loss: 1.4575, acc: 44.72% / test_loss: 1.4257, test_acc: 47.89% Epoch 37 - loss: 1.4328, acc: 47.19% / test_loss: 1.4390, test_acc: 46.58% Epoch 38 - loss: 1.4621, acc: 44.26% / test_loss: 1.4392, test_acc: 46.56% Epoch 39 - loss: 1.4574, acc: 44.72% / test_loss: 1.4392, test_acc: 46.55% Epoch 40 - loss: 1.4324, acc: 47.23% / test_loss: 1.4259, test_acc: 47.89% Epoch 41 - loss: 1.4415, acc: 46.32% / test_loss: 1.4448, test_acc: 45.99% Epoch 42 - loss: 1.4550, acc: 44.97% / test_loss: 1.5006, test_acc: 40.42% Epoch 43 - loss: 1.4562, acc: 44.85% / test_loss: 1.4398, test_acc: 46.50% Epoch 44 - loss: 1.4478, acc: 45.70% / test_loss: 1.4604, test_acc: 44.43% Epoch 45 - loss: 1.4502, acc: 45.44% / test_loss: 1.4233, test_acc: 48.15% Epoch 46 - loss: 1.4385, acc: 46.62% / test_loss: 1.4236, test_acc: 48.10% Epoch 47 - loss: 1.4728, acc: 43.20% / test_loss: 1.5071, test_acc: 39.76% Epoch 48 - loss: 1.4839, acc: 42.08% / test_loss: 1.4713, test_acc: 43.34% Epoch 49 - loss: 1.4549, acc: 44.99% / test_loss: 1.4318, test_acc: 47.30% Epoch 50 - loss: 1.4510, acc: 45.36% / test_loss: 1.4439, test_acc: 46.09% Epoch 51 - loss: 1.4444, acc: 46.05% / test_loss: 1.4511, test_acc: 45.36% Epoch 52 - loss: 1.4548, acc: 45.01% / test_loss: 1.4606, test_acc: 44.39% Epoch 53 - loss: 1.4993, acc: 40.54% / test_loss: 1.4886, test_acc: 41.62% Epoch 54 - loss: 1.4899, acc: 41.47% / test_loss: 1.4530, test_acc: 45.18% Epoch 55 - loss: 1.4711, acc: 43.37% / test_loss: 1.4875, test_acc: 41.73% Epoch 56 - loss: 1.5009, acc: 40.38% / test_loss: 1.4991, test_acc: 40.57% Epoch 57 - loss: 1.4698, acc: 43.50% / test_loss: 1.4629, test_acc: 44.20% Epoch 58 - loss: 1.4564, acc: 44.84% / test_loss: 1.4491, test_acc: 45.56% Epoch 59 - loss: 1.4664, acc: 43.83% / test_loss: 1.4640, test_acc: 44.08% Epoch 60 - loss: 1.4804, acc: 42.43% / test_loss: 1.4427, test_acc: 46.21% Epoch 61 - loss: 1.4432, acc: 46.16% / test_loss: 1.4360, test_acc: 46.89% Epoch 62 - loss: 1.4432, acc: 46.15% / test_loss: 1.4475, test_acc: 45.72% Epoch 63 - loss: 1.4553, acc: 44.94% / test_loss: 1.4311, test_acc: 47.37% Epoch 64 - loss: 1.4765, acc: 42.84% / test_loss: 1.5340, test_acc: 37.07% Epoch 65 - loss: 1.5220, acc: 38.27% / test_loss: 1.5364, test_acc: 36.85% Epoch 66 - loss: 1.5083, acc: 39.65% / test_loss: 1.4818, test_acc: 42.30% Epoch 67 - loss: 1.4713, acc: 43.35% / test_loss: 1.4557, test_acc: 44.90% Epoch 68 - loss: 1.4717, acc: 43.31% / test_loss: 1.5169, test_acc: 38.78% Epoch 69 - loss: 1.4508, acc: 45.39% / test_loss: 1.4661, test_acc: 43.87% Epoch 70 - loss: 1.4570, acc: 44.79% / test_loss: 1.4899, test_acc: 41.49% Epoch 71 - loss: 1.5056, acc: 39.92% / test_loss: 1.4760, test_acc: 42.88% Epoch 72 - loss: 1.4845, acc: 42.02% / test_loss: 1.4980, test_acc: 40.66% Epoch 73 - loss: 1.4933, acc: 41.16% / test_loss: 1.4753, test_acc: 42.94% Epoch 74 - loss: 1.4635, acc: 44.13% / test_loss: 1.4480, test_acc: 45.69% Epoch 75 - loss: 1.4697, acc: 43.51% / test_loss: 1.5182, test_acc: 38.66% Epoch 76 - loss: 1.4957, acc: 40.90% / test_loss: 1.4569, test_acc: 44.80% Epoch 77 - loss: 1.4703, acc: 43.45% / test_loss: 1.4761, test_acc: 42.87% Epoch 78 - loss: 1.4802, acc: 42.46% / test_loss: 1.4668, test_acc: 43.79% Epoch 79 - loss: 1.4784, acc: 42.65% / test_loss: 1.4441, test_acc: 46.06% Epoch 80 - loss: 1.4821, acc: 42.27% / test_loss: 1.4941, test_acc: 41.08% Epoch 81 - loss: 1.4816, acc: 42.33% / test_loss: 1.4740, test_acc: 43.08% Epoch 82 - loss: 1.4815, acc: 42.34% / test_loss: 1.4530, test_acc: 45.19% Epoch 83 - loss: 1.4868, acc: 41.80% / test_loss: 1.5220, test_acc: 38.29% Epoch 84 - loss: 1.5052, acc: 39.95% / test_loss: 1.5028, test_acc: 40.20% Epoch 85 - loss: 1.5130, acc: 39.18% / test_loss: 1.5336, test_acc: 37.12% Epoch 86 - loss: 1.5421, acc: 36.27% / test_loss: 1.5320, test_acc: 37.29% Epoch 87 - loss: 1.5050, acc: 39.97% / test_loss: 1.4766, test_acc: 42.82% Epoch 88 - loss: 1.4879, acc: 41.69% / test_loss: 1.4640, test_acc: 44.07% Epoch 89 - loss: 1.4923, acc: 41.25% / test_loss: 1.4696, test_acc: 43.52% Epoch 90 - loss: 1.4562, acc: 44.86% / test_loss: 1.4675, test_acc: 43.73% Epoch 91 - loss: 1.4597, acc: 44.51% / test_loss: 1.4563, test_acc: 44.85% Epoch 92 - loss: 1.4591, acc: 44.57% / test_loss: 1.4489, test_acc: 45.59% Epoch 93 - loss: 1.4484, acc: 45.63% / test_loss: 1.4412, test_acc: 46.36% Epoch 94 - loss: 1.4750, acc: 42.97% / test_loss: 1.5308, test_acc: 37.40% Epoch 95 - loss: 1.4618, acc: 44.30% / test_loss: 1.4547, test_acc: 45.01% Epoch 96 - loss: 1.4429, acc: 46.18% / test_loss: 1.4297, test_acc: 47.51% Epoch 97 - loss: 1.4297, acc: 47.52% / test_loss: 1.4335, test_acc: 47.13% Epoch 98 - loss: 1.5115, acc: 39.34% / test_loss: 1.5295, test_acc: 37.53% Epoch 99 - loss: 1.4649, acc: 43.99% / test_loss: 1.4487, test_acc: 45.61% Epoch 100 - loss: 1.4705, acc: 43.43% / test_loss: 1.5228, test_acc: 38.20% Epoch 101 - loss: 1.4798, acc: 42.49% / test_loss: 1.4455, test_acc: 45.93% Epoch 102 - loss: 1.4494, acc: 45.54% / test_loss: 1.4505, test_acc: 45.44% Epoch 103 - loss: 1.4918, acc: 41.30% / test_loss: 1.5221, test_acc: 38.26% Epoch 104 - loss: 1.4993, acc: 40.56% / test_loss: 1.4966, test_acc: 40.82% Epoch 105 - loss: 1.4857, acc: 41.91% / test_loss: 1.4506, test_acc: 45.42% Epoch 106 - loss: 1.4371, acc: 46.76% / test_loss: 1.4292, test_acc: 47.56% Epoch 107 - loss: 1.4427, acc: 46.22% / test_loss: 1.4409, test_acc: 46.39% Epoch 108 - loss: 1.4598, acc: 44.51% / test_loss: 1.4591, test_acc: 44.57% Epoch 109 - loss: 1.4805, acc: 42.43% / test_loss: 1.4811, test_acc: 42.38% ###Markdown Print the best test accuracy of each run ###Code for i, a in enumerate(best_test_accs): print('Run {}: {:.2f}%'.format(i+1, a*100)) fig, ax = plt.subplots(1, 2, figsize=(16, 4)) ax[0].plot(train_losses) ax[0].plot(test_losses) ax[0].set_xticks([0, 50, 100, 150, 200, 250, 300, 350, 400]) ax[0].set_xlabel('Epochs') ax[0].set_ylabel('Loss') ax[0].grid() ax[0].legend(['train', 'test'], loc='upper right') ax[1].plot(np.asarray(train_accs) * 100) ax[1].plot(np.asarray(test_accs) * 100) ax[1].set_xticks([0, 50, 100, 150, 200, 250, 300, 350, 400]) ax[1].set_xlabel('Epochs') ax[1].set_ylabel('Accuracy (%)') ax[1].set_ylim(top=100) ax[1].grid() ax[1].legend(['train', 'test'], loc='upper left') fig.savefig('conv2_split.pdf', bbox_inches='tight') ###Output _____no_output_____
udemy-ds-bc/TensorFlow_FILES/ANNs/04-Keras-Project-Exercise-Solutions.ipynb
###Markdown Copyright by Pierian Data Inc. Created by Jose Marcial Portilla. Keras API Project Exercise - Solutions The DataWe will be using a subset of the LendingClub DataSet obtained from Kaggle: https://www.kaggle.com/wordsforthewise/lending-club NOTE: Do not download the full zip from the link! We provide a special version of this file that has some extra feature engineering for you to do. You won't be able to follow along with the original file!LendingClub is a US peer-to-peer lending company, headquartered in San Francisco, California.[3] It was the first peer-to-peer lender to register its offerings as securities with the Securities and Exchange Commission (SEC), and to offer loan trading on a secondary market. LendingClub is the world's largest peer-to-peer lending platform. Our GoalGiven historical data on loans given out with information on whether or not the borrower defaulted (charge-off), can we build a model thatcan predict wether or nor a borrower will pay back their loan? This way in the future when we get a new potential customer we can assess whether or not they are likely to pay back the loan. Keep in mind classification metrics when evaluating the performance of your model!The "loan_status" column contains our label. Data Overview ---------There are many LendingClub data sets on Kaggle. Here is the information on this particular data set: LoanStatNew Description 0 loan_amnt The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value. 1 term The number of payments on the loan. Values are in months and can be either 36 or 60. 2 int_rate Interest Rate on the loan 3 installment The monthly payment owed by the borrower if the loan originates. 4 grade LC assigned loan grade 5 sub_grade LC assigned loan subgrade 6 emp_title The job title supplied by the Borrower when applying for the loan.* 7 emp_length Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years. 8 home_ownership The home ownership status provided by the borrower during registration or obtained from the credit report. Our values are: RENT, OWN, MORTGAGE, OTHER 9 annual_inc The self-reported annual income provided by the borrower during registration. 10 verification_status Indicates if income was verified by LC, not verified, or if the income source was verified 11 issue_d The month which the loan was funded 12 loan_status Current status of the loan 13 purpose A category provided by the borrower for the loan request. 14 title The loan title provided by the borrower 15 zip_code The first 3 numbers of the zip code provided by the borrower in the loan application. 16 addr_state The state provided by the borrower in the loan application 17 dti A ratio calculated using the borrower’s total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower’s self-reported monthly income. 18 earliest_cr_line The month the borrower's earliest reported credit line was opened 19 open_acc The number of open credit lines in the borrower's credit file. 20 pub_rec Number of derogatory public records 21 revol_bal Total credit revolving balance 22 revol_util Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit. 23 total_acc The total number of credit lines currently in the borrower's credit file 24 initial_list_status The initial listing status of the loan. Possible values are – W, F 25 application_type Indicates whether the loan is an individual application or a joint application with two co-borrowers 26 mort_acc Number of mortgage accounts. 27 pub_rec_bankruptcies Number of public record bankruptcies ------- Starter Code Note: We also provide feature information on the data as a .csv file for easy lookup throughout the notebook: ###Code import tensorflow as tf print(tf__version) import pandas as pd data_info = pd.read_csv('../DATA/lending_club_info.csv',index_col='LoanStatNew') print(data_info.loc['revol_util']['Description']) def feat_info(col_name): print(data_info.loc[col_name]['Description']) feat_info('mort_acc') ###Output Number of mortgage accounts. ###Markdown Loading the data and other imports ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # might be needed depending on your version of Jupyter %matplotlib inline df = pd.read_csv('../DATA/lending_club_loan_two.csv') df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 396030 entries, 0 to 396029 Data columns (total 27 columns): loan_amnt 396030 non-null float64 term 396030 non-null object int_rate 396030 non-null float64 installment 396030 non-null float64 grade 396030 non-null object sub_grade 396030 non-null object emp_title 373103 non-null object emp_length 377729 non-null object home_ownership 396030 non-null object annual_inc 396030 non-null float64 verification_status 396030 non-null object issue_d 396030 non-null object loan_status 396030 non-null object purpose 396030 non-null object title 394275 non-null object dti 396030 non-null float64 earliest_cr_line 396030 non-null object open_acc 396030 non-null float64 pub_rec 396030 non-null float64 revol_bal 396030 non-null float64 revol_util 395754 non-null float64 total_acc 396030 non-null float64 initial_list_status 396030 non-null object application_type 396030 non-null object mort_acc 358235 non-null float64 pub_rec_bankruptcies 395495 non-null float64 address 396030 non-null object dtypes: float64(12), object(15) memory usage: 81.6+ MB ###Markdown Project Tasks**Complete the tasks below! Keep in mind is usually more than one way to complete the task! Enjoy**----------- Section 1: Exploratory Data Analysis**OVERALL GOAL: Get an understanding for which variables are important, view summary statistics, and visualize the data**---- **TASK: Since we will be attempting to predict loan_status, create a countplot as shown below.** ###Code # CODE HERE sns.countplot(x='loan_status',data=df) ###Output _____no_output_____ ###Markdown **TASK: Create a histogram of the loan_amnt column.** ###Code # CODE HERE plt.figure(figsize=(12,4)) sns.distplot(df['loan_amnt'],kde=False,bins=40) plt.xlim(0,45000) ###Output _____no_output_____ ###Markdown **TASK: Let's explore correlation between the continuous feature variables. Calculate the correlation between all continuous numeric variables using .corr() method.** ###Code # CODE HERE df.corr() ###Output _____no_output_____ ###Markdown **TASK: Visualize this using a heatmap. Depending on your version of matplotlib, you may need to manually adjust the heatmap.*** [Heatmap info](https://seaborn.pydata.org/generated/seaborn.heatmap.htmlseaborn.heatmap)* [Help with resizing](https://stackoverflow.com/questions/56942670/matplotlib-seaborn-first-and-last-row-cut-in-half-of-heatmap-plot) ###Code # CODE HERE plt.figure(figsize=(12,7)) sns.heatmap(df.corr(),annot=True,cmap='viridis') plt.ylim(10, 0) ###Output _____no_output_____ ###Markdown **TASK: You should have noticed almost perfect correlation with the "installment" feature. Explore this feature further. Print out their descriptions and perform a scatterplot between them. Does this relationship make sense to you? Do you think there is duplicate information here?** ###Code # CODE HERE feat_info('installment') feat_info('loan_amnt') sns.scatterplot(x='installment',y='loan_amnt',data=df,) ###Output _____no_output_____ ###Markdown **TASK: Create a boxplot showing the relationship between the loan_status and the Loan Amount.** ###Code # CODE HERE sns.boxplot(x='loan_status',y='loan_amnt',data=df) ###Output _____no_output_____ ###Markdown **TASK: Calculate the summary statistics for the loan amount, grouped by the loan_status.** ###Code # CODE HERE df.groupby('loan_status')['loan_amnt'].describe() ###Output _____no_output_____ ###Markdown **TASK: Let's explore the Grade and SubGrade columns that LendingClub attributes to the loans. What are the unique possible grades and subgrades?** ###Code # CODE HERE sorted(df['grade'].unique()) sorted(df['sub_grade'].unique()) ###Output _____no_output_____ ###Markdown **TASK: Create a countplot per grade. Set the hue to the loan_status label.** ###Code sns.countplot(x='grade',data=df,hue='loan_status') ###Output _____no_output_____ ###Markdown **TASK: Display a count plot per subgrade. You may need to resize for this plot and reorder the x axis. Feel free to edit the color palette. Explore both all loans made per subgrade as well being separated based on the loan_status** ###Code #CODE HERE plt.figure(figsize=(12,4)) subgrade_order = sorted(df['sub_grade'].unique()) sns.countplot(x='sub_grade',data=df,order = subgrade_order,palette='coolwarm' ) # CODE HERE plt.figure(figsize=(12,4)) subgrade_order = sorted(df['sub_grade'].unique()) sns.countplot(x='sub_grade',data=df,order = subgrade_order,palette='coolwarm' ,hue='loan_status') ###Output _____no_output_____ ###Markdown **TASK: It looks like F and G subgrades don't get paid back that often. Isloate those and recreate the countplot just for those subgrades.** ###Code # CODE HERE f_and_g = df[(df['grade']=='G') | (df['grade']=='F')] plt.figure(figsize=(12,4)) subgrade_order = sorted(f_and_g['sub_grade'].unique()) sns.countplot(x='sub_grade',data=f_and_g,order = subgrade_order,hue='loan_status') ###Output _____no_output_____ ###Markdown **TASK: Create a new column called 'load_repaid' which will contain a 1 if the loan status was "Fully Paid" and a 0 if it was "Charged Off".** ###Code # CODE HERE df['loan_status'].unique() df['loan_repaid'] = df['loan_status'].map({'Fully Paid':1,'Charged Off':0}) df[['loan_repaid','loan_status']] ###Output _____no_output_____ ###Markdown **CHALLENGE TASK: (Note this is hard, but can be done in one line!) Create a bar plot showing the correlation of the numeric features to the new loan_repaid column. [Helpful Link](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.html)** ###Code #CODE HERE df.corr()['loan_repaid'].sort_values().drop('loan_repaid').plot(kind='bar') ###Output _____no_output_____ ###Markdown ------ Section 2: Data PreProcessing**Section Goals: Remove or fill any missing data. Remove unnecessary or repetitive features. Convert categorical string features to dummy variables.** ###Code df.head() ###Output _____no_output_____ ###Markdown Missing Data**Let's explore this missing data columns. We use a variety of factors to decide whether or not they would be useful, to see if we should keep, discard, or fill in the missing data.** **TASK: What is the length of the dataframe?** ###Code # CODE HERE len(df) ###Output _____no_output_____ ###Markdown **TASK: Create a Series that displays the total count of missing values per column.** ###Code # CODE HERE df.isnull().sum() ###Output _____no_output_____ ###Markdown **TASK: Convert this Series to be in term of percentage of the total DataFrame** ###Code # CODE HERE 100* df.isnull().sum()/len(df) ###Output _____no_output_____ ###Markdown **TASK: Let's examine emp_title and emp_length to see whether it will be okay to drop them. Print out their feature information using the feat_info() function from the top of this notebook.** ###Code # CODE HERE feat_info('emp_title') print('\n') feat_info('emp_length') ###Output The job title supplied by the Borrower when applying for the loan.* Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years. ###Markdown **TASK: How many unique employment job titles are there?** ###Code # CODE HERE df['emp_title'].nunique() df['emp_title'].value_counts() ###Output _____no_output_____ ###Markdown **TASK: Realistically there are too many unique job titles to try to convert this to a dummy variable feature. Let's remove that emp_title column.** ###Code # CODE HERE df = df.drop('emp_title',axis=1) ###Output _____no_output_____ ###Markdown **TASK: Create a count plot of the emp_length feature column. Challenge: Sort the order of the values.** ###Code # CODE HERE sorted(df['emp_length'].dropna().unique()) emp_length_order = [ '< 1 year', '1 year', '2 years', '3 years', '4 years', '5 years', '6 years', '7 years', '8 years', '9 years', '10+ years'] plt.figure(figsize=(12,4)) sns.countplot(x='emp_length',data=df,order=emp_length_order) ###Output _____no_output_____ ###Markdown **TASK: Plot out the countplot with a hue separating Fully Paid vs Charged Off** ###Code # CODE HERE plt.figure(figsize=(12,4)) sns.countplot(x='emp_length',data=df,order=emp_length_order,hue='loan_status') ###Output _____no_output_____ ###Markdown **CHALLENGE TASK: This still doesn't really inform us if there is a strong relationship between employment length and being charged off, what we want is the percentage of charge offs per category. Essentially informing us what percent of people per employment category didn't pay back their loan. There are a multitude of ways to create this Series. Once you've created it, see if visualize it with a [bar plot](https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.plot.html). This may be tricky, refer to solutions if you get stuck on creating this Series.** ###Code # CODE HERE emp_co = df[df['loan_status']=="Charged Off"].groupby("emp_length").count()['loan_status'] emp_fp = df[df['loan_status']=="Fully Paid"].groupby("emp_length").count()['loan_status'] emp_len = emp_co/emp_fp emp_len emp_len.plot(kind='bar') ###Output _____no_output_____ ###Markdown **TASK: Charge off rates are extremely similar across all employment lengths. Go ahead and drop the emp_length column.** ###Code # CODE HERE df = df.drop('emp_length',axis=1) ###Output _____no_output_____ ###Markdown **TASK: Revisit the DataFrame to see what feature columns still have missing data.** ###Code df.isnull().sum() ###Output _____no_output_____ ###Markdown **TASK: Review the title column vs the purpose column. Is this repeated information?** ###Code # CODE HERE df['purpose'].head(10) df['title'].head(10) ###Output _____no_output_____ ###Markdown **TASK: The title column is simply a string subcategory/description of the purpose column. Go ahead and drop the title column.** ###Code # CODE HERE df = df.drop('title',axis=1) ###Output _____no_output_____ ###Markdown ---**NOTE: This is one of the hardest parts of the project! Refer to the solutions video if you need guidance, feel free to fill or drop the missing values of the mort_acc however you see fit! Here we're going with a very specific approach.**---**TASK: Find out what the mort_acc feature represents** ###Code # CODE HERE feat_info('mort_acc') ###Output Number of mortgage accounts. ###Markdown **TASK: Create a value_counts of the mort_acc column.** ###Code # CODE HERE df['mort_acc'].value_counts() ###Output _____no_output_____ ###Markdown **TASK: There are many ways we could deal with this missing data. We could attempt to build a simple model to fill it in, such as a linear model, we could just fill it in based on the mean of the other columns, or you could even bin the columns into categories and then set NaN as its own category. There is no 100% correct approach! Let's review the other columsn to see which most highly correlates to mort_acc** ###Code print("Correlation with the mort_acc column") df.corr()['mort_acc'].sort_values() ###Output Correlation with the mort_acc column ###Markdown **TASK: Looks like the total_acc feature correlates with the mort_acc , this makes sense! Let's try this fillna() approach. We will group the dataframe by the total_acc and calculate the mean value for the mort_acc per total_acc entry. To get the result below:** ###Code print("Mean of mort_acc column per total_acc") df.groupby('total_acc').mean()['mort_acc'] ###Output Mean of mort_acc column per total_acc ###Markdown **CHALLENGE TASK: Let's fill in the missing mort_acc values based on their total_acc value. If the mort_acc is missing, then we will fill in that missing value with the mean value corresponding to its total_acc value from the Series we created above. This involves using an .apply() method with two columns. Check out the link below for more info, or review the solutions video/notebook.**[Helpful Link](https://stackoverflow.com/questions/13331698/how-to-apply-a-function-to-two-columns-of-pandas-dataframe) ###Code # CODE HERE total_acc_avg = df.groupby('total_acc').mean()['mort_acc'] total_acc_avg[2.0] def fill_mort_acc(total_acc,mort_acc): ''' Accepts the total_acc and mort_acc values for the row. Checks if the mort_acc is NaN , if so, it returns the avg mort_acc value for the corresponding total_acc value for that row. total_acc_avg here should be a Series or dictionary containing the mapping of the groupby averages of mort_acc per total_acc values. ''' if np.isnan(mort_acc): return total_acc_avg[total_acc] else: return mort_acc df['mort_acc'] = df.apply(lambda x: fill_mort_acc(x['total_acc'], x['mort_acc']), axis=1) df.isnull().sum() ###Output _____no_output_____ ###Markdown **TASK: revol_util and the pub_rec_bankruptcies have missing data points, but they account for less than 0.5% of the total data. Go ahead and remove the rows that are missing those values in those columns with dropna().** ###Code # CODE HERE df = df.dropna() df.isnull().sum() ###Output _____no_output_____ ###Markdown Categorical Variables and Dummy Variables**We're done working with the missing data! Now we just need to deal with the string values due to the categorical columns.****TASK: List all the columns that are currently non-numeric. [Helpful Link](https://stackoverflow.com/questions/22470690/get-list-of-pandas-dataframe-columns-based-on-data-type)**[Another very useful method call](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.select_dtypes.html) ###Code # CODE HERE df.select_dtypes(['object']).columns ###Output _____no_output_____ ###Markdown ---**Let's now go through all the string features to see what we should do with them.**--- term feature**TASK: Convert the term feature into either a 36 or 60 integer numeric data type using .apply() or .map().** ###Code # CODE HERE df['term'].value_counts() # Or just use .map() df['term'] = df['term'].apply(lambda term: int(term[:3])) ###Output _____no_output_____ ###Markdown grade feature**TASK: We already know grade is part of sub_grade, so just drop the grade feature.** ###Code # CODE HERE df = df.drop('grade',axis=1) ###Output _____no_output_____ ###Markdown **TASK: Convert the subgrade into dummy variables. Then concatenate these new columns to the original dataframe. Remember to drop the original subgrade column and to add drop_first=True to your get_dummies call.** ###Code # CODE HERE subgrade_dummies = pd.get_dummies(df['sub_grade'],drop_first=True) df = pd.concat([df.drop('sub_grade',axis=1),subgrade_dummies],axis=1) df.columns df.select_dtypes(['object']).columns ###Output _____no_output_____ ###Markdown verification_status, application_type,initial_list_status,purpose **TASK: Convert these columns: ['verification_status', 'application_type','initial_list_status','purpose'] into dummy variables and concatenate them with the original dataframe. Remember to set drop_first=True and to drop the original columns.** ###Code # CODE HERE dummies = pd.get_dummies(df[['verification_status', 'application_type','initial_list_status','purpose' ]],drop_first=True) df = df.drop(['verification_status', 'application_type','initial_list_status','purpose'],axis=1) df = pd.concat([df,dummies],axis=1) ###Output _____no_output_____ ###Markdown home_ownership**TASK:Review the value_counts for the home_ownership column.** ###Code #CODE HERE df['home_ownership'].value_counts() ###Output _____no_output_____ ###Markdown **TASK: Convert these to dummy variables, but [replace](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html) NONE and ANY with OTHER, so that we end up with just 4 categories, MORTGAGE, RENT, OWN, OTHER. Then concatenate them with the original dataframe. Remember to set drop_first=True and to drop the original columns.** ###Code #CODE HERE df['home_ownership']=df['home_ownership'].replace(['NONE', 'ANY'], 'OTHER') dummies = pd.get_dummies(df['home_ownership'],drop_first=True) df = df.drop('home_ownership',axis=1) df = pd.concat([df,dummies],axis=1) ###Output _____no_output_____ ###Markdown address**TASK: Let's feature engineer a zip code column from the address in the data set. Create a column called 'zip_code' that extracts the zip code from the address column.** ###Code #CODE HERE df['zip_code'] = df['address'].apply(lambda address:address[-5:]) ###Output _____no_output_____ ###Markdown **TASK: Now make this zip_code column into dummy variables using pandas. Concatenate the result and drop the original zip_code column along with dropping the address column.** ###Code dummies = pd.get_dummies(df['zip_code'],drop_first=True) df = df.drop(['zip_code','address'],axis=1) df = pd.concat([df,dummies],axis=1) ###Output _____no_output_____ ###Markdown issue_d **TASK: This would be data leakage, we wouldn't know beforehand whether or not a loan would be issued when using our model, so in theory we wouldn't have an issue_date, drop this feature.** ###Code #CODE HERE df = df.drop('issue_d',axis=1) ###Output _____no_output_____ ###Markdown earliest_cr_line**TASK: This appears to be a historical time stamp feature. Extract the year from this feature using a .apply function, then convert it to a numeric feature. Set this new data to a feature column called 'earliest_cr_year'.Then drop the earliest_cr_line feature.** ###Code #CODE HERE df['earliest_cr_year'] = df['earliest_cr_line'].apply(lambda date:int(date[-4:])) df = df.drop('earliest_cr_line',axis=1) df.select_dtypes(['object']).columns ###Output _____no_output_____ ###Markdown Train Test Split **TASK: Import train_test_split from sklearn.** ###Code from sklearn.model_selection import train_test_split ###Output _____no_output_____ ###Markdown **TASK: drop the load_status column we created earlier, since its a duplicate of the loan_repaid column. We'll use the loan_repaid column since its already in 0s and 1s.** ###Code # CODE HERE df = df.drop('loan_status',axis=1) ###Output _____no_output_____ ###Markdown **TASK: Set X and y variables to the .values of the features and label.** ###Code #CODE HERE X = df.drop('loan_repaid',axis=1).values y = df['loan_repaid'].values ###Output _____no_output_____ ###Markdown -------- OPTIONAL Grabbing a Sample for Training Time OPTIONAL: Use .sample() to grab a sample of the 490k+ entries to save time on training. Highly recommended for lower RAM computers or if you are not using GPU.-------- ###Code # df = df.sample(frac=0.1,random_state=101) print(len(df)) ###Output 395219 ###Markdown **TASK: Perform a train/test split with test_size=0.2 and a random_state of 101.** ###Code #CODE HERE X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=101) ###Output _____no_output_____ ###Markdown Normalizing the Data**TASK: Use a MinMaxScaler to normalize the feature data X_train and X_test. Recall we don't want data leakge from the test set so we only fit on the X_train data.** ###Code # CODE HERE from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) ###Output _____no_output_____ ###Markdown Creating the Model**TASK: Run the cell below to import the necessary Keras functions.** ###Code import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation,Dropout from tensorflow.keras.constraints import max_norm ###Output _____no_output_____ ###Markdown **TASK: Build a sequential model to will be trained on the data. You have unlimited options here, but here is what the solution uses: a model that goes 78 --> 39 --> 19--> 1 output neuron. OPTIONAL: Explore adding [Dropout layers](https://keras.io/layers/core/) [1](https://en.wikipedia.org/wiki/Dropout_(neural_networks)) [2](https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab)** ###Code # CODE HERE model = Sequential() # Choose whatever number of layers/neurons you want. # https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw # Remember to compile() model = Sequential() # https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw # input layer model.add(Dense(78, activation='relu')) model.add(Dropout(0.2)) # hidden layer model.add(Dense(39, activation='relu')) model.add(Dropout(0.2)) # hidden layer model.add(Dense(19, activation='relu')) model.add(Dropout(0.2)) # output layer model.add(Dense(units=1,activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam') ###Output _____no_output_____ ###Markdown **TASK: Fit the model to the training data for at least 25 epochs. Also add in the validation data for later plotting. Optional: add in a batch_size of 256.** ###Code # CODE HERE model.fit(x=X_train, y=y_train, epochs=25, batch_size=256, validation_data=(X_test, y_test), ) ###Output Train on 316175 samples, validate on 79044 samples Epoch 1/25 316175/316175 [==============================] - 4s 13us/sample - loss: 0.2959 - val_loss: 0.2652 Epoch 2/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2652 - val_loss: 0.2643 Epoch 3/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2628 - val_loss: 0.2626 Epoch 4/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2613 - val_loss: 0.2621 Epoch 5/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2609 - val_loss: 0.2621 Epoch 6/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2603 - val_loss: 0.2618 Epoch 7/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2600 - val_loss: 0.2616 Epoch 8/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2595 - val_loss: 0.2616 Epoch 9/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2593 - val_loss: 0.2620 Epoch 10/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2589 - val_loss: 0.2609 Epoch 11/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2588 - val_loss: 0.2613 Epoch 12/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2584 - val_loss: 0.2607 Epoch 13/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2581 - val_loss: 0.2613 Epoch 14/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2580 - val_loss: 0.2605 Epoch 15/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2580 - val_loss: 0.2607 Epoch 16/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2574 - val_loss: 0.2609 Epoch 17/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2575 - val_loss: 0.2606 Epoch 18/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2573 - val_loss: 0.2614 Epoch 19/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2572 - val_loss: 0.2611 Epoch 20/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2567 - val_loss: 0.2606 Epoch 21/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2569 - val_loss: 0.2606 Epoch 22/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2565 - val_loss: 0.2608 Epoch 23/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2564 - val_loss: 0.2612 Epoch 24/25 316175/316175 [==============================] - 3s 10us/sample - loss: 0.2561 - val_loss: 0.2609 Epoch 25/25 316175/316175 [==============================] - 3s 11us/sample - loss: 0.2560 - val_loss: 0.2612 ###Markdown **TASK: OPTIONAL: Save your model.** ###Code # CODE HERE from tensorflow.keras.models import load_model model.save('full_data_project_model.h5') ###Output _____no_output_____ ###Markdown Section 3: Evaluating Model Performance.**TASK: Plot out the validation loss versus the training loss.** ###Code # CODE HERE losses = pd.DataFrame(model.history.history) losses[['loss','val_loss']].plot() ###Output _____no_output_____ ###Markdown **TASK: Create predictions from the X_test set and display a classification report and confusion matrix for the X_test set.** ###Code # CODE HERE from sklearn.metrics import classification_report,confusion_matrix predictions = model.predict_classes(X_test) print(classification_report(y_test,predictions)) confusion_matrix(y_test,predictions) ###Output _____no_output_____ ###Markdown **TASK: Given the customer below, would you offer this person a loan?** ###Code import random random.seed(101) random_ind = random.randint(0,len(df)) new_customer = df.drop('loan_repaid',axis=1).iloc[random_ind] new_customer # CODE HERE model.predict_classes(new_customer.values.reshape(1,78)) ###Output _____no_output_____ ###Markdown **TASK: Now check, did this person actually end up paying back their loan?** ###Code # CODE HERE df.iloc[random_ind]['loan_repaid'] ###Output _____no_output_____
PDR_ResNet152V2_Testing.ipynb
###Markdown Plant Disease Recognition using ResNet152V2 on modified version of PlantVillage Dataset. Importing necessary libraries ###Code import tensorflow as tf print(tf.__version__) from tensorflow.keras.layers import Input, Dense, Flatten from tensorflow.keras.applications.resnet_v2 import ResNet152V2 as PretrainedModel, preprocess_input from tensorflow.keras.models import Model from tensorflow.keras.optimizers import SGD, Adam from tensorflow.keras.preprocessing import image from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers import BatchNormalization from glob import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt import sys, os ###Output _____no_output_____ ###Markdown Downloading and unzipping the modified dataset available on Gdrive. If you don`t have gdown module, install it using pip. ###Code #capture command here suppresses the large output %%capture !gdown --id 1Mj6wsKBZN2ycAyyIMs2lI361deuCJqBI --output pv0.zip !unzip pv0.zip ###Output _____no_output_____ ###Markdown Check if the folder has been unzipped. ###Code !ls ###Output _____no_output_____ ###Markdown Setting up path for datagenerators from keras ###Code train_path = '/content/pv0/train' valid_path = '/content/pv0/test' # useful for getting number of files image_files = glob(train_path + '/*/*.JPG') valid_image_files = glob(valid_path + '/*/*.JPG') # useful for getting number of classes folders = glob(train_path + '/*') len(folders) ###Output _____no_output_____ ###Markdown Specify input image size. ###Code IMAGE_SIZE = [256, 256] #sneek peek at a random image plt.imshow(image.load_img(np.random.choice(image_files))) plt.show() ###Output _____no_output_____ ###Markdown Configuring the pretrainned model as per our needs. ###Code ptm = PretrainedModel( input_shape=IMAGE_SIZE + [3], weights='imagenet', include_top=False) # freeze pretrained model weights ptm.trainable = False K = len(folders) # number of classes #model definition x = Flatten()(ptm.output) x= BatchNormalization()(x) x= Dense(512,activation='relu')(x) x = Dense(K, activation='softmax')(x) # create a model object model = Model(inputs=ptm.input, outputs=x) # view the structure of the model model.summary() #view the number of layers in the model len(model.layers) # create an instance of ImageDataGenerator #Keras generators returns one-hot encoded labels and provides data augmentation. gen_train = ImageDataGenerator( rotation_range=90, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.2, horizontal_flip=True, preprocessing_function=preprocess_input ) gen_test = ImageDataGenerator( preprocessing_function=preprocess_input ) #batch size is the number of examples that are run through the model at once. batch_size = 300 # create generators train_generator = gen_train.flow_from_directory( train_path, shuffle=True, target_size=IMAGE_SIZE, batch_size=batch_size, ) valid_generator = gen_test.flow_from_directory( valid_path, target_size=IMAGE_SIZE, batch_size=batch_size, ) ###Output _____no_output_____ ###Markdown Since Keras no longer provides some metrics within itself, so we define those metrics ourselves. Here, we are defining F1_score, Precision and Recall. ###Code from keras import backend as Ke def recall_m(y_true, y_pred): true_positives = Ke.sum(Ke.round(Ke.clip(y_true * y_pred, 0, 1))) possible_positives = Ke.sum(Ke.round(Ke.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + Ke.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = Ke.sum(Ke.round(Ke.clip(y_true * y_pred, 0, 1))) predicted_positives = Ke.sum(Ke.round(Ke.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + Ke.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+Ke.epsilon())) ###Output _____no_output_____ ###Markdown This block is for creating a lr scheduler, since the lr scheduler was not as effective as using adam directly, it is left for experimentation. ###Code # from keras.optimizers import SGD # import math # def step_decay(epoch): # initial_lrate = 1e-4 # drop = 0.5 # epochs_drop = 10.0 # lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop)) # return lrate # sgd = SGD(lr=0.0, momentum=0.9) # # learning schedule callback # from keras.callbacks import LearningRateScheduler # lrate = LearningRateScheduler(step_decay) # callbacks_list = [lrate] ###Output _____no_output_____ ###Markdown Compiling our model with loss, optimizer and metrics (including our custom defined ones). ###Code model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy',f1_m,precision_m, recall_m] ) ###Output _____no_output_____ ###Markdown The fit function is called for starting our training. ###Code # fit the model r = model.fit( train_generator, validation_data=valid_generator, epochs=5, steps_per_epoch=int(np.ceil(len(image_files) / batch_size)), validation_steps=int(np.ceil(len(valid_image_files) / batch_size)), ) ###Output _____no_output_____ ###Markdown Saving our Model in HD5 format. ###Code model.save("model.h5") print("Saved model to disk") ###Output _____no_output_____ ###Markdown Graphs for our metrics ###Code # loss plt.plot(r.history['loss'], label='train loss') plt.plot(r.history['val_loss'], label='val loss') plt.legend() plt.show() # accuracies plt.plot(r.history['accuracy'], label='train acc') plt.plot(r.history['val_accuracy'], label='val acc') plt.legend() plt.show() # f1_score plt.plot(r.history['f1_m'], label='train f1_m') plt.plot(r.history['val_f1_m'], label='val f1_m') plt.legend() plt.show() # precision plt.plot(r.history['precision_m'], label='train precision_m') plt.plot(r.history['val_precision_m'], label='val precision_m') plt.legend() plt.show() # recall plt.plot(r.history['recall_m'], label='train recall_m') plt.plot(r.history['val_recall_m'], label='val recall_m') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Next we evaluate the model on our test set again. ###Code #Load saved model from training from keras.models import load_model amod= load_model('/content/model.h5') # evaluate the model valid_generator = gen_test.flow_from_directory(valid_path,target_size=IMAGE_SIZE,batch_size=batch_size,) loss, accuracy, f1_score, precision, recall = amod.evaluate(valid_generator, steps=int(np.ceil(len(valid_image_files)/ batch_size))) ###Output _____no_output_____ ###Markdown Printing our metrics ###Code print('loss : ',loss) print('accuracy : ',accuracy) print('f1_score :',f1_score) print('precision:',precision) print('recall :',recall) ###Output _____no_output_____
T/Linear+Model+Wine+Data.ipynb
###Markdown OLS - Ordinary Least Squares ###Code lm1.params print(lm1.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: quality R-squared: 0.366 Model: OLS Adj. R-squared: 0.361 Method: Least Squares F-statistic: 75.01 Date: Fri, 18 Jan 2019 Prob (F-statistic): 5.96e-133 Time: 07:23:16 Log-Likelihood: -1400.0 No. Observations: 1439 AIC: 2824. Df Residuals: 1427 BIC: 2887. Df Model: 11 Covariance Type: nonrobust ======================================================================================== coef std err t P>|t| [0.025 0.975] ---------------------------------------------------------------------------------------- Intercept 26.3869 22.052 1.197 0.232 -16.871 69.644 fixed_acidity 0.0296 0.028 1.070 0.285 -0.025 0.084 volatile_acidity -1.0464 0.125 -8.341 0.000 -1.292 -0.800 citric_acid -0.1220 0.156 -0.783 0.434 -0.428 0.184 residual_sugar 0.0171 0.016 1.053 0.292 -0.015 0.049 chlorides -1.7726 0.430 -4.124 0.000 -2.616 -0.929 free_sulfur_dioxide 0.0038 0.002 1.628 0.104 -0.001 0.008 total_sulfur_dioxide -0.0035 0.001 -4.550 0.000 -0.005 -0.002 density -22.7863 22.516 -1.012 0.312 -66.954 21.382 pH -0.2531 0.199 -1.272 0.204 -0.643 0.137 sulphates 0.8855 0.116 7.612 0.000 0.657 1.114 alcohol 0.2668 0.027 9.720 0.000 0.213 0.321 ============================================================================== Omnibus: 25.784 Durbin-Watson: 1.763 Prob(Omnibus): 0.000 Jarque-Bera (JB): 39.208 Skew: -0.168 Prob(JB): 3.06e-09 Kurtosis: 3.735 Cond. No. 1.14e+05 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.14e+05. This might indicate that there are strong multicollinearity or other numerical problems.
1_Goniometro/Python/Dra.MarianaV2.ipynb
###Markdown Requirments ```pythonimport time Defualt python libraryimport serial pip install pyserialimport matplotlib.pyplot as plt pip install matplotlib import numpy as np pip install numpyimport xlrd pip install xlrdimport xlsxwriter pip install xlscwriterimport cv2 pip install pyton-cv``` How to retive data from any microcontroller? DataAdquistion is compatbile with any microcontroller with UART capabilites. In order to send information make sure to send information in the following way:```c"[sending label]: value,value,value,value"```Example:```cs:182.00,184.00,184.00,188.00,187.00,179.00```The default sendig label is s (for send) ###Code from DataAdquisition import bcolors,DataAdquisition,UserInputValidator import matplotlib.pyplot as plt import numpy as np from datetime import datetime import json def MainLoopProtocol(): keys = ["sensor_0","sensor_1","sensor_2","sensor_3","sensor_4","sensor_5"] # List containig number of sensors Data1,Data2,Data3 = [" ", " ", " "] # Intialize empty values to prevent error Microcontrolador = DataAdquisition(com="COM12",baudrate=38400,timeout=1) # instantiate Communication with protocol ### First Adquisition ### message = bcolors.OKGREEN + "Instruction: Balance the weight on both legs Duration: 20s"+ bcolors.ENDC Forward = UserInputValidator(message) # Wait for user input if Forward: OPENED = Microcontrolador.initiateSerialCommunication() # initate Communication with protocol Data1 = Microcontrolador.Dynamicprotocol(duration=20,message="Adquiring Data",keys=keys) Microcontrolador.CloseSerialCommunication() print(" ") ### Second Adquisition ### message= bcolors.OKGREEN + "Instrucion: Stand on the prosthesis Duration: 20s" + bcolors.ENDC Forward = UserInputValidator(message) # Wait for user input if Forward: OPENED = Microcontrolador.initiateSerialCommunication() # initate Communication with protocol Data2 = Microcontrolador.Dynamicprotocol(duration=20,message="Adquiring Data",keys=keys) Microcontrolador.CloseSerialCommunication() print(" ") ### Third Adquisition ### message = bcolors.OKGREEN + "Instrucion: Balance the weight on both legs Duration: 20s" + bcolors.ENDC Forward = UserInputValidator(message) # Wait for user input if Forward: OPENED = Microcontrolador.initiateSerialCommunication() # initate Communication with protocol Data3 = Microcontrolador.Dynamicprotocol(duration=20,message="Adquiring Data",keys=keys) Microcontrolador.CloseSerialCommunication() print(" ") return Data1,Data2,Data3 if __name__ == "__main__": Data1,Data2,Data3 = MainLoopProtocol() plt.plot(Data1["sensor_1"]) plt.plot(Data1["sensor_1"]) plt.plot(Data2["sensor_1"]) Data1.keys() plt.plot(Data2["time"],Data2["sensor_1"]) len(Data2["sensor_1"]) 1996/30 def saveDictionary(data: dict,filename:str = "dfnone") -> None: ### Handle Filename ### if filename == "dfnone": filename = "report_" + (datetime.now()).strftime("%H_%M_%S") + ".json" elif filename != "dfnone": if ".json" in filename: pass else: filename = filename + ".json" with open(filename, "w") as handler: json.dump(data,handler) print(f"Data has been saved as {filename}") def OpenDictionary(filename:str) -> dict: with open(filename, "r") as handler: data = json.load(handler) return data a_file = open("data.json", "r") output = a_file.read() data = OpenDictionary("report_22_21_45.json") with open(filename, "r") as handler: data = json.load(handler) return data ###Output _____no_output_____
notebooks/validation_sun.ipynb
###Markdown Reproduce [Chaplin 2010](https://ui.adsabs.harvard.edu/abs/2010ApJ...713L.169C/abstract) Figure 1 ###Code %matplotlib inline import matplotlib.pyplot as plt import kplr import numpy as np import sys sys.path.insert(0, '../') from astropy.io import fits # data = fits.getdata('ftp://ftp.pmodwrc.ch/pub/data/irradiance/virgo/' # '1-minute_Data/VIRGO_1min_0083-7404.fits', cache=False) data = fits.getdata('../data/VIRGO_1min_0083-7404.fits.gz', cache=False) from shocksgo import interpolate_missing_data import numpy as np time = np.arange(len(data)) #flux = data[data != 99] times, fluxes = interpolate_missing_data(time[data != -99], data[data != -99]) fluxes /= np.median(fluxes) plt.plot(times, fluxes) len(fluxes)//20 #from scipy.signal import periodogram import os from shocksgo import power_spectrum freqs, powers = power_spectrum(fluxes[:len(fluxes)//10], d=60) freqs *= 1e6 # periodogram_path = 'periodogram.npy' # if os.path.exists(periodogram_path): # freqs, powers = np.load(periodogram_path) # else: # freqs, powers = periodogram(fluxes, fs=1/60) # freqs *= 1e6 # np.save(periodogram_path, np.vstack([freqs, powers])) plt.loglog(freqs, powers, marker=',', lw=0) plt.xlim([0.1, 1e4]) plt.ylim([1e-10, 1e-2]) from scipy.stats import binned_statistic cutoff_freq = 1e5 bs = binned_statistic(np.log(freqs[freqs != 0]), powers[freqs != 0], statistic=np.nanmedian, bins=1000) bincenters = 0.5 * (bs.bin_edges[:-1] + bs.bin_edges[1:]) binned_power = bs.statistic[np.exp(bincenters) < cutoff_freq] binned_freq = np.exp(bincenters)[np.exp(bincenters) < cutoff_freq] plt.loglog(freqs, powers, ',', alpha=0.5) plt.loglog(binned_freq, binned_power) plt.xlabel('Freq [$\mu$Hz]') plt.ylabel('Power') plt.xlim([1e2, 6e3]) plt.ylim([1e-10, 1e-4]) from scipy.ndimage import gaussian_filter1d plt.semilogy(freqs, powers, ',', alpha=0.5) # plt.semilogy(freqs[np.argsort(freqs)], gaussian_filter1d(powers[np.argsort(freqs)], 100)) plt.semilogy(binned_freq, binned_power) plt.xlabel('Freq [$\mu$Hz]') plt.ylabel('Power') plt.xlim([2000, 4000]) plt.ylim([1e-10, 1e-4]) from shocksgo import generate_solar_fluxes from astropy.constants import M_sun, L_sun import astropy.units as u times, fluxes, kernel = generate_solar_fluxes(duration=10*u.min) psd = kernel.get_psd(2*np.pi*freqs*1e-6) /2/np.pi fig, ax = plt.subplots(1, 2, figsize=(8, 2.5)) # ax[0].loglog(binned_freq, binned_power) ax[0].loglog(freqs, powers, marker=',', lw=0, alpha=0.3, rasterized=True, color='k') ax[0].loglog(freqs, psd, color='r') ax[0].set_xlim([1e-2, 1e4]) ax[0].set_ylim([1e-10, 1e-2]) ax[0].set_xlabel('Frequency [$\mu$Hz]') ax[0].set_ylabel('Power [(flux)$^2$/Hz]') # ax[1].semilogy(binned_freq, binned_power) ax[1].semilogy(freqs, powers, marker=',', lw=0, alpha=0.3, rasterized=True, color='k') ax[1].semilogy(freqs, psd, color='r') ax[1].set_xlim([2000, 4000]) ax[1].set_ylim([1e-10, 1e-6]) ax[1].set_xlabel('Frequency [$\mu$Hz]') ax[1].set_ylabel('Power [(flux)$^2$/Hz]') for s in ['right', 'top']: for axis in ax: axis.spines[s].set_visible(False) fig.tight_layout() fig.suptitle('Sun (SOHO/VIRGO SPM)', va='bottom') fig.savefig('paper_plots/sun.pdf', bbox_inches='tight', dpi=300) durations = [] for i in np.arange(2, 7): duration = %timeit -o -r 1 generate_solar_fluxes(duration=10**i * u.min) durations.append(duration) number_points = 10**np.arange(2, 7) duration_best = np.array([duration.best for duration in durations]) plt.figure(figsize=(3, 3)) plt.loglog(number_points, duration_best, color='k') plt.xlabel('Sim. Duration [min]') plt.ylabel('Runtime [s]') plt.grid(ls=':') for s in ['right', 'top']: plt.gca().spines[s].set_visible(False) plt.savefig('paper_plots/runtime.pdf', bbox_inches='tight') ###Output _____no_output_____
project-brainwave/project-brainwave-transfer-learning.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Model Development This example shows how to build, train, evaluate and deploy a model running on FPGA. Only Windows is supported. We use TensorFlow and Keras to build our model. We are going to use transfer learning, with ResNet152 as a featurizer. We don't use the last layer of ResNet152 in this case and instead add and train our own classification layer.We will use the Kaggle Cats and Dogs dataset to train the classifier. The dataset can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory ("~/catsanddogs").Please set up your environment as described in the [quick start](project-brainwave-quickstart.ipynb). ###Code import os import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown Model ConstructionLoad the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run quickly, but doesn't create a very accurate classifier. You can improve the classifier by using more of the dataset. ###Code import glob import imghdr datadir = os.path.expanduser("~/catsanddogs") cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg')) dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg')) # Limit the data set to make the notebook execute quickly. cat_files = cat_files[:64] dog_files = dog_files[:64] # The data set has a few images that are not jpeg. Remove them. cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg'] dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg'] if(not len(cat_files) or not len(dog_files)): print("Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to " + datadir) raise ValueError("Data not found") else: print(cat_files[0]) print(dog_files[0]) # constructing a numpy array as labels image_paths = cat_files + dog_files total_files = len(cat_files) + len(dog_files) labels = np.zeros(total_files) labels[len(cat_files):] = 1 ###Output _____no_output_____ ###Markdown We need to preprocess the input file to get it into the form expected by ResNet152. We've provided a default implementation of the preprocessing that you can use. ###Code # Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings import azureml.contrib.brainwave.models.utils as utils in_images = tf.placeholder(tf.string) image_tensors = utils.preprocess_array(in_images) print(image_tensors.shape) ###Output _____no_output_____ ###Markdown Alternatively, if you would like to customize the preprocessing, you can write your own preprocessor using TensorFlow operations.The input to the classifier we are training is the set of features produced by ResNet50. To train the classifier we need to featurize the images using ResNet50. You can also run the featurizer locally on CPU or GPU. We import the featurizer as frozen, so that we are only training the classifier. ###Code from azureml.contrib.brainwave.models import QuantizedResnet152 model_path = os.path.expanduser('~/models') bwmodel = QuantizedResnet152(model_path, is_frozen = True) print(bwmodel.version) ###Output _____no_output_____ ###Markdown Calling import_graph_def on the featurizer will create a service that runs the featurizer on FPGA. ###Code features = bwmodel.import_graph_def(input_tensor=image_tensors) ###Output _____no_output_____ ###Markdown Pre-compute featuresLoad the data set and compute the features. These can be precomputed because they don't change during training. This can take a while to run on CPU. ###Code from tqdm import tqdm def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def read_files(files): contents = [] for path in files: with open(path, 'rb') as f: contents.append(f.read()) return contents feature_list = [] with tf.Session() as sess: for chunk in tqdm(chunks(image_paths, 5)): contents = read_files(chunk) result = sess.run([features], feed_dict={in_images: contents}) feature_list.extend(result[0]) feature_results = np.array(feature_list) print(feature_results.shape) ###Output _____no_output_____ ###Markdown Add and Train the classifierWe use Keras to define and train a simple classifier. ###Code from keras.models import Sequential from keras.layers import Dropout, Dense, Flatten from keras import optimizers FC_SIZE = 1024 NUM_CLASSES = 2 model = Sequential() model.add(Dropout(0.2, input_shape=(1, 1, 2048,))) model.add(Dense(FC_SIZE, activation='relu', input_dim=(1, 1, 2048,))) model.add(Flatten()) model.add(Dense(NUM_CLASSES, activation='sigmoid', input_dim=FC_SIZE)) model.compile(optimizer=optimizers.SGD(lr=1e-4,momentum=0.9), loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare the train and test data. ###Code from sklearn.model_selection import train_test_split onehot_labels = np.array([[0,1] if i else [1,0] for i in labels]) X_train, X_test, y_train, y_test = train_test_split(feature_results, onehot_labels, random_state=42, shuffle=True) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output _____no_output_____ ###Markdown Train the classifier. ###Code model.fit(X_train, y_train, epochs=16, batch_size=32) ###Output _____no_output_____ ###Markdown Test the ClassifierLet's test the classifier and see how well it does. Since we only trained on a few images, we are not expecting to win a Kaggle competition, but it will likely get most of the images correct. ###Code from numpy import argmax y_probs = model.predict(X_test) y_prob_max = np.argmax(y_probs, 1) y_test_max = np.argmax(y_test, 1) print(y_prob_max) print(y_test_max) from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score import itertools import matplotlib from matplotlib import pyplot as plt # compute a bunch of classification metrics def classification_metrics(y_true, y_pred, y_prob): cm_dict = {} cm_dict['Accuracy'] = accuracy_score(y_true, y_pred) cm_dict['Precision'] = precision_score(y_true, y_pred) cm_dict['Recall'] = recall_score(y_true, y_pred) cm_dict['F1'] = f1_score(y_true, y_pred) cm_dict['AUC'] = roc_auc_score(y_true, y_prob[:,0]) cm_dict['Confusion Matrix'] = confusion_matrix(y_true, y_pred).tolist() return cm_dict def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots a confusion matrix. Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html New BSD License - see appendix """ cm_max = cm.max() cm_min = cm.min() if cm_min > 0: cm_min = 0 if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm_max = 1 plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm_max / 2. plt.clim(cm_min, cm_max) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, round(cm[i, j], 3), # round to 3 decimals if they are float horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() cm_dict = classification_metrics(y_test_max, y_prob_max, y_probs) for m in cm_dict: print(m, cm_dict[m]) cm = np.asarray(cm_dict['Confusion Matrix']) plot_confusion_matrix(cm, ['fail','pass'], normalize=False) ###Output _____no_output_____ ###Markdown Service DefinitionLike in the QuickStart notebook our service definition pipeline consists of three stages. Because the preprocessing and featurizing stage don't contain any variables, we can use a default session.Here we use the Keras classifier as the final stage. ###Code from azureml.contrib.brainwave.pipeline import ModelDefinition, TensorflowStage, BrainWaveStage, KerasStage model_def = ModelDefinition() model_def.pipeline.append(TensorflowStage(tf.Session(), in_images, image_tensors)) model_def.pipeline.append(BrainWaveStage(tf.Session(), bwmodel)) model_def.pipeline.append(KerasStage(model)) model_def_path = os.path.join(datadir, 'save', 'model_def') model_def.save(model_def_path) print(model_def_path) ###Output _____no_output_____ ###Markdown Deploy ###Code from azureml.core.model import Model from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') model_name = "catsanddogs-model" service_name = "modelbuild-service" registered_model = Model.register(ws, model_def_path, model_name) ###Output _____no_output_____ ###Markdown The first time the code below runs it will create a new service running your model. If you want to change the model you can make changes above in this notebook and save a new service definition. Then this code will update the running service in place to run the new model. ###Code from azureml.core.webservice import Webservice from azureml.exceptions import WebserviceException from azureml.contrib.brainwave import BrainwaveWebservice, BrainwaveImage try: service = Webservice(ws, service_name) except WebserviceException: image_config = BrainwaveImage.image_configuration() deployment_config = BrainwaveWebservice.deploy_configuration() service = Webservice.deploy_from_model(ws, service_name, [registered_model], image_config, deployment_config) service.wait_for_deployment(true) ###Output _____no_output_____ ###Markdown The service is now running in Azure and ready to serve requests. We can check the address and port. ###Code print(service.ipAddress + ':' + str(service.port)) ###Output _____no_output_____ ###Markdown ClientThere is a simple test client at amlrealtimeai.PredictionClient which can be used for testing. We'll use this client to score an image with our new service. ###Code from azureml.contrib.brainwave.client import PredictionClient client = PredictionClient(service.ipAddress, service.port) ###Output _____no_output_____ ###Markdown You can adapt the client [code](../../pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C [client](../../sample-clients/csharp).The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup). RequestLet's see how our service does on a few images. It may get a few wrong. ###Code # Specify an image to classify print('CATS') for image_file in cat_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[0] > results[1] else 'WRONG ' print(result + str(results)) print('DOGS') for image_file in dog_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[1] > results[0] else 'WRONG ' print(result + str(results)) ###Output _____no_output_____ ###Markdown CleanupRun the cell below to delete your service. In the [next notebook](project-brainwave-custom-weights.ipynb) you will learn how to retrain all the weights of one of the models ###Code service.delete() registered_model.delete() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Model Development This example shows how to build, train, evaluate and deploy a model running on FPGA. Only Windows is supported. We use TensorFlow and Keras to build our model. We are going to use transfer learning, with ResNet152 as a featurizer. We don't use the last layer of ResNet152 in this case and instead add and train our own classification layer.We will use the Kaggle Cats and Dogs dataset to train the classifier. The dataset can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory ("~/catsanddogs").Please set up your environment as described in the [quick start](project-brainwave-quickstart.ipynb). ###Code import os import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown Model ConstructionLoad the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run quickly, but doesn't create a very accurate classifier. You can improve the classifier by using more of the dataset. ###Code import glob import imghdr datadir = os.path.expanduser("~/catsanddogs") cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg')) dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg')) # Limit the data set to make the notebook execute quickly. cat_files = cat_files[:64] dog_files = dog_files[:64] # The data set has a few images that are not jpeg. Remove them. cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg'] dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg'] if(not len(cat_files) or not len(dog_files)): print("Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to " + datadir) raise ValueError("Data not found") else: print(cat_files[0]) print(dog_files[0]) # constructing a numpy array as labels image_paths = cat_files + dog_files total_files = len(cat_files) + len(dog_files) labels = np.zeros(total_files) labels[len(cat_files):] = 1 ###Output _____no_output_____ ###Markdown We need to preprocess the input file to get it into the form expected by ResNet152. We've provided a default implementation of the preprocessing that you can use. ###Code # Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings import azureml.contrib.brainwave.models.utils as utils in_images = tf.placeholder(tf.string) image_tensors = utils.preprocess_array(in_images) print(image_tensors.shape) ###Output _____no_output_____ ###Markdown Alternatively, if you would like to customize the preprocessing, you can write your own preprocessor using TensorFlow operations.The input to the classifier we are training is the set of features produced by ResNet50. To train the classifier we need to featurize the images using ResNet50. You can also run the featurizer locally on CPU or GPU. We import the featurizer as frozen, so that we are only training the classifier. ###Code from azureml.contrib.brainwave.models import QuantizedResnet152 model_path = os.path.expanduser('~/models') bwmodel = QuantizedResnet152(model_path, is_frozen = True) print(bwmodel.version) ###Output _____no_output_____ ###Markdown Calling import_graph_def on the featurizer will create a service that runs the featurizer on FPGA. ###Code features = bwmodel.import_graph_def(input_tensor=image_tensors) ###Output _____no_output_____ ###Markdown Pre-compute featuresLoad the data set and compute the features. These can be precomputed because they don't change during training. This can take a while to run on CPU. ###Code from tqdm import tqdm def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def read_files(files): contents = [] for path in files: with open(path, 'rb') as f: contents.append(f.read()) return contents feature_list = [] with tf.Session() as sess: for chunk in tqdm(chunks(image_paths, 5)): contents = read_files(chunk) result = sess.run([features], feed_dict={in_images: contents}) feature_list.extend(result[0]) feature_results = np.array(feature_list) print(feature_results.shape) ###Output _____no_output_____ ###Markdown Add and Train the classifierWe use Keras to define and train a simple classifier. ###Code from keras.models import Sequential from keras.layers import Dropout, Dense, Flatten from keras import optimizers FC_SIZE = 1024 NUM_CLASSES = 2 model = Sequential() model.add(Dropout(0.2, input_shape=(1, 1, 2048,))) model.add(Dense(FC_SIZE, activation='relu', input_dim=(1, 1, 2048,))) model.add(Flatten()) model.add(Dense(NUM_CLASSES, activation='sigmoid', input_dim=FC_SIZE)) model.compile(optimizer=optimizers.SGD(lr=1e-4,momentum=0.9), loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare the train and test data. ###Code from sklearn.model_selection import train_test_split onehot_labels = np.array([[0,1] if i else [1,0] for i in labels]) X_train, X_test, y_train, y_test = train_test_split(feature_results, onehot_labels, random_state=42, shuffle=True) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output _____no_output_____ ###Markdown Train the classifier. ###Code model.fit(X_train, y_train, epochs=16, batch_size=32) ###Output _____no_output_____ ###Markdown Test the ClassifierLet's test the classifier and see how well it does. Since we only trained on a few images, we are not expecting to win a Kaggle competition, but it will likely get most of the images correct. ###Code from numpy import argmax y_probs = model.predict(X_test) y_prob_max = np.argmax(y_probs, 1) y_test_max = np.argmax(y_test, 1) print(y_prob_max) print(y_test_max) from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score import itertools import matplotlib from matplotlib import pyplot as plt # compute a bunch of classification metrics def classification_metrics(y_true, y_pred, y_prob): cm_dict = {} cm_dict['Accuracy'] = accuracy_score(y_true, y_pred) cm_dict['Precision'] = precision_score(y_true, y_pred) cm_dict['Recall'] = recall_score(y_true, y_pred) cm_dict['F1'] = f1_score(y_true, y_pred) cm_dict['AUC'] = roc_auc_score(y_true, y_prob[:,0]) cm_dict['Confusion Matrix'] = confusion_matrix(y_true, y_pred).tolist() return cm_dict def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots a confusion matrix. Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html New BSD License - see appendix """ cm_max = cm.max() cm_min = cm.min() if cm_min > 0: cm_min = 0 if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm_max = 1 plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm_max / 2. plt.clim(cm_min, cm_max) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, round(cm[i, j], 3), # round to 3 decimals if they are float horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() cm_dict = classification_metrics(y_test_max, y_prob_max, y_probs) for m in cm_dict: print(m, cm_dict[m]) cm = np.asarray(cm_dict['Confusion Matrix']) plot_confusion_matrix(cm, ['fail','pass'], normalize=False) ###Output _____no_output_____ ###Markdown Service DefinitionLike in the QuickStart notebook our service definition pipeline consists of three stages. Because the preprocessing and featurizing stage don't contain any variables, we can use a default session.Here we use the Keras classifier as the final stage. ###Code from azureml.contrib.brainwave.pipeline import ModelDefinition, TensorflowStage, BrainWaveStage, KerasStage model_def = ModelDefinition() model_def.pipeline.append(TensorflowStage(tf.Session(), in_images, image_tensors)) model_def.pipeline.append(BrainWaveStage(tf.Session(), bwmodel)) model_def.pipeline.append(KerasStage(model)) model_def_path = os.path.join(datadir, 'save', 'model_def') model_def.save(model_def_path) print(model_def_path) ###Output _____no_output_____ ###Markdown Deploy ###Code from azureml.core.model import Model from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') model_name = "catsanddogs-model" service_name = "modelbuild-service" registered_model = Model.register(ws, model_def_path, model_name) ###Output _____no_output_____ ###Markdown The first time the code below runs it will create a new service running your model. If you want to change the model you can make changes above in this notebook and save a new service definition. Then this code will update the running service in place to run the new model. ###Code from azureml.core.webservice import Webservice from azureml.exceptions import WebserviceException from azureml.contrib.brainwave import BrainwaveWebservice, BrainwaveImage try: service = Webservice(ws, service_name) except WebserviceException: image_config = BrainwaveImage.image_configuration() deployment_config = BrainwaveWebservice.deploy_configuration() service = Webservice.deploy_from_model(ws, service_name, [registered_model], image_config, deployment_config) service.wait_for_deployment(True) ###Output _____no_output_____ ###Markdown The service is now running in Azure and ready to serve requests. We can check the address and port. ###Code print(service.ipAddress + ':' + str(service.port)) ###Output _____no_output_____ ###Markdown ClientThere is a simple test client at amlrealtimeai.PredictionClient which can be used for testing. We'll use this client to score an image with our new service. ###Code from azureml.contrib.brainwave.client import PredictionClient client = PredictionClient(service.ipAddress, service.port) ###Output _____no_output_____ ###Markdown You can adapt the client [code](../../pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C [client](../../sample-clients/csharp).The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup). RequestLet's see how our service does on a few images. It may get a few wrong. ###Code # Specify an image to classify print('CATS') for image_file in cat_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[0] > results[1] else 'WRONG ' print(result + str(results)) print('DOGS') for image_file in dog_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[1] > results[0] else 'WRONG ' print(result + str(results)) ###Output _____no_output_____ ###Markdown CleanupRun the cell below to delete your service. In the [next notebook](project-brainwave-custom-weights.ipynb) you will learn how to retrain all the weights of one of the models ###Code service.delete() registered_model.delete() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Model Development This example shows how to build, train, evaluate and deploy a model running on FPGA. Only Windows is supported. We use TensorFlow and Keras to build our model. We are going to use transfer learning, with ResNet152 as a featurizer. We don't use the last layer of ResNet152 in this case and instead add and train our own classification layer.We will use the Kaggle Cats and Dogs dataset to train the classifier. The dataset can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory ("~/catsanddogs").Please set up your environment as described in the [quick start](project-brainwave-quickstart.ipynb). ###Code import os import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown Model ConstructionLoad the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run quickly, but doesn't create a very accurate classifier. You can improve the classifier by using more of the dataset. ###Code import glob import imghdr datadir = os.path.expanduser("~/catsanddogs") cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg')) dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg')) # Limit the data set to make the notebook execute quickly. cat_files = cat_files[:64] dog_files = dog_files[:64] # The data set has a few images that are not jpeg. Remove them. cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg'] dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg'] if(not len(cat_files) or not len(dog_files)): print("Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to " + datadir) raise ValueError("Data not found") else: print(cat_files[0]) print(dog_files[0]) # constructing a numpy array as labels image_paths = cat_files + dog_files total_files = len(cat_files) + len(dog_files) labels = np.zeros(total_files) labels[len(cat_files):] = 1 ###Output _____no_output_____ ###Markdown We need to preprocess the input file to get it into the form expected by ResNet152. We've provided a default implementation of the preprocessing that you can use. ###Code # Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings import azureml.contrib.brainwave.models.utils as utils in_images = tf.placeholder(tf.string) image_tensors = utils.preprocess_array(in_images) print(image_tensors.shape) ###Output _____no_output_____ ###Markdown Alternatively, if you would like to customize the preprocessing, you can write your own preprocessor using TensorFlow operations.The input to the classifier we are training is the set of features produced by ResNet50. To train the classifier we need to featurize the images using ResNet50. You can also run the featurizer locally on CPU or GPU. We import the featurizer as frozen, so that we are only training the classifier. ###Code from azureml.contrib.brainwave.models import QuantizedResnet152 model_path = os.path.expanduser('~/models') bwmodel = QuantizedResnet152(model_path, is_frozen = True) print(bwmodel.version) ###Output _____no_output_____ ###Markdown Calling import_graph_def on the featurizer will create a service that runs the featurizer on FPGA. ###Code features = bwmodel.import_graph_def(input_tensor=image_tensors) ###Output _____no_output_____ ###Markdown Pre-compute featuresLoad the data set and compute the features. These can be precomputed because they don't change during training. This can take a while to run on CPU. ###Code from tqdm import tqdm def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def read_files(files): contents = [] for path in files: with open(path, 'rb') as f: contents.append(f.read()) return contents feature_list = [] with tf.Session() as sess: for chunk in tqdm(chunks(image_paths, 5)): contents = read_files(chunk) result = sess.run([features], feed_dict={in_images: contents}) feature_list.extend(result[0]) feature_results = np.array(feature_list) print(feature_results.shape) ###Output _____no_output_____ ###Markdown Add and Train the classifierWe use Keras to define and train a simple classifier. ###Code from keras.models import Sequential from keras.layers import Dropout, Dense, Flatten from keras import optimizers FC_SIZE = 1024 NUM_CLASSES = 2 model = Sequential() model.add(Dropout(0.2, input_shape=(1, 1, 2048,))) model.add(Dense(FC_SIZE, activation='relu', input_dim=(1, 1, 2048,))) model.add(Flatten()) model.add(Dense(NUM_CLASSES, activation='sigmoid', input_dim=FC_SIZE)) model.compile(optimizer=optimizers.SGD(lr=1e-4,momentum=0.9), loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare the train and test data. ###Code from sklearn.model_selection import train_test_split onehot_labels = np.array([[0,1] if i else [1,0] for i in labels]) X_train, X_test, y_train, y_test = train_test_split(feature_results, onehot_labels, random_state=42, shuffle=True) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output _____no_output_____ ###Markdown Train the classifier. ###Code model.fit(X_train, y_train, epochs=16, batch_size=32) ###Output _____no_output_____ ###Markdown Test the ClassifierLet's test the classifier and see how well it does. Since we only trained on a few images, we are not expecting to win a Kaggle competition, but it will likely get most of the images correct. ###Code from numpy import argmax y_probs = model.predict(X_test) y_prob_max = np.argmax(y_probs, 1) y_test_max = np.argmax(y_test, 1) print(y_prob_max) print(y_test_max) from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score import itertools import matplotlib from matplotlib import pyplot as plt # compute a bunch of classification metrics def classification_metrics(y_true, y_pred, y_prob): cm_dict = {} cm_dict['Accuracy'] = accuracy_score(y_true, y_pred) cm_dict['Precision'] = precision_score(y_true, y_pred) cm_dict['Recall'] = recall_score(y_true, y_pred) cm_dict['F1'] = f1_score(y_true, y_pred) cm_dict['AUC'] = roc_auc_score(y_true, y_prob[:,0]) cm_dict['Confusion Matrix'] = confusion_matrix(y_true, y_pred).tolist() return cm_dict def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots a confusion matrix. Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html New BSD License - see appendix """ cm_max = cm.max() cm_min = cm.min() if cm_min > 0: cm_min = 0 if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm_max = 1 plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm_max / 2. plt.clim(cm_min, cm_max) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, round(cm[i, j], 3), # round to 3 decimals if they are float horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() cm_dict = classification_metrics(y_test_max, y_prob_max, y_probs) for m in cm_dict: print(m, cm_dict[m]) cm = np.asarray(cm_dict['Confusion Matrix']) plot_confusion_matrix(cm, ['fail','pass'], normalize=False) ###Output _____no_output_____ ###Markdown Service DefinitionLike in the QuickStart notebook our service definition pipeline consists of three stages. Because the preprocessing and featurizing stage don't contain any variables, we can use a default session.Here we use the Keras classifier as the final stage. ###Code from azureml.contrib.brainwave.pipeline import ModelDefinition, TensorflowStage, BrainWaveStage, KerasStage model_def = ModelDefinition() model_def.pipeline.append(TensorflowStage(tf.Session(), in_images, image_tensors)) model_def.pipeline.append(BrainWaveStage(tf.Session(), bwmodel)) model_def.pipeline.append(KerasStage(model)) model_def_path = os.path.join(datadir, 'save', 'model_def') model_def.save(model_def_path) print(model_def_path) ###Output _____no_output_____ ###Markdown Deploy ###Code from azureml.core.model import Model from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') model_name = "catsanddogs-model" service_name = "modelbuild-service" registered_model = Model.register(ws, model_def_path, model_name) ###Output _____no_output_____ ###Markdown The first time the code below runs it will create a new service running your model. If you want to change the model you can make changes above in this notebook and save a new service definition. Then this code will update the running service in place to run the new model. ###Code from azureml.core.webservice import Webservice from azureml.exceptions import WebserviceException from azureml.contrib.brainwave import BrainwaveWebservice, BrainwaveImage try: service = Webservice(ws, service_name) except WebserviceException: image_config = BrainwaveImage.image_configuration() deployment_config = BrainwaveWebservice.deploy_configuration() service = Webservice.deploy_from_model(ws, service_name, [registered_model], image_config, deployment_config) service.wait_for_deployment(true) ###Output _____no_output_____ ###Markdown The service is now running in Azure and ready to serve requests. We can check the address and port. ###Code print(service.ipAddress + ':' + str(service.port)) ###Output _____no_output_____ ###Markdown ClientThere is a simple test client at amlrealtimeai.PredictionClient which can be used for testing. We'll use this client to score an image with our new service. ###Code from azureml.contrib.brainwave.client import PredictionClient client = PredictionClient(service.ipAddress, service.port) ###Output _____no_output_____ ###Markdown You can adapt the client [code](../../pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C [client](../../sample-clients/csharp).The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup). RequestLet's see how our service does on a few images. It may get a few wrong. ###Code # Specify an image to classify print('CATS') for image_file in cat_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[0] > results[1] else 'WRONG ' print(result + str(results)) print('DOGS') for image_file in dog_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[1] > results[0] else 'WRONG ' print(result + str(results)) ###Output _____no_output_____ ###Markdown CleanupRun the cell below to delete your service. In the [next notebook](project-brainwave-custom-weights.ipynb) you will learn how to retrain all the weights of one of the models ###Code service.delete() registered_model.delete() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Model Development This example shows how to build, train, evaluate and deploy a model running on FPGA. Only Windows is supported. We use TensorFlow and Keras to build our model. We are going to use transfer learning, with ResNet152 as a featurizer. We don't use the last layer of ResNet152 in this case and instead add and train our own classification layer.We will use the Kaggle Cats and Dogs dataset to train the classifier. The dataset can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory ("~/catsanddogs").Please set up your environment as described in the [quick start](project-brainwave-quickstart.ipynb). ###Code import os import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown Model ConstructionLoad the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run quickly, but doesn't create a very accurate classifier. You can improve the classifier by using more of the dataset. ###Code import glob import imghdr datadir = os.path.expanduser("~/catsanddogs") cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg')) dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg')) # Limit the data set to make the notebook execute quickly. cat_files = cat_files[:64] dog_files = dog_files[:64] # The data set has a few images that are not jpeg. Remove them. cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg'] dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg'] if(not len(cat_files) or not len(dog_files)): print("Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to " + datadir) raise ValueError("Data not found") else: print(cat_files[0]) print(dog_files[0]) # constructing a numpy array as labels image_paths = cat_files + dog_files total_files = len(cat_files) + len(dog_files) labels = np.zeros(total_files) labels[len(cat_files):] = 1 ###Output _____no_output_____ ###Markdown We need to preprocess the input file to get it into the form expected by ResNet152. We've provided a default implementation of the preprocessing that you can use. ###Code # Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings import azureml.contrib.brainwave.models.utils as utils in_images = tf.placeholder(tf.string) image_tensors = utils.preprocess_array(in_images) print(image_tensors.shape) ###Output _____no_output_____ ###Markdown Alternatively, if you would like to customize the preprocessing, you can write your own preprocessor using TensorFlow operations.The input to the classifier we are training is the set of features produced by ResNet50. To train the classifier we need to featurize the images using ResNet50. You can also run the featurizer locally on CPU or GPU. We import the featurizer as frozen, so that we are only training the classifier. ###Code from azureml.contrib.brainwave.models import QuantizedResnet152 model_path = os.path.expanduser('~/models') bwmodel = QuantizedResnet152(model_path, is_frozen = True) print(bwmodel.version) ###Output _____no_output_____ ###Markdown Calling import_graph_def on the featurizer will create a service that runs the featurizer on FPGA. ###Code features = bwmodel.import_graph_def(input_tensor=image_tensors) ###Output _____no_output_____ ###Markdown Pre-compute featuresLoad the data set and compute the features. These can be precomputed because they don't change during training. This can take a while to run on CPU. ###Code from tqdm import tqdm def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def read_files(files): contents = [] for path in files: with open(path, 'rb') as f: contents.append(f.read()) return contents feature_list = [] with tf.Session() as sess: for chunk in tqdm(chunks(image_paths, 5)): contents = read_files(chunk) result = sess.run([features], feed_dict={in_images: contents}) feature_list.extend(result[0]) feature_results = np.array(feature_list) print(feature_results.shape) ###Output _____no_output_____ ###Markdown Add and Train the classifierWe use Keras to define and train a simple classifier. ###Code from keras.models import Sequential from keras.layers import Dropout, Dense, Flatten from keras import optimizers FC_SIZE = 1024 NUM_CLASSES = 2 model = Sequential() model.add(Dropout(0.2, input_shape=(1, 1, 2048,))) model.add(Dense(FC_SIZE, activation='relu', input_dim=(1, 1, 2048,))) model.add(Flatten()) model.add(Dense(NUM_CLASSES, activation='sigmoid', input_dim=FC_SIZE)) model.compile(optimizer=optimizers.SGD(lr=1e-4,momentum=0.9), loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare the train and test data. ###Code from sklearn.model_selection import train_test_split onehot_labels = np.array([[0,1] if i else [1,0] for i in labels]) X_train, X_test, y_train, y_test = train_test_split(feature_results, onehot_labels, random_state=42, shuffle=True) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output _____no_output_____ ###Markdown Train the classifier. ###Code model.fit(X_train, y_train, epochs=16, batch_size=32) ###Output _____no_output_____ ###Markdown Test the ClassifierLet's test the classifier and see how well it does. Since we only trained on a few images, we are not expecting to win a Kaggle competition, but it will likely get most of the images correct. ###Code from numpy import argmax y_probs = model.predict(X_test) y_prob_max = np.argmax(y_probs, 1) y_test_max = np.argmax(y_test, 1) print(y_prob_max) print(y_test_max) from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score import itertools import matplotlib from matplotlib import pyplot as plt # compute a bunch of classification metrics def classification_metrics(y_true, y_pred, y_prob): cm_dict = {} cm_dict['Accuracy'] = accuracy_score(y_true, y_pred) cm_dict['Precision'] = precision_score(y_true, y_pred) cm_dict['Recall'] = recall_score(y_true, y_pred) cm_dict['F1'] = f1_score(y_true, y_pred) cm_dict['AUC'] = roc_auc_score(y_true, y_prob[:,0]) cm_dict['Confusion Matrix'] = confusion_matrix(y_true, y_pred).tolist() return cm_dict def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots a confusion matrix. Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html New BSD License - see appendix """ cm_max = cm.max() cm_min = cm.min() if cm_min > 0: cm_min = 0 if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm_max = 1 plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm_max / 2. plt.clim(cm_min, cm_max) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, round(cm[i, j], 3), # round to 3 decimals if they are float horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() cm_dict = classification_metrics(y_test_max, y_prob_max, y_probs) for m in cm_dict: print(m, cm_dict[m]) cm = np.asarray(cm_dict['Confusion Matrix']) plot_confusion_matrix(cm, ['fail','pass'], normalize=False) ###Output _____no_output_____ ###Markdown Service DefinitionLike in the QuickStart notebook our service definition pipeline consists of three stages. Because the preprocessing and featurizing stage don't contain any variables, we can use a default session.Here we use the Keras classifier as the final stage. ###Code from azureml.contrib.brainwave.pipeline import ModelDefinition, TensorflowStage, BrainWaveStage, KerasStage model_def = ModelDefinition() model_def.pipeline.append(TensorflowStage(tf.Session(), in_images, image_tensors)) model_def.pipeline.append(BrainWaveStage(tf.Session(), bwmodel)) model_def.pipeline.append(KerasStage(model)) model_def_path = os.path.join(datadir, 'save', 'model_def') model_def.save(model_def_path) print(model_def_path) ###Output _____no_output_____ ###Markdown Deploy ###Code from azureml.core.model import Model from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') model_name = "catsanddogs-model" service_name = "modelbuild-service" registered_model = Model.register(ws, model_def_path, model_name) ###Output _____no_output_____ ###Markdown The first time the code below runs it will create a new service running your model. If you want to change the model you can make changes above in this notebook and save a new service definition. Then this code will update the running service in place to run the new model. ###Code from azureml.core.webservice import Webservice from azureml.exceptions import WebserviceException from azureml.contrib.brainwave import BrainwaveWebservice, BrainwaveImage try: service = Webservice(ws, service_name) except WebserviceException: image_config = BrainwaveImage.image_configuration() deployment_config = BrainwaveWebservice.deploy_configuration() service = Webservice.deploy_from_model(ws, service_name, [registered_model], image_config, deployment_config) service.wait_for_deployment(True) ###Output _____no_output_____ ###Markdown The service is now running in Azure and ready to serve requests. We can check the address and port. ###Code print(service.ipAddress + ':' + str(service.port)) ###Output _____no_output_____ ###Markdown ClientThere is a simple test client at amlrealtimeai.PredictionClient which can be used for testing. We'll use this client to score an image with our new service. ###Code from azureml.contrib.brainwave.client import PredictionClient client = PredictionClient(service.ipAddress, service.port) ###Output _____no_output_____ ###Markdown You can adapt the client [code](../../pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C [client](../../sample-clients/csharp).The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup). RequestLet's see how our service does on a few images. It may get a few wrong. ###Code # Specify an image to classify print('CATS') for image_file in cat_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[0] > results[1] else 'WRONG ' print(result + str(results)) print('DOGS') for image_file in dog_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[1] > results[0] else 'WRONG ' print(result + str(results)) ###Output _____no_output_____ ###Markdown CleanupRun the cell below to delete your service. In the [next notebook](project-brainwave-custom-weights.ipynb) you will learn how to retrain all the weights of one of the models ###Code service.delete() registered_model.delete() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Model Development This example shows how to build, train, evaluate and deploy a model running on FPGA. Only Windows is supported. We use TensorFlow and Keras to build our model. We are going to use transfer learning, with ResNet152 as a featurizer. We don't use the last layer of ResNet152 in this case and instead add and train our own classification layer.We will use the Kaggle Cats and Dogs dataset to train the classifier. The dataset can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory ("~/catsanddogs").Please set up your environment as described in the [quick start](project-brainwave-quickstart.ipynb). ###Code import os import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown Model ConstructionLoad the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run quickly, but doesn't create a very accurate classifier. You can improve the classifier by using more of the dataset. ###Code import glob import imghdr datadir = os.path.expanduser("~/catsanddogs") cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg')) dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg')) # Limit the data set to make the notebook execute quickly. cat_files = cat_files[:64] dog_files = dog_files[:64] # The data set has a few images that are not jpeg. Remove them. cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg'] dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg'] if(not len(cat_files) or not len(dog_files)): print("Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to " + datadir) raise ValueError("Data not found") else: print(cat_files[0]) print(dog_files[0]) # constructing a numpy array as labels image_paths = cat_files + dog_files total_files = len(cat_files) + len(dog_files) labels = np.zeros(total_files) labels[len(cat_files):] = 1 ###Output _____no_output_____ ###Markdown We need to preprocess the input file to get it into the form expected by ResNet152. We've provided a default implementation of the preprocessing that you can use. ###Code # Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings import azureml.contrib.brainwave.models.utils as utils in_images = tf.placeholder(tf.string) image_tensors = utils.preprocess_array(in_images) print(image_tensors.shape) ###Output _____no_output_____ ###Markdown Alternatively, if you would like to customize the preprocessing, you can write your own preprocessor using TensorFlow operations.The input to the classifier we are training is the set of features produced by ResNet50. To train the classifier we need to featurize the images using ResNet50. You can also run the featurizer locally on CPU or GPU. We import the featurizer as frozen, so that we are only training the classifier. ###Code from azureml.contrib.brainwave.models import QuantizedResnet152 model_path = os.path.expanduser('~/models') bwmodel = QuantizedResnet152(model_path, is_frozen = True) print(bwmodel.version) ###Output _____no_output_____ ###Markdown Calling import_graph_def on the featurizer will create a service that runs the featurizer on FPGA. ###Code features = bwmodel.import_graph_def(input_tensor=image_tensors) ###Output _____no_output_____ ###Markdown Pre-compute featuresLoad the data set and compute the features. These can be precomputed because they don't change during training. This can take a while to run on CPU. ###Code from tqdm import tqdm def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def read_files(files): contents = [] for path in files: with open(path, 'rb') as f: contents.append(f.read()) return contents feature_list = [] with tf.Session() as sess: for chunk in tqdm(chunks(image_paths, 5)): contents = read_files(chunk) result = sess.run([features], feed_dict={in_images: contents}) feature_list.extend(result[0]) feature_results = np.array(feature_list) print(feature_results.shape) ###Output _____no_output_____ ###Markdown Add and Train the classifierWe use Keras to define and train a simple classifier. ###Code from keras.models import Sequential from keras.layers import Dropout, Dense, Flatten from keras import optimizers FC_SIZE = 1024 NUM_CLASSES = 2 model = Sequential() model.add(Dropout(0.2, input_shape=(1, 1, 2048,))) model.add(Dense(FC_SIZE, activation='relu', input_dim=(1, 1, 2048,))) model.add(Flatten()) model.add(Dense(NUM_CLASSES, activation='sigmoid', input_dim=FC_SIZE)) model.compile(optimizer=optimizers.SGD(lr=1e-4,momentum=0.9), loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare the train and test data. ###Code from sklearn.model_selection import train_test_split onehot_labels = np.array([[0,1] if i else [1,0] for i in labels]) X_train, X_test, y_train, y_test = train_test_split(feature_results, onehot_labels, random_state=42, shuffle=True) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output _____no_output_____ ###Markdown Train the classifier. ###Code model.fit(X_train, y_train, epochs=16, batch_size=32) ###Output _____no_output_____ ###Markdown Test the ClassifierLet's test the classifier and see how well it does. Since we only trained on a few images, we are not expecting to win a Kaggle competition, but it will likely get most of the images correct. ###Code from numpy import argmax y_probs = model.predict(X_test) y_prob_max = np.argmax(y_probs, 1) y_test_max = np.argmax(y_test, 1) print(y_prob_max) print(y_test_max) from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score import itertools import matplotlib from matplotlib import pyplot as plt # compute a bunch of classification metrics def classification_metrics(y_true, y_pred, y_prob): cm_dict = {} cm_dict['Accuracy'] = accuracy_score(y_true, y_pred) cm_dict['Precision'] = precision_score(y_true, y_pred) cm_dict['Recall'] = recall_score(y_true, y_pred) cm_dict['F1'] = f1_score(y_true, y_pred) cm_dict['AUC'] = roc_auc_score(y_true, y_prob[:,0]) cm_dict['Confusion Matrix'] = confusion_matrix(y_true, y_pred).tolist() return cm_dict def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots a confusion matrix. Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html New BSD License - see appendix """ cm_max = cm.max() cm_min = cm.min() if cm_min > 0: cm_min = 0 if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm_max = 1 plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm_max / 2. plt.clim(cm_min, cm_max) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, round(cm[i, j], 3), # round to 3 decimals if they are float horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() cm_dict = classification_metrics(y_test_max, y_prob_max, y_probs) for m in cm_dict: print(m, cm_dict[m]) cm = np.asarray(cm_dict['Confusion Matrix']) plot_confusion_matrix(cm, ['fail','pass'], normalize=False) ###Output _____no_output_____ ###Markdown Service DefinitionLike in the QuickStart notebook our service definition pipeline consists of three stages. Because the preprocessing and featurizing stage don't contain any variables, we can use a default session.Here we use the Keras classifier as the final stage. ###Code from azureml.contrib.brainwave.pipeline import ModelDefinition, TensorflowStage, BrainWaveStage, KerasStage model_def = ModelDefinition() model_def.pipeline.append(TensorflowStage(tf.Session(), in_images, image_tensors)) model_def.pipeline.append(BrainWaveStage(tf.Session(), bwmodel)) model_def.pipeline.append(KerasStage(model)) model_def_path = os.path.join(datadir, 'save', 'model_def') model_def.save(model_def_path) print(model_def_path) ###Output _____no_output_____ ###Markdown Deploy ###Code from azureml.core.model import Model from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') model_name = "catsanddogs-model" service_name = "modelbuild-service" registered_model = Model.register(ws, model_def_path, model_name) ###Output _____no_output_____ ###Markdown The first time the code below runs it will create a new service running your model. If you want to change the model you can make changes above in this notebook and save a new service definition. Then this code will update the running service in place to run the new model. ###Code from azureml.core.webservice import Webservice from azureml.exceptions import WebserviceException from azureml.contrib.brainwave import BrainwaveWebservice, BrainwaveImage try: service = Webservice(ws, service_name) except WebserviceException: image_config = BrainwaveImage.image_configuration() deployment_config = BrainwaveWebservice.deploy_configuration() service = Webservice.deploy_from_model(ws, service_name, [registered_model], image_config, deployment_config) service.wait_for_deployment(true) ###Output _____no_output_____ ###Markdown The service is now running in Azure and ready to serve requests. We can check the address and port. ###Code print(service.ipAddress + ':' + str(service.port)) ###Output _____no_output_____ ###Markdown ClientThere is a simple test client at amlrealtimeai.PredictionClient which can be used for testing. We'll use this client to score an image with our new service. ###Code from azureml.contrib.brainwave.client import PredictionClient client = PredictionClient(service.ipAddress, service.port) ###Output _____no_output_____ ###Markdown You can adapt the client [code](../../pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C [client](../../sample-clients/csharp).The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup). RequestLet's see how our service does on a few images. It may get a few wrong. ###Code # Specify an image to classify print('CATS') for image_file in cat_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[0] > results[1] else 'WRONG ' print(result + str(results)) print('DOGS') for image_file in dog_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[1] > results[0] else 'WRONG ' print(result + str(results)) ###Output _____no_output_____ ###Markdown CleanupRun the cell below to delete your service. In the [next notebook](project-brainwave-custom-weights.ipynb) you will learn how to retrain all the weights of one of the models ###Code service.delete() registered_model.delete() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Model Development This example shows how to build, train, evaluate and deploy a model running on FPGA. Only Windows is supported. We use TensorFlow and Keras to build our model. We are going to use transfer learning, with ResNet152 as a featurizer. We don't use the last layer of ResNet152 in this case and instead add and train our own classification layer.We will use the Kaggle Cats and Dogs dataset to train the classifier. The dataset can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory ("~/catsanddogs").Please set up your environment as described in the [quick start](project-brainwave-quickstart.ipynb). ###Code import os import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown Model ConstructionLoad the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run quickly, but doesn't create a very accurate classifier. You can improve the classifier by using more of the dataset. ###Code import glob import imghdr datadir = os.path.expanduser("~/catsanddogs") cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg')) dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg')) # Limit the data set to make the notebook execute quickly. cat_files = cat_files[:64] dog_files = dog_files[:64] # The data set has a few images that are not jpeg. Remove them. cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg'] dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg'] if(not len(cat_files) or not len(dog_files)): print("Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to " + datadir) raise ValueError("Data not found") else: print(cat_files[0]) print(dog_files[0]) # constructing a numpy array as labels image_paths = cat_files + dog_files total_files = len(cat_files) + len(dog_files) labels = np.zeros(total_files) labels[len(cat_files):] = 1 ###Output _____no_output_____ ###Markdown We need to preprocess the input file to get it into the form expected by ResNet152. We've provided a default implementation of the preprocessing that you can use. ###Code # Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings import azureml.contrib.brainwave.models.utils as utils in_images = tf.placeholder(tf.string) image_tensors = utils.preprocess_array(in_images) print(image_tensors.shape) ###Output _____no_output_____ ###Markdown Alternatively, if you would like to customize the preprocessing, you can write your own preprocessor using TensorFlow operations.The input to the classifier we are training is the set of features produced by ResNet50. To train the classifier we need to featurize the images using ResNet50. You can also run the featurizer locally on CPU or GPU. We import the featurizer as frozen, so that we are only training the classifier. ###Code from azureml.contrib.brainwave.models import QuantizedResnet152 model_path = os.path.expanduser('~/models') bwmodel = QuantizedResnet152(model_path, is_frozen = True) print(bwmodel.version) ###Output _____no_output_____ ###Markdown Calling import_graph_def on the featurizer will create a service that runs the featurizer on FPGA. ###Code features = bwmodel.import_graph_def(input_tensor=image_tensors) ###Output _____no_output_____ ###Markdown Pre-compute featuresLoad the data set and compute the features. These can be precomputed because they don't change during training. This can take a while to run on CPU. ###Code from tqdm import tqdm def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def read_files(files): contents = [] for path in files: with open(path, 'rb') as f: contents.append(f.read()) return contents feature_list = [] with tf.Session() as sess: for chunk in tqdm(chunks(image_paths, 5)): contents = read_files(chunk) result = sess.run([features], feed_dict={in_images: contents}) feature_list.extend(result[0]) feature_results = np.array(feature_list) print(feature_results.shape) ###Output _____no_output_____ ###Markdown Add and Train the classifierWe use Keras to define and train a simple classifier. ###Code from keras.models import Sequential from keras.layers import Dropout, Dense, Flatten from keras import optimizers FC_SIZE = 1024 NUM_CLASSES = 2 model = Sequential() model.add(Dropout(0.2, input_shape=(1, 1, 2048,))) model.add(Dense(FC_SIZE, activation='relu', input_dim=(1, 1, 2048,))) model.add(Flatten()) model.add(Dense(NUM_CLASSES, activation='sigmoid', input_dim=FC_SIZE)) model.compile(optimizer=optimizers.SGD(lr=1e-4,momentum=0.9), loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare the train and test data. ###Code from sklearn.model_selection import train_test_split onehot_labels = np.array([[0,1] if i else [1,0] for i in labels]) X_train, X_test, y_train, y_test = train_test_split(feature_results, onehot_labels, random_state=42, shuffle=True) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output _____no_output_____ ###Markdown Train the classifier. ###Code model.fit(X_train, y_train, epochs=16, batch_size=32) ###Output _____no_output_____ ###Markdown Test the ClassifierLet's test the classifier and see how well it does. Since we only trained on a few images, we are not expecting to win a Kaggle competition, but it will likely get most of the images correct. ###Code from numpy import argmax y_probs = model.predict(X_test) y_prob_max = np.argmax(y_probs, 1) y_test_max = np.argmax(y_test, 1) print(y_prob_max) print(y_test_max) from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score import itertools import matplotlib from matplotlib import pyplot as plt # compute a bunch of classification metrics def classification_metrics(y_true, y_pred, y_prob): cm_dict = {} cm_dict['Accuracy'] = accuracy_score(y_true, y_pred) cm_dict['Precision'] = precision_score(y_true, y_pred) cm_dict['Recall'] = recall_score(y_true, y_pred) cm_dict['F1'] = f1_score(y_true, y_pred) cm_dict['AUC'] = roc_auc_score(y_true, y_prob[:,0]) cm_dict['Confusion Matrix'] = confusion_matrix(y_true, y_pred).tolist() return cm_dict def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots a confusion matrix. Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html New BSD License - see appendix """ cm_max = cm.max() cm_min = cm.min() if cm_min > 0: cm_min = 0 if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm_max = 1 plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm_max / 2. plt.clim(cm_min, cm_max) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, round(cm[i, j], 3), # round to 3 decimals if they are float horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() cm_dict = classification_metrics(y_test_max, y_prob_max, y_probs) for m in cm_dict: print(m, cm_dict[m]) cm = np.asarray(cm_dict['Confusion Matrix']) plot_confusion_matrix(cm, ['fail','pass'], normalize=False) ###Output _____no_output_____ ###Markdown Service DefinitionLike in the QuickStart notebook our service definition pipeline consists of three stages. Because the preprocessing and featurizing stage don't contain any variables, we can use a default session.Here we use the Keras classifier as the final stage. ###Code from azureml.contrib.brainwave.pipeline import ModelDefinition, TensorflowStage, BrainWaveStage, KerasStage model_def = ModelDefinition() model_def.pipeline.append(TensorflowStage(tf.Session(), in_images, image_tensors)) model_def.pipeline.append(BrainWaveStage(tf.Session(), bwmodel)) model_def.pipeline.append(KerasStage(model)) model_def_path = os.path.join(datadir, 'save', 'model_def') model_def.save(model_def_path) print(model_def_path) ###Output _____no_output_____ ###Markdown Deploy ###Code from azureml.core.model import Model from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') model_name = "catsanddogs-model" service_name = "modelbuild-service" registered_model = Model.register(ws, model_def_path, model_name) ###Output _____no_output_____ ###Markdown The first time the code below runs it will create a new service running your model. If you want to change the model you can make changes above in this notebook and save a new service definition. Then this code will update the running service in place to run the new model. ###Code from azureml.core.webservice import Webservice from azureml.exceptions import WebserviceException from azureml.contrib.brainwave import BrainwaveWebservice, BrainwaveImage try: service = Webservice(ws, service_name) except WebserviceException: image_config = BrainwaveImage.image_configuration() deployment_config = BrainwaveWebservice.deploy_configuration() service = Webservice.deploy_from_model(ws, service_name, [registered_model], image_config, deployment_config) service.wait_for_deployment(true) ###Output _____no_output_____ ###Markdown The service is now running in Azure and ready to serve requests. We can check the address and port. ###Code print(service.ipAddress + ':' + str(service.port)) ###Output _____no_output_____ ###Markdown ClientThere is a simple test client at amlrealtimeai.PredictionClient which can be used for testing. We'll use this client to score an image with our new service. ###Code from azureml.contrib.brainwave.client import PredictionClient client = PredictionClient(service.ipAddress, service.port) ###Output _____no_output_____ ###Markdown You can adapt the client [code](../../pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C [client](../../sample-clients/csharp).The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup). RequestLet's see how our service does on a few images. It may get a few wrong. ###Code # Specify an image to classify print('CATS') for image_file in cat_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[0] > results[1] else 'WRONG ' print(result + str(results)) print('DOGS') for image_file in dog_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[1] > results[0] else 'WRONG ' print(result + str(results)) ###Output _____no_output_____ ###Markdown CleanupRun the cell below to delete your service. In the [next notebook](project-brainwave-custom-weights.ipynb) you will learn how to retrain all the weights of one of the models ###Code service.delete() registered_model.delete() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Model Development This example shows how to build, train, evaluate and deploy a model running on FPGA. Only Windows is supported. We use TensorFlow and Keras to build our model. We are going to use transfer learning, with ResNet152 as a featurizer. We don't use the last layer of ResNet152 in this case and instead add and train our own classification layer.We will use the Kaggle Cats and Dogs dataset to train the classifier. The dataset can be downloaded [here](https://www.microsoft.com/en-us/download/details.aspx?id=54765). Download the zip and extract to a directory named 'catsanddogs' under your user directory ("~/catsanddogs").Please set up your environment as described in the [quick start](project-brainwave-quickstart.ipynb). ###Code import os import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown Model ConstructionLoad the files we are going to use for training and testing. By default this notebook uses only a very small subset of the Cats and Dogs dataset. That makes it run quickly, but doesn't create a very accurate classifier. You can improve the classifier by using more of the dataset. ###Code import glob import imghdr datadir = os.path.expanduser("~/catsanddogs") cat_files = glob.glob(os.path.join(datadir, 'PetImages', 'Cat', '*.jpg')) dog_files = glob.glob(os.path.join(datadir, 'PetImages', 'Dog', '*.jpg')) # Limit the data set to make the notebook execute quickly. cat_files = cat_files[:64] dog_files = dog_files[:64] # The data set has a few images that are not jpeg. Remove them. cat_files = [f for f in cat_files if imghdr.what(f) == 'jpeg'] dog_files = [f for f in dog_files if imghdr.what(f) == 'jpeg'] if(not len(cat_files) or not len(dog_files)): print("Please download the Kaggle Cats and Dogs dataset form https://www.microsoft.com/en-us/download/details.aspx?id=54765 and extract the zip to " + datadir) raise ValueError("Data not found") else: print(cat_files[0]) print(dog_files[0]) # constructing a numpy array as labels image_paths = cat_files + dog_files total_files = len(cat_files) + len(dog_files) labels = np.zeros(total_files) labels[len(cat_files):] = 1 ###Output _____no_output_____ ###Markdown We need to preprocess the input file to get it into the form expected by ResNet152. We've provided a default implementation of the preprocessing that you can use. ###Code # Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings import azureml.contrib.brainwave.models.utils as utils in_images = tf.placeholder(tf.string) image_tensors = utils.preprocess_array(in_images) print(image_tensors.shape) ###Output _____no_output_____ ###Markdown Alternatively, if you would like to customize the preprocessing, you can write your own preprocessor using TensorFlow operations.The input to the classifier we are training is the set of features produced by ResNet50. To train the classifier we need to featurize the images using ResNet50. You can also run the featurizer locally on CPU or GPU. We import the featurizer as frozen, so that we are only training the classifier. ###Code from azureml.contrib.brainwave.models import QuantizedResnet152 model_path = os.path.expanduser('~/models') bwmodel = QuantizedResnet152(model_path, is_frozen = True) print(bwmodel.version) ###Output _____no_output_____ ###Markdown Calling import_graph_def on the featurizer will create a service that runs the featurizer on FPGA. ###Code features = bwmodel.import_graph_def(input_tensor=image_tensors) ###Output _____no_output_____ ###Markdown Pre-compute featuresLoad the data set and compute the features. These can be precomputed because they don't change during training. This can take a while to run on CPU. ###Code from tqdm import tqdm def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def read_files(files): contents = [] for path in files: with open(path, 'rb') as f: contents.append(f.read()) return contents feature_list = [] with tf.Session() as sess: for chunk in tqdm(chunks(image_paths, 5)): contents = read_files(chunk) result = sess.run([features], feed_dict={in_images: contents}) feature_list.extend(result[0]) feature_results = np.array(feature_list) print(feature_results.shape) ###Output _____no_output_____ ###Markdown Add and Train the classifierWe use Keras to define and train a simple classifier. ###Code from keras.models import Sequential from keras.layers import Dropout, Dense, Flatten from keras import optimizers FC_SIZE = 1024 NUM_CLASSES = 2 model = Sequential() model.add(Dropout(0.2, input_shape=(1, 1, 2048,))) model.add(Dense(FC_SIZE, activation='relu', input_dim=(1, 1, 2048,))) model.add(Flatten()) model.add(Dense(NUM_CLASSES, activation='sigmoid', input_dim=FC_SIZE)) model.compile(optimizer=optimizers.SGD(lr=1e-4,momentum=0.9), loss='binary_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Prepare the train and test data. ###Code from sklearn.model_selection import train_test_split onehot_labels = np.array([[0,1] if i else [1,0] for i in labels]) X_train, X_test, y_train, y_test = train_test_split(feature_results, onehot_labels, random_state=42, shuffle=True) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output _____no_output_____ ###Markdown Train the classifier. ###Code model.fit(X_train, y_train, epochs=16, batch_size=32) ###Output _____no_output_____ ###Markdown Test the ClassifierLet's test the classifier and see how well it does. Since we only trained on a few images, we are not expecting to win a Kaggle competition, but it will likely get most of the images correct. ###Code from numpy import argmax y_probs = model.predict(X_test) y_prob_max = np.argmax(y_probs, 1) y_test_max = np.argmax(y_test, 1) print(y_prob_max) print(y_test_max) from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, f1_score import itertools import matplotlib from matplotlib import pyplot as plt # compute a bunch of classification metrics def classification_metrics(y_true, y_pred, y_prob): cm_dict = {} cm_dict['Accuracy'] = accuracy_score(y_true, y_pred) cm_dict['Precision'] = precision_score(y_true, y_pred) cm_dict['Recall'] = recall_score(y_true, y_pred) cm_dict['F1'] = f1_score(y_true, y_pred) cm_dict['AUC'] = roc_auc_score(y_true, y_prob[:,0]) cm_dict['Confusion Matrix'] = confusion_matrix(y_true, y_pred).tolist() return cm_dict def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots a confusion matrix. Source: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html New BSD License - see appendix """ cm_max = cm.max() cm_min = cm.min() if cm_min > 0: cm_min = 0 if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm_max = 1 plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cm_max / 2. plt.clim(cm_min, cm_max) for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, round(cm[i, j], 3), # round to 3 decimals if they are float horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() cm_dict = classification_metrics(y_test_max, y_prob_max, y_probs) for m in cm_dict: print(m, cm_dict[m]) cm = np.asarray(cm_dict['Confusion Matrix']) plot_confusion_matrix(cm, ['fail','pass'], normalize=False) ###Output _____no_output_____ ###Markdown Service DefinitionLike in the QuickStart notebook our service definition pipeline consists of three stages. Because the preprocessing and featurizing stage don't contain any variables, we can use a default session.Here we use the Keras classifier as the final stage. ###Code from azureml.contrib.brainwave.pipeline import ModelDefinition, TensorflowStage, BrainWaveStage, KerasStage model_def = ModelDefinition() model_def.pipeline.append(TensorflowStage(tf.Session(), in_images, image_tensors)) model_def.pipeline.append(BrainWaveStage(tf.Session(), bwmodel)) model_def.pipeline.append(KerasStage(model)) model_def_path = os.path.join(datadir, 'save', 'model_def') model_def.save(model_def_path) print(model_def_path) ###Output _____no_output_____ ###Markdown Deploy ###Code from azureml.core.model import Model from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') model_name = "catsanddogs-model" service_name = "modelbuild-service" registered_model = Model.register(ws, model_def_path, model_name) ###Output _____no_output_____ ###Markdown The first time the code below runs it will create a new service running your model. If you want to change the model you can make changes above in this notebook and save a new service definition. Then this code will update the running service in place to run the new model. ###Code from azureml.core.webservice import Webservice from azureml.exceptions import WebserviceException from azureml.contrib.brainwave import BrainwaveWebservice, BrainwaveImage try: service = Webservice(ws, service_name) except WebserviceException: image_config = BrainwaveImage.image_configuration() deployment_config = BrainwaveWebservice.deploy_configuration() service = Webservice.deploy_from_model(ws, service_name, [registered_model], image_config, deployment_config) service.wait_for_deployment(True) ###Output _____no_output_____ ###Markdown The service is now running in Azure and ready to serve requests. We can check the address and port. ###Code print(service.ipAddress + ':' + str(service.port)) ###Output _____no_output_____ ###Markdown ClientThere is a simple test client at amlrealtimeai.PredictionClient which can be used for testing. We'll use this client to score an image with our new service. ###Code from azureml.contrib.brainwave.client import PredictionClient client = PredictionClient(service.ipAddress, service.port) ###Output _____no_output_____ ###Markdown You can adapt the client [code](../../pythonlib/amlrealtimeai/client.py) to meet your needs. There is also an example C [client](../../sample-clients/csharp).The service provides an API that is compatible with TensorFlow Serving. There are instructions to download a sample client [here](https://www.tensorflow.org/serving/setup). RequestLet's see how our service does on a few images. It may get a few wrong. ###Code # Specify an image to classify print('CATS') for image_file in cat_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[0] > results[1] else 'WRONG ' print(result + str(results)) print('DOGS') for image_file in dog_files[:8]: results = client.score_image(image_file) result = 'CORRECT ' if results[1] > results[0] else 'WRONG ' print(result + str(results)) ###Output _____no_output_____ ###Markdown CleanupRun the cell below to delete your service. In the [next notebook](project-brainwave-custom-weights.ipynb) you will learn how to retrain all the weights of one of the models ###Code service.delete() registered_model.delete() ###Output _____no_output_____
EDA_aku/EDA_HT_ANOVA_aku.ipynb
###Markdown Načtení dat ze souboru ###Code aku = pd.read_csv('aku.csv', sep=';', index_col=0) #sep: oddělovač, index_col: číslo sloupce s indexem řádku (soubor jej nemusí obsahovat) aku aku.columns # názvy slupců v datovém souboru aku.head() # výpis prvních řádků souboru aku['vyrobce'].dtype # data ve slpupci jsou v obecného typu "object" # sloupec lze převést na typ Category aku['vyrobce']=aku['vyrobce'].astype('category') # pro data typu Category můžeme zvolit vlastní pořadí kategorií (hodnot) aku['vyrobce']=aku['vyrobce'].cat.as_ordered() aku['vyrobce']=aku['vyrobce'].cat.reorder_categories(['C', 'B', 'A', 'D']) aku['vyrobce'] # v posledním řádku vidíme, že kategorie jsou uspořádány podle zadaného pořadí ###Output _____no_output_____ ###Markdown Explorační analýza Explorační analýza kategoriální proměnné ###Code # četnosti výskytu jednotlivých kategorií aku['vyrobce'].value_counts() # koláčový graf aku['vyrobce'].value_counts().plot.pie() # sloupcový graf aku['vyrobce'].value_counts().plot.bar() plt.xlabel("výrobce") plt.ylabel("počet akumulátorů") ###Output _____no_output_____ ###Markdown Explorační analýza kvantitativních proměnných ###Code # základní numerické charakteristiky aku.describe() # histogramy aku.plot.hist(alpha=0.5) plt.xlabel("kapacita") plt.ylabel("četnost výskytu") # krabicové grafy aku.plot.box() plt.ylabel("kapacita") # výpis řádků obsahujících odlehlá pozorování ve sloupci kapacit po 5 cyklech (podle metody vnitřních hradeb) Q1_5=aku['kapacita_5'].quantile(0.25) Q3_5=aku['kapacita_5'].quantile(0.75) IQR_5 = Q3_5-Q1_5 out_5 = (aku['kapacita_5']<(Q1_5-1.5*IQR_5)) | (aku['kapacita_5']>(Q3_5+1.5*IQR_5)) aku[out_5] # ponecháme jen řádky obsahující v obou sloupcích hodnoty nad 1500 mAh (zbylé akumulároty jsou považovány za vadné) aku = aku[(aku['kapacita_5']>=1500)&(aku['kapacita_100']>=1500)].copy() # histogramy po odstranění vadných akumulátorů aku.plot.hist(alpha=0.5) plt.xlabel("kapacita") plt.ylabel("četnost výskytu") # krabicové grafy po odstranění vadných akumulátorů aku.plot.box() plt.ylabel("kapacita") # základní charakteristiky pro data očištěná od odlehých pozorování aku.describe() ###Output _____no_output_____ ###Markdown Závislost dvou kvantitativních proměnných ###Code # bodový graf závislosti kapacit po 5 a kapacit po 100 cyklech aku.plot.scatter(x='kapacita_5', y='kapacita_100') # z rozložení bodů v grafu lze usoudit, že hodnoty kapacit po 5 a po 100 cyklech jsou vzájemně závislé # Pearsonvy korelační koeficienty (bodové odhady korelací) aku.corr() # pomocí pandas np.corrcoef(aku['kapacita_5'], aku['kapacita_100']) # totéž pomocí numpy ###Output _____no_output_____ ###Markdown Explorační analýza závislosti kvantitativní a kategoriální proměnné ###Code # krabicové grafy kapacit po 5 cyklech v zavislosti na vyrobci aku.boxplot(column=['kapacita_5'], by=['vyrobce']); plt.title('Kapacity po 5 cyklech') plt.xlabel('výrobce') plt.ylabel('kapacita') plt.tight_layout() # upravi mezery kolem grafu # výrazné posunutí krabicových grafů (např. B proti D) naznačuje závislost kapacity po 5 cyklech na výrobci ###Output _____no_output_____ ###Markdown Explorační analýza závislosti dvou kategoriálních proměnných ###Code # pokles kapacit mezi 5. a 100. cyklem (přidáme jako další sloupec datového rámce) aku['pokles']=aku['kapacita_5']-aku['kapacita_100'] # relativní pokles aku['rel_pokles']=aku['pokles']/aku['kapacita_5'] # je relativní pokles > 0.1 ? aku['pokles_nad10p'] = aku['rel_pokles']>0.1 # kontingenční tabulka (tabulka absolutních četností dvojic (výrobce, pokles > 0.1)) crt = pd.crosstab(aku['vyrobce'], aku['pokles_nad10p']) crt # mozaikový graf (grafické znázornění kontingeční tabulky) mosaic(aku, ['vyrobce', 'pokles_nad10p']); # výrazně rozdílné poměry výšek buněk v jednotlivých sloupcích nazačují závislsot mezi poklesem a výrobcem ###Output _____no_output_____ ###Markdown Ověření normality ###Code # pomocí QQ grafu sm.qqplot(aku['kapacita_5'][aku['vyrobce']=='A'], line='45', fit=True) plt.show() # rozložení bodů podél přímky ukazuje na normální rozdělení dat # Obdobný graf pro data zexponenciálního rozdělení ukazuje výrazný odklad od přímky. Z toho lze usuzovat, že data nemají normální rozdělení. x = np.random.exponential(5, size=50) sm.qqplot(x, line='45', fit=True) plt.show() # normalitu lze testovat např. Shapirovým-Wilkovým testem (H0: data mají normální rozdělení, H1: data nemají normální rozdělení) stats.shapiro(aku['kapacita_5'][aku['vyrobce']=='A']) # vyspoká p-hodnota ukazuje, že data nevykazují významnou odchylku od normality ###Output _____no_output_____ ###Markdown Testy hypotéz, intervalové odhady Ověření normality pro jednotlivé kapacity a výrobce ###Code aku[['kapacita_5', 'vyrobce']].groupby('vyrobce').apply(stats.shapiro) aku[['kapacita_100', 'vyrobce']].groupby('vyrobce').apply(stats.shapiro) ###Output _____no_output_____ ###Markdown Všechny p-hodnoty jsou vyšší než 0.05. Jednotlivé výběry můžeme považovat za výbery z normálního rozdělení. Jednovýběrový t-test (test střední hodnoty v normálním rozdělení) Dosahují akumulátory výrobce A po 5 cyklech deklarované kapacity? ###Code kap5A = aku['kapacita_5'][aku['vyrobce']=='A'] kap5A.plot.box(); # krabicový graf nenaznačuje výraznou odchylku od deklarované hodnoty ###Output _____no_output_____ ###Markdown Testujeme H0: $\mu_A=2000$ proti H1: $\mu_A\neq 2000$ ###Code # oboustranný jednovýběrový t-test result = stats.ttest_1samp(kap5A, popmean=2000) print("Jednovýběrový t-test: p-hodnota={:f}".format(result.pvalue)) ###Output Jednovýběrový t-test: p-hodnota=0.048518 ###Markdown Na hladině významnosti 0.05 zamítáme H0. Střední hodnota kapacit akumumulátorů výrobce A po 5 cyklech vykazuje statisticky význanou odchylku od deklarované kapacity. ###Code # jednostranný jednovýběrový t-test H0: \mu_A=2000, H1: \mu_A>2000 result = stats.ttest_1samp(kap5A, popmean=2000, alternative='greater') print("Jednovýběrový t-test: p-hodnota={:f}".format(result.pvalue)) # pro H1: \mu_A<2000 ... alternative='less' # pro H1: \mu_A<>2000 ... alternative='two-sided' (výchozí hodnota parametru) ###Output Jednovýběrový t-test: p-hodnota=0.024259 ###Markdown --- Dvouvýběrový t-test (test rovnosti středních hodnot vzájemně neávislých výběrů z normálních rozdělení) Liší se střední hodnoty kapacit akumulátorů výrobců B a D po 100 cyklech? ###Code kapB100 = aku['kapacita_100'][aku['vyrobce']=='B'] kapD100 = aku['kapacita_100'][aku['vyrobce']=='D'] # krabicové grafy pomocí matplotlib plt.boxplot([kapB100, kapD100]) plt.xticks(ticks=[1, 2], labels=['B', 'D']) plt.xlabel('výrobce') plt.ylabel('kapacita') ###Output _____no_output_____ ###Markdown Krabicové grafy naznačují, že kapacity akamulátorů výrobce D jsou vyšší než výrobce B. Proto volíme jednostrannou alternativní hypotézu.Krabicové grafy nenaznačjí rozdíl v rozptylech. Použijeme jednostranný t-test pro výběry se shodnými rozptyly. Test H0: $\mu_B=\mu_D$ proti H1: $\mu_B<\mu_D$ ###Code # dvouvýběrový t-test test = stats.ttest_ind(kapB100, kapD100, equal_var=True) # pro rozdílné rozptyly: equal_var=False print("Dvouvýběrový t-test: p-hodnota={:f}".format(test.pvalue)) ###Output Dvouvýběrový t-test: p-hodnota=0.000003 ###Markdown Na hladině významnosti 0.05 zamítáme $H_0$. Střední hodnoty kapacit po 100 cyklech akumulátorů výrobce D jsou vyšší než střední hodnoty kapacit akumulátorů výrobce B. --- Test shody rozptylů pro dva výběry z normálních rozdělení Liší se rozptyly hodnoty kapacit akuamulátorů výrobců B a D po 100 cyklech? H_0: $\sigma_B^2=\sigma_D^2$, H_1: $\sigma_B^2>\sigma_D^2$ ###Code # test rovnosti rozptylů není dostupný v použitých knihovnách, provedeme jej ručně SB100 = kapB100.var() SD100 = kapD100.var() F = SB100/SD100 pval = 1-stats.f.cdf(F, len(kapB100)-1, len(kapD100)-1) print("F-test: p-hodnota={:f}".format(pval)) ###Output F-test: p-hodnota=0.225281 ###Markdown Na hladině významnosti 0.05 nezamítáme $H_0$. U akamulátorů výrobců B a D nebyl po 100 cyklech prokázán rozdíl v rozptylech kapacit. --- Párový t-test (test rovnosti středních hodnot pro párová data) Liší se kapacity akumulátorů výrobce A po 5 a po 100 cyklech? POZOR: Nejde o nezávislé výběry! Data jsou párová. Měření kapacit po 5 a po 100 cyklech je prováděno se stejnými akumulátory. Posuzujeme stř. hodnotu rozdílů po 5 a po 100 cyklech. ###Code aku['pokles'][aku['vyrobce']=='A'].plot.box(); ###Output _____no_output_____ ###Markdown Krabicový graf ukazuje, že pokles kapacity u výrobce A je výrazně vyšší než 0. Ověření normality poklesu kapacit Shapirovým-Wilkovým testem. ###Code stats.shapiro(aku['pokles']) ###Output _____no_output_____ ###Markdown Hypotézu o normalitě nezamítáme. Poklesy kapacit mají normální rozdělení. Pro test stř. hodnoty poklesu použijeme t-test. Označme střední hodnotu poklesu kapacity jako $\mu_{pA}$.Testujeme $H_0$: $\mu_{pA}=0$ proti $H_1$: $\mu_{pA}>0$. ###Code # Chybně (jako nezávislá data): stats.ttest_ind(aku['kapacita_5'][aku['vyrobce']=='A'], aku['kapacita_100'][aku['vyrobce']=='A']) # Správně pomocí párového t-testu (jako párová data): stats.ttest_rel(aku['kapacita_5'][aku['vyrobce']=='A'], aku['kapacita_100'][aku['vyrobce']=='A']) # Správně pomocí jednovýběrového t-testu poklesů: stats.ttest_1samp(aku['pokles'][aku['vyrobce']=='A'], popmean=0) result = stats.ttest_rel(aku['kapacita_5'][aku['vyrobce']=='A'], aku['kapacita_100'][aku['vyrobce']=='A']) print("párový t-test: p-hodnota={:.10f}".format(result.pvalue)) ###Output párový t-test: p-hodnota=0.0000000004 ###Markdown Na hladině významnosti 0.05 zamítáme H0. U akamulátorů výrobce A dochází mezi 5 a 100 cyklem k poklesu stř. hodnoty kapacity. --- Intervalový odhad střední hodnoty výběru z normálního rozdělení Intervalové odhady stř. hodot kapacit po 5 cyklech ###Code # ruční výpočet intervalového odhadu alfa = 0.05 print('95% intervalové odhady stř. hodnot kapacit po 5 cyklech') for v in aku['vyrobce'].unique(): aku_v = aku['kapacita_5'][aku['vyrobce']==v] m = aku_v.mean() # výběrový průměr s = aku_v.std() # výběrová směrodatná odchylka n = len(aku) t = stats.t.ppf(1-alfa/2, n-1) # 1-alfa/2 kvantil studentova rozdělení d = t*s/n**0.5 # polovina délky konfidenčního intervalu td = m-d # dolní mez th = m+d # horn9 mez print('výrobce {}: ({:.0f}, {:.0f}) mAh'.format(v, td, th)) ###Output 95% intervalové odhady stř. hodnot kapacit po 5 cyklech výrobce A: (2010, 2027) mAh výrobce B: (1962, 1977) mAh výrobce C: (1984, 2009) mAh výrobce D: (2028, 2039) mAh ###Markdown ANOVA (test rovnosti stř. hodnot více výběrů z normálních rozdělení) ###Code sloupec = 'pokles' # sloupec s daty pro ANOVu vyrobci = aku.vyrobce.cat.categories # hodnoty vysvětlující kategoriální proměnné sloupce = [aku[sloupec][aku['vyrobce']==v] for v in vyrobci] # seznam posloupností s hodnotami v jednotlivych sloupcich ###Output _____no_output_____ ###Markdown Explorační analýza ###Code # explorační analýza pomocí krabicových grafů plt.boxplot(sloupce, labels=vyrobci) plt.ylabel(sloupec) ###Output _____no_output_____ ###Markdown Mezi výběry jsou podstatné rozdíly (např. mezi C a D, C a B, A a D). Předběžně lze očekávat, že střední hodnoty nejsou shodné. Ověření předpokladů ###Code # oveřní normality jednolivých výberů pomocí Shapirova-Wilkova testu aku[[sloupec, 'vyrobce']].groupby('vyrobce').apply(stats.shapiro) ###Output _____no_output_____ ###Markdown P-hodnoty jsou vyšší než 0.05. Hypotézy o normalitě nezamítáme. ###Code # ověření shody rozptylů jednotivych výběrů pomocí Bartlettova testu. stats.bartlett(*sloupce) ###Output _____no_output_____ ###Markdown P-hodnota 0.003 je nižší než 0.05. Na hladině významnosti 0.05 zamítáme nulovou hypotézu o shodě roztylů. Pro test rovnosti středních hodnot použijeme Welchovou ANOVu (pro výběry s nestejnými rozptyly). Testujeme $H_0:\mu_1=\mu_2=\mu_3=\mu_4$ proti $H_1$: neplatí $H_0$. ###Code res_anova = pingouin.welch_anova(aku, dv='pokles', between='vyrobce') print(res_anova) print("Welchova ANOVA: p-hodnota={:f}".format(res_anova['p-unc'][0])) ###Output Welchova ANOVA: p-hodnota=0.000007 ###Markdown Na hladině významnosti 0.05 zamítáme $H_0$. Střední hodnoty nejsou shodné. ###Code # post-hoc analýza pingouin.pairwise_gameshowell(aku, dv='pokles', between='vyrobce') ###Output _____no_output_____ ###Markdown Statisticky významný rozdíl v poklesu kapacity je mezi dvojicemi výrobců (C, B), (C, D) a (A, D). Další možnosti vícenásobného porovnání stř. hodnot ###Code # ANOVA pro výběry s nestejnými rozptyly oneway.anova_oneway(aku[sloupec], aku['vyrobce'], use_var='unequal') # ANOVA pro věýběry se stejnými rozptyly (pomocí stats) stats.f_oneway(*sloupce) # ANOVA pro výběry se stejnými rozptyly (pomocí pingouin) pingouin.anova(aku, dv='pokles', between='vyrobce') # post-hoc analyza - porovnani str. hodnot jednotlivych dvojic pro stejné rozptyly tukey_res = pairwise_tukeyhsd(aku[sloupec], aku['vyrobce']) print(tukey_res) # Kruskalův-Wallisův test (alternatitva ANOVy pro případ, že výběry nepochází z normalního rozdělení) # # Kruskalův-Wallisův test ověřuje shodu rozdělení jednotlivých výběrů. # Jestliže rozdělení jednotlivých výběrů mají stejný "tvar" a mohou se lišit jen středními hodnotami (tj. jsou vzájemně posunuta o konstanty), # je nulová hypotéza o shodě rozdělení ekvivalentní hypotéze o rovnosti středních hodnot. # stats.kruskal(*sloupce) # post-hoc analyza pro Kruskaluv-Wallisuv test sp.posthoc_dunn(sloupce) #%load_ext watermark #%watermark --iversions ###Output The watermark extension is already loaded. To reload it, use: %reload_ext watermark pingouin : 0.5.1 numpy : 1.21.3 scipy : 1.7.1 statsmodels : 0.13.2 matplotlib : 3.4.3 scikit_posthocs: 0.7.0 pandas : 1.3.4
notebooks/utility/jetraecr/vae_viewer.ipynb
###Markdown VAE viewer notebook for JetBot===This notebook can visualize vae. This repository using JetBot real camera. ###Code import sys import PIL import numpy as np import cv2 import traitlets import ipywidgets.widgets as widgets from IPython.display import display import torch from torchvision.transforms import transforms from learning_racer.vae import VAE from jetcam.csi_camera import CSICamera from jetcam.utils import bgr8_to_jpeg ###Output _____no_output_____ ###Markdown Setting Parameter|Name | Description| Default||:----|:-----------|:-------||IMAGE_CHANNELS | Image channel such as RGB | 3 Not change||VARIANTS_SIZE | Variants size of VAE | 32 ||MODEL_PATH | Trained VAE model file path | ../../vae.torch| ###Code IMAGE_CHANNELS = 3 VARIANTS_SIZE = 32 MODEL_PATH = '../../../vae.torch' ###Output _____no_output_____ ###Markdown Load trained VAE model.Loading trained VAE model on GPU memory. ###Code device = torch.device('cuda') vae = VAE(image_channels=IMAGE_CHANNELS, z_dim=VARIANTS_SIZE) vae.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device(device))) vae.to(device).eval() ###Output _____no_output_____ ###Markdown Create camera Capture size is W=320, H=240. ###Code CAMERA_WIDTH = 320 CAMERA_HEIGHT = 240 FPS = 60 camera = CSICamera(width=CAMERA_WIDTH, height=CAMERA_HEIGHT, capture_width=CAMERA_WIDTH, capture_height=CAMERA_HEIGHT, capture_fps=FPS) camera.running = True image = widgets.Image(format='jpeg', width=CAMERA_WIDTH, height=CAMERA_HEIGHT) camera_link = traitlets.dlink((camera,'value'), (image,'value'), transform=bgr8_to_jpeg) ###Output _____no_output_____ ###Markdown Define preprocess and postprocess ###Code def preprocess(image): observe = PIL.Image.fromarray(image) observe = observe.resize((160,120)) croped = observe.crop((0, 40, 160, 120)) tensor = transforms.ToTensor()(croped) return tensor def rgb8_to_jpeg(image): return bytes(cv2.imencode('.jpg', image)[1]) ###Output _____no_output_____ ###Markdown Visualize latent space function ###Code ABS_LATENT_MAX_VALUE = 3 PANEL_HEIGHT = 10 PANEL_WIDTH = 10 def sigmoid(x, gain=1, offset_x=0): return ((np.tanh(((x+offset_x)*gain)/2)+1)/2) def color_bar_rgb(x): gain = 10 offset_x= 0.2 offset_green = 0.6 x = (x * 2) - 1 red = sigmoid(x, gain, -1*offset_x) blue = 1-sigmoid(x, gain, offset_x) green = sigmoid(x, gain, offset_green) + (1-sigmoid(x,gain,-1*offset_green)) green = green - 1.0 return [blue * 255,green * 255,red * 255] def _get_color(value): t = (value + ABS_LATENT_MAX_VALUE) / (ABS_LATENT_MAX_VALUE * 2.0) color = color_bar_rgb(t) return color def create_color_panel(latent_spaces): images = [] for z in latent_spaces: p = np.zeros((PANEL_HEIGHT, PANEL_WIDTH, 3)) color = _get_color(z) p += color[::-1] p = np.clip(p, 0, 255) images.append(p) panel = np.concatenate(images, axis=1) return panel ###Output _____no_output_____ ###Markdown Create GUI ###Code image = widgets.Image(format='jpeg', width=320, height=240) resize = widgets.Image(format='jpeg', width=160, height=80) result = widgets.Image(format='jpeg', width=160, height=80) camera_link = traitlets.dlink((camera,'value'), (image,'value'), transform=bgr8_to_jpeg) color_bar = widgets.Image(format='jpeg', width=32*PANEL_WIDTH, height=10*PANEL_HEIGHT) display(image) display(widgets.HBox([resize,result])) display(color_bar) ###Output _____no_output_____ ###Markdown Start main process ###Code def vae_process(change): image = change['new'] image = preprocess(image) resize.value = rgb8_to_jpeg(np.transpose(np.uint8(image*255),[1,2,0])) z, _ ,_ = vae.encode(torch.unsqueeze(image,dim=0).to(device)) reconst = vae.decode(z) reconst = reconst.detach().cpu()[0].numpy() #Why ? reconstruction image change RGB. reconst = np.transpose(np.uint8(reconst*255),[1,2,0])[:,:,::-1] result.value = rgb8_to_jpeg(reconst) latent_space = z.detach().cpu().numpy()[0] color_bar.value = rgb8_to_jpeg(create_color_panel(latent_space)) vae_process({'new': camera.value}) camera.observe(vae_process, names='value') ###Output _____no_output_____ ###Markdown Cleanup process ###Code camera.unobserve(vae_process, names='value') camera_link.unlink() ###Output _____no_output_____ ###Markdown VAE viewer notebook for JetBot===This notebook can visualize vae. This repository using JetBot real camera. ###Code import sys import PIL import numpy as np import cv2 import traitlets import ipywidgets.widgets as widgets from IPython.display import display import torch from torchvision.transforms import transforms from learning_racer.vae import VAE from jetcam.csi_camera import CSICamera from jetcam.utils import bgr8_to_jpeg ###Output _____no_output_____ ###Markdown Setting Parameter|Name | Description| Default||:----|:-----------|:-------||IMAGE_CHANNELS | Image channel such as RGB | 3 Not change||VARIANTS_SIZE | Variants size of VAE | 32 ||MODEL_PATH | Trained VAE model file path | ../../vae.torch| ###Code IMAGE_CHANNELS = 3 VARIANTS_SIZE = 32 MODEL_PATH = '../../../vae.torch' ###Output _____no_output_____ ###Markdown Load trained VAE model.Loading trained VAE model on GPU memory. ###Code device = torch.device('cuda') vae = VAE(image_channels=IMAGE_CHANNELS, z_dim=VARIANTS_SIZE) vae.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device(device))) vae.to(device).eval() ###Output _____no_output_____ ###Markdown Create camera Capture size is W=320, H=240. ###Code CAMERA_WIDTH = 320 CAMERA_HEIGHT = 240 FPS = 60 camera = CSICamera(width=CAMERA_WIDTH, height=CAMERA_HEIGHT, capture_width=CAMERA_WIDTH, capture_height=CAMERA_HEIGHT, capture_fps=FPS) camera.running = True image = widgets.Image(format='jpeg', width=CAMERA_WIDTH, height=CAMERA_HEIGHT) camera_link = traitlets.dlink((camera,'value'), (image,'value'), transform=bgr8_to_jpeg) ###Output _____no_output_____ ###Markdown Define preprocess and postprocess ###Code def preprocess(image): observe = PIL.Image.fromarray(image) observe = observe.resize((160,120)) croped = observe.crop((0, 40, 160, 120)) tensor = transforms.ToTensor()(croped) return tensor def rgb8_to_jpeg(image): return bytes(cv2.imencode('.jpg', image)[1]) ###Output _____no_output_____ ###Markdown Visualize latent space function ###Code ABS_LATENT_MAX_VALUE = 10 PANEL_HEIGHT = 10 PANEL_WIDTH = 10 def sigmoid(x, gain=1, offset_x=0): return ((np.tanh(((x+offset_x)*gain)/2)+1)/2) def color_bar_rgb(x): gain = 10 offset_x= 0.2 offset_green = 0.6 x = (x * 2) - 1 red = sigmoid(x, gain, -1*offset_x) blue = 1-sigmoid(x, gain, offset_x) green = sigmoid(x, gain, offset_green) + (1-sigmoid(x,gain,-1*offset_green)) green = green - 1.0 return [blue * 255,green * 255,red * 255] def _get_color(value): t = (value + ABS_LATENT_MAX_VALUE) / (ABS_LATENT_MAX_VALUE * 2.0) color = color_bar_rgb(t) return color def create_color_panel(latent_spaces): images = [] for z in latent_spaces: p = np.zeros((PANEL_HEIGHT, PANEL_WIDTH, 3)) color = _get_color(z) p += color[::-1] p = np.clip(p, 0, 255) images.append(p) panel = np.concatenate(images, axis=1) return panel ###Output _____no_output_____ ###Markdown Create GUI ###Code image = widgets.Image(format='jpeg', width=320, height=240) resize = widgets.Image(format='jpeg', width=160, height=80) result = widgets.Image(format='jpeg', width=160, height=80) camera_link = traitlets.dlink((camera,'value'), (image,'value'), transform=bgr8_to_jpeg) color_bar = widgets.Image(format='jpeg', width=32*PANEL_WIDTH, height=10*PANEL_HEIGHT) display(image) display(widgets.HBox([resize,result])) display(color_bar) ###Output _____no_output_____ ###Markdown Start main process ###Code def vae_process(change): image = change['new'] image = preprocess(image) resize.value = rgb8_to_jpeg(np.transpose(np.uint8(image*255),[1,2,0])) z, _ ,_ = vae.encode(torch.stack((image,image),dim=0)[:-1].to(device)) reconst = vae.decode(z) reconst = reconst.detach().cpu()[0].numpy() reconst = np.transpose(np.uint8(reconst*255),[1,2,0]) result.value = rgb8_to_jpeg(reconst) latent_space = z.detach().cpu().numpy()[0] color_bar.value = rgb8_to_jpeg(create_color_panel(latent_space)) vae_process({'new': camera.value}) camera.observe(vae_process, names='value') ###Output _____no_output_____ ###Markdown Cleanup process ###Code camera.unobserve(vae_process, names='value') camera_link.unlink() ###Output _____no_output_____ ###Markdown VAE viewer notebook for JetBot===This notebook can visualize vae. This repository using JetBot real camera. ###Code import sys import PIL import numpy as np import cv2 import traitlets import ipywidgets.widgets as widgets from IPython.display import display import torch from torchvision.transforms import transforms sys.path.append('../../../vae') from vae import VAE from jetcam.csi_camera import CSICamera from jetcam.utils import bgr8_to_jpeg ###Output _____no_output_____ ###Markdown Setting Parameter|Name | Description| Default||:----|:-----------|:-------||IMAGE_CHANNELS | Image channel such as RGB | 3 Not change||VARIANTS_SIZE | Variants size of VAE | 32 ||MODEL_PATH | Trained VAE model file path | ../../vae.torch| ###Code IMAGE_CHANNELS = 3 VARIANTS_SIZE = 32 MODEL_PATH = '../../../vae.torch' ###Output _____no_output_____ ###Markdown Load trained VAE model.Loading trained VAE model on GPU memory. ###Code device = torch.device('cuda') vae = VAE(image_channels=IMAGE_CHANNELS, z_dim=VARIANTS_SIZE) vae.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device(device))) vae.to(device).eval() ###Output _____no_output_____ ###Markdown Create camera Capture size is W=320, H=240. ###Code CAMERA_WIDTH = 320 CAMERA_HEIGHT = 240 FPS = 60 camera = CSICamera(width=CAMERA_WIDTH, height=CAMERA_HEIGHT, capture_width=CAMERA_WIDTH, capture_height=CAMERA_HEIGHT, capture_fps=FPS) camera.running = True image = widgets.Image(format='jpeg', width=CAMERA_WIDTH, height=CAMERA_HEIGHT) camera_link = traitlets.dlink((camera,'value'), (image,'value'), transform=bgr8_to_jpeg) ###Output _____no_output_____ ###Markdown Define preprocess and postprocess ###Code def preprocess(image): observe = PIL.Image.fromarray(image) observe = observe.resize((160,120)) croped = observe.crop((0, 40, 160, 120)) tensor = transforms.ToTensor()(croped) return tensor def rgb8_to_jpeg(image): return bytes(cv2.imencode('.jpg', image)[1]) ###Output _____no_output_____ ###Markdown Visualize latent space function ###Code ABS_LATENT_MAX_VALUE = 10 PANEL_HEIGHT = 10 PANEL_WIDTH = 10 def sigmoid(x, gain=1, offset_x=0): return ((np.tanh(((x+offset_x)*gain)/2)+1)/2) def color_bar_rgb(x): gain = 10 offset_x= 0.2 offset_green = 0.6 x = (x * 2) - 1 red = sigmoid(x, gain, -1*offset_x) blue = 1-sigmoid(x, gain, offset_x) green = sigmoid(x, gain, offset_green) + (1-sigmoid(x,gain,-1*offset_green)) green = green - 1.0 return [blue * 255,green * 255,red * 255] def _get_color(value): t = (value + ABS_LATENT_MAX_VALUE) / (ABS_LATENT_MAX_VALUE * 2.0) color = color_bar_rgb(t) return color def create_color_panel(latent_spaces): images = [] for z in latent_spaces: p = np.zeros((PANEL_HEIGHT, PANEL_WIDTH, 3)) color = _get_color(z) p += color[::-1] p = np.clip(p, 0, 255) images.append(p) panel = np.concatenate(images, axis=1) return panel ###Output _____no_output_____ ###Markdown Create GUI ###Code image = widgets.Image(format='jpeg', width=320, height=240) resize = widgets.Image(format='jpeg', width=160, height=80) result = widgets.Image(format='jpeg', width=160, height=80) camera_link = traitlets.dlink((camera,'value'), (image,'value'), transform=bgr8_to_jpeg) color_bar = widgets.Image(format='jpeg', width=32*PANEL_WIDTH, height=10*PANEL_HEIGHT) display(image) display(widgets.HBox([resize,result])) display(color_bar) ###Output _____no_output_____ ###Markdown Start main process ###Code def vae_process(change): image = change['new'] image = preprocess(image) resize.value = rgb8_to_jpeg(np.transpose(np.uint8(image*255),[1,2,0])) z, _ ,_ = vae.encode(torch.stack((image,image),dim=0)[:-1].to(device)) reconst = vae.decode(z) reconst = reconst.detach().cpu()[0].numpy() reconst = np.transpose(np.uint8(reconst*255),[1,2,0]) result.value = rgb8_to_jpeg(reconst) latent_space = z.detach().cpu().numpy()[0] color_bar.value = rgb8_to_jpeg(create_color_panel(latent_space)) vae_process({'new': camera.value}) camera.observe(vae_process, names='value') ###Output _____no_output_____ ###Markdown Cleanup process ###Code camera.unobserve(vae_process, names='value') camera_link.unlink() ###Output _____no_output_____
notebooks/todo/DopplerSolveTwoComponentsVeryHard.ipynb
###Markdown Doppler Solve: Two Components Setup ###Code %matplotlib inline %run notebook_setup.py import starry from pathlib import Path starry_path = Path(starry.__file__).parents[0] starry.config.lazy = True starry.config.quiet = True import numpy as np import matplotlib.pyplot as plt import starry import george import pymc3 as pm import pymc3_ext as pmx import theano.tensor as tt from tqdm.auto import tqdm ###Output _____no_output_____ ###Markdown Generate ###Code # Settings flux_err = 1e-4 ydeg = 15 nt = 16 inc = 40 veq = 60000 wav = np.linspace(642.85, 643.15, 200) wav0 = np.linspace(642.75, 643.25, 200) u = [0.5, 0.25] # True intensity ratio (spot / photosphere) ratio = 0.5 # True spectra (photosphere and spot) spectrum1 = 1.0 - 0.925 * np.exp(-0.5 * (wav0 - 643.0) ** 2 / 0.0085 ** 2) spectrum2 = ( 1.0 - 0.63 * np.exp(-0.5 * (wav0 - 642.97) ** 2 / 0.0085 ** 2) - 0.6 * np.exp(-0.5 * (wav0 - 643.08) ** 2 / 0.0085 ** 2) ) # Prior on the spectra spectral_mean1 = np.ones_like(wav0) spectral_mean2 = np.ones_like(wav0) spectral_cov1 = 1e-3 * np.ones_like(wav0) spectral_cov2 = 1e-3 * np.ones_like(wav0) # Plot them fig, ax = plt.subplots(2, figsize=(12, 6), sharex=True, sharey=True) ax[0].plot(wav0, spectrum1, "k-", label="true") ax[0].plot(wav0, spectral_mean1, "C0-", label="prior") ax[0].fill_between( wav0, spectral_mean1 - np.sqrt(spectral_cov1), spectral_mean1 + np.sqrt(spectral_cov1), color="C0", alpha=0.3, ) ax[0].legend() ax[1].plot(wav0, spectrum2, "k-", label="true") ax[1].plot(wav0, spectral_mean2, "C1-", label="prior") ax[1].fill_between( wav0, spectral_mean2 - np.sqrt(spectral_cov2), spectral_mean2 + np.sqrt(spectral_cov2), color="C1", alpha=0.3, ) ax[1].legend() ax[1].set_xlabel("rest wavelength [nm]") ax[0].set_ylabel("spectrum 1") ax[1].set_ylabel("spectrum 2"); # Maps image1 = np.mean( np.flipud(plt.imread(starry_path / "img" / "spot.png"))[:, :, :3], axis=2 ) image2 = 1 - image1 # Plot them fig, ax = plt.subplots(1, 2) ax[0].imshow(image1, origin="lower", cmap="plasma", vmin=0, vmax=1) im = ax[1].imshow(image2, origin="lower", cmap="plasma", vmin=0, vmax=1) for axis in ax: axis.set_xticks([]) axis.set_yticks([]) ax[0].set_title("map 1") ax[1].set_title("map 2") plt.colorbar(im, ax=ax, shrink=0.55); # Instantiate map = starry.DopplerMap( ydeg=ydeg, udeg=len(u), nc=2, veq=veq, inc=inc, nt=nt, wav=wav, wav0=wav0, lazy=False, vsini_max=40000, ) map.load( maps=[image1, image2], spectra=[spectrum1, ratio * spectrum2], smoothing=0.075, ) for n in range(len(u)): map[1 + n] = u[n] map.show() # Generate the dataset flux = map.flux(normalize=True) flux += flux_err * np.random.randn(*flux.shape) # Plot it plt.figure(figsize=(3, 6)) plt.plot( wav, flux.T + np.linspace(0, 1, map.nt).reshape(1, -1), color="k", lw=1 ) plt.xlabel("wavelength [nm]") plt.ylabel("intensity"); plt.plot(flux.T); ###Output _____no_output_____ ###Markdown Solve: Uniform prior ###Code with pm.Model() as model: # Instantiate a uniform map map = starry.DopplerMap( ydeg=ydeg, udeg=len(u), nc=2, veq=veq, inc=inc, nt=nt, wav=wav, wav0=wav0, lazy=True, vsini_max=40000, ) for n in range(len(u)): map[1 + n] = u[n] # SHT matrix: converts from pixels to Ylms A = map.sht_matrix(smoothing=0.075) npix = A.shape[1] # Prior on the maps p = pm.Uniform("p", lower=0.0, upper=1.0, shape=(npix,)) amp = pm.Uniform("amp", lower=0.0, upper=1.0) y1 = amp * tt.dot(A, p) y2 = amp * tt.dot(A, (1 - p)) map._y = tt.concatenate( (tt.reshape(y1, (-1, 1)), tt.reshape(y2, (-1, 1))), axis=1 ) # Prior on the intensity ratio r = pm.Uniform("r", lower=0.0, upper=1.0) # Prior on the spectra np.random.seed(0) """ spectrum1 = pm.Bound(pm.Normal, upper=1.05)( "spectrum1", mu=spectral_mean1, sigma=np.sqrt(spectral_cov1), shape=(map.nw0,), testval=1 - np.sqrt(spectral_cov1) * np.abs(np.random.randn(map.nw0)), ) spectrum2 = pm.Bound(pm.Normal, upper=1.05)( "spectrum2", mu=spectral_mean2, sigma=np.sqrt(spectral_cov2), shape=(map.nw0,), testval=1 - np.sqrt(spectral_cov1) * np.abs(np.random.randn(map.nw0)), ) """ spectrum1 = pm.Bound(pm.Laplace, lower=0, upper=1 + 1e-4)( "spectrum1", mu=1.0, b=1e-3, shape=(map.nw0,), testval=1 - 3e-2 * np.abs(np.random.randn(map.nw0)), ) spectrum2 = pm.Bound(pm.Laplace, lower=0, upper=1 + 1e-4)( "spectrum2", mu=1.0, b=1e-3, shape=(map.nw0,), testval=1 - 3e-2 * np.abs(np.random.randn(map.nw0)), ) map.spectrum = tt.concatenate( (tt.reshape(spectrum1, (1, -1)), r * tt.reshape(spectrum2, (1, -1))), axis=0, ) # Compute the model flux_model = map.flux() # Likelihood term pm.Normal( "obs", mu=tt.reshape(flux_model, (-1,)), sd=flux_err, observed=flux.reshape( -1, ), ) niter = 5000 lr = 1e-1 loss = [] best_loss = np.inf map_soln = model.test_point with model: for obj, point in tqdm( pmx.optim.optimize_iterator( pmx.optim.Adam(lr=lr), niter, start=map_soln ), total=niter, ): loss.append(obj) if obj < best_loss: best_loss = obj map_soln = point loss = np.array(loss) logloss = np.log10(loss) logloss[loss < 0] = -np.log10(-loss[loss < 0]) plt.plot(np.arange(len(loss)), logloss, lw=1); with model: map.visualize(backend="matplotlib", point=map_soln); ###Output _____no_output_____
python_basico.ipynb
###Markdown Fuente https://www.w3schools.com/python/python_examples.asp ###Code #docstring """ Esto es para hacer multilinea """ #mostrar print("hello") ###Output hello ###Markdown variables ###Code x = 5 y = "Juan" print(x) print(y) ###Output 5 Juan <class 'int'> <class 'float'> <class 'complex'> ###Markdown tipo de variable ###Code x1 = 1 y1 = 2.8 z1 = 1j print(type(x1)) print(type(y1)) print(type(z1)) ###Output <class 'int'> <class 'float'> <class 'complex'> ###Markdown numeracion cientifica ###Code x = 35e3 y = 12E4 z = -87.7e100 print(x) print(type(x)) print(y) print(type(y)) print(z) print(type(z)) ###Output 35000.0 <class 'float'> 120000.0 <class 'float'> -8.77e+101 <class 'float'> ###Markdown cating int / convertir tipos a entero ###Code x = int(1) y = int(2.8) z = int("3") print(x) print(y) print(z) ###Output 1 2 3 ###Markdown cast float / convertir a tipo flotante ###Code x = float(1) y = float(2.8) z = float("3") w = float("2.3") print(x) print(y) print(z) print(w) ###Output 1.0 2.8 3.0 2.3 ###Markdown cast string & convertir a cadena o palabra ###Code x = str("1") y = str(2) z = str(3.0) print(x) print(y) print(z) ###Output 1 2 3.0 ###Markdown String ###Code a = "la primera letra" print(a[1]) b = "devuelve un substring" print(b[2:5]) c = " elimina los espacios al principio y al final " print(c.strip()) d = "longitud del string" print(len(d)) e = "minusculas" print(e.lower()) d = "mayusculas" print(d.upper()) f = "reemplaza" print(f.replace("reempl", "most")) g = "corta, por un simbolo y devuelve un diccionario" print(g.split(",")) ###Output a vue elimina los espacios al principio y al final 19 minusculas MAYUSCULAS mostaza ['corta', ' por un simbolo y devuelve un diccionario'] ###Markdown Operadores ###Code x = 5 y = 3 print(x + y) x1 = 5 y1 = 3 print(x1 - y1) x2 = 5 y2 = 3 print(x2 * y2) x3 = 12 y3 = 3 print(x3 / y3) x4 = 5 y4 = 2 print(x4 % y4) #asignacions x = 5 print(x) ###Output 8 2 15 4.0 1 5 ###Markdown Python Operadores Operadores aritméticos ###Code 2+2 #suma 3-1 #resta 2*2 #multiplicación 5/2 #división 2**2 #potencia 10%3 #residuo ,módulo 10//3 #división entre enteros ###Output _____no_output_____ ###Markdown Operadores de comparación ###Code 4<5 #menor que 4>5 #mayor que 4<=5 #menor o igual 4>=5 #mayor o igual 4==5 #igual a 4!=5 #diferente de n ###Output _____no_output_____ ###Markdown Operadores lógicos```and or not```and (y): todas deben ser verdaderas para que la afirmación sea verdaderaor (o): al menos una debe ser verdadera para que la afirmación sea verdaderanot (no): niega el valor de verdad ###Code 4<5 and 5>6 4<5 and 5<6 4<5 or 5>6 4>5 or 5>6 not 4<5 ###Output _____no_output_____ ###Markdown Tipos de datosingresos: numero; floatedad: numero; int estrato: numero; inttrabajo: binario; boolnivel_formacion: texto; straños_escolaridad: numero; intregimen_salud: texto; str ###Code type(4) #integer o entero type(4.5) #float o decimal type("carro") #string o cadena de caracteres type(False) #booleano ###Output _____no_output_____ ###Markdown Variables* Variables en minúscula* Separación con un guión bajo* No empezar con un número* La variable debe ser elocuente ###Code x = 4 y = True z = 4.5 m = 'carro' x, y, z, m n = 'azul' m + n ###Output _____no_output_____ ###Markdown  Estructuras de datos Listas```[]``` ###Code lista_vacia = [] type(lista_vacia) lista = [1,3,6,7,8,12,4,7,2,4,98] lista.append(7) #agregar a la última posición de la lista lista lista.count(7) #cuenta cuántas veces se repite el elemento en la lista lista.extend([3,4,5,6,7,8]) #agregar más de un elemento lista lista.index(4) #preguntamos por la posición del elemento lista[4] lista.insert(0, 10) #insertamos por posición al elemento (posición, elemento) lista lista.remove(4) #elimina el elemento lista lista.pop() #elimina el último elemento lista.pop(4) #elimina elemento por posición lista.sort() #organizar de menor a mayor lista lista.sort(reverse=True) #organizar de mayor a menor lista lista.clear() lista ###Output _____no_output_____ ###Markdown Tupla```()``` ###Code tupla = (3,4,6,7,21,9,9,9,5,3,6) tupla.count(9) #cuenta cuántas veces se repite el elemento en la tupla tupla.index(4) tupla[10] type(tupla) ###Output _____no_output_____ ###Markdown Diccionarios```{'key':'values'}``` ###Code dict_1 = {'key1':'values_1','key2':'values_2','key3':'values_3'} dict_1['key3'] dict_2 = {'Idiomas':['es','en','it','po','fr','de','sw'], 'Países':['España','USA','Italia','Brasil','Francia','Alemania','Kenia'], 'Capitales':['Madrid','Washington','Roma','Brasilia','Paris','Berlín','Nairobi']} dict_2['Idiomas'].append('ru') dict_2['Países'].append('Rusia') dict_2['Capitales'].append('Moscú') dict_2.items() dict_2.keys() dict_2.values() dict_2.clear() import pandas as pd df = pd.DataFrame(dict_2) df ###Output _____no_output_____ ###Markdown Funciones Funciones predeterminadas ###Code print('Hola, mundo') #imprimir el elemento print(4) print(x) input() nombre = input() apellido = input() edad = input() edad int(edad) #transforma en un entero float(edad) #transforma en un float str(3241243465) #transforma en un string list(range(0,10,2)) #punto de partida, punto de llegada, stepsize list(range(10)) list(range(2,10)) lista_valores = list(range(20)) lista_valores max(lista_valores) #número mayor min(lista_valores) #número menor sum(lista_valores) #sumatoria abs(-3) #valor absoluto n = 12341.234625865 round(n, 3) #funció para redondear (número a redondear, número de dígitos) len(lista_valores) #cuántos elementos tiene la lista ###Output _____no_output_____ ###Markdown Función```def nombre_funcion(argumentos): cuerpo de la función``` ###Code def suma(a,b): return a+b suma(3,4) def descriptivo(a): media = sum(a)/len(a) return sum(a), len(a), media descriptivo(lista_valores) ###Output _____no_output_____ ###Markdown Condicionales```if elif else``` ###Code a = 2 b = 4 if a>b: print(f'{a} es mayor que {b}') elif a<b: print(f'{a} es menor que {b}') else: print(f'{a} es igual a {b}') def tipo(a): if type(a)==int: return 'entero' elif type(a)==str: return 'texto' elif type(a)==float: return 'decimal' else: return 'tipo diferente de dato' def par_impar(a): if type(a)==int: if a%2==0: print(f'{a} es par') if a<10: print(f'{a} es menor a 10.') elif a>=10 and a<25: print(f'{a} es mayor o igual a 10.') else: print(f'{a} es mayor a 25.') else: print(f'{a} es impar') else: print(f'{a} no es un entero es un {tipo(a)}. La función solo trabaja con enteros.') par_impar(26) 5%2 par_impar(8.8) tipo(7.9) ###Output _____no_output_____ ###Markdown Bucles For```for i in iterable: cuerpo del bucle``` ###Code lista = list(range(10)) lista for numero in lista: print(numero) lista_materias = ['mate1','mate2','mate3','micro1','micro2','micro3','macro1','macro2','macro3'] lista_vistas = ['mate1','mate2','micro1','micro2','macro1'] for materia in lista_materias: if materia in lista_vistas: print(f'Ya vi {materia}') else: print(f'No he visto {materia}') for numero in lista: par_impar(numero) semestre_materias = {'primero':['mate1','fundamentos','historia'], 'segundo':['mate2','micro1','historia del pensamiento'], 'tercero':['mate3','micro2','macro1'], 'cuarto':['economate','marcro2','tecnicas']} for semestre in semestre_materias.keys(): for materia in semestre_materias[semestre]: print(semestre,materia) for i in range(3): for j in range(3): print(i,j) semestre_materias['segundo'] semestre_materias.values() ###Output _____no_output_____ ###Markdown ```break continue``` ###Code for numero in range(20): if numero%2==0: continue elif numero==17: break else: print(f'{numero} si va') lista = [1,2,3,4] lista_2 = [5,6,7,8] for i,j in zip(lista,lista_2): print(i,j) for i in enumerate(lista_2): print(i) ###Output (0, 5) (1, 6) (2, 7) (3, 8) ###Markdown While```while condición: cuerpo del bucle``` ###Code contador = 0 lista = [] while True: lista.append(1) if len(lista)==30: break len(lista) ###Output _____no_output_____ ###Markdown Atrapar errores```try:except:``` ###Code def dividir(a,b): try: print(a/b) except ZeroDivisionError: print('Error') print('-------') print('El segundo elemento no puede ser cero.') except TypeError: print('Error') print('-------') print('Ambos elementos deben ser números.') print('División realizada') dividir(4,2) dividir(60,2) dividir(120,60) dividir(23.45,3.4) dividir('u',0) import math as mt mt.sqrt(64) import statistics as st lista = [1,23,4,5,6,7,6,5,4,34,5,6,7,8,34,23,21,45] st.mean(lista) st.stdev(lista) st.variance(lista) ###Output _____no_output_____
ITIDeep1.ipynb
###Markdown ###Code from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K from keras.models import model_from_yaml batch_size = 128 num_classes = 10 epochs = 2 img_rows, img_cols = 28, 28 # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) model.save("model.h5") print("Saved model to disk") # make a prediction for a new image. from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.models import load_model # load and prepare the image def load_image(filename): # load the image img = load_img(filename, grayscale=True, target_size=(28, 28)) # convert to array img = img_to_array(img) # reshape into a single sample with 1 channel img = img.reshape(1, 28, 28, 1) # prepare pixel data img = img.astype('float32') img = img / 255.0 return img # load an image and predict the class def run_example(): # load the image img = load_image('/content/sample_image.png') # load model model = load_model('/content/model.h5') # predict the class result = model.predict_classes(img) print(result[0]) # entry point, run the example run_example() ###Output _____no_output_____ ###Markdown lets now get to fashion mnist ###Code ###Output _____no_output_____
lab02.1_PdM_Model_Development/train_basic_PdM_model.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Building a basic predictive maintenance model Simply put, **predictive maintenance (PdM)** is about pre-emptively finding and fixing flaws in a system (as long as it collects data over time, using sensors for example) in order to reduce downtime. Given a failure in some component or part of the system, we are asking how likely it is that this would result in system failure and downtime soon after. Loading and examining the data ###Code import os # standard lib for OS operations import urllib.request # for downloading data # plotting libs import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize':(15,8)}) # set figure size # ML classifiers and the like from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.neural_network import MLPClassifier from sklearn import svm # metrics for evaluating results from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score os.makedirs('./data', exist_ok = True) container = 'https://sethmottstore.blob.core.windows.net/predmaint/' urllib.request.urlretrieve(container + 'telemetry.csv', filename='../data/telemetry.csv') urllib.request.urlretrieve(container + 'maintenance.csv', filename='../data/maintenance.csv') urllib.request.urlretrieve(container + 'machines.csv', filename='../data/machines.csv') urllib.request.urlretrieve(container + 'failures.csv', filename='../data/failures.csv') # urllib.request.urlretrieve(container + 'errors.csv', filename='../data/errors.csv') urllib.request.urlretrieve(container + 'anoms.csv', filename='../data/anoms.csv') urllib.request.urlretrieve(container + 'telemetry_w_anoms.csv', filename='../data/telemetry_w_anoms.csv') ###Output _____no_output_____ ###Markdown The relevant data sources for predictive maintenance include, but are not limited to: - **Machine operating conditions:** data of the equipment health over time (usually sensor-based and streaming). We will refer to this data as machine *telemetry data*. - **Error histor:** this data contains logs of *non-breaking* errors that happen thoughout a machine's operation and which parts of the machine they came from - **Failure history:** this data contains logs of severe errors that broke the machine down (requiring maintenance to operate again) and parts of the machine that caused it - **Maintenance/repair history:** what parts were fixed/replaced (as part of scheduled maintenance or due to failure) and when - **Equipment metadata:** anything we know about equipment and parts (such as make, model, etc.) Quiz Pick two of the use cases [mentioned earlier](usecases), and provide examples of the four kinds of data needed to perform PdM for those use cases. ###Code # write solution here ###Output _____no_output_____ ###Markdown From now on we will adopt to following consistent terminology to avoid confusion:- A system as a whole will be called a **machine** and its parts are called **components**- A machine can experience **errors** when anomalies happen. Errors do NOT result in shutdown, and they are NOT tied to any particular components, but they can cause one or several component to *eventually* fail.- A machine can experience **failure** when one of its components shuts down. This requires the component to be replaced before the machine can be operational again.- For our purposes, **maintenance** means a component was replaced. This can be either as part of a routine schedule or because the component failed (prior to its scheduled maintenance). Let's now begin loading all the data and looking at the kind of information it contains. We begin with the telemetry data. ###Code import pandas as pd df_telemetry = pd.read_csv('../data/telemetry.csv', header=0) df_telemetry['datetime'] = pd.to_datetime(df_telemetry['datetime'], format="%m/%d/%Y %I:%M:%S %p") df_telemetry.head() ###Output _____no_output_____ ###Markdown Here's an example of the voltage for one machine over time. ###Code ax = sns.lineplot(x="datetime", y="volt", data=df_telemetry.loc[df_telemetry['machineID'] == 1, ]) ###Output _____no_output_____ ###Markdown Next we have the error logs, which contains information about **non-breaking** errors that happened over the course of the machine running. ###Code df_errors = pd.read_csv('../data/errors.csv', header=0) df_errors['datetime'] = pd.to_datetime(df_errors['datetime']) df_errors.head() ###Output _____no_output_____ ###Markdown We used **anomaly detection** to find errors in the above dataset. There are four kinds of errors, one for each of the telemetry variables we collect, namely voltage, rotation, pressure and vibration. There is a lot to be said about the topic of error detection. For examples, the errors we have here are univariate, meaning that we detect anomalies separately for each telemetry variable. We can also try a multi-variate anomaly detection algorithm. In this case, we could use a method like principal component analysis (PCA) to detect anomalies on the most important principal component(s). Lab A simple question we can ask is this: Do some errors happen more often in some machines than others? In other words, what is the distribution of errors across machines?Use `pd.crosstab` to answer the above quesion. Hint: use the `normalize` argument. ###Code # write solution here # %cat ../solutions/crosstab.py ###Output _____no_output_____ ###Markdown With so many machines, it may be easier to answer our question visually. We can pass the output of `pd.crosstab` directly to `sns.heatmap` to generate a heat map. How would you answer the question based on the heatmap below? Please provide examples. ###Code # write solution here # %cat ../solutions/heatmap.py ###Output _____no_output_____ ###Markdown End of lab We can visualize the errors that happen on a given machine to get a sense of how they spread over time. ###Code df_subset = df_errors.loc[(df_errors.datetime.between('2015-01-01', '2016-01-01')) & (df_errors.machineID == 1)] df_subset.head() ax = sns.stripplot(x="datetime", y="errorID", data=df_subset, jitter=0) del df_subset ###Output _____no_output_____ ###Markdown Let's now move on to the dataset that logs failures. As we can see, failures are logged by component (although any component failing will result in the machine as a whole failing). ###Code df_fails = pd.read_csv('../data/failures.csv', header=0) df_fails['datetime'] = pd.to_datetime(df_fails['datetime'], format="%m/%d/%Y %I:%M:%S %p") df_fails.head() ###Output _____no_output_____ ###Markdown Now we look at the dataset of maintenance log, which is also by component. ###Code df_maint = pd.read_csv('../data/maintenance.csv', header=0) df_maint['datetime'] = pd.to_datetime(df_maint['datetime'], format="%m/%d/%Y %I:%M:%S %p") df_maint.head() ###Output _____no_output_____ ###Markdown Lab For each component, find the percentage of replacements that are due to component failure (as opposed to scheduled maintenance). ###Code # write solution here # %cat ../solutions/percent_replacements.py ###Output _____no_output_____ ###Markdown End of lab We can obtain the same answer in a more detailed way by doing an **outer join** of the maintenance logs and the failure logs to see how many records matched and where they came from (in `pd.merge` we can use the `indicator=True` argument to get a column called `_merge` that indicates if the keys were present in the left, right, or both datasets. ###Code df_join = pd.merge(left=df_maint, right=df_fails.rename(columns={'failure':'comp'}), how = 'outer', indicator=True, on=['datetime', 'machineID', 'comp'], validate='one_to_one') df_join.head() ###Output _____no_output_____ ###Markdown - If a record is present in the left dataset only, it represents a working component being replaced due to scheduled maintenance.- If a record is present in the right dataset only, it represents a failed component that was not replaced immediately. This case should be rare since it would result in downtime.- If a record is present in both datasets, it represents a failed component that was immediately replaced (we can also call this **un-**scheduled maintenance). We can run `pd.crosstab` to get counts for each of the above categories, broken up by component. ###Code ct = pd.crosstab(df_join['comp'], df_join['_merge'], margins=True) ct.rename(columns={"left_only":"not_failed_but_replaced", "right_only":"failed_not_replaced", "both":"failed_and_replaced"}) ###Output _____no_output_____ ###Markdown We can confirm that the second category is rare. This is usually the case in cases where downtime can result in significant costs. The last dataset we look at is the machine metadata. In this case, we only have information about the model and age of the machine. ###Code df_machines = pd.read_csv('../data/machines.csv', header=0) df_machines.head() ###Output _____no_output_____ ###Markdown We are now ready to move on to the next phase, where we gradually combine our datasets into one dataset that will be used for modeling and contains the features we think will be useful. Feature engineering Our approach to getting the data ready for modeling will consist mainly of two things:- for the telemetry data, we get rolling aggregates (means and standard deviation) - for the error, failure and maintenance logs, we get obtain the number of hours since each of these events happenedWe then combine the result of the above two datasets into one, and add the machine metadata at the end. For the most part the feature engineering steps described above are relatively straight-forward, but in some cases we need to process the data in creative ways to get the results we want. ###Code df_left = df_telemetry.loc[:, ['datetime', 'machineID']] # we set this aside to this table to join all our results with # this will make it easier to automatically create features with the right column names df_errors['errorID'] = df_errors['errorID'].apply(lambda x: int(x[-1])) df_maint['comp'] = df_maint['comp'].apply(lambda x: int(x[-1])) df_fails['failure'] = df_fails['failure'].apply(lambda x: int(x[-1])) ###Output _____no_output_____ ###Markdown Let's begin with a function that will give us rolling mean and standard deviation for the telemetry data. ###Code import numpy as np def get_rolling_aggregates(df, colnames, suffixes, window, on, groupby, lagon = None): """ calculates rolling averages and standard deviations Arguments: df -- dataframe to run it on colnames -- names of columns we want rolling statistics for suffixes -- suffixes attached to the new columns (provide a list with strings) window -- the lag over which rolling statistics are calculated on -- the interval at which rolling statistics are calculated groupby -- the column used to group results by lagon -- the name of the datetime column used to compute lags (if none specified it defaults to row number) Returns: a dataframe with rolling statistics over a specified lag calculated over a specified interval """ rolling_colnames = [c + suffixes[0] for c in colnames] df_rolling_mean = df.groupby(groupby).rolling(window=window, on=lagon)[colnames].mean() df_rolling_mean.columns = rolling_colnames df_rolling_mean.reset_index(inplace=True) rolling_colnames = [c + suffixes[1] for c in colnames] df_rolling_sd = df.groupby(groupby).rolling(window=window, on=lagon)[colnames].var() df_rolling_sd.columns = rolling_colnames df_rolling_sd = df_rolling_sd.apply(np.sqrt) df_rolling_sd.reset_index(inplace=True, drop=True) df_res = pd.concat([df_rolling_mean, df_rolling_sd], axis=1) df_res = df_res.loc[df_res.index % on == on-1] return df_res ###Output _____no_output_____ ###Markdown We will apply this function twice, once to get rolling aggregates using a sliding window of 3 hours collected every 3 hours, and a second time to get rolling aggregates using a sliding window of 12 hours also collected every 3 hours. ###Code cols_to_average = df_telemetry.columns[-4:] df_telemetry_rolling_3h = get_rolling_aggregates(df_telemetry, cols_to_average, suffixes = ['_ma_3', '_sd_3'], window = 3, on = 3, groupby = 'machineID', lagon = 'datetime') # df_telemetry_rolling_3h.head(20) df_telemetry_rolling_12h = get_rolling_aggregates(df_telemetry, cols_to_average, suffixes = ['_ma_12', '_sd_12'], window = 12, on = 3, groupby = 'machineID', lagon = 'datetime') # df_telemetry_rolling_12h.head(20) ###Output _____no_output_____ ###Markdown We can combine both results into a single table and back-fill any missing values. ###Code df_telemetry_rolling = pd.concat([df_telemetry_rolling_3h, df_telemetry_rolling_12h.drop(['machineID', 'datetime'], axis=1)], axis=1, sort = True) # df_telemetry_rolling.head() df_telemetry_feat_roll = df_left.merge(df_telemetry_rolling, how="inner", on=['machineID', 'datetime'], validate = "one_to_one") df_telemetry_feat_roll.fillna(method='bfill', inplace=True) df_telemetry_feat_roll.head() del df_telemetry_rolling, df_telemetry_rolling_3h, df_telemetry_rolling_12h ###Output _____no_output_____ ###Markdown We now write a function that takes care of extracting features showing when events (errors, failures, replacements) occured. The data is then passed to the same 3-hour sliding filter as the telemetry data. Using a rolling max function, we compute if there was an event sometime in the last 3 hours. Finally we compute time elapsed since the last event. We use the following naming convention for the column names in the final dataset. For a given machine at a given date and time:- `e_1` is a flag indicating if error 1 occured, likewise for `e_2` through `e_5`- `de_1` is a numeric feature that represents the hours elapsed since the last time error 1 occured, likewise for `de_2` through `de_5`- `m_1` is a flag indicating if component 1 was replaced, likewise for `m_2` through `m_4`- `dm_1` is a numeric feature that represents the hours elapsed since the last time component 1 was replaced, likewise for `dm_2` through `dm_4`- `f_1` is a flag indicating if component 1 failed, likewise for `f_2` through `f_4`- `df_1` is a numeric feature that represents the hours elapsed since the last time component 1 failed, likewise for `df_2` through `df_4`Finally, we will use `f_1` through `f_4` to create the targets `y_1` through `y_4`:- `y_1` is a flag indicating if component 1 is about to fail, likewise for `y_2` through `y_4` ###Code def get_datetime_diffs(df_left, df_right, catvar, prefix, window, on, lagon = None, diff_type = 'timedelta64[h]', validate = 'one_to_one', show_example = True): """ finds the last time an event (error, failure, maintenance) happened over a sliding window and the time elapsed since Arguments: df_left -- dataframe with keys df_right -- dataframe with events (in this case: errors, failures, or maintenance) catvar -- the column in df_right which encodes events prefix -- prefix to add to new column names window -- the lag over which rolling max is calculated on -- the interval at which rolling max are calculated lagon -- the name of the datetime column used to compute lags (if none specified it defaults to row number) diff_type -- the format to convert time differences to (hours is the default) validate -- set to 'one_to_one' to ensure the validity of the ensuing merge operation show_example -- prints an example so we can check results Returns: the dataframe with the following columns for each event: - a dummy column showing which event happened - a corresponding difference column showing the time elapsed since the event last occured """ # create dummy columns and merge them with left data keys = ['machineID', 'datetime'] df_dummies = pd.get_dummies(df_right[catvar], prefix=prefix) df_wide = pd.concat([df_right.loc[:, keys], df_dummies], axis=1) df_wide = df_wide.groupby(keys).sum().reset_index() df = df_left.merge(df_wide, how="left", on=keys, validate = validate).fillna(0) # run a rolling window through event flags to aggregate data dummy_col_names = df_dummies.columns df = df.groupby('machineID').rolling(window=window, on=lagon)[dummy_col_names].max() df.reset_index(inplace=True) df = df.loc[df.index % on == on-1] df.reset_index(inplace=True, drop=True) df_first = df.groupby('machineID', as_index=False).nth(0) # calculate the time of the last event and the time elapsed since for col in dummy_col_names: whenlast, diffcol = 'last_' + col, 'd' + col df.loc[:, col].fillna(value = 0, inplace=True) # let's assume an event happened in row 0, so we don't have missing values for the time elapsed df.iloc[df_first.index, df.columns.get_loc(col)] = 1 df.loc[df[col] == 1, whenlast] = df.loc[df[col] == 1, 'datetime'] # for the first occurence we don't know when it last happened, so we assume it happened then df.iloc[df_first.index, df.columns.get_loc(whenlast)] = df.iloc[df_first.index, df.columns.get_loc('datetime')] df[whenlast].fillna(method='ffill', inplace=True) # df.loc[df[whenlast] > df['datetime'], whenlast] = np.nan df.loc[df[whenlast] <= df['datetime'], diffcol] = (df['datetime'] - df[whenlast]).astype(diff_type) df.drop(columns = whenlast, inplace=True) if show_example == True: col = np.random.choice(dummy_col_names, size = 1)[0] idx = np.random.choice(df.loc[df[col] == 1, :].index.tolist(), size = 1)[0] print('Example:\n') print(df.loc[df.index.isin(range(idx-3, idx+5)), ['datetime', col, 'd' + col]]) return df df_errors_feat_roll = get_datetime_diffs(df_left, df_errors, catvar='errorID', prefix='e', window = 6, lagon = 'datetime', on = 3) df_errors_feat_roll.tail() df_errors_feat_roll.loc[df_errors_feat_roll['machineID'] == 2, :].head() df_maint_feat_roll = get_datetime_diffs(df_left, df_maint, catvar='comp', prefix='m', window = 6, lagon = 'datetime', on = 3, show_example=False) df_maint_feat_roll.tail() df_maint_feat_roll.loc[df_maint_feat_roll['machineID'] == 2, :].head() df_fails_feat_roll = get_datetime_diffs(df_left, df_fails, catvar='failure', prefix='f', window = 6, lagon = 'datetime', on = 3, show_example=False) df_fails_feat_roll.tail() ###Output _____no_output_____ ###Markdown Combine features in one datasetWe now combine all four datasets into one dataset called `df_all`. First we check of course that all data frames have the same dimensions. ###Code assert(df_errors_feat_roll.shape[0] == df_fails_feat_roll.shape[0] == df_maint_feat_roll.shape[0] == df_telemetry_feat_roll.shape[0]) df_all = pd.concat([df_telemetry_feat_roll, df_errors_feat_roll.drop(columns=['machineID', 'datetime']), df_maint_feat_roll.drop(columns=['machineID', 'datetime']), df_fails_feat_roll.drop(columns=['machineID', 'datetime'])], axis = 1, verify_integrity=True) # df_all = pd.merge(left=df_telemetry_feat_roll, right=df_all, on = ['machineID', 'datetime'], validate='one_to_one') df_all = pd.merge(left=df_all, right=df_machines, how="left", on='machineID', validate = 'many_to_one') del df_join, df_left del df_telemetry_feat_roll, df_errors_feat_roll, df_fails_feat_roll, df_maint_feat_roll ###Output _____no_output_____ ###Markdown Lab This may be a good place to stop and look at the correlation matrix for all the features we have in the data. We expect some obvious correlations, but let's see if we get any less obvious ones too. We will use `sns.heatmap` to visualize the correlation matrix. ###Code # write solution here # %cat ../solutions/correlation_matrix.py ###Output _____no_output_____ ###Markdown Describe what you see in the correlation matrix. What would relatively high correlations between `m_1` through `m_4` suggest? What about the relatively high correlations between `m_1` through `m_4` and `f_1` through `f_4`? We can export the data for one of the machines to a CSV file. Export the subset of the data corresponding to the machine with ID 51 to CSV, then download the CSV file and open it in Excel to examine its content. Comment on what you see. ###Code # write solution here # %cat ../solutions/export_csv.py ###Output _____no_output_____ ###Markdown End of lab Let's look at all the features we've so far added to the data. ###Code df_all.info() ###Output _____no_output_____ ###Markdown The last step in data prep is for us to create labels for the PdM model. You might wonder why we don't just use `f_1` through `f_4` as our labels, since they indicate when a machine failed. In fact we could, but PdM is not about predicting when a machine fails, but predicting when it's **about to fail**. So it's better to create labels indicate the state of the machine shortly prior to failure (how far back we want to go is something we need to determine). Lab This is a difficult coding exercise, so we've done part of the work for you already. So far we know that we each machine has four components, and we have a feature column for each, called `f_1`, `f_2`, `f_3`, and `f_4` which tell us when a component failed. Using these features, we want to create four labels called `y_1`, `y_2`, `y_3`, and `y_4` which tell us when a component is about to fail. To get more precise, initiate with `y_1 = 0` and for a given machine, let `y_1 = 1` whenever the date and time is anywhere between 3 hours and 2 days prior to a failure occuring. Similary compute `y_2`, `y_3`, and `y_4`. Places where you need to enter code are marked as ` YOUR CODE GOES HERE`. HINT: Use the `Timedelta` method for `datetime` column types. ###Code for i in range(1, 5): # iterate over the four components # find all the times a component failed for a given machine df_temp = df_all.loc[df_all['f_' + str(i)] == 1, ['machineID', 'datetime']] label = 'y_' + str(i) # name of target column (one per component) ## YOUR CODE GOES HERE (initialize y_i = 0) for n in range(df_temp.shape[0]): # iterate over all the failure times machineID, datetime = df_temp.iloc[n, :] ## YOUR CODE GOES HERE (set y_i = 1 whenever datetime is between 2 days and 3 hours prior to failure) # %load ../solutions/compute_labels.py ###Output _____no_output_____ ###Markdown To run the above script change the magic `%cat` to `%load` which will load the content of the script into the cell. Then select the cell a second time and run it. End of lab ###Code import itertools ct = pd.concat([pd.crosstab(df_all['y_' + str(i)], df_all['f_' + str(i)]) for i in range(1, 5)], axis=1) ct.columns = ['f' + str(i) + '=' + str(j) for i, j in itertools.product(range(1, 5), range(2))] ct ###Output _____no_output_____ ###Markdown A word of caution here is in order. We should more carefully examine the distribution of the labels across machines. A brief glance at it for 10 randomly chosen machines shows that the distribution for `y_3` and `y_4` is not evenly distributed and that many machines contain only negative labels (because `f_3` and `f_4` are 0) while the machines with positive labels show a large numbers of failures. Problems like this can cause bias in our models, even when such differences can be legimtimately explained away by differences in the underlying components. As an example of the kind of problem we may run into, consider this: If in the modeling phase we choose to split the data into training and testing by machine ID (assign some machine IDs to training and the rest to testing), we will need to ensure that machines with both positive and negative labels are well represented in both datasets. ###Code import itertools ct = pd.concat([pd.crosstab(df_all['machineID'], df_all['y_' + str(i)]) for i in range(1, 5)], axis=1) ct.columns = ['y_' + str(i) + '=' + str(j) for i, j in itertools.product(range(1, 5), range(2))] ct.loc[np.random.randint(1, 100, 10)] ###Output _____no_output_____ ###Markdown Modeling See [here](https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/cortana-analytics-playbook-predictive-maintenancemodeling-techniques-for-predictive-maintenance) for more about modeling approaches for PdM. We constructed a binary label that can be used to predict the probability that the system will fail in the next $T$ time steps (48 hours, based on our specified choice). If explanability is also a goal here, then we should prefer models that can also help us explain the root cause of a failure.We have two ways of splitting the data into training and testing:- we choose a cut-off time $T_c$ such that the training data is all the data before $T_c - w$ and the test data is all the data after $T_c$, where $w$ is a safe margin to make sure that as we avoid leakage into the training data when we label the data- we split training and test set based machine ID so that assets show up in one or the other split For your benefit, here is a list of [solution templates for predictive maintenance](https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/cortana-analytics-playbook-predictive-maintenancesolution-templates-for-predictive-maintenance). ###Code df_all.columns ###Output _____no_output_____ ###Markdown Let's begin by splitting the data into training and test sets, based on a date cut-off. ###Code X_drop = ['datetime', 'machineID', 'f_1', 'f_2', 'f_3', 'f_4', 'y_1', 'y_2', 'y_3', 'y_4', 'model'] Y_keep = ['y_1', 'y_2', 'y_3', 'y_4'] X_train = df_all.loc[df_all['datetime'] < '2015-10-01', ].drop(X_drop, axis=1) y_train = df_all.loc[df_all['datetime'] < '2015-10-01', Y_keep] X_test = df_all.loc[df_all['datetime'] > '2015-10-15', ].drop(X_drop, axis=1) y_test = df_all.loc[df_all['datetime'] > '2015-10-15', Y_keep] %store X_train ../data %store X_test ../data %store y_train ../data %store y_test ../data ###Output _____no_output_____ ###Markdown Lab Report the number of failures that occur in the training and test data. Do you think the split is adequate or should we split based on a different cut-off? If so, do you recommend a higher or lower cut-off? ###Code # write solution here # %cat ../solutions/train_test_failures.py ###Output _____no_output_____ ###Markdown End of lab We can now train our model. We have chosen a MLP (multi-linear perceptron) as our model, which is a basic neural network model. ###Code pipeline = Pipeline([('scaler', StandardScaler()), ('classifier', MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 10), random_state=1))]) pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) ###Output _____no_output_____ ###Markdown Lab Print the confusion matrix and precision and recall for each of the four failure types. You can use the functions `confusion_matrix` and `classification report` to do the computation for you. The rows in the matrix represent actual cases of non-failure and failure. The columns represent predicted cases. How is precision and recall calculated from the confusion matrix? ###Code # write solution here # %load ../solutions/confusion_matrix.py ###Output _____no_output_____ ###Markdown End of lab Finally, let's create ROC plots for each type of failure. ###Code sns.set(rc={'figure.figsize':(18,5)}) from sklearn.metrics import auc, roc_curve plt.close('all') fig, axs = plt.subplots(ncols=4, sharex=True, sharey=True) for y_idx in range(4): # choose one of the outcomes fpr, tpr, thresholds = roc_curve(y_test.values[:, y_idx], y_pred[:, y_idx]) roc_auc = auc(fpr, tpr) axs[y_idx].set_title('ROC of y_' + str(y_idx)) axs[y_idx].set_ylabel('TPR') axs[y_idx].set_xlabel('FPR') axs[y_idx].plot(fpr, tpr, 'b', label = 'AUC = {0:.2f}'.format(roc_auc)) axs[y_idx].legend(loc = 'lower right') axs[y_idx].plot([0, 1], [0, 1],'r--') plt.show() ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Building a basic predictive maintenance model Simply put, **predictive maintenance (PdM)** is about pre-emptively finding and fixing flaws in a system (as long as it collects data over time, using sensors for example) in order to reduce downtime. Given a failure in some component or part of the system, we are asking how likely it is that this would result in system failure and downtime soon after. Loading and examining the data ###Code import os # standard lib for OS operations import urllib.request # for downloading data # plotting libs import matplotlib.pyplot as plt import seaborn as sns sns.set(rc={'figure.figsize':(15,8)}) # set figure size # ML classifiers and the like from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.neural_network import MLPClassifier from sklearn import svm # metrics for evaluating results from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score os.makedirs('../data', exist_ok = True) container = 'https://sethmottstore.blob.core.windows.net/predmaint/' urllib.request.urlretrieve(container + 'telemetry.csv', filename='../data/telemetry.csv') urllib.request.urlretrieve(container + 'maintenance.csv', filename='../data/maintenance.csv') urllib.request.urlretrieve(container + 'machines.csv', filename='../data/machines.csv') urllib.request.urlretrieve(container + 'failures.csv', filename='../data/failures.csv') urllib.request.urlretrieve(container + 'errors.csv', filename='../data/errors.csv') urllib.request.urlretrieve(container + 'anoms.csv', filename='../data/anoms.csv') #urllib.request.urlretrieve(container + 'telemetry_w_anoms.csv', filename='../data/telemetry_w_anoms.csv') ###Output _____no_output_____ ###Markdown The relevant data sources for predictive maintenance include, but are not limited to: - **Machine operating conditions:** data of the equipment health over time (usually sensor-based and streaming). We will refer to this data as machine *telemetry data*. - **Error histor:** this data contains logs of *non-breaking* errors that happen thoughout a machine's operation and which parts of the machine they came from - **Failure history:** this data contains logs of severe errors that broke the machine down (requiring maintenance to operate again) and parts of the machine that caused it - **Maintenance/repair history:** what parts were fixed/replaced (as part of scheduled maintenance or due to failure) and when - **Equipment metadata:** anything we know about equipment and parts (such as make, model, etc.) Quiz Pick two of the use cases [mentioned earlier](usecases), and provide examples of the four kinds of data needed to perform PdM for those use cases. ###Code # write solution here ###Output _____no_output_____ ###Markdown From now on we will adopt to following consistent terminology to avoid confusion:- A system as a whole will be called a **machine** and its parts are called **components**- A machine can experience **errors** when anomalies happen. Errors do NOT result in shutdown, and they are NOT tied to any particular components, but they can cause one or several component to *eventually* fail.- A machine can experience **failure** when one of its components shuts down. This requires the component to be replaced before the machine can be operational again.- For our purposes, **maintenance** means a component was replaced. This can be either as part of a routine schedule or because the component failed (prior to its scheduled maintenance). Let's now begin loading all the data and looking at the kind of information it contains. We begin with the telemetry data. ###Code import pandas as pd df_telemetry = pd.read_csv('../data/telemetry.csv', header=0) df_telemetry['datetime'] = pd.to_datetime(df_telemetry['datetime'], format="%m/%d/%Y %I:%M:%S %p") df_telemetry.head() ###Output _____no_output_____ ###Markdown Here's an example of the voltage for one machine over time. ###Code ax = sns.lineplot(x="datetime", y="volt", data=df_telemetry.loc[df_telemetry['machineID'] == 1, ]) ###Output _____no_output_____ ###Markdown Next we have the error logs, which contains information about **non-breaking** errors that happened over the course of the machine running. ###Code df_errors = pd.read_csv('../data/anoms.csv', header=0) df_errors['datetime'] = pd.to_datetime(df_errors['datetime']) df_errors.head() ###Output _____no_output_____ ###Markdown We used **anomaly detection** to find errors in the above dataset. There are four kinds of errors, one for each of the telemetry variables we collect, namely voltage, rotation, pressure and vibration. There is a lot to be said about the topic of error detection. For examples, the errors we have here are univariate, meaning that we detect anomalies separately for each telemetry variable. We can also try a multi-variate anomaly detection algorithm. In this case, we could use a method like principal component analysis (PCA) to detect anomalies on the most important principal component(s). Lab A simple question we can ask is this: Do some errors happen more often in some machines than others? In other words, what is the distribution of errors across machines?Use `pd.crosstab` to answer the above quesion. Hint: use the `normalize` argument. ###Code rep_dir = {"volt":"error1", "rotate":"error2","pressure":"error3","vibration":"error4"} df_errors = df_errors.replace({"errorID": rep_dir}) ct = pd.crosstab(df_errors['machineID'], df_errors['errorID'], rownames=['device'], colnames=['error'], normalize='columns') %cat ../solutions/crosstab.py ###Output ct = pd.crosstab(df_errors['machineID'], df_errors['errorID'], rownames=['device'], colnames=['error'], normalize='columns') ###Markdown With so many machines, it may be easier to answer our question visually. We can pass the output of `pd.crosstab` directly to `sns.heatmap` to generate a heat map. How would you answer the question based on the heatmap below? Please provide examples. ###Code ax = sns.heatmap(ct, xticklabels=2, yticklabels=False) %cat ../solutions/heatmap.py ###Output ax = sns.heatmap(ct, xticklabels=2, yticklabels=False) ###Markdown End of lab We can visualize the errors that happen on a given machine to get a sense of how they spread over time. ###Code df_subset = df_errors.loc[(df_errors.datetime.between('2015-01-01', '2016-01-01')) & (df_errors.machineID == 1)] df_subset.head() ax = sns.stripplot(x="datetime", y="errorID", data=df_subset, jitter=0) del df_subset ###Output _____no_output_____ ###Markdown Let's now move on to the dataset that logs failures. As we can see, failures are logged by component (although any component failing will result in the machine as a whole failing). ###Code df_fails = pd.read_csv('../data/failures.csv', header=0) df_fails['datetime'] = pd.to_datetime(df_fails['datetime'], format="%m/%d/%Y %I:%M:%S %p") df_fails.head() ###Output _____no_output_____ ###Markdown Now we look at the dataset of maintenance log, which is also by component. ###Code df_maint = pd.read_csv('../data/maintenance.csv', header=0) df_maint['datetime'] = pd.to_datetime(df_maint['datetime'], format="%m/%d/%Y %I:%M:%S %p") df_maint.head() ###Output _____no_output_____ ###Markdown Lab For each component, find the percentage of replacements that are due to component failure (as opposed to scheduled maintenance). ###Code df_counts = pd.DataFrame({'replacements' : df_maint.groupby(['comp']).count()['machineID'], 'failures' : df_fails.groupby(['failure']).count()['machineID']}) df_counts['percent_due_to_failure'] = df_counts['failures'] / df_counts['replacements'] df_counts %cat ../solutions/percent_replacements.py ###Output df_counts = pd.DataFrame({'replacements' : df_maint.groupby(['comp']).count()['machineID'], 'failures' : df_fails.groupby(['failure']).count()['machineID']}) df_counts['percent_due_to_failure'] = df_counts['failures'] / df_counts['replacements'] df_counts ###Markdown End of lab We can obtain the same answer in a more detailed way by doing an **outer join** of the maintenance logs and the failure logs to see how many records matched and where they came from (in `pd.merge` we can use the `indicator=True` argument to get a column called `_merge` that indicates if the keys were present in the left, right, or both datasets. ###Code df_join = pd.merge(left=df_maint, right=df_fails.rename(columns={'failure':'comp'}), how = 'outer', indicator=True, on=['datetime', 'machineID', 'comp'], validate='one_to_one') df_join.head() ###Output _____no_output_____ ###Markdown - If a record is present in the left dataset only, it represents a working component being replaced due to scheduled maintenance.- If a record is present in the right dataset only, it represents a failed component that was not replaced immediately. This case should be rare since it would result in downtime.- If a record is present in both datasets, it represents a failed component that was immediately replaced (we can also call this **un-**scheduled maintenance). We can run `pd.crosstab` to get counts for each of the above categories, broken up by component. ###Code ct = pd.crosstab(df_join['comp'], df_join['_merge'], margins=True) ct.rename(columns={"left_only":"not_failed_but_replaced", "right_only":"failed_not_replaced", "both":"failed_and_replaced"}) ###Output _____no_output_____ ###Markdown We can confirm that the second category is rare. This is usually the case in cases where downtime can result in significant costs. The last dataset we look at is the machine metadata. In this case, we only have information about the model and age of the machine. ###Code df_machines = pd.read_csv('../data/machines.csv', header=0) df_machines.head() ###Output _____no_output_____ ###Markdown We are now ready to move on to the next phase, where we gradually combine our datasets into one dataset that will be used for modeling and contains the features we think will be useful. Feature engineering Our approach to getting the data ready for modeling will consist mainly of two things:- for the telemetry data, we get rolling aggregates (means and standard deviation) - for the error, failure and maintenance logs, we get obtain the number of hours since each of these events happenedWe then combine the result of the above two datasets into one, and add the machine metadata at the end. For the most part the feature engineering steps described above are relatively straight-forward, but in some cases we need to process the data in creative ways to get the results we want. ###Code df_left = df_telemetry.loc[:, ['datetime', 'machineID']] # we set this aside to this table to join all our results with # this will make it easier to automatically create features with the right column names df_errors['error'] = df_errors['errorID'].apply(lambda x: int(x[-1])) df_maint['comp'] = df_maint['comp'].apply(lambda x: int(x[-1])) df_fails['failure'] = df_fails['failure'].apply(lambda x: int(x[-1])) ###Output _____no_output_____ ###Markdown Let's begin with a function that will give us rolling mean and standard deviation for the telemetry data. ###Code import numpy as np def get_rolling_aggregates(df, colnames, suffixes, window, on, groupby, lagon = None): """ calculates rolling averages and standard deviations Arguments: df -- dataframe to run it on colnames -- names of columns we want rolling statistics for suffixes -- suffixes attached to the new columns (provide a list with strings) window -- the lag over which rolling statistics are calculated on -- the interval at which rolling statistics are calculated groupby -- the column used to group results by lagon -- the name of the datetime column used to compute lags (if none specified it defaults to row number) Returns: a dataframe with rolling statistics over a specified lag calculated over a specified interval """ rolling_colnames = [c + suffixes[0] for c in colnames] df_rolling_mean = df.groupby(groupby).rolling(window=window, on=lagon)[colnames].mean() df_rolling_mean.columns = rolling_colnames df_rolling_mean.reset_index(inplace=True) rolling_colnames = [c + suffixes[1] for c in colnames] df_rolling_sd = df.groupby(groupby).rolling(window=window, on=lagon)[colnames].var() df_rolling_sd.columns = rolling_colnames df_rolling_sd = df_rolling_sd.apply(np.sqrt) df_rolling_sd.reset_index(inplace=True, drop=True) df_res = pd.concat([df_rolling_mean, df_rolling_sd], axis=1) df_res = df_res.loc[df_res.index % on == on-1] return df_res ###Output _____no_output_____ ###Markdown We will apply this function twice, once to get rolling aggregates using a sliding window of 3 hours collected every 3 hours, and a second time to get rolling aggregates using a sliding window of 12 hours also collected every 3 hours. ###Code cols_to_average = df_telemetry.columns[-4:] df_telemetry_rolling_3h = get_rolling_aggregates(df_telemetry, cols_to_average, suffixes = ['_ma_3', '_sd_3'], window = 3, on = 3, groupby = 'machineID', lagon = 'datetime') # df_telemetry_rolling_3h.head(20) df_telemetry_rolling_12h = get_rolling_aggregates(df_telemetry, cols_to_average, suffixes = ['_ma_12', '_sd_12'], window = 12, on = 3, groupby = 'machineID', lagon = 'datetime') # df_telemetry_rolling_12h.head(20) ###Output _____no_output_____ ###Markdown We can combine both results into a single table and back-fill any missing values. ###Code df_telemetry_rolling = pd.concat([df_telemetry_rolling_3h, df_telemetry_rolling_12h.drop(['machineID', 'datetime'], axis=1)], axis=1, sort = True) # df_telemetry_rolling.head() df_telemetry_feat_roll = df_left.merge(df_telemetry_rolling, how="inner", on=['machineID', 'datetime'], validate = "one_to_one") df_telemetry_feat_roll.fillna(method='bfill', inplace=True) df_telemetry_feat_roll.head() del df_telemetry_rolling, df_telemetry_rolling_3h, df_telemetry_rolling_12h ###Output _____no_output_____ ###Markdown We now write a function that takes care of extracting features showing when events (errors, failures, replacements) occured. The data is then passed to the same 3-hour sliding filter as the telemetry data. Using a rolling max function, we compute if there was an event sometime in the last 3 hours. Finally we compute time elapsed since the last event. We use the following naming convention for the column names in the final dataset. For a given machine at a given date and time:- `e_1` is a flag indicating if error 1 occured, likewise for `e_2` through `e_5`- `de_1` is a numeric feature that represents the hours elapsed since the last time error 1 occured, likewise for `de_2` through `de_5`- `m_1` is a flag indicating if component 1 was replaced, likewise for `m_2` through `m_4`- `dm_1` is a numeric feature that represents the hours elapsed since the last time component 1 was replaced, likewise for `dm_2` through `dm_4`- `f_1` is a flag indicating if component 1 failed, likewise for `f_2` through `f_4`- `df_1` is a numeric feature that represents the hours elapsed since the last time component 1 failed, likewise for `df_2` through `df_4`Finally, we will use `f_1` through `f_4` to create the targets `y_1` through `y_4`:- `y_1` is a flag indicating if component 1 is about to fail, likewise for `y_2` through `y_4` ###Code def get_datetime_diffs(df_left, df_right, catvar, prefix, window, on, lagon = None, diff_type = 'timedelta64[h]', validate = 'one_to_one', show_example = True): """ finds the last time an event (error, failure, maintenance) happened over a sliding window and the time elapsed since Arguments: df_left -- dataframe with keys df_right -- dataframe with events (in this case: errors, failures, or maintenance) catvar -- the column in df_right which encodes events prefix -- prefix to add to new column names window -- the lag over which rolling max is calculated on -- the interval at which rolling max are calculated lagon -- the name of the datetime column used to compute lags (if none specified it defaults to row number) diff_type -- the format to convert time differences to (hours is the default) validate -- set to 'one_to_one' to ensure the validity of the ensuing merge operation show_example -- prints an example so we can check results Returns: the dataframe with the following columns for each event: - a dummy column showing which event happened - a corresponding difference column showing the time elapsed since the event last occured """ # create dummy columns and merge them with left data keys = ['machineID', 'datetime'] df_dummies = pd.get_dummies(df_right[catvar], prefix=prefix) df_wide = pd.concat([df_right.loc[:, keys], df_dummies], axis=1) df_wide = df_wide.groupby(keys).sum().reset_index() df = df_left.merge(df_wide, how="left", on=keys, validate = validate).fillna(0) # run a rolling window through event flags to aggregate data dummy_col_names = df_dummies.columns df = df.groupby('machineID').rolling(window=window, on=lagon)[dummy_col_names].max() df.reset_index(inplace=True) df = df.loc[df.index % on == on-1] df.reset_index(inplace=True, drop=True) df_first = df.groupby('machineID', as_index=False).nth(0) # calculate the time of the last event and the time elapsed since for col in dummy_col_names: whenlast, diffcol = 'last_' + col, 'd' + col df.loc[:, col].fillna(value = 0, inplace=True) # let's assume an event happened in row 0, so we don't have missing values for the time elapsed df.iloc[df_first.index, df.columns.get_loc(col)] = 1 df.loc[df[col] == 1, whenlast] = df.loc[df[col] == 1, 'datetime'] # for the first occurence we don't know when it last happened, so we assume it happened then df.iloc[df_first.index, df.columns.get_loc(whenlast)] = df.iloc[df_first.index, df.columns.get_loc('datetime')] df[whenlast].fillna(method='ffill', inplace=True) # df.loc[df[whenlast] > df['datetime'], whenlast] = np.nan df.loc[df[whenlast] <= df['datetime'], diffcol] = (df['datetime'] - df[whenlast]).astype(diff_type) df.drop(columns = whenlast, inplace=True) if show_example == True: col = np.random.choice(dummy_col_names, size = 1)[0] idx = np.random.choice(df.loc[df[col] == 1, :].index.tolist(), size = 1)[0] print('Example:\n') print(df.loc[df.index.isin(range(idx-3, idx+5)), ['datetime', col, 'd' + col]]) return df df_errors_feat_roll = get_datetime_diffs(df_left, df_errors, catvar='errorID', prefix='e', window = 6, lagon = 'datetime', on = 3) df_errors_feat_roll.tail() df_errors_feat_roll.loc[df_errors_feat_roll['machineID'] == 2, :].head() df_maint_feat_roll = get_datetime_diffs(df_left, df_maint, catvar='comp', prefix='m', window = 6, lagon = 'datetime', on = 3, show_example=False) df_maint_feat_roll.tail() df_maint_feat_roll.loc[df_maint_feat_roll['machineID'] == 2, :].head() df_fails_feat_roll = get_datetime_diffs(df_left, df_fails, catvar='failure', prefix='f', window = 6, lagon = 'datetime', on = 3, show_example=False) df_fails_feat_roll.tail() ###Output _____no_output_____ ###Markdown Combine features in one datasetWe now combine all four datasets into one dataset called `df_all`. First we check of course that all data frames have the same dimensions. ###Code assert(df_errors_feat_roll.shape[0] == df_fails_feat_roll.shape[0] == df_maint_feat_roll.shape[0] == df_telemetry_feat_roll.shape[0]) df_all = pd.concat([df_telemetry_feat_roll, df_errors_feat_roll.drop(columns=['machineID', 'datetime']), df_maint_feat_roll.drop(columns=['machineID', 'datetime']), df_fails_feat_roll.drop(columns=['machineID', 'datetime'])], axis = 1, verify_integrity=True) # df_all = pd.merge(left=df_telemetry_feat_roll, right=df_all, on = ['machineID', 'datetime'], validate='one_to_one') df_all = pd.merge(left=df_all, right=df_machines, how="left", on='machineID', validate = 'many_to_one') del df_join, df_left del df_telemetry_feat_roll, df_errors_feat_roll, df_fails_feat_roll, df_maint_feat_roll ###Output _____no_output_____ ###Markdown Lab This may be a good place to stop and look at the correlation matrix for all the features we have in the data. We expect some obvious correlations, but let's see if we get any less obvious ones too. We will use `sns.heatmap` to visualize the correlation matrix. ###Code import seaborn as sns corr = df_all.corr() sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values) %cat ../solutions/correlation_matrix.py ###Output import seaborn as sns corr = df_all.corr() sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values) ###Markdown Describe what you see in the correlation matrix. What would relatively high correlations between `m_1` through `m_4` suggest? What about the relatively high correlations between `m_1` through `m_4` and `f_1` through `f_4`? We can export the data for one of the machines to a CSV file. Export the subset of the data corresponding to the machine with ID 51 to CSV, then download the CSV file and open it in Excel to examine its content. Comment on what you see. ###Code df_all.loc[(df_all['machineID'] == 51), :].sort_values(['datetime', 'machineID']).to_csv('bla.csv') %cat ../solutions/export_csv.py ###Output df_all.loc[(df_all['machineID'] == 51), :].sort_values(['datetime', 'machineID']).to_csv('bla.csv') ###Markdown End of lab Let's look at all the features we've so far added to the data. ###Code df_all.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 292033 entries, 0 to 292032 Data columns (total 44 columns): datetime 292033 non-null datetime64[ns] machineID 292033 non-null int64 volt_ma_3 292033 non-null float64 rotate_ma_3 292033 non-null float64 pressure_ma_3 292033 non-null float64 vibration_ma_3 292033 non-null float64 volt_sd_3 292033 non-null float64 rotate_sd_3 292033 non-null float64 pressure_sd_3 292033 non-null float64 vibration_sd_3 292033 non-null float64 volt_ma_12 292033 non-null float64 rotate_ma_12 292033 non-null float64 pressure_ma_12 292033 non-null float64 vibration_ma_12 292033 non-null float64 volt_sd_12 292033 non-null float64 rotate_sd_12 292033 non-null float64 pressure_sd_12 292033 non-null float64 vibration_sd_12 292033 non-null float64 e_error1 292033 non-null float64 e_error2 292033 non-null float64 e_error3 292033 non-null float64 e_error4 292033 non-null float64 de_error1 292033 non-null float64 de_error2 292033 non-null float64 de_error3 292033 non-null float64 de_error4 292033 non-null float64 m_1 292033 non-null float64 m_2 292033 non-null float64 m_3 292033 non-null float64 m_4 292033 non-null float64 dm_1 292033 non-null float64 dm_2 292033 non-null float64 dm_3 292033 non-null float64 dm_4 292033 non-null float64 f_1 292033 non-null float64 f_2 292033 non-null float64 f_3 292033 non-null float64 f_4 292033 non-null float64 df_1 292033 non-null float64 df_2 292033 non-null float64 df_3 292033 non-null float64 df_4 292033 non-null float64 model 292033 non-null object age 292033 non-null int64 dtypes: datetime64[ns](1), float64(40), int64(2), object(1) memory usage: 100.3+ MB ###Markdown The last step in data prep is for us to create labels for the PdM model. You might wonder why we don't just use `f_1` through `f_4` as our labels, since they indicate when a machine failed. In fact we could, but PdM is not about predicting when a machine fails, but predicting when it's **about to fail**. So it's better to create labels indicate the state of the machine shortly prior to failure (how far back we want to go is something we need to determine). Lab This is a difficult coding exercise, so we've done part of the work for you already. So far we know that we each machine has four components, and we have a feature column for each, called `f_1`, `f_2`, `f_3`, and `f_4` which tell us when a component failed. Using these features, we want to create four labels called `y_1`, `y_2`, `y_3`, and `y_4` which tell us when a component is about to fail. To get more precise, initiate with `y_1 = 0` and for a given machine, let `y_1 = 1` whenever the date and time is anywhere between 3 hours and 2 days prior to a failure occuring. Similary compute `y_2`, `y_3`, and `y_4`. Places where you need to enter code are marked as ` YOUR CODE GOES HERE`. HINT: Use the `Timedelta` method for `datetime` column types. ###Code for i in range(1, 5): # iterate over the four components # find all the times a component failed for a given machine df_temp = df_all.loc[df_all['f_' + str(i)] == 1, ['machineID', 'datetime']] label = 'y_' + str(i) # name of target column (one per component) ## YOUR CODE GOES HERE (initialize y_i = 0) for n in range(df_temp.shape[0]): # iterate over all the failure times machineID, datetime = df_temp.iloc[n, :] ## YOUR CODE GOES HERE (set y_i = 1 whenever datetime is between 2 days and 3 hours prior to failure) # %load ../solutions/compute_labels.py for i in range(1, 5): # iterate over the four components # find all the times a component failed for a given machine df_temp = df_all.loc[df_all['f_' + str(i)] == 1, ['machineID', 'datetime']] label = 'y_' + str(i) # name of target column (one per component) df_all[label] = 0 for n in range(df_temp.shape[0]): # iterate over all the failure times machineID, datetime = df_temp.iloc[n, :] dt_end = datetime - pd.Timedelta('3 hours') # 3 hours prior to failure dt_start = datetime - pd.Timedelta('2 days') # n days prior to failure if n % 500 == 0: print("a failure occured on machine {0} at {1}, so {2} is set to 1 between {4} and {3}".format(machineID, datetime, label, dt_end, dt_start)) df_all.loc[(df_all['machineID'] == machineID) & (df_all['datetime'].between(dt_start, dt_end)), label] = 1 ###Output a failure occured on machine 1 at 2015-01-01 08:00:00, so y_1 is set to 1 between 2014-12-30 08:00:00 and 2015-01-01 05:00:00 a failure occured on machine 1 at 2015-01-01 08:00:00, so y_2 is set to 1 between 2014-12-30 08:00:00 and 2015-01-01 05:00:00 a failure occured on machine 82 at 2015-12-09 08:00:00, so y_2 is set to 1 between 2015-12-07 08:00:00 and 2015-12-09 05:00:00 a failure occured on machine 1 at 2015-01-01 08:00:00, so y_3 is set to 1 between 2014-12-30 08:00:00 and 2015-01-01 05:00:00 a failure occured on machine 1 at 2015-01-01 08:00:00, so y_4 is set to 1 between 2014-12-30 08:00:00 and 2015-01-01 05:00:00 ###Markdown To run the above script change the magic `%cat` to `%load` which will load the content of the script into the cell. Then select the cell a second time and run it. End of lab ###Code import itertools ct = pd.concat([pd.crosstab(df_all['y_' + str(i)], df_all['f_' + str(i)]) for i in range(1, 5)], axis=1) ct.columns = ['f' + str(i) + '=' + str(j) for i, j in itertools.product(range(1, 5), range(2))] ct ###Output _____no_output_____ ###Markdown A word of caution here is in order. We should more carefully examine the distribution of the labels across machines. A brief glance at it for 10 randomly chosen machines shows that the distribution for `y_3` and `y_4` is not evenly distributed and that many machines contain only negative labels (because `f_3` and `f_4` are 0) while the machines with positive labels show a large numbers of failures. Problems like this can cause bias in our models, even when such differences can be legimtimately explained away by differences in the underlying components. As an example of the kind of problem we may run into, consider this: If in the modeling phase we choose to split the data into training and testing by machine ID (assign some machine IDs to training and the rest to testing), we will need to ensure that machines with both positive and negative labels are well represented in both datasets. ###Code import itertools ct = pd.concat([pd.crosstab(df_all['machineID'], df_all['y_' + str(i)]) for i in range(1, 5)], axis=1) ct.columns = ['y_' + str(i) + '=' + str(j) for i, j in itertools.product(range(1, 5), range(2))] ct.loc[np.random.randint(1, 100, 10)] ###Output _____no_output_____ ###Markdown Modeling See [here](https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/cortana-analytics-playbook-predictive-maintenancemodeling-techniques-for-predictive-maintenance) for more about modeling approaches for PdM. We constructed a binary label that can be used to predict the probability that the system will fail in the next $T$ time steps (48 hours, based on our specified choice). If explanability is also a goal here, then we should prefer models that can also help us explain the root cause of a failure.We have two ways of splitting the data into training and testing:- we choose a cut-off time $T_c$ such that the training data is all the data before $T_c - w$ and the test data is all the data after $T_c$, where $w$ is a safe margin to make sure that as we avoid leakage into the training data when we label the data- we split training and test set based machine ID so that assets show up in one or the other split For your benefit, here is a list of [solution templates for predictive maintenance](https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/cortana-analytics-playbook-predictive-maintenancesolution-templates-for-predictive-maintenance). ###Code df_all.columns ###Output _____no_output_____ ###Markdown Let's begin by splitting the data into training and test sets, based on a date cut-off. ###Code X_drop = ['datetime', 'machineID', 'f_1', 'f_2', 'f_3', 'f_4', 'y_1', 'y_2', 'y_3', 'y_4', 'model'] Y_keep = ['y_1', 'y_2', 'y_3', 'y_4'] X_train = df_all.loc[df_all['datetime'] < '2015-10-01', ].drop(X_drop, axis=1) y_train = df_all.loc[df_all['datetime'] < '2015-10-01', Y_keep] X_test = df_all.loc[df_all['datetime'] > '2015-10-15', ].drop(X_drop, axis=1) y_test = df_all.loc[df_all['datetime'] > '2015-10-15', Y_keep] %store X_train ../data %store X_test ../data %store y_train ../data %store y_test ../data ###Output Stored 'X_train' (DataFrame) Stored 'X_test' (DataFrame) Stored 'y_train' (DataFrame) Stored 'y_test' (DataFrame) ###Markdown Lab Report the number of failures that occur in the training and test data. Do you think the split is adequate or should we split based on a different cut-off? If so, do you recommend a higher or lower cut-off? ###Code print(pd.DataFrame({"train": y_train.apply(sum, axis = 0), "test": y_test.apply(sum, axis = 0)})) %cat ../solutions/train_test_failures.py ###Output print(pd.DataFrame({"train": y_train.apply(sum, axis = 0), "test": y_test.apply(sum, axis = 0)})) ###Markdown End of lab We can now train our model. We have chosen a MLP (multi-linear perceptron) as our model, which is a basic neural network model. ###Code pipeline = Pipeline([('scaler', StandardScaler()), ('classifier', MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 10), random_state=1))]) pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) ###Output _____no_output_____ ###Markdown Lab Print the confusion matrix and precision and recall for each of the four failure types. You can use the functions `confusion_matrix` and `classification report` to do the computation for you. The rows in the matrix represent actual cases of non-failure and failure. The columns represent predicted cases. How is precision and recall calculated from the confusion matrix? ###Code # write solution here # %load ../solutions/confusion_matrix.py print("confusion matrix:") for y_idx in range(4): print("---------------- for y_" + str(y_idx+1)) print(confusion_matrix(y_test.values[:, y_idx], y_pred[:, y_idx])) print("\nclassification report:") print(classification_report(y_test, y_pred)) print("AUC = {}".format(roc_auc_score(y_test, y_pred, average='weighted'))) ###Output confusion matrix: ---------------- for y_1 [[61907 115] [ 431 147]] ---------------- for y_2 [[61534 76] [ 926 64]] ---------------- for y_3 [[62022 170] [ 250 158]] ---------------- for y_4 [[61803 168] [ 408 221]] classification report: precision recall f1-score support 0 0.56 0.25 0.35 578 1 0.46 0.06 0.11 990 2 0.48 0.39 0.43 408 3 0.57 0.35 0.43 629 avg / total 0.51 0.23 0.29 2605 AUC = 0.6122623056675458 ###Markdown End of lab Finally, let's create ROC plots for each type of failure. ###Code sns.set(rc={'figure.figsize':(18,5)}) from sklearn.metrics import auc, roc_curve plt.close('all') fig, axs = plt.subplots(ncols=4, sharex=True, sharey=True) for y_idx in range(4): # choose one of the outcomes fpr, tpr, thresholds = roc_curve(y_test.values[:, y_idx], y_pred[:, y_idx]) roc_auc = auc(fpr, tpr) axs[y_idx].set_title('ROC of y_' + str(y_idx)) axs[y_idx].set_ylabel('TPR') axs[y_idx].set_xlabel('FPR') axs[y_idx].plot(fpr, tpr, 'b', label = 'AUC = {0:.2f}'.format(roc_auc)) axs[y_idx].legend(loc = 'lower right') axs[y_idx].plot([0, 1], [0, 1],'r--') plt.show() ###Output _____no_output_____
titanic/titaniclearningqi.ipynb
###Markdown Titanic data: Learning from disaster**Task**: predict survival of a passage giving his/her ticket class class, name, gender, age, number of siblings / spouses aboard, number of parents / children aboard, ticket number, cabin number and Port of embarkation**Notes:** - Based on the tutorial - Fix some bugs- Add cross-validation and grid search- Add Validation and Learning curvesPart I : Exploratory Data Analysis------------------------- ###Code # data analysis and wrangling import pandas as pd import numpy as np import random as rnd # visualization import seaborn as sns import matplotlib.pyplot as plt # machine learning from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.ensemble import VotingClassifier from sklearn.model_selection import GridSearchCV #Learning curve from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import cross_val_predict from sklearn.model_selection import validation_curve ###Output _____no_output_____ ###Markdown Step 1: Load data ###Code #----------------------------------------------------------- # Step 01: load data using panda #----------------------------------------------------------- train_df = pd.read_csv('../input/train.csv') # train set test_df = pd.read_csv('../input/test.csv') # test set combine = [train_df, test_df] ###Output _____no_output_____ ###Markdown Step 2: Acquire and clean data ###Code #----------------------------------------------------------- # Step 02: Acquire and clean data #----------------------------------------------------------- train_df.head(5) train_df.info() train_df.describe() train_df.describe(include=['O']) ###Output _____no_output_____ ###Markdown Training data statistics: - 891 training samples - Age, Cabin, Embarked: incomplete data - Data type: - object: Name, Sex, Ticket, Cabin, Embarked - int64: PassengerId, Survived, Pclass, SibSp, Parch - float64: Age, Fare - Survive rate: 0.383838 ###Code # remove Features: Ticket, Cabin #train_df = train_df.drop(['Ticket', 'Cabin'], axis=1) #test_df = test_df.drop(['Ticket', 'Cabin'], axis=1) #combine = [train_df, test_df] for dataset in combine: dataset['Cabin'] = dataset['Cabin'].fillna('U') dataset['Cabin'] = dataset.Cabin.str.extract('([A-Za-z])', expand=False) for dataset in combine: dataset['Cabin'] = dataset['Cabin'].map( {'A': 0, 'B': 0, 'C': 0, 'D': 0, 'E':0, 'F':0, 'G':0, 'T':0, 'U':1} ).astype(int) train_df.head() train_df = train_df.drop(['Ticket'], axis=1) test_df = test_df.drop(['Ticket'], axis=1) combine = [train_df, test_df] # survival rate distribtion as a function of Pclass train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False) # obtain Title from name (Mr, Mrs, Miss etc) for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False) for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess', 'Dona'],'Royalty') dataset['Title'] = dataset['Title'].replace(['Mme'], 'Mrs') dataset['Title'] = dataset['Title'].replace(['Mlle','Ms'], 'Miss') dataset['Title'] = dataset['Title'].replace(['Capt', 'Col', 'Major','Rev'], 'Officer') dataset['Title'] = dataset['Title'].replace(['Jonkheer', 'Don','Sir'], 'Royalty') dataset.loc[(dataset.Sex == 'male') & (dataset.Title == 'Dr'),'Title'] = 'Mr' dataset.loc[(dataset.Sex == 'female') & (dataset.Title == 'Dr'),'Title'] = 'Mrs' #: count survived rate for different titles train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean().sort_values(by='Survived', ascending=False) # Covert 'Title' to numbers (Mr->1, Miss->2 ...) title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Royalty":5, "Officer": 6} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) # Remove 'Name' and 'PassengerId' in training data, and 'Name' in testing data train_df = train_df.drop(['Name', 'PassengerId'], axis=1) test_df = test_df.drop(['Name'], axis=1) combine = [train_df, test_df] # if age < 16, set 'Sex' to Child for dataset in combine: dataset.loc[(dataset.Age < 16),'Sex'] = 'Child' # Covert 'Sex' to numbers (female:1, male:2) for dataset in combine: dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0, 'Child': 2} ).astype(int) train_df.head() # Age distribution for different values of Pclass and gender #grid = sns.FacetGrid(train_df, row='Pclass', col='Sex', size=2.2, aspect=1.6) #grid.map(plt.hist, 'Age', bins=20) #grid.add_legend() # Guess age values using median values for age across set of Pclass and gender frature combinations for dataset in combine: dataset['Age']=dataset.groupby(['Sex', 'Pclass'])['Age'].transform(lambda x: x.fillna(x.mean())).astype(int) # create Age bands and determine correlations with Survived train_df['AgeBand'] = pd.cut(train_df['Age'], 5) train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True) for dataset in combine: dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] = 4 train_df = train_df.drop(['AgeBand'], axis=1) combine = [train_df, test_df] train_df.head() # Create family size from 'sibsq + parch + 1' for dataset in combine: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_values(by='Survived', ascending=False) #create another feature called IsAlone for dataset in combine: dataset['IsAlone'] = 0 dataset.loc[(dataset['FamilySize'] == 1), 'IsAlone'] = 1 dataset.loc[(dataset['FamilySize'] > 4), 'IsAlone'] = 2 train_df[['IsAlone','Survived']].groupby(['IsAlone'], as_index=False).mean() #drop Parch, SibSp, and FamilySize features in favor of IsAlone train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1) combine = [train_df, test_df] train_df.head() # Create an artfical feature combinbing PClass and Age. for dataset in combine: dataset['Age*Class'] = dataset.Age * dataset.Pclass train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head() # fill the missing values of Embarked feature with the most common occurance freq_port = train_df.Embarked.dropna().mode()[0] for dataset in combine: dataset['Embarked'] = dataset['Embarked'].fillna(freq_port) train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False) for dataset in combine: dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int) train_df.head() # fill the missing values of Fare test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True) # Create FareBand train_df['FareBand'] = pd.qcut(train_df['Fare'], 4) train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True) # Convert the Fare feature to ordinal values based on the FareBand for dataset in combine: dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) train_df = train_df.drop(['FareBand'], axis=1) combine = [train_df, test_df] train_df.head() train_df.describe() #correlation matrix f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(train_df.corr(), vmax=.8, square=True); ###Output _____no_output_____ ###Markdown Part II : Learning Model------------------- ###Code #------------------------------------------------------------------ # Step 03: Learning model #------------------------------------------------------------------ X_data = train_df.drop("Survived", axis=1) # data: Features Y_data = train_df["Survived"] # data: Labels X_test_kaggle = test_df.drop("PassengerId", axis=1).copy() # test data (kaggle) cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0) # grid search def grid_search_model(X, Y, model, parameters, cv): CV_model = GridSearchCV(estimator=model, param_grid=parameters, cv=cv) CV_model.fit(X, Y) CV_model.cv_results_ print("Best Score:", CV_model.best_score_," / Best parameters:", CV_model.best_params_) #validation curve def validation_curve_model(X, Y, model, param_name, parameters, cv, ylim, log=True): train_scores, test_scores = validation_curve(model, X, Y, param_name=param_name, param_range=parameters,cv=cv, scoring="accuracy") train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.figure() plt.title("Validation curve") plt.fill_between(parameters, train_scores_mean - train_scores_std,train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(parameters, test_scores_mean - test_scores_std,test_scores_mean + test_scores_std, alpha=0.1, color="g") if log==True: plt.semilogx(parameters, train_scores_mean, 'o-', color="r",label="Training score") plt.semilogx(parameters, test_scores_mean, 'o-', color="g",label="Cross-validation score") else: plt.plot(parameters, train_scores_mean, 'o-', color="r",label="Training score") plt.plot(parameters, test_scores_mean, 'o-', color="g",label="Cross-validation score") #plt.ylim([0.55, 0.9]) if ylim is not None: plt.ylim(*ylim) plt.ylabel('Score') plt.xlabel('Parameter C') plt.legend(loc="best") return plt # Learning curve def Learning_curve_model(X, Y, model, cv, train_sizes): plt.figure() plt.title("Learning curve") plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve(model, X, Y, cv=cv, n_jobs=4, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std,train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std,test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r",label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g",label="Cross-validation score") plt.legend(loc="best") return plt # lrearning, prediction and printing results def predict_model(X, Y, model, Xtest, submit_name): model.fit(X, Y) Y_pred = model.predict(Xtest) score = cross_val_score(model, X, Y, cv=cv) submission = pd.DataFrame({ "PassengerId": test_df["PassengerId"], "Survived": Y_pred }) submission.to_csv(submit_name, index=False) return score ###Output _____no_output_____ ###Markdown Logistic Regression ###Code search_param = 0 # 1 -- grid search / 0 -- don't search plot_vc = 0 # 1--display validation curve/ 0-- don't display plot_lc = 1 # 1--display learning curve/ 0 -- don't display #grid search: Logistic Regression model = LogisticRegression() if search_param==1: param_range = np.logspace(-6, 5, 12) param_grid = dict(C=param_range) grid_search_model(X_data, Y_data, model, param_grid, cv) #Validation Curve: Logistic Regression if plot_vc == 1: param_range = np.logspace(-6, 3, 10) param_name="C" ylim=[0.55, 0.9] validation_curve_model(X_data, Y_data, model, "C", param_range, cv, ylim) #learn curve logreg = LogisticRegression(C=1000) if plot_lc==1: train_size=np.linspace(.1, 1.0, 15) Learning_curve_model(X_data, Y_data, logreg, cv, train_size) # Logistic Regression acc_log = predict_model(X_data, Y_data, logreg, X_test_kaggle, 'submission_Logistic.csv') ###Output _____no_output_____ ###Markdown Support Vector Machines ###Code search_param = 0 # 1 -- grid search / 0 -- don't search plot_vc = 0 # 1--display validation curve/ 0-- don't display plot_lc = 1 # 1--display learning curve/ 0 -- don't display #grid search: SVM search_param = 0 if search_param==1: param_range = np.linspace(0.5, 5, 9) param_grid = dict(C=param_range) grid_search_model(X_data, Y_data, SVC(), param_grid, cv) #Validation Curve: SVC if plot_vc == 1: param_range = np.linspace(0.1, 10, 10) param_name="C" ylim=[0.78, 0.90] validation_curve_model(X_data, Y_data, SVC(), "C", param_range, cv, ylim, log=False) #learn curve: SVC svc = SVC(C=1, probability=True) if plot_lc == 1: train_size=np.linspace(.1, 1.0, 15) Learning_curve_model(X_data, Y_data, svc, cv, train_size) # Support Vector Machines acc_svc = predict_model(X_data, Y_data, svc, X_test_kaggle, 'submission_SVM.csv') ###Output _____no_output_____ ###Markdown KNN ###Code search_param = 0 # 1 -- grid search / 0 -- don't search plot_vc = 0 # 1--display validation curve/ 0-- don't display plot_lc = 1 # 1--display learning curve/ 0 -- don't display #grid search: KNN if search_param==1: param_range = (np.linspace(1, 10, 10)).astype(int) param_grid = dict(n_neighbors=param_range) grid_search_model(X_data, Y_data, KNeighborsClassifier(), param_grid, cv) #Validation Curve: KNN if plot_vc==1: param_range = np.linspace(2, 20, 10).astype(int) param_name="n_neighbors" ylim=[0.75, 0.90] validation_curve_model(X_data, Y_data, KNeighborsClassifier(), "n_neighbors", param_range, cv, ylim, log=False) #learn curve: KNN knn = KNeighborsClassifier(n_neighbors = 10) if plot_lc==1: train_size=np.linspace(.1, 1.0, 15) Learning_curve_model(X_data, Y_data, knn, cv, train_size) # KNN acc_knn = predict_model(X_data, Y_data, knn, X_test_kaggle, 'submission_KNN.csv') ###Output _____no_output_____ ###Markdown Naive Bayes ###Code # Gaussian Naive Bayes gaussian = GaussianNB() acc_gaussian = predict_model(X_data, Y_data, gaussian, X_test_kaggle, 'submission_Gassian_Naive_Bayes.csv') ###Output _____no_output_____ ###Markdown Perceptron ###Code # Perceptron perceptron = Perceptron() acc_perceptron = predict_model(X_data, Y_data, perceptron, X_test_kaggle, 'submission_Perception.csv') ###Output /opt/conda/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py:84: FutureWarning: max_iter and tol parameters have been added in <class 'sklearn.linear_model.perceptron.Perceptron'> in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3. "and default tol will be 1e-3." % type(self), FutureWarning) ###Markdown Linear SVC ###Code # Linear SVC linear_svc = LinearSVC() acc_linear_svc = predict_model(X_data, Y_data, linear_svc, X_test_kaggle, 'submission_Linear_SVC.csv') ###Output _____no_output_____ ###Markdown Stochastic Gradient Descent ###Code # Stochastic Gradient Descent sgd = SGDClassifier() acc_sgd = predict_model(X_data, Y_data, sgd, X_test_kaggle, 'submission_stochastic_Gradient_Descent.csv') ###Output /opt/conda/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py:84: FutureWarning: max_iter and tol parameters have been added in <class 'sklearn.linear_model.stochastic_gradient.SGDClassifier'> in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3. "and default tol will be 1e-3." % type(self), FutureWarning) ###Markdown Decision Tree ###Code # Decision Tree decision_tree = DecisionTreeClassifier() acc_decision_tree = predict_model(X_data, Y_data, decision_tree, X_test_kaggle, 'submission_Decision_Tree.csv') ###Output _____no_output_____ ###Markdown Random Forest ###Code search_param = 0 # 1 -- grid search / 0 -- don't search plot_vc = 0 # 1--display validation curve/ 0-- don't display plot_lc = 1 # 1--display learning curve/ 0 -- don't display #grid search: KNN (This step is very slow) #param_range = (np.linspace(10, 110, 10)).astype(int) #param_leaf = (np.linspace(1, 2, 2)).astype(int) #param_grid = {'n_estimators':param_range, 'min_samples_leaf':param_leaf} #grid_search_model(X_data, Y_data, RandomForestClassifier(), param_grid, cv) if plot_vc==1: param_range = np.linspace(10, 110, 10).astype(int) ylim=[0.75, 0.90] validation_curve_model(X_data, Y_data, RandomForestClassifier(min_samples_leaf=12), "n_estimators", param_range, cv, ylim, log=False) if plot_vc==1: param_range = np.linspace(1, 21, 10).astype(int) ylim=[0.75, 0.90] validation_curve_model(X_data, Y_data, RandomForestClassifier(n_estimators=80), "min_samples_leaf", param_range, cv, ylim, log=False) # Random Forest random_forest = RandomForestClassifier(n_estimators=80, random_state =0, min_samples_leaf = 12) acc_random_forest = predict_model(X_data, Y_data, random_forest, X_test_kaggle, 'submission_random_forest.csv') ###Output _____no_output_____ ###Markdown Ensemble votring ###Code #ensemble votring ensemble_voting = VotingClassifier(estimators=[('lg', logreg), ('sv', svc), ('rf', random_forest),('kn',knn)], voting='soft') acc_ensemble_voting = predict_model(X_data, Y_data, ensemble_voting, X_test_kaggle, 'submission_ensemble_voting.csv') models = pd.DataFrame({'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Naive Bayes', 'Perceptron', 'Stochastic Gradient Decent', 'Linear SVC', 'Decision Tree', 'ensemble_voting'],'KFoldScore': [acc_svc.mean(), acc_knn.mean(), acc_log.mean(), acc_random_forest.mean(), acc_gaussian.mean(), acc_perceptron.mean(), acc_sgd.mean(), acc_linear_svc.mean(), acc_decision_tree.mean(), acc_ensemble_voting.mean()], 'Std': [acc_svc.std(), acc_knn.std(), acc_log.std(), acc_random_forest.std(), acc_gaussian.std(), acc_perceptron.std(), acc_sgd.std(), acc_linear_svc.std(), acc_decision_tree.std(), acc_ensemble_voting.std()]}) models.sort_values(by='KFoldScore', ascending=False) ###Output _____no_output_____
PyCitySchools/PyCitySchools.ipynb
###Markdown Observations:1. Overall Subject-wise % Stats: Students have a better pass percentage in reading(85.8%) over math(74.9%). 2. School Type & Performance: Charter schools (% Overall Passing - 90.5%) have a higher pass percentage than District schools(% Overall Passing - 50.7%). From the given data, it looks like even though both the schools have similar budget amount per student, Charter schools have comparatively less students than District schools ,which certainly helps in overall quality of education.3. Budget & Performance: Schools with the least budgets(less than $629) have better overall pass percentange. Thus, more overall budget per student doesn't mean better performace for the students. There is a possibilty than there might be other factors (school size, school type etc.) contributing to better performance of schools with less budget per student. 4. School Size & Performance: Schools with small (<1000) and medium (1000-2000) sizes have better overall pass percentages than larger schools. Hence the number of students is inversly proportional to overall pass percentage. Conclusion:Schools with less students have a better overall pass percentage. Hence charter schools with comparatively less students are doing better than District Schools. Overall students have a better pass percentage in reading than math. ###Code # Dependencies and Setup import pandas as pd import numpy as np # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) #school_data_complete #school_data #student_data #Calculate the total number of schools count_schools=school_data["school_name"].nunique() #Calculate the total number of students count_students=student_data["Student ID"].nunique() #Calculate the total budget total_budget=school_data["budget"].sum() #Calculate the average math score avg_math_score=school_data_complete["math_score"].mean() #Calculate the average reading score avg_reading_score=school_data_complete["reading_score"].mean() #Calculate the percentage of students with a passing math score (70 or greater) percent_pass_math=((student_data.loc[(student_data['math_score']>=70)]['Student ID'].count())/count_students)*100 #Calculate the percentage of students with a passing reading score (70 or greater) percent_pass_reading=((student_data.loc[(student_data['reading_score']>=70)]['Student ID'].count())/count_students)*100 #Calculate the percentage of students who passed math and reading (% Overall Passing) percent_pass_all=((student_data.loc[(student_data['reading_score']>=70) & (student_data['math_score']>=70)]['Student ID'].count())/count_students)*100 #Create a dataframe to hold the above results District_Summary_df=pd.DataFrame({"Total Schools":[count_schools] ,"Total Students":[count_students] ,"Total Budget":[total_budget] ,"Average Math Score":[avg_math_score] ,"Average Reading Score":[avg_reading_score] ,"% Passing Math":[percent_pass_math] ,"% Passing Reading":[percent_pass_reading] ,"% Overall Passing":[percent_pass_all] }) #Optional: give the displayed data cleaner formatting District_Summary_df.style.format({"Total Students":'{:,}' ,"Total Budget":'${:,.2f}' ,"Average Math Score":'{:,.2f}' ,"Average Reading Score":'{:,.2f}' ,"% Passing Math":'{:,.2f}%' ,"% Passing Reading":'{:,.2f}%' ,"% Overall Passing":'{:,.2f}%' }) #Create an overview table that summarizes key metrics about each school: #group by School Name school_group_df=school_data_complete.set_index('school_name').groupby(["school_name"]) #School Type school_type=school_data.set_index('school_name')["type"] #Total Students total_students=school_group_df["Student ID"].nunique() #Total School Budget school_budget=school_data.set_index('school_name')["budget"] #Per Student Budget student_budget=school_data.set_index('school_name')["budget"]/school_data.set_index('school_name')["size"] #Average Math Score avg_math_score=school_group_df["math_score"].mean() #Average Reading Score avg_reading_score=school_group_df["reading_score"].mean() #% Passing Math per_pass_math=((student_data.loc[(student_data['math_score']>=70)].groupby("school_name")['Student ID'].count())/total_students)*100 #% Passing Reading per_pass_reading=((student_data.loc[(student_data['reading_score']>=70)].groupby("school_name")['Student ID'].count())/total_students)*100 #% Overall Passing (The percentage of students that passed math and reading.) per_pass_all=((student_data.loc[(student_data['reading_score']>=70) & (student_data['math_score']>=70)].groupby("school_name")['Student ID'].count())/total_students)*100 #Create a dataframe to hold the above results School_Summary_df=pd.DataFrame({"School Type":school_type ,"Total Students":total_students ,"Total School Budget":school_budget ,"Per Student Budget":student_budget ,"Average Math Score":avg_math_score ,"Average Reading Score":avg_reading_score ,"% Passing Math":per_pass_math ,"% Passing Reading":per_pass_reading ,"% Overall Passing":per_pass_all }) #formatting School_Summary_df.style.format({"Total School Budget":'${:,.2f}' ,"Per Student Budget":'${:,.2f}' ,"Average Math Score":'{:,.2f}' ,"Average Reading Score":'{:,.2f}' ,"% Passing Math":'{:,.2f}%' ,"% Passing Reading":'{:,.2f}%' ,"% Overall Passing":'{:,.2f}%' }) #Sort and display the top five performing schools by % overall passing top_5_schools_df=School_Summary_df.sort_values("% Overall Passing",ascending=False) #formatting top_5_schools_df.head().style.format({"Total School Budget":'${:,.2f}' ,"Per Student Budget":'${:,.2f}' ,"Average Math Score":'{:,.2f}' ,"Average Reading Score":'{:,.2f}' ,"% Passing Math":'{:,.2f}%' ,"% Passing Reading":'{:,.2f}%' ,"% Overall Passing":'{:,.2f}%' }) #Sort and display the five worst-performing schools by % overall passing bottom_5_schools_df=School_Summary_df.sort_values("% Overall Passing",ascending=True) #formatting bottom_5_schools_df.head().style.format({"Total School Budget":'${:,.2f}' ,"Per Student Budget":'${:,.2f}' ,"Average Math Score":'{:,.2f}' ,"Average Reading Score":'{:,.2f}' ,"% Passing Math":'{:,.2f}%' ,"% Passing Reading":'{:,.2f}%' ,"% Overall Passing":'{:,.2f}%' }) #Create a table that lists the average Math Score for students of each grade level (9th, 10th, 11th, 12th) at each school. #Create a pandas series for each grade. Hint: use a conditional statement. #Group each series by school ninth_math_avg = student_data.loc[student_data['grade'] == '9th'].groupby('school_name')["math_score"].mean() tenth_math_avg = student_data.loc[student_data['grade'] == '10th'].groupby('school_name')["math_score"].mean() eleventh_math_avg = student_data.loc[student_data['grade'] == '11th'].groupby('school_name')["math_score"].mean() twelfth_math_avg = student_data.loc[student_data['grade'] == '12th'].groupby('school_name')["math_score"].mean() #Combine the series into a dataframe Math_Scores_by_Grade_df=pd.DataFrame({"9th":ninth_math_avg ,"10th":tenth_math_avg ,"11th":eleventh_math_avg ,"12th":twelfth_math_avg }) #Optional: give the displayed data cleaner formatting Math_Scores_by_Grade_df.style.format({"9th": '{:.2f}', "10th": '{:.2f}', "11th": "{:.2f}", "12th": "{:.2f}"}) #Create a table that lists the average reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. #Create a pandas series for each grade. Hint: use a conditional statement. #Group each series by school ninth_reading_avg = student_data.loc[student_data['grade'] == '9th'].groupby('school_name')["reading_score"].mean() tenth_reading_avg = student_data.loc[student_data['grade'] == '10th'].groupby('school_name')["reading_score"].mean() eleventh_reading_avg = student_data.loc[student_data['grade'] == '11th'].groupby('school_name')["reading_score"].mean() twelfth_reading_avg = student_data.loc[student_data['grade'] == '12th'].groupby('school_name')["reading_score"].mean() #Combine the series into a dataframe reading_Scores_by_Grade_df=pd.DataFrame({"9th":ninth_reading_avg ,"10th":tenth_reading_avg ,"11th":eleventh_reading_avg ,"12th":twelfth_reading_avg }) #Optional: give the displayed data cleaner formatting reading_Scores_by_Grade_df.style.format({"9th": '{:.2f}', "10th": '{:.2f}', "11th": "{:.2f}", "12th": "{:.2f}"}) #Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: #find max budget to set max bin limit budget_max=max(school_data_complete['budget']/school_data_complete['size'])+1 budget_bins = [0, 584.99, 629.99, 644.99, budget_max] budget_labels = ['<$585', "$585-629", "$630-644", "$645-675"] school_data_complete['Spending Ranges (Per Student)'] = pd.cut(school_data_complete['budget']/school_data_complete['size'], budget_bins, labels = budget_labels) #group by bins spending_groups_df=school_data_complete.groupby('Spending Ranges (Per Student)') #total student counts by bin range totStudents=spending_groups_df["Student ID"].count() #Average Math Score avg_math_score=spending_groups_df['math_score'].mean() #Average Reading Score avg_reading_score=spending_groups_df['reading_score'].mean() #% Passing Math percentage_math=((school_data_complete.loc[(school_data_complete['math_score']>=70)].groupby("Spending Ranges (Per Student)")['Student ID'].count())/totStudents)*100 #% Passing Reading percentage_reading=((school_data_complete.loc[(school_data_complete['reading_score']>=70)].groupby("Spending Ranges (Per Student)")['Student ID'].count())/totStudents)*100 #Overall Passing Rate percentage_overall_pass=((school_data_complete.loc[(school_data_complete['reading_score']>=70) & (school_data_complete['math_score']>=70)].groupby("Spending Ranges (Per Student)")['Student ID'].count())/totStudents)*100 Scores_by_School_Spending_df = pd.DataFrame({ "Average Math Score": avg_math_score, "Average Reading Score": avg_reading_score, '% Passing Math': percentage_math, '% Passing Reading': percentage_reading, "% Overall Passing": percentage_overall_pass }) #formatting Scores_by_School_Spending_df.style.format({"Average Math Score":'{:,.2f}' ,"Average Reading Score":'{:,.2f}' ,"% Passing Math":'{:,.2f}%' ,"% Passing Reading":'{:,.2f}%' ,"% Overall Passing":'{:,.2f}%' }) #Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: #find max size of bin size_max=max(school_data_complete['size'])+1 size_bins = [0, 999, 1999, size_max] size_labels = ['Small (<1000)', 'Medium (1000-2000)', 'Large (2000-5000)'] school_data_complete['School Size'] = pd.cut(school_data_complete['size'], size_bins, labels = size_labels) school_size_groups_df=school_data_complete.groupby("School Size") tot_Students=school_size_groups_df["Student ID"].nunique() #Average Math Score avg_math_score1=school_size_groups_df['math_score'].mean() #Average Reading Score avg_reading_score1=school_size_groups_df['reading_score'].mean() #% Passing Math percentage_math1=((school_data_complete.loc[(school_data_complete['math_score']>=70)].groupby("School Size")['Student ID'].count())/tot_Students)*100 #% Passing Reading percentage_reading1=((school_data_complete.loc[(school_data_complete['reading_score']>=70)].groupby("School Size")['Student ID'].count())/tot_Students)*100 #Overall Passing Rate percentage_overall_pass1=((school_data_complete.loc[(school_data_complete['reading_score']>=70) & (school_data_complete['math_score']>=70)].groupby("School Size")['Student ID'].count())/tot_Students)*100 Scores_by_School_Size_df = pd.DataFrame({ "Average Math Score": avg_math_score1, "Average Reading Score": avg_reading_score1, '% Passing Math': percentage_math1, '% Passing Reading': percentage_reading1, "% Overall Passing": percentage_overall_pass1 }) #formatting Scores_by_School_Size_df.style.format({"Average Math Score":'{:,.2f}' ,"Average Reading Score":'{:,.2f}' ,"% Passing Math":'{:,.2f}%' ,"% Passing Reading":'{:,.2f}%' ,"% Overall Passing":'{:,.2f}%' }) #Create a table that breaks down school performances based on School Type. Use 4 reasonable bins to group school spending. Include in the table each of the following: school_type_groups_df=school_data_complete.groupby("type") tot_Students1=school_type_groups_df["Student ID"].nunique() #Average Math Score avg_math_score2=school_type_groups_df['math_score'].mean() #Average Reading Score avg_reading_score2=school_type_groups_df['reading_score'].mean() #% Passing Math percentage_math2=((school_data_complete.loc[(school_data_complete['math_score']>=70)].groupby("type")['Student ID'].count())/tot_Students1)*100 #% Passing Reading percentage_reading2=((school_data_complete.loc[(school_data_complete['reading_score']>=70)].groupby("type")['Student ID'].count())/tot_Students1)*100 #Overall Passing Rate percentage_overall_pass2=((school_data_complete.loc[(school_data_complete['reading_score']>=70) & (school_data_complete['math_score']>=70)].groupby("type")['Student ID'].count())/tot_Students1)*100 Scores_by_School_Type_df = pd.DataFrame({ "Average Math Score": avg_math_score2, "Average Reading Score": avg_reading_score2, '% Passing Math': percentage_math2, '% Passing Reading': percentage_reading2, "% Overall Passing": percentage_overall_pass2 }) Scores_by_School_Type_df.index.name = "School Type" #formatting Scores_by_School_Type_df.style.format({"Average Math Score":'{:,.2f}' ,"Average Reading Score":'{:,.2f}' ,"% Passing Math":'{:,.2f}%' ,"% Passing Reading":'{:,.2f}%' ,"% Overall Passing":'{:,.2f}%' }) ###Output _____no_output_____ ###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas Data Frames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) school_df = pd.DataFrame(school_data) school_df.head() print(total_schools, total_budget, total_students) school_data = school_data.rename(columns={"name":"school_name"}) student_data = student_data.rename(columns={"school":"school_name"}) # Combine the data into a single dataset school_data_complete = pd.merge(school_data, student_data, how="left", on=["school_name"]) school_data_complete.head() ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code # Calculate the total number of schools total_schools = school_df["School ID"].count() # Print total_schools # Calculate the total number of students total_students = school_df["size"].sum() # Print total_students # Calculate the total budget total_budget= school_df["budget"].sum() # Print total_budget # Calculate the average math score avg_mathscore = school_data_complete["math_score"].mean() # Calculate the average reading score avg_readscore = school_data_complete["reading_score"].mean() # Calculate the overall passing rate (overall average score), i.e. # (avg. math score + avg. reading score)/2 passing_rate = (avg_mathscore + avg_readscore)/2 # Calculate the percentage of students with a passing # math score (70 or greater) passing_math = school_data_complete.query('math_score >70')["School ID"].count()/total_students*100 # Calculate the percentage of students with a passing # reading score (70 or greater) passing_read = school_data_complete.query('reading_score >70')["School ID"].count()/total_students*100 # Create a dataframe new_df = pd.DataFrame({"Total Schools":[total_schools], "Total Students":[total_students], "Total Budget":[total_budget], "Average Math Score":[avg_mathscore], "Average Reading Score":[avg_readscore], "Passing Math":[passing_math], "Passing Reading":[passing_read], "Overall Passing Rate":[passing_rate] }) new_df ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) * Create a dataframe to hold the above results ###Code # Create an overview table school_data = school_data_complete[["School ID", "school_name", "type", "size", "budget", "Student ID", "student_name", "gender", "grade", "reading_score", "math_score"]].copy() school_data.head() # Group by school name school = school_data.groupby(['school_name']) # Total Students per school total_students_sum = school["Student ID"].count() # Total Budget per school total_budget_sum = school["budget"].mean() # Total Budget per student bgd_per_stu = total_budget_sum/total_students_sum # Avg Math Score per School avg_mathscore_sum = school["math_score"].mean() # Avg Read Score per School avg_readscore_sum = school["reading_score"].mean() # Students Pass per School passing_math = school_data.query('math_score >70')["School ID"].count()/total_students_sum passing_reading = school_data.query('reading_score >70')["School ID"].count()/total_students_sum # Pass Rate passrate_grp = ((avg_mathscore_sum + avg_readscore_sum)/2) # Creating a DataFrame school_data_summary = pd.DataFrame({"Total Students":total_students_sum, "Total School Budget": total_budget_sum, "Per Student Budget": bgd_per_stu, "Average Math Score": avg_mathscore_sum, "Average Reading Score": avg_readscore_sum, "% Passing Math": passing_math, "% Passing Reading": passing_reading, "% Overall Passing Rate": passrate_grp }) # Remove Decimal after dot school_data_summary["% Passing Math"] = school_data_summary["% Passing Math"].round(2) school_data_summary["% Passing Reading"] = school_data_summary["% Passing Reading"].round(2) school_data_summary["% Overall Passing Rate"] = school_data_summary["% Overall Passing Rate"].round(2) # Print DataFrame school_data_summary.head(2) # Add dollar sign and percent sign school_data_summary["Total School Budget"] = school_data_summary["Total Students"].map("${:,.2f}".format) school_data_summary["Per Student Budget"] = school_data_summary["Per Student Budget"].map("${:,.2f}".format) school_data_summary["% Passing Math"] = school_data_summary["% Passing Math"].astype(str) + '%' school_data_summary["% Passing Reading"] = school_data_summary["% Passing Reading"].astype(str) + '%' school_data_summary["% Overall Passing Rate"] = school_data_summary["% Overall Passing Rate"].astype(str) + '%' school_data_summary.head() ###Output _____no_output_____ ###Markdown Top Performing Schools (By Passing Rate) * Sort and display the top five schools in overall passing rate ###Code Top_schools = school_data_summary.sort_values( ["% Overall Passing Rate"], ascending=False) Top_schools.head() ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By Passing Rate) * Sort and display the five worst-performing schools ###Code Bottom_schools = school_data_summary.sort_values( ["% Overall Passing Rate"], ascending=True) Bottom_schools.head() ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code # Create a pandas series for each grade nineth_graders = school_data[(school_data["grade"] == "9th")] tenth_graders = school_data[(school_data["grade"] == "10th")] eleventh_graders = school_data[(school_data["grade"] == "11th")] twelfth_graders = school_data[(school_data["grade"] == "12th")] # Group each series by school nineth_graders_score = nineth_graders.groupby(["school_name"]).mean()["math_score"] tenth_graders_score = tenth_graders.groupby(["school_name"]).mean()["math_score"] eleventh_graders_score = eleventh_graders.groupby(["school_name"]).mean()["math_score"] twelfth_graders_score = twelfth_graders.groupby(["school_name"]).mean()["math_score"] # Combine the series into a dataframe mathscore_by_grade = pd.DataFrame({"9th": nineth_graders_score, "10th":tenth_graders_score, "11th":eleventh_graders_score, "12th":twelfth_graders_score }) # Remove Decimal after dot mathscore_by_grade["9th"] = mathscore_by_grade["9th"].round(2) mathscore_by_grade["10th"] = mathscore_by_grade["10th"].round(2) mathscore_by_grade["11th"] = mathscore_by_grade["11th"].round(2) mathscore_by_grade["12th"] = mathscore_by_grade["12th"].round(2) mathscore_by_grade.head() ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code # Group each series by school nineth_grade = nineth_graders.groupby(["school_name"]).mean()["reading_score"] tenth_grade = tenth_graders.groupby(["school_name"]).mean()["reading_score"] eleventh_grade = eleventh_graders.groupby(["school_name"]).mean()["reading_score"] twelfth_grade = twelfth_graders.groupby(["school_name"]).mean()["reading_score"] # Combine the series into a dataframe readscore_by_grade = pd.DataFrame({"9th": nineth_grade, "10th":tenth_grade, "11th":eleventh_grade, "12th":twelfth_grade }) # Remove Decimal after dot readscore_by_grade["9th"] = readscore_by_grade["9th"].round(2) readscore_by_grade["10th"] = readscore_by_grade["10th"].round(2) readscore_by_grade["11th"] = readscore_by_grade["11th"].round(2) readscore_by_grade["12th"] = readscore_by_grade["12th"].round(2) readscore_by_grade.head() ###Output _____no_output_____ ###Markdown Observable Trends* Charter schools significantly outperform District schools: this is especially apparent in the percentage of students whom pass math, reading, and both. The average scores for math and reading are higher, as well. * Large schools (i.e. those with 2,000-5,000 students) significantly underperform - in both average scores and percentage pass rates - relative to those with 2,000 or less students.* There seems to be a negative correlation between school spending per student and performance in terms of average scores and percentage pass rates. This would be an interesting subject to explore further in order to explain what other variables may be contributing to this apparent phenomenon. ###Code # Dependencies and Setup import pandas as pd import numpy as np # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_student_df = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) school_student_df.head() ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math **and** reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code # Calculate the total number of schools school_count = len(school_student_df["school_name"].unique()) school_count # Calculate the total number of students student_count = len(school_student_df["Student ID"].unique()) student_count # Calculate the total budget total_budget = school_data["budget"].sum() total_budget # Calculate the average score for math & reading, respectively average_math_score = school_student_df["math_score"].mean() average_math_score average_reading_score = school_student_df["reading_score"].mean() average_reading_score # Calculate the percentage of students who passed math, reading, and both (overall) passing_math_count = school_student_df[(school_student_df["math_score"] >= 70)].count()["student_name"] passing_math_count passing_math_percentage = passing_math_count / float(student_count) * 100 passing_math_percentage passing_reading_count = school_student_df[(school_student_df["reading_score"] >= 70)].count()["student_name"] passing_reading_count passing_reading_percentage = passing_reading_count / float(student_count) * 100 passing_reading_percentage overall_passing_count = school_student_df[(school_student_df["math_score"] >= 70) & (school_student_df["reading_score"] >= 70)].count()["student_name"] overall_passing_percentage = overall_passing_count / float(student_count) * 100 # Create a dataframe to hold results & display in cleaner formatting # Minor Data Cleanup district_summary_df = pd.DataFrame({"Total Schools": [school_count], "Total Students": [student_count], "Total Budget": [total_budget], "Average Math Score": [average_math_score], "Average Reading Score": [average_reading_score], "% Passing Math": [passing_math_percentage], "% Passing Reading": [passing_reading_percentage], "% Overall Passing": [overall_passing_percentage]}) district_summary_df = district_summary_df[["Total Schools", "Total Students", "Total Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]] district_summary_df["Total Students"] = district_summary_df["Total Students"].map("{:,}".format) district_summary_df["Total Budget"] = district_summary_df["Total Budget"].map("${:,.2f}".format) district_summary_df.head() ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math **and** reading.) * Create a dataframe to hold the above results ###Code # Set the index and determine School Type school_type = school_data.set_index(["school_name"])["type"] # Calculate the total students per school students_per_school = school_student_df.groupby(["school_name"]).count()["Student ID"] # Calculate total and per student budgets for each school per_school_budget = school_student_df.groupby(["school_name"]).mean()["budget"] per_student_budget = per_school_budget / students_per_school # Calculate the average math score for each school school_math_score = school_student_df.groupby(["school_name"]).mean()["math_score"] # Calculate the average reading score for each school school_reading_score = school_student_df.groupby(["school_name"]).mean()["reading_score"] # Calculate the percentage students passing math for each school school_passing_math = school_student_df[(school_student_df["math_score"] >= 70)].groupby("school_name").count()["student_name"] school_math_percent = (school_passing_math / students_per_school) * 100 # Calculate the percentage of students passing reading for each school school_passing_reading = school_student_df[(school_student_df["reading_score"] >= 70)].groupby("school_name").count()["student_name"] school_reading_percent = (school_passing_reading / students_per_school) * 100 # Calculate the percentage of students passing both subjects (overall) school_passing_overall = school_student_df[(school_student_df["math_score"] >= 70) & (school_student_df["reading_score"] >= 70)].groupby("school_name").count()["student_name"] school_overall_percent = (school_passing_overall / students_per_school) * 100 # Create a data frame to display school summary data school_summary = pd.DataFrame({"School Type": school_type, "Total Students": students_per_school, "Total School Budget": per_school_budget, "Per Student Budget": per_student_budget, "Average Math Score": school_math_score, "Average Reading Score": school_reading_score, "% Passing Math": school_math_percent, "% Passing Reading": school_reading_percent, "% Overall Passing Rate": school_overall_percent}) # Cleaning and reformatting school_summary_df = school_summary[["School Type", "Total Students", "Total School Budget", "Per Student Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] school_summary_df["Total Students"] = school_summary["Total Students"].map("{:,}".format) school_summary_df["Total School Budget"] = school_summary["Total School Budget"].map("${:,.2f}".format) school_summary_df["Per Student Budget"] = school_summary["Per Student Budget"].map("${:,.2f}".format) # Display the data frame school_summary_df ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) * Sort and display the top five performing schools by % overall passing. ###Code top_performing_schools = school_summary_df.sort_values(["% Overall Passing Rate"], ascending=False) top_performing_schools.head(5) ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) * Sort and display the five worst-performing schools by % overall passing. ###Code bottom_performing_schools = school_summary_df.sort_values(["% Overall Passing Rate"], ascending=True) bottom_performing_schools.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Math Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code # Create a panda series for each grade using conditional statements nineth_graders = school_student_df[(school_student_df["grade"] == "9th")] tenth_graders = school_student_df[(school_student_df["grade"] == "10th")] eleventh_graders = school_student_df[(school_student_df["grade"] == "11th")] twelfth_graders = school_student_df[(school_student_df["grade"] == "12th")] # Group each series by school name nineth_math_scores = nineth_graders.groupby(["school_name"]).mean()["math_score"] tenth_math_scores = tenth_graders.groupby(["school_name"]).mean()["math_score"] eleventh_math_scores = eleventh_graders.groupby(["school_name"]).mean()["math_score"] twelfth_math_scores = twelfth_graders.groupby(["school_name"]).mean()["math_score"] # Combine the series into a dataframe math_scores_grade_df = pd.DataFrame({"9th": nineth_math_scores, "10th": tenth_math_scores, "11th": eleventh_math_scores, "12th": twelfth_math_scores}) # Clean the formatting math_scores_grade_df = math_scores_grade_df[["9th", "10th", "11th", "12th"]] math_scores_grade_df.index.name = None # Display the dataframe math_scores_grade_df ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code # Create a panda series for each grade using conditional statements nineth_graders = school_student_df[(school_student_df["grade"] == "9th")] tenth_graders = school_student_df[(school_student_df["grade"] == "10th")] eleventh_graders = school_student_df[(school_student_df["grade"] == "11th")] twelfth_graders = school_student_df[(school_student_df["grade"] == "12th")] # Group each series by school name nineth_reading_scores = nineth_graders.groupby(["school_name"]).mean()["reading_score"] tenth_reading_scores = tenth_graders.groupby(["school_name"]).mean()["reading_score"] eleventh_reading_scores = eleventh_graders.groupby(["school_name"]).mean()["reading_score"] twelfth_reading_scores = twelfth_graders.groupby(["school_name"]).mean()["reading_score"] # Combine the series into a dataframe reading_scores_grade_df = pd.DataFrame({"9th": nineth_reading_scores, "10th": tenth_reading_scores, "11th": eleventh_reading_scores, "12th": twelfth_reading_scores}) # Clean the formatting reading_scores_grade_df = reading_scores_grade_df[["9th", "10th", "11th", "12th"]] reading_scores_grade_df.index.name = None # Display the dataframe reading_scores_grade_df ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # Create the bins to group school spending school_spending_bins = [0, 585, 630, 645, 680] group_names = ["<$585", "$585-630", "$630-645", "$645-680"] # Categorize the school spending based on the bins school_summary_df["Spending Ranges (Per Student)"] = pd.cut(per_student_budget, school_spending_bins, labels=group_names) # Calculate the scores based on school spending spending_math_scores = school_summary_df.groupby(["Spending Ranges (Per Student)"]).mean()["Average Math Score"] spending_reading_scores = school_summary_df.groupby(["Spending Ranges (Per Student)"]).mean()["Average Reading Score"] spending_passing_math = school_summary_df.groupby(["Spending Ranges (Per Student)"]).mean()["% Passing Math"] spending_passing_reading = school_summary_df.groupby(["Spending Ranges (Per Student)"]).mean()["% Passing Reading"] overall_passing_rate = school_summary_df.groupby(["Spending Ranges (Per Student)"]).mean()["% Overall Passing Rate"] # Assemble into data frame spending_summary_df = pd.DataFrame({"Average Math Score" : spending_math_scores, "Average Reading Score": spending_reading_scores, "% Passing Math": spending_passing_math, "% Passing Reading": spending_passing_reading, "% Overall Passing Rate": overall_passing_rate}) spending_summary_df = spending_summary_df[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] # Display results spending_summary_df ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code # Create the bins to group school size school_size_bins = [0, 1000, 2000, 5000] group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] # Categorize the spending based on the bins school_summary["School Size"] = pd.cut(school_summary["Total Students"], school_size_bins, labels=group_names) # Calculate the scores based on school size size_math_scores = school_summary.groupby(["School Size"]).mean()["Average Math Score"] size_reading_scores = school_summary.groupby(["School Size"]).mean()["Average Reading Score"] size_passing_math = school_summary.groupby(["School Size"]).mean()["% Passing Math"] size_passing_reading = school_summary.groupby(["School Size"]).mean()["% Passing Reading"] overall_passing_rate = school_summary.groupby(["School Size"]).mean()["% Overall Passing Rate"] # Assemble into data frame size_summary_df = pd.DataFrame({"Average Math Score" : size_math_scores, "Average Reading Score": size_reading_scores, "% Passing Math": size_passing_math, "% Passing Reading": size_passing_reading, "% Overall Passing Rate": overall_passing_rate}) size_summary_df = size_summary_df[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] # Display results size_summary_df ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type ###Code # Calculate the scores based on school type type_math_scores = school_summary_df.groupby(["School Type"]).mean()["Average Math Score"] type_reading_scores = school_summary_df.groupby(["School Type"]).mean()["Average Reading Score"] type_passing_math = school_summary_df.groupby(["School Type"]).mean()["% Passing Math"] type_passing_reading = school_summary_df.groupby(["School Type"]).mean()["% Passing Reading"] overall_passing_rate = school_summary_df.groupby(["School Type"]).mean()["% Overall Passing Rate"] # Assemble into data frame type_summary_df = pd.DataFrame({"Average Math Score" : type_math_scores, "Average Reading Score": type_reading_scores, "% Passing Math": type_passing_math, "% Passing Reading": type_passing_reading, "% Overall Passing Rate": overall_passing_rate}) type_summary_df = type_summary_df[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] # Display results type_summary_df ###Output _____no_output_____ ###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) school_data_df = "Resources/schools_complete.csv" student_data_df = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_df) student_data = pd.read_csv(student_data_df) # Combine the data into a single dataset. school_data_combined = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math **and** reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code # Calculate Totals school_count = len(school_data_combined["school_name"].unique()) student_count = school_data_combined["Student ID"].count() total_budget = school_data["budget"].sum() # Calculate the Average Scores average_math_score = school_data_combined["math_score"].mean() average_reading_score = school_data_combined["reading_score"].mean() # Calculate the Percentage Pass Rates passing_math_count = school_data_combined[(school_data_combined["math_score"] >= 70)].count()["student_name"] passing_math_percentage = passing_math_count / float(student_count) * 100 passing_reading_count = school_data_combined[(school_data_combined["reading_score"] >= 70)].count()["student_name"] passing_reading_percentage = passing_reading_count / float(student_count) * 100 passing_math_reading_count = school_data_combined[(school_data_combined["math_score"] >= 70) & (school_data_combined["reading_score"] >= 70)].count()["student_name"] overall_passing_rate = passing_math_reading_count / float(student_count) * 100 # Data Cleanup district_summary = pd.DataFrame({"Total Schools": [school_count], "Total Students": [student_count], "Total Budget": [total_budget], "Average Math Score": [average_math_score], "Average Reading Score": [average_reading_score], "% Passing Math": [passing_math_percentage], "% Passing Reading": [passing_reading_percentage], "% Overall Passing": [overall_passing_rate]}) district_summary = district_summary[["Total Schools", "Total Students", "Total Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]] # Formatting district_summary["Total Students"] = district_summary["Total Students"].map("{:,}".format) district_summary["Total Budget"] = district_summary["Total Budget"].map("${:,.2f}".format) # Display the DataFrame district_summary ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math **and** reading.) * Create a dataframe to hold the above results ###Code # Determine the School Type school_types = school_data.set_index(["school_name"])["type"] # Calculate the total student count per_school_counts = school_data_combined["school_name"].value_counts() # Calculate the total school budget and per capita spending per_school_budget = school_data_combined.groupby(["school_name"]).mean()["budget"] per_school_capita = per_school_budget / per_school_counts # Calculate the average test scores per_school_math = school_data_combined.groupby(["school_name"]).mean()["math_score"] per_school_reading = school_data_combined.groupby(["school_name"]).mean()["reading_score"] ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) * Sort and display the top five performing schools by % overall passing. ###Code # Get the students who passed math and passed reading by creating separate filtered DataFrames. school_passing_math = school_data_combined[(school_data_combined["math_score"] >= 70)] school_passing_reading = school_data_combined[(school_data_combined["reading_score"] >= 70)] # Get the the students who passed both reading and math in a separate DataFrame. passing_math_and_reading = school_data_combined[(school_data_combined["reading_score"] >= 70) & (school_data_combined["math_score"] >= 70)] # Calculate the Percentage Pass Rates per_school_passing_math = school_passing_math.groupby(["school_name"]).count()["student_name"] / per_school_counts * 100 per_school_passing_reading = school_passing_reading.groupby(["school_name"]).count()["student_name"] / per_school_counts * 100 overall_passing_rate = passing_math_and_reading.groupby(["school_name"]).count()["student_name"] / per_school_counts * 100 # Convert to DataFrame per_school_summary = pd.DataFrame({"School Type": school_types, "Total Students": per_school_counts, "Total School Budget": per_school_budget, "Per Student Budget": per_school_capita, "Average Math Score": per_school_math, "Average Reading Score": per_school_reading, "% Passing Math": per_school_passing_math, "% Passing Reading": per_school_passing_reading, "% Overall Passing": overall_passing_rate}) # Minor data munging per_school_summary = per_school_summary[["School Type", "Total Students", "Total School Budget", "Per Student Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]] per_school_summary["Total School Budget"] = per_school_summary["Total School Budget"].map("${:,.2f}".format) per_school_summary["Per Student Budget"] = per_school_summary["Per Student Budget"].map("${:,.2f}".format) # Display the DataFrame per_school_summary ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) * Sort and display the five worst-performing schools by % overall passing. ###Code # Sort and show top five schools top_schools = per_school_summary.sort_values(["% Overall Passing"], ascending=False) top_schools.head(5) # Sort and show bottom five schools bottom_schools = per_school_summary.sort_values(["% Overall Passing"], ascending=True) bottom_schools.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code # Sort and show bottom five schools bottom_schools = per_school_summary.sort_values(["% Overall Passing"], ascending=True) bottom_schools.head(5) # Group each by school name ninth_graders_scores = ninth_graders.groupby(["school_name"]).mean()["math_score"] tenth_graders_scores = tenth_graders.groupby(["school_name"]).mean()["math_score"] eleventh_graders_scores = eleventh_graders.groupby(["school_name"]).mean()["math_score"] twelfth_graders_scores = twelfth_graders.groupby(["school_name"]).mean()["math_score"] # Combine series into single DataFrame scores_by_grade = pd.DataFrame({"9th": ninth_graders_scores, "10th": tenth_graders_scores, "11th": eleventh_graders_scores, "12th": twelfth_graders_scores}) # data munging scores_by_grade = scores_by_grade[["9th", "10th", "11th", "12th"]] scores_by_grade.index.name = None # Display the DataFrame scores_by_grade ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code # Create data series of scores by grade levels using conditionals ninth_graders = school_data_combined[(school_data_combined["grade"] == "9th")] tenth_graders = school_data_combined[(school_data_combined["grade"] == "10th")] eleventh_graders = school_data_combined[(school_data_combined["grade"] == "11th")] twelfth_graders = school_data_combined[(school_data_combined["grade"] == "12th")] # Group each by school name ninth_graders_scores = ninth_graders.groupby(["school_name"]).mean()["reading_score"] tenth_graders_scores = tenth_graders.groupby(["school_name"]).mean()["reading_score"] eleventh_graders_scores = eleventh_graders.groupby(["school_name"]).mean()["reading_score"] twelfth_graders_scores = twelfth_graders.groupby(["school_name"]).mean()["reading_score"] # Combine series into single DataFrame scores_by_grade = pd.DataFrame({"9th": ninth_graders_scores, "10th": tenth_graders_scores, "11th": eleventh_graders_scores, "12th": twelfth_graders_scores}) # Minor data munging scores_by_grade = scores_by_grade[["9th", "10th", "11th", "12th"]] scores_by_grade.index.name = None # Display the DataFrame scores_by_grade ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # Establish the bins spending_bins = [0, 585, 630, 645, 680] group_names = ["<$585", "$585-630", "$630-645", "$645-680"] # Create a copy of the school summary since it has the "Per Student Budget" # This step can be skip but its best to make a copy. school_spending_df = per_school_summary # Categorize spending based on the bins. school_spending_df["Spending Ranges (Per Student)"] = pd.cut(per_school_capita, spending_bins, labels=group_names, right=False) school_spending_df # Calculate averages for the desired columns. spending_math_scores = school_spending_df.groupby(["Spending Ranges (Per Student)"]).mean()["Average Math Score"] spending_reading_scores = school_spending_df.groupby(["Spending Ranges (Per Student)"]).mean()["Average Reading Score"] spending_passing_math = school_spending_df.groupby(["Spending Ranges (Per Student)"]).mean()["% Passing Math"] spending_passing_reading = school_spending_df.groupby(["Spending Ranges (Per Student)"]).mean()["% Passing Reading"] overall_passing_spending = school_spending_df.groupby(["Spending Ranges (Per Student)"]).mean()["% Overall Passing"] # Assemble into DataFrame spending_summary = pd.DataFrame({"Average Math Score" : spending_math_scores.round(2), "Average Reading Score": spending_reading_scores.round(2), "% Passing Math": spending_passing_math.round(2), "% Passing Reading": spending_passing_reading.round(2), "% Overall Passing": overall_passing_spending.round(2)}) # Minor data munging spending_summary = spending_summary[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]] # Display results spending_summary ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code # Establish the bins. size_bins = [0, 1000, 2000, 5000] group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] # Categorize the spending based on the bins per_school_summary["School Size"] = pd.cut(per_school_summary["Total Students"], size_bins, labels=group_names, right=False) per_school_summary # Calculate averages for the desired columns. size_math_scores = per_school_summary.groupby(["School Size"]).mean()["Average Math Score"] size_reading_scores = per_school_summary.groupby(["School Size"]).mean()["Average Reading Score"] size_passing_math = per_school_summary.groupby(["School Size"]).mean()["% Passing Math"] size_passing_reading = per_school_summary.groupby(["School Size"]).mean()["% Passing Reading"] size_overall_passing = per_school_summary.groupby(["School Size"]).mean()["% Overall Passing"] # Assemble into DataFrame size_summary = pd.DataFrame({"Average Math Score" : size_math_scores, "Average Reading Score": size_reading_scores, "% Passing Math": size_passing_math, "% Passing Reading": size_passing_reading, "% Overall Passing": size_overall_passing}) # Minor data munging size_summary = size_summary[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]] # Display results size_summary ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type ###Code # Create new series using groupby for" # Type | Average Math Score | Average Reading Score | % Passing Math | % Passing Reading | % Overall Passing type_math_scores = per_school_summary.groupby(["School Type"]).mean()["Average Math Score"] type_reading_scores = per_school_summary.groupby(["School Type"]).mean()["Average Reading Score"] type_passing_math = per_school_summary.groupby(["School Type"]).mean()["% Passing Math"] type_passing_reading = per_school_summary.groupby(["School Type"]).mean()["% Passing Reading"] type_overall_passing = per_school_summary.groupby(["School Type"]).mean()["% Overall Passing"] # Assemble into DataFrame type_summary = pd.DataFrame({"Average Math Score" : type_math_scores, "Average Reading Score": type_reading_scores, "% Passing Math": type_passing_math, "% Passing Reading": type_passing_reading, "% Overall Passing": type_overall_passing}) # Minor data munging type_summary = type_summary[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]] # Display results type_summary ###Output _____no_output_____ ###Markdown District Summary Total Number of Schools in a District ###Code #Sets the index to type District_df = school_data_complete.set_index("type") #Filters type to look at District Schools only & returns school names without duplicates Distr_schools = District_df.loc["District", "school_name"].unique() #Returns the total counts for District only total_District_schools = len(Distr_schools) ###Output _____no_output_____ ###Markdown Total Number of Students in a District ###Code #Filters type to look at District Schools only & returns size (# of students in each school) without duplicates Distr_students = District_df.loc["District","size"].unique() #Calculates the total number of students in all District school total_District_students = Distr_students.sum() ###Output _____no_output_____ ###Markdown Total District Schools Budget ###Code #Filters District row and budget column only Dist_Budget = District_df.loc["District", "budget"].unique() #Calculates the total budget for District total_District_budget = Dist_Budget.sum() ###Output _____no_output_____ ###Markdown District Average Math and Reading Scores ###Code #Creates a new df that is filtered by District row & Math/Reading scores columns #Know data is correct if row counts matches total number of District student District_Scores_df = District_df.loc[[ "District"], ["math_score", "reading_score"]] #Calculates the average of Math scores only Math_Avg = District_Scores_df["math_score"].mean() #Calculates the average of Reading scores only Reading_Avg = District_Scores_df["reading_score"].mean() ###Output _____no_output_____ ###Markdown District Students with Passing Math and Reading Scores ###Code #Defines, filters passing MATH scores (only math scores >= 70 in the df) & creates new filtered df passing_Mscore = District_Scores_df["math_score"] >= 70 passing_math_df = District_Scores_df.loc[passing_Mscore, ["math_score"]] #Returns the number of students with passing Math scores Math_passers = passing_math_df["math_score"].count() #Defines, filters passing READING scores (only reading scores >= 70 in the df) & creates new filtered df passing_Rscore = District_Scores_df["reading_score"] >= 70 passing_reading_df = District_Scores_df.loc[passing_Rscore, ["reading_score"]] #Returns the number of students with passing Reading scores Reading_passers = passing_reading_df["reading_score"].count() #Defines and filters number of students passing MATH AND READING (only math & reading scores >= 70 in the df) then creating a new filtered df pass_math_AND_reading = passing_Mscore & passing_Rscore studentspass_MandR_df = District_Scores_df.loc[pass_math_AND_reading, :] #Returns the number of students with passing Math & Reading scores Math_Reading_passers = studentspass_MandR_df["math_score"].count() ###Output _____no_output_____ ###Markdown Percentage of District Students Passing Math & Reading ###Code #Calculates percentage of students with MATH Passing scores pct_Math_passing = (Math_passers / total_District_students) * 100 #Calculates percentage of students with READING Passing scores pct_Reading_passing = (Reading_passers / total_District_students) * 100 #Calculates percentage of students with MATH & READING Passing scores pct_MathReading_passing = (Math_Reading_passers / total_District_students) * 100 #Creates a dictionary of District results District = { "Total Schools": [total_District_schools], "Total Students": [total_District_students], "Total Budget": [total_District_budget], "Average Math Score": [Math_Avg], "Average Reading Score": [Reading_Avg], "% Math Passing": [pct_Math_passing], "% Reading Passing": [pct_Reading_passing], "% Overall Passing": [pct_MathReading_passing] } #Creates summary dataframe that includes dictionary of District results District_Summary_df = pd.DataFrame(District) #Fixes formatting of total students and total budget values District_Summary_df['Total Budget'] = District_Summary_df['Total Budget'].map('${:,.2f}'.format) District_Summary_df['Total Students'] = District_Summary_df['Total Students'].map('{:,.0f}'.format) District_Summary_df.index = [' '] District_Summary_df ###Output _____no_output_____ ###Markdown School Summary ###Code #Creates a dataframe with selected columns of interest from the merged data allschools_df = school_data_complete[["Student ID","school_name", "type", "size", "budget", "math_score", "reading_score"]] ###Output _____no_output_____ ###Markdown Per Student Budget ###Code #Creates a new column in the df above that includes the calculated amount of budget per student allschools_df["Per Student Budget"] = allschools_df["budget"] / allschools_df["size"] ###Output <ipython-input-17-948b583e3e32>:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy allschools_df["Per Student Budget"] = allschools_df["budget"] / allschools_df["size"] ###Markdown School Students with Passing Scores in Math, Reading and Overall (Math & Reading) ###Code #Total number of students (to be used in calculating % Math, % Reading & Overall Passing) #Creates a df grouped by school name with total number of students student_total = allschools_df.groupby(['school_name'])["Student ID"].count() #Filters df with MATH passers (only include math scores >= 70) from all schools schoolMath_passing = allschools_df.loc[allschools_df["math_score"] >= 70] #Creates a df grouped by school name with total number of students, who PASSED MATH ONLY group_MathPassers = schoolMath_passing.groupby(['school_name'])['Student ID'].count() #Filters df with READING passers (only include reading scores >= 70) from all schools schoolReading_passing = allschools_df.loc[allschools_df["reading_score"] >= 70] #Creates a df grouped by school name with total number of students, who PASSED READING ONLY group_ReadingPassers = schoolReading_passing.groupby(['school_name'])['Student ID'].count() #Creates a variable that includes students with MATH and READING passing scores MathReading_pass_scores = (allschools_df["math_score"] >= 70) & (allschools_df["reading_score"] >= 70) #Filters df with MATH & READING passers (only include math & reading scores >= 70) from all schools schoolMathReading_passing = allschools_df.loc[MathReading_pass_scores] #Creates a df grouped by school name with total number of students, who PASSED MATH & READING group_MathReading_Passers = schoolMathReading_passing.groupby(['school_name'])['Student ID'].count() ###Output _____no_output_____ ###Markdown Passing Rates for Math, Reading & Overall ###Code #Calculate Math, Reading & Overall passing rates pct_schoolMath = (group_MathPassers / student_total)*100 pct_schoolReading = (group_ReadingPassers / student_total)*100 pct_schoolMathReading = (group_MathReading_Passers / student_total)*100 #Set up School Summary Dataframe & clean up stage #Uses the base df created set in the very beginning for school summary only (allschools_df) school_groups_df = allschools_df.groupby(["school_name"]).mean() #Adds type back (disappeared after the groupby above since non-numeric column) school_groups_df["School Type"] = allschools_df.groupby(["school_name"])['type'].min() #Add columns for Passing Rates school_groups_df["% Math Passing"] = pct_schoolMath school_groups_df["% Reading Passing"] = pct_schoolReading school_groups_df["% Overall Passing"] = pct_schoolMathReading #Drops school ID (only needed to clarify that we are aggregating students) school_groups_df = school_groups_df.drop(["Student ID"], axis=1) #Renames some columns school_groups_df = school_groups_df.rename(columns={"size":"Total Students", "budget":"Total School Budget", "math_score":"Average Math Score", "reading_score":"Average Reading Score"}) #Removes index title school_groups_df.index.names = [''] #Fixes formatting of total budget, total students and per student budget values school_groups_df['Total School Budget'] = school_groups_df['Total School Budget'].map('${:,.2f}'.format) school_groups_df['Per Student Budget'] = school_groups_df['Per Student Budget'].map('{:.2f}'.format) #Rearranged columns for final summary school_summary_df = school_groups_df[["School Type", "Total Students", "Total School Budget", "Per Student Budget", "Average Math Score", "Average Reading Score", "% Math Passing", "% Reading Passing", "% Overall Passing"]] school_summary_df ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) ###Code #Sorts and displays the top five performing schools by % overall passing topfive_Overall_df = school_summary_df.sort_values('% Overall Passing', ascending=False).head() topfive_Overall_df ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) ###Code #Sorts and displays the five worst-performing schools by % overall passing bottomfive_Overall_df = school_summary_df.sort_values('% Overall Passing', ascending=True).head() bottomfive_Overall_df ###Output _____no_output_____ ###Markdown Math Scores by Grade ###Code #Uses merged data as base df #Narrows down df by selecting columns of interest and set index to the name of school bygrade_df = school_data_complete[["school_name", "grade", "math_score", "reading_score"]] indexed_bygrade = bygrade_df.set_index(["school_name"]) #Filters df for 9th grade only nineth_students = (indexed_bygrade["grade"] == "9th") nineth_scores = indexed_bygrade.loc[nineth_students] #Creates series for average math scores for 9th graders avgMath_ninth = nineth_scores.groupby(["school_name"])['math_score'].mean() #Filters df for 10th grade only tenth_students = (indexed_bygrade["grade"] == "10th") tenth_scores = indexed_bygrade.loc[tenth_students] #Creates series for average math scores for 10th graders avgMath_tenth = tenth_scores.groupby(["school_name"])['math_score'].mean() #Filters df for 11th grade only eleventh_students = (indexed_bygrade["grade"] == "11th") eleventh_scores = indexed_bygrade.loc[eleventh_students] #Creates series for average math scores for 11th graders avgMath_eleventh = eleventh_scores.groupby(["school_name"])['math_score'].mean() #Filters df for 12th grade only twelveth_students = (indexed_bygrade["grade"] == "12th") twelveth_scores = indexed_bygrade.loc[twelveth_students] #Creates series for average math scores for 12th graders avgMath_twelveth = twelveth_scores.groupby(["school_name"])['math_score'].mean() #Creates final dataframe summary for Math Scores by Grade Math_byGrade = pd.DataFrame({ "9th": avgMath_ninth, "10th": avgMath_tenth, "11th": avgMath_eleventh, "12th": avgMath_twelveth }) Math_byGrade.index.names = [''] Math_byGrade ###Output _____no_output_____ ###Markdown Reading Score by Grade ###Code #Creates series for average Reading scores for 9th graders avgReading_ninth = nineth_scores.groupby(["school_name"])['reading_score'].mean() #Creates series for average Reading scores for 10th graders avgReading_tenth = tenth_scores.groupby(["school_name"])['reading_score'].mean() #Creates series for average Reading scores for 11th graders avgReading_eleventh = eleventh_scores.groupby(["school_name"])['reading_score'].mean() #Creates series for average Reading scores for 12th graders avgReading_twelveth = twelveth_scores.groupby(["school_name"])['reading_score'].mean() #Creates final dataframe summary for Reading Scores by Grade Reading_byGrade = pd.DataFrame({ "9th": avgReading_ninth, "10th": avgReading_tenth, "11th": avgReading_eleventh, "12th": avgReading_twelveth }) Reading_byGrade.index.names = [''] Reading_byGrade ###Output _____no_output_____ ###Markdown Scores by School Spending ###Code #Uses school_summary_df as base df and deletes columns that are not needed school_spending_df = school_summary_df.drop(["Total Students", "Total School Budget"], axis=1) #Creates a series that contains the list of bin data (Per Student Budget) #Convert values from strings to float since values need to be a float to bin cut_series = school_spending_df["Per Student Budget"].astype(float) #Creates list of breakpoints & bin labels (Per Student Budget: min=578, max=655) bin_breakpoints = [0, 584.9, 609.9, 634.9, 659.9] bin_labels = ["<$585", "$585-610", "$610-635", "$635-660"] #Adds the new series above (cut_series) to the current df as a new column school_spending_df["School Spending (per Student)"] = pd.cut( x=cut_series, bins=bin_breakpoints, labels=bin_labels, include_lowest=True ) #Creates df grouped by average budget per student avg_budget_df = school_spending_df.groupby(["School Spending (per Student)"]).mean() #Fixes formatting avg_budget_df['Average Math Score'] = avg_budget_df['Average Math Score'].map('{:.2f}'.format) avg_budget_df['Average Reading Score'] = avg_budget_df['Average Reading Score'].map('{:.2f}'.format) avg_budget_df['% Math Passing'] = avg_budget_df['% Math Passing'].map('{:.2f}'.format) avg_budget_df['% Reading Passing'] = avg_budget_df['% Reading Passing'].map('{:.2f}'.format) avg_budget_df['% Overall Passing'] = avg_budget_df['% Overall Passing'].map('{:.2f}'.format) avg_budget_df ###Output _____no_output_____ ###Markdown Scores by School Size ###Code #Creates a series that contains the list of bin data (Total Students) cut_series2 = school_summary_df["Total Students"] #list of breakpoints or bins to fill & labels bin_ranges = [0, 999.9, 1999.9, 4999.9] size_labels = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] #Adds the new series above (cut_series2) to the current df as a new column school_summary_df["School Size"] = pd.cut( x=cut_series2, bins=bin_ranges, labels=size_labels, include_lowest=True ) #Creates df grouped by average school size avg_schoolsize_df = school_summary_df.groupby(["School Size"]).mean() avg_schoolsize_df.drop(["Total Students"], axis=1) ###Output _____no_output_____ ###Markdown Scores by School Type ###Code #Creates df grouped by type of school school_type = school_summary_df.groupby(["School Type"]).mean() #Deletes column not needed for summary school_type.drop(["Total Students"], axis=1) ###Output _____no_output_____ ###Markdown PyCitySchools Analysis ###Code # Dependencies and Setup import pandas as pd import os # File to Load (Remember to Change These) school_data_to_load = os.path.join('Resources', 'schools_complete.csv') student_data_to_load = os.path.join('Resources', 'students_complete.csv') # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) school_data_complete.head() ###Output _____no_output_____ ###Markdown District Summary ###Code # Calculate the total number of schools total_schools = school_data_complete['school_name'].nunique() # Calculate the total number of students total_students = school_data_complete['Student ID'].nunique() # Calculate the total budget total_budget = school_data['budget'].sum() # Calculate the average math score math_score_avg = school_data_complete['math_score'].mean() # Calculate the average reading score reading_score_avg = school_data_complete['reading_score'].mean() # Calculate the percentage of students with a passing math score (70 or greater) passing_math_pct = (((student_data['math_score'] >= 70).sum())/total_students)*100 # Calculate the percentage of students with a passing reading score (70 or greater) passing_reading_pct = (((student_data['reading_score'] >= 70).sum())/total_students)*100 # Calculate the percentage of students who passed math and reading (% Overall Passing) overall_passing = ((((student_data['reading_score'] >= 70) & (student_data['math_score'] >= 70)).sum())/total_students)*100 # Create a dataframe to hold the above results district_summary_header = ['Total Schools', 'Total Students', 'Total Budget', 'Average Math Score', 'Average Reading Score', '% Passing Math', '% Passing Reading', '% Overall Passing Rate'] district_summary_values = [total_schools, total_students, total_budget, math_score_avg, reading_score_avg, passing_math_pct, passing_reading_pct, overall_passing] district_summary_df = pd.DataFrame([district_summary_values], columns=district_summary_header) # Formatting district_summary_df = district_summary_df.round(2) district_summary_df['Total Budget'] = district_summary_df['Total Budget'].map("${:,.0f}".format) district_summary_df ###Output _____no_output_____ ###Markdown School Summary ###Code # Determine the school name and type school_type = school_data.set_index(['school_name'])['type'] # Determine total students per school per_school_students = school_data_complete['school_name'].value_counts() # Determine total school budget per_school_budget = school_data_complete.groupby(['school_name']).mean()['budget'] # Determine per student budget per_student_budget = per_school_budget/per_school_students # Calculate average math score per_school_math_score = school_data_complete.groupby(['school_name']).mean()['math_score'] # Calculate average reading score per_school_reading_score = school_data_complete.groupby(['school_name']).mean()['reading_score'] # Calculate % passing math per_school_passing_math_pct = (school_data_complete[school_data_complete['math_score'] >=70].groupby(['school_name'])['student_name'].count()/per_school_students)*100 # Calculate % passing reading per_school_passing_reading_pct = (school_data_complete[school_data_complete['reading_score'] >=70].groupby(['school_name'])['student_name'].count()/per_school_students)*100 # Calculate % overall passing (the percentage of student that passed math and reading) per_school_overall_passing = (school_data_complete[(school_data_complete['math_score'] >=70)&(school_data_complete['reading_score'] >=70)].groupby(['school_name'])['student_name'].count()/per_school_students)*100 # Create a dataframe for school summary school_summary_df = pd.DataFrame({'School Type': school_type, 'Total Students': per_school_students, 'Total School Budget': per_school_budget, 'Per Student Budget': per_student_budget, 'Average Math Score': per_school_math_score, 'Average Reading Score': per_school_reading_score, '% Passing Math': per_school_passing_math_pct, '% Passing Reading': per_school_passing_reading_pct, '% Overall Passing Rate': per_school_overall_passing}) # Formatting school_summary_df['Total School Budget'] = school_summary_df['Total School Budget'].map("${:,.2f}".format) school_summary_df['Per Student Budget'] = school_summary_df['Per Student Budget'].map("${:,.2f}".format) school_summary_df = school_summary_df.round(2) school_summary_df ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) ###Code top_perf_schools = school_summary_df.sort_values(['% Overall Passing Rate'], ascending=False) top_perf_schools.head(5) ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) ###Code top_perf_schools = school_summary_df.sort_values(['% Overall Passing Rate'], ascending=True) top_perf_schools.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade ###Code # Create a pandas series for each grade using a conditional statement ninth_grade = school_data_complete[(school_data_complete['grade'] == '9th')] tenth_grade = school_data_complete[(school_data_complete['grade'] == '10th')] eleventh_grade = school_data_complete[(school_data_complete['grade'] == '11th')] twelfth_grade = school_data_complete[(school_data_complete['grade'] == '12th')] # Group each series by school ninth_grade_math = ninth_grade.groupby(['school_name']).mean()['math_score'] tenth_grade_math = tenth_grade.groupby(['school_name']).mean()['math_score'] eleventh_grade_math = eleventh_grade.groupby(['school_name']).mean()['math_score'] twelfth_grade_math = twelfth_grade.groupby(['school_name']).mean()['math_score'] # Combine the series into a dataframe math_scores_per_grade_df = pd.DataFrame({'9th': ninth_grade_math, '10th': tenth_grade_math, '11th': eleventh_grade_math, '12th': twelfth_grade_math}) # Formatting math_scores_per_grade_df = math_scores_per_grade_df.round(2) math_scores_per_grade_df.index.name = None math_scores_per_grade_df ###Output _____no_output_____ ###Markdown Reading Score by Grade ###Code # Group each series by school ninth_grade_reading = ninth_grade.groupby(['school_name']).mean()['reading_score'] tenth_grade_reading = tenth_grade.groupby(['school_name']).mean()['reading_score'] eleventh_grade_reading = eleventh_grade.groupby(['school_name']).mean()['reading_score'] twelfth_grade_reading = twelfth_grade.groupby(['school_name']).mean()['reading_score'] # Combine the series into a dataframe reading_scores_per_grade_df = pd.DataFrame({'9th': ninth_grade_reading, '10th': tenth_grade_reading, '11th': eleventh_grade_reading, '12th': twelfth_grade_reading}) # Formatting reading_scores_per_grade_df = reading_scores_per_grade_df.round(2) reading_scores_per_grade_df.index.name = None reading_scores_per_grade_df ###Output _____no_output_____ ###Markdown Scores by School Spending ###Code # Establish the bins bins = [0, 585, 630, 645, 680] bins_group_names = ['<$585','$585-615', '$615-645', '$645-680'] # Calculate breaks down school performances based on average Spending Ranges school_summary_df['Spending Ranges (Per Student)'] = pd.cut(per_student_budget, bins, labels=bins_group_names) spending_avg_math_score = school_summary_df.groupby(['Spending Ranges (Per Student)']).mean()['Average Math Score'] spending_avg_reading_score = school_summary_df.groupby(['Spending Ranges (Per Student)']).mean()['Average Reading Score'] spending_pct_passing_math = school_summary_df.groupby(['Spending Ranges (Per Student)']).mean()['% Passing Math'] spending_pct_passing_reading = school_summary_df.groupby(['Spending Ranges (Per Student)']).mean()['% Passing Reading'] spending_overall_passing_rate = school_summary_df.groupby(['Spending Ranges (Per Student)']).mean()['% Overall Passing Rate'] # Create a dataframe for scores by school spending scores_school_spending_df = pd.DataFrame({'Average Math Score' : spending_avg_math_score, 'Average Reading Score': spending_avg_reading_score, '% Passing Math': spending_pct_passing_math, '% Passing Reading': spending_pct_passing_reading, '% Overall Passing Rate': spending_overall_passing_rate}) # Formatting scores_school_spending_df = scores_school_spending_df.round(2) scores_school_spending_df ###Output _____no_output_____ ###Markdown Scores by School Size ###Code # Establish the bins bins = [0, 1000, 2000, 5000] bins_group_names = ['Small (<1000)','Medium (1000-2000)', 'Large (2000-5000)'] # Calculate breaks down school performances based on school size school_summary_df['School Size'] = pd.cut(school_summary_df['Total Students'], bins, labels=bins_group_names) school_size_avg_math_score = school_summary_df.groupby(['School Size']).mean()['Average Math Score'] school_size_avg_reading_score = school_summary_df.groupby(['School Size']).mean()['Average Reading Score'] school_size_pct_passing_math = school_summary_df.groupby(['School Size']).mean()['% Passing Math'] school_size_pct_passing_reading = school_summary_df.groupby(['School Size']).mean()['% Passing Reading'] school_size_overall_passing_rate = school_summary_df.groupby(['School Size']).mean()['% Overall Passing Rate'] # Create a dataframe for scores by school size scores_school_size_df = pd.DataFrame({'Average Math Score' : school_size_avg_math_score, 'Average Reading Score': school_size_avg_reading_score, '% Passing Math': school_size_pct_passing_math, '% Passing Reading': school_size_pct_passing_reading, '% Overall Passing Rate': school_size_overall_passing_rate}) # Formatting scores_school_size_df = scores_school_size_df.round(2) scores_school_size_df ###Output _____no_output_____ ###Markdown Scores by School Type ###Code # Calculate breaks down school performances based on school type school_type_avg_math_score = school_summary_df.groupby(['School Type']).mean()['Average Math Score'] school_type_avg_reading_score = school_summary_df.groupby(['School Type']).mean()['Average Reading Score'] school_type_pct_passing_math = school_summary_df.groupby(['School Type']).mean()['% Passing Math'] school_type_pct_passing_reading = school_summary_df.groupby(['School Type']).mean()['% Passing Reading'] school_type_overall_passing_rate = school_summary_df.groupby(['School Type']).mean()['% Overall Passing Rate'] # Create a dataframe for scores by school type scores_school_type_df = pd.DataFrame({'Average Math Score': school_type_avg_math_score, 'Average Reading Score': school_type_avg_reading_score, '% Passing Math': school_type_pct_passing_math, '% Passing Reading': school_type_pct_passing_reading, '% Overall Passing Rate': school_type_overall_passing_rate}) # Formatting scores_school_type_df = scores_school_type_df.round(2) scores_school_type_df ###Output _____no_output_____ ###Markdown District Summary Total Number of Schools in a District ###Code #Sets the index to type District_df = school_data_complete.set_index("type") #Filters type to look at District Schools only & returns school names without duplicates Distr_schools = District_df.loc["District", "school_name"].unique() #Returns the total counts for District only total_District_schools = len(Distr_schools) ###Output _____no_output_____ ###Markdown Total Number of Students in a District ###Code #Filters type to look at District Schools only & returns size (# of students in each school) without duplicates Distr_students = District_df.loc["District","size"].unique() #Calculates the total number of students in all District school total_District_students = Distr_students.sum() ###Output _____no_output_____ ###Markdown Total District Schools Budget ###Code #Filters District row and budget column only Dist_Budget = District_df.loc["District", "budget"].unique() #Calculates the total budget for District total_District_budget = Dist_Budget.sum() ###Output _____no_output_____ ###Markdown District Average Math and Reading Scores ###Code #Creates a new df that is filtered by District row & Math/Reading scores columns #Know data is correct if row counts matches total number of District student District_Scores_df = District_df.loc[[ "District"], ["math_score", "reading_score"]] #Calculates the average of Math scores only Math_Avg = District_Scores_df["math_score"].mean() #Calculates the average of Reading scores only Reading_Avg = District_Scores_df["reading_score"].mean() ###Output _____no_output_____ ###Markdown District Students with Passing Math and Reading Scores ###Code #Defines, filters passing MATH scores (only math scores >= 70 in the df) & creates new filtered df passing_Mscore = District_Scores_df["math_score"] >= 70 passing_math_df = District_Scores_df.loc[passing_Mscore, ["math_score"]] #Returns the number of students with passing Math scores Math_passers = passing_math_df["math_score"].count() #Defines, filters passing READING scores (only reading scores >= 70 in the df) & creates new filtered df passing_Rscore = District_Scores_df["reading_score"] >= 70 passing_reading_df = District_Scores_df.loc[passing_Rscore, ["reading_score"]] #Returns the number of students with passing Reading scores Reading_passers = passing_reading_df["reading_score"].count() #Defines and filters number of students passing MATH AND READING (only math & reading scores >= 70 in the df) then creating a new filtered df pass_math_AND_reading = passing_Mscore & passing_Rscore studentspass_MandR_df = District_Scores_df.loc[pass_math_AND_reading, :] #Returns the number of students with passing Math & Reading scores Math_Reading_passers = studentspass_MandR_df["math_score"].count() ###Output _____no_output_____ ###Markdown Percentage of District Students Passing Math & Reading ###Code #Calculates percentage of students with MATH Passing scores pct_Math_passing = (Math_passers / total_District_students) * 100 #Calculates percentage of students with READING Passing scores pct_Reading_passing = (Reading_passers / total_District_students) * 100 #Calculates percentage of students with MATH & READING Passing scores pct_MathReading_passing = (Math_Reading_passers / total_District_students) * 100 #Creates a dictionary of District results District = { "Total Schools": [total_District_schools], "Total Students": [total_District_students], "Total Budget": [total_District_budget], "Average Math Score": [Math_Avg], "Average Reading Score": [Reading_Avg], "% Math Passing": [pct_Math_passing], "% Reading Passing": [pct_Reading_passing], "% Overall Passing": [pct_MathReading_passing] } #Creates summary dataframe that includes dictionary of District results District_Summary_df = pd.DataFrame(District) #Fixes formatting of total students and total budget values District_Summary_df['Total Budget'] = District_Summary_df['Total Budget'].map('${:,.2f}'.format) District_Summary_df['Total Students'] = District_Summary_df['Total Students'].map('{:,.0f}'.format) District_Summary_df.index = [' '] District_Summary_df ###Output _____no_output_____ ###Markdown School Summary ###Code #Creates a dataframe with selected columns of interest from the merged data allschools_df = school_data_complete[["Student ID","school_name", "type", "size", "budget", "math_score", "reading_score"]] ###Output _____no_output_____ ###Markdown Per Student Budget ###Code #Creates a new column in the df above that includes the calculated amount of budget per student allschools_df["Per Student Budget"] = allschools_df["budget"] / allschools_df["size"] ###Output C:\Users\jabuk\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy ###Markdown School Students with Passing Scores in Math, Reading and Overall (Math & Reading) ###Code #Total number of students (to be used in calculating % Math, % Reading & Overall Passing) #Creates a df grouped by school name with total number of students student_total = allschools_df.groupby(['school_name'])["Student ID"].count() #Filters df with MATH passers (only include math scores >= 70) from all schools schoolMath_passing = allschools_df.loc[allschools_df["math_score"] >= 70] #Creates a df grouped by school name with total number of students, who PASSED MATH ONLY group_MathPassers = schoolMath_passing.groupby(['school_name'])['Student ID'].count() #Filters df with READING passers (only include reading scores >= 70) from all schools schoolReading_passing = allschools_df.loc[allschools_df["reading_score"] >= 70] #Creates a df grouped by school name with total number of students, who PASSED READING ONLY group_ReadingPassers = schoolReading_passing.groupby(['school_name'])['Student ID'].count() #Creates a variable that includes students with MATH and READING passing scores MathReading_pass_scores = (allschools_df["math_score"] >= 70) & (allschools_df["reading_score"] >= 70) #Filters df with MATH & READING passers (only include math & reading scores >= 70) from all schools schoolMathReading_passing = allschools_df.loc[MathReading_pass_scores] #Creates a df grouped by school name with total number of students, who PASSED MATH & READING group_MathReading_Passers = schoolMathReading_passing.groupby(['school_name'])['Student ID'].count() ###Output _____no_output_____ ###Markdown Passing Rates for Math, Reading & Overall ###Code #Calculate Math, Reading & Overall passing rates pct_schoolMath = (group_MathPassers / student_total)*100 pct_schoolReading = (group_ReadingPassers / student_total)*100 pct_schoolMathReading = (group_MathReading_Passers / student_total)*100 #Set up School Summary Dataframe & clean up stage #Uses the base df created set in the very beginning for school summary only (allschools_df) school_groups_df = allschools_df.groupby(["school_name"]).mean() #Adds type back (disappeared after the groupby above since non-numeric column) school_groups_df["School Type"] = allschools_df.groupby(["school_name"])['type'].min() #Add columns for Passing Rates school_groups_df["% Math Passing"] = pct_schoolMath school_groups_df["% Reading Passing"] = pct_schoolReading school_groups_df["% Overall Passing"] = pct_schoolMathReading #Drops school ID (only needed to clarify that we are aggregating students) school_groups_df = school_groups_df.drop(["Student ID"], axis=1) #Renames some columns school_groups_df = school_groups_df.rename(columns={"size":"Total Students", "budget":"Total School Budget", "math_score":"Average Math Score", "reading_score":"Average Reading Score"}) #Removes index title school_groups_df.index.names = [''] #Fixes formatting of total budget, total students and per student budget values school_groups_df['Total School Budget'] = school_groups_df['Total School Budget'].map('${:,.2f}'.format) school_groups_df['Per Student Budget'] = school_groups_df['Per Student Budget'].map('{:.2f}'.format) #Rearranged columns for final summary school_summary_df = school_groups_df[["School Type", "Total Students", "Total School Budget", "Per Student Budget", "Average Math Score", "Average Reading Score", "% Math Passing", "% Reading Passing", "% Overall Passing"]] school_summary_df ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) ###Code #Sorts and displays the top five performing schools by % overall passing topfive_Overall_df = school_summary_df.sort_values('% Overall Passing', ascending=False).head() topfive_Overall_df ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) ###Code #Sorts and displays the five worst-performing schools by % overall passing bottomfive_Overall_df = school_summary_df.sort_values('% Overall Passing', ascending=True).head() bottomfive_Overall_df ###Output _____no_output_____ ###Markdown Math Scores by Grade ###Code #Uses merged data as base df #Narrows down df by selecting columns of interest and set index to the name of school bygrade_df = school_data_complete[["school_name", "grade", "math_score", "reading_score"]] indexed_bygrade = bygrade_df.set_index(["school_name"]) #Filters df for 9th grade only nineth_students = (indexed_bygrade["grade"] == "9th") nineth_scores = indexed_bygrade.loc[nineth_students] #Creates series for average math scores for 9th graders avgMath_ninth = nineth_scores.groupby(["school_name"])['math_score'].mean() #Filters df for 10th grade only tenth_students = (indexed_bygrade["grade"] == "10th") tenth_scores = indexed_bygrade.loc[tenth_students] #Creates series for average math scores for 10th graders avgMath_tenth = tenth_scores.groupby(["school_name"])['math_score'].mean() #Filters df for 11th grade only eleventh_students = (indexed_bygrade["grade"] == "11th") eleventh_scores = indexed_bygrade.loc[eleventh_students] #Creates series for average math scores for 11th graders avgMath_eleventh = eleventh_scores.groupby(["school_name"])['math_score'].mean() #Filters df for 12th grade only twelveth_students = (indexed_bygrade["grade"] == "12th") twelveth_scores = indexed_bygrade.loc[twelveth_students] #Creates series for average math scores for 12th graders avgMath_twelveth = twelveth_scores.groupby(["school_name"])['math_score'].mean() #Creates final dataframe summary for Math Scores by Grade Math_byGrade = pd.DataFrame({ "9th": avgMath_ninth, "10th": avgMath_tenth, "11th": avgMath_eleventh, "12th": avgMath_twelveth }) Math_byGrade.index.names = [''] Math_byGrade ###Output _____no_output_____ ###Markdown Reading Score by Grade ###Code #Creates series for average Reading scores for 9th graders avgReading_ninth = nineth_scores.groupby(["school_name"])['reading_score'].mean() #Creates series for average Reading scores for 10th graders avgReading_tenth = tenth_scores.groupby(["school_name"])['reading_score'].mean() #Creates series for average Reading scores for 11th graders avgReading_eleventh = eleventh_scores.groupby(["school_name"])['reading_score'].mean() #Creates series for average Reading scores for 12th graders avgReading_twelveth = twelveth_scores.groupby(["school_name"])['reading_score'].mean() #Creates final dataframe summary for Reading Scores by Grade Reading_byGrade = pd.DataFrame({ "9th": avgReading_ninth, "10th": avgReading_tenth, "11th": avgReading_eleventh, "12th": avgReading_twelveth }) Reading_byGrade.index.names = [''] Reading_byGrade ###Output _____no_output_____ ###Markdown Scores by School Spending ###Code #Uses school_summary_df as base df and deletes columns that are not needed school_spending_df = school_summary_df.drop(["Total Students", "Total School Budget"], axis=1) #Creates a series that contains the list of bin data (Per Student Budget) #Convert values from strings to float since values need to be a float to bin cut_series = school_spending_df["Per Student Budget"].astype(float) #Creates list of breakpoints & bin labels (Per Student Budget: min=578, max=655) bin_breakpoints = [0, 584.9, 609.9, 634.9, 659.9] bin_labels = ["<$585", "$585-610", "$610-635", "$635-660"] #Adds the new series above (cut_series) to the current df as a new column school_spending_df["School Spending (per Student)"] = pd.cut( x=cut_series, bins=bin_breakpoints, labels=bin_labels, include_lowest=True ) #Creates df grouped by average budget per student avg_budget_df = school_spending_df.groupby(["School Spending (per Student)"]).mean() #Fixes formatting avg_budget_df['Average Math Score'] = avg_budget_df['Average Math Score'].map('{:.2f}'.format) avg_budget_df['Average Reading Score'] = avg_budget_df['Average Reading Score'].map('{:.2f}'.format) avg_budget_df['% Math Passing'] = avg_budget_df['% Math Passing'].map('{:.2f}'.format) avg_budget_df['% Reading Passing'] = avg_budget_df['% Reading Passing'].map('{:.2f}'.format) avg_budget_df['% Overall Passing'] = avg_budget_df['% Overall Passing'].map('{:.2f}'.format) avg_budget_df ###Output _____no_output_____ ###Markdown Scores by School Size ###Code #Creates a series that contains the list of bin data (Total Students) cut_series2 = school_summary_df["Total Students"] #list of breakpoints or bins to fill & labels bin_ranges = [0, 999.9, 1999.9, 4999.9] size_labels = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] #Adds the new series above (cut_series2) to the current df as a new column school_summary_df["School Size"] = pd.cut( x=cut_series2, bins=bin_ranges, labels=size_labels, include_lowest=True ) #Creates df grouped by average school size avg_schoolsize_df = school_summary_df.groupby(["School Size"]).mean() avg_schoolsize_df.drop(["Total Students"], axis=1) ###Output _____no_output_____ ###Markdown Scores by School Type ###Code #Creates df grouped by type of school school_type = school_summary_df.groupby(["School Type"]).mean() #Deletes column not needed for summary school_type.drop(["Total Students"], axis=1) ###Output _____no_output_____ ###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd import numpy as np import random # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) school_data_complete.head() ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math **and** reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code #Total number of schools and students by doing count total_schools = school_data["school_name"].count() total_students = student_data["student_name"].count() #Total budget by doing sum of the budget total_budget = school_data["budget"].sum() #Calculating average math and reading scores by using mean avg_math = student_data["math_score"].mean() avg_reading = student_data["reading_score"].mean() #Calculating math, reading, and total passing and finding the percentage by multiplying it by 100 math_passing = student_data.loc[student_data["math_score"] >= 70].count()['Student ID'] math_passing_per = (math_passing/total_students)*100 reading_passing = student_data.loc[student_data["reading_score"] >= 70].count()['Student ID'] reading_passing_per = (reading_passing/total_students)*100 total_passing = student_data.loc[(student_data["math_score"] >= 70) & (student_data["reading_score"] >= 70)].count()['Student ID'] total_passing_per = (total_passing/total_students)*100 #Putting all of the findings in a DataFrame district_summary = pd.DataFrame({ "Total Schools": [total_schools], "Total Students": [total_students], "Total Budget": [total_budget], "Average Math Score": [avg_math], "Average Reading Score": [avg_reading], "% Passing Math": [math_passing_per], "% Passing Reading": [reading_passing_per], "% Overall Passing": [total_passing_per] }) #Adding all necessary formatting district_summary['Total Students'] = district_summary['Total Students'].map("{:,}".format) district_summary['Total Budget'] = district_summary['Total Budget'].map("${:,.2f}".format) #district_summary['% Passing Math'] = district_summary['% Passing Math'].map("{:,.2f}".format) district_summary ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math **and** reading.) * Create a dataframe to hold the above results ###Code #Finding school name, school type, total students, total budget per school and per student below by school name by_school = school_data_complete.groupby('school_name') school_type = by_school['type'].first() student_per_school = by_school['Student ID'].count() #print(student_per_school) school_budget = by_school['budget'].mean() student_budget = school_budget/student_per_school #print(school_budget/student_per_school) #Finding the average math and reading scores by each school using mean average_math = by_school['math_score'].mean() average_reading = by_school['reading_score'].mean() #Finding the percent of passing for math, reading and overall using groupby math_passing = school_data_complete.loc[school_data_complete["math_score"] >= 70].groupby('school_name')['Student ID'].count()/student_per_school reading_passing = school_data_complete.loc[school_data_complete["reading_score"] >= 70].groupby('school_name')['Student ID'].count()/student_per_school overall_passing = school_data_complete.loc[(school_data_complete["math_score"] >= 70) & (school_data_complete["reading_score"] >= 70)].groupby('school_name')['Student ID'].count()/student_per_school #multiplying all of the passing percentages by 100 to move it over 2 decimal places math_passing_total = (math_passing)*100 reading_passing_total = (reading_passing)*100 overall_passing_total = (overall_passing)*100 #Putting all the findings in a DataFrame school_summary = pd.DataFrame({ "School Type": school_type, "Total Students": student_per_school, "Total School Budget": school_budget, "Budget Per Student": student_budget, "Average Math Score": average_math, "Average Reading Score": average_reading, "% Passing Math": math_passing_total, "% Passing Reading": reading_passing_total, "% Overall Passing": overall_passing_total }) #Adding all necessary formatting school_summary['Total School Budget'] = school_summary['Total School Budget'].map("${:,.2f}".format) #school_summary['Budget Per Student'] = school_summary['Budget Per Student'].map("${:}".format) #school_summary['Average Math Score'] = school_summary['Average Math Score'].map("{:,.2f}".format) #school_summary['Average Reading Score'] = school_summary['Average Reading Score'].map("{:,.2f}".format) #school_summary['% Passing Math'] = school_summary['% Passing Math'].map("{:,.2}".format) #school_summary['% Passing Reading'] = school_summary['% Passing Reading'].map("{:,.2}".format) #school_summary['% Overall Passing'] = school_summary['% Overall Passing'].map("{:,.2}".format) school_summary ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) * Sort and display the top five performing schools by % overall passing. ###Code #Using the sort values function to sort the schools and display the top 5 performing schools top_five_schools = school_summary.sort_values(['% Overall Passing'], ascending=[False]) top_five_schools.head(5) ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) * Sort and display the five worst-performing schools by % overall passing. ###Code #Using the sort values function to sort the schools and display the bottom 5 performing schools bottom_five_schools = school_summary.sort_values(['% Overall Passing'], ascending=[True]) bottom_five_schools.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code #Calculating the average math score for each grade by school math_avg_9th = school_data_complete.loc[school_data_complete["grade"] == '9th'].groupby('school_name')['math_score'].mean() math_avg_10th = school_data_complete.loc[school_data_complete["grade"] == '10th'].groupby('school_name')['math_score'].mean() math_avg_11th = school_data_complete.loc[school_data_complete["grade"] == '11th'].groupby('school_name')['math_score'].mean() math_avg_12th = school_data_complete.loc[school_data_complete["grade"] == '12th'].groupby('school_name')['math_score'].mean() #Putting all findings in a DataFrame math_by_grade = pd.DataFrame({"9th": math_avg_9th, "10": math_avg_10th, "11th": math_avg_11th, "12th": math_avg_12th }) math_by_grade ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code #Calculating the average reading score for each grade by school reading_avg_9th = school_data_complete.loc[school_data_complete["grade"] == '9th'].groupby('school_name')['reading_score'].mean() reading_avg_10th = school_data_complete.loc[school_data_complete["grade"] == '10th'].groupby('school_name')['reading_score'].mean() reading_avg_11th = school_data_complete.loc[school_data_complete["grade"] == '11th'].groupby('school_name')['reading_score'].mean() reading_avg_12th = school_data_complete.loc[school_data_complete["grade"] == '12th'].groupby('school_name')['reading_score'].mean() #Putting all findings in a DataFrame reading_by_grade = pd.DataFrame({"9th": reading_avg_9th, "10": reading_avg_10th, "11th": reading_avg_11th, "12th": reading_avg_12th }) reading_by_grade ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code #creating bins and labels bins = [0,585, 630, 645, 675] labels = ['$0-585', '$585-629', '$630-644', '$645-675'] #binning school summary from the column Budget Per Student and adding the new columns school_summary["Spending Ranges"] = pd.cut(school_summary["Budget Per Student"], bins, labels= labels) spending_groups = school_summary.loc[:, ["Spending Ranges", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]].groupby("Spending Ranges") spending_groups.mean() ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code #creating bins and labels bins = [0,1000, 2000, 5000] labels = ['Small (<1000)', 'Medium (1000-2000)', 'Large (2000-5000)'] #binning school summary from the column Total Students and adding the new columns school_summary["School Size"] = pd.cut(school_summary["Total Students"], bins, labels= labels) spending_groups = school_summary.loc[:, ["School Size", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing"]].groupby("School Size") spending_groups.mean() ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type ###Code #creating a new variable to group by school type school_type = school_summary #converting it to a DataFrame school_type = pd.DataFrame(school_type) #grouping it by the school type and determining the average scores and passing scores per school type school_type = school_summary.groupby(['School Type'])['Average Math Score', 'Average Reading Score', '% Passing Math', '% Passing Reading', '% Overall Passing' ].mean() school_type ###Output /Users/mehamarathe/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead. ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code district_true = school_data_complete['type'] == 'District' district_data = school_data_complete[district_true] district_data.head() # Make new dataframe and populate it with corresponding values district_summary= pd.DataFrame([0]) # Calculate the total number of schools # Calculate the total number of students district_summary["Number of Schools"] = len(district_data['School ID'].value_counts()) district_summary["Number of Students"] = district_data['Student ID'].count() # Calculate the total budget budget_vals = district_data['budget'].unique() district_summary["Total Budget"] = budget_vals.sum() # Calculate the average math score math_score = district_data["math_score"] district_summary["Average Math Score"] = math_score.mean() # Calculate the average reading score reading_score = district_data["reading_score"] district_summary["Average Reading Score"] = reading_score.mean() # Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2 district_summary["Overall Average Score"] = (reading_score + math_score)/2 # Calculate the percentage of students with a passing math score (70 or greater) math_score = district_data["math_score"] district_summary["% Passing Math"] = (math_score >= 70).mean() * 100 # Calculate the percentage of students with a passing reading score (70 or greater) passing_reading_score = district_data["reading_score"] district_summary["% Passing Reading"] = (passing_reading_score >= 70).mean() * 100 district_summary = district_summary.drop([0], axis=1) district_summary ###Output _____no_output_____ ###Markdown School Summary* Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) * Create a dataframe to hold the above results ###Code # Create an overview table that summarizes key metrics about each school, including: schools_summary= school_data_complete.drop(columns=['Student ID','student_name', 'gender', 'grade', 'School ID']) schools_summary = schools_summary.groupby(['school_name', 'type']).mean() schools_summary = schools_summary.reset_index(drop=False) schools_summary = schools_summary.set_index('school_name') # Total Students # Total School Budget # Per Student Budget # Average Reading Score schools_summary = schools_summary.rename(columns={"type": "School Type", "reading_score" : "Average Reading Score", "math_score" : "Average Math Score", "size": "Total Students", "budget": "Total School Budget"}) budget = schools_summary['Total School Budget'].values students = schools_summary['Total Students'].values schools_summary['Per Student Budget'] = budget/students # % Passing Math schools_summary2 = school_data_complete passing_math = school_data_complete.loc[schools_summary2['math_score']>69,:] passing_math = passing_math.groupby('school_name').math_score.count().reset_index() passing_math = passing_math.rename(columns={"math_score":"% Passing Math"}) # Merge the two dataframes schools_summary = passing_math.merge(schools_summary, on="school_name") schools_summary['% Passing Math'] = (schools_summary['% Passing Math'] / schools_summary['Total Students']) * 100 # % Passing Reading schools_summary2 = school_data_complete passing_reading = school_data_complete.loc[schools_summary2['reading_score']>69,:] passing_reading = passing_reading.groupby('school_name').reading_score.count().reset_index() passing_reading = passing_reading.rename(columns={"reading_score":"% Passing Reading"}) schools_summary = passing_reading.merge(schools_summary, on="school_name") schools_summary['% Passing Reading'] = (schools_summary['% Passing Reading'] / schools_summary['Total Students']) * 100 # Overall Passing Rate (Average of the above two) schools_summary['% Overall Passing'] = (schools_summary['% Passing Math'] + schools_summary['% Passing Reading']) / 2 schools_summary = schools_summary.set_index('school_name') schools_summary = schools_summary.rename_axis("") schools_summary ###Output _____no_output_____ ###Markdown Top Performing Schools (By Passing Rate)* Sort and display the top five schools in overall passing rate ###Code top_schools = schools_summary.sort_values(by='% Overall Passing', ascending=False).head() top_schools = top_schools.rename_axis("") top_schools ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By Passing Rate) * Sort and display the five worst-performing schools ###Code bottom_schools = schools_summary.sort_values(by='% Overall Passing', ascending=True).head() bottom_schools = bottom_schools.rename_axis("") bottom_schools ###Output _____no_output_____ ###Markdown Math Scores By Grade * Create a table that lists the average Math Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code # Create a table that displays each school's math grade by grade level math_scores_by_grade = school_data_complete.drop(columns=['Student ID','student_name', 'gender', 'School ID', 'size', 'budget', 'reading_score']) # Find averages math_scores_by_grade = math_scores_by_grade.groupby(['school_name', 'grade']).mean() # Reset index to make it more clear math_scores_by_grade = math_scores_by_grade.reset_index(drop=False) math_scores_by_grade = math_scores_by_grade.set_index('school_name') # Pivot table to display grade index as columns math_scores_by_grade = math_scores_by_grade.pivot(columns='grade', values='math_score') math_scores_by_grade = math_scores_by_grade.rename_axis("", axis=0) math_scores_by_grade = math_scores_by_grade.rename_axis("", axis=1) math_scores_by_grade ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code # Create a table that displays each school's reading grade by grade level reading_scores_by_grade = school_data_complete.drop(columns=['Student ID','student_name', 'gender', 'School ID', 'size', 'budget', 'math_score']) # Find averages reading_scores_by_grade = reading_scores_by_grade.groupby(['school_name', 'grade']).mean() # Reset index to make it more clear reading_scores_by_grade = reading_scores_by_grade.reset_index(drop=False) reading_scores_by_grade = reading_scores_by_grade.set_index('school_name') # Pivot table to display grade index as columns reading_scores_by_grade = reading_scores_by_grade.pivot(columns='grade', values='reading_score') reading_scores_by_grade = reading_scores_by_grade.rename_axis("", axis=0) reading_scores_by_grade = reading_scores_by_grade.rename_axis("", axis=1) reading_scores_by_grade ###Output _____no_output_____ ###Markdown Scores by School Spending* Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code school_spending = schools_summary[['Average Math Score', 'Average Reading Score', '% Passing Reading', '% Passing Math', '% Overall Passing', 'Per Student Budget']] # Sample bins. Feel free to create your own bins. spending_bins = [0, 585, 615, 645, 675] group_names = ["<$585", "$585-615", "$615-645", "$645-675"] school_spending["Spending Ranges (Per Student)"] = pd.cut(school_spending["Per Student Budget"], spending_bins, labels=group_names) school_spending = school_spending.drop(columns=['Per Student Budget']) school_spending = school_spending.groupby(school_spending["Spending Ranges (Per Student)"], as_index=True) # school_spending = school_spending.set_index('Spending Ranges (Per Student)').mean() school_spending.mean() ###Output C:\Users\megam\Anaconda3\envs\PythonData\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """Entry point for launching an IPython kernel. ###Markdown Scores by School Size* Perform the same operations as above, based on school size. ###Code # Sample bins. Feel free to create your own bins. size_bins = [0, 1000, 2000, 5000] group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] school_size = schools_summary[['Average Math Score', 'Average Reading Score', '% Passing Reading', '% Passing Math', '% Overall Passing', 'Total Students']] school_size["Size"] = pd.cut(school_size["Total Students"], size_bins, labels=group_names) school_size = school_size.drop(columns=['Total Students']) school_size = school_size.groupby(school_size["Size"], as_index=True) # school_size = school_size.set_index('Total Students').mean() school_size.mean() ###Output C:\Users\megam\Anaconda3\envs\PythonData\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """Entry point for launching an IPython kernel. ###Markdown Scores by School Type* Perform the same operations as above, based on school type. ###Code schools_summary = schools_summary.rename_axis("school_name", axis=1) schools_summary = schools_summary.reset_index() school_type = schools_summary[['Average Math Score', 'Average Reading Score', '% Passing Reading', '% Passing Math', '% Overall Passing', 'school_name']] df_to_merge = school_data_complete.drop(columns=['Student ID','student_name', 'gender', 'size', 'School ID', 'budget', 'reading_score', 'grade', 'math_score']) school_type = schools_summary.merge(df_to_merge, on='school_name', how='inner', copy=False) school_type = school_type.drop(columns=['index', 'Total Students', 'Total School Budget', 'School Type'] ) school_type = school_type.drop_duplicates() school_type = school_type.reset_index(drop=True) school_type # Classification school_type = school_type.groupby(school_type["type"], as_index=True).mean() school_type = school_type.rename_axis("", axis=0) school_type ###Output _____no_output_____ ###Markdown PyCity Schools Analysis & Observations• Overall, all schools performed better in reading (100%) rather than Math (92%) since the average reading score is higher than the average math score at every school in the city. • The charter schools performed better at math and reading than the district schools • Performance did not correlate to amount spent per student, but to the size of the school and type. The smaller schools, which were all charter schools, performed better. • District schools performed far low across the board in math and reading scores than charter schools and the lowest scores were also observed among schools that spend the most per student, and the largest schools) • Higher Per Student Budget not necessary lead to a higher grade, for example Cabrera High School, who has the highest passing rate spent less than 600 dollar budget per student, and the bottom 5 school all have budget per student higher than 600 dollar. In addition, schools spent lower than 615 dollar per student has significant (15%) higher scores than over 615 dollar. The highest spending category 645-675 got the lowest score. • School type matters. All Top 5 school are Charter school, and 5 Bottom schools are District Schools. Overall variance between these two on passing rate are 23%, Charter schools are higher. Charter school performed especially well in math score. • Larger size schools doesn’t show good performance in score, compared to median size and small size school. However once the school size goes below 2000 students, the change are not significant. Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) school_data_complete.head() ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math **and** reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code #Calculate the total number of schools num_of_schools = school_data['school_name'].count() #print(num_of_schools ) #Calculate the total number of students num_of_students = student_data['Student ID'].count() #print(num_of_students) #Calculate the total budget total_budget = school_data['budget'].sum() #print(total_budget) #Calculate the average math score avg_math_score = school_data_complete['math_score'].mean() #print(avg_math_score) #Calculate the average reading score avg_reading_score = school_data_complete['reading_score'].mean() #print(avg_reading_score) #Calculate the percentage of students with a passing math score (70 or greater) pass_math = school_data_complete[(school_data_complete['math_score'] >= 70)].count() ['student_name'] #print(pass_math) math_percent = (pass_math / float(num_of_students))*100 #print(math_percent) #Calculate the percentage of students with a passing reading score (70 or greater) pass_reading = school_data_complete[(school_data_complete['reading_score'] >= 70)].count() ['student_name'] #print(pass_reading) reading_percent = (pass_reading / float(num_of_students))*100 #print(reading_percent) #Calculate the percentage of students who passed math **and** reading (% Overall Passing) pass_math_reading = school_data_complete[(school_data_complete['math_score'] >= 70) & (school_data_complete['reading_score'] >= 70) ].count() ['student_name'] #print(pass_math_reading) math_reading_percent = (pass_math_reading / float(num_of_students))*100 #print(math_reading_percent) ###Output _____no_output_____ ###Markdown The brackets are unnecessary when referencing variables - this is in the dictionary for district_summary.ValueError: If using all scalar values, you must pass an index ###Code #Create a dataframe to hold the above results #Optional: give the displayed data cleaner formatting # district_summary = pd.DataFrame ({'total_schools': [num_of_schools],'total_students': [num_of_students], # 'total_budget': [total_budget], 'avg_math_score': [avg_math_score], # 'avg_reading_score': [avg_reading_score],'percentage_pass_math': [math_percent], # 'percentage_pass_reading': [reading_percent], 'overall pass percent': [math_reading_percent] # }) district_summary = pd.DataFrame({'total_schools': num_of_schools,'total_students': num_of_students, 'total_budget': total_budget, 'avg_math_score': avg_math_score, 'avg_reading_score': avg_reading_score,'percentage_pass_math': math_percent, 'percentage_pass_reading': reading_percent, 'overall pass percent': math_reading_percent} ,index =[0] ) district_summary['total_students'] = district_summary['total_students'].map("{:,}".format) district_summary['total_budget'] = district_summary['total_budget'].map("${:,.2f}".format) district_summary ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math **and** reading.) * Create a dataframe to hold the above results Why do you set the school type for school_type to the index?school_type = school_data['type'] - when i tried like this i got all NAN values in the rows from 0-14. So i thought i need to set the index. ###Code #School Summary - School name school_summary = school_data_complete.groupby("school_name") #print(school_summary["school_name"].unique()) #school Type school_type = school_data.set_index(["school_name"])['type'] #school_type = school_data['type'] #print(school_type) #Total number of students per school total_students = school_data_complete.groupby(["school_name"]).count()['Student ID'] #print(total_students) #Total School Budget total_school_budget = school_data_complete.groupby(["school_name"]).mean()['budget'] #print(total_school_budget) #Per Student Budget per_student_budget = total_school_budget/total_students #print(per_student_budget) #Average Math score and Passing Percecntage avg_math_score_per_student = school_summary['math_score'].mean() #print(avg_math_score_per_student) passing_math = school_data_complete[(school_data_complete['math_score'] >= 70)] #print(passing_math) percent_passing_math = (passing_math.groupby(["school_name"]).count()['Student ID'] / total_students)*100 #print(percent_passing_math) #Average Reading score and Passing Percentage avg_reading_score_per_student = school_summary['reading_score'].mean() #print(avg_reading_score_per_student) passing_reading = school_data_complete[(school_data_complete['reading_score'] >= 70)] #print(passing_reading) percent_passing_reading = (passing_reading.groupby(["school_name"]).count()['Student ID'] / total_students)*100 #print(percent_passing_reading) #Overall Passing Percentage overall_passing = school_data_complete[(school_data_complete['math_score'] >= 70) & (school_data_complete['reading_score'] >= 70)] #print(overall_passing) overall_passing_percent = (overall_passing.groupby(["school_name"]).count()['Student ID'] / total_students)*100 #print(overall_passing_percent) schools_summary = pd.DataFrame ({'School Type': school_type,'Total students': total_students, 'Total School Budget': total_school_budget, 'Per Student Budget': per_student_budget, 'Average Math Score': avg_math_score_per_student, 'Average Reading Score': avg_reading_score_per_student, '% Passing Math': percent_passing_math, '% Passing Reading': percent_passing_reading, '% Overall Passing': overall_passing_percent }) schools_summary['Total School Budget'] = schools_summary['Total School Budget'].map("${:,.2f}".format) schools_summary['Per Student Budget'] = schools_summary['Per Student Budget'].map("${:.2f}".format) schools_summary ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) * Sort and display the top five performing schools by % overall passing. ###Code top_performing = schools_summary.sort_values("% Overall Passing", ascending = False) top_performing.head() ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) * Sort and display the five worst-performing schools by % overall passing. ###Code bottom_performing = schools_summary.sort_values("% Overall Passing") bottom_performing.head() ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code ninth_grade_math = student_data.loc[student_data['grade'] == '9th'].groupby('school_name')["math_score"].mean() tenth_grade_math = student_data.loc[student_data['grade'] == '10th'].groupby('school_name')["math_score"].mean() eleventh_grade_math = student_data.loc[student_data['grade'] == '11th'].groupby('school_name')["math_score"].mean() twelvth_grade_math = student_data.loc[student_data['grade'] == '12th'].groupby('school_name')["math_score"].mean() math_scores_grade = pd.DataFrame({ "9th": ninth_grade_math, "10th": tenth_grade_math, "11th": eleventh_grade_math, "12th": twelvth_grade_math }) math_scores_grade.head(15) ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code ninth_grade_reading = student_data.loc[student_data['grade'] == '9th'].groupby('school_name')["reading_score"].mean() tenth_grade_reading = student_data.loc[student_data['grade'] == '10th'].groupby('school_name')["reading_score"].mean() eleventh_grade_reading = student_data.loc[student_data['grade'] == '11th'].groupby('school_name')["reading_score"].mean() twelvth_grade_reading = student_data.loc[student_data['grade'] == '12th'].groupby('school_name')["reading_score"].mean() reading_scores_grade = pd.DataFrame({ "9th": ninth_grade_reading, "10th": tenth_grade_reading, "11th": eleventh_grade_reading, "12th": twelvth_grade_reading }) reading_scores_grade.head(15) ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code bins = [0,585,630,645,675] group_names = ["< $585","$585 - $629","$630 - $644","$645 - $675"] school_data_complete['Spending Ranges (Per Student)'] = pd.cut(school_data_complete['budget']/school_data_complete['size'], bins, labels = group_names) score_by_budget = school_data_complete.groupby('Spending Ranges (Per Student)') avg_math = score_by_budget['math_score'].mean() avg_read = score_by_budget['reading_score'].mean() pass_math = school_data_complete[school_data_complete['math_score'] >= 70].groupby('Spending Ranges (Per Student)')['Student ID'].count()/score_by_budget['Student ID'].count() * 100 pass_read = school_data_complete[school_data_complete['reading_score'] >= 70].groupby('Spending Ranges (Per Student)')['Student ID'].count()/score_by_budget['Student ID'].count() * 100 overall = school_data_complete[(school_data_complete['math_score'] >= 70) & (school_data_complete['reading_score'] >= 70)].groupby('Spending Ranges (Per Student)')['Student ID'].count()/score_by_budget['Student ID'].count() * 100 scores_by_budget = pd.DataFrame({ "Average Math Score": avg_math, "Average Reading Score": avg_read, "% Passing Math": pass_math, "% Passing Reading": pass_read, "% Overall Passing": overall }) scores_by_budget['Average Math Score'] = scores_by_budget['Average Math Score'].map("{:,.2f}".format) scores_by_budget['Average Reading Score'] = scores_by_budget['Average Reading Score'].map("{:,.2f}".format) scores_by_budget['% Passing Math'] = scores_by_budget['% Passing Math'].map("{:,.2f}".format) scores_by_budget['% Passing Reading'] = scores_by_budget['% Passing Reading'].map("{:,.2f}".format) scores_by_budget['% Overall Passing'] = scores_by_budget['% Overall Passing'].map("{:,.2f}".format) scores_by_budget ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code bins = [0, 1000, 2000, 5000] group_names = ["Small(<1000)", "Medium (1000 - 2000)" , "Large (2000 - 5000)"] school_data_complete['School Size'] = pd.cut(school_data_complete['size'], bins, labels = group_names) score_by_size = school_data_complete.groupby('School Size') avg_math = score_by_size['math_score'].mean() avg_read = score_by_size['reading_score'].mean() pass_math = school_data_complete[school_data_complete['math_score'] >= 70].groupby('School Size')['Student ID'].count()/score_by_size['Student ID'].count() * 100 pass_read = school_data_complete[school_data_complete['reading_score'] >= 70].groupby('School Size')['Student ID'].count()/score_by_size['Student ID'].count() * 100 overall = school_data_complete[(school_data_complete['math_score'] >= 70) & (school_data_complete['reading_score'] >= 70)].groupby('School Size')['Student ID'].count()/score_by_size['Student ID'].count() * 100 scores_by_size = pd.DataFrame({ "Average Math Score": avg_math, "Average Reading Score": avg_read, "% Passing Math": pass_math, "% Passing Reading": pass_read, "% Overall Passing ": overall }) scores_by_size ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type ###Code score_by_type = school_data_complete.groupby('type') avg_math = score_by_type['math_score'].mean() avg_read = score_by_type['reading_score'].mean() pass_math = school_data_complete[school_data_complete['math_score'] >= 70].groupby('type')['Student ID'].count()/score_by_type['Student ID'].count() * 100 pass_read = school_data_complete[school_data_complete['reading_score'] >= 70].groupby('type')['Student ID'].count()/score_by_type['Student ID'].count() * 100 overall = school_data_complete[(school_data_complete['math_score'] >= 70) & (school_data_complete['reading_score'] >= 70)].groupby('type')['Student ID'].count()/score_by_type['Student ID'].count() * 100 scores_by_type = pd.DataFrame({ "Average Math Score": avg_math, "Average Reading Score": avg_read, "% Passing Math": pass_math, "% Passing Reading": pass_read, "% Overall Passing": overall}) scores_by_type.index.names = ['School Type'] scores_by_type ###Output _____no_output_____ ###Markdown Option 2: Academy of Py District Summary* Create a high level snapshot (in table form) of the district's key metrics, including: * Total Schools * Total Students * Total Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # import dependencies import pandas as pd # create path for file schools_file = "./Resources/schools_complete.csv" students_file = "./Resources/students_complete.csv" # read csv and store in Pandas DataFrame schools_df = pd.read_csv(schools_file) students_df = pd.read_csv(students_file) schools_df.head() students_df.head() # Calculate the total of schools in the Schools DataFrame schools_total = len(schools_df["school_name"].unique()) # Calculate the total of students in the Schools DataFrame students_total = len(students_df["Student ID"].unique()) # Calculate the Total Budget budget_total = schools_df["budget"].sum() # Calculate the Average Math Score avg_math_score = round(students_df["math_score"].mean()) #Calculate the Average Math Score avg_reading_score = round(students_df["reading_score"].mean()) #Find total of Students Passing Math (>69) passing_math_ttl = students_df.loc[students_df["math_score"]>69].count()["student_name"] # Calculate % of Students Passing Math passing_math_pct = (passing_math_ttl/students_total) #Find total of Students Passing Reading (>69) passing_reading_ttl = students_df.loc[students_df["reading_score"]>69].count()["student_name"] # Calculate % of Students Passing Reading passing_reading_pct =(passing_reading_ttl/students_total) # Calculate Overall Passing Rate (Average of the above two) overall_passing = (passing_math_pct + passing_reading_pct)/2 # Create District Summary DataFrame using calculation to create a table showing a "high level snapshot" district_summary = pd.DataFrame ({"Total Schools":[schools_total], "Total Student":[students_total], "Total Budget":[budget_total], "Average Math Score":[avg_math_score], "Average Reading Score":[avg_reading_score], "% Passing Math":[passing_math_pct], "% Passing Reading":[passing_reading_pct], "Overall Passing Rate":[overall_passing]}) # Format Results in Table accordingly district_summary = district_summary.style.format({ 'Total Student': '{:,.0f}'.format, 'Total Budget':'${:,.0f}'.format, '% Passing Math': '{:,.0%}'.format, '% Passing Reading': '{:,.0%}'.format, 'Overall Passing Rate': '{:,.0%}'.format}) district_summary ###Output _____no_output_____ ###Markdown School Summary* Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # Merge the two dataframes using full outer join merged_data = pd.merge(students_df, schools_df, how = "left" , on= ["school_name"]) merged_data.head() # Find Type using set_index school_types = schools_df.set_index(["school_name"])["type"] # Find Total Of Students per School using merged data value_counts students_per_sch = (merged_data["school_name"].value_counts()).map("{:,.0f}".format) # Find Budget using groupby mean of budget column school_budget = merged_data.groupby(["school_name"]).mean()["budget"].map("${:,.0f}".format) # Find Budget_Per_Student using school budget divided by # students per school student_budget = ((merged_data.groupby(["school_name"]).mean()["budget"]) /(merged_data["school_name"].value_counts())).map("${:,.0f}".format) # Find the Average Math Score for each school using groupby mean of math score column avg_math = merged_data.groupby(["school_name"]).mean()["math_score"].map("{:,.0f}".format) # Find the Average Reading Score for each school using groupby mean of reading score column #avg_read = school_groupby["reading_score"].mean() avg_read = merged_data.groupby(["school_name"]).mean()["reading_score"].map("{:,.0f}".format) #Find total of Students Passing Math (>69) passing_math = (merged_data[merged_data["math_score"]>69].groupby("school_name")["Student ID"].count() / (merged_data["school_name"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation math_unformatted = (merged_data[merged_data["math_score"]>69].groupby("school_name")["Student ID"].count() / (merged_data["school_name"].value_counts())) #Find total of Students Passing Reading (>69) passing_read = (merged_data[merged_data["reading_score"]>69].groupby("school_name")["Student ID"].count() / (merged_data["school_name"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation read_unformatted = (merged_data[merged_data["reading_score"]>69].groupby("school_name")["Student ID"].count() / (merged_data["school_name"].value_counts())) # Calculate Overall Passing Rate (Average of the above two) overall_pass = ((math_unformatted + read_unformatted) / 2).map("{:,.2%}".format) # Create School Summary DataFrame using above calculations to create an overview table school_summary = pd.DataFrame({"School Type": school_types, "Total Students": students_per_sch, "School Budget": school_budget, "Per Student Budget" :student_budget, "Avg Math Score": avg_math, "Avg Reading Score": avg_read, "% Passing Math": passing_math, "% Passing Reading": passing_read, "Overall Passing": overall_pass}) school_summary ###Output _____no_output_____ ###Markdown Top Performing Schools (By Passing Rate)* Create a table that highlights the top 5 performing schools based on Overall Passing Rate. Include: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # Sort Overall Passing Column values in descending order top_five = school_summary.sort_values("Overall Passing", ascending = False) top_five.head(5) ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By Passing Rate)* Create a table that highlights the bottom 5 performing schools based on Overall Passing Rate. Include all of the same metrics as above. ###Code # Sort Overall Passing Column values in ascending order top_five = school_summary.sort_values("Overall Passing", ascending = True) top_five.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade* Create a table that lists the average Math Score for students of each grade level (9th, 10th, 11th, 12th) at each school. ###Code # Find Average Math Scores for each grade level at each school # Use .loc to find grade, use .groupby to group by each school, use .mean to find the Average Math Score math_9th = merged_data.loc[merged_data["grade"] == "9th"].groupby("school_name")["math_score"].mean() # Repeat above for each grade math_10th = merged_data.loc[merged_data["grade"] == "10th"].groupby("school_name")["math_score"].mean() math_11th = merged_data.loc[merged_data["grade"] == "11th"].groupby("school_name")["math_score"].mean() math_12th = merged_data.loc[merged_data["grade"] == "12th"].groupby("school_name")["math_score"].mean() # Create Summary DataFrame using above calculations to create a table math_scores_by_grade = pd.DataFrame ({"9th Grade": math_9th, "10th Grade": math_10th, "11th Grade": math_11th, "12th Grade": math_12th}) # Format Results to limit decimal places math_scores_by_grade = math_scores_by_grade.style.format({ "9th Grade": '{:,.2f}'.format, "10th Grade":'{:,.2f}'.format, "11th Grade": '{:,.2f}'.format, "12th Grade": '{:,.2f}'.format,}) # StackOverflow trick to get titles on the same line math_scores_by_grade.index.name = "Math Scores by Grade" math_scores_by_grade.columns.name = math_scores_by_grade.index.name math_scores_by_grade.index.name = None math_scores_by_grade ###Output _____no_output_____ ###Markdown Reading Scores by Grade* Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. ###Code # Use .loc to find grade, use .groupby to group by each school, use .mean to find the Average Reading Score # Repeat for each grade reading_9th = merged_data.loc[merged_data["grade"] == "9th"].groupby("school_name")["reading_score"].mean() reading_10th = merged_data.loc[merged_data["grade"] == "10th"].groupby("school_name")["reading_score"].mean() reading_11th = merged_data.loc[merged_data["grade"] == "11th"].groupby("school_name")["reading_score"].mean() reading_12th = merged_data.loc[merged_data["grade"] == "12th"].groupby("school_name")["reading_score"].mean() # Create Summary DataFrame using above calculations to create a table reading_scores_by_grade = pd.DataFrame ({"9th Grade": reading_9th, "10th Grade": reading_10th, "11th Grade": reading_11th, "12th Grade": reading_12th}) # Format Results to limit decimal places reading_scores_by_grade = reading_scores_by_grade.style.format({ "9th Grade": '{:,.2f}'.format, "10th Grade":'{:,.2f}'.format, "11th Grade": '{:,.2f}'.format, "12th Grade": '{:,.2f}'.format,}) # StackOverflow trick to get titles on the same line reading_scores_by_grade.index.name = "Reading Scores by Grades" reading_scores_by_grade.columns.name = reading_scores_by_grade.index.name reading_scores_by_grade.index.name = None reading_scores_by_grade ###Output _____no_output_____ ###Markdown Scores by School Spending* Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # Create the bins in which Data will be held bins = [0,580,620,650,1000] # Create the names for the four bins bin_labels = ["<580","580-619","620-650",">650"] # Place the data series into a new column inside of the DataFrame - dived budget column by size column to get the budget per student merged_data["spending_ranges"] = pd.cut(merged_data["budget"]/merged_data["size"], bins, labels=bin_labels) # Find the Average (.mean) Math and Reading score Grouped by Spending Ranges avg_math = merged_data.groupby(["spending_ranges"]).mean()["math_score"].map("{:,.0f}".format) avg_read = merged_data.groupby(["spending_ranges"]).mean()["reading_score"].map("{:,.0f}".format) #Find total of Students Passing Math (>69) passing_math = (merged_data[merged_data["math_score"]>69].groupby("spending_ranges")['Student ID'].count() / (merged_data["spending_ranges"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation math_unformatted = (merged_data[merged_data["math_score"]>69].groupby("spending_ranges")['Student ID'].count() / (merged_data["spending_ranges"].value_counts())) #Find total of Students Passing Reading (>69) passing_read = (merged_data[merged_data["reading_score"]>69].groupby("spending_ranges")["Student ID"].count() / (merged_data["spending_ranges"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation read_unformatted = (merged_data[merged_data["reading_score"]>69].groupby("spending_ranges")["Student ID"].count() / (merged_data["spending_ranges"].value_counts())) # Calculate Overall Passing Rate (Average of the above two) overall_pass = ((math_unformatted + read_unformatted) / 2).map("{:,.2%}".format) # Create School Summary DataFrame using above calculations to create an overview table spending_summary = pd.DataFrame({"Avg Math Score": avg_math, "Avg Reading Score": avg_read, "% Passing Math": passing_math, "% Passing Reading": passing_read, "Overall Passing": overall_pass}) # StackOverflow trick to get titles on the same line spending_summary.index.name = "Spending Ranges" spending_summary.columns.name = spending_summary.index.name spending_summary.index.name = None spending_summary ###Output _____no_output_____ ###Markdown Scores by School Size* Repeat the above breakdown, but this time group schools based on a reasonable approximation of school size (Small, Medium, Large). ###Code # Create the bins in which Data will be held bins = [0,1000,4000,9999] # Create the names for the four bins bin_labels = ["Small","Medium","Large"] # Place the data series into a new column inside of the DataFrame merged_data["School Size"] = pd.cut(merged_data["size"], bins, labels=bin_labels) # Group the DataFrame by School Size size_groupby = merged_data.groupby("School Size") # Find the Average (.mean) Math and Reading score Grouped by School Size avg_math = merged_data.groupby(["School Size"]).mean()["math_score"].map("{:,.0f}".format) avg_read = merged_data.groupby(["School Size"]).mean()["reading_score"].map("{:,.0f}".format) #Find total of Students Passing Math (>69) passing_math = (merged_data[merged_data["math_score"]>69].groupby("School Size")["Student ID"].count() / (merged_data["School Size"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation math_unformatted = (merged_data[merged_data["math_score"]>69].groupby("School Size")["Student ID"].count() / (merged_data["School Size"].value_counts())) #Find total of Students Passing Reading (>69) passing_read = (merged_data[merged_data["reading_score"]>69].groupby("School Size")["Student ID"].count() / (merged_data["School Size"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation read_unformatted = (merged_data[merged_data["reading_score"]>69].groupby("School Size")["Student ID"].count() / (merged_data["School Size"].value_counts())) # Calculate Overall Passing Rate (Average of the above two) overall_pass = ((math_unformatted + read_unformatted) / 2).map("{:,.2%}".format) # Create School Summary DataFrame using above calculations to create an overview table size_summary = pd.DataFrame({"Avg Math Score": avg_math, "Avg Reading Score": avg_read, "% Passing Math": passing_math, "% Passing Reading": passing_read, "Overall Passing": overall_pass}) # StackOverflow trick to get titles on the same line size_summary.index.name = "School Size" size_summary.columns.name = size_summary.index.name size_summary.index.name = None size_summary ###Output _____no_output_____ ###Markdown Scores by School Type* Repeat the above breakdown, but this time group schools based on school type (Charter vs. District). ###Code # Find the Average (.mean) Math and Reading score Grouped by "type" avg_math = merged_data.groupby(["type"]).mean()["math_score"].map("{:,.0f}".format) avg_read = merged_data.groupby(["type"]).mean()["reading_score"].map("{:,.0f}".format) #Find total of Students Passing Math (>69) passing_math = (merged_data[merged_data["math_score"]>69].groupby("type")["Student ID"].count() / (merged_data["type"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation math_unformatted = (merged_data[merged_data["math_score"]>69].groupby("type")["Student ID"].count() / (merged_data["type"].value_counts())) #Find total of Students Passing Reading (>69) passing_read = (merged_data[merged_data["reading_score"]>69].groupby("type")["Student ID"].count() / (merged_data["type"].value_counts())).map("{:,.0%}".format) # Took format off for overall passing calculation read_unformatted = (merged_data[merged_data["reading_score"]>69].groupby("type")["Student ID"].count() / (merged_data["type"].value_counts())) # Calculate Overall Passing Rate (Average of the above two) overall_pass = ((math_unformatted + read_unformatted) / 2).map("{:,.2%}".format) # Create School Summary DataFrame using above calculations to create an overview table type_summary = pd.DataFrame({"Avg Math Score": avg_math, "Avg Reading Score": avg_read, "% Passing Math": passing_math, "% Passing Reading": passing_read, "Overall Passing": overall_pass}) # StackOverflow trick to get titles on the same line type_summary.index.name = "School Type" type_summary.columns.name = type_summary.index.name type_summary.index.name = None type_summary ###Output _____no_output_____ ###Markdown PyCitySchools ###Code # Dependencies and Setup import pandas as pd import numpy as np # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) school_data_complete.head() ###Output _____no_output_____ ###Markdown District Summary ###Code # Calculations for District Summary # Total number of schools total_number_schools = len(school_data_complete["school_name"].unique()) print(total_number_schools) # Total number of students total_number_students = school_data_complete["student_name"].count() print(total_number_students) # Total budget total_budget = school_data_complete["budget"].unique().sum() print(total_budget) # Average math score average_math_score = school_data_complete["math_score"].mean() print(average_math_score) # Average reading score average_reading_score = school_data_complete["reading_score"].mean() print(average_reading_score) # Percentage of students passing math passing_math = school_data_complete["math_score"] >= 70 percentage_passing_math= school_data_complete[passing_math]["math_score"].count()/total_number_students*100 print(percentage_passing_math) # Percentage of students passing reading passing_reading = school_data_complete["reading_score"] >= 70 percentage_passing_reading= school_data_complete[passing_reading]["reading_score"].count()/total_number_students*100 print(percentage_passing_reading) # Percentage of students passing passing = school_data_complete[passing_math & passing_reading]["student_name"].count() percentage_passing = passing/total_number_students*100 print(percentage_passing) # Create Summary Data Frame summary_df = pd.DataFrame({"Total Schools": [total_number_schools], "Total Students": [total_number_students], "Total Budget": [total_budget], "Average Math Score": [average_math_score], "Average Reading Score": [average_reading_score], "% Passing Math": [percentage_passing_math], "% Passing Reading": [percentage_passing_reading], "% Overall Passing": [percentage_passing]}) summary_df.head() #Checking data types of summary table summary_df.dtypes # Converting integer columns to floats summary_df.loc[:, "Total Schools"] = summary_df["Total Schools"].astype("float") summary_df.loc[:, "Total Students"] = summary_df["Total Students"].astype("float") summary_df.loc[:, "Total Budget"] = summary_df["Total Budget"].astype("float") summary_df.dtypes # Use Map to format columns correctly summary_df["Total Schools"] = summary_df["Total Schools"].map("{:.0f}".format) summary_df["Total Students"] = summary_df["Total Students"].map("{:,.0f}".format) summary_df["Total Budget"] = summary_df["Total Budget"].map("${:,.2f}".format) summary_df.head() ###Output _____no_output_____ ###Markdown School Summary ###Code #Calculate for School summary # Grouped CSV data frame by School Name grouped_school_df = school_data_complete.groupby(['school_name']) grouped_school_df.count().head() # School type school_type = grouped_school_df['type'].first() print(school_type) # Total Students per school total_students = grouped_school_df.size() print(total_students) # School Total Budget school_budget = grouped_school_df['budget'].first() print(school_budget) # School Budget per Student school_budget_per_student = school_budget/total_students print(school_budget_per_student) # Average math score average_math_score = grouped_school_df['math_score'].mean() print(average_math_score) # Average reading score average_reading_score = grouped_school_df['reading_score'].mean() print(average_reading_score) # Percentange of Student Passing Math grouped_passing_math = school_data_complete[passing_math].groupby(['school_name']).size() school_percent_passing_math = (grouped_passing_math/total_students)*100 print(school_percent_passing_math) # Percentange of Student Passing Reading grouped_passing_reading = school_data_complete[passing_reading].groupby(['school_name']).size() school_percent_passing_reading = (grouped_passing_reading/total_students)*100 print(school_percent_passing_reading) # Percentange of Student Passing both Math & Reading grouped_passing = school_data_complete[passing_math & passing_reading].groupby(['school_name']).size() school_percent_passing = (grouped_passing/total_students)*100 print(school_percent_passing) # Create Summary Data Frame school_summary_df = pd.DataFrame({'School Type': school_type, 'Total Students':total_students, 'Total School Budget': school_budget, 'Per Student Budget': school_budget_per_student, 'Average Math Score': average_math_score, 'Average Reading Score': average_reading_score, '% Passing Math': school_percent_passing_math, '% Passing Reading': school_percent_passing_reading, '% Overall Passing Rate': school_percent_passing}) school_summary_df #Checking data types of table school_summary_df.dtypes # Converting integer columns to floats school_summary_df.loc[:, "Total Students"] = school_summary_df["Total Students"].astype("float") school_summary_df.loc[:, "Total School Budget"] = school_summary_df["Total School Budget"].astype("float") school_summary_df.dtypes # Use Map to format columns correctly school_summary_df["Total Students"] = school_summary_df["Total Students"].map("{:,.0f}".format) school_summary_df["Total School Budget"] = school_summary_df["Total School Budget"].map("${:,.2f}".format) school_summary_df["Per Student Budget"] = school_summary_df["Per Student Budget"].map("${:.2f}".format) school_summary_df # Delete fisrt column header school_summary_df.index.name = None school_summary_df ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) ###Code # Top 5 Performing schools by Percent Passing top_schools_df = school_summary_df.sort_values("% Overall Passing Rate", ascending = False) top_schools_df.head(5) ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) ###Code # Bottom 5 Performing schools by Percent Passing bottom_schools_df = school_summary_df.sort_values("% Overall Passing Rate", ascending = True) bottom_schools_df.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade ###Code # Calculate 9th Grade Math Scores freshman = school_data_complete.loc[school_data_complete["grade"]=="9th"].groupby("school_name") freshman_math_score = freshman["math_score"].mean() print(freshman_math_score) # Calculate 10th Grade Math Scores sophmore = school_data_complete.loc[school_data_complete["grade"]=="10th"].groupby("school_name") sophmore_math_score = sophmore["math_score"].mean() print(sophmore_math_score) # Calculate 10th Grade Math Scores junior = school_data_complete.loc[school_data_complete["grade"]=="11th"].groupby("school_name") junior_math_score = junior["math_score"].mean() print(junior_math_score) # Calculate 10th Grade Math Scores senior = school_data_complete.loc[school_data_complete["grade"]=="12th"].groupby("school_name") senior_math_score = senior["math_score"].mean() print(senior_math_score) # Create Summary Data Frame math_score_grade_df = pd.DataFrame({"9th": freshman_math_score, "10th": sophmore_math_score, "11th": junior_math_score, "12th": senior_math_score}) math_score_grade_df # Delete fisrt column header math_score_grade_df.index.name = None math_score_grade_df ###Output _____no_output_____ ###Markdown Reading Score by Grade ###Code # Calculate 9th Grade Math Scores freshman_reading_score = freshman["reading_score"].mean() print(freshman_reading_score) # Calculate 10th Grade Math Scores sophmore_reading_score = sophmore["reading_score"].mean() print(sophmore_reading_score) # Calculate 11th Grade Math Scores junior_reading_score = junior["reading_score"].mean() print(junior_reading_score) # Calculate 10th Grade Math Scores senior_reading_score = senior["reading_score"].mean() print(senior_reading_score) # Create Summary Data Frame reading_score_grade_df = pd.DataFrame({"9th": freshman_reading_score, "10th": sophmore_reading_score, "11th": junior_reading_score, "12th": senior_reading_score}) reading_score_grade_df # Delete fisrt column header reading_score_grade_df.index.name = None reading_score_grade_df ###Output _____no_output_____ ###Markdown Scores by School Spending ###Code # Create the bins in which Data will be held # Create Bins based of school spending per student <585, 585-630, 630-645, 645-680 bins = [0, 585, 630, 645, 680] # Create the name for the Bins group_labels = ["<$585", "$585-630", "$630-645", "$645-680"] # Copy School Summary Data Frame to create new data frame sorted by bins per_student_spending_df = school_summary_df.copy() per_student_spending_df # Place the data series into a new column inside of the DataFrame per_student_spending_df["Spending Ranges (Per Student)"] = pd.cut(school_budget_per_student, bins, labels=group_labels) per_student_spending_df # Group by Spending Range groupped_spending_df = per_student_spending_df.groupby("Spending Ranges (Per Student)") groupped_spending_df.count().head() # Calculations for Per Student Spending Summary # Average math score average_math_score_spending = groupped_spending_df["Average Math Score"].mean() print(average_math_score_spending) # Average reading score average_reading_score_spending = groupped_spending_df["Average Reading Score"].mean() print(average_reading_score_spending) # Percentage of students passing math percentage_passing_math_spending = groupped_spending_df["% Passing Math"].mean() print(percentage_passing_math_spending) # Percentage of students passing reading percentage_passing_reading_spending = groupped_spending_df["% Passing Reading"].mean() print(percentage_passing_reading_spending) # Percentage of students passing math percentage_passing_spending = groupped_spending_df["% Overall Passing Rate"].mean() print(percentage_passing_spending) # Create Summary Data Frame spending_df = pd.DataFrame({"Average Math Score": average_math_score_spending, "Average Reading Score": average_reading_score_spending, "% Passing Math": percentage_passing_math_spending, "% Passing Reading": percentage_passing_reading_spending, "% Overall Passing": percentage_passing_spending}) spending_df # Use Map to format columns correctly spending_df["Average Math Score"] = spending_df["Average Math Score"].map("{:.2f}".format) spending_df["Average Reading Score"] = spending_df["Average Reading Score"].map("{:.2f}".format) spending_df["% Passing Math"] = spending_df["% Passing Math"].map("{:.2f}".format) spending_df["% Passing Reading"] = spending_df["% Passing Reading"].map("{:.2f}".format) spending_df["% Overall Passing"] = spending_df["% Overall Passing"].map("{:.2f}".format) spending_df ###Output _____no_output_____ ###Markdown Scores by School Size ###Code # Create the bins in which Data will be held # Create Bins based of School Size <1000, 1000-2000, 2000-5000 bins_school_size = [0, 1000, 2000, 5000] # Create the name for the Bins group_school_size = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] # Copy School Summary Data Frame to create new data frame sorted by bins school_size_df = school_summary_df.copy() school_size_df # Place the data series into a new column inside of the DataFrame school_size_df["School Size"] = pd.cut(total_students, bins_school_size, labels=group_school_size) school_size_df # Group by School Size groupped_school_size_df = school_size_df.groupby("School Size") groupped_school_size_df.count().head() # Calculations for School Size Summary # Average math score average_math_school_size = groupped_school_size_df["Average Math Score"].mean() print(average_math_school_size) # Average reading score average_reading_school_size = groupped_school_size_df["Average Reading Score"].mean() print(average_reading_school_size) # Percentage of students passing math percentage_passing_math_school_size = groupped_school_size_df["% Passing Math"].mean() print(percentage_passing_math_school_size) # Percentage of students passing reading percentage_passing_reading_school_size = groupped_school_size_df["% Passing Reading"].mean() print(percentage_passing_reading_school_size) # Percentage of students passing math percentage_passing_school_size = groupped_school_size_df["% Overall Passing Rate"].mean() print(percentage_passing_school_size) # Create Summary Data Frame size_df = pd.DataFrame({"Average Math Score": average_math_school_size, "Average Reading Score": average_reading_school_size, "% Passing Math": percentage_passing_math_school_size, "% Passing Reading": percentage_passing_reading_school_size, "% Overall Passing": percentage_passing_school_size}) size_df # Use Map to format columns correctly size_df["Average Math Score"] = size_df["Average Math Score"].map("{:.2f}".format) size_df["Average Reading Score"] = size_df["Average Reading Score"].map("{:.2f}".format) size_df["% Passing Math"] = size_df["% Passing Math"].map("{:.2f}".format) size_df["% Passing Reading"] = size_df["% Passing Reading"].map("{:.2f}".format) size_df["% Overall Passing"] = size_df["% Overall Passing"].map("{:.2f}".format) size_df ###Output _____no_output_____ ###Markdown Scores by School Type ###Code # Group by School Type groupped_school_type_df = school_summary_df.groupby("School Type") groupped_school_type_df.count().head() # Calculations for School Type Summary # Average math score average_math_school_type = groupped_school_type_df["Average Math Score"].mean() print(average_math_school_type) # Average reading score average_reading_school_type = groupped_school_type_df["Average Reading Score"].mean() print(average_reading_school_type) # Percentage of students passing math percentage_passing_math_school_type = groupped_school_type_df["% Passing Math"].mean() print(percentage_passing_math_school_type) # Percentage of students passing reading percentage_passing_reading_school_type = groupped_school_type_df["% Passing Reading"].mean() print(percentage_passing_reading_school_type) # Percentage of students passing math percentage_passing_school_type = groupped_school_type_df["% Overall Passing Rate"].mean() print(percentage_passing_school_type) # Create Summary Data Frame type_df = pd.DataFrame({"Average Math Score": average_math_school_type, "Average Reading Score": average_reading_school_type, "% Passing Math": percentage_passing_math_school_type, "% Passing Reading": percentage_passing_reading_school_type, "% Overall Passing": percentage_passing_school_type}) type_df # Use Map to format columns correctly type_df["Average Math Score"] = type_df["Average Math Score"].map("{:.2f}".format) type_df["Average Reading Score"] = type_df["Average Reading Score"].map("{:.2f}".format) type_df["% Passing Math"] = type_df["% Passing Math"].map("{:.2f}".format) type_df["% Passing Reading"] = type_df["% Passing Reading"].map("{:.2f}".format) type_df["% Overall Passing"] = type_df["% Overall Passing"].map("{:.2f}".format) type_df ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code def type_statistics(type_df, name, df): # Calculate the total number of schools num_schools = df['school_name'].nunique() # Calculate the total number of students num_students = df['student_name'].size # Calculate the total budget budget_df = type_df['budget'].sum() budget = budget_df[name] # Calculate the average math score math_score = df['math_score'].mean() # Calculate the average reading score reading_score = df['reading_score'].mean() # Calculate the overall passing rate (overall average score) passing_score = (math_score + reading_score)/2 # Calculate the percentage of students with a passing math score (70 or greater) passing_math_num = (df['math_score'] >= 70).sum() passing_math_avg = passing_math_num / num_students * 100 # Calculate the percentage of students with a passing reading score (70 or greater) passing_read_num = (df['reading_score'] >= 70).sum() passing_read_avg = passing_read_num / num_students * 100 # TODO: # Create a dataframe to hold the above results results = pd.DataFrame([{'Type' : name, 'Number of Schools' : num_schools, 'Number of Students' : num_students, 'Budget' : budget, 'Average Math Score' : math_score, 'Average Reading Score' : reading_score, 'Overall Passing Average' : passing_score, 'Passing Math Average' : passing_math_avg, 'Passing Reading Average' : passing_read_avg}]) # order the columns results = results[['Type', 'Number of Schools', 'Number of Students', 'Budget', 'Average Math Score', 'Average Reading Score', 'Overall Passing Average', 'Passing Math Average', 'Passing Reading Average']] return results # District type_df = school_data.groupby(['type']) dist_stats_df = type_statistics(type_df, 'District', district_group) ch_stats_df = type_statistics(type_df, 'Charter', charter_group) stats_df = pd.concat([dist_stats_df, ch_stats_df], ignore_index=True) # Use Map to format all the columns stats_df["Budget"] = stats_df["Budget"].map("${:,.0f}".format) stats_df["Average Math Score"] = stats_df["Average Math Score"].map("{:.2f}%".format) stats_df["Average Reading Score"] = stats_df["Average Reading Score"].map("{:.2f}%".format) stats_df["Overall Passing Average"] = stats_df["Overall Passing Average"].map("{:.2f}%".format) stats_df["Passing Math Average"] = stats_df["Passing Math Average"].map("{:.2f}%".format) stats_df["Passing Reading Average"] = stats_df["Passing Reading Average"].map("{:.2f}%".format) stats_df ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) * Create a dataframe to hold the above results Top Performing Schools (By Passing Rate) * Sort and display the top five schools in overall passing rate ###Code def school_stats(school_list): # School Name # School Type # Total Students # Total School Budget # Per Student Budget # Average Math Score # Average Reading Score # % Passing Math # % Passing Reading # Overall Passing Rate (Average of the above two) # Create a dataframe to hold the above results school_name = school_list[0] school_data = school_list[1] school_type = school_data.iloc[0]['type'] total_students = school_data['Student ID'].count() school_budget = school_data.iloc[0]['budget'] per_student_budget = school_budget/total_students average_math_score = school_data['math_score'].mean() average_reading_score = school_data['reading_score'].mean() num_passing_math = (school_data['math_score'] >= 70).sum() percent_passing_math = num_passing_math/total_students*100 num_passing_reading = (school_data['reading_score'] >= 70).sum() percent_passing_reading = num_passing_reading/total_students*100 overall_passing_rate = (num_passing_math + num_passing_reading) / 2 / total_students * 100 results = pd.DataFrame([{"School Name" : school_name, "School Type" : school_type, "Total Students" : total_students, "Total School Budget" : school_budget, "Per Student Budget" : per_student_budget, "Average Math Score" : average_math_score, "Average Reading Score" : average_reading_score, "% Passing Math" : percent_passing_math, "% Passing Reading" : percent_passing_reading, "Overall Passing Rate" : overall_passing_rate }]) return results # Create an overview table that summarizes key metrics about each school, including: school_df = school_data_complete.groupby(['school_name']) num_students = school_df['school_name'].count() num_schools = school_df['school_name'].nunique().size # print(num_schools) school_stats_df = pd.DataFrame() one_school_stats_df = pd.DataFrame() for i in range(0, num_schools): one_school_stats_df = school_stats(list(school_df)[i]) school_stats_df = pd.concat([school_stats_df, one_school_stats_df], ignore_index=True) # order the columns school_stats_df = school_stats_df[['School Name', 'School Type', 'Total Students', 'Total School Budget', 'Per Student Budget', 'Average Math Score', 'Average Reading Score', '% Passing Math', '% Passing Reading', 'Overall Passing Rate']] # Use Map to format all the columns school_stats_df["Total School Budget"] = school_stats_df["Total School Budget"].map("${:,.0f}".format) school_stats_df["Per Student Budget"] = school_stats_df["Per Student Budget"].map("${:,.0f}".format) school_stats_df["Average Math Score"] = school_stats_df["Average Math Score"].map("{:.2f}%".format) school_stats_df["Average Reading Score"] = school_stats_df["Average Reading Score"].map("{:.2f}%".format) school_stats_df["% Passing Math"] = school_stats_df["% Passing Math"].map("{:.2f}%".format) school_stats_df["% Passing Reading"] = school_stats_df["% Passing Reading"].map("{:.2f}%".format) school_stats_df["Overall Passing Rate"] = school_stats_df["Overall Passing Rate"].map("{:.2f}%".format) print("School Summary") school_stats_df ###Output School Summary ###Markdown Top Performing Schools (By Passing Rate) * Sort and display the five best-performing schools ###Code print("Best Schools") school_stats_df.sort_values(by='Overall Passing Rate', ascending=False).head() ###Output Best Schools ###Markdown Bottom Performing Schools (By Passing Rate) * Sort and display the five worst-performing schools ###Code print("Worst Schools") school_stats_df.sort_values(by='Overall Passing Rate', ascending=True).head() ###Output Worst Schools ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting Reading Score by Grade * Perform the same operations as above for reading scores ###Code # Group the data by school and grade school_grades_df = school_data_complete.groupby(['school_name', 'grade']) # Accumulate the data # TODO: for efficiency, use a list and only make a DataFrame one time at the list grades_df = pd.DataFrame({'School' : [], 'Grade' : [], 'Math Score' : [], 'Reading Score': []}) for name_of_the_group, group in school_grades_df: math_avg = group['math_score'].mean() reading_avg = group['reading_score'].mean() grades_df = grades_df.append({'School' : name_of_the_group[0], 'Grade' : name_of_the_group[1], 'Math Score' : math_avg, 'Reading Score' : reading_avg}, ignore_index=True) # Format the percents grades_df["Math Score"] = grades_df["Math Score"].map("{:.2f}%".format) grades_df["Reading Score"] = grades_df["Reading Score"].map("{:.2f}%".format) grades_df ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # bins. spending_bins = [0, 585, 615, 645, 675] group_names = ["0-585", "585-615", "615-645", "645-675"] # remove all the dollar signs colstocheck = school_stats_df.columns school_stats_df[colstocheck] = school_stats_df[colstocheck].replace({'\$':''}, regex = True) # remove all the percent signs school_stats_df[colstocheck] = school_stats_df[colstocheck].replace({'\%':''}, regex = True) # turn the budget column into an int school_stats_df['Per Student Budget'] = pd.to_numeric(school_stats_df['Per Student Budget']) # turn the % Passing Math column into a float school_stats_df['% Passing Math'] = pd.to_numeric(school_stats_df['% Passing Math']) # turn the % Passing Reading column into a float school_stats_df['% Passing Reading'] = pd.to_numeric(school_stats_df['% Passing Reading']) # Save school_stats_df orig_school_stats_df = school_stats_df.copy() # cut into bins and add a column school_stats_df["Per Student Budget Summary"] = pd.cut(school_stats_df["Per Student Budget"], spending_bins, labels=group_names) # groupby the bins # Group the data by school and total students spending_summary_df = pd.DataFrame() school_spending = school_stats_df.groupby(['School Name', 'Total Students']) for spending, spending_data in school_spending: avg_math_score = spending_data.get('Average Math Score').item() avg_reading_score = spending_data.get('Average Reading Score').item() passing_math = spending_data.get('% Passing Math').item() passing_reading = spending_data.get('% Passing Reading').item() overall_passing = (passing_math + passing_reading) / 2 spending_summary_df = spending_summary_df.append({'School' : spending[0], 'Spending' : spending[1], 'Average Math Score' : avg_math_score, 'Average Reading Score' : avg_reading_score, '% Passing Math' : passing_math, '% Passing Reading' : passing_reading, 'Overall Passing Rate' : overall_passing, }, ignore_index=True) spending_summary_df = spending_summary_df.sort_values(by=['Spending', 'Overall Passing Rate'], ascending=False) spending_summary_df ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code # bins. size_bins = [0, 1000, 2000, 5000] size_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] size_school_stats_df = orig_school_stats_df.copy() #print(size_school_stats_df) # cut into bins and add a column size_school_stats_df["Student Size Summary"] = pd.cut(size_school_stats_df["Total Students"] , size_bins, labels=size_names) #print(size_school_stats_df) # groupby the bins # Group the data by school and student size size_summary_df = pd.DataFrame() school_size = size_school_stats_df.groupby(['Student Size Summary', 'Total Students']) #print(school_size) for size, size_data in school_size: avg_math_score = size_data.get('Average Math Score').item() avg_reading_score = size_data.get('Average Reading Score').item() passing_math = size_data.get('% Passing Math').item() passing_reading = size_data.get('% Passing Reading').item() overall_passing = (passing_math + passing_reading) / 2 size_summary_df = size_summary_df.append({'Student Size Summary' : size[0], 'Total Students' : size[1], 'Average Math Score' : avg_math_score, 'Average Reading Score' : avg_reading_score, '% Passing Math' : passing_math, '% Passing Reading' : passing_reading, 'Overall Passing Rate' : overall_passing, }, ignore_index=True) #print(size_summary_df.columns) size_summary_df = size_summary_df.sort_values(by=['Student Size Summary', 'Overall Passing Rate'], ascending=False) size_summary_df ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type. ###Code orig_school_stats_df.set_index(["School Name"])["School Type"] school_type_stats_df = orig_school_stats_df.sort_values(by='Overall Passing Rate', ascending=False) school_type_stats_df ###Output _____no_output_____ ###Markdown Main PyCitySchools Script* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) school_data_complete.head() ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math **and** reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code # Calculate the total number of schools total_schools = len(school_data_complete['school_name'].unique()) # total_schools # school_data_complete['school_name'].value_counts() # school_data_complete.describe() # Calculate the total number of students #### WARNING: There's a large discrepancy between the total of student names and student ids (~6000)- do some kids have multiple ids?? # total_names = len(school_data_complete['student_name'].unique()) # total_names total_students = len(school_data_complete['Student ID'].unique()) # total_students # Calculate the total budget total_budget = school_data_complete['budget'].unique() total_budget = total_budget.sum() # total_budget # Calculate the average math score avg_math = school_data_complete['math_score'].mean() # avg_math # Calculate the average reading score avg_reading = school_data_complete['reading_score'].mean() # avg_reading # Calculate the percentage of students with a passing math score (70 or greater) pass_math = (len(school_data_complete.loc[school_data_complete["math_score"] >= 70])/total_students)*100 # # pass_math # Calculate the percentage of students with a passing reading score (70 or greater) pass_reading = (len(school_data_complete.loc[school_data_complete["reading_score"] >= 70])/total_students)*100 # pass_reading # Calculate the percentage of students who passed math and reading (% Overall Passing) readers = school_data_complete.loc[school_data_complete['reading_score'] >= 70] # pass_overall = readers.loc[readers['math_score'] >= 70] pass_overall = (len(readers.loc[readers['math_score'] >= 70])/total_students)*100 # pass_overall # Create a District Summary Table - if needed, fix with ", index=[0]" district_summary_df = pd.DataFrame({'Total Schools': total_schools, 'Total Students': total_students, 'Total Budget': total_budget, 'Average Math Score': avg_math, 'Average Reading Score': avg_reading, '% Passing Math': pass_math, '% Passing Reading': pass_reading, '% Overall Passing':pass_overall}, index=[0]) district_summary_df ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math **and** reading.) * Create a dataframe to hold the above results ###Code school_data_complete.head() # Grouping the school_data_complete by school_name & creating passing math & reading columns school_data_complete['pass_math'] = school_data_complete["math_score"] >= 70 school_data_complete['pass_reading'] = school_data_complete["reading_score"] >= 70 school_group = school_data_complete.groupby(['school_name']) # School Name school_name = school_group['school_name'].unique() # school_name # School Type school_type = school_group['type'].unique() # school_type # Total Students total_students = school_group['Student ID'].count() # total_students # Total School Budget school_budget = school_group['budget'].mean() # school_budget # Per Student Budget per_stu_budget = school_budget/total_students # per_stu_budget # Average Math Score avg_math = school_group['math_score'].mean() # avg_math # Average Reading Score avg_reading = school_group['reading_score'].mean() # avg_reading # % Passing Math pass_math = school_group["pass_math"].mean() # pass_math # % Passing Reading pass_reading = school_group["pass_reading"].mean() # pass_reading # % Overall Passing (The percentage of students that passed math and reading.) pass_overall = school_group["pass_math" and "pass_reading"].mean() # pass_overall # Create a District Summary Table - if needed, fix with ", index=[0]" school_summary_df = pd.DataFrame({'School Type':school_type, 'Total Students': total_students, 'Total School Budget':school_budget, 'Per Student Budget':per_stu_budget, 'Average Math Score':avg_math, 'Average Reading Score':avg_reading, '% Passing Math':pass_math, '% Passing Reading':pass_reading, '% Overall Passing':pass_overall, }) school_summary_df ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) * Sort and display the top five performing schools by % overall passing. ###Code top_schools = school_summary_df.groupby(['% Overall Passing']) top_schools.sort_values() top_schools.head(4) top_schools = top_schools.loc[top_schools['% Overall Passing'].max() ###Output _____no_output_____ ###Markdown Academy of Py Problem Statement Well done! Having spent years analyzing financial records for big banks, you've finally scratched your idealistic itch and joined the education sector. In your latest role, you've become the Chief Data Scientist for your city's school district. In this capacity, you'll be helping the school board and mayor make strategic decisions regarding future school budgets and priorities.As a first task, you've been asked to analyze the district-wide standardized test results. You'll be given access to every student's math and reading scores, as well as various information on the schools they attend. Your responsibility is to aggregate the data to and showcase obvious trends in school performance. Analysis Report 1. For the total 15 schools at district level, the percentage of students passing reading (about 86%) is greater than the percentage of students passing math (about 75%). 2. The top performing 5 schools are all Charter schools with overall passing rate of about 95%.3. The worst performing 5 schools are all District schools with overall passing rate of about 73%.4. The higher school budget is not impacting student scores. Schools with comparatively low budget (less than 615 dollars) are having higher scores in math and reading as comapred to the schools with budget higher than 615 dollars.5. Considering school size, schools with less than 2000 students are performing better with higher average and overall scores in math and reading as compared to schools with more than 2000 students.6. Talking about the school type, Charter schools are performing far better specially in math with passing math percentage of 94% as compared to District schools with passing math percentage as 67%. Reading the input files and creating the dataframes ###Code # Dependencies and Setup import pandas as pd import os import matplotlib # Files to Load school_data_to_load = os.path.join('Resources' , 'schools_complete.csv') student_data_to_load = os.path.join('Resources', 'students_complete.csv') # Read School and Student Data File and store into Pandas Data Frames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset school_data_complete = pd.merge(student_data, school_data, how='left', on=['school_name', 'school_name']) school_data.head(3) student_data.head(3) school_data_complete.head(3) # Checking the data for null values school_data_complete.isnull().sum() ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting Calculations for district summary dataframe ###Code # calculating total number of schools total_school_count = school_data_complete['school_name'].nunique() # calculating total number of students (combined in all schools) total_student_count = school_data_complete['student_name'].count() # calculating total budget (for all schools) total_budget = school_data_complete['budget'].unique().sum() # calculating average math score at district level avg_math_score = school_data_complete['math_score'].mean() # calculating average reading score at district level avg_reading_score = school_data_complete['reading_score'].mean() # Calculating the overall passing rate (overall average score) overall_passing_rate = (avg_math_score + avg_reading_score) / 2 # calculating percentage of students passing in math at district level student_passing_math = len(school_data_complete[school_data_complete['math_score'] >= 70]) percent_passing_math = (student_passing_math / total_student_count) * 100 # calculating percentage of students passing in math at district level student_passing_reading = len(school_data_complete[school_data_complete['reading_score'] >= 70]) percent_passing_reading = (student_passing_reading / total_student_count) * 100 ###Output _____no_output_____ ###Markdown Creating the district summary datafarme ###Code distric_summary_df = pd.DataFrame({'Total Schools': total_school_count, 'Total Students': f"{total_student_count:,}", 'Total Budget': f"${total_budget:,.2f}", 'Average Math Score': avg_math_score, 'Average Reading Score': avg_reading_score, '% Passing Math': percent_passing_math, '% Passing Reading': percent_passing_reading, '% Overall Passing Rate': overall_passing_rate}, index = [0]) distric_summary_df ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) * Create a dataframe to hold the above results Calculations for school summary dataframe ###Code # grouping the data by school school_group = school_data_complete.groupby('school_name') # finding the school type for each school (charter or district) school_type = school_group['type'].first() # calculating total students in each school students_per_school = school_group['student_name'].count() # retrieving budget per school budget_per_school = school_group['budget'].first() # calculating per student budget per school per_student_budget = budget_per_school / students_per_school # calculating average math score per school avg_math_score_per_school = school_group['math_score'].mean() # calculating average reading score per school avg_reading_score_per_school = school_group['reading_score'].mean() # calculating percentage of students passing in math per school total_passing_math_per_school = school_data_complete[school_data_complete['math_score'] >= 70]['school_name'].value_counts() percent_passing_math_per_school = (total_passing_math_per_school / students_per_school) * 100 # calculating percentage of students passing in reading per school total_passing_reading_per_school = school_data_complete[school_data_complete['reading_score'] >= 70]['school_name'].value_counts() percent_passing_reading_per_school = (total_passing_reading_per_school / students_per_school) * 100 # calculating overall passing rate per school overall_passing_rate_per_school = (percent_passing_math_per_school + percent_passing_reading_per_school) / 2 ###Output _____no_output_____ ###Markdown Creating the School summary dataframe ###Code school_summary_df = pd.DataFrame({'School Type': school_type, 'Total Students': students_per_school, 'Total School Budget': budget_per_school, 'Per Student Budget': per_student_budget, 'Average Math Score': avg_math_score_per_school, 'Average Reading Score': avg_reading_score_per_school, '% Passing Math': percent_passing_math_per_school, '% Passing Reading': percent_passing_reading_per_school, '% Overall Passing Rate': overall_passing_rate_per_school }) school_summary_df.index.name = None # Didn't use style.format because head() does not work with dataframe formatted using styler object school_summary_df['Total School Budget'] = school_summary_df['Total School Budget'].map("${:,.2f}".format) # commented the formatting for 'per student budget' as this column is used for calculations in 'scores by school spending df' # school_summary_df['Per Student Budget'] = school_summary_df['Per Student Budget'].map("${:,.2f}".format) school_summary_df.head() ###Output _____no_output_____ ###Markdown Top Performing Schools (By Passing Rate) * Sort and display the top five schools in overall passing rate ###Code # Finding the top 5 schools based on the overall passing rate top_performing_school = school_summary_df.sort_values('% Overall Passing Rate', ascending=False).head() top_performing_school ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By Passing Rate) * Sort and display the five worst-performing schools ###Code # Finding the bottom 5 schools based on the overall passing rate bottom_performing_school = school_summary_df.sort_values('% Overall Passing Rate', ascending=True).head() bottom_performing_school ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting Calculations for grade-wise math score per school ###Code # One way of calculating the grade-wise math scores (based on the instructions provided) # ninth_grade_math = school_data_complete[school_data_complete['grade'] == '9th'].groupby('school_name')['math_score'].mean() # tenth_grade_math = school_data_complete[school_data_complete['grade'] == '10th'].groupby('school_name')['math_score'].mean() # eleventh_grade_math = school_data_complete[school_data_complete['grade'] == '11th'].groupby('school_name')['math_score'].mean() # twelth_grade_math = school_data_complete[school_data_complete['grade'] == '12th'].groupby('school_name')['math_score'].mean() # grade_mscore_df = pd.DataFrame({'9th': ninth_grade_math, # '10th': tenth_grade_math, # '11th': eleventh_grade_math, # '12th': twelth_grade_math}) # grade_mscore_df # My preferred way of calculating the grade-wise math scores cols = ['9th', '10th', '11th', '12th'] math_score_by_grade = pd.DataFrame(school_data_complete.groupby(["school_name", "grade"])["math_score"].mean()) \ .reset_index() \ .pivot('school_name', columns='grade', values='math_score') math_score_by_grade = math_score_by_grade[cols] math_score_by_grade.index.name = None math_score_by_grade ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code # One way of calculating the grade-wise reading scores (based on the instructions provided) # ninth_grade_reading = school_data_complete[school_data_complete['grade'] == '9th'].groupby('school_name')['reading_score'].mean() # tenth_grade_reading = school_data_complete[school_data_complete['grade'] == '10th'].groupby('school_name')['reading_score'].mean() # eleventh_grade_reading = school_data_complete[school_data_complete['grade'] == '11th'].groupby('school_name')['reading_score'].mean() # twelth_grade_reading = school_data_complete[school_data_complete['grade'] == '12th'].groupby('school_name')['reading_score'].mean() # grade_rscore_df = pd.DataFrame({'9th': ninth_grade_reading, '10th': tenth_grade_reading, '11th': eleventh_grade_reading, '12th': twelth_grade_reading}) # grade_rscore_df # My preferred way of calculating the grade-wise reading scores reading_score_by_grade = pd.DataFrame(school_data_complete.groupby(["school_name", "grade"])["reading_score"].mean()) \ .reset_index() \ .pivot('school_name', columns='grade', values='reading_score') reading_score_by_grade = reading_score_by_grade[cols] reading_score_by_grade.index.name = None reading_score_by_grade ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code spending_bins = [0, 585, 615, 645, 675] spending_labels = ["<$585", "$585-615", "$615-645", "$645-675"] summary_cols = ['Average Math Score', 'Average Reading Score', '% Passing Math', '% Passing Reading', '% Overall Passing Rate'] scores_by_school_spending_df = school_summary_df[summary_cols] \ .assign(spending_ranges = pd.cut(school_summary_df['Per Student Budget'], spending_bins, labels=spending_labels)) \ .groupby('spending_ranges').mean() \ .rename_axis('Spending Ranges (Per Student)') scores_by_school_spending_df ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code size_bins = [0, 1000, 2000, 5000] size_labels = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] scores_by_school_spending_df = school_summary_df[summary_cols] \ .assign(school_size = pd.cut(school_summary_df['Total Students'], size_bins, labels=size_labels)) \ .groupby('school_size').mean() \ .rename_axis('School Size') scores_by_school_spending_df ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type. ###Code school_summary_df['School Type'].unique() type_bins = [0, 1, 2] type_labels = ['Charter', 'District'] scores_by_school_type_df = school_summary_df[['School Type', 'Average Math Score', 'Average Reading Score', '% Passing Math', '% Passing Reading', '% Overall Passing Rate']] \ .replace({'School Type': {'Charter': 1, 'District': 2}}) scores_by_school_type_df = scores_by_school_type_df.assign(school_type = pd.cut(scores_by_school_type_df['School Type'], type_bins, labels=type_labels)) \ .groupby('school_type').mean() \ .drop('School Type', axis=1) \ .rename_axis('School Type') scores_by_school_type_df ###Output _____no_output_____ ###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset. school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math **and** reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code school_data_complete.head() Total_Schools = len(school_data_complete["school_name"].unique()) #Total_Schools Total_Students = school_data_complete["student_name"].count() #Total_Students Unique_budget = school_data_complete["budget"].unique() Total_budget = Unique_budget.sum() Total_budget_format = Total_budget.copy() Total_budget_format #print(f"${Total_budget:0,.2f}") Math_Average = school_data_complete["math_score"].mean() #Math_Average Reading_Average = school_data_complete["reading_score"].mean() #Reading_Average math_pass_df = school_data_complete.loc[(school_data_complete["math_score"] >= 70),:] #display(math_pass_df) math_pass_pecent = ((math_pass_df["student_name"].count())/Total_Students)*100 #math_pass_pecent reading_pass_df = school_data_complete.loc[(school_data_complete["reading_score"] >= 70),:] #display(reading_pass_df) reading_pass_pecent = ((reading_pass_df["student_name"].count())/Total_Students)*100 #reading_pass_pecent pass_df = school_data_complete.loc[(school_data_complete["math_score"] >= 70) & (school_data_complete["reading_score"] >= 70),:] #display(pass_df) pass_pecent = ((pass_df["student_name"].count())/Total_Students)*100 #pass_pecent raw_data = {"Total_Schools":[Total_Schools], "Total_Students":[f"{Total_Students:,}"], "Total_budget":[f"${Total_budget:0,.2f}"], "Average Math Score":[Math_Average], "Average Reading Score":[Reading_Average], "% Passing Math":[math_pass_pecent], "% Passing Reading":[reading_pass_pecent], "pass_pecent":[pass_pecent]} #raw_data District_Summary = pd.DataFrame(raw_data) District_Summary ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math **and** reading.) * Create a dataframe to hold the above results ###Code import pandas as pd # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" # Read School and Student Data File and store into Pandas DataFrames school_data = pd.read_csv(school_data_to_load) #display(school_data) #display(school_data_complete) school_name = school_data.loc[:,["school_name","type","size","budget"]] school_df = school_name.sort_values(["school_name"]) #school_sdf per_student_data = (school_df["budget"]/school_df["size"]).unique() #school_summary_df.insert(4, 'Per Student Budget', per_student_data) school_df["Per Student Budget"] = per_student_data per_math_data = school_data_complete.groupby("school_name")["math_score"].mean() per_math_data = pd.DataFrame(per_math_data) per_math_data per_reading_data = school_data_complete.groupby("school_name")["reading_score"].mean() per_reading_data = pd.DataFrame(per_reading_data) per_reading_data score_df = pd.merge(per_math_data,per_reading_data,on="school_name" ) score_df per_math_pass = math_pass_df.groupby("school_name")["math_score"].count() per_math_pass_df= per_math_pass.reset_index(name = 'math_pass') school_unique = math_pass_df.groupby("school_name") school_unique_grouped = school_unique["size"].value_counts() school_unique_df =school_unique_grouped.reset_index(name = 'school_unique') per_reading_pass = reading_pass_df.groupby("school_name")["reading_score"].count() per_reading_pass= per_reading_pass.reset_index(name = 'reading_pass') df_math=pd.merge(per_math_pass_df,school_unique_df,on="school_name") df_math["% Passing Math"] =(df_math['math_pass']/df_math['size'])*100 df1=pd.merge(df_math,per_reading_pass,on="school_name") df1["% Passing Reading"] =(df1['reading_pass']/df_math['size'])*100 df_read=df1.drop(['math_pass','school_unique','reading_pass'], axis = 1) df_read per_overall_pass = pass_df.groupby("school_name")["math_score"].count() per_overall_pass_df= per_overall_pass.reset_index(name = 'overall_pass') df_overall = pd.merge(df_read,per_overall_pass_df,on="school_name") df_overall['% Overall Passing']=(df_overall['overall_pass']/df_overall['size'])*100 df_overall school_summary_df = pd.merge(school_df,score_df,on = "school_name") school_summary_df_final = pd.merge(school_summary_df,df_overall,on = "school_name") school_summary_df_finaldf=school_summary_df_final.drop(['size_y','overall_pass',], axis = 1) school_summary_df_finaldf school_summary_df = school_summary_df_finaldf.rename(columns = { "school_name" :"", "type" : "School Type", "size_x" : "Total Students", "budget" : "Total School Budget", "Per Student Budget" : "Per Student Budget", "math_score" : "Average Math Score", "reading_score" : "Average Reading Score" }) summary_df = school_summary_df.set_index("") summary_df_final = summary_df.copy() summary_df_final["Total School Budget"] = summary_df["Total School Budget"].map("${:,}".format) summary_df_final["Per Student Budget"] = summary_df["Per Student Budget"].map("${:,}".format) summary_df_final ###Output _____no_output_____ ###Markdown Top Performing Schools (By % Overall Passing) * Sort and display the top five performing schools by % overall passing. ###Code top_school_df = summary_df.copy() top_school = top_school_df.sort_values(["% Overall Passing"],ascending=False) top_school["Total School Budget"] = top_school["Total School Budget"].map("${:,.2f}".format) top_school["Per Student Budget"] = top_school["Per Student Budget"].map("${:,.2f}".format) top_school.head(5) ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing) * Sort and display the five worst-performing schools by % overall passing. ###Code bottom_school_df = summary_df.copy() bottom_school = bottom_school_df.sort_values(["% Overall Passing"]) bottom_school["Total School Budget"] = bottom_school["Total School Budget"].map("${:,.2f}".format) bottom_school["Per Student Budget"] = bottom_school["Per Student Budget"].map("${:,.2f}".format) bottom_school.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code data_copy = (school_data_complete).copy() data_copy = data_copy.drop(columns = ["Student ID","student_name","gender","School ID","size","budget","type","reading_score"]) #data_copy math_9_df = data_copy[data_copy["grade"] == "9th"].groupby(["school_name"]).mean() math_10_df = data_copy[data_copy["grade"] == "10th"].groupby(["school_name"]).mean() math_11_df = data_copy[data_copy["grade"] == "11th"].groupby(["school_name"]).mean() math_12_df = data_copy[data_copy["grade"] == "12th"].groupby(["school_name"]).mean() math_score1_df = pd.merge(math_9_df,math_10_df,on = "school_name",suffixes = ('_9th','_10th')) #math_score1_df math_score2_df = pd.merge(math_11_df,math_12_df,on = "school_name",suffixes = ('_11th','_12th')) #math_score2_df grade_math_df1 = pd.merge(math_score1_df,math_score2_df,on = "school_name") grade_math_df1.reset_index(inplace=True) grade_math_df = grade_math_df1.rename(columns = { "school_name": "", "math_score_9th" : "9th", "math_score_10th": "10th", "math_score_11th": "11th", "math_score_12th": "12th" }) grade_math_df = grade_math_df.set_index([""]) grade_math_df ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code data_copy2 = (school_data_complete).copy() data_copy2 #data_copy2 = data_copy2.drop(columns = ["Student ID","student_name","gender","School ID","size","budget","type","math_score"]) #data_copy2 reading_9_df = data_copy2[data_copy2["grade"] == "9th"].groupby(["school_name"]).mean() reading_10_df = data_copy2[data_copy2["grade"] == "10th"].groupby(["school_name"]).mean() reading_11_df = data_copy2[data_copy2["grade"] == "11th"].groupby(["school_name"]).mean() reading_12_df = data_copy2[data_copy2["grade"] == "12th"].groupby(["school_name"]).mean() reading_score1_df = pd.merge(reading_9_df,reading_10_df,on = "school_name",suffixes = ('_9th','_10th')) reading_score2_df = pd.merge(reading_11_df,reading_12_df,on = "school_name",suffixes = ('_11th','_12th')) grade_reading_df1 = pd.merge(reading_score1_df,reading_score2_df,on = "school_name") grade_reading_df1.reset_index(inplace=True) #grade_reading_df1 grade_reading_df1 = grade_reading_df1.rename(columns = { "school_name": "", "reading_score_9th" : "9th", "reading_score_10th": "10th", "reading_score_11th": "11th", "reading_score_12th": "12th" }) grade_reading_df1 = grade_reading_df1.set_index([""]) grade_reading_df_final =grade_reading_df1[['9th','10th',"11th","12th"]] grade_reading_df_final ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code df = summary_df.copy() df.sort_values(["Per Student Budget"],ascending=False) df["Spending Ranges (Per Student)"] = pd.cut(df["Per Student Budget"],bins = [1,585,630,645,680],labels = ["<$585","$585-630","$630-645","$645-680"],include_lowest = True) df1 = df.groupby(["Spending Ranges (Per Student)"]).mean() df_school_spend =df1.drop(['Total Students','Total School Budget','Per Student Budget'],axis=1) df_school_spend.round(2) ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code df["School Size"] = pd.cut(df["Total Students"],bins = [0,1000,2000,5000],labels = ["Small (<1000)","Medium (1000-2000)","Large (2000-5000)"],include_lowest = True) df1 = df.groupby(["School Size"]).mean() df_school_size =df1.drop(['Total Students','Total School Budget','Per Student Budget'],axis=1) df_school_size ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type ###Code df_school_type = df.groupby(["School Type"]).mean() df_school_type_final =df_school_type.drop(['Total Students','Total School Budget','Per Student Budget'],axis=1) df_school_type_final ###Output _____no_output_____ ###Markdown **District Summary*** Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Calculate the percentage of students who passed math and reading (% Overall Passing)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code #Convert size, scores, and budgets into integers schools_df["size"]=pd.to_numeric(schools_df["size"]) schools_df["budget"]=pd.to_numeric(schools_df["budget"]) merged_df["size"]=pd.to_numeric(merged_df["size"]) merged_df["budget"]=pd.to_numeric(merged_df["budget"]) merged_df["math_score"]=pd.to_numeric(merged_df["math_score"]) merged_df["reading_score"]=pd.to_numeric(merged_df["reading_score"]) #Calculate the total number of schools school_count = len(merged_df["school_name"].unique()) #Calculate total number of students student_count = len(merged_df["Student ID"].unique()) #Calculate the total budget total_budget = schools_df["budget"].sum() #Calculate average math score avg_math = merged_df["math_score"].mean() #Calculate average reading score avg_reading = merged_df["reading_score"].mean() #Calculate the percentage of students with a passing math score (70 or greater) percent_passing_math = merged_df.loc[merged_df["math_score"]>=70]["math_score"].count()/student_count*100 #Calculate the percentage of students with a passing reading score (70 or greater) percent_passing_reading = merged_df.loc[merged_df["reading_score"]>=70]["reading_score"].count()/student_count*100 #Calculate overall passing percentage percent_passing_overall = merged_df[(merged_df["math_score"]>=70)& (merged_df["reading_score"]>=70)]["student_name"].count()/student_count*100 #Create district summary dataframe #Store values in a dictionary district_summary = pd.DataFrame({ "Total Schools": [school_count], "Total Students": [student_count], "Total Budget": [total_budget], "Average Math Score": [avg_math], "Average Reading Score": [avg_reading], "% Passing Math": [percent_passing_math], "% Passing Reading": [percent_passing_reading], "% Passing Overall": [percent_passing_overall]}) #create new dataframe to change format district_summary = district_summary[["Total Schools", "Total Students", "Total Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Passing Overall"]] #format dataframe district_summary["Total Students"] = district_summary["Total Students"].map("{:,}".format) district_summary["Total Budget"] = district_summary["Total Budget"].map("${:,}".format) district_summary["Average Math Score"] = district_summary["Average Math Score"].map("{:,.2f}".format) district_summary["Average Reading Score"] = district_summary["Average Reading Score"].map("{:,.2f}".format) district_summary["% Passing Math"] = district_summary["% Passing Math"].map("{:,.2f}".format) district_summary["% Passing Reading"] = district_summary["% Passing Reading"].map("{:,.2f}".format) district_summary["% Passing Overall"] = district_summary["% Passing Overall"].map("{:,.2f}".format) district_summary ###Output _____no_output_____ ###Markdown **School Summary** * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * % Overall Passing (The percentage of students that passed math and reading.)* Create a dataframe to hold the above results ###Code #Group by school school = merged_df.set_index("school_name").groupby(["school_name"]) #School types school_type = schools_df.set_index("school_name")["type"] #Total students per school students_per_school = school["Student ID"].count() #Total school budget school_budget = schools_df.set_index("school_name")["budget"] #school budget per student school_size = schools_df.set_index("school_name")["size"] per_student_budget = school_budget/students_per_school #Average math score by school avg_math_by_school = school["math_score"].mean() #Average reading score by school avg_reading_by_school = school["reading_score"].mean() #Percent passing math by school perc_pass_math_by_school = merged_df.loc[merged_df["math_score"]>=70].groupby("school_name")["Student ID"].count()/school_size*100 #Percent passing reading by school perc_pass_reading_by_school = merged_df.loc[merged_df["reading_score"]>=70].groupby("school_name")["Student ID"].count()/school_size*100 #Percent passing ovewrall by school perc_pass_overall_by_school = merged_df[(merged_df["math_score"]>=70)&(merged_df["reading_score"]>=70)].groupby("school_name")["Student ID"].count()/school_size*100 #Create a data frame for the above information #Store Values in Dictionary by_school_summary = pd.DataFrame({ "School Type": school_type, "Total Students": students_per_school, "Total School Budget": school_budget, "Per Student Budget": per_student_budget, "Average Math Score": avg_math_by_school, "Average Reading Score": avg_reading_by_school, "% Passing Math": perc_pass_math_by_school, "% Passing Reading": perc_pass_reading_by_school, "% Passing Overall": perc_pass_overall_by_school }) #Dataframe for data munging by_school_summary = by_school_summary[["School Type", "Total Students", "Total School Budget", "Per Student Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Passing Overall"]] #format the dataframe by_school_summary["Total Students"] = by_school_summary["Total Students"].map("{:,}".format) by_school_summary["Total School Budget"] = by_school_summary["Total School Budget"].map("${:,.2f}".format) by_school_summary["Per Student Budget"] = by_school_summary["Per Student Budget"].map("{:,.2f}".format) by_school_summary["Average Math Score"] = by_school_summary["Average Math Score"].map("{:,.2f}".format) by_school_summary["Average Reading Score"] = by_school_summary["Average Reading Score"].map("{:,.2f}".format) by_school_summary["% Passing Math"] = by_school_summary["% Passing Math"].map("{:,.2f}".format) by_school_summary["% Passing Reading"] = by_school_summary["% Passing Reading"].map("{:,.2f}".format) by_school_summary["% Passing Overall"] = by_school_summary["% Passing Overall"].map("{:,.2f}".format) by_school_summary ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By %Overall Passing) * Sort and display he five worst-performing schools by % overall passing. ###Code #Sort by_school_sumamry dataframe sorting_by_school=by_school_summary.sort_values(["% Passing Overall"], ascending=[False]) #Display top five schools sorting_by_school.head() ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By % Overall Passing)* Sort and display the five worst-performing schools by % overall passing. ###Code #Pull the bottom 5 from the above sort bottom_schools=sorting_by_school.tail() #Sort the bottom 5 so the worst is at the top bottom_schools=bottom_schools.sort_values(["% Passing Overall"], ascending=True) bottom_schools ###Output _____no_output_____ ###Markdown Math Scores by Grade* Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code #Create a table to store average math score for each grade grouped by school avg_math_9 = merged_df.loc[merged_df["grade"]== "9th"].groupby("school_name")["math_score"].mean() avg_math_10 = merged_df.loc[merged_df["grade"]== "10th"].groupby("school_name")["math_score"].mean() avg_math_11 = merged_df.loc[merged_df["grade"]== "11th"].groupby("school_name")["math_score"].mean() avg_math_12 = merged_df.loc[merged_df["grade"]== "12th"].groupby("school_name")["math_score"].mean() #Create dataframe for the math averages by grade avg_math_by_grade_df= pd.DataFrame({"9th": avg_math_9, "10th": avg_math_10, "11th": avg_math_11, "12th": avg_math_12 }) avg_math_by_grade_df = avg_math_by_grade_df[["9th", "10th", "11th", "12th"]] #format avg_math_by_grade_df avg_math_by_grade_df["9th"] = avg_math_by_grade_df["9th"].map("{:,.2f}".format) avg_math_by_grade_df["10th"] = avg_math_by_grade_df["10th"].map("{:,.2f}".format) avg_math_by_grade_df["11th"] = avg_math_by_grade_df["11th"].map("{:,.2f}".format) avg_math_by_grade_df["12th"] = avg_math_by_grade_df["12th"].map("{:,.2f}".format) avg_math_by_grade_df ###Output _____no_output_____ ###Markdown Reading Score by Grade* Perform the same operations as above for reading ###Code #Create a table to store average math score for each grade grouped by school avg_reading_9 = merged_df.loc[merged_df["grade"]== "9th"].groupby("school_name")["reading_score"].mean() avg_reading_10 = merged_df.loc[merged_df["grade"]== "10th"].groupby("school_name")["reading_score"].mean() avg_reading_11 = merged_df.loc[merged_df["grade"]== "11th"].groupby("school_name")["reading_score"].mean() avg_reading_12 = merged_df.loc[merged_df["grade"]== "12th"].groupby("school_name")["reading_score"].mean() #Create dataframe for the math averages by grade avg_reading_by_grade_df= pd.DataFrame({"9th": avg_reading_9, "10th": avg_reading_10, "11th": avg_reading_11, "12th": avg_reading_12 }) avg_reading_by_grade_df = avg_reading_by_grade_df[["9th", "10th", "11th", "12th"]] #format avg_math_by_grade_df avg_reading_by_grade_df["9th"] = avg_reading_by_grade_df["9th"].map("{:,.2f}".format) avg_reading_by_grade_df["10th"] = avg_reading_by_grade_df["10th"].map("{:,.2f}".format) avg_reading_by_grade_df["11th"] = avg_reading_by_grade_df["11th"].map("{:,.2f}".format) avg_reading_by_grade_df["12th"] = avg_reading_by_grade_df["12th"].map("{:,.2f}".format) avg_reading_by_grade_df.index.name = "School" avg_reading_by_grade_df ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code #create bins bins = [0, 584.99, 629.99, 644.99, 675] bin_names= ["<$585", "$585-629", "$630-644", "$645-675"] #Put schools into bins spending_bins=pd.cut(by_school_summary["Per Student Budget"], bins, labels=bin_names) by_school_summary["Spending Per Student"]=spending_bins bin_groups=by_school_summary.groupby("Spending Per Student") #Calculations by per student spending bins average_math= bin_groups["Average Math Score"].mean() average_reading= bin_groups["Average Reading Score"].mean() math_pass_perc=bin_groups["% Passing Math"].mean() reading_pass_perc= bin_groups["% Passing Reading"].mean() overall_pass_perc=overall_pass_perc = (math_pass_perc + reading_pass_perc)/2 #Create dataframe scores_by_spending = pd.DataFrame({"Average Math Score": average_math, "Average Reading Score": average_reading, "% Passing Math": math_pass_perc, "% Passing Reading": reading_pass_perc, "% Passing Overall": overall_pass_perc}) scores_by_spending = scores_by_spending[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Passing Overall"]] scores_by_spending ###Output _____no_output_____ ###Markdown Scores By School Size * Perform the same operations as above, based on school size. ###Code #Create bins for school size bins = [0,999,1999,999999999] bin_names = ["Small (<1000)", "Medium (1000-2000)" , "Large (>2000)"] merged_df["School Size"] = pd.cut(merged_df["size"], bins, labels = bin_names) #group by spending bin_groups=by_school_summary.groupby("Spending Per Student") #calculations average_math= bin_groups["Average Math Score"].mean() average_reading= bin_groups["Average Reading Score"].mean() math_pass_perc=bin_groups["% Passing Math"].mean() reading_pass_perc= bin_groups["% Passing Reading"].mean() overall_pass_perc=overall_pass_perc = (math_pass_perc + reading_pass_perc)/2 #Create DF score_by_school_size = pd.DataFrame({ "Average Math Score": avg_math_score, "Average Reading Score": avg_read_score, '% Passing Math': pass_math_per, '% Passing Reading': pass_read_per, "% Passing Overall": overall_per}) score_by_school_size=score_by_school_size[[ "Average Math Score", "Average Reading Score", '% Passing Math', '% Passing Reading', "% Passing Overall" ]] score_by_school_size ###Output _____no_output_____ ###Markdown Scores by School Type* Perform the same operations as above, based on school type ###Code #Group by Type scores_by_type=by_school_summary.groupby("School Type") #calculations mean_math = scores_by_type["Average Math Score"].mean() mean_read = scores_by_type["Average Reading Score"].mean() pass_math_perc = scores_by_type["% Passing Math"].mean() pass_read_perc = scores_by_type["% Passing Math"].mean() overall_pass_perc = (pass_math_perc + pass_read_perc)/2 # df build scores_by_type = pd.DataFrame({ "Average Math Score": mean_math, "Average Reading Score": mean_read, '% Passing Math': pass_math_perc, '% Passing Reading': pass_read_perc, "% Passing Overall": overall_pass_perc}) #reorder columns scores_by_type = scores_by_type[[ "Average Math Score", "Average Reading Score", '% Passing Math', '% Passing Reading', "% Passing Overall" ]] scores_by_type.index.name = "Type of School" scores_by_type ###Output _____no_output_____ ###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas Data Frames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) school_data_complete ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code # Calculate the Totals (School and Students) school_count = len(school_data_complete["school_name"].unique()) student_count = school_data_complete["Student ID"].count() # Total Budget total_budget = school_data["budget"].sum() # Average Scores ave_math_score = school_data_complete["math_score"].mean() ave_reading_score = school_data_complete["reading_score"].mean() overall_passing_rate = (ave_math_score + ave_reading_score) / 2 # Percentage Pass Rate passing_math_count = school_data_complete[(school_data_complete["math_score"] >= 70)].count()["student_name"] passing_math_percentage = passing_math_count / float(student_count) * 100 passing_reading_count = school_data_complete[(school_data_complete["reading_score"] >= 70)].count()["student_name"] passing_reading_percentage = passing_reading_count / float(student_count) * 100 # Data Cleanup district_summary = pd.DataFrame({"Total Schools": [school_count], "Total Students": [student_count], "Total Budget": [total_budget], "Average Math Score": [ave_math_score], "Average Reading Score": [ave_reading_score], "% Passing Math": [passing_math_percentage], "% Passing Reading": [passing_reading_percentage], "% Overall Passing Rate": [overall_passing_rate]}) district_summary = district_summary[["Total Schools", "Total Students", "Total Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] district_summary["Total Students"] = district_summary["Total Students"].map("{:,}".format) district_summary["Total Budget"] = district_summary["Total Budget"].map("${:,.2f}".format) # Display the data frame district_summary ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) * Create a dataframe to hold the above results ###Code # School Type school_types = school_data.set_index(["school_name"])["type"] # Calculate the total student count per_school_counts = school_data_complete["school_name"].value_counts() # Calculate the total school budget and per capita spending # per_school_budget = school_data_complete.groupby(["school_name"]).mean()["budget"] per_school_budget = school_data_complete.groupby(["school_name"]).mean()["budget"] per_school_capita = per_school_budget / per_school_counts # Calculate the average test scores per_school_math = school_data_complete.groupby(["school_name"]).mean()["math_score"] per_school_reading = school_data_complete.groupby(["school_name"]).mean()["reading_score"] # Calculate the passing scores by creating a filtered data frame school_passing_math = school_data_complete[(school_data_complete["math_score"] >= 70)] school_passing_reading = school_data_complete[(school_data_complete["reading_score"] >= 70)] per_school_passing_math = school_passing_math.groupby(["school_name"]).count()["student_name"] / per_school_counts * 100 per_school_passing_reading = school_passing_reading.groupby(["school_name"]).count()["student_name"] / per_school_counts * 100 overall_passing_rate = (per_school_passing_math + per_school_passing_reading) / 2 # Convert to data frame per_school_summary = pd.DataFrame({"School Type": school_types, "Total Students": per_school_counts, "Total School Budget": per_school_budget, "Per Student Budget": per_school_capita, "Average Math Score": per_school_math, "Average Reading Score": per_school_reading, "% Passing Math": per_school_passing_math, "% Passing Reading": per_school_passing_reading, "% Overall Passing Rate": overall_passing_rate}) # Minor data munging per_school_summary = per_school_summary[["School Type", "Total Students", "Total School Budget", "Per Student Budget", "Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] per_school_summary["Total School Budget"] = per_school_summary["Total School Budget"].map("${:,.2f}".format) per_school_summary["Per Student Budget"] = per_school_summary["Per Student Budget"].map("${:,.2f}".format) # Display the data frame per_school_summary ###Output _____no_output_____ ###Markdown Top Performing Schools (By Passing Rate) * Sort and display the top five schools in overall passing rate ###Code # Sort and show top five schools top_schools = per_school_summary.sort_values(["% Overall Passing Rate"], ascending=False) top_schools.head(5) ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By Passing Rate) * Sort and display the five worst-performing schools ###Code # Sort and show bottom five schools bottom_schools = per_school_summary.sort_values(["% Overall Passing Rate"], ascending=True) bottom_schools.head(5) ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code # Create data series of scores by grade levels using conditionals ninth_graders = school_data_complete[(school_data_complete["grade"] == "9th")] tenth_graders = school_data_complete[(school_data_complete["grade"] == "10th")] eleventh_graders = school_data_complete[(school_data_complete["grade"] == "11th")] twelfth_graders = school_data_complete[(school_data_complete["grade"] == "12th")] # Group each by school name ninth_graders_scores = ninth_graders.groupby(["school_name"]).mean()["math_score"] tenth_graders_scores = tenth_graders.groupby(["school_name"]).mean()["math_score"] eleventh_graders_scores = eleventh_graders.groupby(["school_name"]).mean()["math_score"] twelfth_graders_scores = twelfth_graders.groupby(["school_name"]).mean()["math_score"] # Combine series into single data frame scores_by_grade = pd.DataFrame({"9th": ninth_graders_scores, "10th": tenth_graders_scores, "11th": eleventh_graders_scores, "12th": twelfth_graders_scores}) # Minor data munging scores_by_grade = scores_by_grade[["9th", "10th", "11th", "12th"]] scores_by_grade.index.name = None # Display the data frame scores_by_grade ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code # Create data series of scores by grade levels using conditionals ninth_graders = school_data_complete[(school_data_complete["grade"] == "9th")] tenth_graders = school_data_complete[(school_data_complete["grade"] == "10th")] eleventh_graders = school_data_complete[(school_data_complete["grade"] == "11th")] twelfth_graders = school_data_complete[(school_data_complete["grade"] == "12th")] # Group each by school name ninth_graders_scores = ninth_graders.groupby(["school_name"]).mean()["reading_score"] tenth_graders_scores = tenth_graders.groupby(["school_name"]).mean()["reading_score"] eleventh_graders_scores = eleventh_graders.groupby(["school_name"]).mean()["reading_score"] twelfth_graders_scores = twelfth_graders.groupby(["school_name"]).mean()["reading_score"] # Combine series into single data frame scores_by_grade = pd.DataFrame({"9th": ninth_graders_scores, "10th": tenth_graders_scores, "11th": eleventh_graders_scores, "12th": twelfth_graders_scores}) # Minor data munging scores_by_grade = scores_by_grade[["9th", "10th", "11th", "12th"]] scores_by_grade.index.name = None # Display the data frame scores_by_grade ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # Sample bins. Feel free to create your own bins. spending_bins = [0, 585, 615, 645, 675] group_names = ["<$585", "$585-615", "$615-645", "$645-675"] # Categorize the spending based on the bins per_school_summary["Spending Ranges (Per Student)"] = pd.cut(per_school_capita, spending_bins, labels=group_names) spending_math_scores = per_school_summary.groupby(["Spending Ranges (Per Student)"]).mean()["Average Math Score"] spending_reading_scores = per_school_summary.groupby(["Spending Ranges (Per Student)"]).mean()["Average Reading Score"] spending_passing_math = per_school_summary.groupby(["Spending Ranges (Per Student)"]).mean()["% Passing Math"] spending_passing_reading = per_school_summary.groupby(["Spending Ranges (Per Student)"]).mean()["% Passing Reading"] overall_passing_rate = (spending_passing_math + spending_passing_reading) / 2 # Assemble into data frame spending_summary = pd.DataFrame({"Average Math Score" : spending_math_scores, "Average Reading Score": spending_reading_scores, "% Passing Math": spending_passing_math, "% Passing Reading": spending_passing_reading, "% Overall Passing Rate": overall_passing_rate}) # Minor data munging spending_summary = spending_summary[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] # Display results spending_summary ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code # Sample bins. Feel free to create your own bins. size_bins = [0, 1000, 2000, 5000] group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] # Categorize the spending based on the bins per_school_summary["School Size"] = pd.cut(per_school_summary["Total Students"], size_bins, labels=group_names) # Calculate the scores based on bins size_math_scores = per_school_summary.groupby(["School Size"]).mean()["Average Math Score"] size_reading_scores = per_school_summary.groupby(["School Size"]).mean()["Average Reading Score"] size_passing_math = per_school_summary.groupby(["School Size"]).mean()["% Passing Math"] size_passing_reading = per_school_summary.groupby(["School Size"]).mean()["% Passing Reading"] overall_passing_rate = (size_passing_math + size_passing_reading) / 2 # Assemble into data frame size_summary = pd.DataFrame({"Average Math Score" : size_math_scores, "Average Reading Score": size_reading_scores, "% Passing Math": size_passing_math, "% Passing Reading": size_passing_reading, "% Overall Passing Rate": overall_passing_rate}) # Minor data munging size_summary = size_summary[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] # Display results size_summary ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type. ###Code # Type | Average Math Score | Average Reading Score | % Passing Math | % Passing Reading | % Overall Passing Rate type_math_scores = per_school_summary.groupby(["School Type"]).mean()["Average Math Score"] type_reading_scores = per_school_summary.groupby(["School Type"]).mean()["Average Reading Score"] type_passing_math = per_school_summary.groupby(["School Type"]).mean()["% Passing Math"] type_passing_reading = per_school_summary.groupby(["School Type"]).mean()["% Passing Reading"] overall_passing_rate = (type_passing_math + type_passing_reading) / 2 # Assemble into data frame type_summary = pd.DataFrame({"Average Math Score" : type_math_scores, "Average Reading Score": type_reading_scores, "% Passing Math": type_passing_math, "% Passing Reading": type_passing_reading, "% Overall Passing Rate": overall_passing_rate}) # Minor data munging type_summary = type_summary[["Average Math Score", "Average Reading Score", "% Passing Math", "% Passing Reading", "% Overall Passing Rate"]] # Display results type_summary ###Output _____no_output_____ ###Markdown PyCity Schools Analysis* As a whole, schools with higher budgets, did not yield better test results. By contrast, schools with higher spending per student actually ($645-$675) underperformed compared to schools with smaller budgets (<$585 per student).* As a whole, smaller and medium sized schools dramatically out-performed large sized schools on passing math performances (89-91% passing vs 67%).* As a whole, charter schools out-performed the public district schools across all metrics. However, more analysis will be required to glean if the effect is due to school practices or the fact that charter schools tend to serve smaller student populations per school. --- ###Code # Dependencies and Setup import pandas as pd import numpy as np # File to Load school_data = "Resources/schools_complete.csv" student_data = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas Data Frames school_data = pd.read_csv(school_data) student_data = pd.read_csv(student_data) # Combine the data into a single dataset schl_data = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) schl_data.head() ###Output _____no_output_____ ###Markdown District Summary* Calculate the total number of schools* Calculate the total number of students* Calculate the total budget* Calculate the average math score * Calculate the average reading score* Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2* Calculate the percentage of students with a passing math score (70 or greater)* Calculate the percentage of students with a passing reading score (70 or greater)* Create a dataframe to hold the above results* Optional: give the displayed data cleaner formatting ###Code # total number of schools total_dist_schools = schl_data['School ID'].nunique() # total number of students total_dist_students = schl_data['Student ID'].nunique() # total budget total_dist_budget = (schl_data['budget']/schl_data['size']).sum() # average math score avg_dist_math = schl_data.math_score.mean() # average reading score avg_dist_reading = schl_data.reading_score.mean() # % passing math dist_pass_math = ((schl_data['math_score'] >= 70).sum() / total_dist_students) * 100 # % passing reading dist_pass_reading = ((schl_data['reading_score'] >= 70).sum() / total_dist_students) * 100 # overall passing rate dist_overall_pass = (dist_pass_math + dist_pass_reading) / 2 dist_summary = pd.DataFrame({'Total Schools': [total_dist_schools], 'Total Students': [total_dist_students], 'Total Budget': [total_dist_budget], 'Average Math Score': [avg_dist_math], 'Average Reading Score': [avg_dist_reading], '% Passing Math': [dist_pass_math], '% Passing Reading': [dist_pass_reading], '% Overall Passing Rate': [dist_overall_pass]}) dist_summary ###Output _____no_output_____ ###Markdown School Summary * Create an overview table that summarizes key metrics about each school, including: * School Name * School Type * Total Students * Total School Budget * Per Student Budget * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) * Create a dataframe to hold the above results ###Code # set up schl_summary = schl_data unique_schl = schl_summary.drop_duplicates(subset = 'School ID', keep = 'first') index_schl = unique_schl.set_index(['school_name']) # school type index_schl['School Type'] = index_schl['type'] # total students index_schl['Total Students'] = index_schl['size'] # total school budget index_schl['School Budget'] = index_schl['budget'] # per student budget index_schl['Budget Per Student'] = (index_schl['budget'])/(index_schl['size']) # avg math score index_schl['Average Math Score'] = schl_summary.groupby(['school_name']).math_score.mean() # avg reading score index_schl['Average Reading Score'] = schl_summary.groupby(['school_name']).reading_score.mean() # % passing math num_math = schl_summary[schl_summary['math_score'] >= 70] math_schl = num_math.groupby(['school_name']).count()['Student ID'] index_schl['Percent Passing Math'] = (math_schl/(index_schl['size'])) * 100 # % passing reading num_reading = schl_summary[schl_summary['reading_score'] >= 70] reading_schl = num_reading.groupby(['school_name']).count()['Student ID'] index_schl['Percent Passing Reading'] = (reading_schl/(index_schl['size'])) * 100 # overall passing index_schl['Overall Passing Rate'] = (((math_schl/(index_schl['size'])) * 100)+((reading_schl/(index_schl['size'])) * 100)) / 2 schl_summ = index_schl[['School Type', 'Total Students', 'School Budget', 'Budget Per Student', 'Average Math Score', 'Average Reading Score', 'Percent Passing Math', 'Percent Passing Reading', 'Overall Passing Rate']] schl_summ ###Output _____no_output_____ ###Markdown Top Performing Schools (By Passing Rate) * Sort and display the top five schools in overall passing rate ###Code schl_summ.sort_values(by = ['Overall Passing Rate'], ascending = False).head() ###Output _____no_output_____ ###Markdown Bottom Performing Schools (By Passing Rate) * Sort and display the five worst-performing schools ###Code schl_summ.sort_values(by = ['Overall Passing Rate']).head() ###Output _____no_output_____ ###Markdown Math Scores by Grade * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. * Create a pandas series for each grade. Hint: use a conditional statement. * Group each series by school * Combine the series into a dataframe * Optional: give the displayed data cleaner formatting ###Code # ninth nine = schl_data.loc[schl_data['grade'] == '9th'] math9 = nine.groupby('school_name')['math_score'].mean() # tenth ten = schl_data.loc[schl_data['grade'] == '10th'] math10 = ten.groupby('school_name')['math_score'].mean() # eleventh eleven = schl_data.loc[schl_data['grade'] == '11th'] math11 = eleven.groupby('school_name')['math_score'].mean() # twenfth twelve = schl_data.loc[schl_data['grade'] == '12th'] math12 = twelve.groupby('school_name')['math_score'].mean() math_grades = pd.DataFrame({'9th':math9, '10th':math10, '11th':math11, '12th':math12}) math_grades ###Output _____no_output_____ ###Markdown Reading Score by Grade * Perform the same operations as above for reading scores ###Code # ninth nine = schl_data.loc[schl_data['grade'] == '9th'] read9 = nine.groupby('school_name')['reading_score'].mean() # tenth ten = schl_data.loc[schl_data['grade'] == '10th'] read10 = ten.groupby('school_name')['reading_score'].mean() # eleventh eleven = schl_data.loc[schl_data['grade'] == '11th'] read11 = eleven.groupby('school_name')['reading_score'].mean() # twenfth twelve = schl_data.loc[schl_data['grade'] == '12th'] read12 = twelve.groupby('school_name')['reading_score'].mean() reading_grades = pd.DataFrame({'9th':read9, '10th':read10, '11th':read11, '12th':read12}) reading_grades ###Output _____no_output_____ ###Markdown Scores by School Spending * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: * Average Math Score * Average Reading Score * % Passing Math * % Passing Reading * Overall Passing Rate (Average of the above two) ###Code # Sample bins. Feel free to create your own bins. spending_bins = [0, 585, 615, 645, 675] group_names = ["<$585", "$586-615", "$616-645", "$645-675"] score_spending = schl_summ[['Average Math Score', 'Average Reading Score', "Percent Passing Math", "Percent Passing Reading", 'Overall Passing Rate']].groupby(pd.cut(schl_summ["Budget Per Student"], bins = spending_bins, labels = group_names)).mean() score_spending ###Output _____no_output_____ ###Markdown Scores by School Size * Perform the same operations as above, based on school size. ###Code # Sample bins. Feel free to create your own bins. size_bins = [0, 1000, 2000, 5000] size_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] score_size = schl_summ[['Average Math Score', 'Average Reading Score', 'Percent Passing Math', 'Percent Passing Reading', 'Overall Passing Rate']].groupby(pd.cut(schl_summ['Total Students'], bins = size_bins, labels = size_names)).mean() score_size ###Output _____no_output_____ ###Markdown Scores by School Type * Perform the same operations as above, based on school type. ###Code type_bins = [0, 1, 2] type_names = ['District', 'Charter'] schl_typ = schl_summ schl_typ['School Type'] = schl_summ['School Type'].replace({'Charter': 1, 'District':2}) score_type = schl_typ[['Average Math Score', 'Average Reading Score', 'Percent Passing Math', 'Percent Passing Reading', 'Overall Passing Rate']].groupby(pd.cut(schl_typ['School Type'], bins = type_bins, labels = type_names)).mean() score_type ###Output _____no_output_____
.ipynb_checkpoints/explore_embeddings-checkpoint.ipynb
###Markdown loading node2vec embeddings ###Code with open('gae/data/saved/node2vec/disease_weighted.emb') as f: embeddings = f.readlines()[1:] embeddings.sort(key=lambda l: int(l.replace('\n', '').split(' ')[0])) embeddings = [[float(n) for n in l.split(' ')] for l in embeddings] node_list = [e[0] for e in embeddings] embeddings = [e[1:] for e in embeddings] embedding_matrix = np.stack(embeddings) embedding_matrix.shape ###Output _____no_output_____ ###Markdown loading gmvae embeddings ###Code z = np.load('gae/data/saved/disease_network_z.npy') z.shape with open('gae/data/diseasome/node_list.txt') as f: node_order = f.readlines() node_order = [int(n.replace('\n', '')) for n in node_order] # sorted z z = np.stack(sorted(zip(node_order, z.tolist()), key=lambda x: x[0])) z = np.stack(list(zip(*z))[1]) ###Output _____no_output_____ ###Markdown Dataframe ###Code import pandas as pd df = pd.DataFrame() df['node2vec'] = embedding_matrix.tolist() df['gmvae'] = z.tolist() df = df.set_index(pd.Series(node_list)) df.head() ###Output _____no_output_____ ###Markdown tsne-plot ###Code from sklearn.manifold import TSNE embeddings_tsne = TSNE(n_components=2).fit_transform(embedding_matrix) embeddings_tsne.shape plt.figure(figsize=(16, 10)) sns.scatterplot( x=embeddings_tsne[:, 0], y=embeddings_tsne[:, 1], palette=sns.color_palette("hls", 10), legend='full', alpha=0.5, color='red' ) ###Output _____no_output_____
Jupyter_Intro.ipynb
###Markdown Jupyter Notebook* Possible to write MarkdownI can write also chemical formulas in $L^{A}T_{E}X$ and $Al_2O_3$Formatting in __bold__ and *italic*. ###Code # Since this is running on a python 3 kernel, we can comment our code. a=2 b=3 a+b name=input("Enter your name.") print("Hello", name) import numpy as numpy import matplotlib.pyplot as plt import matplotlib as mpl %matplotlib inline #plot setup--------------------------------- fig=plt.figure(figsize=(5,3), dpi=200) plt.style.use('default') mpl.rcParams.update({'font.size': 10}) #------------------------------------------- x=numpy.linspace(0,10,1000) y=numpy.sin(x) plt.plot(x,y,'r-', label="sine") y_prime=numpy.gradient(y) plt.plot(x,y_prime*100, 'b-', label="1st derivative of sine") #scale factor of 100 plt.plot(x-numpy.pi/2,y,'k--', label="cosine") plt.xlabel("Time, s") plt.ylabel("Intensity, a.u.") plt.legend(frameon=False) plt.show() ###Output _____no_output_____ ###Markdown Challenge: Vectors from two devices (i.e. Mass Spectrometer and Temperature controller) how do you synchronize those two? ###Code from scipy.interpolate import griddata time_T=[0,10,20,30,40,50,60] Temperature=numpy.array([25,25,50,75,100,125,150]) time_MS=numpy.linspace(0,60,200) MassSpec=numpy.linspace(1e-6,2e-6,200)+numpy.random.rand(200)*1e-7 #plt.plot(time_T,Temperature) plt.plot(time_MS, MassSpec) plt.show() ###Output _____no_output_____
ml_workflow_notebook_template_v01.ipynb
###Markdown 1. GoalsState your Goals:y choice goals: - What is your y, what are you trying to predict?- Where are you? What are you looking at?- Where do you want to be? What are you looking for?- How will you get there (to where you want to be)?- vs. "solving a user problem"...it could be translated into this, but often is not.What are your end-goals, even if there are also intermediate goals along the way?Model Choice Goals:Also, do you have any goals related to model size or model 'explainability' or model flexibility etc? Are the constraints on what kind of model you will, can, or want to use? ###Code ###Output _____no_output_____ ###Markdown *E.g. The goal is to predict the species of iris.* 2. Standards, Best Practice, and Terminology 3. Hardware & SoftwarePick hardware and software on which to run: *E.g. the solution should not require special hardware, or should run in a colab-notebook. Standard desktop operating systems (windows, linux, maxOS) should suffice. in AWS, no specific (EC2) instance is needed* 4. Environment(s)Set up your Virtual Environments, Kernels, etc. *the python environment will be a venv environment* (in a docker container) 5. Software LibrariesImport your (main, initial) libraries noting versions: - keep track of what versions you are using and what versions you need of packages- best practice: document what all of your software package and library versions are - os - python - conda - pandas - etc.- maybe create a bundle of that software to be used later by other people *E.g. the solution will us linux, python, venv, sklearn, docker, AWS, and notebooks* 6. Get DataGet files/data sets/ etc - obtaining data: source, scraping- raw data: issues, file formats- loaded data: dataframe, arrays, database 7. EDA: Exploratory Data Analysis Initial Exploration 1: first observations, 8. Cleaning & Wrangle Data - 90% of time will be spent cleaning data) 9. Formatting, "feature engineering," etc. 10. Features & Focus- What is y (what you will predict) 11. HypothesisArticulate your Hypothesis? What is your Null Hypothesis? 12. Baseline PredictionEstablis 13. Split your Dataset: Make your sets: Train, Val, & Test sets- issue: random or time based split- issue: split ratio 14. "Wrangle" Using a Functionmake sure the data processing steps that you did are standardized for easy repetition and application to your split datasets(for all: train,val,test) 15. Family of Variables(Make) Your Family of Variables 16. Try and Compare Suit of ModelsPick what models you will try running. Try and compare multiple types of models if possible. Try to 'argue' why you have picked and not picked types of models based on your situation. https://www.datasciencecentral.com/profiles/blogs/40-techniques-used-by-data-scientists ###Code ###Output _____no_output_____ ###Markdown 17. Pre-Pipeline phaseSome say: Before doing a pipeline do a model without the pipeline with each step separately for debugging. ###Code ###Output _____no_output_____
gp_from_scratch.ipynb
###Markdown Gaussian Process Algorithm from Scratch ###Code import numpy as np from scipy.optimize import minimize from scipy.linalg import cholesky, cho_solve import sys sys.path.insert(0, '/home/emmanuel/Drives/erc/code/kernellib') sys.path.insert(0,'/Users/eman/Documents/code_projects/kernellib/') from kernellib.kernels import ard_kernel import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 # Training data is 11 points in [0,1] inclusive regularly spaced# Traini x_train = np.linspace(0, 1, 11).reshape(-1, 1) # True function is sin(2*pi*x) with Gaussian noise y_train = np.sin(x_train * (2 * np.pi)) + np.random.randn(x_train.shape[0], 1) * 0.2 y_train = np.squeeze(y_train) x_test = np.linspace(0, 1, 51).reshape(-1, 1) print(x_train.shape, y_train.shape, x_test.shape) kernel = 'rbf' jitter = 1e-9 random_state = 123 init_signal_variance = 1.0 init_length_scale = 1.0 init_likelihood_variance = 0.1 theta0 = np.array([init_signal_variance, init_likelihood_variance, init_likelihood_variance]) bounds = ((1e-7, 1e7), (1e-7, 1e7), (1e-7, 1e7)) from sklearn.gaussian_process.kernels import _check_length_scale from scipy.spatial.distance import pdist, cdist, squareform def ard_kernel(X, Y=None, length_scale=None, eval_gradient=False): # Determine if the kernel is isotropic or not anisotropic = np.iterable(length_scale) and len(length_scale) > 1 X = np.atleast_2d(X) length_scale = _check_length_scale(X, length_scale) if Y is None: dists = pdist(X / length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) else: if eval_gradient: raise ValueError( "Gradient can only be evaluated when Y is None.") dists = cdist(X / length_scale, Y / length_scale, metric='sqeuclidean') K = np.exp(-.5 * dists) if eval_gradient: if not anisotropic or length_scale.shape[0] == 1: K_gradient = \ (K * squareform(dists))[:, :, np.newaxis] return K, K_gradient elif anisotropic: # We need to recompute the pairwise dimension-wise distances K_gradient = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 \ / (length_scale ** 2) K_gradient *= K[..., np.newaxis] return K, K_gradient else: return K from sklearn.base import BaseEstimator, RegressorMixin from scipy.optimize import fmin_l_bfgs_b from scipy.linalg import cholesky, cho_solve, solve_triangular from sklearn.utils.validation import check_X_y, check_array from sklearn.gaussian_process.kernels import (_check_length_scale, RBF, WhiteKernel, ConstantKernel) from scipy.spatial.distance import pdist, cdist, squareform class GaussianProcessRegressor(BaseEstimator, RegressorMixin): def __init__(self, kernel='rbf', jitter=1e-10, random_state=None): self.kernel = kernel self.jitter = jitter self.random_state = random_state # Initialize heuristics self.signal_variance = 1.0 self.likelihood_variance = 0.1 def fit(self, X, y): # Check inputs X, y = check_X_y(X, y) self.X_train_ = X self.y_train_ = y # Determine Length_scale type if self.kernel == 'rbf': init_length_scale = 1.0 elif self.kernel == 'ard': init_length_scale = np.ones(X.shape[1]) else: raise ValueError('Unrecognised kernel.') # Initial HyperParameters theta0 = np.array([self.signal_variance, self.likelihood_variance, init_length_scale]) bounds = ((1e-5, 1e5), (1e-5, 1e5), (1e-5, 1e5)) # Gradient Descent (Negative Log Marginal Likelihood) best_params = minimize(self.neg_log_marginal_likelihood, x0=theta0, args=(), method='L-BFGS-B', bounds=bounds, jac=True) print(best_params) # Get the best parameters self.signal_variance, self.length_scale, self.likelihood_variance = \ self._get_hyperparams(best_params.x) self.best_neg_log_likelihood = best_params.fun self.marginal_likelihood = np.exp(-best_params.fun) # Precompute Prediction quantities print(self.length_scale, self.signal_variance, self.likelihood_variance) self.kernel_ = self.set_kernel(length_scale=self.length_scale, signal_variance=self.signal_variance, likelihood_variance=self.likelihood_variance) K = self.kernel_(self.X_train_) K[np.diag_indices_from(K)] += self.jitter self.L_ = cholesky(K, lower=True) if self.y_train_.ndim == 1: y_train = self.y_train_[:, np.newaxis] self.weights_ = cho_solve((self.L_, True), y_train.squeeze()) return self def set_kernel(self, length_scale=None, signal_variance=None, likelihood_variance=None): # Determine Kernel Type if hasattr(self, 'length_scale'): length_scale = self.length_scale elif length_scale is None: length_scale = 1.0 if hasattr(self, 'signal_variance'): signal_variance = self.signal_variance elif signal_variance is None: signal_variance = 1.0 if hasattr(self, 'likelihood_variance'): likelihood_variance = self.likelihood_variance elif likelihood_variance is None: likelihood_variance = 0.1 kernel = ConstantKernel(constant_value=signal_variance) \ * RBF(length_scale=length_scale) \ + WhiteKernel(noise_level=likelihood_variance) return kernel def K(self, X, Y=None, length_scale=1.0, signal_variance=1.0, likelihood_variance=0.01, eval_gradient=False): """Standard Kernel K(x, x) = nu * exp(||x-y||^2) + noise * delta Parameters ---------- X : array, (n_samples x d_dimensions) Y : array, (n_samples x 1) length_scale : float, array (1) or (d_dimensions) signal_variance : float likelihood_variance : float eval_gradient : bool Returns ------- """ kernel = ConstantKernel(constant_value=signal_variance) \ * RBF(length_scale=length_scale) \ + WhiteKernel(noise_level=likelihood_variance) if eval_gradient: return kernel(X, Y, eval_gradient=True) else: return kernel(X, Y) def predict(self, X, return_std=False, return_cov=False): X = check_array(X) if not hasattr(self, "X_train_"): raise ValueError('Not fitted yet...') K_trans = self.kernel_(X, self.X_train_) y_mean = np.dot(K_trans, self.weights_) if return_std: return y_mean, np.sqrt(self.predictive_variance(X, K_trans)) elif return_cov: return y_mean, self.predictive_covariance(X, K_trans) else: return y_mean def predictive_covariance(self, X, K_trans=None): X = check_array(X) if K_trans is None: K_trans = self.kernel_(X, self.X_train_) v = cho_solve((self.L_, True), K_trans.T) covariance = self.kernel_(X) - np.dot(K_trans, v) return covariance def predictive_variance(self, X, K_trans=None): X = check_array(X) if K_trans is None: K_trans = self.kernel_(X, self.X_train_) # Compute K_inv of K from it's cholesky decomposition L_inv = solve_triangular(self.L_.T, np.eye(self.L_.shape[0])) K_inv = np.dot(L_inv, L_inv.T) # Compute variance of predictive distribution variance = self.kernel_.diag(X) variance -= np.einsum("ij,ij->i", np.dot(K_trans, K_inv), K_trans) # Check if any of the variances is negative because of # numerical issues. If yes: set the variance to 0. y_var_negative = variance < 0 if np.any(y_var_negative): warnings.warn("Predicted variances smaller than 0. " "Setting those variances to 0.") variance[y_var_negative] = 0.0 return variance def _get_hyperparams(self, theta): signal_variance = theta[0] likelihood_variance = theta[1] length_scale = theta[2:] return signal_variance, length_scale, likelihood_variance def neg_log_marginal_likelihood(self, theta): # Unpack theta parameters signal_variance, length_scale, likelihood_variance = \ self._get_hyperparams(theta) # Get kernel K, K_gradient = self.K(x_train, length_scale=length_scale, signal_variance=signal_variance, likelihood_variance=likelihood_variance, eval_gradient=True) # Add the jitter term K[np.diag_indices_from(K)] += self.jitter # Solve try: L = cholesky(K, lower=True) except np.linalg.LinAlgError: return -np.inf, np.zeros_like(theta) # multi-dimensional output of y_train y_train = self.y_train_ if y_train.ndim == 1: y_train = y_train[:, np.newaxis] weights = cho_solve((L, True), y_train) # ----------------------------- # Log likelihood # ----------------------------- log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, weights) log_likelihood_dims -= np.log(np.diag(L)).sum() log_likelihood_dims -= (K.shape[0] / 2) * np.log(2 * np.pi) log_likelihood = log_likelihood_dims.sum(-1) # ---------------------------- # Log Likelihood Gradient # ---------------------------- prefactor = np.einsum("ik,jk->ijk", weights, weights) prefactor -= cho_solve((L, True), np.eye(K.shape[0]))[:, :, np.newaxis] log_likelihood_gradient_dims = \ 0.5 * np.einsum("ijl,ijk->kl", prefactor, K_gradient) log_likelihood_gradient = log_likelihood_gradient_dims.sum(-1) return -log_likelihood, -log_likelihood_gradient gp_model = GaussianProcessRegressor(kernel='rbf') gp_model.fit(x_train, y_train); y_pred = gp_model.predict(x_test) y_pred, y_err = gp_model.predict(x_test, return_std=True) def ax_plot_sklearn(ax, y_pred, title): # get the condifence intervals lower, upper = y_pred - y_err, y_pred + y_err # plot the training data ax.plot(x_train, y_train, 'r*') # plot the predictive mean ax.plot(x_test, y_pred, 'b') # plot the confidence bounds ax.fill_between(x_test.squeeze(), lower.squeeze(), upper.squeeze(), alpha=0.5, color='orange') ax.set_ylim([-3, 3]) ax.legend(['Observed Data', 'Mean', 'Confidence']) ax.set_title(title) return None f, ax = plt.subplots(1, 1, figsize=(7,5)) ax_plot_sklearn(ax, y_pred, 'Classical') ###Output _____no_output_____
theory/GridSearch.ipynb
###Markdown Tuning Parameters w GridSearchCVFull text [here](https://github.com/justmarkham/scikit-learn-videos/blob/master/08_grid_search.ipynb) ###Code from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.cross_validation import cross_val_score import matplotlib.pyplot as plt %matplotlib inline iris = load_iris() X = iris.data y = iris.target # search for an optimal value of K for KNN k_range = list(range(1, 31)) k_scores = [] for k in k_range: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy') k_scores.append(scores.mean()) print(k_scores) # plot the value of K for KNN (x-axis) versus the cross-validated accuracy (y-axis) plt.plot(k_range, k_scores) plt.xlabel('Value of K for KNN') plt.ylabel('Cross-Validated Accuracy') ###Output _____no_output_____ ###Markdown Parameter Tuning with GridSearchCVMore efficient way to perform cross-validation ###Code from sklearn.grid_search import GridSearchCV # define the parameter values that should be searched k_range = list(range(1, 31)) param_grid = {"n_neighbors": k_range} grid = GridSearchCV(knn, param_grid, cv=10, scoring='accuracy') grid.fit(X, y) # view the complete results (list of named tuples) grid.grid_scores_ # examine the first tuple print(grid.grid_scores_[0].parameters) print(grid.grid_scores_[0].cv_validation_scores) print(grid.grid_scores_[0].mean_validation_score) # create a list of the mean scores only grid_mean_scores = [result.mean_validation_score for result in grid.grid_scores_] print(grid_mean_scores) # plot the results plt.plot(k_range, grid_mean_scores) plt.xlabel('Value of K for KNN') plt.ylabel('Cross-Validated Accuracy') # examine the best model print(grid.best_score_) print(grid.best_params_) print(grid.best_estimator_) ###Output 0.98 {'n_neighbors': 13} KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=13, p=2, weights='uniform') ###Markdown Searching multiple parameters simultaneously ###Code # define the tuning parameter values k_range = list(range(1, 31)) weight_options = ['uniform', 'distance'] # create a parameter grid param_grid = dict(n_neighbors=k_range, weights=weight_options) print(param_grid) # instantiate and fit the grid grid = GridSearchCV(knn, param_grid, cv=10, scoring='accuracy') grid.fit(X, y) # examine the best model print(grid.best_score_) print(grid.best_params_) ###Output 0.98 {'n_neighbors': 13, 'weights': 'uniform'} ###Markdown Now you know the best parameters, retrain your model! RandomizedSearchCV* Searches a subset of the parameters, and you control the computational "budget"* Less computationally demanding Basically it randomly tries out different values in a range ###Code from sklearn.grid_search import RandomizedSearchCV # specify "parameter distributions" rather than a "parameter grid" param_dist = dict(n_neighbors=k_range, weights=weight_options) ###Output _____no_output_____ ###Markdown **Important:** Specify a continuous distribution (rather than a list of values) for any continous param ###Code # n_iter controls the number of searches rand = RandomizedSearchCV(knn, param_dist, cv=10, scoring='accuracy', n_iter=10, random_state=5) rand.fit(X, y) rand.grid_scores_ # examine the best model print(rand.best_score_) print(rand.best_params_) # "_" is a general purpose "throwaway" variable name to indicate that part of a # function result is being deliberately ignored, as in code like: #label, has_label, _ = text.partition(':') # run RandomizedSearchCV 20 times (with n_iter=10) and record the best score best_scores = [] for _ in range(20): rand = RandomizedSearchCV(knn, param_dist, cv=10, scoring='accuracy', n_iter=10) rand.fit(X, y) best_scores.append(round(rand.best_score_, 3)) print(best_scores) ###Output [0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.973, 0.98, 0.98, 0.973, 0.98, 0.973]
GPR_scikitlearn_practice.ipynb
###Markdown **Import necessary libraries:** ###Code import matplotlib.pyplot as plt import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from sklearn.metrics import r2_score ###Output _____no_output_____ ###Markdown **Define a function:** ###Code def f(x): return 200+x*x+x*np.sin(x)-5*(x**1.4) ###Output _____no_output_____ ###Markdown **Plot the function:** ###Code xPlot = np.arange(10,30.1,0.1, dtype=float) yPlot = f(xPlot) plt.plot(xPlot, yPlot) plt.show() ###Output _____no_output_____ ###Markdown **Produce data using above defined function to practice GPR and generate a benchmark:** ###Code np.random.seed(1) xData = 10+20*np.random.rand(100) yData = f(xData) plt.scatter(xData, yData) plt.show() ###Output _____no_output_____ ###Markdown **Prepare data for scikitlearn functions:** Input array should be a 2d array, rows representing each data and columns each feature dimension *atleast_2d function converts 1d array to 2d and ravel does the reverse by placing/removing outer brackets* ###Code xGPR = np.atleast_2d(xData).T yGPR = f(xGPR).ravel() ###Output _____no_output_____ ###Markdown **GPR model definitions:**- Kernels are usually defined as a multiplication of a constant kernel with RBF kernel. White kernels are also used for automatic noise level generation.- First input is length scale and second input is lower and upper bounds of length scale.- If length scale is an array, it defines length scale for each input feature dimension. *Example kernel with 2 input features: kernel = C(1.0, (1e-3, 1e3)) * RBF([5,5], (1e-2, 1e2))* ###Code kernel = C(1.0, (1e-3,1e3))*RBF(10, (1e-3, 1e4)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=5, normalize_y=True, alpha=1e-3).fit(xGPR,yGPR) ###Output _____no_output_____ ###Markdown **Check the final kernel parameters and R^2:** ###Code print(gp.kernel_) ###Output 31.6**2 * RBF(length_scale=2.34) ###Markdown **Check the predictions with some test inputs:** ###Code xTest = np.atleast_2d(xPlot).T yTest, MSE = gp.predict(xTest, return_std=True) print('R2 =',r2_score(yPlot, yTest)) plt.plot(xPlot, yPlot, label='Test data') plt.plot(xPlot, yTest.ravel(), label='Predictions') plt.legend() plt.show() ###Output R2 = 0.9999999617621265
dev/Cs/.ipynb_checkpoints/Cs-checkpoint.ipynb
###Markdown Get SOsTransform Psi4-SOs to Cfour-SOs ###Code Ls=wf.aotoso() print(Ls.shape) # Psi4 MOs in SO basis C_SO=wf.Ca() #Cb=np.array(wf.Cb()) C_SO.shape ###Output ((20, 13), (20, 7)) ###Markdown * Each AO can contribute only once, if at all.* The first AO is relevant; the following are on symmetry-equivalent atoms.* The mapping of the SOs is the arg-sorted Cfour-mapped first-AO list. * Create the first-AO list in Psi4 AO-order. * Create the first-AO list in Cfour AO-order. * Use `np.argsort` to find the so_c2p mapping. * Invert to find the so_p2c mapping of the Psi4-MO vectors. ###Code irrep_lst = [] for isym in range(ptgr.order()): print(f'\nSymmetry {isym}') SOs=SymOrbs(Ls.nph[isym], order=wf.nirrep()) SOs.print() print('Psi4 AO-order:', SOs.first_AOs()) cfour_first_AOs = p2c_map[SOs.first_AOs()] print('Cfour AO-order:', cfour_first_AOs) so_c2p = np.argsort(cfour_first_AOs) print('Cfour argsorted', so_c2p) so_p2c=so_c2p[so_c2p] print('And inverted ', so_p2c) scale=SOs.inv_coef() print('scale', np.round(scale,3)) C=psi4_to_c4(C_SO.nph[isym], so_p2c, scale, use_scale=True) irrep_lst.append(C) C_SOr = psi4.core.Matrix.from_array(irrep_lst) C_SOr.shape #BASIS='PVDZ' C4_cs = read_oldmos('../Cfour/SYM/Cs/OLDMOS.'+BASIS, n_mo_pi) sym=0 Corg=C_SO.nph[sym] Creo=C_SOr.nph[sym] Cc4=C4_cs[sym] naos=n_mo_pi[sym] mo=6 print(' Psi4 reordered Cfour') for k in range(naos): print(f'{k:3d} {Corg[k,mo]:10.6f} {Creo[k,mo]:10.6f} {Cc4[k,mo]:10.6f}') print(np.max(Creo[:,mo]-Cc4[:,mo])) # # comparison Psi4-MOs and Cfour-MOs in their SO representation # for i in range(wf.nirrep()): print(np.max(abs(C_SOr.nph[i])-abs(C4_cs[i]))) write_oldmos('PSIMOS', Ca_C4, Cbs=Cb_C4) ###Output _____no_output_____
train_rnet/train_RNet.ipynb
###Markdown 训练模型 ###Code def train_rnet(imdb=None): if imdb == None: imagedb = ImageDB(annotation_file) imdb = imagedb.load_imdb() #print(imdb.num_images) imdb = imagedb.append_flipped_images(imdb) for run in RunBuilder.get_runs(params): use_cuda=use_cuda= True if run.device == 'cuda' else False #create model path if not os.path.exists(model_store_path): os.makedirs(model_store_path) lossfn = LossFn() network = RNet(is_train=True, use_cuda=use_cuda) if use_cuda: network.cuda() optimizer = torch.optim.Adam(network.parameters(), lr=run.lr) train_data=TrainImageReader(imdb,24,run.batch_size,shuffle=True) comment = f'-{run}' for epoch in range(end_epoch): train_data.reset() # shuffle epoch_acc = 0.0 for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data): im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ] im_tensor = torch.stack(im_tensor) im_tensor = Variable(im_tensor) gt_label = Variable(torch.from_numpy(gt_label).float()) gt_bbox = Variable(torch.from_numpy(gt_bbox).float()) #gt_landmark = Variable(torch.from_numpy(gt_landmark).float()) cls_pred, box_offset_pred = network(im_tensor) cls_loss = lossfn.cls_loss(gt_label,cls_pred) box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred) all_loss = cls_loss*1.0+box_offset_loss*0.5 cls_pred, box_offset_pred = network(im_tensor) if batch_idx%frequent==0: accuracy=compute_accuracy(cls_pred,gt_label) accuracy=compute_accuracy(cls_pred,gt_label) show1 = accuracy.data.cpu().numpy() show2 = cls_loss.data.cpu().numpy() show3 = box_offset_loss.data.cpu().numpy() # show4 = landmark_loss.data.cpu().numpy() show5 = all_loss.data.cpu().numpy() print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "% (datetime.datetime.now(),epoch,batch_idx, show1,show2,show3,show5,run.lr)) epoch_acc = show1 #计算偏差矩阵 optimizer.zero_grad() all_loss.backward() optimizer.step() pass pass print('save modle acc:', epoch_acc) torch.save(network.state_dict(), os.path.join(model_store_path,"rnet_epoch_%d.pt" % epoch)) torch.save(network, os.path.join(model_store_path,"rnet_epoch_model_%d.pkl" % epoch)) pass pass pass pass if __name__ == '__main__': print('train Rnet Process:...') #加载图片文件 #imagedb = ImageDB(annotation_file,'./image/train') #gt_imdb = imagedb.load_imdb() #gt_imdb = imagedb.append_flipped_images(gt_imdb) train_net() print('finish....') #print(gt_imdb[2]) ###Output _____no_output_____
_pages/projects/RecipeScraper/LS_AnnaExtension.ipynb
###Markdown V1: Take 5 recipes from the same blog. Aggregate ingredients (but not combine) ###Code # df = pd.read_csv('minimalistbaker_links.csv') # df = pd.read_csv('skinnytaste_links.csv') # df = pd.read_csv('halfbakedharvest_links.csv') ###Output _____no_output_____ ###Markdown Unfortunately, the below doesn't work for HBH, so here is a workaround ###Code # =============================================== # HBH WORKAROUND # Also doesn't work for pinch of yum # NOPE url = "https://pinchofyum.com/30-minute-vegetarian-meatballs" # =============================================== import json url = "https://www.halfbakedharvest.com/one-pan-four-cheese-sun-dried-tomato-and-spinach-drunken-pasta-bake/" r = requests.get(url) soup = BeautifulSoup(r.content, 'html.parser') searched_word = 'wprmpuc_recipe_' results = soup.body.find_all(string=re.compile('.*{0}.*'.format(searched_word)), recursive=True) print('Found the word "{0}" {1} times'.format(searched_word, len(results))) clean_result = results[0].split('=')[1].split(';')[0].strip() info_dict = json.loads(clean_result) # info_dict # url = "https://www.gimmesomeoven.com/poblano-white-chicken-chili/" # url = "https://www.skinnytaste.com/lentil-soup-with-butternut-and-kale/" # url = "https://minimalistbaker.com/orange-cranberry-crisp-gluten-free-easy/" # url = "https://www.twopeasandtheirpod.com/magic-cookie-bars/" # url = "https://thedefineddish.com/miso-roasted-chicken/" # url = "https://www.ambitiouskitchen.com/coconut-curried-brown-rice/" # url = "https://whatsgabycooking.com/chicken-larb-bowls/" url = "https://paleomg.com/paleo-blueberry-chai-muffins/" r = requests.get(url) soup = BeautifulSoup(r.content, 'html.parser') searched_word = 'Print' results = soup.body.find_all(string=re.compile('.*{0}.*'.format(searched_word)), recursive=True) print('Found the word "{0}" {1} times'.format(searched_word, len(results))) results[0].parent['href'] ###Output Found the word "Print" 3 times
examples/Piecewise Exponential Models and Creating Custom Models.ipynb
###Markdown Piecewise Exponential models and creating custom modelsThis section will be easier if we recall our three mathematical "creatures" and the relationships between them. First is the survival function, $S(t)$, that represents the probability of living past some time, $t$. Next is the _always non-negative and non-dereasing_ cumulative hazard function, $H(t)$. Its relation to $S(t)$ is:$$ S(t) = \exp\left(-H(t)\right)$$Finally, the hazard function, $h(t)$, is the derivative of the cumulative hazard: $$h(t) = \frac{dH(t)}{dt}$$which has the immediate relation to the survival function:$$S(t) = \exp\left(-\int_{0}^t h(s) ds\right)$$Notice that any of the three absolutely defines the other two. Some situations make it easier to define one vs the others. For example, in the Cox model, it's easist to work with the hazard, $h(t)$. In this section on parametric univariate models, it'll be easiest to work with the cumulative hazard. This is because of an asymmetry in math: derivatives are much easier to compute that integrals. So, if we define the cumulative hazard, both the hazard and survival function are much easier to reason about vs if we define the hazard and ask questions about the other two. At first, it may be easier to think about the hazard, and that's fine, but so long as we are clever enough to also determine the cumulative hazard, then we can ride the computational train. This will be clear by the end of the tutorial. First, let's revisit some simplier parametric models. The Exponential modelRecall that the Exponential model has a constant hazard, that is:$$ h(t) = \frac{1}{\lambda} $$which implies that the cumulative hazard, $H(t)$, has a pretty simple form: $H(t) = \frac{t}{\lambda}$. Below we fit this model to some survival data. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' from matplotlib import pyplot as plt import numpy as np import pandas as pd from lifelines.datasets import load_waltons waltons = load_waltons() T, E = waltons['T'], waltons['E'] from lifelines import ExponentialFitter fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) epf = ExponentialFitter().fit(T, E) epf.plot_hazard(ax=ax[0]) epf.plot_cumulative_hazard(ax=ax[1]) ax[0].set_title("hazard"); ax[1].set_title("cumulative_hazard") epf.print_summary(3) ###Output <lifelines.ExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -771.913 hypothesis = lambda_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 51.840 12.490 27.360 76.320 <0.0005 14.379 ###Markdown This model does a poor job of fitting to our data. If I fit a _non-parametric_ model, like the Nelson-Aalen model, to this data, the lack of fit is very obvious. ###Code from lifelines import NelsonAalenFitter ax = epf.plot(figsize=(8,5)) naf = NelsonAalenFitter().fit(T, E) ax = naf.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown It should be clear that the single parameter model is just averaging the hazards over the entire time period. In reality though, the true hazard rate exhibits some complex non-linear behaviour. Piecewise Exponential modelsWhat if we could break out model into different time periods, and fit an exponential model to each of those? For example, we define the hazard as:$$ h(t) = \begin{cases} \lambda_0, & \text{if $t \le \tau_0$} \\ \lambda_1 & \text{if $\tau_0 < t \le \tau_1$} \\ \lambda_2 & \text{if $\tau_1 < t \le \tau_2$} \\ ... \end{cases}$$This model should be flexible enough to fit better to our dataset. The cumulative hazard is only slightly more complicated, but not too much and can still be defined in Python. In _lifelines_, univariate models are constructed such that one _only_ needs to define the cumulative hazard model with the parameters of interest, and all the hard work of fitting, creating confidence intervals, plotting, etc. is taken care. For example, _lifelines_ has implemented the `PiecewiseExponentialFitter` model. Internally, the code is a single function that defines the cumulative hazard. The user specifies where they believe the "breaks" are, and _lifelines_ estimates the best $\lambda_i$. ###Code from lifelines import PiecewiseExponentialFitter # looking at the above plot, I think there may be breaks at t=40 and t=60. pf = PiecewiseExponentialFitter(breakpoints=[40, 60]).fit(T, E) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ax = pf.plot(ax=axs[1]) pf.plot_hazard(ax=axs[0]) ax = naf.plot(ax=ax, ci_show=False) axs[0].set_title("hazard"); axs[1].set_title("cumulative_hazard") pf.print_summary(3) ###Output <lifelines.PiecewiseExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -647.118 hypothesis = lambda_0_ != 1, lambda_1_ != 1, lambda_2_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_0_ 162.989 27.144 109.787 216.191 <0.0005 28.630 lambda_1_ 31.366 4.043 23.442 39.290 <0.0005 43.957 lambda_2_ 4.686 0.624 3.462 5.910 <0.0005 28.055 ###Markdown We can see a much better fit in this model. A quantitative measure of better fit is to compare the log-likelihood mthe exponential model and the piecewise exponential model (higher is better). The log-likelihood went from -772 to -647, respectively. We could keep going and add more and more breakpoints, but that would end up overfitting to the data. Univarite models in _lifelines_I mentioned that the `PiecewiseExponentialFitter` was implemented using only its cumulative hazard function. This is not a lie. _lifelines_ has very general semantics for univariate fitters. For example, this is how the entire `ExponentialFitter` is implemented:```pythonclass ExponentialFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_"] def _cumulative_hazard(self, params, times): lambda_ = params[0] return lambda_ * times```We only need to specify the cumulative hazard function because of the 1-1 relationship between the cumulative hazard function and the survival function and the hazard rate. From there, _lifelines_ handles the rest. Defining our own survival modelsTo show off the flexability of _lifelines_ univariate models, we'll create a brand new, never before seen, survival model. Looking at the Nelson-Aalen fit, the cumulative hazard looks looks like their might be an asymptote at $t=80$. This may correspond to an absolute upper limit of subjects' lives. Let's start with that functional form.$$ H_1(t; \alpha) = \frac{\alpha}{(80 - t)} $$We subscript $1$ because we'll investigate other models. In a _lifelines_ univariate model, this is defined in the following code. **Important**: in order to compute derivatives, you must use the numpy imported from the `autograd` library. This is a thin wrapper around the original numpy. See `import` below. ###Code from lifelines.fitters import ParametericUnivariateFitter import autograd.numpy as np class InverseTimeHazardFitter(ParametericUnivariateFitter): # we tell the model what we want the names of the unknown parameters to be _fitted_parameter_names = ['alpha_'] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: avector of times that will be passed in. def _cumulative_hazard(self, params, times): alpha = params[0] return alpha /(80 - times) itf = InverseTimeHazardFitter() itf.fit(T, E) itf.print_summary() ax = itf.plot(figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) plt.legend() ###Output <lifelines.InverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -697.840 hypothesis = alpha_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 21.51 1.72 18.13 24.88 <0.005 106.22 ###Markdown The best fit of the model to the data is:$$H_1(t) = \frac{21.51}{80-t}$$Our choice of 80 as an asymptote was maybe mistaken, so let's allow the asymptote to be another parameter:$$ H_2(t; \alpha, \beta) = \frac{\alpha}{\beta-t} $$If we define the model this way, we need to add a bound to the values that $\beta$ can take. Obviously it can't be smaller than or equal to the maximum observed duration. Generally, the cumulative hazard _must be positive and non-decreasing_. Otherwise the model fit will hit convergence problems. ###Code class TwoParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_'] # Sequence of (min, max) pairs for each element in x. None is used to specify no bound _bounds = [(0, None), (75.0001, None)] def _cumulative_hazard(self, params, times): a, b = params return a / (b - times) two_f = TwoParamInverseTimeHazardFitter() two_f.fit(T, E) two_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) two_f.plot(ax=ax) plt.legend() ###Output <lifelines.TwoParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -685.572 hypothesis = alpha_ != 1, beta_ != 76 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 16.50 1.51 13.55 19.46 <0.005 79.98 beta_ 76.55 0.38 75.80 77.30 0.15 2.73 ###Markdown From the output, we see that the value of 76.55 is the suggested asymptote, that is:$$H_2(t) = \frac{16.50} {76.55 - t}$$The curve also appears to track against the Nelson-Aalen model better too. Let's try one additional parameter, $\gamma$, some sort of measure of decay. $$H_3(t; \alpha, \beta, \gamma) = \frac{\alpha}{(\beta-t)^\gamma} $$ ###Code from lifelines.fitters import ParametericUnivariateFitter class ThreeParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', 'gamma_'] _bounds = [(0, None), (75.0001, None), (0, None)] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a numpy vector of times that will be passed in by the optimizer def _cumulative_hazard(self, params, times): a, b, c = params return a / (b - times) ** c three_f = ThreeParamInverseTimeHazardFitter() three_f.fit(T, E) three_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) ax = two_f.plot(ax=ax, ci_show=False) ax = three_f.plot(ax=ax) plt.legend() ###Output <lifelines.ThreeParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -649.378 hypothesis = alpha_ != 1, beta_ != 76, gamma_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 1588776.28 3775137.44 -5810357.13 8987909.70 0.67 0.57 beta_ 100.88 5.88 89.35 112.41 <0.005 15.38 gamma_ 3.83 0.50 2.85 4.81 <0.005 25.82 ###Markdown Our new asymptote is at $t\approx 100, \text{c.i.}=(87, 112)$. The model appears to fit the early times better than the previous models as well, however our $\alpha$ parameter has more uncertainty now. Continuing to add parameters isn't advisable, as we will overfit to the data. Why fit parametric models anyways?Taking a step back, we are fitting parameteric models and comparing them to the non-parametric Nelson-Aalen. Why not just always use the Nelson-Aalen model? 1) Sometimes we have scientific motivations to use a parametric model. That is, using domain knowledge, we may know the system has a parametric model and we wish to fit to that model. 2) In a parametric model, we are borrowing information from _all_ observations to determine the best parameters. To make this more clear, imagine take a single observation and changing it's value wildly. The fitted parameters would change as well. On the other hand, imagine doing the same for a non-parametric model. In this case, only the local survival function or hazard function would change. Because parametric models can borrow information from all observations, and there are much _fewer_ unknowns than a non-parametric model, parametric models are said to be more _statistical efficient._ 3) Extrapolation: non-parametric models are not easily extended to values outside the observed data. On the other hand, parametric models have no problem with this. However, extrapolation outside observed values is a very dangerous activity. ###Code fig, axs = plt.subplots(3, figsize=(7, 8), sharex=True) new_timeline = np.arange(0, 85) three_f = ThreeParamInverseTimeHazardFitter().fit(T, E, timeline=new_timeline) three_f.plot_hazard(label='hazard', ax=axs[0]).legend() three_f.plot_cumulative_hazard(label='cumulative hazard', ax=axs[1]).legend() three_f.plot_survival_function(label='survival function', ax=axs[2]).legend() fig.subplots_adjust(hspace=0) # Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() ###Output _____no_output_____ ###Markdown Piecewise exponential models and creating custom modelsThis section will be easier if we recall our three mathematical "creatures" and the relationships between them. First is the survival function, $S(t)$, that represents the probability of living past some time, $t$. Next is the _always non-negative and non-decreasing_ cumulative hazard function, $H(t)$. Its relation to $S(t)$ is:$$ S(t) = \exp\left(-H(t)\right)$$Finally, the hazard function, $h(t)$, is the derivative of the cumulative hazard: $$h(t) = \frac{dH(t)}{dt}$$which has the immediate relation to the survival function:$$S(t) = \exp\left(-\int_{0}^t h(s) ds\right)$$Notice that any of the three absolutely defines the other two. Some situations make it easier to define one vs the others. For example, in the Cox model, it's easist to work with the hazard, $h(t)$. In this section on parametric univariate models, it'll be easiest to work with the cumulative hazard. This is because of an asymmetry in math: derivatives are much easier to compute than integrals. So, if we define the cumulative hazard, both the hazard and survival function are much easier to reason about versus if we define the hazard and ask questions about the other two.First, let's revisit some simpler parametric models. The Exponential modelRecall that the Exponential model has a constant hazard, that is:$$ h(t) = \frac{1}{\lambda} $$which implies that the cumulative hazard, $H(t)$, has a pretty simple form: $H(t) = \frac{t}{\lambda}$. Below we fit this model to some survival data. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' from matplotlib import pyplot as plt import numpy as np import pandas as pd from lifelines.datasets import load_waltons waltons = load_waltons() T, E = waltons['T'], waltons['E'] from lifelines import ExponentialFitter fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) epf = ExponentialFitter().fit(T, E) epf.plot_hazard(ax=ax[0]) epf.plot_cumulative_hazard(ax=ax[1]) ax[0].set_title("hazard"); ax[1].set_title("cumulative_hazard") epf.print_summary(3) ###Output <lifelines.ExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = 418612.094 hypothesis = lambda_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 51.840 12.490 27.360 76.320 <0.0005 14.379 ###Markdown This model does a poor job of fitting to our data. If I fit a _non-parametric_ model, like the Nelson-Aalen model, to this data, the Exponential's lack of fit is very obvious. ###Code from lifelines import NelsonAalenFitter ax = epf.plot(figsize=(8,5)) naf = NelsonAalenFitter().fit(T, E) ax = naf.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown It should be clear that the single parameter model is just averaging the hazards over the entire time period. In reality though, the true hazard rate exhibits some complex non-linear behaviour. Piecewise Exponential modelsWhat if we could break out model into different time periods, and fit an exponential model to each of those? For example, we define the hazard as:$$ h(t) = \begin{cases} \lambda_0, & \text{if $t \le \tau_0$} \\ \lambda_1 & \text{if $\tau_0 < t \le \tau_1$} \\ \lambda_2 & \text{if $\tau_1 < t \le \tau_2$} \\ ... \end{cases}$$This model should be flexible enough to fit better to our dataset. The cumulative hazard is only slightly more complicated, but not too much and can still be defined in Python. In _lifelines_, univariate models are constructed such that one _only_ needs to define the cumulative hazard model with the parameters of interest, and all the hard work of fitting, creating confidence intervals, plotting, etc. is taken care. For example, _lifelines_ has implemented the `PiecewiseExponentialFitter` model. Internally, the code is a single function that defines the cumulative hazard. The user specifies where they believe the "breaks" are, and _lifelines_ estimates the best $\lambda_i$. ###Code from lifelines import PiecewiseExponentialFitter # looking at the above plot, I think there may be breaks at t=40 and t=60. pf = PiecewiseExponentialFitter(breakpoints=[40, 60]).fit(T, E) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ax = pf.plot(ax=axs[1]) pf.plot_hazard(ax=axs[0]) ax = naf.plot(ax=ax, ci_show=False) axs[0].set_title("hazard"); axs[1].set_title("cumulative_hazard") pf.print_summary(3) ###Output <lifelines.PiecewiseExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -647.118 hypothesis = lambda_0_ != 1, lambda_1_ != 1, lambda_2_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_0_ 162.989 27.144 109.787 216.191 <0.0005 28.630 lambda_1_ 31.366 4.043 23.442 39.290 <0.0005 43.957 lambda_2_ 4.686 0.624 3.462 5.910 <0.0005 28.055 ###Markdown We can see a much better fit in this model. A quantitative measure of fit is to compare the log-likelihood between exponential model and the piecewise exponential model (higher is better). The log-likelihood went from -772 to -647, respectively. We could keep going and add more and more breakpoints, but that would end up overfitting to the data. Univarite models in _lifelines_I mentioned that the `PiecewiseExponentialFitter` was implemented using only its cumulative hazard function. This is not a lie. _lifelines_ has very general semantics for univariate fitters. For example, this is how the entire `ExponentialFitter` is implemented:```pythonclass ExponentialFitter(ParametricUnivariateFitter): _fitted_parameter_names = ["lambda_"] def _cumulative_hazard(self, params, times): lambda_ = params[0] return times / lambda_```We only need to specify the cumulative hazard function because of the 1:1:1 relationship between the cumulative hazard function and the survival function and the hazard rate. From there, _lifelines_ handles the rest. Defining our own survival modelsTo show off the flexability of _lifelines_ univariate models, we'll create a brand new, never before seen, survival model. Looking at the Nelson-Aalen fit, the cumulative hazard looks looks like their might be an asymptote at $t=80$. This may correspond to an absolute upper limit of subjects' lives. Let's start with that functional form.$$ H_1(t; \alpha) = \frac{\alpha}{(80 - t)} $$We subscript $1$ because we'll investigate other models. In a _lifelines_ univariate model, this is defined in the following code. **Important**: in order to compute derivatives, you must use the numpy imported from the `autograd` library. This is a thin wrapper around the original numpy. Note the `import autograd.numpy as np` below. ###Code from lifelines.fitters import ParametricUnivariateFitter import autograd.numpy as np class InverseTimeHazardFitter(ParametricUnivariateFitter): # we tell the model what we want the names of the unknown parameters to be _fitted_parameter_names = ['alpha_'] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a vector of times that will be passed in. def _cumulative_hazard(self, params, times): alpha = params[0] return alpha /(80 - times) itf = InverseTimeHazardFitter() itf.fit(T, E) itf.print_summary() ax = itf.plot(figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) plt.legend() ###Output <lifelines.InverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -697.840 hypothesis = alpha_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 21.51 1.72 18.13 24.88 <0.005 106.22 ###Markdown The best fit of the model to the data is:$$H_1(t) = \frac{21.51}{80-t}$$Our choice of 80 as an asymptote was maybe mistaken, so let's allow the asymptote to be another parameter:$$ H_2(t; \alpha, \beta) = \frac{\alpha}{\beta-t} $$If we define the model this way, we need to add a bound to the values that $\beta$ can take. Obviously it can't be smaller than or equal to the maximum observed duration. Generally, the cumulative hazard _must be positive and non-decreasing_. Otherwise the model fit will hit convergence problems. ###Code class TwoParamInverseTimeHazardFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_'] # Sequence of (min, max) pairs for each element in x. None is used to specify no bound _bounds = [(0, None), (75.0001, None)] def _cumulative_hazard(self, params, times): alpha, beta = params return alpha / (beta - times) two_f = TwoParamInverseTimeHazardFitter() two_f.fit(T, E) two_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) two_f.plot(ax=ax) plt.legend() ###Output <lifelines.TwoParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -685.572 hypothesis = alpha_ != 1, beta_ != 76 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 16.50 1.51 13.55 19.46 <0.005 79.98 beta_ 76.55 0.38 75.80 77.30 0.15 2.73 ###Markdown From the output, we see that the value of 76.55 is the suggested asymptote, that is:$$H_2(t) = \frac{16.50} {76.55 - t}$$The curve also appears to track against the Nelson-Aalen model better too. Let's try one additional parameter, $\gamma$, some sort of measure of decay. $$H_3(t; \alpha, \beta, \gamma) = \frac{\alpha}{(\beta-t)^\gamma} $$ ###Code from lifelines.fitters import ParametricUnivariateFitter class ThreeParamInverseTimeHazardFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', 'gamma_'] _bounds = [(0, None), (75.0001, None), (0, None)] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a numpy vector of times that will be passed in by the optimizer def _cumulative_hazard(self, params, times): a, b, c = params return a / (b - times) ** c three_f = ThreeParamInverseTimeHazardFitter() three_f.fit(T, E) three_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) ax = two_f.plot(ax=ax, ci_show=False) ax = three_f.plot(ax=ax) plt.legend() ###Output <lifelines.ThreeParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -649.378 hypothesis = alpha_ != 1, beta_ != 76, gamma_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 1588776.28 3775137.44 -5810357.13 8987909.70 0.67 0.57 beta_ 100.88 5.88 89.35 112.41 <0.005 15.38 gamma_ 3.83 0.50 2.85 4.81 <0.005 25.82 ###Markdown Our new asymptote is at $t\approx 100, \text{c.i.}=(87, 112)$. The model appears to fit the early times better than the previous models as well, however our $\alpha$ parameter has more uncertainty now. Continuing to add parameters isn't advisable, as we will overfit to the data. Why fit parametric models anyways? Taking a step back, we are fitting parametric models and comparing them to the non-parametric Nelson-Aalen. Why not just always use the Nelson-Aalen model? 1) Sometimes we have scientific motivations to use a parametric model. That is, using domain knowledge, we may know the system has a parametric model and we wish to fit to that model. 2) In a parametric model, we are borrowing information from _all_ observations to determine the best parameters. To make this more clear, imagine taking a single observation and changing it's value wildly. The fitted parameters would change as well. On the other hand, imagine doing the same for a non-parametric model. In this case, only the local survival function or hazard function would change. Because parametric models can borrow information from all observations, and there are much _fewer_ unknowns than a non-parametric model, parametric models are said to be more _statistically efficient._ 3) Extrapolation: non-parametric models are not easily extended to values outside the observed data. On the other hand, parametric models have no problem with this. However, extrapolation outside observed values is a very dangerous activity. ###Code fig, axs = plt.subplots(3, figsize=(7, 8), sharex=True) new_timeline = np.arange(0, 85) three_f = ThreeParamInverseTimeHazardFitter().fit(T, E, timeline=new_timeline) three_f.plot_hazard(label='hazard', ax=axs[0]).legend() three_f.plot_cumulative_hazard(label='cumulative hazard', ax=axs[1]).legend() three_f.plot_survival_function(label='survival function', ax=axs[2]).legend() fig.subplots_adjust(hspace=0) # Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() ###Output _____no_output_____ ###Markdown 3-parameter Weibull distributionWe can easily extend the built-in Weibull model (`lifelines.WeibullFitter`) to include a new _location_ parameter:$$ H(t) = \left(\frac{t - \theta}{\lambda}\right)^\rho $$(When $\theta = 0$, this is just the 2-parameter case again). In *lifelines* custom models, this looks like: ###Code import autograd.numpy as np from autograd.scipy.stats import norm # I'm shifting this to exaggerate the effect T = T + 10 class ThreeParameterWeibullFitter(ParametricUnivariateFitter): _fitted_parameter_names = ["lambda_", "rho_", "theta_"] _bounds = [(0, None), (0, None), (0, T.min()-0.001)] def _cumulative_hazard(self, params, times): lambda_, rho_, theta_ = params return ((times - theta_) / lambda_) ** rho_ tpw = ThreeParameterWeibullFitter() tpw.fit(T, E) tpw.print_summary() ax = tpw.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output <lifelines.ThreeParameterWeibullFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -666.715 hypothesis = lambda_ != 1, rho_ != 1, theta_ != 7 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 63.92 5.38 53.38 74.47 <0.005 102.58 rho_ 4.20 0.56 3.11 5.29 <0.005 26.67 theta_ 2.55 5.05 -7.35 12.45 0.28 1.83 ###Markdown Inverse Gaussian distributionThe inverse Gaussian distribution is another popular model for survival analysis. Unlike other model, it's hazard does not asympotically converge to 0, allowing for a long tail of survival. Let's model this, using the same parameterization from [Wikipedia](https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution) ###Code from autograd.scipy.stats import norm class InverseGaussianFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['lambda_', 'mu_'] def _cumulative_density(self, params, times): mu_, lambda_ = params v = norm.cdf(np.sqrt(lambda_ / times) * (times / mu_ - 1), loc=0, scale=1) + \ np.exp(2 * lambda_ / mu_) * norm.cdf(-np.sqrt(lambda_ / times) * (times / mu_ + 1), loc=0, scale=1) return v def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) from lifelines.datasets import load_rossi rossi = load_rossi() igf = InverseGaussianFitter() igf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 500)) igf.print_summary() igf.plot_hazard() ###Output <lifelines.InverseGaussianFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -729.797 hypothesis = lambda_ != 1, mu_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 7441.43 9296.67 -10779.69 25662.56 0.42 1.24 mu_ 47.86 3.31 41.38 54.35 <0.005 148.83 ###Markdown Bounded lifetimes using the beta distributionMaybe your data is bounded between 0 and some (unknown) upperbound M? That is, lifetimes can't be more than M. Maybe you know M, maybe you don't. ###Code n = 100 T = 5 * np.random.random(n)**2 T_censor = 10 * np.random.random(n)**2 E = T < T_censor T_obs = np.minimum(T, T_censor) from autograd_gamma import betainc class BetaFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', "m_"] _bounds = [(0, None), (0, None), (T.max(), None)] def _cumulative_density(self, params, times): alpha_, beta_, m_ = params return betainc(alpha_, beta_, times / m_) def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) beta_fitter = BetaFitter().fit(T_obs, E) beta_fitter.plot() beta_fitter.print_summary() ###Output <lifelines.BetaFitter: fitted with 100 observations, 32 censored> number of subjects = 100 number of events = 68 log-likelihood = -93.912 hypothesis = alpha_ != 1, beta_ != 1, m_ != 5 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 0.52 0.07 0.39 0.65 <0.005 42.21 beta_ 0.92 0.08 0.76 1.09 0.36 1.48 m_ 4.86 nan nan nan nan nan ###Markdown Gompertz ###Code class GompertzFitter(ParametricUnivariateFitter): # this parameterization is slightly different than wikipedia. _fitted_parameter_names = ['nu_', 'b_'] def _cumulative_hazard(self, params, times): nu_, b_ = params return nu_ * (np.expm1(times / b_)) ggf = GompertzFitter() ggf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 120)) ggf.print_summary() ggf.plot_survival_function() ###Output <lifelines.GompertzFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -697.815 hypothesis = nu_ != 1, b_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) nu_ 0.20 0.11 -0.01 0.40 <0.005 45.19 b_ 55.19 19.26 17.45 92.93 <0.005 7.68 ###Markdown Piecewise exponential models and creating custom modelsThis section will be easier if we recall our three mathematical "creatures" and the relationships between them. First is the survival function, $S(t)$, that represents the probability of living past some time, $t$. Next is the _always non-negative and non-decreasing_ cumulative hazard function, $H(t)$. Its relation to $S(t)$ is:$$ S(t) = \exp\left(-H(t)\right)$$Finally, the hazard function, $h(t)$, is the derivative of the cumulative hazard: $$h(t) = \frac{dH(t)}{dt}$$which has the immediate relation to the survival function:$$S(t) = \exp\left(-\int_{0}^t h(s) ds\right)$$Notice that any of the three absolutely defines the other two. Some situations make it easier to define one vs the others. For example, in the Cox model, it's easist to work with the hazard, $h(t)$. In this section on parametric univariate models, it'll be easiest to work with the cumulative hazard. This is because of an asymmetry in math: derivatives are much easier to compute than integrals. So, if we define the cumulative hazard, both the hazard and survival function are much easier to reason about versus if we define the hazard and ask questions about the other two.First, let's revisit some simpler parametric models. The Exponential modelRecall that the Exponential model has a constant hazard, that is:$$ h(t) = \frac{1}{\lambda} $$which implies that the cumulative hazard, $H(t)$, has a pretty simple form: $H(t) = \frac{t}{\lambda}$. Below we fit this model to some survival data. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' from matplotlib import pyplot as plt import numpy as np import pandas as pd from lifelines.datasets import load_waltons waltons = load_waltons() T, E = waltons['T'], waltons['E'] from lifelines import ExponentialFitter fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) epf = ExponentialFitter().fit(T, E) epf.plot_hazard(ax=ax[0]) epf.plot_cumulative_hazard(ax=ax[1]) ax[0].set_title("hazard"); ax[1].set_title("cumulative_hazard") epf.print_summary(3) ###Output <lifelines.ExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = 418612.094 hypothesis = lambda_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 51.840 12.490 27.360 76.320 <0.0005 14.379 ###Markdown This model does a poor job of fitting to our data. If I fit a _non-parametric_ model, like the Nelson-Aalen model, to this data, the Exponential's lack of fit is very obvious. ###Code from lifelines import NelsonAalenFitter ax = epf.plot(figsize=(8,5)) naf = NelsonAalenFitter().fit(T, E) ax = naf.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown It should be clear that the single parameter model is just averaging the hazards over the entire time period. In reality though, the true hazard rate exhibits some complex non-linear behaviour. Piecewise Exponential modelsWhat if we could break out model into different time periods, and fit an exponential model to each of those? For example, we define the hazard as:$$ h(t) = \begin{cases} \lambda_0, & \text{if $t \le \tau_0$} \\ \lambda_1 & \text{if $\tau_0 < t \le \tau_1$} \\ \lambda_2 & \text{if $\tau_1 < t \le \tau_2$} \\ ... \end{cases}$$This model should be flexible enough to fit better to our dataset. The cumulative hazard is only slightly more complicated, but not too much and can still be defined in Python. In _lifelines_, univariate models are constructed such that one _only_ needs to define the cumulative hazard model with the parameters of interest, and all the hard work of fitting, creating confidence intervals, plotting, etc. is taken care. For example, _lifelines_ has implemented the `PiecewiseExponentialFitter` model. Internally, the code is a single function that defines the cumulative hazard. The user specifies where they believe the "breaks" are, and _lifelines_ estimates the best $\lambda_i$. ###Code from lifelines import PiecewiseExponentialFitter # looking at the above plot, I think there may be breaks at t=40 and t=60. pf = PiecewiseExponentialFitter(breakpoints=[40, 60]).fit(T, E) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ax = pf.plot(ax=axs[1]) pf.plot_hazard(ax=axs[0]) ax = naf.plot(ax=ax, ci_show=False) axs[0].set_title("hazard"); axs[1].set_title("cumulative_hazard") pf.print_summary(3) ###Output <lifelines.PiecewiseExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -647.118 hypothesis = lambda_0_ != 1, lambda_1_ != 1, lambda_2_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_0_ 162.989 27.144 109.787 216.191 <0.0005 28.630 lambda_1_ 31.366 4.043 23.442 39.290 <0.0005 43.957 lambda_2_ 4.686 0.624 3.462 5.910 <0.0005 28.055 ###Markdown We can see a much better fit in this model. A quantitative measure of fit is to compare the log-likelihood between exponential model and the piecewise exponential model (higher is better). The log-likelihood went from -772 to -647, respectively. We could keep going and add more and more breakpoints, but that would end up overfitting to the data. Univarite models in _lifelines_I mentioned that the `PiecewiseExponentialFitter` was implemented using only its cumulative hazard function. This is not a lie. _lifelines_ has very general semantics for univariate fitters. For example, this is how the entire `ExponentialFitter` is implemented:```pythonclass ExponentialFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_"] def _cumulative_hazard(self, params, times): lambda_ = params[0] return times / lambda_```We only need to specify the cumulative hazard function because of the 1:1:1 relationship between the cumulative hazard function and the survival function and the hazard rate. From there, _lifelines_ handles the rest. Defining our own survival modelsTo show off the flexability of _lifelines_ univariate models, we'll create a brand new, never before seen, survival model. Looking at the Nelson-Aalen fit, the cumulative hazard looks looks like their might be an asymptote at $t=80$. This may correspond to an absolute upper limit of subjects' lives. Let's start with that functional form.$$ H_1(t; \alpha) = \frac{\alpha}{(80 - t)} $$We subscript $1$ because we'll investigate other models. In a _lifelines_ univariate model, this is defined in the following code. **Important**: in order to compute derivatives, you must use the numpy imported from the `autograd` library. This is a thin wrapper around the original numpy. Note the `import autograd.numpy as np` below. ###Code from lifelines.fitters import ParametericUnivariateFitter import autograd.numpy as np class InverseTimeHazardFitter(ParametericUnivariateFitter): # we tell the model what we want the names of the unknown parameters to be _fitted_parameter_names = ['alpha_'] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a vector of times that will be passed in. def _cumulative_hazard(self, params, times): alpha = params[0] return alpha /(80 - times) itf = InverseTimeHazardFitter() itf.fit(T, E) itf.print_summary() ax = itf.plot(figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) plt.legend() ###Output <lifelines.InverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -697.840 hypothesis = alpha_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 21.51 1.72 18.13 24.88 <0.005 106.22 ###Markdown The best fit of the model to the data is:$$H_1(t) = \frac{21.51}{80-t}$$Our choice of 80 as an asymptote was maybe mistaken, so let's allow the asymptote to be another parameter:$$ H_2(t; \alpha, \beta) = \frac{\alpha}{\beta-t} $$If we define the model this way, we need to add a bound to the values that $\beta$ can take. Obviously it can't be smaller than or equal to the maximum observed duration. Generally, the cumulative hazard _must be positive and non-decreasing_. Otherwise the model fit will hit convergence problems. ###Code class TwoParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_'] # Sequence of (min, max) pairs for each element in x. None is used to specify no bound _bounds = [(0, None), (75.0001, None)] def _cumulative_hazard(self, params, times): alpha, beta = params return alpha / (beta - times) two_f = TwoParamInverseTimeHazardFitter() two_f.fit(T, E) two_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) two_f.plot(ax=ax) plt.legend() ###Output <lifelines.TwoParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -685.572 hypothesis = alpha_ != 1, beta_ != 76 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 16.50 1.51 13.55 19.46 <0.005 79.98 beta_ 76.55 0.38 75.80 77.30 0.15 2.73 ###Markdown From the output, we see that the value of 76.55 is the suggested asymptote, that is:$$H_2(t) = \frac{16.50} {76.55 - t}$$The curve also appears to track against the Nelson-Aalen model better too. Let's try one additional parameter, $\gamma$, some sort of measure of decay. $$H_3(t; \alpha, \beta, \gamma) = \frac{\alpha}{(\beta-t)^\gamma} $$ ###Code from lifelines.fitters import ParametericUnivariateFitter class ThreeParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', 'gamma_'] _bounds = [(0, None), (75.0001, None), (0, None)] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a numpy vector of times that will be passed in by the optimizer def _cumulative_hazard(self, params, times): a, b, c = params return a / (b - times) ** c three_f = ThreeParamInverseTimeHazardFitter() three_f.fit(T, E) three_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) ax = two_f.plot(ax=ax, ci_show=False) ax = three_f.plot(ax=ax) plt.legend() ###Output <lifelines.ThreeParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -649.378 hypothesis = alpha_ != 1, beta_ != 76, gamma_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 1588776.28 3775137.44 -5810357.13 8987909.70 0.67 0.57 beta_ 100.88 5.88 89.35 112.41 <0.005 15.38 gamma_ 3.83 0.50 2.85 4.81 <0.005 25.82 ###Markdown Our new asymptote is at $t\approx 100, \text{c.i.}=(87, 112)$. The model appears to fit the early times better than the previous models as well, however our $\alpha$ parameter has more uncertainty now. Continuing to add parameters isn't advisable, as we will overfit to the data. Why fit parametric models anyways? Taking a step back, we are fitting parameteric models and comparing them to the non-parametric Nelson-Aalen. Why not just always use the Nelson-Aalen model? 1) Sometimes we have scientific motivations to use a parametric model. That is, using domain knowledge, we may know the system has a parametric model and we wish to fit to that model. 2) In a parametric model, we are borrowing information from _all_ observations to determine the best parameters. To make this more clear, imagine take a single observation and changing it's value wildly. The fitted parameters would change as well. On the other hand, imagine doing the same for a non-parametric model. In this case, only the local survival function or hazard function would change. Because parametric models can borrow information from all observations, and there are much _fewer_ unknowns than a non-parametric model, parametric models are said to be more _statistical efficient._ 3) Extrapolation: non-parametric models are not easily extended to values outside the observed data. On the other hand, parametric models have no problem with this. However, extrapolation outside observed values is a very dangerous activity. ###Code fig, axs = plt.subplots(3, figsize=(7, 8), sharex=True) new_timeline = np.arange(0, 85) three_f = ThreeParamInverseTimeHazardFitter().fit(T, E, timeline=new_timeline) three_f.plot_hazard(label='hazard', ax=axs[0]).legend() three_f.plot_cumulative_hazard(label='cumulative hazard', ax=axs[1]).legend() three_f.plot_survival_function(label='survival function', ax=axs[2]).legend() fig.subplots_adjust(hspace=0) # Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() ###Output _____no_output_____ ###Markdown 3-parameter Weibull distributionWe can easily extend the built-in Weibull model (`lifelines.WeibullFitter`) to include a new _location_ parameter:$$ H(t) = \left(\frac{t - \theta}{\lambda}\right)^\rho $$(When $\theta = 0$, this is just the 2-parameter case again). In *lifelines* custom models, this looks like: ###Code import autograd.numpy as np from autograd.scipy.stats import norm # I'm shifting this to exaggerate the effect T = T + 10 class ThreeParameterWeibullFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_", "rho_", "theta_"] _bounds = [(0, None), (0, None), (0, T.min()-0.001)] def _cumulative_hazard(self, params, times): lambda_, rho_, theta_ = params return ((times - theta_) / lambda_) ** rho_ tpw = ThreeParameterWeibullFitter() tpw.fit(T, E) tpw.print_summary() ax = tpw.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output <lifelines.ThreeParameterWeibullFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -666.715 hypothesis = lambda_ != 1, rho_ != 1, theta_ != 7 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 63.92 5.38 53.38 74.47 <0.005 102.58 rho_ 4.20 0.56 3.11 5.29 <0.005 26.67 theta_ 2.55 5.05 -7.35 12.45 0.28 1.83 ###Markdown Inverse Gaussian distributionThe inverse Gaussian distribution is another popular model for survival analysis. Unlike other model, it's hazard does not asympotically converge to 0, allowing for a long tail of survival. Let's model this, using the same parameterization from [Wikipedia](https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution) ###Code from autograd.scipy.stats import norm class InverseGaussianFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['lambda_', 'mu_'] def _cumulative_density(self, params, times): mu_, lambda_ = params v = norm.cdf(np.sqrt(lambda_ / times) * (times / mu_ - 1), loc=0, scale=1) + \ np.exp(2 * lambda_ / mu_) * norm.cdf(-np.sqrt(lambda_ / times) * (times / mu_ + 1), loc=0, scale=1) return v def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) from lifelines.datasets import load_rossi rossi = load_rossi() igf = InverseGaussianFitter() igf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 500)) igf.print_summary() igf.plot_hazard() ###Output <lifelines.InverseGaussianFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -729.797 hypothesis = lambda_ != 1, mu_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 7441.43 9296.67 -10779.69 25662.56 0.42 1.24 mu_ 47.86 3.31 41.38 54.35 <0.005 148.83 ###Markdown Bounded lifetimes using the beta distributionMaybe your data is bounded between 0 and some (unknown) upperbound M? That is, lifetimes can't be more than M. Maybe you know M, maybe you don't. ###Code n = 100 T = 5 * np.random.random(n)**2 T_censor = 10 * np.random.random(n)**2 E = T < T_censor T_obs = np.minimum(T, T_censor) from autograd_gamma import betainc class BetaFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', "m_"] _bounds = [(0, None), (0, None), (T.max(), None)] def _cumulative_density(self, params, times): alpha_, beta_, m_ = params return betainc(alpha_, beta_, times / m_) def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) beta_fitter = BetaFitter().fit(T_obs, E) beta_fitter.plot() beta_fitter.print_summary() ###Output <lifelines.BetaFitter: fitted with 100 observations, 32 censored> number of subjects = 100 number of events = 68 log-likelihood = -93.912 hypothesis = alpha_ != 1, beta_ != 1, m_ != 5 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 0.52 0.07 0.39 0.65 <0.005 42.21 beta_ 0.92 0.08 0.76 1.09 0.36 1.48 m_ 4.86 nan nan nan nan nan ###Markdown Gompertz ###Code class GompertzFitter(ParametericUnivariateFitter): # this parameterization is slightly different than wikipedia. _fitted_parameter_names = ['nu_', 'b_'] def _cumulative_hazard(self, params, times): nu_, b_ = params return nu_ * (np.expm1(times / b_)) ggf = GompertzFitter() ggf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 120)) ggf.print_summary() ggf.plot_survival_function() ###Output <lifelines.GompertzFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -697.815 hypothesis = nu_ != 1, b_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) nu_ 0.20 0.11 -0.01 0.40 <0.005 45.19 b_ 55.19 19.26 17.45 92.93 <0.005 7.68 ###Markdown Piecewise exponential models and creating custom modelsThis section will be easier if we recall our three mathematical "creatures" and the relationships between them. First is the survival function, $S(t)$, that represents the probability of living past some time, $t$. Next is the _always non-negative and non-decreasing_ cumulative hazard function, $H(t)$. Its relation to $S(t)$ is:$$ S(t) = \exp\left(-H(t)\right)$$Finally, the hazard function, $h(t)$, is the derivative of the cumulative hazard: $$h(t) = \frac{dH(t)}{dt}$$which has the immediate relation to the survival function:$$S(t) = \exp\left(-\int_{0}^t h(s) ds\right)$$Notice that any of the three absolutely defines the other two. Some situations make it easier to define one vs the others. For example, in the Cox model, it's easist to work with the hazard, $h(t)$. In this section on parametric univariate models, it'll be easiest to work with the cumulative hazard. This is because of an asymmetry in math: derivatives are much easier to compute than integrals. So, if we define the cumulative hazard, both the hazard and survival function are much easier to reason about versus if we define the hazard and ask questions about the other two.First, let's revisit some simpler parametric models. The Exponential modelRecall that the Exponential model has a constant hazard, that is:$$ h(t) = \frac{1}{\lambda} $$which implies that the cumulative hazard, $H(t)$, has a pretty simple form: $H(t) = \frac{t}{\lambda}$. Below we fit this model to some survival data. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' from matplotlib import pyplot as plt import numpy as np import pandas as pd from lifelines.datasets import load_waltons waltons = load_waltons() T, E = waltons['T'], waltons['E'] from lifelines import ExponentialFitter fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) epf = ExponentialFitter().fit(T, E) epf.plot_hazard(ax=ax[0]) epf.plot_cumulative_hazard(ax=ax[1]) ax[0].set_title("hazard"); ax[1].set_title("cumulative_hazard") epf.print_summary(3) ###Output _____no_output_____ ###Markdown This model does a poor job of fitting to our data. If I fit a _non-parametric_ model, like the Nelson-Aalen model, to this data, the Exponential's lack of fit is very obvious. ###Code from lifelines import NelsonAalenFitter ax = epf.plot(figsize=(8,5)) naf = NelsonAalenFitter().fit(T, E) ax = naf.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown It should be clear that the single parameter model is just averaging the hazards over the entire time period. In reality though, the true hazard rate exhibits some complex non-linear behaviour. Piecewise Exponential modelsWhat if we could break out model into different time periods, and fit an exponential model to each of those? For example, we define the hazard as:$$ h(t) = \begin{cases} \lambda_0, & \text{if $t \le \tau_0$} \\ \lambda_1 & \text{if $\tau_0 < t \le \tau_1$} \\ \lambda_2 & \text{if $\tau_1 < t \le \tau_2$} \\ ... \end{cases}$$This model should be flexible enough to fit better to our dataset. The cumulative hazard is only slightly more complicated, but not too much and can still be defined in Python. In _lifelines_, univariate models are constructed such that one _only_ needs to define the cumulative hazard model with the parameters of interest, and all the hard work of fitting, creating confidence intervals, plotting, etc. is taken care. For example, _lifelines_ has implemented the `PiecewiseExponentialFitter` model. Internally, the code is a single function that defines the cumulative hazard. The user specifies where they believe the "breaks" are, and _lifelines_ estimates the best $\lambda_i$. ###Code from lifelines import PiecewiseExponentialFitter # looking at the above plot, I think there may be breaks at t=40 and t=60. pf = PiecewiseExponentialFitter(breakpoints=[40, 60]).fit(T, E) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ax = pf.plot(ax=axs[1]) pf.plot_hazard(ax=axs[0]) ax = naf.plot(ax=ax, ci_show=False) axs[0].set_title("hazard"); axs[1].set_title("cumulative_hazard") pf.print_summary(3) ###Output _____no_output_____ ###Markdown We can see a much better fit in this model. A quantitative measure of fit is to compare the log-likelihood between exponential model and the piecewise exponential model (higher is better). The log-likelihood went from -772 to -647, respectively. We could keep going and add more and more breakpoints, but that would end up overfitting to the data. Univarite models in _lifelines_I mentioned that the `PiecewiseExponentialFitter` was implemented using only its cumulative hazard function. This is not a lie. _lifelines_ has very general semantics for univariate fitters. For example, this is how the entire `ExponentialFitter` is implemented:```pythonclass ExponentialFitter(ParametricUnivariateFitter): _fitted_parameter_names = ["lambda_"] def _cumulative_hazard(self, params, times): lambda_ = params[0] return times / lambda_```We only need to specify the cumulative hazard function because of the 1:1:1 relationship between the cumulative hazard function and the survival function and the hazard rate. From there, _lifelines_ handles the rest. Defining our own survival modelsTo show off the flexability of _lifelines_ univariate models, we'll create a brand new, never before seen, survival model. Looking at the Nelson-Aalen fit, the cumulative hazard looks looks like their might be an asymptote at $t=80$. This may correspond to an absolute upper limit of subjects' lives. Let's start with that functional form.$$ H_1(t; \alpha) = \frac{\alpha}{(80 - t)} $$We subscript $1$ because we'll investigate other models. In a _lifelines_ univariate model, this is defined in the following code. **Important**: in order to compute derivatives, you must use the numpy imported from the `autograd` library. This is a thin wrapper around the original numpy. Note the `import autograd.numpy as np` below. ###Code from lifelines.fitters import ParametricUnivariateFitter import autograd.numpy as np class InverseTimeHazardFitter(ParametricUnivariateFitter): # we tell the model what we want the names of the unknown parameters to be _fitted_parameter_names = ['alpha_'] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a vector of times that will be passed in. def _cumulative_hazard(self, params, times): alpha = params[0] return alpha /(80 - times) itf = InverseTimeHazardFitter() itf.fit(T, E) itf.print_summary() ax = itf.plot(figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) plt.legend() ###Output _____no_output_____ ###Markdown The best fit of the model to the data is:$$H_1(t) = \frac{21.51}{80-t}$$Our choice of 80 as an asymptote was maybe mistaken, so let's allow the asymptote to be another parameter:$$ H_2(t; \alpha, \beta) = \frac{\alpha}{\beta-t} $$If we define the model this way, we need to add a bound to the values that $\beta$ can take. Obviously it can't be smaller than or equal to the maximum observed duration. Generally, the cumulative hazard _must be positive and non-decreasing_. Otherwise the model fit will hit convergence problems. ###Code class TwoParamInverseTimeHazardFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_'] # Sequence of (min, max) pairs for each element in x. None is used to specify no bound _bounds = [(0, None), (75.0001, None)] def _cumulative_hazard(self, params, times): alpha, beta = params return alpha / (beta - times) two_f = TwoParamInverseTimeHazardFitter() two_f.fit(T, E) two_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) two_f.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown From the output, we see that the value of 76.55 is the suggested asymptote, that is:$$H_2(t) = \frac{16.50} {76.55 - t}$$The curve also appears to track against the Nelson-Aalen model better too. Let's try one additional parameter, $\gamma$, some sort of measure of decay. $$H_3(t; \alpha, \beta, \gamma) = \frac{\alpha}{(\beta-t)^\gamma} $$ ###Code from lifelines.fitters import ParametricUnivariateFitter class ThreeParamInverseTimeHazardFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', 'gamma_'] _bounds = [(0, None), (75.0001, None), (0, None)] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a numpy vector of times that will be passed in by the optimizer def _cumulative_hazard(self, params, times): a, b, c = params return a / (b - times) ** c three_f = ThreeParamInverseTimeHazardFitter() three_f.fit(T, E) three_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) ax = two_f.plot(ax=ax, ci_show=False) ax = three_f.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown Our new asymptote is at $t\approx 100, \text{c.i.}=(87, 112)$. The model appears to fit the early times better than the previous models as well, however our $\alpha$ parameter has more uncertainty now. Continuing to add parameters isn't advisable, as we will overfit to the data. Why fit parametric models anyways? Taking a step back, we are fitting parametric models and comparing them to the non-parametric Nelson-Aalen. Why not just always use the Nelson-Aalen model? 1) Sometimes we have scientific motivations to use a parametric model. That is, using domain knowledge, we may know the system has a parametric model and we wish to fit to that model. 2) In a parametric model, we are borrowing information from _all_ observations to determine the best parameters. To make this more clear, imagine taking a single observation and changing it's value wildly. The fitted parameters would change as well. On the other hand, imagine doing the same for a non-parametric model. In this case, only the local survival function or hazard function would change. Because parametric models can borrow information from all observations, and there are much _fewer_ unknowns than a non-parametric model, parametric models are said to be more _statistically efficient._ 3) Extrapolation: non-parametric models are not easily extended to values outside the observed data. On the other hand, parametric models have no problem with this. However, extrapolation outside observed values is a very dangerous activity. ###Code fig, axs = plt.subplots(3, figsize=(7, 8), sharex=True) new_timeline = np.arange(0, 85) three_f = ThreeParamInverseTimeHazardFitter().fit(T, E, timeline=new_timeline) three_f.plot_hazard(label='hazard', ax=axs[0]).legend() three_f.plot_cumulative_hazard(label='cumulative hazard', ax=axs[1]).legend() three_f.plot_survival_function(label='survival function', ax=axs[2]).legend() fig.subplots_adjust(hspace=0) # Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() ###Output _____no_output_____ ###Markdown 3-parameter Weibull distributionWe can easily extend the built-in Weibull model (`lifelines.WeibullFitter`) to include a new _location_ parameter:$$ H(t) = \left(\frac{t - \theta}{\lambda}\right)^\rho $$(When $\theta = 0$, this is just the 2-parameter case again). In *lifelines* custom models, this looks like: ###Code import autograd.numpy as np from autograd.scipy.stats import norm # I'm shifting this to exaggerate the effect T_ = T + 10 class ThreeParameterWeibullFitter(ParametricUnivariateFitter): _fitted_parameter_names = ["lambda_", "rho_", "theta_"] _bounds = [(0, None), (0, None), (0, T.min()-0.001)] def _cumulative_hazard(self, params, times): lambda_, rho_, theta_ = params return ((times - theta_) / lambda_) ** rho_ tpw = ThreeParameterWeibullFitter() tpw.fit(T_, E) tpw.print_summary() ax = tpw.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T_, E).plot(ax=ax, ci_show=False) ###Output _____no_output_____ ###Markdown Inverse Gaussian distributionThe inverse Gaussian distribution is another popular model for survival analysis. Unlike other model, it's hazard does not asympotically converge to 0, allowing for a long tail of survival. Let's model this, using the same parameterization from [Wikipedia](https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution) ###Code from autograd.scipy.stats import norm class InverseGaussianFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['lambda_', 'mu_'] def _cumulative_density(self, params, times): mu_, lambda_ = params v = norm.cdf(np.sqrt(lambda_ / times) * (times / mu_ - 1), loc=0, scale=1) + \ np.exp(2 * lambda_ / mu_) * norm.cdf(-np.sqrt(lambda_ / times) * (times / mu_ + 1), loc=0, scale=1) return v def _cumulative_hazard(self, params, times): return -np.log(1-np.clip(self._cumulative_density(params, times), 1e-15, 1-1e-15)) igf = InverseGaussianFitter() igf.fit(T, E) igf.print_summary() ax = igf.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output _____no_output_____ ###Markdown Gompertz ###Code class GompertzFitter(ParametricUnivariateFitter): # this parameterization is slightly different than wikipedia. _fitted_parameter_names = ['nu_', 'b_'] def _cumulative_hazard(self, params, times): nu_, b_ = params return nu_ * (np.expm1(times * b_)) T, E = waltons['T'], waltons['E'] ggf = GompertzFitter() ggf.fit(T, E) ggf.print_summary() ax = ggf.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output _____no_output_____ ###Markdown APGWFrom the paper, "A Flexible Parametric Modelling Framework for Survival Analysis", https://arxiv.org/pdf/1901.03212.pdf ###Code class APGWFitter(ParametricUnivariateFitter): # this parameterization is slightly different than wikipedia. _fitted_parameter_names = ['kappa_', 'gamma_', 'phi_'] def _cumulative_hazard(self, params, t): kappa_, phi_, gamma_ = params return (kappa_ + 1) / kappa_ * ((1 + ((phi_ * t) ** gamma_) /(kappa_ + 1)) ** kappa_ -1) apg = APGWFitter() apg.fit(T, E) apg.print_summary(2) ax = apg.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output _____no_output_____ ###Markdown Bounded lifetimes using the beta distributionMaybe your data is bounded between 0 and some (unknown) upperbound M? That is, lifetimes can't be more than M. Maybe you know M, maybe you don't. ###Code n = 100 T = 5 * np.random.random(n)**2 T_censor = 10 * np.random.random(n)**2 E = T < T_censor T_obs = np.minimum(T, T_censor) from autograd_gamma import betainc class BetaFitter(ParametricUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', "m_"] _bounds = [(0, None), (0, None), (T.max(), None)] def _cumulative_density(self, params, times): alpha_, beta_, m_ = params return betainc(alpha_, beta_, times / m_) def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) beta_fitter = BetaFitter().fit(T_obs, E) beta_fitter.plot() beta_fitter.print_summary() ###Output /Users/camerondavidson-pilon/code/lifelines/lifelines/fitters/__init__.py:936: StatisticalWarning: The diagonal of the variance_matrix_ has negative values. This could be a problem with BetaFitter's fit to the data. It's advisable to not trust the variances reported, and to be suspicious of the fitted parameters too. Perform plots of the cumulative hazard to help understand the latter's bias. To fix this, try specifying an `initial_point` kwarg in `fit`. warnings.warn(warning_text, utils.StatisticalWarning) /Users/camerondavidson-pilon/code/lifelines/lifelines/fitters/__init__.py:460: RuntimeWarning: invalid value encountered in sqrt np.einsum("nj,jk,nk->n", gradient_at_times.T, self.variance_matrix_, gradient_at_times.T) ###Markdown Piecewise Exponential models and creating custom modelsThis section will be easier if we recall our three mathematical "creatures" and the relationships between them. First is the survival function, $S(t)$, that represents the probability of living past some time, $t$. Next is the _always non-negative and non-dereasing_ cumulative hazard function, $H(t)$. Its relation to $S(t)$ is:$$ S(t) = \exp\left(-H(t)\right)$$Finally, the hazard function, $h(t)$, is the derivative of the cumulative hazard: $$h(t) = \frac{dH(t)}{dt}$$which has the immediate relation to the survival function:$$S(t) = \exp\left(-\int_{0}^t h(s) ds\right)$$Notice that any of the three absolutely defines the other two. Some situations make it easier to define one vs the others. For example, in the Cox model, it's easist to work with the hazard, $h(t)$. In this section on parametric univariate models, it'll be easiest to work with the cumulative hazard. This is because of an asymmetry in math: derivatives are much easier to compute that integrals. So, if we define the cumulative hazard, both the hazard and survival function are much easier to reason about vs if we define the hazard and ask questions about the other two. At first, it may be easier to think about the hazard, and that's fine, but so long as we are clever enough to also determine the cumulative hazard, then we can ride the computational train. This will be clear by the end of the tutorial. First, let's revisit some simplier parametric models. The Exponential modelRecall that the Exponential model has a constant hazard, that is:$$ h(t) = \frac{1}{\lambda} $$which implies that the cumulative hazard, $H(t)$, has a pretty simple form: $H(t) = \frac{t}{\lambda}$. Below we fit this model to some survival data. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' from matplotlib import pyplot as plt import numpy as np import pandas as pd from lifelines.datasets import load_waltons waltons = load_waltons() T, E = waltons['T'], waltons['E'] from lifelines import ExponentialFitter fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) epf = ExponentialFitter().fit(T, E) epf.plot_hazard(ax=ax[0]) epf.plot_cumulative_hazard(ax=ax[1]) ax[0].set_title("hazard"); ax[1].set_title("cumulative_hazard") epf.print_summary(3) ###Output <lifelines.ExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -771.913 hypothesis = lambda_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 51.831 4.149 43.699 59.963 <0.0005 112.218 ###Markdown This model does a poor job of fitting to our data. If I fit a _non-parametric_ model, like the Nelson-Aalen model, to this data, the lack of fit is very obvious. ###Code from lifelines import NelsonAalenFitter ax = epf.plot(figsize=(8,5)) naf = NelsonAalenFitter().fit(T, E) ax = naf.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown It should be clear that the single parameter model is just averaging the hazards over the entire time period. In reality though, the true hazard rate exhibits some complex non-linear behaviour. Piecewise Exponential modelsWhat if we could break out model into different time periods, and fit an exponential model to each of those? For example, we define the hazard as:$$ h(t) = \begin{cases} \lambda_0, & \text{if $t \le \tau_0$} \\ \lambda_1 & \text{if $\tau_0 < t \le \tau_1$} \\ \lambda_2 & \text{if $\tau_1 < t \le \tau_2$} \\ ... \end{cases}$$This model should be flexible enough to fit better to our dataset. The cumulative hazard is only slightly more complicated, but not too much and can still be defined in Python. In _lifelines_, univariate models are constructed such that one _only_ needs to define the cumulative hazard model with the parameters of interest, and all the hard work of fitting, creating confidence intervals, plotting, etc. is taken care. For example, _lifelines_ has implemented the `PiecewiseExponentialFitter` model. Internally, the code is a single function that defines the cumulative hazard. The user specifies where they believe the "breaks" are, and _lifelines_ estimates the best $\lambda_i$. ###Code from lifelines import PiecewiseExponentialFitter # looking at the above plot, I think there may be breaks at t=40 and t=60. pf = PiecewiseExponentialFitter(breakpoints=[40, 60]).fit(T, E) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ax = pf.plot(ax=axs[1]) pf.plot_hazard(ax=axs[0]) ax = naf.plot(ax=ax, ci_show=False) axs[0].set_title("hazard"); axs[1].set_title("cumulative_hazard") pf.print_summary(3) ###Output <lifelines.PiecewiseExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -647.118 hypothesis = lambda_0_ != 1, lambda_1_ != 1, lambda_2_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_0_ 162.989 27.144 109.787 216.191 <0.0005 28.630 lambda_1_ 31.366 4.043 23.442 39.290 <0.0005 43.957 lambda_2_ 4.686 0.624 3.462 5.910 <0.0005 28.055 ###Markdown We can see a much better fit in this model. A quantitative measure of better fit is to compare the log-likelihood mthe exponential model and the piecewise exponential model (higher is better). The log-likelihood went from -772 to -647, respectively. We could keep going and add more and more breakpoints, but that would end up overfitting to the data. Univarite models in _lifelines_I mentioned that the `PiecewiseExponentialFitter` was implemented using only its cumulative hazard function. This is not a lie. _lifelines_ has very general semantics for univariate fitters. For example, this is how the entire `ExponentialFitter` is implemented:```pythonclass ExponentialFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_"] def _cumulative_hazard(self, params, times): lambda_ = params[0] return lambda_ * times```We only need to specify the cumulative hazard function because of the 1-1 relationship between the cumulative hazard function and the survival function and the hazard rate. From there, _lifelines_ handles the rest. Defining our own survival modelsTo show off the flexability of _lifelines_ univariate models, we'll create a brand new, never before seen, survival model. Looking at the Nelson-Aalen fit, the cumulative hazard looks looks like their might be an asymptote at $t=80$. This may correspond to an absolute upper limit of subjects' lives. Let's start with that functional form.$$ H_1(t; \alpha) = \frac{\alpha}{(80 - t)} $$We subscript $1$ because we'll investigate other models. In a _lifelines_ univariate model, this is defined in the following code. **Important**: in order to compute derivatives, you must use the numpy imported from the `autograd` library. This is a thin wrapper around the original numpy. Note the `import autograd.numpy as np` below. ###Code from lifelines.fitters import ParametericUnivariateFitter import autograd.numpy as np class InverseTimeHazardFitter(ParametericUnivariateFitter): # we tell the model what we want the names of the unknown parameters to be _fitted_parameter_names = ['alpha_'] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: avector of times that will be passed in. def _cumulative_hazard(self, params, times): alpha = params[0] return alpha /(80 - times) itf = InverseTimeHazardFitter() itf.fit(T, E) itf.print_summary() ax = itf.plot(figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) plt.legend() ###Output <lifelines.InverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -697.84 hypothesis = alpha_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 21.51 1.72 18.13 24.88 <0.005 106.22 ###Markdown The best fit of the model to the data is:$$H_1(t) = \frac{21.51}{80-t}$$Our choice of 80 as an asymptote was maybe mistaken, so let's allow the asymptote to be another parameter:$$ H_2(t; \alpha, \beta) = \frac{\alpha}{\beta-t} $$If we define the model this way, we need to add a bound to the values that $\beta$ can take. Obviously it can't be smaller than or equal to the maximum observed duration. Generally, the cumulative hazard _must be positive and non-decreasing_. Otherwise the model fit will hit convergence problems. ###Code class TwoParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_'] # Sequence of (min, max) pairs for each element in x. None is used to specify no bound _bounds = [(0, None), (75.0001, None)] def _cumulative_hazard(self, params, times): alpha, beta = params return alpha / (beta - times) two_f = TwoParamInverseTimeHazardFitter() two_f.fit(T, E) two_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) two_f.plot(ax=ax) plt.legend() ###Output <lifelines.TwoParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -685.57 hypothesis = alpha_ != 1, beta_ != 76.0001 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 16.50 1.51 13.55 19.46 <0.005 79.98 beta_ 76.55 0.38 75.80 77.30 0.15 2.73 ###Markdown From the output, we see that the value of 76.55 is the suggested asymptote, that is:$$H_2(t) = \frac{16.50} {76.55 - t}$$The curve also appears to track against the Nelson-Aalen model better too. Let's try one additional parameter, $\gamma$, some sort of measure of decay. $$H_3(t; \alpha, \beta, \gamma) = \frac{\alpha}{(\beta-t)^\gamma} $$ ###Code from lifelines.fitters import ParametericUnivariateFitter class ThreeParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', 'gamma_'] _bounds = [(0, None), (75.0001, None), (0, None)] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a numpy vector of times that will be passed in by the optimizer def _cumulative_hazard(self, params, times): a, b, c = params return a / (b - times) ** c three_f = ThreeParamInverseTimeHazardFitter() three_f.fit(T, E) three_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) ax = two_f.plot(ax=ax, ci_show=False) ax = three_f.plot(ax=ax) plt.legend() ###Output <lifelines.ThreeParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -649.38 hypothesis = alpha_ != 1, beta_ != 76.0001, gamma_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 1588776.28 3775137.44 -5810357.13 8987909.70 0.67 0.57 beta_ 100.88 5.88 89.35 112.41 <0.005 15.38 gamma_ 3.83 0.50 2.85 4.81 <0.005 25.82 ###Markdown Our new asymptote is at $t\approx 100, \text{c.i.}=(87, 112)$. The model appears to fit the early times better than the previous models as well, however our $\alpha$ parameter has more uncertainty now. Continuing to add parameters isn't advisable, as we will overfit to the data. Why fit parametric models anyways?Taking a step back, we are fitting parameteric models and comparing them to the non-parametric Nelson-Aalen. Why not just always use the Nelson-Aalen model? 1) Sometimes we have scientific motivations to use a parametric model. That is, using domain knowledge, we may know the system has a parametric model and we wish to fit to that model. 2) In a parametric model, we are borrowing information from _all_ observations to determine the best parameters. To make this more clear, imagine take a single observation and changing it's value wildly. The fitted parameters would change as well. On the other hand, imagine doing the same for a non-parametric model. In this case, only the local survival function or hazard function would change. Because parametric models can borrow information from all observations, and there are much _fewer_ unknowns than a non-parametric model, parametric models are said to be more _statistical efficient._ 3) Extrapolation: non-parametric models are not easily extended to values outside the observed data. On the other hand, parametric models have no problem with this. However, extrapolation outside observed values is a very dangerous activity. ###Code fig, axs = plt.subplots(3, figsize=(7, 8), sharex=True) new_timeline = np.arange(0, 85) three_f = ThreeParamInverseTimeHazardFitter().fit(T, E, timeline=new_timeline) three_f.plot_hazard(label='hazard', ax=axs[0]).legend() three_f.plot_cumulative_hazard(label='cumulative hazard', ax=axs[1]).legend() three_f.plot_survival_function(label='survival function', ax=axs[2]).legend() fig.subplots_adjust(hspace=0) # Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() ###Output _____no_output_____ ###Markdown 3-parameter Weibull distributionWe can easily extend the built-in Weibull model (`lifelines.WeibullFitter`) to include a new _location_ parameter:$$ H(t) = \left(\frac{t - \theta}{\lambda}\right)^\rho $$(When $\theta = 0$, this is just the 2-parameter case again). In *lifelines* custom models, this looks like: ###Code import autograd.numpy as np from autograd.scipy.stats import norm # I'm shifting this to exaggerate the effect T = T + 10 class ThreeParameterWeibullFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_", "rho_", "theta_"] _bounds = [(0, None), (0, None), (0, T.min()-0.001)] def _cumulative_hazard(self, params, times): lambda_, rho_, theta_ = params return ((times - theta_) / lambda_) ** rho_ tpw = ThreeParameterWeibullFitter() tpw.fit(T, E) tpw.print_summary() ax = tpw.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output <lifelines.ThreeParameterWeibullFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -666.71 hypothesis = lambda_ != 1, rho_ != 1, theta_ != 7.9995 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 63.92 5.38 53.38 74.47 <0.005 102.58 rho_ 4.20 0.56 3.11 5.29 <0.005 26.67 theta_ 2.55 5.05 -7.35 12.45 0.28 1.83 ###Markdown Inverse Gaussian distributionThe inverse Gaussian distribution is another popular model for survival analysis. Unlike other model, it's hazard does not asympotically converge to 0, allowing for a long tail of survival. Let's model this, using the same parameterization from [Wikipedia](https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution) ###Code from autograd.scipy.stats import norm class InverseGaussianFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['lambda_', 'mu_'] def _cumulative_density(self, params, times): mu_, lambda_ = params v = norm.cdf(np.sqrt(lambda_ / times) * (times / mu_ - 1), loc=0, scale=1) + \ np.exp(2 * lambda_ / mu_) * norm.cdf(-np.sqrt(lambda_ / times) * (times / mu_ + 1), loc=0, scale=1) return v def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) from lifelines.datasets import load_rossi rossi = load_rossi() igf = InverseGaussianFitter() igf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 500)) igf.print_summary() igf.plot_hazard() ###Output <lifelines.InverseGaussianFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -729.80 hypothesis = lambda_ != 1, mu_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 7441.43 9296.67 -10779.69 25662.56 0.42 1.24 mu_ 47.86 3.31 41.38 54.35 <0.005 148.83 ###Markdown Bounded lifetimes using the beta distributionMaybe your data is bounded between 0 and some (unknown) upperbound M? That is, lifetimes can't be more than M. Maybe you know M, maybe you don't. ###Code n = 100 T = 5 * np.random.random(n)**2 T_censor = 10 * np.random.random(n)**2 E = T < T_censor T_obs = np.minimum(T, T_censor) from autograd_gamma import betainc class BetaFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', "m_"] _bounds = [(0, None), (0, None), (T.max(), None)] def _cumulative_density(self, params, times): alpha_, beta_, m_ = params return betainc(alpha_, beta_, times / m_) def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) beta_fitter = BetaFitter().fit(T_obs, E) beta_fitter.plot() beta_fitter.print_summary() ###Output <lifelines.BetaFitter: fitted with 100 observations, 35 censored> number of subjects = 100 number of events = 65 log-likelihood = -93.20 hypothesis = alpha_ != 1, beta_ != 1, m_ != 5.99827 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 0.59 0.10 0.40 0.78 <0.005 15.06 beta_ 1.27 0.45 0.38 2.15 0.56 0.85 m_ 5.09 0.33 4.45 5.74 0.01 7.37 ###Markdown Gompertz ###Code class GompertzFitter(ParametericUnivariateFitter): # this parameterization is slightly different than wikipedia. _fitted_parameter_names = ['nu_', 'b_'] def _cumulative_hazard(self, params, times): nu_, b_ = params return nu_ * (np.expm1(times / b_)) ggf = GompertzFitter() ggf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 120)) ggf.print_summary() ggf.plot_survival_function() ###Output <lifelines.GompertzFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -697.81 hypothesis = nu_ != 1, b_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) nu_ 0.20 0.11 -0.01 0.40 <0.005 45.19 b_ 55.19 19.26 17.45 92.93 <0.005 7.68 ###Markdown Piecewise exponential models and creating custom modelsThis section will be easier if we recall our three mathematical "creatures" and the relationships between them. First is the survival function, $S(t)$, that represents the probability of living past some time, $t$. Next is the _always non-negative and non-decreasing_ cumulative hazard function, $H(t)$. Its relation to $S(t)$ is:$$ S(t) = \exp\left(-H(t)\right)$$Finally, the hazard function, $h(t)$, is the derivative of the cumulative hazard: $$h(t) = \frac{dH(t)}{dt}$$which has the immediate relation to the survival function:$$S(t) = \exp\left(-\int_{0}^t h(s) ds\right)$$Notice that any of the three absolutely defines the other two. Some situations make it easier to define one vs the others. For example, in the Cox model, it's easist to work with the hazard, $h(t)$. In this section on parametric univariate models, it'll be easiest to work with the cumulative hazard. This is because of an asymmetry in math: derivatives are much easier to compute than integrals. So, if we define the cumulative hazard, both the hazard and survival function are much easier to reason about versus if we define the hazard and ask questions about the other two.First, let's revisit some simpler parametric models. The Exponential modelRecall that the Exponential model has a constant hazard, that is:$$ h(t) = \frac{1}{\lambda} $$which implies that the cumulative hazard, $H(t)$, has a pretty simple form: $H(t) = \frac{t}{\lambda}$. Below we fit this model to some survival data. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' from matplotlib import pyplot as plt import numpy as np import pandas as pd from lifelines.datasets import load_waltons waltons = load_waltons() T, E = waltons['T'], waltons['E'] from lifelines import ExponentialFitter fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) epf = ExponentialFitter().fit(T, E) epf.plot_hazard(ax=ax[0]) epf.plot_cumulative_hazard(ax=ax[1]) ax[0].set_title("hazard"); ax[1].set_title("cumulative_hazard") epf.print_summary(3) ###Output <lifelines.ExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -771.913 hypothesis = lambda_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 51.831 4.149 43.699 59.963 <0.0005 112.218 ###Markdown This model does a poor job of fitting to our data. If I fit a _non-parametric_ model, like the Nelson-Aalen model, to this data, the Exponential's lack of fit is very obvious. ###Code from lifelines import NelsonAalenFitter ax = epf.plot(figsize=(8,5)) naf = NelsonAalenFitter().fit(T, E) ax = naf.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown It should be clear that the single parameter model is just averaging the hazards over the entire time period. In reality though, the true hazard rate exhibits some complex non-linear behaviour. Piecewise Exponential modelsWhat if we could break out model into different time periods, and fit an exponential model to each of those? For example, we define the hazard as:$$ h(t) = \begin{cases} \lambda_0, & \text{if $t \le \tau_0$} \\ \lambda_1 & \text{if $\tau_0 < t \le \tau_1$} \\ \lambda_2 & \text{if $\tau_1 < t \le \tau_2$} \\ ... \end{cases}$$This model should be flexible enough to fit better to our dataset. The cumulative hazard is only slightly more complicated, but not too much and can still be defined in Python. In _lifelines_, univariate models are constructed such that one _only_ needs to define the cumulative hazard model with the parameters of interest, and all the hard work of fitting, creating confidence intervals, plotting, etc. is taken care. For example, _lifelines_ has implemented the `PiecewiseExponentialFitter` model. Internally, the code is a single function that defines the cumulative hazard. The user specifies where they believe the "breaks" are, and _lifelines_ estimates the best $\lambda_i$. ###Code from lifelines import PiecewiseExponentialFitter # looking at the above plot, I think there may be breaks at t=40 and t=60. pf = PiecewiseExponentialFitter(breakpoints=[40, 60]).fit(T, E) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ax = pf.plot(ax=axs[1]) pf.plot_hazard(ax=axs[0]) ax = naf.plot(ax=ax, ci_show=False) axs[0].set_title("hazard"); axs[1].set_title("cumulative_hazard") pf.print_summary(3) ###Output <lifelines.PiecewiseExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -647.118 hypothesis = lambda_0_ != 1, lambda_1_ != 1, lambda_2_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_0_ 162.989 27.144 109.787 216.191 <0.0005 28.630 lambda_1_ 31.366 4.043 23.442 39.290 <0.0005 43.957 lambda_2_ 4.686 0.624 3.462 5.910 <0.0005 28.055 ###Markdown We can see a much better fit in this model. A quantitative measure of fit is to compare the log-likelihood between exponential model and the piecewise exponential model (higher is better). The log-likelihood went from -772 to -647, respectively. We could keep going and add more and more breakpoints, but that would end up overfitting to the data. Univarite models in _lifelines_I mentioned that the `PiecewiseExponentialFitter` was implemented using only its cumulative hazard function. This is not a lie. _lifelines_ has very general semantics for univariate fitters. For example, this is how the entire `ExponentialFitter` is implemented:```pythonclass ExponentialFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_"] def _cumulative_hazard(self, params, times): lambda_ = params[0] return times / lambda_```We only need to specify the cumulative hazard function because of the 1:1:1 relationship between the cumulative hazard function and the survival function and the hazard rate. From there, _lifelines_ handles the rest. Defining our own survival modelsTo show off the flexability of _lifelines_ univariate models, we'll create a brand new, never before seen, survival model. Looking at the Nelson-Aalen fit, the cumulative hazard looks looks like their might be an asymptote at $t=80$. This may correspond to an absolute upper limit of subjects' lives. Let's start with that functional form.$$ H_1(t; \alpha) = \frac{\alpha}{(80 - t)} $$We subscript $1$ because we'll investigate other models. In a _lifelines_ univariate model, this is defined in the following code. **Important**: in order to compute derivatives, you must use the numpy imported from the `autograd` library. This is a thin wrapper around the original numpy. Note the `import autograd.numpy as np` below. ###Code from lifelines.fitters import ParametericUnivariateFitter import autograd.numpy as np class InverseTimeHazardFitter(ParametericUnivariateFitter): # we tell the model what we want the names of the unknown parameters to be _fitted_parameter_names = ['alpha_'] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a vector of times that will be passed in. def _cumulative_hazard(self, params, times): alpha = params[0] return alpha /(80 - times) itf = InverseTimeHazardFitter() itf.fit(T, E) itf.print_summary() ax = itf.plot(figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) plt.legend() ###Output <lifelines.InverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -697.84 hypothesis = alpha_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 21.51 1.72 18.13 24.88 <0.005 106.22 ###Markdown The best fit of the model to the data is:$$H_1(t) = \frac{21.51}{80-t}$$Our choice of 80 as an asymptote was maybe mistaken, so let's allow the asymptote to be another parameter:$$ H_2(t; \alpha, \beta) = \frac{\alpha}{\beta-t} $$If we define the model this way, we need to add a bound to the values that $\beta$ can take. Obviously it can't be smaller than or equal to the maximum observed duration. Generally, the cumulative hazard _must be positive and non-decreasing_. Otherwise the model fit will hit convergence problems. ###Code class TwoParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_'] # Sequence of (min, max) pairs for each element in x. None is used to specify no bound _bounds = [(0, None), (75.0001, None)] def _cumulative_hazard(self, params, times): alpha, beta = params return alpha / (beta - times) two_f = TwoParamInverseTimeHazardFitter() two_f.fit(T, E) two_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) two_f.plot(ax=ax) plt.legend() ###Output <lifelines.TwoParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -685.57 hypothesis = alpha_ != 1, beta_ != 76.0001 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 16.50 1.51 13.55 19.46 <0.005 79.98 beta_ 76.55 0.38 75.80 77.30 0.15 2.73 ###Markdown From the output, we see that the value of 76.55 is the suggested asymptote, that is:$$H_2(t) = \frac{16.50} {76.55 - t}$$The curve also appears to track against the Nelson-Aalen model better too. Let's try one additional parameter, $\gamma$, some sort of measure of decay. $$H_3(t; \alpha, \beta, \gamma) = \frac{\alpha}{(\beta-t)^\gamma} $$ ###Code from lifelines.fitters import ParametericUnivariateFitter class ThreeParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', 'gamma_'] _bounds = [(0, None), (75.0001, None), (0, None)] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a numpy vector of times that will be passed in by the optimizer def _cumulative_hazard(self, params, times): a, b, c = params return a / (b - times) ** c three_f = ThreeParamInverseTimeHazardFitter() three_f.fit(T, E) three_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) ax = two_f.plot(ax=ax, ci_show=False) ax = three_f.plot(ax=ax) plt.legend() ###Output <lifelines.ThreeParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -649.38 hypothesis = alpha_ != 1, beta_ != 76.0001, gamma_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 1588776.28 3775137.44 -5810357.13 8987909.70 0.67 0.57 beta_ 100.88 5.88 89.35 112.41 <0.005 15.38 gamma_ 3.83 0.50 2.85 4.81 <0.005 25.82 ###Markdown Our new asymptote is at $t\approx 100, \text{c.i.}=(87, 112)$. The model appears to fit the early times better than the previous models as well, however our $\alpha$ parameter has more uncertainty now. Continuing to add parameters isn't advisable, as we will overfit to the data. Why fit parametric models anyways? Taking a step back, we are fitting parameteric models and comparing them to the non-parametric Nelson-Aalen. Why not just always use the Nelson-Aalen model? 1) Sometimes we have scientific motivations to use a parametric model. That is, using domain knowledge, we may know the system has a parametric model and we wish to fit to that model. 2) In a parametric model, we are borrowing information from _all_ observations to determine the best parameters. To make this more clear, imagine take a single observation and changing it's value wildly. The fitted parameters would change as well. On the other hand, imagine doing the same for a non-parametric model. In this case, only the local survival function or hazard function would change. Because parametric models can borrow information from all observations, and there are much _fewer_ unknowns than a non-parametric model, parametric models are said to be more _statistical efficient._ 3) Extrapolation: non-parametric models are not easily extended to values outside the observed data. On the other hand, parametric models have no problem with this. However, extrapolation outside observed values is a very dangerous activity. ###Code fig, axs = plt.subplots(3, figsize=(7, 8), sharex=True) new_timeline = np.arange(0, 85) three_f = ThreeParamInverseTimeHazardFitter().fit(T, E, timeline=new_timeline) three_f.plot_hazard(label='hazard', ax=axs[0]).legend() three_f.plot_cumulative_hazard(label='cumulative hazard', ax=axs[1]).legend() three_f.plot_survival_function(label='survival function', ax=axs[2]).legend() fig.subplots_adjust(hspace=0) # Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() ###Output _____no_output_____ ###Markdown 3-parameter Weibull distributionWe can easily extend the built-in Weibull model (`lifelines.WeibullFitter`) to include a new _location_ parameter:$$ H(t) = \left(\frac{t - \theta}{\lambda}\right)^\rho $$(When $\theta = 0$, this is just the 2-parameter case again). In *lifelines* custom models, this looks like: ###Code import autograd.numpy as np from autograd.scipy.stats import norm # I'm shifting this to exaggerate the effect T = T + 10 class ThreeParameterWeibullFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_", "rho_", "theta_"] _bounds = [(0, None), (0, None), (0, T.min()-0.001)] def _cumulative_hazard(self, params, times): lambda_, rho_, theta_ = params return ((times - theta_) / lambda_) ** rho_ tpw = ThreeParameterWeibullFitter() tpw.fit(T, E) tpw.print_summary() ax = tpw.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output <lifelines.ThreeParameterWeibullFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -666.71 hypothesis = lambda_ != 1, rho_ != 1, theta_ != 7.9995 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 63.92 5.38 53.38 74.47 <0.005 102.58 rho_ 4.20 0.56 3.11 5.29 <0.005 26.67 theta_ 2.55 5.05 -7.35 12.45 0.28 1.83 ###Markdown Inverse Gaussian distributionThe inverse Gaussian distribution is another popular model for survival analysis. Unlike other model, it's hazard does not asympotically converge to 0, allowing for a long tail of survival. Let's model this, using the same parameterization from [Wikipedia](https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution) ###Code from autograd.scipy.stats import norm class InverseGaussianFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['lambda_', 'mu_'] def _cumulative_density(self, params, times): mu_, lambda_ = params v = norm.cdf(np.sqrt(lambda_ / times) * (times / mu_ - 1), loc=0, scale=1) + \ np.exp(2 * lambda_ / mu_) * norm.cdf(-np.sqrt(lambda_ / times) * (times / mu_ + 1), loc=0, scale=1) return v def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) from lifelines.datasets import load_rossi rossi = load_rossi() igf = InverseGaussianFitter() igf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 500)) igf.print_summary() igf.plot_hazard() ###Output <lifelines.InverseGaussianFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -729.80 hypothesis = lambda_ != 1, mu_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 7441.43 9296.67 -10779.69 25662.56 0.42 1.24 mu_ 47.86 3.31 41.38 54.35 <0.005 148.83 ###Markdown Bounded lifetimes using the beta distributionMaybe your data is bounded between 0 and some (unknown) upperbound M? That is, lifetimes can't be more than M. Maybe you know M, maybe you don't. ###Code n = 100 T = 5 * np.random.random(n)**2 T_censor = 10 * np.random.random(n)**2 E = T < T_censor T_obs = np.minimum(T, T_censor) from autograd_gamma import betainc class BetaFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', "m_"] _bounds = [(0, None), (0, None), (T.max(), None)] def _cumulative_density(self, params, times): alpha_, beta_, m_ = params return betainc(alpha_, beta_, times / m_) def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) beta_fitter = BetaFitter().fit(T_obs, E) beta_fitter.plot() beta_fitter.print_summary() ###Output <lifelines.BetaFitter: fitted with 100 observations, 35 censored> number of subjects = 100 number of events = 65 log-likelihood = -93.20 hypothesis = alpha_ != 1, beta_ != 1, m_ != 5.99827 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 0.59 0.10 0.40 0.78 <0.005 15.06 beta_ 1.27 0.45 0.38 2.15 0.56 0.85 m_ 5.09 0.33 4.45 5.74 0.01 7.37 ###Markdown Gompertz ###Code class GompertzFitter(ParametericUnivariateFitter): # this parameterization is slightly different than wikipedia. _fitted_parameter_names = ['nu_', 'b_'] def _cumulative_hazard(self, params, times): nu_, b_ = params return nu_ * (np.expm1(times / b_)) ggf = GompertzFitter() ggf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 120)) ggf.print_summary() ggf.plot_survival_function() ###Output <lifelines.GompertzFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -697.81 hypothesis = nu_ != 1, b_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) nu_ 0.20 0.11 -0.01 0.40 <0.005 45.19 b_ 55.19 19.26 17.45 92.93 <0.005 7.68 ###Markdown Piecewise Exponential models and creating custom modelsThis section will be easier if we recall our three mathematical "creatures" and the relationships between them. First is the survival function, $S(t)$, that represents the probability of living past some time, $t$. Next is the _always non-negative and non-dereasing_ cumulative hazard function, $H(t)$. Its relation to $S(t)$ is:$$ S(t) = \exp\left(-H(t)\right)$$Finally, the hazard function, $h(t)$, is the derivative of the cumulative hazard: $$h(t) = \frac{dH(t)}{dt}$$which has the immediate relation to the survival function:$$S(t) = \exp\left(-\int_{0}^t h(s) ds\right)$$Notice that any of the three absolutely defines the other two. Some situations make it easier to define one vs the others. For example, in the Cox model, it's easist to work with the hazard, $h(t)$. In this section on parametric univariate models, it'll be easiest to work with the cumulative hazard. This is because of an asymmetry in math: derivatives are much easier to compute that integrals. So, if we define the cumulative hazard, both the hazard and survival function are much easier to reason about vs if we define the hazard and ask questions about the other two. At first, it may be easier to think about the hazard, and that's fine, but so long as we are clever enough to also determine the cumulative hazard, then we can ride the computational train. This will be clear by the end of the tutorial. First, let's revisit some simplier parametric models. The Exponential modelRecall that the Exponential model has a constant hazard, that is:$$ h(t) = \frac{1}{\lambda} $$which implies that the cumulative hazard, $H(t)$, has a pretty simple form: $H(t) = \frac{t}{\lambda}$. Below we fit this model to some survival data. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' from matplotlib import pyplot as plt import numpy as np import pandas as pd from lifelines.datasets import load_waltons waltons = load_waltons() T, E = waltons['T'], waltons['E'] from lifelines import ExponentialFitter fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) epf = ExponentialFitter().fit(T, E) epf.plot_hazard(ax=ax[0]) epf.plot_cumulative_hazard(ax=ax[1]) ax[0].set_title("hazard"); ax[1].set_title("cumulative_hazard") epf.print_summary(3) ###Output <lifelines.ExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -771.913 hypothesis = lambda_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 51.831 4.149 43.699 59.963 <0.0005 112.218 ###Markdown This model does a poor job of fitting to our data. If I fit a _non-parametric_ model, like the Nelson-Aalen model, to this data, the lack of fit is very obvious. ###Code from lifelines import NelsonAalenFitter ax = epf.plot(figsize=(8,5)) naf = NelsonAalenFitter().fit(T, E) ax = naf.plot(ax=ax) plt.legend() ###Output _____no_output_____ ###Markdown It should be clear that the single parameter model is just averaging the hazards over the entire time period. In reality though, the true hazard rate exhibits some complex non-linear behaviour. Piecewise Exponential modelsWhat if we could break out model into different time periods, and fit an exponential model to each of those? For example, we define the hazard as:$$ h(t) = \begin{cases} \lambda_0, & \text{if $t \le \tau_0$} \\ \lambda_1 & \text{if $\tau_0 < t \le \tau_1$} \\ \lambda_2 & \text{if $\tau_1 < t \le \tau_2$} \\ ... \end{cases}$$This model should be flexible enough to fit better to our dataset. The cumulative hazard is only slightly more complicated, but not too much and can still be defined in Python. In _lifelines_, univariate models are constructed such that one _only_ needs to define the cumulative hazard model with the parameters of interest, and all the hard work of fitting, creating confidence intervals, plotting, etc. is taken care. For example, _lifelines_ has implemented the `PiecewiseExponentialFitter` model. Internally, the code is a single function that defines the cumulative hazard. The user specifies where they believe the "breaks" are, and _lifelines_ estimates the best $\lambda_i$. ###Code from lifelines import PiecewiseExponentialFitter # looking at the above plot, I think there may be breaks at t=40 and t=60. pf = PiecewiseExponentialFitter(breakpoints=[40, 60]).fit(T, E) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) ax = pf.plot(ax=axs[1]) pf.plot_hazard(ax=axs[0]) ax = naf.plot(ax=ax, ci_show=False) axs[0].set_title("hazard"); axs[1].set_title("cumulative_hazard") pf.print_summary(3) ###Output <lifelines.PiecewiseExponentialFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -647.118 hypothesis = lambda_0_ != 1, lambda_1_ != 1, lambda_2_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_0_ 162.989 27.144 109.787 216.191 <0.0005 28.630 lambda_1_ 31.366 4.043 23.442 39.290 <0.0005 43.957 lambda_2_ 4.686 0.624 3.462 5.910 <0.0005 28.055 ###Markdown We can see a much better fit in this model. A quantitative measure of better fit is to compare the log-likelihood mthe exponential model and the piecewise exponential model (higher is better). The log-likelihood went from -772 to -647, respectively. We could keep going and add more and more breakpoints, but that would end up overfitting to the data. Univarite models in _lifelines_I mentioned that the `PiecewiseExponentialFitter` was implemented using only its cumulative hazard function. This is not a lie. _lifelines_ has very general semantics for univariate fitters. For example, this is how the entire `ExponentialFitter` is implemented:```pythonclass ExponentialFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_"] def _cumulative_hazard(self, params, times): lambda_ = params[0] return lambda_ * times```We only need to specify the cumulative hazard function because of the 1-1 relationship between the cumulative hazard function and the survival function and the hazard rate. From there, _lifelines_ handles the rest. Defining our own survival modelsTo show off the flexability of _lifelines_ univariate models, we'll create a brand new, never before seen, survival model. Looking at the Nelson-Aalen fit, the cumulative hazard looks looks like their might be an asymptote at $t=80$. This may correspond to an absolute upper limit of subjects' lives. Let's start with that functional form.$$ H_1(t; \alpha) = \frac{\alpha}{(80 - t)} $$We subscript $1$ because we'll investigate other models. In a _lifelines_ univariate model, this is defined in the following code. **Important**: in order to compute derivatives, you must use the numpy imported from the `autograd` library. This is a thin wrapper around the original numpy. Note the `import autograd.numpy as np` below. ###Code from lifelines.fitters import ParametericUnivariateFitter import autograd.numpy as np class InverseTimeHazardFitter(ParametericUnivariateFitter): # we tell the model what we want the names of the unknown parameters to be _fitted_parameter_names = ['alpha_'] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: avector of times that will be passed in. def _cumulative_hazard(self, params, times): alpha = params[0] return alpha /(80 - times) itf = InverseTimeHazardFitter() itf.fit(T, E) itf.print_summary() ax = itf.plot(figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) plt.legend() ###Output <lifelines.InverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -697.84 hypothesis = alpha_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 21.51 1.72 18.13 24.88 <0.005 106.22 ###Markdown The best fit of the model to the data is:$$H_1(t) = \frac{21.51}{80-t}$$Our choice of 80 as an asymptote was maybe mistaken, so let's allow the asymptote to be another parameter:$$ H_2(t; \alpha, \beta) = \frac{\alpha}{\beta-t} $$If we define the model this way, we need to add a bound to the values that $\beta$ can take. Obviously it can't be smaller than or equal to the maximum observed duration. Generally, the cumulative hazard _must be positive and non-decreasing_. Otherwise the model fit will hit convergence problems. ###Code class TwoParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_'] # Sequence of (min, max) pairs for each element in x. None is used to specify no bound _bounds = [(0, None), (75.0001, None)] def _cumulative_hazard(self, params, times): alpha, beta = params return alpha / (beta - times) two_f = TwoParamInverseTimeHazardFitter() two_f.fit(T, E) two_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) two_f.plot(ax=ax) plt.legend() ###Output <lifelines.TwoParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -685.57 hypothesis = alpha_ != 1, beta_ != 76 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 16.50 1.51 13.55 19.46 <0.005 79.98 beta_ 76.55 0.38 75.80 77.30 0.15 2.73 ###Markdown From the output, we see that the value of 76.55 is the suggested asymptote, that is:$$H_2(t) = \frac{16.50} {76.55 - t}$$The curve also appears to track against the Nelson-Aalen model better too. Let's try one additional parameter, $\gamma$, some sort of measure of decay. $$H_3(t; \alpha, \beta, \gamma) = \frac{\alpha}{(\beta-t)^\gamma} $$ ###Code from lifelines.fitters import ParametericUnivariateFitter class ThreeParamInverseTimeHazardFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['alpha_', 'beta_', 'gamma_'] _bounds = [(0, None), (75.0001, None), (0, None)] # this is the only function we need to define. It always takes two arguments: # params: an iterable that unpacks the parameters you'll need in the order of _fitted_parameter_names # times: a numpy vector of times that will be passed in by the optimizer def _cumulative_hazard(self, params, times): a, b, c = params return a / (b - times) ** c three_f = ThreeParamInverseTimeHazardFitter() three_f.fit(T, E) three_f.print_summary() ax = itf.plot(ci_show=False, figsize=(8,5)) ax = naf.plot(ax=ax, ci_show=False) ax = two_f.plot(ax=ax, ci_show=False) ax = three_f.plot(ax=ax) plt.legend() ###Output <lifelines.ThreeParamInverseTimeHazardFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -649.38 hypothesis = alpha_ != 1, beta_ != 76, gamma_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) alpha_ 1588776.28 3775137.44 -5810357.13 8987909.70 0.67 0.57 beta_ 100.88 5.88 89.35 112.41 <0.005 15.38 gamma_ 3.83 0.50 2.85 4.81 <0.005 25.82 ###Markdown Our new asymptote is at $t\approx 100, \text{c.i.}=(87, 112)$. The model appears to fit the early times better than the previous models as well, however our $\alpha$ parameter has more uncertainty now. Continuing to add parameters isn't advisable, as we will overfit to the data. Why fit parametric models anyways?Taking a step back, we are fitting parameteric models and comparing them to the non-parametric Nelson-Aalen. Why not just always use the Nelson-Aalen model? 1) Sometimes we have scientific motivations to use a parametric model. That is, using domain knowledge, we may know the system has a parametric model and we wish to fit to that model. 2) In a parametric model, we are borrowing information from _all_ observations to determine the best parameters. To make this more clear, imagine take a single observation and changing it's value wildly. The fitted parameters would change as well. On the other hand, imagine doing the same for a non-parametric model. In this case, only the local survival function or hazard function would change. Because parametric models can borrow information from all observations, and there are much _fewer_ unknowns than a non-parametric model, parametric models are said to be more _statistical efficient._ 3) Extrapolation: non-parametric models are not easily extended to values outside the observed data. On the other hand, parametric models have no problem with this. However, extrapolation outside observed values is a very dangerous activity. ###Code fig, axs = plt.subplots(3, figsize=(7, 8), sharex=True) new_timeline = np.arange(0, 85) three_f = ThreeParamInverseTimeHazardFitter().fit(T, E, timeline=new_timeline) three_f.plot_hazard(label='hazard', ax=axs[0]).legend() three_f.plot_cumulative_hazard(label='cumulative hazard', ax=axs[1]).legend() three_f.plot_survival_function(label='survival function', ax=axs[2]).legend() fig.subplots_adjust(hspace=0) # Hide x labels and tick labels for all but bottom plot. for ax in axs: ax.label_outer() ###Output _____no_output_____ ###Markdown 3-parameter Weibull distributionWe can easily extend the built-in Weibull model (`lifelines.WeibullFitter`) to include a new _location_ parameter:$$ H(t) = \left(\frac{t - \theta}{\lambda}\right)^\rho $$(When $\theta = 0$, this is just the 2-parameter case again). In *lifelines* custom models, this looks like: ###Code import autograd.numpy as np from autograd.scipy.stats import norm # I'm shifting this to exaggerate the effect T = T + 10 class ThreeParameterWeibullFitter(ParametericUnivariateFitter): _fitted_parameter_names = ["lambda_", "rho_", "theta_"] _bounds = [(0, None), (0, None), (0, T.min()-0.001)] def _cumulative_hazard(self, params, times): lambda_, rho_, theta_ = params return ((times - theta_) / lambda_) ** rho_ tpw = ThreeParameterWeibullFitter() tpw.fit(T, E) tpw.print_summary() ax = tpw.plot_cumulative_hazard(figsize=(8,5)) ax = NelsonAalenFitter().fit(T, E).plot(ax=ax, ci_show=False) ###Output <lifelines.ThreeParameterWeibullFitter: fitted with 163 observations, 7 censored> number of subjects = 163 number of events = 156 log-likelihood = -666.71 hypothesis = lambda_ != 1, rho_ != 1, theta_ != 7 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 63.92 5.38 53.38 74.47 <0.005 102.58 rho_ 4.20 0.56 3.11 5.29 <0.005 26.67 theta_ 2.55 5.05 -7.35 12.45 0.28 1.83 ###Markdown Inverse Gaussian distributionThe inverse Gaussian distribution is another popular model for survival analysis. Unlike other model, it's hazard does not asympotically converge to 0, allowing for a long tail of survival. Let's model this, using the same parameterization from [Wikipedia](https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution) ###Code from autograd.scipy.stats import norm class InverseGaussianFitter(ParametericUnivariateFitter): _fitted_parameter_names = ['lambda_', 'mu_'] def _cumulative_density(self, params, times): mu_, lambda_ = params v = norm.cdf(np.sqrt(lambda_ / times) * (times / mu_ - 1), loc=0, scale=1) + \ np.exp(2 * lambda_ / mu_) * norm.cdf(-np.sqrt(lambda_ / times) * (times / mu_ + 1), loc=0, scale=1) return v def _cumulative_hazard(self, params, times): return -np.log(1-self._cumulative_density(params, times)) from lifelines.datasets import load_rossi rossi = load_rossi() igf = InverseGaussianFitter() igf.fit(rossi['week'], rossi['arrest'], timeline=np.arange(1, 500)) igf.print_summary() igf.plot_hazard() ###Output <lifelines.InverseGaussianFitter: fitted with 432 observations, 318 censored> number of subjects = 432 number of events = 114 log-likelihood = -729.80 hypothesis = lambda_ != 1, mu_ != 1 --- coef se(coef) lower 0.95 upper 0.95 p -log2(p) lambda_ 7441.43 9296.67 -10779.69 25662.56 0.42 1.24 mu_ 47.86 3.31 41.38 54.35 <0.005 148.83
Lec 11 Logistic regression Question/Logistics Regression EX1 .ipynb
###Markdown Logistics Regression [ Diabetes ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('Dataset/diabetes.csv') x = data.iloc[:,0:8] y = data.iloc[:,8] data data.info() from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split (x , y , test_size = .20, random_state = 0) print(x_train) print(x_test) print(y_train) print(y_test) from sklearn.linear_model import LogisticRegression lr = LogisticRegression () lr.fit (x_train, y_train) predict = lr.predict (x_test) from sklearn.metrics import accuracy_score print(accuracy_score(y_test, predict)) predict ###Output 0.8246753246753247
module3-permutation-boosting/Ned_Przezdziecki_LS_DS_233_assignment.ipynb
###Markdown Lambda School Data Science*Unit 2, Sprint 3, Module 3*--- Permutation & BoostingYou will use your portfolio project dataset for all assignments this sprint. AssignmentComplete these tasks for your project, and document your work.- [ ] If you haven't completed assignment 1, please do so first.- [ ] Continue to clean and explore your data. Make exploratory visualizations.- [ ] Fit a model. Does it beat your baseline? - [ ] Try xgboost.- [ ] Get your model's permutation importances.You should try to complete an initial model today, because the rest of the week, we're making model interpretation visualizations.But, if you aren't ready to try xgboost and permutation importances with your dataset today, that's okay. You can practice with another dataset instead. You may choose any dataset you've worked with previously.The data subdirectory includes the Titanic dataset for classification and the NYC apartments dataset for regression. You may want to choose one of these datasets, because example solutions will be available for each. ReadingTop recommendations in _**bold italic:**_ Permutation Importances- _**[Kaggle / Dan Becker: Machine Learning Explainability](https://www.kaggle.com/dansbecker/permutation-importance)**_- [Christoph Molnar: Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/feature-importance.html) (Default) Feature Importances - [Ando Saabas: Selecting good features, Part 3, Random Forests](https://blog.datadive.net/selecting-good-features-part-iii-random-forests/) - [Terence Parr, et al: Beware Default Random Forest Importances](https://explained.ai/rf-importance/index.html) Gradient Boosting - [A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning](https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/) - [An Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20Printing.pdf), Chapter 8 - _**[Gradient Boosting Explained](https://www.gormanalysis.com/blog/gradient-boosting-explained/)**_ — Ben Gorman - [Gradient Boosting Explained](http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html) — Alex Rogozhnikov - [How to explain gradient boosting](https://explained.ai/gradient-boosting/) — Terence Parr & Jeremy Howard ###Code from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt pd.options.display.max_columns = None feb20 = pd.read_csv('drive/My Drive/2020_02.csv') march20 = pd.read_csv('drive/My Drive/2020_03.csv') march19 = pd.read_csv('drive/My Drive/201903-citibike-tripdata.csv') march19 march20 feb20 march20['starttime']= pd.to_datetime(march20['starttime']) march20['stoptime']= pd.to_datetime(march20['stoptime']) march19['starttime']= pd.to_datetime(march19['starttime']) march19['stoptime']= pd.to_datetime(march19['stoptime']) march20.dtypes march20['covid']='yes' march19['covid']='no' march19and20 = pd.concat([march19, march20], ignore_index=True) march19and20 march19and20['start station id'] = march19and20['start station id'].dropna() march19and20['end station id'] = march19and20['end station id'].dropna() march19and20.dtypes train, test = train_test_split(march19and20, test_size=0.30, random_state=42) train.shape , test.shape #train = train.drop(target, axis=1) train train.dtypes target = 'covid' features = [ 'starttime' ,'birthyear' ] x_train = train[features] y_train = train[target] x_test = test[features] y_test = test[target] y_train.value_counts(normalize=True) x_train.describe() from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression(solver='lbfgs') log_reg.fit(x_train, y_train) import eli5 from eli5.sklearn import PermutationImportance ###Output _____no_output_____
NLP_word_embeddings.ipynb
###Markdown Natural Language processing:- Word Embeddings![alt text](https://cdn-images-1.medium.com/max/1600/1*Y6dOZIKoJ1ZS_pzBzG6rgg.jpeg)Word Vectors Introduction:-Word vectors represent a significant leap forward in advancing our ability to analyse relationships across words, sentences and documents. In doing so, they advance technology by providing machines much more information about words than has previously been possible using traditional representations of words. It is word vectors that make technologies such as speech recognition and machine translation possible. There are many excellent explanations of word vectors, but in this one I want to make the concept accessible to data and research people who aren’t very familiar with natural language processing (NLP).This blog post is divided into a few parts:-1) Word Vector and its implementation in spacy.2) Word2vec and its Implementation in genism.3) Word2vec- The skip gram model and its implementation inTensorflow.4) GloVec and its implementation in genism.What are Word Vectors ?Word vectors are simply vectors of numbers that represent the meaning of a word.1. Traditional approaches to NLP, such as one-hot encoding and bag-of-words models (i.e. using dummy variables to represent the presence or absence of a word in an observation (e.g. a sentence)), while it is useful for some machine learning (ML) tasks, do not capture information about a word’s meaning or context. 2. This means that potential relationships, such as contextual closeness, are not captured across collections of words.3. For example, a one-hot encoding(Read my blog post [here](https://soumyadip1995.blogspot.com/2018/11/softmax-cross-entropy-and-logits.html)) cannot capture simple relationships, such as determining that the words “dog” and “cat” both refer to animals that are often discussed in the context of household pets. Such encodings often provide sufficient baselines for simple NLP tasks (for example, email spam classifiers), but lack the sophistication for more complex tasks such as translation and speech recognition.4. In essence, traditional approaches to NLP, such as one-hot encodings, do not capture syntactic (structure) and semantic (meaning) relationships across collections of words and, therefore, represent language in a very naive way.So what does word Vectors represent ?1. In contrast, word vectors represent words as multidimensional continuous floating point numbers where semantically similar words are mapped to proximate points in geometric space. In simpler terms, a word vector is a row of real valued numbers (as opposed to dummy numbers) where each point captures a dimension of the word’s meaning and where semantically similar words have similar vectors.2. This means that words such as wheel and engine should have similar word vectors to the word car (because of the similarity of their meanings), whereas the word banana should be quite distant. Put differently, words that are used in a similar context will be mapped to a proximate vector space (we will get to how these word vectors are created below). The beauty of representing words as vectors is that they lend themselves to mathematical operators. For example, we can add and subtract vectors — the example here is showing that by using word vectors we can determine that:**king — man + woman = queen**In other words, we can subtract one meaning from the word vector for king **(i.e. maleness)**, add another meaning **(femaleness)**, and show that this new word vector **(king — man + woman)** maps most closely to the word vector for queen.The numbers in the word vector represent the word’s distributed weight across dimensions. In a simplified sense each dimension represents a meaning and the word’s numerical weight on that dimension captures the closeness of its association with and to that meaning. Thus, the semantics of the word are embedded across the dimensions of the vector.![alt text](https://cdn-images-1.medium.com/max/1600/0*mRGKYujQkI7PcMDE.)*In the figure we are imagining that each dimension captures a clearly defined meaning. For example, if you imagine that the first dimension represents the meaning or concept of “animal”, then each word’s weight on that dimension represents how closely it relates to that concept.* Lets Take a look at some code..!!Here we simply extract vectors for different animals and words that might be used to describe some of them1. !pip install spacy2. !pip install genism ###Code import numpy as np import spacy from sklearn.decomposition import PCA import matplotlib.pyplot as plt nlp = spacy.load("en") animals = "dog cat hamster lion tiger elephant cheetah monkey gorilla antelope rabbit mouse rat zoo home pet fluffy wild domesticated" animal_tokens = nlp(animals) animal_vectors = np.vstack([word.vector for word in animal_tokens if word.has_vector]) pca = PCA(n_components=2) animal_vecs_transformed = pca.fit_transform(animal_vectors) animal_vecs_transformed = np.c_[animals.split(), animal_vecs_transformed] print(animal_vecs_transformed) ###Output _____no_output_____ ###Markdown Introduction to Word2Vec1. Word2vec is a two-layer neural net that processes text. Its input is a text corpus and its output is a set of vectors: feature vectors for words in that corpus. While Word2vec is not a deep neural network, it turns text into a numerical form that deep nets can understand. Deeplearning4j implements a distributed form of Word2vec for Java and Scala, which works on Spark with GPUs.2. Word2vec’s applications extend beyond parsing sentences in the wild. It can be applied just as well to genes, code, likes, playlists, social media graphs and other verbal or symbolic series in which patterns may be discerned.3. Why? Because words are simply discrete states, and we are simply looking for the transitional probabilities between those states: the likelihood that they will co-occur4. The purpose and usefulness of Word2vec is to group the vectors of similar words together in vectorspace. That is, it detects similarities mathematically. Word2vec creates vectors that are distributed numerical representations of word features, features such as the context of individual words.5. Given enough data, usage and contexts, Word2vec can make highly accurate guesses about a word’s meaning based on past appearances. Those guesses can be used to establish a word’s association with other words (e.g. “man” is to “boy” what “woman” is to “girl”), or cluster documents and classify them by topic. Those clusters can form the basis of search, sentiment analysis and recommendations in such diverse fields as scientific research, legal discovery, e-commerce and customer relationship management Lets look at some more code..!!There are two main training algorithms that can be used to learn the embedding from text; they are continuous bag of words (CBOW) and skip grams.![alt text](https://skymind.ai/images/wiki/word2vec_diagrams.png)Rather than loading a large text document or corpus from file, we will work with a small, in-memory list of pre-tokenized sentences. The model is trained and the minimum count for words is set to 1 so that no words are ignored.After the model is learned, we summarize, print the vocabulary, then print a single vector for the word ‘sentence‘.Finally, the model is saved to a file in binary format, loaded, and then summarized.Visualize Word EmbeddingAfter you learn word embedding for your text data, it can be nice to explore it with visualization.You can use classical projection methods to reduce the high-dimensional word vectors to two-dimensional plots and plot them on a graph.The visualizations can provide a qualitative diagnostic for your learned model.We can retrieve all of the vectors from a trained model We can then train a projection method on the vectors, such as those methods offered in scikit-learn, then use matplotlib to plot the projection as a scatter plot.Let’s look at an example with Principal Component Analysis or PCA.Plot Word Vectors Using PCAWe can create a 2-dimensional PCA model of the word vectors using the scikit-learn PCA class.The resulting projection can be plotted using matplotlib as follows, pulling out the two dimensions as x and y coordinates.Putting this all together with the model from the previous section, the complete code is listed below ###Code from gensim.models import Word2Vec from sklearn.decomposition import PCA from matplotlib import pyplot from gensim.models import Word2Vec # define training data sentences = [['this', 'is', 'the', 'first', 'sentence', 'for', 'word2vec'], ['this', 'is', 'the', 'second', 'sentence'], ['yet', 'another', 'sentence'], ['one', 'more', 'sentence'], ['and', 'the', 'final', 'sentence']] # train model model = Word2Vec(sentences, min_count=1) # summarize the loaded model print(model) # summarize vocabulary words = list(model.wv.vocab) print(words) # access vector for one word print(model['sentence']) # save model model.save('model.bin') # load model new_model = Word2Vec.load('model.bin') print(new_model) X = model[model.wv.vocab] pca = PCA(n_components=2) result = pca.fit_transform(X) pyplot.scatter(result[:, 0], result[:, 1]) words = list(model.wv.vocab) for i, word in enumerate(words): pyplot.annotate(word, xy=(result[i, 0], result[i, 1])) # define training data sentences = [['this', 'is', 'the', 'first', 'sentence', 'for', 'word2vec'], ['this', 'is', 'the', 'second', 'sentence'], ['yet', 'another', 'sentence'], ['one', 'more', 'sentence'], ['and', 'the', 'final', 'sentence']] # train model model = Word2Vec(sentences, min_count=1) # fit a 2d PCA model to the vectors X = model[model.wv.vocab] pca = PCA(n_components=2) result = pca.fit_transform(X) # create a scatter plot of the projection pyplot.scatter(result[:, 0], result[:, 1]) words = list(model.wv.vocab) for i, word in enumerate(words): pyplot.annotate(word, xy=(result[i, 0], result[i, 1])) pyplot.show() ###Output _____no_output_____ ###Markdown Running the example creates a scatter plot with the dots annotated with the words.It is hard to pull much meaning out of the graph given such a tiny corpus was used to fit the model. Word2Vec (skip-gram model)The algorithm exists in two flavors CBOW and Skip-Gram. Given a set of sentences (also called corpus) the model loops on the words of each sentence and either tries to use the current word of to predict its neighbors (its context), in which case the method is called “Skip-Gram”, or it uses each of these contexts to predict the current word, in which case the method is called “Continuous Bag Of Words” (CBOW). The limit on the number of words in each context is determined by a parameter called “window size”.IntuitionThe skip-gram neural network model is actually surprisingly simple in its most basic form. Train a simple neural network with a single hidden layer to perform a certain task, but then we’re not actually going to use that neural network for the task we trained it on! Instead, the goal is actually just to learn the weights of the hidden layer–we’ll see that these weights are actually the “word vectors” that we’re trying to learn.As an example, let's consider the dataset**the quick brown fox jumped over the lazy dog**We first form a dataset of words and the contexts in which they appear. We could define 'context' in any way that makes sense, and in fact people have looked at syntactic contexts (i.e. the syntactic dependents of the current target word, see e.g. Levy et al.), words-to-the-left of the target, words-to-the-right of the target, etc. For now, let's stick to the vanilla definition and define 'context' as the window of words to the left and to the right of a target word. Using a window size of 1, we then have the dataset**([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox)**, ..of (context, target) pairs. Recall that skip-gram inverts contexts and targets, and tries to predict each context word from its target word, so the task becomes to predict 'the' and 'brown' from 'quick', 'quick' and 'fox' from 'brown', etc. Therefore our dataset becomes**(quick, the), (quick, brown), (brown, quick), (brown, fox)**, ...of **(input, output)** pairs. The objective function is defined over the entire dataset, but we typically optimize this with stochastic gradient descent (SGD) using one example at a time (or a 'minibatch' of batch_size examples, where typically 16 <= batch_size <= 512). Visualization using tensorflowWe can visualize the learned vectors by projecting them down to 2 dimensions using for instance something like the t-SNE dimensionality reduction technique[t-SNE](https://https://lvdmaaten.github.io/tsne/). When we inspect these visualizations it becomes apparent that the vectors capture some general, and in fact quite useful, semantic information about words and their relationships to one another. It was very interesting when we first discovered that certain directions in the induced vector space specialize towards certain semantic relationships, e.g. male-female, verb tense and even country-capital relationships between words, as illustrated in the figure below ![alt text](https://www.tensorflow.org/images/linear-relationships.png) The CodeVisualizing the Learned EmbeddingsAfter training has finished we can visualize the learned embeddings using t-SNE. ###Code from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import collections import math import os import random import sys from tempfile import gettempdir import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.contrib.tensorboard.plugins import projector data_index = 0 def word2vec_basic(log_dir): """Example of building, training and visualizing a word2vec model.""" # Create the directory for TensorBoard variables if there is not. if not os.path.exists(log_dir): os.makedirs(log_dir) # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' # pylint: disable=redefined-outer-name def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" local_filename = os.path.join(gettempdir(), filename) if not os.path.exists(local_filename): local_filename, _ = urllib.request.urlretrieve(url + filename, local_filename) statinfo = os.stat(local_filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception('Failed to verify ' + local_filename + '. Can you get to it with a browser?') return local_filename filename = maybe_download('text8.zip', 31344016) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data vocabulary = read_data(filename) print('Data size', len(vocabulary)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words, n_words): """Process raw inputs into a dataset.""" count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) dictionary = {} for word, _ in count: dictionary[word] = len(dictionary) data = [] unk_count = 0 for word in words: index = dictionary.get(word, 0) if index == 0: # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary data, count, unused_dictionary, reverse_dictionary = build_dataset( vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) # pylint: disable=redefined-builtin if data_index + span > len(data): data_index = 0 buffer.extend(data[data_index:data_index + span]) data_index += span for i in range(batch_size // num_skips): context_words = [w for w in range(span) if w != skip_window] words_to_use = random.sample(context_words, num_skips) for j, context_word in enumerate(words_to_use): batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[context_word] if data_index == len(data): buffer.extend(data[0:span]) data_index = span else: buffer.append(data[data_index]) data_index += 1 # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. num_sampled = 64 # Number of negative examples to sample. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) graph = tf.Graph() with graph.as_default(): # Input data. with tf.name_scope('inputs'): train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. with tf.name_scope('embeddings'): embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss with tf.name_scope('weights'): nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) with tf.name_scope('biases'): nce_biases = tf.Variable(tf.zeros([vocabulary_size])) with tf.name_scope('loss'): loss = tf.reduce_mean( tf.nn.nce_loss( weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Add the loss value as a scalar to summary. tf.summary.scalar('loss', loss) # Construct the SGD optimizer using a learning rate of 1.0. with tf.name_scope('optimizer'): optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all # embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keepdims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Merge all summaries. merged = tf.summary.merge_all() # Add variable initializer. init = tf.global_variables_initializer() # Create a saver. saver = tf.train.Saver() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # Open a writer to write summaries. writer = tf.summary.FileWriter(log_dir, session.graph) # We must initialize all variables before we use them. init.run() print('Initialized') average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # Define metadata variable. run_metadata = tf.RunMetadata() _, summary, loss_val = session.run([optimizer, merged, loss], feed_dict=feed_dict, run_metadata=run_metadata) average_loss += loss_val # Add returned summaries to writer in each step. writer.add_summary(summary, step) # Add metadata to visualize the graph for the last run. if step == (num_steps - 1): writer.add_run_metadata(run_metadata, 'step%d' % step) if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 # batches. print('Average loss at step ', step, ': ', average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = '%s %s,' % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Write corresponding labels for the embeddings. with open(log_dir + '/metadata.tsv', 'w') as f: for i in xrange(vocabulary_size): f.write(reverse_dictionary[i] + '\n') # Save the model for checkpoints. saver.save(session, os.path.join(log_dir, 'model.ckpt')) # Create a configuration for visualizing embeddings with the labels in # TensorBoard. config = projector.ProjectorConfig() embedding_conf = config.embeddings.add() embedding_conf.tensor_name = embeddings.name embedding_conf.metadata_path = os.path.join(log_dir, 'metadata.tsv') projector.visualize_embeddings(writer, config) writer.close() # Step 6: Visualize the embeddings. # pylint: disable=missing-docstring # Function to draw visualization of distance between embeddings. def plot_with_labels(low_dim_embs, labels, filename): assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate( label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE( perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact') plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels, os.path.join(gettempdir(), 'tsne.png')) except ImportError as ex: print('Please install sklearn, matplotlib, and scipy to show embeddings.') print(ex) # All functionality is run after tf.compat.v1.app.run() (b/122547914). This # could be split up but the methods are laid sequentially with their usage for # clarity. def main(unused_argv): # Give a folder path as an argument with '--log_dir' to save # TensorBoard summaries. Default is a log folder in current directory. current_path = os.path.dirname(os.path.realpath(sys.argv[0])) parser = argparse.ArgumentParser() parser.add_argument( '--log_dir', type=str, default=os.path.join(current_path, 'log'), help='The log directory for TensorBoard summaries.') flags, unused_flags = parser.parse_known_args() word2vec_basic(flags.log_dir) if __name__ == '__main__': tf.app.run() ###Output _____no_output_____ ###Markdown GloVe(Global Vectors)Another well-known model that learns vectors or words from their co-occurrence information, i.e. how frequently they appear together in large text corpora, is GlobalVectors (GloVe). While word2vec is a predictive model — a feed-forward neural network that learns vectors to improve the predictive ability, GloVe is a count-based model.What is a count-based model?Generally speaking, count-based models learn vectors by doing dimensionality reduction on a co-occurrence counts matrix. First they construct a large matrix of co-occurrence information, which contains the information on how frequently each “word” (stored in rows), is seen in some “context” (the columns). The number of “contexts” needs be large, since it is essentially combinatorial in size. Afterwards they factorize this matrix to yield a lower-dimensional matrix of words and features, where each row yields a vector representation for each word. It is achieved by minimizing a “reconstruction loss” which looks for lower-dimensional representations that can explain the variance in the high-dimensional data.In the case of GloVe, the counts matrix is preprocessed by normalizing the counts and log-smoothing them. Compared to word2vec, GloVe allows for parallel implementation, which means that it’s easier to train over more data. It is believed (GloVe) to combine the benefits of the word2vec skip-gram model in the word analogy tasks, with those of matrix factorization methods exploiting global statistical information.GloVe at a Glance GloVe is essentially a log-bilinear model with a weighted least-squares objective. The model rests on a rather simple idea that ratios of word-word co-occurrence probabilities have the potential for encoding some form of meaning which can be encoded as vector differences. Therefore, the training objective is to learn word vectors such that their dot product equals the logarithm of the words’ probability of co-occurrence. As the logarithm of a ratio equals the difference of logarithms, this objective associates the ratios of co-occurrence probabilities with vector differences in the word vector space. It creates the word vectors that perform well on both word analogy tasks and on similarity tasks and named entity recognition Load Stanford’s GloVe EmbeddingStanford researchers also have their own word embedding algorithm like word2vec called Global Vectors for Word Representation, or GloVe for short.I won’t get into the details of the differences between word2vec and GloVe here, but generally, NLP practitioners seem to prefer GloVe at the moment based on results.Like word2vec, the GloVe researchers also provide pre-trained word vectors, in this case, a great selection to choose from.You can download the GloVe pre-trained word vectors and load them easily with gensim.The first step is to convert the GloVe file format to the word2vec file format. The only difference is the addition of a small header line. This can be done by calling the *glove2word2vec() *function. For example: ###Code from gensim.scripts.glove2word2vec import glove2word2vec glove_input_file = 'glove.txt' word2vec_output_file = 'word2vec.txt' glove2word2vec(glove_input_file, word2vec_output_file) ###Output _____no_output_____ ###Markdown Once converted, the file can be loaded just like word2vec file above.Let’s make this concrete with an example.You can download the smallest GloVe pre-trained model from the GloVe website. It an 822 Megabyte zip file with 4 different models (50, 100, 200 and 300-dimensional vectors) trained on Wikipedia data with 6 billion tokens and a 400,000 word vocabulary.The direct download link is here:[glove.6B.zip](https://http://nlp.stanford.edu/data/glove.6B.zip)Working with the 100-dimensional version of the model, we can convert the file to word2vec format as follows: ###Code from gensim.scripts.glove2word2vec import glove2word2vec glove_input_file = 'glove.6B.100d.txt' word2vec_output_file = 'glove.6B.100d.txt.word2vec' glove2word2vec(glove_input_file, word2vec_output_file) ###Output _____no_output_____ ###Markdown You now have a copy of the GloVe model in word2vec format with the filename glove.6B.100d.txt.word2vec.Now we can load it and perform the same (king – man) + woman = ? test(as in the instagram post) The complete code listing is provided below. Note that the converted file is ASCII format, not binary, so we set binary=False when loading. ###Code from gensim.models import KeyedVectors # load the Stanford GloVe model filename = 'glove.6B.100d.txt.word2vec' model = KeyedVectors.load_word2vec_format(filename, binary=False) # calculate: (king - man) + woman = ? result = model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1) print(result) ###Output _____no_output_____
notebooks/gdal/OGRexamples.ipynb
###Markdown OGR examples Source: https://pcjericks.github.io/py-gdalogr-cookbook/geometry.html Create a point ###Code from osgeo import ogr point = ogr.Geometry(ogr.wkbPoint) point.AddPoint(1198054.34, 648493.09) print point.ExportToWkt() point.GetGeometryName() ###Output _____no_output_____ ###Markdown Buffer a point geometry ###Code bufferDistance = 500 bufpoint = point.Buffer(bufferDistance) print "%s buffered by %d is %s" % (point.ExportToWkt(), bufferDistance, bufpoint.ExportToWkt()) centroid = bufpoint.Centroid() print centroid # This must be equal to the input point for the buffer ###Output POINT (1198054.34 648493.089999999850988) ###Markdown Create a line ###Code from osgeo import ogr line = ogr.Geometry(ogr.wkbLineString) line.AddPoint(1116651.439379124, 637392.6969887456) line.AddPoint(1188804.0108498496, 652655.7409537067) line.AddPoint(1226730.3625203592, 634155.0816022386) line.AddPoint(1281307.30760719, 636467.6640211721) print line.ExportToWkt() print "Geometry has %i points" % (line.GetPointCount()) for i in range(0, line.GetPointCount()): # GetPoint returns a tuple not a Geometry pt = line.GetPoint(i) print "%i). POINT (%d %d)" %(i, pt[0], pt[1]) print "Length = %d" % line.Length() line.GetGeometryName() ###Output _____no_output_____ ###Markdown Create a polygon ###Code from osgeo import ogr # Create ring ring = ogr.Geometry(ogr.wkbLinearRing) ring.AddPoint(1179091.1646903288, 712782.8838459781) ring.AddPoint(1161053.0218226474, 667456.2684348812) ring.AddPoint(1214704.933941905, 641092.8288590391) ring.AddPoint(1228580.428455506, 682719.3123998424) ring.AddPoint(1218405.0658121984, 721108.1805541387) ring.AddPoint(1179091.1646903288, 712782.8838459781) # Create polygon poly = ogr.Geometry(ogr.wkbPolygon) poly.AddGeometry(ring) print poly.ExportToWkt() # Get Envelope returns a tuple (minX, maxX, minY, maxY) env = poly.GetEnvelope() print "minX: %d, minY: %d, maxX: %d, maxY: %d" %(env[0],env[2],env[1],env[3]) print "Area = %d" % poly.GetArea() poly.GetGeometryName() ###Output _____no_output_____ ###Markdown Buffer a polygon geometry ###Code bufferDistance = 500 bufpoly = poly.Buffer(bufferDistance) print "%s buffered by %d is %s" % (poly.ExportToWkt(), bufferDistance, bufpoly.ExportToWkt()) bufpoly.GetGeometryName() centroid = bufpoly.Centroid() print centroid ###Output POINT (1198366.724720017286018 682817.35505709622521) ###Markdown Intersection ###Code intersection = poly.Intersection(bufpoly) print intersection.ExportToWkt() ###Output POLYGON ((1179091.164690328761935 712782.883845978067257 0,1218405.065812198445201 721108.180554138729349 0,1228580.428455505985767 682719.312399842427112 0,1214704.933941904921085 641092.828859039116651 0,1161053.021822647424415 667456.268434881232679 0,1179091.164690328761935 712782.883845978067257 0)) ###Markdown Union ###Code union = poly.Union(bufpoly) print union.ExportToWkt() ###Output POLYGON ((1178987.579469376476482 713272.036278252722695 0,1218301.480591246159747 721597.332986413384788 0,1218327.255845648935065 721602.089056905708276 0,1218353.244916843017563 721605.487898549181409 0,1218379.376388529781252 721607.520171545096673 0,1218405.578453103313223 721608.180291338008828 0,1218431.779108972288668 721607.466443960904144 0,1218457.906358417356387 721605.380591020570137 0,1218483.888405434554443 721601.928464306984097 0,1218509.653853027150035 721597.119550042669289 0,1218535.13189939991571 721590.967062815325335 0,1218560.252532517071813 721583.487909264513291 0,1218584.946722492575645 721574.702641624142416 0,1218609.146611277479678 721564.635401245439425 0,1218632.785699131898582 721553.313852258492261 0,1218655.79902736027725 721540.769105552928522 0,1218678.123356814263389 721527.035633287159726 0,1218699.697341670282185 721512.151174160884693 0,1218720.4616980033461 721496.156629712088034 0,1218740.359366695629433 721479.095951921888627 0,1218759.335670231375843 721461.016022437135689 0,1218777.338462946936488 721441.966523743118159 0,1218794.318274323828518 721421.999802639009431 0,1218810.228444931097329 721401.170726392185315 0,1218825.025254641659558 721379.536531966528855 0,1218838.668042772216722 721357.156668739160523 0,1218851.119319817284122 721334.092635137145407 0,1218862.34487046697177 721310.407809643540531 0,1218872.313847629120573 721286.167276638094336 0,1218880.998857194790617 721261.437647548737004 0,1218888.376033315202221 721236.286877808277495 0,1229063.738676622742787 682847.418723511975259 0,1229069.826498327543959 682821.730931771569885 0,1229074.550026639830321 682795.757628210238181 0,1229077.896093794843182 682769.571218525059521 0,1229079.855371971381828 682743.244702488300391 0,1229080.422399295726791 682716.851470446330495 0,1229079.59559506806545 682690.465098729589954 0,1229077.377264167414978 682664.159144543809816 0,1229073.773590628057718 682638.006940915249288 0,1229068.79462039959617 682612.081392260151915 0,1229062.45423334161751 682586.454771149205044 0,1229054.77010453119874 682561.198516834061593 0,1215179.275590930134058 640934.714976030751131 0,1215170.472761062905192 640910.418311490793712 0,1215160.426350902067497 640886.608914935728535 0,1215149.163197130197659 640863.35038771352265 0,1215136.713386682327837 640840.704859650577419 0,1215123.110176374670118 640818.732823086786084 0,1215108.389904066454619 640797.492971283732913 0,1215092.591891593066975 640777.042041639215313 0,1215075.758339724969119 640757.43466412613634 0,1215057.934215439250693 640738.723215361125767 0,1215039.167131800204515 640720.957678692531772 0,1215019.507220772095025 640704.185510681243613 0,1214999.006999302422628 640688.451514331391081 0,1214977.721229036571458 640673.797719409340061 0,1214955.706770032411441 640660.263270170777105 0,1214933.02242887346074 640647.884320796001703 0,1214909.728801579913124 640636.693938811891712 0,1214885.888111740350723 640626.722016760264523 0,1214861.564044295111671 640617.995192345930263 0,1214836.82157541741617 640610.536777281085961 0,1214811.726798944408074 640604.366695012664422 0,1214786.346749821444973 640599.501427501789294 0,1214760.74922503484413 640595.953971195966005 0,1214735.00260250759311 640593.733802311937325 0,1214709.175658442545682 640592.846851521986537 0,1214683.337383603677154 640593.295488112256862 0,1214657.556799022480845 640595.078513652668335 0,1214631.902771623339504 640598.191165199154057 0,1214606.443830263335258 640602.625128016108647 0,1214581.24798267101869 640608.368557787965983 0,1214556.382533780764788 640615.40611225774046 0,1214531.913905941881239 640623.718992211157456 0,1214507.907461487688124 640633.28499169414863 0,1214484.427328134421259 640644.078557330649346 0,1160832.515208876924589 667007.518133172765374 0,1160809.717457682825625 667019.458423561416566 0,1160787.564276192570105 667032.555924999644049 0,1160766.114353322656825 667046.775939167710021 0,1160745.424514894606546 667062.080793949542567 0,1160725.549573090160266 667078.429943234426901 0,1160706.542181240627542 667095.780074333189987 0,1160688.452694336185232 667114.085222723777406 0,1160671.329035623930395 667133.296893821796402 0,1160655.216569648357108 667153.364191453787498 0,1160640.157982069300488 667174.233952693175524 0,1160626.193166578421369 667195.850888701272197 0,1160613.359119211789221 667218.157731199869886 0,1160601.689840337727219 667241.095384188462049 0,1160591.216244583250955 667264.603080503526144 0,1160581.966078932862729 667288.618542804033495 0,1160573.963849221356213 667313.078148559550755 0,1160567.230755211552605 667337.917098600184545 0,1160561.784634431358427 667363.069588785408996 0,1160557.639914918225259 667388.468984333798289 0,1160554.80757699534297 667414.047996354638599 0,1160553.295124183176085 667439.738860111217946 0,1160553.106563320150599 667465.47351454582531 0,1160554.242393947206438 667491.183782589039765 0,1160556.699606986250728 667516.801551776588894 0,1160560.471692709252238 667542.258954695309512 0,1160565.548657986568287 667567.488548779278062 0,1160571.917052759323269 667592.423494981136173 0,1160579.56000567227602 667616.997734843986109 0,1160588.457268770318478 667641.14616550586652 0,1178626.600136451655999 712967.761576602701098 0,1178636.786520990310237 712991.547401081887074 0,1178648.189780931686983 713014.774401293601841 0,1178660.779377073980868 713037.38037274137605 0,1178674.521593075245619 713059.304774112883024 0,1178689.379625748377293 713080.488889416796155 0,1178705.313683625310659 713100.875985229969956 0,1178722.281093522440642 713120.41146263666451 0,1178740.236414823913947 713139.043003450147808 0,1178759.131561177317053 713156.720710326568224 0,1178778.915929273935035 713173.397240395774134 0,1178799.536534369457513 713189.027932050754316 0,1178820.938152184709907 713203.570924556348473 0,1178843.063466800609604 713216.987270156969316 0,1178865.853224157355726 713229.241038383101113 0,1178889.246390743879601 713240.299412277177908 0,1178913.180317051475868 713250.132776280865073 0,1178937.590905356686562 713258.714795548818074 0,1178962.412781382212415 713266.022486476460472 0,1178987.579469376476482 713272.036278252722695 0)) ###Markdown To GeoJson ###Code # Create the output Driver outDriver = ogr.GetDriverByName('GeoJSON') # Create the output GeoJSON outDataSource = outDriver.CreateDataSource('./test.geojson') outLayer = outDataSource.CreateLayer('./test.geojson', geom_type=ogr.wkbPolygon ) # Get the output Layer's Feature Definition featureDefn = outLayer.GetLayerDefn() # create a new feature outFeature = ogr.Feature(featureDefn) # Set new geometry outFeature.SetGeometry(union) # Add new feature to output Layer outLayer.CreateFeature(outFeature) # destroy the feature outFeature.Destroy # Close DataSources outDataSource.Destroy() ###Output _____no_output_____ ###Markdown Export to GeoJson ###Code geojson = poly.ExportToJson() print geojson ###Output { "type": "Polygon", "coordinates": [ [ [ 1179091.164690328761935, 712782.883845978067257, 0.0 ], [ 1161053.021822647424415, 667456.268434881232679, 0.0 ], [ 1214704.933941904921085, 641092.828859039116651, 0.0 ], [ 1228580.428455505985767, 682719.312399842427112, 0.0 ], [ 1218405.065812198445201, 721108.180554138729349, 0.0 ], [ 1179091.164690328761935, 712782.883845978067257, 0.0 ] ] ] } ###Markdown Export to KML ###Code kml = poly.ExportToKML() print kml ###Output <Polygon><outerBoundaryIs><LinearRing><coordinates>91.164690328761935,712782.883845978067257,0 53.021822647424415,667456.268434881232679,0 64.933941904921085,641092.828859039116651,0 -99.571544494014233,682719.312399842427112,0 165.065812198445201,721108.180554138729349,0 91.164690328761935,712782.883845978067257,0</coordinates></LinearRing></outerBoundaryIs></Polygon>
vis_boardtransform.ipynb
###Markdown Visualize Board Transformations> Joseph P. Vantassel, The University of Texas at AustinTo cut down on the computational expense of training the tic-tac-toe model, we can utlize the inherent symetry present in thegame board.Below is a single game state shown in eight possible unique ways. These eight possible combinations correspond to the eightvalues the `trans_number` variable can assume. ###Code import numpy as np ###Output _____no_output_____ ###Markdown Possibility 0Base state (i.e., no manipulation). ###Code state = np.array([[1,2,0],[2,0,1],[2,2,2]]) print(state) ###Output [[1 2 0] [2 0 1] [2 2 2]] ###Markdown Possibility 1Rotate 90 degrees clock-wise. ###Code print(np.flip(np.transpose(state), 1)) ###Output [[2 2 1] [2 0 2] [2 1 0]] ###Markdown Possibility 2Flip across diagnol spanning from lower-left to upper-right. ###Code print(np.flip(np.flip(np.transpose(state), 1), 0)) ###Output [[2 1 0] [2 0 2] [2 2 1]] ###Markdown Possibility 3Flip across diagnol spanning from upper-left to lower-right. ###Code print(np.transpose(state)) ###Output [[1 2 2] [2 0 2] [0 1 2]] ###Markdown Possibility 4Rotate 180 degrees clock-wise. ###Code print(np.flip(np.flip(state, 0), 1)) ###Output [[2 2 2] [1 0 2] [0 2 1]] ###Markdown Possibility 5Flip board across central vertical line. ###Code print(np.flip(state, 1)) ###Output [[0 2 1] [1 0 2] [2 2 2]] ###Markdown Possibility 6Flip board across central horizontal line. ###Code print(np.flip(state, 0)) ###Output [[2 2 2] [2 0 1] [1 2 0]] ###Markdown Possibility 7Rotate 270 degrees clock-wise. ###Code print(np.flip(np.transpose(state), 0)) ###Output [[0 1 2] [2 0 2] [1 2 2]] ###Markdown Superfluous ManipulationsSame as Possibliity 0 ###Code print(np.transpose(np.flip(np.flip(np.transpose(state), 0), 0))) ###Output [[1 2 0] [2 0 1] [2 2 2]]
src/tensorflow/cnn.ipynb
###Markdown Table of Contents ###Code from PIL import Image import scipy.misc import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import random import tensorflow as tf # taken from: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█'): percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r') # Print New Line on Complete if iteration == total: print() from matplotlib.font_manager import FontProperties def display_image_samples(data, labels=None): # labels are used for plot titles and are optional font = FontProperties() font.set_family('monospace') plt.figure(figsize=(8,4)) rows, cols = 2, 4 # these are arbitrary random_ids = random.sample(range(len(data)), rows*cols) # randomly select the images for i in range(rows*cols): curr_index = random_ids[i] image = data[curr_index] title_str = ('shape: ' + str(image.shape)) if labels: title_str += ('\nclass ' + str(labels[i])) plt.subplot(rows, cols, i+1) plt.title(title_str, fontproperties=font) plt.imshow(image) plt.axis('off') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Fetch Data ###Code def clean_data(data): # apply greyscale data = data.mean(3) # dimension 3 of image shape corresponds to color channels # data = data[:, :, :, 0] # same as above # center-crop images # data = data[:, :, 7:data.shape[2]-1] print(data.shape) return data from sklearn.model_selection import train_test_split def load_data(data_path, k, test_size=0.3): x = [] y = [] for i in range(k): curr_dir_path = data_path + 'c' + str(i) + '/' for file in os.listdir(curr_dir_path): file_name = os.fsdecode(file) if file_name.endswith(".jpg"): file_path = (os.path.join(curr_dir_path, file_name)) img = np.asarray(Image.open(file_path))#.flatten() x.append(img) y.append(i) # apply greyscale and cropping x = clean_data(np.asarray(x)) # np.asarray(x_train), np.asarray(labels) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42) return np.asarray(x_train), np.asarray(y_train), np.asarray(x_test), np.asarray(y_test) ###Output _____no_output_____ ###Markdown Convolutional Neural Network ###Code def conv_layer(x, W, bias): # given an image x, apply all the filters W to it conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # strides=[batch, height, width, channels] # note: the padding determines what to do when the window runs out of pixels at the end conv_with_bias = tf.nn.bias_add(conv, bias) conv_out = tf.nn.relu(conv_with_bias) return conv_out def maxpool_layer(conv, k=2): # k: # window size # strides: steps taken to move across the image return (tf.nn.max_pool(conv, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')) def model(x): # define all needed variables W1 = tf.Variable(tf.random_normal([5,5,1,64])) b1 = tf.Variable(tf.random_normal([64])) W2 = tf.Variable(tf.random_normal([5,5,64,64])) b2 = tf.Variable(tf.random_normal([64])) W3 = tf.Variable(tf.random_normal([6*6*64, 1024])) b3 = tf.Variable(tf.random_normal([1024])) W_out = tf.Variable(tf.random_normal([1024, len(classes)])) b_out = tf.Variable(tf.random_normal([len(classes)])) # define the actual model x_reshaped = tf.reshape(x, shape=[-1,24,24,1]) # ---------- 1: CONVOLUTION + MAXPOOL ---------- # construct the first layer of convolution and maxpooling conv_out1 = conv_layer(x_reshaped, W1, b1) maxpool_out1 = maxpool_layer(conv_out1) # normalizing to "prevent neurons from saturating when inputs may have varying scale, and to aid generalization." norm1 = tf.nn.lrn(maxpool_out1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # ---------- 2: CONVOLUTION + MAXPOOL ---------- # construct the second layer conv_out2 = conv_layer(norm1, W2, b2) norm2 = tf.nn.lrn(conv_out2, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) maxpool_out2 = maxpool_layer(norm2) # ---------- 3: FULLY CONNECTED LAYER ---------- # first, flatten the images. instead of (6,6,64), now 6*6*64 = 2304 maxpool_reshaped = tf.reshape(maxpool_out2, [-1, W3.get_shape().as_list()[0]]) local = tf.add(tf.matmul(maxpool_reshaped, W3), b3) local_out = tf.nn.relu(local) # obtain the final predition out = tf.add(tf.matmul(local_out, W_out), b_out) return out def run_model(classes, x_train, y_train, x_test, y_test, num_epochs, num_batches): # define the x and y placeholders x = tf.placeholder(tf.float32, [None, 24 * 24]) y = tf.placeholder(tf.float32, [None, len(classes)]) # run the model y_predicted = model(x) # define the cost cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_predicted, labels=y)) # get the optimizer train_op = tf.train.AdamOptimizer(learning_rate = 0.001).minimize(cost) # train the model with tf.Session() as s: s.run(tf.global_variables_initializer()) onehot_labels = tf.one_hot(y_train, len(classes), on_value=1., off_value=0., axis=-1) onehot_labels = s.run(onehot_labels) batch_size = len(x_train) // num_batches # print("batch size: ", batch_size, '\n') for j in range(0, num_epochs): printProgressBar(0, 1, prefix='EPOCH ' + str(j+1) + ': ', length=50) # if j % 10 == 0: print("\nEPOCH ", j+1) total_cost = 0 for i in range(0, len(x_train), batch_size): batch_data = x_train[i:i+batch_size, :] batch_onehot_vals = onehot_labels[i:i+batch_size, :] _, c = s.run([train_op, cost], feed_dict={x: batch_data, y: batch_onehot_vals}) total_cost += c # if (j % 10 == 0) and (i % batch_size == 0): print("batch", i + 1, ", cost =", total_cost) printProgressBar(i, len(x_train), prefix='EPOCH ' + str(j+1) + ': ', suffix='Cost = ' + str(total_cost), length=50) print() # if j % 10 == 0: print("> Total Cost =", total_cost) # obtain the accuracy on the trained model print("Calculating Accuracy") correct_pred = tf.equal(tf.argmax(y_predicted,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) with tf.Session() as s: onehot_ytest_tf = tf.one_hot(y_test, len(classes), on_value=1., off_value=0., axis=-1) onehot_ytest = s.run(onehot_ytest_tf) s.run(tf.global_variables_initializer()) accuracy_val = s.run(accuracy,feed_dict={x: x_test, y:onehot_ytest}) print("\nACCURACY = ", accuracy_val*100, "%") ###Output _____no_output_____ ###Markdown Implementation ###Code csv_path = '../dataset/driver_imgs_list.csv' # train_data_path = '../dataset/original/train/' train_data_path = '../dataset/resized/' # train_data_path = '../dataset/samples/' drivers_csv = pd.read_csv(csv_path) classes = (np.unique(np.asarray(drivers_csv)[:,1])) NUM_CLASSES = len(classes) # 10 # fetch images from stored dataset in path x_train, y_train, x_test, y_test = load_data(train_data_path, NUM_CLASSES) # test perc = 0.3 (default) print(x_train.shape) # print a sample of images display_image_samples(x_train) print('\n---------------------------------------- DETAILS ---------------------------------------\n') print('data shape (original):', x_train.shape) # (13, 24, 24) # want to flatten it, like: (13, 576) x_train_flattened = x_train.reshape(x_train.shape[0], -1) # the -1 would be automatically calculated as 24*24 (=576) x_test_flattened = x_test.reshape(x_test.shape[0], -1) print('data shape (flattened):' , x_train_flattened.shape) print('\nclass names:', classes, '\nclass names shape:', classes.shape) print('\nlabels shape:', y_train.shape) print('\n------------------------------------- CONFIGURATION -------------------------------------\n') # SIZES: names: [] x 10 , data:(50000, 576), labels:(50000,) num_epochs = 1 num_batches = 5 print('epochs:', num_epochs) print('number of batches:', num_batches) print('batch size:', len(x_train) // num_batches) print('\n-----------------------------------------------------------------------------------------\n') run_model(classes, x_train_flattened, y_train, x_test_flattened, y_test, num_epochs, num_batches) ###Output ---------------------------------------- DETAILS --------------------------------------- data shape (original): (15024, 24, 24) data shape (flattened): (15024, 576) class names: ['c0' 'c1' 'c2' 'c3' 'c4' 'c5' 'c6' 'c7' 'c8' 'c9'] class names shape: (10,) labels shape: (15024,) ------------------------------------- CONFIGURATION ------------------------------------- epochs: 1 number of batches: 5 batch size: 3004 ----------------------------------------------------------------------------------------- EPOCH 0: |█████████████████████████████---------------------| 60.0% Cost = 64346.3671875
projecten data science/Comparing Cosmetics by Ingredients/notebook.ipynb
###Markdown 1. Cosmetics, chemicals... it's complicatedWhenever I want to try a new cosmetic item, it's so difficult to choose. It's actually more than difficult. It's sometimes scary because new items that I've never tried end up giving me skin trouble. We know the information we need is on the back of each product, but it's really hard to interpret those ingredient lists unless you're a chemist. You may be able to relate to this situation.So instead of buying and hoping for the best, why don't we use data science to help us predict which products may be good fits for us? In this notebook, we are going to create a content-based recommendation system where the 'content' will be the chemical components of cosmetics. Specifically, we will process ingredient lists for 1472 cosmetics on Sephora via word embedding, then visualize ingredient similarity using a machine learning method called t-SNE and an interactive visualization library called Bokeh. Let's inspect our data first. ###Code # Import libraries import pandas as pd import numpy as np from sklearn.manifold import TSNE # Load the data df = pd.read_csv("datasets/cosmetics.csv") # Check the first five rows display(df.sample(5)) # Inspect the types of products df.Label.value_counts() ###Output _____no_output_____ ###Markdown 2. Focus on one product category and one skin typeThere are six categories of product in our data (moisturizers, cleansers, face masks, eye creams, and sun protection) and there are five different skin types (combination, dry, normal, oily and sensitive). Because individuals have different product needs as well as different skin types, let's set up our workflow so its outputs (a t-SNE model and a visualization of that model) can be customized. For the example in this notebook, let's focus in on moisturizers for those with dry skin by filtering the data accordingly. ###Code # Filter for moisturizers moisturizers = df[df['Label']=='Moisturizer'] # Filter for dry skin as well moisturizers_dry =moisturizers[moisturizers['Dry']==1] # Reset index moisturizers_dry = moisturizers_dry.reset_index(drop=True) ###Output _____no_output_____ ###Markdown 3. Tokenizing the ingredientsTo get to our end goal of comparing ingredients in each product, we first need to do some preprocessing tasks and bookkeeping of the actual words in each product's ingredients list. The first step will be tokenizing the list of ingredients in Ingredients column. After splitting them into tokens, we'll make a binary bag of words. Then we will create a dictionary with the tokens, ingredient_idx, which will have the following format:{ "ingredient": index value, ... } ###Code # Initialize dictionary, list, and initial index ingredient_idx = {} corpus = [] idx = 0 # For loop for tokenization for i in range(len(moisturizers_dry)): ingredients = moisturizers_dry['Ingredients'][i] ingredients_lower = ingredients.lower() tokens = ingredients_lower.split(', ') corpus.append(tokens) for ingredient in tokens: if ingredient not in ingredient_idx: ingredient_idx[ingredient] = idx idx += 1 # Check the result print("The index for decyl oleate is", ingredient_idx['decyl oleate']) ingredient_idx ###Output _____no_output_____ ###Markdown 4. Initializing a document-term matrix (DTM)The next step is making a document-term matrix (DTM). Here each cosmetic product will correspond to a document, and each chemical composition will correspond to a term. This means we can think of the matrix as a “cosmetic-ingredient” matrix. The size of the matrix should be as the picture shown below.To create this matrix, we'll first make an empty matrix filled with zeros. The length of the matrix is the total number of cosmetic products in the data. The width of the matrix is the total number of ingredients. After initializing this empty matrix, we'll fill it in the following tasks. ###Code moisturizers_dry.shape[0] # Get the number of items and tokens M = moisturizers_dry.shape[0] N = len(ingredient_idx) # Initialize a matrix of zeros A = np.zeros((M, N)) ###Output _____no_output_____ ###Markdown 5. Creating a counter functionBefore we can fill the matrix, let's create a function to count the tokens (i.e., an ingredients list) for each row. Our end goal is to fill the matrix with 1 or 0: if an ingredient is in a cosmetic, the value is 1. If not, it remains 0. The name of this function, oh_encoder, will become clear next. ###Code # Define the oh_encoder function def oh_encoder(tokens): x = np.zeros(N) for ingredient in tokens: # Get the index for each ingredient idx = ingredient_idx[ingredient] # Put 1 at the corresponding indices x[idx] = 1 return x ###Output _____no_output_____ ###Markdown 6. The Cosmetic-Ingredient matrix!Now we'll apply the oh_encoder() functon to the tokens in corpus and set the values at each row of this matrix. So the result will tell us what ingredients each item is composed of. For example, if a cosmetic item contains water, niacin, decyl aleate and sh-polypeptide-1, the outcome of this item will be as follows. This is what we called one-hot encoding. By encoding each ingredient in the items, the Cosmetic-Ingredient matrix will be filled with binary values. ###Code # Make a document-term matrix i = 0 for tokens in corpus: A[i, :] = oh_encoder(tokens) i += 1 oh_encoder(tokens) ###Output _____no_output_____ ###Markdown 7. Dimension reduction with t-SNEThe dimensions of the existing matrix is (190, 2233), which means there are 2233 features in our data. For visualization, we should downsize this into two dimensions. We'll use t-SNE for reducing the dimension of the data here.T-distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality reduction technique that is well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. Specifically, this technique can reduce the dimension of data while keeping the similarities between the instances. This enables us to make a plot on the coordinate plane, which can be said as vectorizing. All of these cosmetic items in our data will be vectorized into two-dimensional coordinates, and the distances between the points will indicate the similarities between the items. ###Code # Dimension reduction with t-SNE model = TSNE(n_components=2, learning_rate=200, random_state=42) tsne_features = model.fit_transform(A) # Make X, Y columns moisturizers_dry['X'] = tsne_features[:, 0] moisturizers_dry['Y'] = tsne_features[:, 1] moisturizers_dry ###Output _____no_output_____ ###Markdown 8. Let's map the items with BokehWe are now ready to start creating our plot. With the t-SNE values, we can plot all our items on the coordinate plane. And the coolest part here is that it will also show us the name, the brand, the price and the rank of each item. Let's make a scatter plot using Bokeh and add a hover tool to show that information. Note that we won't display the plot yet as we will make some more additions to it. ###Code from bokeh.io import show, output_notebook, push_notebook from bokeh.plotting import figure from bokeh.models import ColumnDataSource, HoverTool output_notebook() # Make a source and a scatter plot source = ColumnDataSource(moisturizers_dry) plot = figure(x_axis_label = 'T-SNE 1', y_axis_label = 'T-SNE 2', width = 500, height = 400) plot.circle(x = 'X', y = 'Y', source = source, size = 10, color = '#FF7373', alpha = .8) ###Output _____no_output_____ ###Markdown 9. Adding a hover toolWhy don't we add a hover tool? Adding a hover tool allows us to check the information of each item whenever the cursor is directly over a glyph. We'll add tooltips with each product's name, brand, price, and rank (i.e., rating). ###Code # Create a HoverTool object hover = HoverTool(tooltips = [('Item', '@Name'), ('Brand', '@Brand'), ('Price', '$@Price'), ('Rank', '@Rank')]) plot.add_tools(hover) ###Output _____no_output_____ ###Markdown 10. Mapping the cosmetic itemsFinally, it's show time! Let's see how the map we've made looks like. Each point on the plot corresponds to the cosmetic items. Then what do the axes mean here? The axes of a t-SNE plot aren't easily interpretable in terms of the original data. Like mentioned above, t-SNE is a visualizing technique to plot high-dimensional data in a low-dimensional space. Therefore, it's not desirable to interpret a t-SNE plot quantitatively.Instead, what we can get from this map is the distance between the points (which items are close and which are far apart). The closer the distance between the two items is, the more similar the composition they have. Therefore this enables us to compare the items without having any chemistry background. ###Code # Plot the map show(plot) ###Output _____no_output_____ ###Markdown 11. Comparing two productsSince there are so many cosmetics and so many ingredients, the plot doesn't have many super obvious patterns that simpler t-SNE plots can have (example). Our plot requires some digging to find insights, but that's okay!Say we enjoyed a specific product, there's an increased chance we'd enjoy another product that is similar in chemical composition. Say we enjoyed AmorePacific's Color Control Cushion Compact Broad Spectrum SPF 50+. We could find this product on the plot and see if a similar product(s) exist. And it turns out it does! If we look at the points furthest left on the plot, we see LANEIGE's BB Cushion Hydra Radiance SPF 50 essentially overlaps with the AmorePacific product. By looking at the ingredients, we can visually confirm the compositions of the products are similar (though it is difficult to do, which is why we did this analysis in the first place!), plus LANEIGE's version is $22 cheaper and actually has higher ratings.It's not perfect, but it's useful. In real life, we can actually use our little ingredient-based recommendation engine help us make educated cosmetic purchase choices. ###Code # Print the ingredients of two similar cosmetics cosmetic_1 = moisturizers_dry[moisturizers_dry['Name'] == "Color Control Cushion Compact Broad Spectrum SPF 50+"] cosmetic_2 = moisturizers_dry[moisturizers_dry['Name'] == "BB Cushion Hydra Radiance SPF 50"] # Display each item's data and ingredients display(cosmetic_1) print(cosmetic_1.Ingredients.values) display(cosmetic_2) print(cosmetic_2.Ingredients.values) ###Output _____no_output_____
Week-03/2_Principal Component Analysis.ipynb
###Markdown Week 3 - Classical ML Models - Part II Principal Component AnalysisPrincipal components analysis (or PCA) is a technique used for dimensionality reduction enabling to identify signifficant correlations in the dataset. Consequently, it allows to reduce the number of dimensions within the dataset without lossing important information. Why do we need PCA?As we have seen so far, ML models has a tendency to work better with larger datasets: the good amount of data allows training of more accurate model. On the other hand, as we increase the dataset dimensions, we observe a few negative effects:- In large dimensional datasets, there are a lot of inconsistencies reducing model's accuracy- The usage of redundant features increases the computational time.This is where the dimensional reduction comes in - it helps to extract only the most signifficant correlations and reduce the number of dimensions. PCA computation steps 1. StandardizationIn short, the data standardization involves taking values and scalling them into a similar range. It ensures less biased model training process as larger values no longer shift whole model.It is carried out by subtracting each value by the mean and dividing by deviation.![standardization](https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-content/uploads/2019/08/Standardization-Principal-Component-Analysis-Edureka-300x77.png) 2. Computing covariance matrixAs it has been mentioned earlier, PCA helps to find the correlations within the dataset. These correlations between different dataset variables can be expressed in a covariance matrix.Mathematically speaking, covariance matrix can be imagined as a p x p matrix, where p represent the dimensions.For example, let's say we have a 2-dimensional dataset consisting of variables a and b. In such case, the covariance matrix can be expressed as:![covariance matrix](https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-content/uploads/2019/08/Covariance-Matrix-Principal-Component-Analysis-Edureka-150x61.png)- $Cov(a, a)$ shows the covariance between the variable and itself- $Cov(a, b)$ shows the covariance between two variables 3. Eigenvalues and eigenvectorsLet's say we have a 3-dimensional matrix **A** containing dataset variables:![matrix](https://miro.medium.com/max/139/1*OBDgTXEUlUt3wfKblp47BQ.png)According to theory, if we multiply the matrix by a vector and the resulting vector differs from the original vector by a scalar value, such vector is called **eigenvector**. The scalar value in such expression becomes **eigenvalue**. In mathematical terms - $A.x = lambda.x$ or $A.x - lambda.x = 0$.In such condition, the determinant of the characteristic function has to be equal to 0 or in other words:$det|A - lambda.I|$, where $I$ is identity function.To better understand this, let's analyze an example with 2-dimensions:![matrix](https://miro.medium.com/max/130/1*4htJZnnvPc6CLad3IqPLbw.png)After multilplying $\lambda$ by identity matrix and subtracting from the 2-dimensional matrix, we get:![matrix](https://miro.medium.com/max/144/1*eZSqgvsRvB8-sahbKqseGQ.png)After determining the determinant and solving it, we get the following eigenvalues: $\frac{5}{2} + i\frac{\sqrt{15}}{2}$ and $\frac{5}{2} - i\frac{\sqrt{15}}{2}$.To get the eigenvectors, we have to simply substitute the eigenvalues into the equation: $det|A - \lambda.I|$ 4. Computing principal componentsIn short, principal components are new set of variables obtained from the initial dataset that are signifficant an independent of each other. Once we computed the eigenvectors and eigenvalues, we have to order them in the descending order (first component is formed from eigenvector with the heighest eigenvalue and so on). 5. Reducing the dimensions of the datasetThe last step is to re-arrange the original data accoring to variables' signifficance. In order to do so, we simply multiply the transpose of the original data by the transpose of the feature vector. Python implementation Such pipeline would take the following code form: ###Code import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA def pca(X): #Scaling values X = StandardScaler().fit_transform(X) #Computing covariance matrix mean = np.mean(X, axis = 0) cov_mat = (X - mean).T.dot((X - mean)) / (X.shape[0]-1) #Calculating eigenvectors and eigenvalues cov_mat = np.cov(X.T) eig_vals, eig_vecs = np.linalg.eig(cov_mat) #Computing feature vectors eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))] return eig_pairs ###Output _____no_output_____ ###Markdown However, as in the previous examples, we Scikit-learn library provides functions for performing PCA computations which reduces the coding time. ###Code #PCA using scikit-learn def pca(X): pca = PCA(n_components=2) pca.fit_transform(X) ###Output _____no_output_____
site/_build/html/_sources/notebooks/09-big-data/01-intro-mapreduce.ipynb
###Markdown [![AnalyticsDojo](https://github.com/rpi-techfundamentals/spring2019-materials/blob/master/fig/final-logo.png?raw=1)](http://rpi.analyticsdojo.com)Introduction to Map Reducerpi.analyticsdojo.com Adopted from work by Steve Phelps:https://github.com/phelps-sg/python-bigdata This work is licensed under the Creative Commons Attribution 4.0 International license agreement. Overview1. Recap of functional programming in Python2. Python's `map` and `reduce` functions3. Writing parallel code using `map`4. The Map-Reduce programming model History- The Map-Reduce programming model was popularised by Google (Dean and Ghemawat 2008).- The first popular open-source implementation was Apache Hadoop, first released in 2011. Functional programmingConsider the following code: ###Code def double_everything_in(data): result = [] for i in data: result.append(2 * i) return result def quadruple_everything_in(data): result = [] for i in data: result.append(4 * i) return result double_everything_in([1, 2, 3, 4, 5]) quadruple_everything_in([1, 2, 3, 4, 5]) ###Output _____no_output_____ ###Markdown DRY - Fundamental Programming Concept- The above code violates the ["do not repeat yourself"](https://en.wikipedia.org/wiki/Don't_repeat_yourself_) principle of good software engineering practice.- How can rewrite the code so that it avoids duplication? ###Code def multiply_by_x_everything_in(x, data): result = [] for i in data: result.append(x * i) return result multiply_by_x_everything_in(2, [1, 2, 3, 4, 5]) multiply_by_x_everything_in(4, [1, 2, 3, 4, 5]) ###Output _____no_output_____ ###Markdown - Now consider the following code: ###Code def squared(x): return x*x def double(x): return x*2 def square_everything_in(data): result = [] for i in data: result.append(squared(i)) return result def double_everything_in(data): result = [] for i in data: result.append(double(i)) return result square_everything_in([1, 2, 3, 4, 5]) double_everything_in([1, 2, 3, 4, 5]) ###Output _____no_output_____ ###Markdown DRY - Fundamental Programming Concept- The above code violates the ["do not repeat yourself"](https://en.wikipedia.org/wiki/Don't_repeat_yourself_) principle of good software engineering practice.- How can rewrite the code so that it avoids duplication? Passing Functions as Values- Functions can be passed to other functions as values.- ###Code def apply_f_to_everything_in(f, data): result = [] for x in data: result.append(f(x)) return result apply_f_to_everything_in(squared, [1, 2, 3, 4, 5]) apply_f_to_everything_in(double, [1, 2, 3, 4, 5]) ###Output _____no_output_____ ###Markdown Lambda expressions- We can use anonymous functions to save having to define a function each time we want to use map. ###Code apply_f_to_everything_in(lambda x: x*x, [1, 2, 3, 4, 5]) ###Output _____no_output_____ ###Markdown Python's `map` function- Python has a built-in function `map` which is much faster than our version. ###Code map(lambda x: x*x, [1, 2, 3, 4, 5]) ###Output _____no_output_____ ###Markdown Implementing reduce- The `reduce` function is an example of a [fold](https://en.wikipedia.org/wiki/Fold_%28higher-order_function%29).- There are different ways we can fold data.- The following implements a *left* fold. ###Code def foldl(f, data, z): if (len(data) == 0): print (z) return z else: head = data[0] tail = data[1:] print ("Folding", head, "with", tail, "using", z) partial_result = f(z, data[0]) print ("Partial result is", partial_result) return foldl(f, tail, partial_result) def add(x, y): return x + y foldl(add, [3, 3, 3, 3, 3], 0) foldl(lambda x, y: x + y, [1, 2, 3, 4, 5], 0) foldl(lambda x, y: x - y, [1, 2, 3, 4, 5], 0) (((((0 - 1) - 2) - 3) - 4) - 5) ###Output _____no_output_____ ###Markdown - Subtraction is neither [commutative](https://en.wikipedia.org/wiki/Commutative_property) nor [associative](https://en.wikipedia.org/wiki/Associative_property), so the order in which apply the fold matters: ###Code (1 - (2 - (3 - (4 - (5 - 0))))) def foldr(f, data, z): if (len(data) == 0): return z else: return f(data[0], foldr(f, data[1:], z)) foldl(lambda x, y: x - y, [1, 2, 3, 4, 5], 0) foldr(lambda x, y: x - y, [1, 2, 3, 4, 5], 0) ###Output _____no_output_____ ###Markdown Python's `reduce` function.- Python's built-in `reduce` function is a *left* fold. ###Code from functools import reduce reduce(lambda x, y: x + y, [1, 2, 3, 4, 5]) reduce(lambda x, y: x - y, [1, 2, 3, 4, 5], 0) foldl(lambda x, y: x - y, [1, 2, 3, 4, 5], 0) ###Output Folding 1 with [2, 3, 4, 5] using 0 Partial result is -1 Folding 2 with [3, 4, 5] using -1 Partial result is -3 Folding 3 with [4, 5] using -3 Partial result is -6 Folding 4 with [5] using -6 Partial result is -10 Folding 5 with [] using -10 Partial result is -15 -15 ###Markdown Functional programming and parallelism- Functional programming lends itself to [parallel programming](https://computing.llnl.gov/tutorials/parallel_comp/Models).- The `map` function can easily be parallelised through [data-level parallelism](https://en.wikipedia.org/wiki/Data_parallelism), - provided that the function we supply as an argument is *free from* [side-effects](https://en.wikipedia.org/wiki/Side_effect_%28computer_science%29) - (which is why we avoid working with mutable data).- We can see this by rewriting it so: ###Code def perform_computation(f, result, data, i): print ("Computing the ", i, "th result...") # This could be scheduled on a different CPU result[i] = f(data[i]) def my_map(f, data): result = [None] * len(data) for i in range(len(data)): perform_computation(f, result, data, i) # Wait for other CPUs to finish, and then.. return result my_map(lambda x: x * x, [1, 2, 3, 4, 5]) ###Output Computing the 0 th result... Computing the 1 th result... Computing the 2 th result... Computing the 3 th result... Computing the 4 th result... ###Markdown A multi-threaded `map` function ###Code from threading import Thread def schedule_computation_threaded(f, result, data, threads, i): # Each function evaluation is scheduled on a different core. def my_job(): print ("Processing data:", data[i], "... ") result[i] = f(data[i]) print ("Finished job #", i) print ("Result was", result[i]) threads[i] = Thread(target=my_job) def my_map_multithreaded(f, data): n = len(data) result = [None] * n threads = [None] * n print ("Scheduling jobs.. ") for i in range(n): schedule_computation_threaded(f, result, data, threads, i) print ("Starting jobs.. ") for i in range(n): threads[i].start() print ("Waiting for jobs to finish.. ") for i in range(n): threads[i].join() print ("All done.") return result my_map_multithreaded(lambda x: x*x, [1, 2, 3, 4, 5]) from numpy.random import uniform from time import sleep def a_function_which_takes_a_long_time(x): sleep(uniform(2, 10)) # Simulate some long computation return x*x my_map_multithreaded(a_function_which_takes_a_long_time, [1, 2, 3, 4, 5]) ###Output Scheduling jobs.. Starting jobs.. Processing data: 1 ... Processing data: 2 ... Processing data: 3 ... Processing data: 4 ... Processing data:Waiting for jobs to finish.. 5 ... Finished job # 1 Result was 4 Finished job # 4 Result was 25 Finished job # 0 Result was 1 Finished job # 3 Result was 16 Finished job # 2 Result was 9 All done. ###Markdown Map Reduce- Map Reduce is a _programming model_ for scalable parallel processing.- Scalable here means that it can work on big data with very large compute clusters.- There are many implementations: e.g. Apache Hadoop and Apache Spark.- We can use Map-Reduce with any programming language: - Hadoop is written in Java - Spark is written in Scala, but has a Python interface.- *Functional programming* languages such as Python or Scala fit very well with the Map Reduce model: - However, we don't *have* to use functional programming. - A MapReduce implementation will take care of the low-level functionality so that you don't have to worry about: - load balancing - network I/O - network and disk transfer optimisation - handling of machine failures - serialization of data - etc..- The model is designed to move the processing to where the data resides. Typical steps in a Map Reduce Computation1. ETL a big data set.2. _Map_ operation: extract something you care about from each row3. "Shuffle and Sort": task/node allocation4. _Reduce_ operation: aggregate, summarise, filter or transform5. Write the results. Callbacks for Map Reduce- The data set, and the state of each stage of the computation, is represented as a set of key-value pairs.- The programmer provides a map function:$\operatorname{map}(k, v) \rightarrow \; \left*$ - and a reduce function:$\operatorname{reduce}(k', \left *) \rightarrow \; \left< k', v''\right> *$- The $*$ refers to a *collection* of values.- These collections are *not* ordered. Word Count Example- In this simple example, the input is a set of URLs, each record is a document.- Problem: compute how many times each word has occurred across data set. Word Count: Map - The input to $\operatorname{map}$ is a mapping:- Key: URL- Value: Contents of document $\left$ - In this example, our $\operatorname{map}$ function will process a given URL, and produces a mapping: - Key: word- Value: 1- So our original data-set will be transformed to: $\left$ $\left$ $\left$ $\left$ $\left$ $\left$ Word Count: Reduce- The reduce operation groups values according to their key, and then performs areduce on each key.- The collections are partitioned across different storage units, therefore.- Map-Reduce will fold the data in such a way that it minimises data-copying across the cluster.- Data in different partitions are reduced separately in parallel.- The final result is a reduce of the reduced data in each partition.- Therefore it is very important that our operator *is both commutative and associative*.- In our case the function is the `+` operator $\left$ $\left$ $\left$ $\left$ Map and Reduce compared with Python- Notice that these functions are formulated differently from the standard Python functions of the same name.- The `reduce` function works with key-value *pairs*.- It would be more apt to call it something like `reduceByKey`. MiniMapReduce- To illustrate how the Map-Reduce programming model works, we can implement our own Map-Reduce framework in Python.- This *illustrates* how a problem can be written in terms of `map` and `reduce` operations.- Note that these are illustrative functions; this is *not* how Hadoop or Apache Spark actually implement them. ###Code ########################################################## # # MiniMapReduce # # A non-parallel, non-scalable Map-Reduce implementation ########################################################## def groupByKey(data): result = dict() for key, value in data: if key in result: result[key].append(value) else: result[key] = [value] return result def reduceByKey(f, data): key_values = groupByKey(data) return map(lambda key: (key, reduce(f, key_values[key])), key_values) ###Output _____no_output_____ ###Markdown Word-count using MiniMapReduce ###Code data = map(lambda x: (x, 1), "to be or not to be".split()) data groupByKey(data) reduceByKey(lambda x, y: x + y, data) ###Output _____no_output_____ ###Markdown Parallelising MiniMapReduce- We can easily turn our Map-Reduce implementation into a parallel, multi-threaded frameworkby using the `my_map_multithreaded` function we defined earlier.- This will allow us to perform map-reduce computations that exploit parallel processing using *multiple* cores on a *single* computer. ###Code def reduceByKey_multithreaded(f, data): key_values = groupByKey(data) return my_map_multithreaded( lambda key: (key, reduce(f, key_values[key])), key_values.keys()) reduceByKey_multithreaded(lambda x, y: x + y, data) ###Output Scheduling jobs.. Starting jobs.. Waiting for jobs to finish.. All done. ###Markdown Parallelising the reduce step- Provided that our operator is both associative and commutative we canalso parallelise the reduce operation.- We partition the data into approximately equal subsets.- We then reduce each subset independently on a separate core.- The results can be combined in a final reduce step. Partitioning the data ###Code def split_data(data, split_points): partitions = [] n = 0 for i in split_points: partitions.append(data[n:i]) n = i partitions.append(data[n:]) return partitions data = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] partitioned_data = split_data(data, [3]) partitioned_data ###Output _____no_output_____ ###Markdown Reducing across partitions in parallel ###Code from threading import Thread def parallel_reduce(f, partitions): n = len(partitions) results = [None] * n threads = [None] * n def job(i): results[i] = reduce(f, partitions[i]) for i in range(n): threads[i] = Thread(target = lambda: job(i)) threads[i].start() for i in range(n): threads[i].join() return reduce(f, results) parallel_reduce(lambda x, y: x + y, partitioned_data) ###Output _____no_output_____
Chapter03/Exercise03_01/Exercise03_01.ipynb
###Markdown Exercise 3.1 - Building a sequential model with Keras high-level API Import TensorFlow module and print its version ###Code from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf print("TensorFlow version: {}".format(tf.__version__)) ###Output TensorFlow version: 2.1.0 ###Markdown Build the model using Keras `sequential` and `add` methods and print network summary ###Code model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(units=64, activation='relu', input_dim=100)) model.add(tf.keras.layers.Dense(units=10, activation='softmax')) model.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 64) 6464 _________________________________________________________________ dense_1 (Dense) (None, 10) 650 ================================================================= Total params: 7,114 Trainable params: 7,114 Non-trainable params: 0 _________________________________________________________________
qubiter/jupyter_notebooks/Teleportation-showcasing-IF_M-blocks.ipynb
###Markdown Teleportation example showcasing IF_M blocksThis notebook uses Qubiter to illustrate quantum Teleportation of the pure state of one qubit (at 0) to another qubit (at 2) with the help of an ancilla qubit (at 1).The purpose of this notebook is not to teach about the "theory" behind quantum Teleportation.For that, the reader can go to numerous sources on the internet (Wikipedia, course notes, etc.)The purpose is to showcase some of the features of Qubiter, especially IF_M blocks (and also PRINT statements and calculations and plotting of various density matrices associated with any quantum circuit).For a full inventory of Qubiter English file commands, see Qubiter's Rosetta Stone pdfIBM has posted at https://github.com/QISKit/qiskit-tutorial, a jupyter notebook similar to this one, analysing the same quantum circuit for quantum Teleportation from one qubit to another. Their notebook uses IBM's qasm language instead of Qubiter's language so you might profit from comparing their notebook to this one to decide which qc language you prefer. Qubiter includes subroutines that can translate its language to IBM qasm that can then be run on IBM qc hardware. First change your working directory to the qubiter directory in your computer, and add its path to the path environment variable. ###Code import os import sys print(os.getcwd()) os.chdir('../../') print(os.getcwd()) sys.path.insert(0,os.getcwd()) ###Output C:\Users\rrtuc\Desktop\backedup\python-projects\qubiter\qubiter\jupyter_notebooks C:\Users\rrtuc\Desktop\backedup\python-projects\qubiter ###Markdown Next do imports: ###Code from qubiter.SEO_writer import * from qubiter.SEO_simulator import * from qubiter.StateVec import * from qubiter.Plotter import * import numpy as np # np.set_printoptions(precision=5) import pandas as pan import seaborn as sea; sea.set() ###Output loaded OneBitGates, WITHOUT autograd.numpy ###Markdown Number of qubits is 3.Note that we use "bit" for both qbits and cbits.Use a trivial circuit embedder that embeds 3 qubits into same 3 qubits ###Code num_bits = 3 emb = CktEmbedder(num_bits, num_bits) ###Output _____no_output_____ ###Markdown Open a writer, and tell it where to write to.We will use zero bit last (ZL) convention which is the default. ###Code file_prefix = 'teleportation-with-ifs' wr = SEO_writer(file_prefix, emb) ###Output _____no_output_____ ###Markdown Write English and Picture files of the quantum circuit. Close those files once finished writing to them. ###Code wr.write_Rn(0, list(np.pi/180*np.array([20, 68, 46]))) wr.write_PRINT("ALL") wr.write_H(1) wr.write_cnot(control_bit=1, target_bit=2) #wr.write_one_bit_gate(0, OneBitGates.rot_ax, [-np.pi/8, 2]) wr.write_cnot(control_bit=0, target_bit=1) wr.write_H(0) wr.write_PRINT("ALL") wr.write_MEAS(0, kind=2) wr.write_MEAS(1, kind=2) wr.write_PRINT("ALL") wr.write_IF_M_beg(Controls.new_knob(num_bits, 0, True)) wr.write_Z(2) wr.write_IF_M_end() wr.write_PRINT("ALL") wr.write_IF_M_beg(Controls.new_knob(num_bits, 1, True)) wr.write_X(2) wr.write_IF_M_end() wr.write_PRINT("ALL") wr.close_files() ###Output _____no_output_____ ###Markdown The English and Picture files just produced have been stored in the io_folder. Here are links to them:* ../io_folder/teleportation-with-ifs_3_eng.txt* ../io_folder/teleportation-with-ifs_3_ZLpic.txt Let's print the English file: ###Code wr.print_eng_file() ###Output ROTN 20.0 68.0 46.0 AT 0 PRINT ALL HAD2 AT 1 SIGX AT 2 IF 1T SIGX AT 1 IF 0T HAD2 AT 0 PRINT ALL MEAS 2 AT 0 MEAS 2 AT 1 PRINT ALL IF_M( 0T ){ SIGZ AT 2 }IF_M PRINT ALL IF_M( 1T ){ SIGX AT 2 }IF_M PRINT ALL ###Markdown Let's print the Picture file. Time points downward, and, since we are using the ZL convention, the 0th qubit is rightmost. Note that after an M measurement, vertical lines "|"directly under M are replaced by colons ":"Line n of English file corresponds to line n of Picture file. ###Code wr.print_pic_file() ###Output | | R PRINT ALL | H | X---@ | | X---@ | | H PRINT ALL | | M | M : PRINT ALL IF_M( 0T ){ Z : : }IF_M PRINT ALL IF_M( 1T ){ X : : }IF_M PRINT ALL ###Markdown Now we create a simulator object with the ground state (|0> for each qubit) as initial state.Creating the simulator automatically evolves the state from initial to final.The PRINT statements that we have inserted in the quantum circuit print toscreen the state of the circuit at the line where they appear in the English and Picture files.Each PRINT is identified by its line number (line numbers start with 1, what is called 1 based numbers) in the Eng and Pic files. ###Code init_st_vec = StateVec.get_ground_st_vec(num_bits) sim = SEO_simulator(file_prefix, num_bits, init_st_vec) ###Output *************************beginning PRINT output PRINT line number=2 *********branch= pure state vector: ZL convention (Zero bit Last in state tuple) (000)ZL (0.09587145233013179+0.5418806258342269j) , prob= 0.3028259480263821 (001)ZL (-0.8010409251462487+0.23560027210183782j) , prob= 0.697174051973618 total probability of state vector (=one if no measurements)= 1.0000000000000002 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.30282594802638213, 0.6971740519736178), 1: (1.0000000000000002, -2.220446049250313e-16), 2: (1.0000000000000002, -2.220446049250313e-16)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=7 *********branch= pure state vector: ZL convention (Zero bit Last in state tuple) (000)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (100)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 (010)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 (110)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (001)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (101)ZL (0.4005204625731243-0.11780013605091888j) , prob= 0.17429351299340448 (011)ZL (0.4005204625731243-0.11780013605091888j) , prob= 0.17429351299340448 (111)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 total probability of state vector (=one if no measurements)= 0.9999999999999998 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.4999999999999999, 0.5000000000000001), 1: (0.4999999999999999, 0.5000000000000001), 2: (0.4999999999999999, 0.5000000000000001)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=10 *********branch= 0T1T state vector: ZL convention (Zero bit Last in state tuple) (011)ZL (0.4005204625731243-0.11780013605091888j) , prob= 0.17429351299340448 (111)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (0.0, 1.0), 2: (0.6971740519736179, 0.3028259480263821)} *********branch= 0T1F state vector: ZL convention (Zero bit Last in state tuple) (001)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (101)ZL (0.4005204625731243-0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (1.0, 0.0), 2: (0.3028259480263821, 0.6971740519736179)} *********branch= 0F1T state vector: ZL convention (Zero bit Last in state tuple) (010)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 (110)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (0.0, 1.0), 2: (0.6971740519736179, 0.3028259480263821)} *********branch= 0F1F state vector: ZL convention (Zero bit Last in state tuple) (000)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (100)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (1.0, 0.0), 2: (0.3028259480263821, 0.6971740519736179)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=14 *********branch= 0T1T state vector: ZL convention (Zero bit Last in state tuple) (011)ZL (0.4005204625731243-0.11780013605091888j) , prob= 0.17429351299340448 (111)ZL (-0.04793572616506589-0.2709403129171134j) , prob= 0.07570648700659549 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (0.0, 1.0), 2: (0.6971740519736179, 0.3028259480263821)} *********branch= 0T1F state vector: ZL convention (Zero bit Last in state tuple) (001)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (101)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (1.0, 0.0), 2: (0.3028259480263821, 0.6971740519736179)} *********branch= 0F1T state vector: ZL convention (Zero bit Last in state tuple) (010)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 (110)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (0.0, 1.0), 2: (0.6971740519736179, 0.3028259480263821)} *********branch= 0F1F state vector: ZL convention (Zero bit Last in state tuple) (000)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (100)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (1.0, 0.0), 2: (0.3028259480263821, 0.6971740519736179)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=18 *********branch= 0T1T state vector: ZL convention (Zero bit Last in state tuple) (011)ZL (-0.04793572616506589-0.2709403129171134j) , prob= 0.07570648700659549 (111)ZL (0.4005204625731243-0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (0.0, 1.0), 2: (0.3028259480263821, 0.6971740519736179)} *********branch= 0T1F state vector: ZL convention (Zero bit Last in state tuple) (001)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (101)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (1.0, 0.0), 2: (0.3028259480263821, 0.6971740519736179)} *********branch= 0F1T state vector: ZL convention (Zero bit Last in state tuple) (010)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (110)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (0.0, 1.0), 2: (0.3028259480263821, 0.6971740519736179)} *********branch= 0F1F state vector: ZL convention (Zero bit Last in state tuple) (000)ZL (0.04793572616506589+0.2709403129171134j) , prob= 0.07570648700659549 (100)ZL (-0.4005204625731243+0.11780013605091888j) , prob= 0.17429351299340448 total probability of state vector (=one if no measurements)= 0.24999999999999994 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (1.0, 0.0), 2: (0.3028259480263821, 0.6971740519736179)} ****************************ending PRINT output ###Markdown Initially, all qubits are in state |0>. Line 1 of the circuit rotates qubit 0 by an arbitrary one qubit rotation.Line 2 has a PRINT statement. If you look at the code for SEO_simulator.use_PRINT(),you will see that a PRINT statement in format "ALL" prints stuff to screen and also stores at sim.cached_sts[line_num] a copy of the current state.Next we convert the cached state at line_num=2 toa density matrix called den_mat1. Then we convert den_mat1 to a Pandas dataframeand display that dataframe as an HTML table. States are labeled in binary ZL (Zero bit last) convention. ###Code # density matrix cached at line number 2 of eng & pic files den_mat1 = StateVec.get_den_mat(num_bits, sim.cached_sts[2]) den_mat1_df = Plotter.get_den_mat_df(num_bits, den_mat1) # pan.set_option('precision', 5) # print("\nden_mat1=\n", den_mat1_df) den_mat1_df.style.format("{:.4}") ###Output _____no_output_____ ###Markdown Next we convert the final state (which is the current state of the simulator)to a density matrix called den_mat2. Then we convert that to a Pandas dataframeand display that dataframe as an HTML table. ###Code den_mat2 = StateVec.get_den_mat(num_bits, sim.cur_st_vec_dict) den_mat2_df = Plotter.get_den_mat_df(num_bits, den_mat2) # print("\nden_mat2=\n", den_mat2_df) den_mat2_df.style.format("{:.3}") ###Output _____no_output_____ ###Markdown Teleportation example showcasing IF_M blocksThis notebook uses Qubiter to illustrate quantum Teleportation of the pure state of one qubit (at 0) to another qubit (at 2) with the help of an ancilla qubit (at 1).The purpose of this notebook is not to teach about the "theory" behind quantum Teleportation.For that, the reader can go to numerous sources on the internet (Wikipedia, course notes, etc.)The purpose is to showcase some of the features of Qubiter, especially IF_M blocks (and also PRINT statements and calculations and plotting of various density matrices associated with any quantum circuit).For a full inventory of Qubiter English file commands, see Qubiter's Rosetta Stone pdfIBM has posted at https://github.com/QISKit/qiskit-tutorial, a jupyter notebook similar to this one, analysing the same quantum circuit for quantum Teleportation from one qubit to another. Their notebook uses IBM's qasm language instead of Qubiter's language so you might profit from comparing their notebook to this one to decide which qc language you prefer. Qubiter includes subroutines that can translate its language to IBM qasm that can then be run on IBM qc hardware. First change your working directory to the qubiter directory in your computer, and add its path to the path environment variable. ###Code import os import sys print(os.getcwd()) os.chdir('../../') print(os.getcwd()) sys.path.insert(0,os.getcwd()) ###Output /home/rrtucci/PycharmProjects/qubiter/qubiter/jupyter_notebooks /home/rrtucci/PycharmProjects/qubiter ###Markdown Next do imports: ###Code from qubiter.SEO_writer import * from qubiter.SEO_simulator import * from qubiter.StateVec import * from qubiter.Plotter import * import numpy as np # np.set_printoptions(precision=5) import pandas as pan import seaborn as sea; sea.set() ###Output loaded OneQubitGate, WITHOUT autograd.numpy ###Markdown Number of qubits is 3.Note that we use "bit" for both qbits and cbits.Use a trivial circuit embedder that embeds 3 qubits into same 3 qubits ###Code num_qbits = 3 emb = CktEmbedder(num_qbits, num_qbits) ###Output _____no_output_____ ###Markdown Open a writer, and tell it where to write to.We will use zero bit last (ZL) convention which is the default. ###Code file_prefix = 'teleportation-with-ifs' wr = SEO_writer(file_prefix, emb) ###Output _____no_output_____ ###Markdown Write English and Picture files of the quantum circuit. Close those files once finished writing to them. ###Code wr.write_Rn(0, list(np.pi/180*np.array([20, 68, 46]))) wr.write_PRINT("ALL") wr.write_H(1) wr.write_cnot(control_bit=1, target_bit=2) #wr.write_one_qbit_gate(0, OneQubitGate.rot_ax, [-np.pi/8, 2]) wr.write_cnot(control_bit=0, target_bit=1) wr.write_H(0) wr.write_PRINT("ALL") wr.write_MEAS(0, kind=2) wr.write_MEAS(1, kind=2) wr.write_PRINT("ALL") wr.write_IF_M_beg(Controls.new_single_trol(num_qbits, 0, True)) wr.write_Z(2) wr.write_IF_M_end() wr.write_PRINT("ALL") wr.write_IF_M_beg(Controls.new_single_trol(num_qbits, 1, True)) wr.write_X(2) wr.write_IF_M_end() wr.write_PRINT("ALL") wr.close_files() ###Output _____no_output_____ ###Markdown The English and Picture files just produced have been stored in the io_folder. Here are links to them:* ../io_folder/teleportation-with-ifs_3_eng.txt* ../io_folder/teleportation-with-ifs_3_ZLpic.txt Let's print the English file: ###Code wr.print_eng_file(jup=True) ###Output _____no_output_____ ###Markdown Let's print the Picture file. Time points downward, and, since we are using the ZL convention, the 0th qubit is rightmost. Note that after an M measurement, vertical lines "|"directly under M are replaced by colons ":"Line n of English file corresponds to line n of Picture file. ###Code wr.print_pic_file(jup=True) ###Output _____no_output_____ ###Markdown Now we create a simulator object with the ground state (|0> for each qubit) as initial state.Creating the simulator automatically evolves the state from initial to final.The PRINT statements that we have inserted in the quantum circuit print toscreen the state of the circuit at the line where they appear in the English and Picture files.Each PRINT is identified by its line number (line numbers start with 1, what is called 1 based numbers) in the Eng and Pic files. ###Code init_st_vec = StateVec.get_ground_st_vec(num_qbits) sim = SEO_simulator(file_prefix, num_qbits, init_st_vec) ###Output *************************beginning PRINT output PRINT line number=2 *********branch= pure state vector: ZL convention (Zero bit Last in state tuple) (000)ZL ( 0.095871 + 0.541881j) prob=0.302826 (001)ZL (-0.801041 + 0.235600j) prob=0.697174 total probability of state vector (=one if no measurements)= 1.000000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.302826, 0.697174), 1: (1.0, -0.0), 2: (1.0, -0.0)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=7 *********branch= pure state vector: ZL convention (Zero bit Last in state tuple) (000)ZL ( 0.047936 + 0.270940j) prob=0.075706 (100)ZL (-0.400520 + 0.117800j) prob=0.174294 (010)ZL (-0.400520 + 0.117800j) prob=0.174294 (110)ZL ( 0.047936 + 0.270940j) prob=0.075706 (001)ZL ( 0.047936 + 0.270940j) prob=0.075706 (101)ZL ( 0.400520 - 0.117800j) prob=0.174294 (011)ZL ( 0.400520 - 0.117800j) prob=0.174294 (111)ZL ( 0.047936 + 0.270940j) prob=0.075706 total probability of state vector (=one if no measurements)= 1.000000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.5, 0.5), 1: (0.5, 0.5), 2: (0.5, 0.5)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=10 *********branch= 0T1T state vector: ZL convention (Zero bit Last in state tuple) (011)ZL ( 0.400520 - 0.117800j) prob=0.174294 (111)ZL ( 0.047936 + 0.270940j) prob=0.075706 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (0.0, 1.0), 2: (0.697174, 0.302826)} *********branch= 0T1F state vector: ZL convention (Zero bit Last in state tuple) (001)ZL ( 0.047936 + 0.270940j) prob=0.075706 (101)ZL ( 0.400520 - 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (1.0, 0.0), 2: (0.302826, 0.697174)} *********branch= 0F1T state vector: ZL convention (Zero bit Last in state tuple) (010)ZL (-0.400520 + 0.117800j) prob=0.174294 (110)ZL ( 0.047936 + 0.270940j) prob=0.075706 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (0.0, 1.0), 2: (0.697174, 0.302826)} *********branch= 0F1F state vector: ZL convention (Zero bit Last in state tuple) (000)ZL ( 0.047936 + 0.270940j) prob=0.075706 (100)ZL (-0.400520 + 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (1.0, 0.0), 2: (0.302826, 0.697174)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=14 *********branch= 0T1T state vector: ZL convention (Zero bit Last in state tuple) (011)ZL ( 0.400520 - 0.117800j) prob=0.174294 (111)ZL (-0.047936 - 0.270940j) prob=0.075706 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (0.0, 1.0), 2: (0.697174, 0.302826)} *********branch= 0T1F state vector: ZL convention (Zero bit Last in state tuple) (001)ZL ( 0.047936 + 0.270940j) prob=0.075706 (101)ZL (-0.400520 + 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (1.0, 0.0), 2: (0.302826, 0.697174)} *********branch= 0F1T state vector: ZL convention (Zero bit Last in state tuple) (010)ZL (-0.400520 + 0.117800j) prob=0.174294 (110)ZL ( 0.047936 + 0.270940j) prob=0.075706 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (0.0, 1.0), 2: (0.697174, 0.302826)} *********branch= 0F1F state vector: ZL convention (Zero bit Last in state tuple) (000)ZL ( 0.047936 + 0.270940j) prob=0.075706 (100)ZL (-0.400520 + 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (1.0, 0.0), 2: (0.302826, 0.697174)} ****************************ending PRINT output *************************beginning PRINT output PRINT line number=18 *********branch= 0T1T state vector: ZL convention (Zero bit Last in state tuple) (011)ZL (-0.047936 - 0.270940j) prob=0.075706 (111)ZL ( 0.400520 - 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (0.0, 1.0), 2: (0.302826, 0.697174)} *********branch= 0T1F state vector: ZL convention (Zero bit Last in state tuple) (001)ZL ( 0.047936 + 0.270940j) prob=0.075706 (101)ZL (-0.400520 + 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (0.0, 1.0), 1: (1.0, 0.0), 2: (0.302826, 0.697174)} *********branch= 0F1T state vector: ZL convention (Zero bit Last in state tuple) (010)ZL ( 0.047936 + 0.270940j) prob=0.075706 (110)ZL (-0.400520 + 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (0.0, 1.0), 2: (0.302826, 0.697174)} *********branch= 0F1F state vector: ZL convention (Zero bit Last in state tuple) (000)ZL ( 0.047936 + 0.270940j) prob=0.075706 (100)ZL (-0.400520 + 0.117800j) prob=0.174294 total probability of state vector (=one if no measurements)= 0.250000 dictionary with key=qubit, value=(Prob(0), Prob(1)) {0: (1.0, 0.0), 1: (1.0, 0.0), 2: (0.302826, 0.697174)} ****************************ending PRINT output ###Markdown Initially, all qubits are in state |0>. Line 1 of the circuit rotates qubit 0 by an arbitrary one qubit rotation.Line 2 has a PRINT statement. If you look at the code for SEO_simulator.use_PRINT(),you will see that a PRINT statement in format "ALL" prints stuff to screen and also stores at sim.cached_sts[line_num] a copy of the current state.Next we convert the cached state at line_num=2 toa density matrix called den_mat1. Then we convert den_mat1 to a Pandas dataframeand display that dataframe as an HTML table. States are labeled in binary ZL (Zero bit last) convention. ###Code # density matrix cached at line number 2 of eng & pic files den_mat1 = StateVec.get_den_mat(num_qbits, sim.cached_sts[2]) den_mat1_df = Plotter.get_den_mat_df(num_qbits, den_mat1) # pan.set_option('precision', 5) # print("\nden_mat1=\n", den_mat1_df) den_mat1_df.style.format("{:.4}") ###Output _____no_output_____ ###Markdown Next we convert the final state (which is the current state of the simulator)to a density matrix called den_mat2. Then we convert that to a Pandas dataframeand display that dataframe as an HTML table. ###Code den_mat2 = StateVec.get_den_mat(num_qbits, sim.cur_st_vec_dict) den_mat2_df = Plotter.get_den_mat_df(num_qbits, den_mat2) # print("\nden_mat2=\n", den_mat2_df) den_mat2_df.style.format("{:.3}") ###Output _____no_output_____ ###Markdown Next we plot the entries of the square matrix den_mat2 as phasor arrows in a square grid (what is called a quiver plot). ###Code Plotter.plot_phasors(['den_mat2'], den_mat_df_list=[den_mat2_df]) ###Output _____no_output_____ ###Markdown Next we create a dataframe df by replacing each entry of den_mat2's dataframe byits magnitude. Then we display df as an HTML table. ###Code df = den_mat2_df.apply(lambda x : np.sqrt((x*np.conj(x)).to_numpy().real)) df ###Output _____no_output_____ ###Markdown df is a square dataframe of non-negative numbers so it begs to be plotted as a so called heatmap, using the wonderful package called seaborn. ###Code plt.close('all') ax = sea.heatmap(df, cmap="YlGnBu") ax.set_title('den_mat2 magnitude') plt.yticks(rotation=0) plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown The impurity of a density matrix $\rho$ is defined as $abs({\rm tr}(\rho^2) - 1 )$. It equals zero iff $\rho$is a pure state. Note that den_mat2 is not a pure state. ###Code print("impurity of den_mat2=", StateVec.get_impurity(den_mat2)) ###Output impurity of den_mat2= 0.75 ###Markdown Next we calculate the trace over bits 0 and 1 of den_mat2. We call this partialdensity matrix tr01_den_mat2. We convert it to a dataframe, and display that dataframe as an HTML table.Note that the state at qubit 0 in den_mat1 has been successfully duplicated at qubit 2 with density matrix tr01_den_mat2. ###Code tr01_den_mat2 = StateVec.get_partial_tr(num_qbits, den_mat2, {0, 1}) tr01_den_mat2_df = Plotter.get_den_mat_df(1, tr01_den_mat2) # print("\ntr01_den_mat2=\n", tr01_den_mat2_df) tr01_den_mat2_df.style.format("{:.4}") ###Output _____no_output_____ ###Markdown As expected, tr01_den_mat2 is a pure state. ###Code print("impurity of tr01_den_mat2=", StateVec.get_impurity(tr01_den_mat2)) ###Output impurity of tr01_den_mat2= 2.220446049250313e-16 ###Markdown Next we plot the entries of the square matrix den_mat2 as phasor arrows in a square grid (what is called a quiver plot). ###Code Plotter.plot_phasors(['den_mat2'], den_mat_df_list=[den_mat2_df]) ###Output _____no_output_____ ###Markdown Next we create a dataframe df by replacing each entry of den_mat2's dataframe byits magnitude. Then we display df as an HTML table. ###Code df = den_mat2_df.apply(lambda x : np.sqrt(np.real(x*np.conj(x)))) df ###Output _____no_output_____ ###Markdown df is a square dataframe of non-negative numbers so it begs to be plotted as a so called heatmap, using the wonderful package called seaborn. ###Code plt.close('all') ax = sea.heatmap(df, cmap="YlGnBu") ax.set_title('den_mat2 magnitude') plt.yticks(rotation=0) plt.xticks(rotation=90) plt.show() ###Output _____no_output_____ ###Markdown The impurity of a density matrix $\rho$ is defined as $abs({\rm tr}(\rho^2) - 1 )$. It equals zero iff $\rho$is a pure state. Note that den_mat2 is not a pure state. ###Code print("impurity of den_mat2=", StateVec.get_impurity(den_mat2)) ###Output impurity of den_mat2= 0.75 ###Markdown Next we calculate the trace over bits 0 and 1 of den_mat2. We call this partialdensity matrix tr01_den_mat2. We convert it to a dataframe, and display that dataframe as an HTML table.Note that the state at qubit 0 in den_mat1 has been successfully duplicated at qubit 2 with density matrix tr01_den_mat2. ###Code tr01_den_mat2 = StateVec.get_partial_tr(num_bits, den_mat2, {0, 1}) tr01_den_mat2_df = Plotter.get_den_mat_df(1, tr01_den_mat2) # print("\ntr01_den_mat2=\n", tr01_den_mat2_df) tr01_den_mat2_df.style.format("{:.4}") ###Output _____no_output_____ ###Markdown As expected, tr01_den_mat2 is a pure state. ###Code print("impurity of tr01_den_mat2=", StateVec.get_impurity(tr01_den_mat2)) ###Output impurity of tr01_den_mat2= 2.220446049250313e-16
breast-cancer-analysis-and-prediction.ipynb
###Markdown 1.3. Missing values ###Code null_feat = pd.DataFrame(len(data['id']) - data.isnull().sum(), columns = ['Count']) trace = go.Bar(x = null_feat.index, y = null_feat['Count'] ,opacity = 0.8, marker=dict(color = 'lightgrey', line=dict(color='#000000',width=1.5))) layout = dict(title = "Missing Values") fig = dict(data = [trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown All features are complete, only 'Unnamed: 32' is completely null, probably an error in the dataset, we drop it in below 1.4. Reassign target and drop useless features ###Code # Drop useless variables data = data.drop(['Unnamed: 32','id'],axis = 1) # Reassign target data.diagnosis.replace(to_replace = dict(M = 1, B = 0), inplace = True) ###Output _____no_output_____ ###Markdown 2. Exploratory Data Analysis (EDA) 2.1. Head and describe ###Code # Head data.head() # describe data.describe() ###Output _____no_output_____ ###Markdown 2.2. Target distribution (number and %) ###Code # 2 datasets M = data[(data['diagnosis'] != 0)] B = data[(data['diagnosis'] == 0)] #------------COUNT----------------------- trace = go.Bar(x = (len(M), len(B)), y = ['malignant', 'benign'], orientation = 'h', opacity = 0.8, marker=dict( color=[ 'gold', 'lightskyblue'], line=dict(color='#000000',width=1.5))) layout = dict(title = 'Count of diagnosis variable') fig = dict(data = [trace], layout=layout) py.iplot(fig) #------------PERCENTAGE------------------- trace = go.Pie(labels = ['benign','malignant'], values = data['diagnosis'].value_counts(), textfont=dict(size=15), opacity = 0.8, marker=dict(colors=['lightskyblue', 'gold'], line=dict(color='#000000', width=1.5))) layout = dict(title = 'Distribution of diagnosis variable') fig = dict(data = [trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 2.3. Features distribution (hue = diagnosis) ###Code def plot_distribution(data_select, size_bin) : tmp1 = M[data_select] tmp2 = B[data_select] hist_data = [tmp1, tmp2] group_labels = ['malignant', 'benign'] colors = ['#FFD700', '#7EC0EE'] fig = ff.create_distplot(hist_data, group_labels, colors = colors, show_hist = True, bin_size = size_bin, curve_type='kde') fig['layout'].update(title = data_select) py.iplot(fig, filename = 'Density plot') ###Output _____no_output_____ ###Markdown Bellow, you can remove the '' to show all features distribution (except the first line) ###Code #plot distribution 'mean' plot_distribution('radius_mean', .5) plot_distribution('texture_mean', .5) plot_distribution('perimeter_mean', 5) plot_distribution('area_mean', 10) #plot_distribution('smoothness_mean', .5) #plot_distribution('compactness_mean' .5) #plot_distribution('concavity_mean' .5) #plot_distribution('concave points_mean' .5) #plot_distribution('symmetry_mean' .5) #plot_distribution('fractal_dimension_mean' .5) #plot distribution 'se' plot_distribution('radius_se', .1) plot_distribution('texture_se', .1) plot_distribution('perimeter_se', .5) plot_distribution('area_se', 5) #plot_distribution('smoothness_se', .5) #plot_distribution('compactness_se', .5) #plot_distribution('concavity_se', .5) #plot_distribution('concave points_se', .5) #plot_distribution('symmetry_se', .5) #plot_distribution('fractal_dimension_se', .5) #plot distribution 'worst' plot_distribution('radius_worst', .5) plot_distribution('texture_worst', .5) plot_distribution('perimeter_worst', 5) plot_distribution('area_worst', 10) #plot_distribution('smoothness_worst', .5) #plot_distribution('compactness_worst', .5) #plot_distribution('concavity_worst', .5) #plot_distribution('concave points_worst', .5) #plot_distribution('symmetry_worst', .5) #plot_distribution('fractal_dimension_worst', .5) ###Output _____no_output_____ ###Markdown 2.4. Correlation matrix ###Code #correlation correlation = data.corr() #tick labels matrix_cols = correlation.columns.tolist() #convert to array corr_array = np.array(correlation) #Plotting trace = go.Heatmap(z = corr_array, x = matrix_cols, y = matrix_cols, xgap = 2, ygap = 2, colorscale='Viridis', colorbar = dict() , ) layout = go.Layout(dict(title = 'Correlation Matrix for variables', autosize = False, height = 720, width = 800, margin = dict(r = 0 ,l = 210, t = 25,b = 210, ), yaxis = dict(tickfont = dict(size = 9)), xaxis = dict(tickfont = dict(size = 9)), ) ) fig = go.Figure(data = [trace],layout = layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown Let's check the correlation between few features by pair 2.5. Positive correlated features ###Code def plot_feat1_feat2(feat1, feat2) : trace0 = go.Scatter( x = M[feat1], y = M[feat2], name = 'malignant', mode = 'markers', marker = dict(color = '#FFD700', line = dict( width = 1))) trace1 = go.Scatter( x = B[feat1], y = B[feat2], name = 'benign', mode = 'markers', marker = dict(color = '#7EC0EE', line = dict( width = 1))) layout = dict(title = feat1 +" "+"vs"+" "+ feat2, yaxis = dict(title = feat2,zeroline = False), xaxis = dict(title = feat1, zeroline = False) ) plots = [trace0, trace1] fig = dict(data = plots, layout=layout) py.iplot(fig) plot_feat1_feat2('perimeter_mean','radius_worst') plot_feat1_feat2('area_mean','radius_worst') plot_feat1_feat2('texture_mean','texture_worst') plot_feat1_feat2('area_worst','radius_worst') #seaborn version : palette ={0 : 'lightblue', 1 : 'gold'} edgecolor = 'grey' # Plot + fig = plt.figure(figsize=(12,12)) plt.subplot(221) ax1 = sns.scatterplot(x = data['perimeter_mean'], y = data['radius_worst'], hue = "diagnosis", data = data, palette = palette, edgecolor=edgecolor) plt.title('perimeter mean vs radius worst') plt.subplot(222) ax2 = sns.scatterplot(x = data['area_mean'], y = data['radius_worst'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('area mean vs radius worst') plt.subplot(223) ax3 = sns.scatterplot(x = data['texture_mean'], y = data['texture_worst'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('texture mean vs texture worst') plt.subplot(224) ax4 = sns.scatterplot(x = data['area_worst'], y = data['radius_worst'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('area mean vs radius worst') fig.suptitle('Positive correlated features', fontsize = 20) plt.savefig('1') plt.show() ###Output _____no_output_____ ###Markdown 2.6. Uncorrelated features ###Code plot_feat1_feat2('smoothness_mean','texture_mean') plot_feat1_feat2('radius_mean','fractal_dimension_worst') plot_feat1_feat2('texture_mean','symmetry_mean') plot_feat1_feat2('texture_mean','symmetry_se') # seaborn version : fig = plt.figure(figsize=(12,12)) plt.subplot(221) ax1 = sns.scatterplot(x = data['smoothness_mean'], y = data['texture_mean'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('smoothness mean vs texture mean') plt.subplot(222) ax2 = sns.scatterplot(x = data['radius_mean'], y = data['fractal_dimension_worst'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('radius mean vs fractal dimension_worst') plt.subplot(223) ax3 = sns.scatterplot(x = data['texture_mean'], y = data['symmetry_mean'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('texture mean vs symmetry mean') plt.subplot(224) ax4 = sns.scatterplot(x = data['texture_mean'], y = data['symmetry_se'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('texture mean vs symmetry se') fig.suptitle('Uncorrelated features', fontsize = 20) plt.savefig('2') plt.show() ###Output _____no_output_____ ###Markdown 2.7. Negative correlated features ###Code plot_feat1_feat2('area_mean','fractal_dimension_mean') plot_feat1_feat2('radius_mean','fractal_dimension_mean') plot_feat1_feat2('area_mean','smoothness_se') plot_feat1_feat2('smoothness_se','perimeter_mean') # seaborn version fig = plt.figure(figsize=(12,12)) plt.subplot(221) ax1 = sns.scatterplot(x = data['area_mean'], y = data['fractal_dimension_mean'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('smoothness mean vs fractal dimension mean') plt.subplot(222) ax2 = sns.scatterplot(x = data['radius_mean'], y = data['fractal_dimension_mean'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('radius mean vs fractal dimension mean') plt.subplot(223) ax2 = sns.scatterplot(x = data['area_mean'], y = data['smoothness_se'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('area mean vs fractal smoothness se') plt.subplot(224) ax2 = sns.scatterplot(x = data['smoothness_se'], y = data['perimeter_mean'], hue = "diagnosis", data = data, palette =palette, edgecolor=edgecolor) plt.title('smoothness se vs perimeter mean') fig.suptitle('Negative correlated features', fontsize = 20) plt.savefig('3') plt.show() ###Output _____no_output_____ ###Markdown 3. Principal Component Analysis 3.1. Compute PCA ###Code target_pca = data['diagnosis'] data_pca = data.drop('diagnosis', axis=1) target_pca = pd.DataFrame(target_pca) #To make a PCA, normalize data is essential X_pca = data_pca.values X_std = StandardScaler().fit_transform(X_pca) pca = PCA(svd_solver='full') pca_std = pca.fit(X_std, target_pca).transform(X_std) pca_std = pd.DataFrame(pca_std) pca_std = pca_std.merge(target_pca, left_index = True, right_index = True, how = 'left') pca_std['diagnosis'] = pca_std['diagnosis'].replace({1:'malignant',0:'benign'}) ###Output _____no_output_____ ###Markdown 3.2. PCA pie plot with 6 components (88.8%) ###Code #explained_variance var_pca = pd.DataFrame(pca.explained_variance_ratio_) var_pca = var_pca.T #----------SUM AND DROP COMP [7:30] col_list = list(v for v in chain(pca_std.columns[6:30])) var_pca['OTHERS_COMP'] = var_pca[col_list].sum(axis=1) var_pca.drop(var_pca[col_list],axis=1,inplace=True) var_pca = var_pca.T labels = ['COMP1','COMP2','COMP3','COMP4','COMP5','COMP6', 'COMP7 - 30'] colors = ['gold', 'lightgreen', 'lightcoral', 'lightskyblue', 'lightgrey', 'orange', 'white'] trace = go.Pie(labels = labels, values = var_pca[0].values, opacity = 0.8, textfont=dict(size=15), marker=dict(colors=colors, line=dict(color='#000000', width=1.5))) layout = dict(title = 'PCA : components and explained variance (6 comp = 88.8%)') fig = dict(data = [trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 3.3. PCA scatter plot with 2 components (63.3%) ###Code pca = PCA(n_components = 2) pca_std = pca.fit(X_std, target_pca).transform(X_std) pca_std = pd.DataFrame(pca_std,columns = ['COMP1','COMP2']) pca_std = pca_std.merge(target_pca,left_index = True,right_index = True,how = 'left') pca_std['diagnosis'] = pca_std['diagnosis'].replace({1:'malignant',0:'benign'}) def pca_scatter(target,color) : tracer = go.Scatter(x = pca_std[pca_std['diagnosis'] == target]['COMP1'] , y = pca_std[pca_std['diagnosis'] == target]['COMP2'], name = target, mode = 'markers', marker = dict(color = color,line = dict(width = 1)) ) return tracer layout = go.Layout(dict(title = 'PCA Scatter plot (2 comp = 63.3%)', xaxis = dict(gridcolor = 'rgb(255, 255, 255)', title = 'COMP1 = 44.3%', zerolinewidth=1,ticklen=5,gridwidth=2), yaxis = dict(gridcolor = 'rgb(255, 255, 255)', title = 'COMP2 = 19.0%', zerolinewidth=1,ticklen=5,gridwidth=2), height = 800 )) trace1 = pca_scatter('malignant','#FFD700') trace2 = pca_scatter('benign','#7EC0EE') plots = [trace2,trace1] fig = go.Figure(data = plots,layout = layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 3.4. PCA scatter plot with 3 components (72.7%) ###Code pca = PCA(n_components = 3) pca_std = pca.fit(X_std, target_pca).transform(X_std) pca_std = pd.DataFrame(pca_std,columns = ['COMP1','COMP2','COMP3']) pca_std = pca_std.merge(target_pca, left_index = True, right_index = True,how = 'left') pca_std['diagnosis'] = pca_std['diagnosis'].replace({1:'malignant',0:'benign'}) M_pca = pca_std[(pca_std['diagnosis'] == 'malignant')] B_pca = pca_std[(pca_std['diagnosis'] == 'benign')] trace1 = go.Scatter3d(x = M_pca['COMP1'], y = M_pca['COMP3'], z = M_pca['COMP2'], mode = "markers", name = "malignant", marker = dict(size = 4,color = '#FFD700',line = dict(width = 1)) ) trace2 = go.Scatter3d(x = B_pca['COMP1'], y = B_pca['COMP3'], z = B_pca['COMP2'], name = 'benign', mode = 'markers', marker = dict(size = 4,color= '#7EC0EE',line = dict(width = 1)) ) layout = go.Layout(dict(title = 'PCA Scatter plot (3 comp = 72.7%)', scene = dict(camera = dict(up=dict(x= 0 , y=0, z=0), center=dict(x=0, y=0, z=0), eye=dict(x=1.25, y=1.25, z=1.25)), xaxis = dict(title = 'COMP1', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)'), yaxis = dict(title = 'COMP3', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)' ), zaxis = dict(title = 'COMP2', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)' )),height = 700)) plots = [trace1,trace2] fig = go.Figure(data = plots,layout = layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 4. Define functions This part is essential to measure the performance of a model : roc, cross validation, learning curve ... 4.1. Confusion matrix and show metrics The confusion matrix, also known as the error matrix, allows visualization of the performance of an algorithm :* true positive (TP) : Malignant tumour correctly identified as malignant* true negative (TN) : Benign tumour correctly identified as benign* false positive (FP) : Benign tumour incorrectly identified as malignant * false negative (FN) : Malignant tumour incorrectly identified as benignMetrics : * Accuracy : (TP +TN) / (TP + TN + FP +FN)* Precision : TP / (TP + FP)* Recall : TP / (TP + FN) ###Code # Confusion matrix def plot_confusion_matrix(cm, classes, normalize = False, title = 'Confusion matrix"', cmap = plt.cm.Blues) : plt.imshow(cm, interpolation = 'nearest', cmap = cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation = 0) plt.yticks(tick_marks, classes) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])) : plt.text(j, i, cm[i, j], horizontalalignment = 'center', color = 'white' if cm[i, j] > thresh else 'black') plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Show metrics def show_metrics(): tp = cm[1,1] fn = cm[1,0] fp = cm[0,1] tn = cm[0,0] print('Accuracy = {:.3f}'.format((tp+tn)/(tp+tn+fp+fn))) print('Precision = {:.3f}'.format(tp/(tp+fp))) print('Recall = {:.3f}'.format(tp/(tp+fn))) print('F1_score = {:.3f}'.format(2*(((tp/(tp+fp))*(tp/(tp+fn)))/ ((tp/(tp+fp))+(tp/(tp+fn)))))) ###Output _____no_output_____ ###Markdown 4.2. Precision – Recall curve The precision-recall curve shows the tradeoff between precision and recall for different threshold ###Code # Precision-recall curve def plot_precision_recall(): plt.step(recall, precision, color = 'b', alpha = 0.2, where = 'post') plt.fill_between(recall, precision, step ='post', alpha = 0.2, color = 'b') plt.plot(recall, precision, linewidth=2) plt.xlim([0.0,1]) plt.ylim([0.0,1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Precision Recall Curve') plt.show(); ###Output _____no_output_____ ###Markdown 4.3. ROC curve The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. ###Code # ROC curve def plot_roc(): plt.plot(fpr, tpr, label = 'ROC curve', linewidth = 2) plt.plot([0,1],[0,1], 'k--', linewidth = 2) # plt.xlim([0.0,0.001]) # plt.ylim([0.0,1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.show(); ###Output _____no_output_____ ###Markdown 4.4. Learning curve The Learning curve determines cross-validated training and test scores. ###Code # Learning curve def plot_learning_curve(estimator, title, X, y, ylim = None, cv = None, n_jobs = 1, train_sizes = np.linspace(.1, 1.0, 5)): """ Plots a learning curve. http://scikit-learn.org/stable/modules/learning_curve.html """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training examples') plt.ylabel('Score') train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv = cv, n_jobs = n_jobs, train_sizes = train_sizes) train_scores_mean = np.mean(train_scores, axis = 1) train_scores_std = np.std(train_scores, axis = 1) test_scores_mean = np.mean(test_scores, axis = 1) test_scores_std = np.std(test_scores, axis = 1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha = 0.1, color = "g") plt.plot(train_sizes, train_scores_mean, 'o-', color = "r", label = "Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color = "g", label = "Cross-validation score") plt.legend(loc = "best") return plt ###Output _____no_output_____ ###Markdown 4.5. Cross validation metrics Cross-validation is a technique to evaluate predictive models by partitioning the original sample into a training set to train the model, and a test set to evaluate it. ###Code # Cross val metric def cross_val_metrics(model) : scores = ['accuracy', 'precision', 'recall'] for sc in scores: scores = cross_val_score(model, X, y, cv = 5, scoring = sc) print('[%s] : %0.5f (+/- %0.5f)'%(sc, scores.mean(), scores.std())) ###Output _____no_output_____ ###Markdown 5. Prepare dataset 5.1. Define (X, y) * y = diagnosis (target)* X = features (radius_mean, area_se, ....) ###Code # Def X and Y y = np.array(data.diagnosis.tolist()) data = data.drop('diagnosis', 1) X = np.array(data.as_matrix()) ###Output _____no_output_____ ###Markdown 5.2. Standard scaler (X) A variable that ranges between 0 and 100 will outweigh a variable that ranges between 0 and 1. Using these variables without standardization in effect gives the variable with the larger range a bigger weight in the analysis ###Code # Normalization scaler = StandardScaler() X = scaler.fit_transform(X) ###Output _____no_output_____ ###Markdown 5.3. Train test split ###Code # Train_test split random_state = 42 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.12, random_state = random_state) ###Output _____no_output_____ ###Markdown 6. Predictive model : Logistic Regression 6.1. Logistic Regression and GridSearch CV to optimise hyperparameters (accuracy) ###Code # Find best hyperparameters (accuracy) log_clf = LogisticRegression(random_state = random_state) param_grid = { 'penalty' : ['l2','l1'], 'C' : [0.001, 0.01, 0.1, 1, 10, 100, 1000] } CV_log_clf = GridSearchCV(estimator = log_clf, param_grid = param_grid , scoring = 'accuracy', verbose = 1, n_jobs = -1) CV_log_clf.fit(X_train, y_train) best_parameters = CV_log_clf.best_params_ print('The best parameters for using this model is', best_parameters) #Log with best hyperparameters CV_log_clf = LogisticRegression(C = best_parameters['C'], penalty = best_parameters['penalty'], random_state = random_state) CV_log_clf.fit(X_train, y_train) y_pred = CV_log_clf.predict(X_test) y_score = CV_log_clf.decision_function(X_test) # Confusion maxtrix & metrics cm = confusion_matrix(y_test, y_pred) class_names = [0,1] plt.figure() plot_confusion_matrix(cm, classes=class_names, title='Logistic Confusion matrix') plt.savefig('6') plt.show() show_metrics() # ROC curve fpr, tpr, t = roc_curve(y_test, y_score) plot_roc() ###Output _____no_output_____ ###Markdown 6.2. RFE : Recursive features elimination (30 features => 15 features) Recursive feature elimination (RFE) is a feature selection method that fits a model and removes the weakest feature (or features) until the specified number of features is reached. Features are ranked by the model’s coef_ or feature_importances_ ###Code #Logistic regression with RFE log_clf = LogisticRegression(C = best_parameters['C'], penalty = best_parameters['penalty'], random_state = random_state) selector = RFE(log_clf) selector = selector.fit(X_train, y_train) y_pred = selector.predict(X_test) y_score = selector.predict_proba(X_test)[:,1] # Confusion maxtrix & metrics cm = confusion_matrix(y_test, y_pred) class_names = [0,1] plt.figure() plot_confusion_matrix(cm, classes=class_names, title='Logistic Confusion matrix') plt.show() show_metrics() # ROC curve fpr, tpr, t = roc_curve(y_test, y_score) plot_roc() # support and ranking RFE print(selector.support_) print(selector.ranking_) ###Output _____no_output_____ ###Markdown 6.3. Compare learning curves and cross validation scores ###Code #Learning curve Log with best hyperpara plot_learning_curve(CV_log_clf, 'Learning Curve For Logistic Model', X, y, (0.85,1.05), 10) plt.savefig('7') plt.show() #Learning curve Log with RFE plot_learning_curve(selector, 'Learning Curve For Logistic Model with RFE', X, y, (0.85,1.05), 10) plt.show() # Cross val Log cross_log = cross_val_metrics(CV_log_clf) # Cross val Log with RFE cross_selector = cross_val_metrics(selector) ###Output _____no_output_____ ###Markdown With only 15 features and 5 folds, we got an accuracy of 97.4 with a standard deviation of 0.78.To follow, we don't use the selector, the log cfl is most performant but the code is here for you :) 6.4. Select threshold for a recall = 100% (all malignant tumors detected) For this study, the most important is to detect all malignants tumours. ###Code # Threshold thresholds_adj = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] plt.figure(figsize = (15,15)) j = 1 for i in thresholds_adj: y_score = CV_log_clf.predict_proba(X_test)[:,1] > i plt.subplot(3,3,j) j += 1 cm = confusion_matrix(y_test, y_score) tp = cm[1,1] fn = cm[1,0] fp = cm[0,1] tn = cm[0,0] print('Recall w/ threshold = %s :'%i, (tp/(tp+fn))) class_names = [0,1] plot_confusion_matrix(cm, classes=class_names, title='Threshold = %s'%i) ###Output _____no_output_____ ###Markdown 6.5. Predicting with recall = 100% ###Code # Recall = 1. y_score = CV_log_clf.predict_proba(X_test)[:,1] > 0.1 cm = confusion_matrix(y_test, y_score) class_names = [0,1] show_metrics() ###Output _____no_output_____ ###Markdown With 2 models we can increase the precision while keeping a recall = 100% 7. Predictive model 2 : Ensemble Classifier to maximise precision and detect all malignant tumors 7.1. Logistic Regression and GridSearch CV to optimise hyperparameters (recall) ###Code # Find the best parameters (recall) log2_clf = LogisticRegression(random_state = random_state) param_grid = { 'penalty' : ['l2','l1'], 'C' : [0.001, 0.01, 0.1, 1, 10, 100, 1000], } CV_log2_clf = GridSearchCV(estimator = log2_clf, param_grid = param_grid , scoring = 'recall', verbose = 1, n_jobs = -1) CV_log2_clf.fit(X_train, y_train) best_parameters = CV_log2_clf.best_params_ print('The best parameters for using this model is', best_parameters) # Log w best hyperparameters (recall) CV_log2_clf = LogisticRegression(C = best_parameters['C'], penalty = best_parameters['penalty'], random_state = random_state) CV_log2_clf.fit(X_train, y_train) y_pred = CV_log2_clf.predict(X_test) y_score = CV_log2_clf.decision_function(X_test) # Confusion maxtrix & metrics cm = confusion_matrix(y_test, y_pred) class_names = [0,1] ###Output _____no_output_____ ###Markdown * Grid search CV accuracy, penalty = l2* Grid search CV recall, penalty = l1 ###Code # Cross val log2 cross_val_metrics(CV_log2_clf) ###Output _____no_output_____ ###Markdown 7.2. Voting classifier : log + log2 ###Code #Voting Classifier voting_clf = VotingClassifier ( estimators = [('log1', CV_log_clf), ('log_2', CV_log2_clf)], voting='soft', weights = [1, 1]) voting_clf.fit(X_train,y_train) y_pred = voting_clf.predict(X_test) y_score = voting_clf.predict_proba(X_test)[:,1] # Confusion maxtrix cm = confusion_matrix(y_test, y_pred) class_names = [0,1] show_metrics() # Cross val score voting cross_voting = cross_val_metrics(voting_clf) #Learning curve Voting plot_learning_curve(voting_clf, 'Learning Curve For Voting clf', X, y, (0.85,1.05), 10) plt.savefig('9') plt.show() ###Output _____no_output_____ ###Markdown 7.3. Voting classifier : select threshold (recall = 100%) ###Code # Threshold thresholds_adj = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] plt.figure(figsize = (15,15)) j = 1 for i in thresholds_adj: y_score = voting_clf.predict_proba(X_test)[:,1] > i plt.subplot(3,3,j) j += 1 cm = confusion_matrix(y_test, y_score) tp = cm[1,1] fn = cm[1,0] fp = cm[0,1] tn = cm[0,0] print('Recall w/ threshold = %s :'%i, (tp/(tp+fn))) class_names = [0,1] plot_confusion_matrix(cm, classes=class_names, title='Threshold = %s'%i) ###Output _____no_output_____ ###Markdown 7.4. Voting classifier : predicting with recall = 100% (precision = 92%) ###Code # Ensemble, recall = 1. y_score = voting_clf.predict_proba(X_test)[:,1] > 0.23 cm = confusion_matrix(y_test, y_score) class_names = [0,1] plt.figure() plot_confusion_matrix(cm, classes = class_names, title = 'Ensemble Clf CM : recall = 100%') plt.savefig('8') plt.show() show_metrics() # ROC curve fpr, tpr, t = roc_curve(y_test, y_score) plot_roc() # Precision-recall curve precision, recall, thresholds = precision_recall_curve(y_test, y_score) plot_precision_recall() ###Output _____no_output_____ ###Markdown 7.5. Models performance plot (accuracy, precision, recall) ###Code models_metrics = {'log_clf': [0.982, 0.990, 0.962], 'selector': [0.974, 0.981, 0.948], 'log2_clf' : [0.974,0.976,0.953], 'voting_clf' : [0.979,0.985,0.958] } df = pd.DataFrame(data = models_metrics) df.rename(index={0:'Accuracy',1:'Precision', 2: 'Recall'}, inplace=True) ax = df.plot(kind='bar', figsize = (15,10), ylim = (0.94, 1), color = ['gold', 'lightgreen', 'lightcoral', 'lightskyblue'], rot = 0, title ='Models performance (cross val mean)', edgecolor = 'grey', alpha = 0.5) for p in ax.patches: ax.annotate(str(p.get_height()), (p.get_x() * 1.01, p.get_height() * 1.0005)) plt.show() ###Output _____no_output_____ ###Markdown ----------**Breast Cancer Analysis and Prediction**=====================================***Recall = 1. Precision = .92 Accuracy = .971******Md. Mashfiq Rizvee***---------- - 1. Load libraries and read the data - 1.1. Load libraries - 1.2. Read the data - 1.3. Missing values - 1.4. Reassign target and drop useless features - 2. Exploratory Data Analysis (EDA) - 2.1. Head and describe - 2.2. Target distribution (number and %) - 2.3. Features distribution (hue = diagnosis) - 2.4. Correlation matrix - 2.5. Positive correlated features - 2.6. Uncorrelated features - 2.7. Negative correlated features - 3. Principal Component Analysis - 3.1. Compute PCA - 3.2. PCA pie plot with 6 components (88.8%) - 3.3. PCA scatter plot with 2 components (63.3%) - 3.4. PCA scatter plot with 3 components (72.7%)- 4. Define functions - 4.1. Confusion matrix and show metrics - 4.2. Precision – Recall curve - 4.3. ROC curve - 4.4. Learning curve - 4.5. Cross validation metrics - 5. Prepare dataset - 5.1. Define (X, y) - 5.2. Standard scaler (X) - 5.3. Train test split - 6. Predictive model : Logistic Regression - 6.1. Logistic Regression and GridSearch CV to optimise hyperparameters (accuracy) - 6.2. RFE : Recursive features elimination (30 features => 15 features) - 6.3. Compare learning curves and cross validation scores - 6.4. Select threshold for a recall = 100% (all malignant tumors detected) - 6.5. Predicting with recall = 100% - 7. Predictive model 2 : Ensemble Classifier to maximise precision and detect all malignant tumors - 7.1. Logistic Regression and GridSearch CV to optimise hyperparameters (recall) - 7.2. Voting classifier : log + log2 - 7.3. Voting classifier : select threshold (recall = 100%) - 7.4. Voting classifier : predicting with recall = 100% (precision = 92%) - 7.5. Models performance plot (accuracy, precision, recall) **Information : [here](https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)**Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. * ID number * Diagnosis (M = malignant, B = benign) Ten real-valued features are computed for each cell nucleus: * radius (mean of distances from center to points on the perimeter) * texture (standard deviation of gray-scale values) * perimeter * area * smoothness (local variation in radius lengths) * compactness (perimeter^2 / area - 1.0) * concavity (severity of concave portions of the contour) * concave points (number of concave portions of the contour) * symmetry * fractal dimension ("coastline approximation" - 1) 1. Load libraries and read the data 1.1. Load libraries ###Code # Python libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import itertools from itertools import chain from sklearn.feature_selection import RFE from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.ensemble import VotingClassifier from sklearn.model_selection import GridSearchCV, cross_val_score, learning_curve, train_test_split from sklearn.metrics import precision_score, recall_score, confusion_matrix, roc_curve, precision_recall_curve, accuracy_score import warnings import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import plotly.figure_factory as ff warnings.filterwarnings('ignore') #ignore warning messages ###Output _____no_output_____ ###Markdown 1.2. Read the data ###Code # Read data data = pd.read_csv('../input/data.csv') ###Output _____no_output_____
wp/notebooks/active learning/binary/mc_dropout_metrics.ipynb
###Markdown MC Dropout Metrics evaluation ###Code %load_ext autoreload import os, sys, importlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns BASE_PATH = os.path.join(os.getcwd(), "..", "..") MODULES_PATH = os.path.join(BASE_PATH, "modules") METRICS_PATH = os.path.join(BASE_PATH, "metrics") os.listdir(METRICS_PATH) sys.path.append(MODULES_PATH) from active_learning import Metrics %autoreload 2 metrics_reader = Metrics(os.path.join(METRICS_PATH, "mc_dropout")) ###Output _____no_output_____ ###Markdown Read Metrics ###Code data = metrics_reader.read("4_mc_dropout_max_entropy.csv") def get_frame(filename, astype = {"iteration": "int32", "binary_accuracy": "float32"}): metrics_reader = Metrics(os.path.join(METRICS_PATH, "mc_dropout")) data = metrics_reader.read(filename) df = pd.DataFrame(data) df = df.astype(astype) return df df_2 = get_frame("3_mc_dropout_max_entropy.csv") df_2.head() df_1 = get_frame("4_mc_dropout_max_entropy.csv") df_1.head() df_3 = get_frame("2_mc_dropout_max_entropy.csv") df_3.head() df = df.astype({"iteration": "int32", "binary_accuracy": "float"}) max_tick = int(df_1["iteration"].max()) min_tick = int(df_1["iteration"].min()) plt.figure(figsize=(15, 5)) sns.lineplot(x="iteration", y="binary_accuracy", color="red", marker="X", data=df_1) sns.lineplot(x="iteration", y="binary_accuracy", marker="o", data=df_2) sns.lineplot(x="iteration", y="binary_accuracy", color="green", marker="v", data=df_3) plt.xticks(range(min_tick, max_tick + 2, 3), rotation=90) plt.title("Comparison Max Entropy") plt.ylabel("Accuracy") plt.xlabel("Iteration") plt.show() ###Output _____no_output_____
4 - Applications of GANs/PassGAN.ipynb
###Markdown PassGANBased on paper [PassGAN: A Deep Learning Approach for Password Guessing](https://arxiv.org/abs/1709.00440) Outline- Introduction- Prerequest- Datasets- Build Models - Generator Models - Discriminator Models- Models Settings- Training- Result Introduction Abstract :State-of-the-art password guessing tools, such as HashCat and John the Ripper, enable users to check billions of passwords per second against password hashes. In addition to performing straightforward dictionary attacks, these tools can expand password dictionaries using password generation rules, such as concatenation of words (e.g., "password123456") and leet speak (e.g., "password" becomes "p4s5w0rd"). Although these rules work well in practice, expanding them to model further passwords is a laborious task that requires specialized expertise. To address this issue, in this paper we introduce PassGAN, a novel approach that replaces human-generated password rules with theory-grounded machine learning algorithms. Instead of relying on manual password analysis, PassGAN uses a Generative Adversarial Network (GAN) to autonomously learn the distribution of real passwords from actual password leaks, and to generate high-quality password guesses. Our experiments show that this approach is very promising. When we evaluated PassGAN on two large password datasets, we were able to surpass rule-based and state-of-the-art machine learning password guessing tools. However, in contrast with the other tools, PassGAN achieved this result without any a-priori knowledge on passwords or common password structures. Additionally, when we combined the output of PassGAN with the output of HashCat, we were able to match 51%-73% more passwords than with HashCat alone. This is remarkable, because it shows that PassGAN can autonomously extract a considerable number of password properties that current state-of-the art rules do not encode. Prerequest ###Code from google.colab import drive drive.mount('/content/drive') # import All prerequisites import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.autograd as autograd from torchvision import datasets, transforms from torch.autograd import Variable from torchvision.utils import save_image import numpy as np import os Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ROOT = "password/" # Make dir if no exist if not os.path.exists(ROOT): os.makedirs(ROOT) # Download Library !curl --remote-name \ -H 'Accept: application/vnd.github.v3.raw' \ --location https://raw.githubusercontent.com/DSC-UI-SRIN/Introduction-to-GAN/master/4%20-%20Applications%20of%20GANs/password/datasets.py !curl --remote-name \ -H 'Accept: application/vnd.github.v3.raw' \ --location https://raw.githubusercontent.com/DSC-UI-SRIN/Introduction-to-GAN/master/4%20-%20Applications%20of%20GANs/password/utils.py ###Output _____no_output_____ ###Markdown Dataset ###Code import datasets batch_size = 100 # Rockyou Dataset train_dataset = datasets.Rockyou(root=ROOT, train=True, download=True, input_size=(10,0), tokenize=False) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) examples = enumerate(train_loader) batch_idx, (example_data, example_targets) = next(examples) print(example_data.shape) ###Output _____no_output_____ ###Markdown Build Models ###Code from torch import nn, functional class ResBlock(nn.Module): def __init__(self, dim, kernel_size=5): super(ResBlock, self).__init__() self.model = nn.Sequential( nn.ReLU(), nn.Conv1d(dim, dim, padding=kernel_size//2, kernel_size=kernel_size), nn.ReLU(), nn.Conv1d(dim, dim, padding=kernel_size//2, kernel_size=kernel_size) ) def forward(self, input_data): output = (self.model(input_data)) return input_data + output ###Output _____no_output_____ ###Markdown Generator Model ###Code class Generator(nn.Module): def __init__(self, seq_len, layer_dim, z_dim, char_len): super(Generator, self).__init__() self.seq_len = seq_len self.layer_dim = layer_dim self.z_dim = z_dim self.char_len = char_len self.linear = nn.Linear(self.z_dim, self.seq_len*self.layer_dim) self.res_blocks = nn.Sequential( ResBlock(self.layer_dim), ResBlock(self.layer_dim), ResBlock(self.layer_dim), ResBlock(self.layer_dim), ResBlock(self.layer_dim), ) self.conv = nn.Conv1d(self.layer_dim, self.char_len, kernel_size=1) def softmax(self, logits, num_classes): logits = logits.reshape(-1, num_classes) logits = logits.softmax(1) return logits.reshape(-1, self.seq_len, self.char_len) def forward(self, z_input): output = self.linear(z_input) output = output.view(-1, self.layer_dim, self.seq_len) output = self.res_blocks(output) output = self.conv(output) output = output.permute([0, 2, 1]) output = self.softmax(output, self.char_len) return output ###Output _____no_output_____ ###Markdown Discriminator Model ###Code class Discriminator(nn.Module): def __init__(self, seq_len, layer_dim, char_len): super(Discriminator, self).__init__() self.seq_len = seq_len self.layer_dim = layer_dim self.char_len = char_len self.conv = nn.Conv1d(self.char_len, self.layer_dim, kernel_size=1) self.res_blocks = nn.Sequential( ResBlock(self.layer_dim), ResBlock(self.layer_dim), ResBlock(self.layer_dim), ResBlock(self.layer_dim), ResBlock(self.layer_dim), ) self.linear = nn.Linear(self.seq_len*self.layer_dim, 1) def forward(self, input_data): output = input_data.permute([0, 2, 1]) output = self.conv(output) output = self.res_blocks(output) output = output.view(-1, self.layer_dim*self.seq_len) output = self.linear(output) return output ###Output _____no_output_____ ###Markdown Build network ###Code # build network z_dim = 128 seq_len = 10 layer_dim = 128 G = Generator(seq_len, layer_dim, z_dim, len(train_dataset.class_to_idx)).to(device) D = Discriminator(seq_len, layer_dim, len(train_dataset.class_to_idx)).to(device) print(G, D) ###Output _____no_output_____ ###Markdown Train Process![WGAN Algorithm](https://github.com/DSC-UI-SRIN/Introduction-to-GAN/raw/master/2%20-%20%20Wasserstein%20GANs/images/wgan-gp-algorithm.png) Gradient Penalty ###Code def compute_gradient_penalty(D, real_data, fake_data): # Random weight term for interpolation between real and fake samples alpha = Tensor( np.random.random((real_data.size(0), 1, 1))) # Get random interpolation between real and fake samples interpolates = alpha * real_data + ((1 - alpha) * fake_data) d_interpolates = D(interpolates.requires_grad_(True)) fake = Tensor(real_data.shape[0], 1).fill_(1.0) # Get gradient w.r.t. interpolates grads = autograd.grad( outputs=d_interpolates, inputs=interpolates, grad_outputs=fake, create_graph=True, retain_graph=True, only_inputs=True, )[0] grads = grads.reshape(grads.size(0), -1) grad_penalty = ((grads.norm(2, dim=1) - 1) ** 2).mean() return grad_penalty # Loss weight for gradient penalty lambda_gp = 10 # optimizer lr = 1e-4 n_critic = 5 b1 = 0.5 b2 = 0.999 optimizer_G = torch.optim.Adam(G.parameters(), lr=lr, betas=(b1, b2)) optimizer_D = torch.optim.Adam(D.parameters(), lr=lr, betas=(b1, b2)) from torch.utils.tensorboard import SummaryWriter logdir = './runs' os.makedirs(logdir, exist_ok=True) writer = SummaryWriter(logdir) %load_ext tensorboard %tensorboard --logdir runs/ def check_generated_data(samples, iters, tag="result"): """ this function used for check the result of generator network and save it to tensorboard :param samples(dict): samples of input network :param tag: save the output to tensorboard log wit tag :param iters: global iteration counts for tensorboard logging :return: """ G.eval() with torch.no_grad(): inv_charmap = train_dataset.idx_to_class samples = G(samples) if torch.cuda.is_available(): samples = samples.cpu().numpy() else: samples = samples.numpy() samples = np.argmax(samples, axis=2) decoded_samples = [] for i in range(len(samples)): decoded = [] for j in range(len(samples[i])): decoded.append(inv_charmap[samples[i][j]]) decoded_samples.append("".join(decoded).replace('`', "")) # print(", ".join(decoded_samples)) writer.add_text(tag, ", ".join(decoded_samples), iters) epochs = 200 list_loss_D = [] list_loss_G = [] fixed_z = Variable(Tensor(np.random.normal(0, 1, (10, z_dim)))) for epoch in range(epochs): for i, (X, _) in enumerate(train_loader): # Configure input real_data = Variable(X.type(Tensor)) # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Sample noise as generator input z = Variable(Tensor(np.random.normal(0, 1, (real_data.shape[0], z_dim)))) # Generate a batch of images fake_data = G(z).detach() # Gradient penalty gradient_penalty = compute_gradient_penalty(D, real_data.data, fake_data.data) # Adversarial loss d_loss = -torch.mean(D(real_data)) + torch.mean(D(fake_data)) + lambda_gp * gradient_penalty d_loss.backward() optimizer_D.step() # Train the generator every n_critic iterations if i % n_critic == 0: # ----------------- # Train Generator # ----------------- optimizer_G.zero_grad() # Generate a batch of images gen_data = G(z) # Adversarial loss g_loss = -torch.mean(D(gen_data)) g_loss.backward() optimizer_G.step() list_loss_D.append(d_loss.item()) list_loss_G.append(g_loss.item()) if i % 300 == 0: print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, epochs, i, len(train_loader), d_loss.item(), g_loss.item())) writer.add_scalar('G_loss', g_loss.item(), epoch * len(train_loader) + i) writer.add_scalar('D_loss', d_loss.item(), epoch * len(train_loader) + i) if epoch % 5 == 0: check_generated_data(fixed_z, tag="result_{}".format(epoch), iters=epoch * len(train_loader) + i) ###Output _____no_output_____
BBY162_Arama.ipynb
###Markdown ###Code #Google Drive Bağlantısı from google.colab import drive drive.mount('/gdrive') dosya = "/gdrive/My Drive/Colab Notebooks/BBY162 - Arama/kitap_listesi.txt" okunanVeri = [] f = open(dosya, "r") for line in f.readlines(): okunanVeri.append(line) print(okunanVeri) arama = input("Anahtar Kelime: ") kayitNo = 0 for ara in okunanVeri: if(arama in ara): print(ara) print(okunanVeri[kayitNo]) kayitNo +=1 else: print("Kayıt Yok!") f.close() ###Output _____no_output_____
Exercise-Notebooks/.ipynb_checkpoints/E3-Prelab-checkpoint.ipynb
###Markdown E3 Prelab Q1-2 Part 1In Q1 you are asked to compare the titration data obtained from E2 to the model of a titration that you developed in the E2 prelab. You are then asked to modify some parameters in the model to best fit the experimental data. The model is an expression for the number of Ce(IV) added as function of potential. A comparison will require you to convert steps of the sringe pump to the number of Ce(IV) added. This first part shows an example of a similar conversion to grams of the Ce(IV)-containing solution added based off the 'Fine Titration Data.txt' uploaded to canvas. Import Packages ###Code import os import numpy as np import matplotlib.pyplot as plt plt.style.use('JGW') import pandas as pd ###Output _____no_output_____ ###Markdown Import titration data Import titration data into a pandas dataframe. For the example dataset, the delimiters are commas and the first 4 rows contains details of the calibration that you will need to convert steps to number of Ce(IV) added. We skip those rows in the first step. The format of your titration data may differ. ###Code data_path = r"C:\Users\jgage\OneDrive - Stanford\2021\CHEM 274\Labs\E3\Fine Titration Data.txt" titration_data = pd.read_csv(data_path, skiprows = 4, sep = ',') ###Output _____no_output_____ ###Markdown Read calibration dataHere we simply want to see the pump calibration values. In the example file the calibration data are in the first four rows of the file. Your own calibration data might be located elsewhere e.g. in your lab notebook. ###Code # read first 4 lines of titration data which contains the calibration info calibration_data = pd.read_csv(data_path, nrows = 4, header = None, sep = ':') # create dictionary containing calibration information calibration_dict = dict(zip(calibration_data[0], calibration_data[1])) # calibration_dict ###Output _____no_output_____ ###Markdown Convert steps to grams of solution addedUse the calibration data to convert the number of steps of Ce(IV) added in the titration to grams of the Ce(IV)-containing solution added. In the example file, 1 step correspoonds to 1.355/6000 grams of Ce(IV) solution ###Code number_steps_in_calibration = 6000 mass_of_calibration_in_g = 1.355 # convert steps to grams of solution, then moles of Ce(IV) titration_data['step in g sol'] = (titration_data['step'] / number_steps_in_calibration) * mass_of_calibration_in_g titration_data['step in mol Ce(IV)'] = titration_data['step in g sol'] * (0.990 / 20.030) / 548.22 # titration_data ###Output _____no_output_____ ###Markdown Plot dataAfter you finish the conversion of steps to number of Ce(IV) added, adjust the code below to plot your converted titration data. ###Code # plot data fig, ax = plt.subplots() ax.errorbar(x = titration_data['step in mol Ce(IV)'] , y = titration_data['mean potential'], yerr = titration_data['std dev'], fmt='o', ecolor='k', capsize=2) ax.set_title('Cerium/Iron titration') ax.set_xlabel('Ce(IV) added / mol') ax.set_ylabel('Potential / V') ###Output _____no_output_____ ###Markdown E3 Prelab Q1-2 Part 2In the second part of Q1, you will overlay the titration data with the derived titration curve (model) and estimate the redox potentials required for the model to match the experimental data. This is a visual way to estimate the parameters in the model. You are welcome to go further and use nonlinear fitting routines to further refine the parameters, but you do not need to do so. The example below shows how you can visually model a dataset. Here the data is compared to the function y = a sin(bx + c). Change a, b and c to visually match the model to the synthetic dataset. ###Code def E_predict(n_Ce4, n_Fe2, E0_Fe, E0_Ce): ''' Returns E_cell based on the manually derived solution ''' R, T, F = 8.314, 298, 96485 a = F/(R*T) argument = ((np.exp(E0_Ce * a)/2)*(n_Ce4/n_Fe2 -1 + np.sqrt((1 - n_Ce4/n_Fe2)**2 + 4*np.exp((E0_Fe - E0_Ce)*a)))) return np.log(argument) / a # Data x_data = titration_data['step in mol Ce(IV)'] y_data = titration_data['mean potential'] # Guess some values of n_Fe2, E0_Fe, E0_Ce, guess_n_Fe2 = 1.140 * 10**-4 guess_E0_Fe = 0.47 guess_E0_Ce = 1.23 guesses = [guess_n_Fe2, guess_E0_Fe, guess_E0_Ce] y_model = [] for step in range(len(x_data)): n_Ce4 = x_data[step] y_model.append(E_predict(n_Ce4, *guesses)) # Plot data overlaid with model fig, ax = plt.subplots() ax.errorbar(x = titration_data['step in mol Ce(IV)'] , y = titration_data['mean potential'], yerr = titration_data['std dev'], fmt='o', ecolor='k', capsize=2, label='Data') ax.set_title('Cerium/Iron titration') ax.set_xlabel('Ce(IV) added / mol') ax.set_ylabel('Potential / V') ax.plot(x_data, y_model, label='Model') ax.legend() plt.show() # Optimize using guesses from scipy.optimize import curve_fit guess_n_Fe2 = 1.70 * 10**-4 guess_E0_Fe = 0.48 guess_E0_Ce = 1.20 guesses = [guess_n_Fe2, guess_E0_Fe, guess_E0_Ce] iterations = 10 for i in range(iterations): y_model2, _ = curve_fit(E_predict, x_data, y_data, p0=guesses) guesses = y_model2 fig, ax = plt.subplots() ax.errorbar(x = titration_data['step in mol Ce(IV)'] , y = titration_data['mean potential'], yerr = titration_data['std dev'], fmt='o', ecolor='k', capsize=2, label='Data') ax.set_title('Cerium/Iron titration') ax.set_xlabel('Ce(IV) added / mol') ax.set_ylabel('Potential / V') ax.plot(x_data, E_predict(x_data, *y_model2), label='Model') ax.legend() plt.show() print(y_model2) ###Output [1.69989237e-04 5.57926647e-01 1.21039553e+00] ###Markdown Scipy's curve_fit, a non-linear routine, is not particularly good at this unless given fantastic guesses. Perhaps this is due to the functional form of E_predict. ###Code # Now adding a constant to the model def E_predict_plus_c(n_Ce4, n_Fe2, E0_Fe, E0_Ce, c): ''' Returns E_cell ''' R, T, F = 8.314, 298, 96485 a = F/(R*T) disc = (np.exp(2*E0_Ce*a))*(1 - c - n_Ce4/n_Fe2)**2 + 4*(n_Ce4/n_Fe2)*np.exp((E0_Fe + E0_Ce)*a) argument = (1/2) * ((-np.exp(E0_Ce * a)*(1 - n_Ce4/n_Fe2 -c) + np.sqrt(disc))) return np.log(argument) / a # Guess some values of n_Fe2, E0_Fe, E0_Ce, and c guess_n_Fe2 = 2.25 * 10**-4 guess_E0_Fe = 0.47 guess_E0_Ce = 1.25 guess_c = 0.5 guesses = [guess_n_Fe2, guess_E0_Fe, guess_E0_Ce, guess_c] y_model3 = [] for step in range(len(x_data)): n_Ce4 = x_data[step] y_model3.append(E_predict_plus_c(n_Ce4, *guesses)) # Plot data overlaid with model fig, ax = plt.subplots() ax.errorbar(x = titration_data['step in mol Ce(IV)'] , y = titration_data['mean potential'], yerr = titration_data['std dev'], fmt='o', ecolor='k', capsize=2, label='Data') ax.set_title('Cerium/Iron titration') ax.set_xlabel('Ce(IV) added / mol') ax.set_ylabel('Potential / V') ax.plot(x_data, y_model3, label='Model') ax.legend() plt.show() # Optimize using guesses from scipy.optimize import curve_fit guess_n_Fe2 = 2.25 * 10**-4 guess_E0_Fe = 0.47 guess_E0_Ce = 1.25 guess_c = 0.5 guesses = [guess_n_Fe2, guess_E0_Fe, guess_E0_Ce, guess_c] iterations = 10 for i in range(iterations): y_model4, _ = curve_fit(E_predict_plus_c, x_data, y_data, p0=guesses) guesses = y_model4 fig, ax = plt.subplots() ax.errorbar(x = titration_data['step in mol Ce(IV)'] , y = titration_data['mean potential'], yerr = titration_data['std dev'], fmt='o', ecolor='k', capsize=2, label='Data') ax.set_title('Cerium/Iron titration') ax.set_xlabel('Ce(IV) added / mol') ax.set_ylabel('Potential / V') ax.plot(x_data, E_predict_plus_c(x_data, *y_model4), label='Model') ax.legend() plt.show() ###Output C:\Users\jgage\anaconda3\lib\site-packages\pandas\core\arraylike.py:364: RuntimeWarning: divide by zero encountered in log result = getattr(ufunc, method)(*inputs, **kwargs)
compiler/simulate_processor.ipynb
###Markdown A Computational Design of a Programmable Biological Processor - Description of the biological compiler The compiler accepts programs written as text files. Each line of a program is translated to a specific location in the memory, whereas first line is translated to the first address in the memory, second line to the second, etc. Multiple instructions can be given within the same line. In this case, instructions should be separated with semicolons (`;`).Each program is compiled into an ordinary differential equation model with the simulation capabilities, which can be analysed further on. How to use the biological compilerThe compiler is implemented in the Python module `generate_model.py`. You need to import the `generate_model` function from this module into a Python program. ###Code from generate_model import generate_model ###Output _____no_output_____ ###Markdown The `generate_model` function accepts the following arguments:* `program_name`: name of the `txt` file in which the program is stored,* `model_name`: name of the file in which the Python implementation of the model will be stored,* `n_bits`: number of flip-flops in the Johnson counter that is used for the addressing of the instruction memory (defines the maximal size of the program),* `prog_alpha`: maximal expression rate of proteins that are used as operands in the program,* `prog_delta`: degradation rate of proteins that are used as operands in the program,* `prog_n`: Hill coefficient defining the expression activation of proteins that are used as operands in the program,* `prog_Kd`: dissociation constant defining the expression activation of proteins that are used as operands in the program.An example of the function call is ###Code n_bits = 4 generate_model("programs\\program_add.txt", "test_add", n_bits, 10, 0.1, 2, 10) ###Output _____no_output_____ ###Markdown The upper call translates the program from the file `programs\program_add.txt` to the Python implementation of ordinary differential equation-based model named as `test_add.py`. This model can be imported using the `importlib` library. ###Code import importlib model = importlib.import_module("test_add") ###Output _____no_output_____ ###Markdown The `generate_model` function also generates the list of operands that are used in the model. It stores this list in the file `model_name+"description.txt"`. You can read this file and display the operands used in the program. ###Code f_description = open("test_add"+"description.txt") ops = f_description.readline().strip().split(",")[:-1] f_description.close() ops ###Output _____no_output_____ ###Markdown In order to simulate the dynamics of the obtained model, you still need to define the remaining parameter values used for a simulation. You can obtain the most of the parameter values with the optimization framework proposed in *Pušnik et al., 2019*.Some feasible values are stored in the file `selected_points.txt` ###Code import numpy as np points = np.loadtxt('selected_points.txt') params = points[0] ###Output _____no_output_____ ###Markdown The first 8 parameters define the dynamics of flip-flops and the remaining parameters define the dynamics of the addressing logic. ###Code params_ff = list(params[:8]) params_addr = list(params[8:]) ###Output _____no_output_____ ###Markdown You still need to define the proteolysis parameters used for asynchronous set and reset D flip-flop inputs and dissociation constant used in conditional jumps. ###Code delta_P= 250 K_M = 100 K_X = 0.1 params_proteolysis = [delta_P, K_M] params_condition = [K_X] ###Output _____no_output_____ ###Markdown You can now simulate the dynamics of the program with the `odeint` function from the `scipy` module `integrate`. ###Code from scipy.integrate import odeint T = np.linspace(0, 100, 1000) Y0 = np.array([0]*(n_bits*6+len(ops))) Y = odeint(model.model, Y0, T, args= (params_ff + params_proteolysis + params_addr + params_condition,)) ###Output _____no_output_____ ###Markdown Here `T` includes the timepoints in which results of a simulation will be sampled and `Y0` presents the initial state of the system. The simulation results are now stored in the matrix `Y`. The operands present the last (in our case three) columns of the matrix. You can analyse the results of your program's execution by plotting the operands' concentrations through time. ###Code import matplotlib.pyplot as plt for i,op in enumerate(ops): plt.plot(T,Y[:,-(i+1)], label = op) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown A faster alternative to test your programs is to use the `simulate_program` function from the `simulate_program` module, which automatically generates the program, runs the simulation and displays the simulation results. First you need to import this function into your module. ###Code from simulate_program import simulate_program ###Output _____no_output_____ ###Markdown The `simulate_program` function accepts the following mandatory arguments:* `program_name`: name of the `txt` file in which the program is stored,* `t_end`: simulation duration (in hours),* `N`: number of samples,* `params_ff`: flip-flop parameters,* `params_addr`: addressing parameters,* `params_proteolysis`: proteolysis parameters,* `params_condition`: params used in conditional jumps,* `params_prog`: params used for the expression of operands,* `n_bits`: number of flip-flops in the Johnson counter that is used for the addressing of the instruction memory (defines the maximal size of the program).An example of the function call and its output is ###Code params_prog = [10, 0.1, 2, 10] simulate_program("programs\\program_add.txt", 100, 200, params_ff, params_addr, params_proteolysis, params_condition, params_prog, 4) ###Output _____no_output_____ ###Markdown Currently supported instruction set ```nop```Only used as a placeholder instruction. ```generate op1```Expression of operand with the name ```op1``` is triggered. ```add op1, op2, op3```Performs the addition of the operands ```op2``` and ```op3``` and stores the result to ```op1```:```op1<-op2+op3 ``` ```sub op1, op2, op3```Performs the subtraction of the operands ```op2``` and ```op3``` and stores the result to ```op1```:```op1<-op2-op3 ``` ```if condition instruction```Executes the ```instruction``` if the concentration of operand ```condition``` is high. Can be followed by multiple instructions separated by semicolons (```;```), e.g., ```if D generate A; generate B; add C,A,B```. ```do-while condition instruction```Instruction ```instruction``` is always executed in the first loop transition and is executed as long as the operand ```condition``` is high. ```while condition instruction```Instruction ```instruction``` is executed only if and as long as operand ```condition``` is high. ```halt```Halts the processor at current instruction memory location. ExamplesThe following examples present the application of the proposed compiler on simple biological programs. The compiler is used to translate these programs into ordinary differential equation models, which are than used to simulate the dynamics of the program in dependence on the given set of kinetic parameters. Initialization Imports ###Code from simulate_program import simulate_program import numpy as np import seaborn as sns sns.set_style("white") ###Output _____no_output_____ ###Markdown Simulation parameters ###Code t_end = 160 # duration in hours N = 1000 # number of samples to display ###Output _____no_output_____ ###Markdown Program parameters ###Code n_bits = 4 # number of bits in the instruction memory # parameters defining the expression of operands prog_alpha = 10 prog_delta = 0.1#0.01 prog_n = 2 prog_Kd = 10 params_prog = prog_alpha, prog_delta, prog_n, prog_Kd # proteolysis and induction of protease (conditional jumps) delta_P= 250 K_M = 100 K_X = 0.1 ###Output _____no_output_____ ###Markdown Processor parametersUse the parameter values that were obtained with the optimization framework proposed in *Pušnik et al., 2019*. ###Code points = np.loadtxt('selected_points.txt') params = points[0] params_ff = list(params[:8]) params_addr = list(params[8:]) params_proteolysis = [delta_P, K_M] params_condition = [K_X] ###Output _____no_output_____ ###Markdown Examples of simple programsFew examples are given to show how to compile a program stored in a text file and produce a model that can be simulated with the parameters defined above. Addition```generate Agenerate Badd C, A, B``` ###Code program_name = "programs\\program_add.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Subtraction```generate Agenerate Bsub C, A, B``` ###Code program_name = "programs\\program_sub.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Subtraction 2```generate Asub C, A, B``` ###Code program_name = "programs\\program_sub_one.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Addition and halt```generate Agenerate Badd C, A, Bhalt``` ###Code program_name = "programs\\program_add_halt.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Multiple additions, subtraction and haltThis example demonstrates the execution of multiple instruction in the same clock period.```generate A; generate B; add E, A, Badd C, A, B; sub D, A, Bhalt``` ###Code program_name = "programs\\program_add_multi.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown If-thenCondition is fulfilled```generate Agenerate Bif B add C, A, B``` ###Code program_name = "programs\\program_if.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Condition is not fulfilled```generate Aif B add C, A, B``` ###Code program_name = "programs\\program_if_false.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown While```generate Awhile A generate C``` ###Code program_name = "programs\\program_while.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown A Computational Design of a Programmable Biological Processor - Description of the biological compiler The compiler accepts programs written as text files. Each line of a program is translated to a specific location in the memory, whereas first line is translated to the first address in the memory, second line to the second, etc. Multiple instructions can be given within the same line. In this case, instructions should be separated with semicolons (`;`).Each program is compiled into an ordinary differential equation model with the simulation capabilities, which can be analysed further on. How to use the biological compilerThe compiler is implemented in the Python module `generate_model.py`. You need to import the `generate_model` function from this module into a Python program. ###Code from generate_model import generate_model ###Output _____no_output_____ ###Markdown The `generate_model` function accepts the following arguments:* `program_name`: name of the `txt` file in which the program is stored,* `model_name`: name of the file in which the Python implementation of the model will be stored,* `n_bits`: number of flip-flops in the Johnson counter that is used for the addressing of the instruction memory (defines the maximal size of the program),* `prog_alpha`: maximal expression rate of proteins that are used as operands in the program,* `prog_delta`: degradation rate of proteins that are used as operands in the program,* `prog_n`: Hill coefficient defining the expression activation of proteins that are used as operands in the program,* `prog_Kd`: dissociation constant defining the expression activation of proteins that are used as operands in the program.An example of the function call is ###Code n_bits = 4 generate_model("programs\\program_add.txt", "test_add", n_bits, 10, 0.1, 2, 10) ###Output _____no_output_____ ###Markdown The upper call translates the program from the file `programs\program_add.txt` to the Python implementation of ordinary differential equation-based model named as `test_add.py`. This model can be imported using the `importlib` library. ###Code import importlib model = importlib.import_module("test_add") ###Output _____no_output_____ ###Markdown The `generate_model` function also generates the list of operands that are used in the model. It stores this list in the file `model_name+"description.txt"`. You can read this file and display the operands used in the program. ###Code f_description = open("test_add"+"description.txt") ops = f_description.readline().strip().split(",")[:-1] f_description.close() ops ###Output _____no_output_____ ###Markdown In order to simulate the dynamics of the obtained model, you still need to define the remaining parameter values used for a simulation. You can obtain the most of the parameter values with the optimization framework proposed in *Pušnik et al., 2019*.Some feasible values are stored in the file `selected_points.txt` ###Code import numpy as np points = np.loadtxt('selected_points.txt') params = points[0] ###Output _____no_output_____ ###Markdown The first 8 parameters define the dynamics of flip-flops and the remaining parameters define the dynamics of the addressing logic. ###Code params_ff = list(params[:8]) params_addr = list(params[8:]) ###Output _____no_output_____ ###Markdown You still need to define the proteolysis parameters used for asynchronous set and reset D flip-flop inputs and dissociation constant used in conditional jumps. ###Code delta_P= 250 K_M = 100 K_X = 0.1 params_proteolysis = [delta_P, K_M] params_condition = [K_X] ###Output _____no_output_____ ###Markdown You can now simulate the dynamics of the program with the `odeint` function from the `scipy` module `integrate`. ###Code from scipy.integrate import odeint T = np.linspace(0, 100, 1000) Y0 = np.array([0]*(n_bits*6+len(ops))) Y = odeint(model.model, Y0, T, args= (params_ff + params_proteolysis + params_addr + params_condition,)) ###Output _____no_output_____ ###Markdown Here `T` includes the timepoints in which results of a simulation will be sampled and `Y0` presents the initial state of the system. The simulation results are now stored in the matrix `Y`. The operands present the last (in our case three) columns of the matrix. You can analyse the results of your program's execution by plotting the operands' concentrations through time. ###Code import matplotlib.pyplot as plt for i,op in enumerate(ops): plt.plot(T,Y[:,-(i+1)], label = op) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown A faster alternative to test your programs is to use the `simulate_program` function from the `simulate_program` module, which automatically generates the program, runs the simulation and displays the simulation results. First you need to import this function into your module. ###Code from simulate_program import simulate_program ###Output _____no_output_____ ###Markdown The `simulate_program` function accepts the following mandatory arguments:* `program_name`: name of the `txt` file in which the program is stored,* `t_end`: simulation duration (in hours),* `N`: number of samples,* `params_ff`: flip-flop parameters,* `params_addr`: addressing parameters,* `params_proteolysis`: proteolysis parameters,* `params_condition`: params used in conditional jumps,* `params_prog`: params used for the expression of operands,* `n_bits`: number of flip-flops in the Johnson counter that is used for the addressing of the instruction memory (defines the maximal size of the program).An example of the function call and its output is ###Code params_prog = [10, 0.1, 2, 10] simulate_program("programs\\program_add.txt", 100, 200, params_ff, params_addr, params_proteolysis, params_condition, params_prog, 4) ###Output _____no_output_____ ###Markdown Currently supported instruction set ```nop```Only used as a placeholder instruction. ```generate op1```Expression of operand with the name ```op1``` is triggered. ```add op1, op2, op3```Performs the addition of the operands ```op2``` and ```op3``` and stores the result to ```op1```:```op1<-op2+op3 ``` ```sub op1, op2, op3```Performs the subtraction of the operands ```op2``` and ```op3``` and stores the result to ```op1```:```op1<-op2-op3 ``` ```if condition instruction```Executes the ```instruction``` if the concentration of operand ```condition``` is high. Can be followed by multiple instructions separated by semicolons (```;```), e.g., ```if D generate A; generate B; add C,A,B```. ```do-while condition instruction```Instruction ```instruction``` is always executed in the first loop transition and is executed as long as the operand ```condition``` is high. ```while condition instruction```Instruction ```instruction``` is executed only if and as long as operand ```condition``` is high. ```halt```Halts the processor at current instruction memory location. ExamplesThe following examples present the application of the proposed compiler on simple biological programs. The compiler is used to translate these programs into ordinary differential equation models, which are than used to simulate the dynamics of the program in dependence on the given set of kinetic parameters. Initialization Imports ###Code from simulate_program import simulate_program import numpy as np import seaborn as sns sns.set_style("white") ###Output _____no_output_____ ###Markdown Simulation parameters ###Code t_end = 160 # duration in hours N = 1000 # number of samples to display ###Output _____no_output_____ ###Markdown Program parameters ###Code n_bits = 4 # number of bits in the instruction memory # parameters defining the expression of operands prog_alpha = 10 prog_delta = 0.1#0.01 prog_n = 2 prog_Kd = 10 params_prog = prog_alpha, prog_delta, prog_n, prog_Kd # proteolysis and induction of protease (conditional jumps) delta_P= 250 K_M = 100 K_X = 0.1 ###Output _____no_output_____ ###Markdown Processor parametersUse the parameter values that were obtained with the optimization framework proposed in *Pušnik et al., 2019*. ###Code points = np.loadtxt('selected_points.txt') params = points[0] params_ff = list(params[:8]) params_addr = list(params[8:]) params_proteolysis = [delta_P, K_M] params_condition = [K_X] ###Output _____no_output_____ ###Markdown Examples of simple programsFew examples are given to show how to compile a program stored in a text file and produce a model that can be simulated with the parameters defined above. Addition```generate Agenerate Badd C, A, B``` ###Code program_name = "programs\\program_add.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Subtraction```generate Agenerate Bsub C, A, B``` ###Code program_name = "programs\\program_sub.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Subtraction 2```generate Asub C, A, B``` ###Code program_name = "programs\\program_sub_one.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Addition and halt```generate Agenerate Badd C, A, Bhalt``` ###Code program_name = "programs\\program_add_halt.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Multiple additions, subtraction and haltThis example demonstrates the execution of multiple instruction in the same clock period.```generate A; generate B; add E, A, Badd C, A, B; sub D, A, Bhalt``` ###Code program_name = "programs\\program_add_multi.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown If-thenCondition is fulfilled```generate Agenerate Bif B add C, A, B``` ###Code program_name = "programs\\program_if.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Condition is not fulfilled```generate Aif B add C, A, B``` ###Code program_name = "programs\\program_if_false.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown While```generate Awhile A generate C``` ###Code program_name = "programs\\program_while.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown If-then-elseCondition is fulfilled```generate Aif A generate B else generate C``` ###Code program_name = "programs\\program_if_else_true.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____ ###Markdown Condition is not fulfilled```if A generate B else generate C``` ###Code program_name = "programs\\program_if_else_false.txt" simulate_program(program_name, t_end, N, params_ff, params_addr, params_proteolysis, params_condition, params_prog, n_bits) ###Output _____no_output_____
Visualization-for-Company-Stakeholders/code.ipynb
###Markdown Visualization for Company Stakeholders Importing header files ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Reading the file ###Code path = 'loan_prediction.csv' data = pd.read_csv(path) ###Output _____no_output_____ ###Markdown Step 1 Let's start with the simple task of visualizing the company's record with respect to loan approvals. ###Code loan_status = data['Loan_Status'].value_counts() loan_status.plot(kind='bar') plt.show() ###Output _____no_output_____ ###Markdown Step 2 The company provides financial assistance across the different regions of the country. One interesting statistic that stakeholders want to see is the loan approval distribution across the regions. ###Code property_and_loan = data.groupby(['Property_Area', 'Loan_Status']).size().unstack() property_and_loan.plot(kind='bar', stacked=False) plt.xlabel('Property Area') plt.ylabel('Loan Status') plt.xticks(rotation=45) plt.show() ###Output _____no_output_____ ###Markdown Step 4 Higher education has always been an expensive endeavour for people but it results in better career opportunities and stability in life. But does higher education result in a better guarantee in issuing loans? ###Code education_and_loan = data.groupby(['Education', 'Loan_Status']).size().unstack() education_and_loan.plot(kind='bar', stacked=True) plt.xlabel('Education Status') plt.ylabel('Loan Status') plt.xticks(rotation=45) plt.show() ###Output _____no_output_____ ###Markdown Step 4 After seeing the loan status distribution, let's check whether being graduate or not also leads to different loan amount distribution by plotting an overlapping density plot of two values ###Code graduate = data[data['Education'] == 'Graduate'] not_graduate = data[data['Education'] == 'Not Graduate'] graduate['LoanAmount'].plot(kind='density', label='Graduate') not_graduate['LoanAmount'].plot(kind='density', label='Not Graduate') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Step 5 For any financial institution to be successful in its loan lending system, there has to be a correlation between the borrower's income and loan amount he is lent. Let's see how our company fares in that respect ###Code fig ,(ax_1,ax_2,ax_3) = plt.subplots(nrows = 3 , ncols = 1, figsize=(20, 20)) ax_1.scatter(data['ApplicantIncome'], data['LoanAmount']) ax_1.set_title('Applicant Income') ax_2.scatter(data['CoapplicantIncome'], data['LoanAmount']) ax_2.set_title('Coapplicant Income') data['TotalIncome'] = data['ApplicantIncome'] + data['CoapplicantIncome'] ax_3.scatter(data['TotalIncome'], data['LoanAmount']) ax_3.set_title('Total Income') plt.show() ###Output _____no_output_____
plots_tutorial/Read_and_Plot.ipynb
###Markdown Reading data with headerThere are at least 4 ways of reading data with header (4 ways that I've seen).I will show one way using the `numpy` library. We will use the function:```np.genfromtxt('file.format', names=True)```where `file.format` is a string with the filename and format of the file we want to use. This fucntion can work with just the file argument, but with you want to read the header and access them, you need the `names=True` argument. There are other usefull arguments: delimeter=',' -> set the delimiter between values comments='' -> the default comment is the one python uses. This is usefull to skip commentaries on file skip_header=0 -> set the line where the header is and skip it and some more...*full documentation in [here](https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.htmlnumpy.genfromtxt)* Reading a file ###Code data = np.genfromtxt('OGLE-LMC-CEP-0018.dat', names=True) ###Output _____no_output_____ ###Markdown Print its header ###Code #print(data) print(data.dtype.names) #print(data['Mag_I']) ###Output ('HJD', 'Mag_I', 'mag_err') ###Markdown Plot the data ###Code plt.plot(data['HJD'], data['Mag_I'], 'o') plt.show() #plt.errorbar(data['HJD'], data['Mag_I'], yerr=data['mag_err'], linestyle='', marker='o') #plt.show() ###Output _____no_output_____ ###Markdown But this is a Cepheid variable with period p=4.0478526 ###Code period = 4.0478526 # Rephase the data rephase = (data['HJD'] / period ) % 1 # the '% 1' extract the float part of the division # Plot plt.plot(rephase, data['Mag_I'], 'bo') plt.plot(rephase + 1, data['Mag_I'], 'bo') ###Output _____no_output_____
notebooks/Comparing-TF-and-PT-models-SQuAD.ipynb
###Markdown Comparing TensorFlow (original) and PyTorch model on the SQuAD taskYou can use this small notebook to check the loss computation from the TensorFlow model to the PyTorch model. In the following, we compare the total loss computed by the models starting from identical initializations (position prediction linear layers with weights at 1 and bias at 0).To run this notebook, follow these instructions:- make sure that your Python environment has both TensorFlow and PyTorch installed,- download the original TensorFlow implementation,- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code. ###Code import os os.chdir('../') ###Output _____no_output_____ ###Markdown 1/ TensorFlow code ###Code original_tf_inplem_dir = "./tensorflow_code/" model_dir = "../google_models/uncased_L-12_H-768_A-12/" vocab_file = model_dir + "vocab.txt" bert_config_file = model_dir + "bert_config.json" init_checkpoint = model_dir + "bert_model.ckpt" input_file = "../data/squad_data/train-v1.1.json" max_seq_length = 384 outside_pos = max_seq_length + 10 doc_stride = 128 max_query_length = 64 max_answer_length = 30 output_dir = "/tmp/squad_base/" learning_rate = 3e-5 import importlib.util import sys spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/modeling.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['modeling_tensorflow'] = module spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_squad.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['run_squad_tensorflow'] = module import modeling_tensorflow from run_squad_tensorflow import * bert_config = modeling_tensorflow.BertConfig.from_json_file(bert_config_file) tokenizer = tokenization.BertTokenizer( vocab_file=vocab_file, do_lower_case=True) eval_examples = read_squad_examples( input_file=input_file, is_training=True, max_num=16) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True) # You can use that to test the behavior of the models when target are outside of the model input sequence # for feature in eval_features: # feature.start_position = outside_pos # feature.end_position = outside_pos eval_unique_id_to_feature = {} for eval_feature in eval_features: eval_unique_id_to_feature[eval_feature.unique_id] = eval_feature def input_fn_builder(features, seq_length, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_start_positions = [] all_end_positions = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_start_positions.append(feature.start_position) all_end_positions.append(feature.end_position) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. feature_map = { "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "start_positions": tf.constant( all_start_positions, shape=[num_examples], dtype=tf.int32), "end_positions": tf.constant( all_end_positions, shape=[num_examples], dtype=tf.int32), } d = tf.data.Dataset.from_tensor_slices(feature_map) d = d.repeat() d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names) = modeling_tensorflow.get_assigment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: batch_size = modeling_tensorflow.get_shape_list(start_logits)[0] seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, "total_loss": tf.reshape(total_loss, [batch_size, 1]), "start_loss": tf.reshape(start_loss, [batch_size, 1]), "end_loss": tf.reshape(end_loss, [batch_size, 1]), } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=None, model_dir=output_dir, save_checkpoints_steps=1000, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=1000, num_shards=8, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=init_checkpoint, learning_rate=learning_rate, num_train_steps=None, num_warmup_steps=None, use_tpu=False, use_one_hot_embeddings=False) estimator = tf.contrib.tpu.TPUEstimator( use_tpu=False, model_fn=model_fn, config=run_config, train_batch_size=12, predict_batch_size=1) predict_input_fn = input_fn_builder( features=eval_features, seq_length=max_seq_length, drop_remainder=True) tensorflow_all_out = [] tensorflow_all_results = [] for result in estimator.predict(predict_input_fn, yield_single_examples=True): unique_id = int(result["unique_ids"]) eval_feature = eval_unique_id_to_feature[unique_id] start_logits = result["start_logits"] end_logits = result["end_logits"] total_loss = result["total_loss"] start_loss = result["start_loss"] end_loss = result["end_loss"] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["start_logits"] = [round(float(x), 6) for x in start_logits.flat] output_json["end_logits"] = [round(float(x), 6) for x in end_logits.flat] output_json["total_loss"] = [round(float(x), 6) for x in total_loss.flat] output_json["start_loss"] = [round(float(x), 6) for x in start_loss.flat] output_json["end_loss"] = [round(float(x), 6) for x in end_loss.flat] tensorflow_all_out.append(output_json) tensorflow_all_results.append(RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) break def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): """Compute final predictions.""" example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json all_predictions, all_nbest_json = compute_predictions(eval_examples[:1], eval_features[:1], tensorflow_all_results, 20, max_answer_length, True) all_nbest_json print(len(tensorflow_all_out)) print(len(tensorflow_all_out[0])) print(tensorflow_all_out[0].keys()) print("number of tokens", len(tensorflow_all_out[0]['tokens'])) print("number of start_logits", len(tensorflow_all_out[0]['start_logits'])) print("shape of end_logits", len(tensorflow_all_out[0]['end_logits'])) tensorflow_outputs = [tensorflow_all_out[0]['start_logits'], tensorflow_all_out[0]['end_logits'], tensorflow_all_out[0]['total_loss'], tensorflow_all_out[0]['start_loss'], tensorflow_all_out[0]['end_loss']] ###Output _____no_output_____ ###Markdown 2/ PyTorch code ###Code import modeling from run_squad import * init_checkpoint_pt = "../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin" device = torch.device("cpu") model = modeling.BertForQuestionAnswering(bert_config) model.bert.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu')) model.to(device) model.qa_outputs.weight.data.fill_(1.0) model.qa_outputs.bias.data.zero_() all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) all_start_positions = torch.tensor([[f.start_position] for f in eval_features], dtype=torch.long) all_end_positions = torch.tensor([[f.end_position] for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1) model.eval() None batch = iter(eval_dataloader).next() input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch print([t.shape for t in batch]) start_positions.size() pytorch_all_out = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) start_positions = start_positions.to(device) end_positions = end_positions.to(device) total_loss, (start_logits, end_logits) = model(input_ids, segment_ids, input_mask, start_positions, end_positions) eval_feature = eval_features[example_index.item()] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["total_loss"] = total_loss.detach().cpu().numpy() output_json["start_logits"] = start_logits.detach().cpu().numpy() output_json["end_logits"] = end_logits.detach().cpu().numpy() pytorch_all_out.append(output_json) break print(len(pytorch_all_out)) print(len(pytorch_all_out[0])) print(pytorch_all_out[0].keys()) print("number of tokens", len(pytorch_all_out[0]['tokens'])) print("number of start_logits", len(pytorch_all_out[0]['start_logits'])) print("number of end_logits", len(pytorch_all_out[0]['end_logits'])) pytorch_outputs = [pytorch_all_out[0]['start_logits'], pytorch_all_out[0]['end_logits'], pytorch_all_out[0]['total_loss']] ###Output _____no_output_____ ###Markdown 3/ Comparing the standard deviation of start_logits, end_logits and loss of both models ###Code import numpy as np print('shape tensorflow layer, shape pytorch layer, standard deviation') print('\n'.join(list(str((np.array(tensorflow_outputs[i]).shape, np.array(pytorch_outputs[i]).shape, np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(3)))) print("Total loss of the TF model {} - Total loss of the PT model {}".format(tensorflow_outputs[2][0], pytorch_outputs[2])) ###Output Total loss of the TF model 9.06024 - Total loss of the PT model 9.0602445602417 ###Markdown Comparing TensorFlow (original) and PyTorch model on the SQuAD taskYou can use this small notebook to check the loss computation from the TensorFlow model to the PyTorch model. In the following, we compare the total loss computed by the models starting from identical initializations (position prediction linear layers with weights at 1 and bias at 0).To run this notebook, follow these instructions:- make sure that your Python environment has both TensorFlow and PyTorch installed,- download the original TensorFlow implementation,- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code. ###Code import os os.chdir('../') ###Output _____no_output_____ ###Markdown 1/ TensorFlow code ###Code original_tf_inplem_dir = "./tensorflow_code/" model_dir = "../google_models/uncased_L-12_H-768_A-12/" vocab_file = model_dir + "vocab.txt" bert_config_file = model_dir + "bert_config.json" init_checkpoint = model_dir + "bert_model.ckpt" input_file = "../data/squad_data/train-v1.1.json" max_seq_length = 384 outside_pos = max_seq_length + 10 doc_stride = 128 max_query_length = 64 max_answer_length = 30 output_dir = "/tmp/squad_base/" learning_rate = 3e-5 import importlib.util import sys spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/modeling.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['modeling_tensorflow'] = module spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_squad.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['run_squad_tensorflow'] = module import modeling_tensorflow from run_squad_tensorflow import * bert_config = modeling_tensorflow.BertConfig.from_json_file(bert_config_file) tokenizer = tokenization.BertTokenizer( vocab_file=vocab_file, do_lower_case=True) eval_examples = read_squad_examples( input_file=input_file, is_training=True, max_num=16) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True) # You can use that to test the behavior of the models when target are outside of the model input sequence # for feature in eval_features: # feature.start_position = outside_pos # feature.end_position = outside_pos eval_unique_id_to_feature = {} for eval_feature in eval_features: eval_unique_id_to_feature[eval_feature.unique_id] = eval_feature def input_fn_builder(features, seq_length, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_start_positions = [] all_end_positions = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_start_positions.append(feature.start_position) all_end_positions.append(feature.end_position) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. feature_map = { "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "start_positions": tf.constant( all_start_positions, shape=[num_examples], dtype=tf.int32), "end_positions": tf.constant( all_end_positions, shape=[num_examples], dtype=tf.int32), } d = tf.data.Dataset.from_tensor_slices(feature_map) d = d.repeat() d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names) = modeling_tensorflow.get_assigment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: batch_size = modeling_tensorflow.get_shape_list(start_logits)[0] seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, "total_loss": tf.reshape(total_loss, [batch_size, 1]), "start_loss": tf.reshape(start_loss, [batch_size, 1]), "end_loss": tf.reshape(end_loss, [batch_size, 1]), } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=None, model_dir=output_dir, save_checkpoints_steps=1000, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=1000, num_shards=8, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=init_checkpoint, learning_rate=learning_rate, num_train_steps=None, num_warmup_steps=None, use_tpu=False, use_one_hot_embeddings=False) estimator = tf.contrib.tpu.TPUEstimator( use_tpu=False, model_fn=model_fn, config=run_config, train_batch_size=12, predict_batch_size=1) predict_input_fn = input_fn_builder( features=eval_features, seq_length=max_seq_length, drop_remainder=True) tensorflow_all_out = [] tensorflow_all_results = [] for result in estimator.predict(predict_input_fn, yield_single_examples=True): unique_id = int(result["unique_ids"]) eval_feature = eval_unique_id_to_feature[unique_id] start_logits = result["start_logits"] end_logits = result["end_logits"] total_loss = result["total_loss"] start_loss = result["start_loss"] end_loss = result["end_loss"] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["start_logits"] = [round(float(x), 6) for x in start_logits.flat] output_json["end_logits"] = [round(float(x), 6) for x in end_logits.flat] output_json["total_loss"] = [round(float(x), 6) for x in total_loss.flat] output_json["start_loss"] = [round(float(x), 6) for x in start_loss.flat] output_json["end_loss"] = [round(float(x), 6) for x in end_loss.flat] tensorflow_all_out.append(output_json) tensorflow_all_results.append(RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) break def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): """Compute final predictions.""" example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json all_predictions, all_nbest_json = compute_predictions(eval_examples[:1], eval_features[:1], tensorflow_all_results, 20, max_answer_length, True) all_nbest_json print(len(tensorflow_all_out)) print(len(tensorflow_all_out[0])) print(tensorflow_all_out[0].keys()) print("number of tokens", len(tensorflow_all_out[0]['tokens'])) print("number of start_logits", len(tensorflow_all_out[0]['start_logits'])) print("shape of end_logits", len(tensorflow_all_out[0]['end_logits'])) tensorflow_outputs = [tensorflow_all_out[0]['start_logits'], tensorflow_all_out[0]['end_logits'], tensorflow_all_out[0]['total_loss'], tensorflow_all_out[0]['start_loss'], tensorflow_all_out[0]['end_loss']] ###Output _____no_output_____ ###Markdown 2/ PyTorch code ###Code import modeling from run_squad import * init_checkpoint_pt = "../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin" device = torch.device("cpu") model = modeling.BertForQuestionAnswering(bert_config) model.bert.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu')) model.to(device) model.qa_outputs.weight.data.fill_(1.0) model.qa_outputs.bias.data.zero_() all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) all_start_positions = torch.tensor([[f.start_position] for f in eval_features], dtype=torch.long) all_end_positions = torch.tensor([[f.end_position] for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1) model.eval() None batch = iter(eval_dataloader).next() input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch print([t.shape for t in batch]) start_positions.size() pytorch_all_out = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) start_positions = start_positions.to(device) end_positions = end_positions.to(device) total_loss, (start_logits, end_logits) = model(input_ids, segment_ids, input_mask, start_positions, end_positions) eval_feature = eval_features[example_index.item()] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["total_loss"] = total_loss.detach().cpu().numpy() output_json["start_logits"] = start_logits.detach().cpu().numpy() output_json["end_logits"] = end_logits.detach().cpu().numpy() pytorch_all_out.append(output_json) break print(len(pytorch_all_out)) print(len(pytorch_all_out[0])) print(pytorch_all_out[0].keys()) print("number of tokens", len(pytorch_all_out[0]['tokens'])) print("number of start_logits", len(pytorch_all_out[0]['start_logits'])) print("number of end_logits", len(pytorch_all_out[0]['end_logits'])) pytorch_outputs = [pytorch_all_out[0]['start_logits'], pytorch_all_out[0]['end_logits'], pytorch_all_out[0]['total_loss']] ###Output _____no_output_____ ###Markdown 3/ Comparing the standard deviation of start_logits, end_logits and loss of both models ###Code import numpy as np print('shape tensorflow layer, shape pytorch layer, standard deviation') print('\n'.join(list(str((np.array(tensorflow_outputs[i]).shape, np.array(pytorch_outputs[i]).shape, np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(3)))) print("Total loss of the TF model {} - Total loss of the PT model {}".format(tensorflow_outputs[2][0], pytorch_outputs[2])) ###Output Total loss of the TF model 9.06024 - Total loss of the PT model 9.0602445602417 ###Markdown Comparing TensorFlow (original) and PyTorch model on the SQuAD taskYou can use this small notebook to check the loss computation from the TensorFlow model to the PyTorch model. In the following, we compare the total loss computed by the models starting from identical initializations (position prediction linear layers with weights at 1 and bias at 0).To run this notebook, follow these instructions:- make sure that your Python environment has both TensorFlow and PyTorch installed,- download the original TensorFlow implementation,- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code. ###Code import os os.chdir('../') ###Output _____no_output_____ ###Markdown 1/ TensorFlow code ###Code original_tf_inplem_dir = "./tensorflow_code/" model_dir = "../google_models/uncased_L-12_H-768_A-12/" vocab_file = model_dir + "vocab.txt" bert_config_file = model_dir + "bert_config.json" init_checkpoint = model_dir + "bert_model.ckpt" input_file = "../data/squad_data/train-v1.1.json" max_seq_length = 384 outside_pos = max_seq_length + 10 doc_stride = 128 max_query_length = 64 max_answer_length = 30 output_dir = "/tmp/squad_base/" learning_rate = 3e-5 import importlib.util import sys spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/modeling.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['modeling_tensorflow'] = module spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_bert_squad.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['run_squad_tensorflow'] = module import modeling_tensorflow from run_squad_tensorflow import * bert_config = modeling_tensorflow.BertConfig.from_json_file(bert_config_file) tokenizer = tokenization.BertTokenizer( vocab_file=vocab_file, do_lower_case=True) eval_examples = read_squad_examples( input_file=input_file, is_training=True, max_num=16) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True) # You can use that to test the behavior of the models when target are outside of the model input sequence # for feature in eval_features: # feature.start_position = outside_pos # feature.end_position = outside_pos eval_unique_id_to_feature = {} for eval_feature in eval_features: eval_unique_id_to_feature[eval_feature.unique_id] = eval_feature def input_fn_builder(features, seq_length, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_start_positions = [] all_end_positions = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_start_positions.append(feature.start_position) all_end_positions.append(feature.end_position) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. feature_map = { "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "start_positions": tf.constant( all_start_positions, shape=[num_examples], dtype=tf.int32), "end_positions": tf.constant( all_end_positions, shape=[num_examples], dtype=tf.int32), } d = tf.data.Dataset.from_tensor_slices(feature_map) d = d.repeat() d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names) = modeling_tensorflow.get_assigment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: batch_size = modeling_tensorflow.get_shape_list(start_logits)[0] seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, "total_loss": tf.reshape(total_loss, [batch_size, 1]), "start_loss": tf.reshape(start_loss, [batch_size, 1]), "end_loss": tf.reshape(end_loss, [batch_size, 1]), } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=None, model_dir=output_dir, save_checkpoints_steps=1000, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=1000, num_shards=8, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=init_checkpoint, learning_rate=learning_rate, num_train_steps=None, num_warmup_steps=None, use_tpu=False, use_one_hot_embeddings=False) estimator = tf.contrib.tpu.TPUEstimator( use_tpu=False, model_fn=model_fn, config=run_config, train_batch_size=12, predict_batch_size=1) predict_input_fn = input_fn_builder( features=eval_features, seq_length=max_seq_length, drop_remainder=True) tensorflow_all_out = [] tensorflow_all_results = [] for result in estimator.predict(predict_input_fn, yield_single_examples=True): unique_id = int(result["unique_ids"]) eval_feature = eval_unique_id_to_feature[unique_id] start_logits = result["start_logits"] end_logits = result["end_logits"] total_loss = result["total_loss"] start_loss = result["start_loss"] end_loss = result["end_loss"] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["start_logits"] = [round(float(x), 6) for x in start_logits.flat] output_json["end_logits"] = [round(float(x), 6) for x in end_logits.flat] output_json["total_loss"] = [round(float(x), 6) for x in total_loss.flat] output_json["start_loss"] = [round(float(x), 6) for x in start_loss.flat] output_json["end_loss"] = [round(float(x), 6) for x in end_loss.flat] tensorflow_all_out.append(output_json) tensorflow_all_results.append(RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) break def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): """Compute final predictions.""" example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json all_predictions, all_nbest_json = compute_predictions(eval_examples[:1], eval_features[:1], tensorflow_all_results, 20, max_answer_length, True) all_nbest_json print(len(tensorflow_all_out)) print(len(tensorflow_all_out[0])) print(tensorflow_all_out[0].keys()) print("number of tokens", len(tensorflow_all_out[0]['tokens'])) print("number of start_logits", len(tensorflow_all_out[0]['start_logits'])) print("shape of end_logits", len(tensorflow_all_out[0]['end_logits'])) tensorflow_outputs = [tensorflow_all_out[0]['start_logits'], tensorflow_all_out[0]['end_logits'], tensorflow_all_out[0]['total_loss'], tensorflow_all_out[0]['start_loss'], tensorflow_all_out[0]['end_loss']] ###Output _____no_output_____ ###Markdown 2/ PyTorch code ###Code import modeling from run_squad import * init_checkpoint_pt = "../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin" device = torch.device("cpu") model = modeling.BertForQuestionAnswering(bert_config) model.bert.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu')) model.to(device) model.qa_outputs.weight.data.fill_(1.0) model.qa_outputs.bias.data.zero_() all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) all_start_positions = torch.tensor([[f.start_position] for f in eval_features], dtype=torch.long) all_end_positions = torch.tensor([[f.end_position] for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1) model.eval() None batch = iter(eval_dataloader).next() input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch print([t.shape for t in batch]) start_positions.size() pytorch_all_out = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) start_positions = start_positions.to(device) end_positions = end_positions.to(device) total_loss, (start_logits, end_logits) = model(input_ids, segment_ids, input_mask, start_positions, end_positions) eval_feature = eval_features[example_index.item()] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["total_loss"] = total_loss.detach().cpu().numpy() output_json["start_logits"] = start_logits.detach().cpu().numpy() output_json["end_logits"] = end_logits.detach().cpu().numpy() pytorch_all_out.append(output_json) break print(len(pytorch_all_out)) print(len(pytorch_all_out[0])) print(pytorch_all_out[0].keys()) print("number of tokens", len(pytorch_all_out[0]['tokens'])) print("number of start_logits", len(pytorch_all_out[0]['start_logits'])) print("number of end_logits", len(pytorch_all_out[0]['end_logits'])) pytorch_outputs = [pytorch_all_out[0]['start_logits'], pytorch_all_out[0]['end_logits'], pytorch_all_out[0]['total_loss']] ###Output _____no_output_____ ###Markdown 3/ Comparing the standard deviation of start_logits, end_logits and loss of both models ###Code import numpy as np print('shape tensorflow layer, shape pytorch layer, standard deviation') print('\n'.join(list(str((np.array(tensorflow_outputs[i]).shape, np.array(pytorch_outputs[i]).shape, np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(3)))) print("Total loss of the TF model {} - Total loss of the PT model {}".format(tensorflow_outputs[2][0], pytorch_outputs[2])) ###Output Total loss of the TF model 9.06024 - Total loss of the PT model 9.0602445602417 ###Markdown Comparing TensorFlow (original) and PyTorch model on the SQuAD taskYou can use this small notebook to check the loss computation from the TensorFlow model to the PyTorch model. In the following, we compare the total loss computed by the models starting from identical initializations (position prediction linear layers with weights at 1 and bias at 0).To run this notebook, follow these instructions:- make sure that your Python environment has both TensorFlow and PyTorch installed,- download the original TensorFlow implementation,- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code. ###Code import os os.chdir('../') ###Output _____no_output_____ ###Markdown 1/ TensorFlow code ###Code original_tf_inplem_dir = "./tensorflow_code/" model_dir = "../google_models/uncased_L-12_H-768_A-12/" vocab_file = model_dir + "vocab.txt" bert_config_file = model_dir + "bert_config.json" init_checkpoint = model_dir + "bert_model.ckpt" input_file = "../data/squad_data/train-v1.1.json" max_seq_length = 384 outside_pos = max_seq_length + 10 doc_stride = 128 max_query_length = 64 max_answer_length = 30 output_dir = "/tmp/squad_base/" learning_rate = 3e-5 import importlib.util import sys spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/modeling.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['modeling_tensorflow'] = module spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_bert_squad.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['run_squad_tensorflow'] = module import modeling_tensorflow from run_squad_tensorflow import * bert_config = modeling_tensorflow.BertConfig.from_json_file(bert_config_file) tokenizer = tokenization.BertTokenizer( vocab_file=vocab_file, do_lower_case=True) eval_examples = read_squad_examples( input_file=input_file, is_training=True, max_num=16) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True) # You can use that to test the behavior of the models when target are outside of the model input sequence # for feature in eval_features: # feature.start_position = outside_pos # feature.end_position = outside_pos eval_unique_id_to_feature = {} for eval_feature in eval_features: eval_unique_id_to_feature[eval_feature.unique_id] = eval_feature def input_fn_builder(features, seq_length, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_start_positions = [] all_end_positions = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_start_positions.append(feature.start_position) all_end_positions.append(feature.end_position) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. feature_map = { "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "start_positions": tf.constant( all_start_positions, shape=[num_examples], dtype=tf.int32), "end_positions": tf.constant( all_end_positions, shape=[num_examples], dtype=tf.int32), } d = tf.data.Dataset.from_tensor_slices(feature_map) d = d.repeat() d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names) = modeling_tensorflow.get_assigment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: batch_size = modeling_tensorflow.get_shape_list(start_logits)[0] seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, "total_loss": tf.reshape(total_loss, [batch_size, 1]), "start_loss": tf.reshape(start_loss, [batch_size, 1]), "end_loss": tf.reshape(end_loss, [batch_size, 1]), } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=None, model_dir=output_dir, save_checkpoints_steps=1000, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=1000, num_shards=8, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=init_checkpoint, learning_rate=learning_rate, num_train_steps=None, num_warmup_steps=None, use_tpu=False, use_one_hot_embeddings=False) estimator = tf.contrib.tpu.TPUEstimator( use_tpu=False, model_fn=model_fn, config=run_config, train_batch_size=12, predict_batch_size=1) predict_input_fn = input_fn_builder( features=eval_features, seq_length=max_seq_length, drop_remainder=True) tensorflow_all_out = [] tensorflow_all_results = [] for result in estimator.predict(predict_input_fn, yield_single_examples=True): unique_id = int(result["unique_ids"]) eval_feature = eval_unique_id_to_feature[unique_id] start_logits = result["start_logits"] end_logits = result["end_logits"] total_loss = result["total_loss"] start_loss = result["start_loss"] end_loss = result["end_loss"] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["start_logits"] = [round(float(x), 6) for x in start_logits.flat] output_json["end_logits"] = [round(float(x), 6) for x in end_logits.flat] output_json["total_loss"] = [round(float(x), 6) for x in total_loss.flat] output_json["start_loss"] = [round(float(x), 6) for x in start_loss.flat] output_json["end_loss"] = [round(float(x), 6) for x in end_loss.flat] tensorflow_all_out.append(output_json) tensorflow_all_results.append(RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) break def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): """Compute final predictions.""" example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json all_predictions, all_nbest_json = compute_predictions(eval_examples[:1], eval_features[:1], tensorflow_all_results, 20, max_answer_length, True) all_nbest_json print(len(tensorflow_all_out)) print(len(tensorflow_all_out[0])) print(tensorflow_all_out[0].keys()) print("number of tokens", len(tensorflow_all_out[0]['tokens'])) print("number of start_logits", len(tensorflow_all_out[0]['start_logits'])) print("shape of end_logits", len(tensorflow_all_out[0]['end_logits'])) tensorflow_outputs = [tensorflow_all_out[0]['start_logits'], tensorflow_all_out[0]['end_logits'], tensorflow_all_out[0]['total_loss'], tensorflow_all_out[0]['start_loss'], tensorflow_all_out[0]['end_loss']] ###Output _____no_output_____ ###Markdown 2/ PyTorch code ###Code import modeling from run_squad import * init_checkpoint_pt = "../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin" device = torch.device("cpu") model = modeling.BertForQuestionAnswering(bert_config) model.bert.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu')) model.to(device) model.qa_outputs.weight.data.fill_(1.0) model.qa_outputs.bias.data.zero_() all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) all_start_positions = torch.tensor([[f.start_position] for f in eval_features], dtype=torch.long) all_end_positions = torch.tensor([[f.end_position] for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1) model.eval() None batch = iter(eval_dataloader).next() input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch print([t.shape for t in batch]) start_positions.size() pytorch_all_out = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) start_positions = start_positions.to(device) end_positions = end_positions.to(device) total_loss, (start_logits, end_logits) = model(input_ids, segment_ids, input_mask, start_positions, end_positions) eval_feature = eval_features[example_index.item()] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["total_loss"] = total_loss.detach().cpu().numpy() output_json["start_logits"] = start_logits.detach().cpu().numpy() output_json["end_logits"] = end_logits.detach().cpu().numpy() pytorch_all_out.append(output_json) break print(len(pytorch_all_out)) print(len(pytorch_all_out[0])) print(pytorch_all_out[0].keys()) print("number of tokens", len(pytorch_all_out[0]['tokens'])) print("number of start_logits", len(pytorch_all_out[0]['start_logits'])) print("number of end_logits", len(pytorch_all_out[0]['end_logits'])) pytorch_outputs = [pytorch_all_out[0]['start_logits'], pytorch_all_out[0]['end_logits'], pytorch_all_out[0]['total_loss']] ###Output _____no_output_____ ###Markdown 3/ Comparing the standard deviation of start_logits, end_logits and loss of both models ###Code import numpy as np print('shape tensorflow layer, shape pytorch layer, standard deviation') print('\n'.join(list(str((np.array(tensorflow_outputs[i]).shape, np.array(pytorch_outputs[i]).shape, np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(3)))) print("Total loss of the TF model {} - Total loss of the PT model {}".format(tensorflow_outputs[2][0], pytorch_outputs[2])) ###Output Total loss of the TF model 9.06024 - Total loss of the PT model 9.0602445602417 ###Markdown Comparing TensorFlow (original) and PyTorch model on the SQuAD taskYou can use this small notebook to check the loss computation from the TensorFlow model to the PyTorch model. In the following, we compare the total loss computed by the models starting from identical initializations (position prediction linear layers with weights at 1 and bias at 0).To run this notebook, follow these instructions:- make sure that your Python environment has both TensorFlow and PyTorch installed,- download the original TensorFlow implementation,- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code. ###Code import os os.chdir('../') ###Output _____no_output_____ ###Markdown 1/ TensorFlow code ###Code original_tf_inplem_dir = "./tensorflow_code/" model_dir = "../google_models/uncased_L-12_H-768_A-12/" vocab_file = model_dir + "vocab.txt" bert_config_file = model_dir + "bert_config.json" init_checkpoint = model_dir + "bert_model.ckpt" input_file = "../data/squad_data/train-v1.1.json" max_seq_length = 384 outside_pos = max_seq_length + 10 doc_stride = 128 max_query_length = 64 max_answer_length = 30 output_dir = "/tmp/squad_base/" learning_rate = 3e-5 import importlib.util import sys spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/modeling.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['modeling_tensorflow'] = module spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_squad.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['run_squad_tensorflow'] = module import modeling_tensorflow from run_squad_tensorflow import * bert_config = modeling_tensorflow.BertConfig.from_json_file(bert_config_file) tokenizer = tokenization.BertTokenizer( vocab_file=vocab_file, do_lower_case=True) eval_examples = read_squad_examples( input_file=input_file, is_training=True, max_num=16) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True) # You can use that to test the behavior of the models when target are outside of the model input sequence # for feature in eval_features: # feature.start_position = outside_pos # feature.end_position = outside_pos eval_unique_id_to_feature = {} for eval_feature in eval_features: eval_unique_id_to_feature[eval_feature.unique_id] = eval_feature def input_fn_builder(features, seq_length, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_start_positions = [] all_end_positions = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_start_positions.append(feature.start_position) all_end_positions.append(feature.end_position) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. feature_map = { "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "start_positions": tf.constant( all_start_positions, shape=[num_examples], dtype=tf.int32), "end_positions": tf.constant( all_end_positions, shape=[num_examples], dtype=tf.int32), } d = tf.data.Dataset.from_tensor_slices(feature_map) d = d.repeat() d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names) = modeling_tensorflow.get_assigment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: batch_size = modeling_tensorflow.get_shape_list(start_logits)[0] seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, "total_loss": tf.reshape(total_loss, [batch_size, 1]), "start_loss": tf.reshape(start_loss, [batch_size, 1]), "end_loss": tf.reshape(end_loss, [batch_size, 1]), } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=None, model_dir=output_dir, save_checkpoints_steps=1000, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=1000, num_shards=8, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=init_checkpoint, learning_rate=learning_rate, num_train_steps=None, num_warmup_steps=None, use_tpu=False, use_one_hot_embeddings=False) estimator = tf.contrib.tpu.TPUEstimator( use_tpu=False, model_fn=model_fn, config=run_config, train_batch_size=12, predict_batch_size=1) predict_input_fn = input_fn_builder( features=eval_features, seq_length=max_seq_length, drop_remainder=True) tensorflow_all_out = [] tensorflow_all_results = [] for result in estimator.predict(predict_input_fn, yield_single_examples=True): unique_id = int(result["unique_ids"]) eval_feature = eval_unique_id_to_feature[unique_id] start_logits = result["start_logits"] end_logits = result["end_logits"] total_loss = result["total_loss"] start_loss = result["start_loss"] end_loss = result["end_loss"] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["start_logits"] = [round(float(x), 6) for x in start_logits.flat] output_json["end_logits"] = [round(float(x), 6) for x in end_logits.flat] output_json["total_loss"] = [round(float(x), 6) for x in total_loss.flat] output_json["start_loss"] = [round(float(x), 6) for x in start_loss.flat] output_json["end_loss"] = [round(float(x), 6) for x in end_loss.flat] tensorflow_all_out.append(output_json) tensorflow_all_results.append(RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) break def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): """Compute final predictions.""" example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json all_predictions, all_nbest_json = compute_predictions(eval_examples[:1], eval_features[:1], tensorflow_all_results, 20, max_answer_length, True) all_nbest_json print(len(tensorflow_all_out)) print(len(tensorflow_all_out[0])) print(tensorflow_all_out[0].keys()) print("number of tokens", len(tensorflow_all_out[0]['tokens'])) print("number of start_logits", len(tensorflow_all_out[0]['start_logits'])) print("shape of end_logits", len(tensorflow_all_out[0]['end_logits'])) tensorflow_outputs = [tensorflow_all_out[0]['start_logits'], tensorflow_all_out[0]['end_logits'], tensorflow_all_out[0]['total_loss'], tensorflow_all_out[0]['start_loss'], tensorflow_all_out[0]['end_loss']] ###Output _____no_output_____ ###Markdown 2/ PyTorch code ###Code import modeling from run_squad import * init_checkpoint_pt = "../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin" device = torch.device("cpu") model = modeling.BertForQuestionAnswering(bert_config) model.bert.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu')) model.to(device) model.qa_outputs.weight.data.fill_(1.0) model.qa_outputs.bias.data.zero_() all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) all_start_positions = torch.tensor([[f.start_position] for f in eval_features], dtype=torch.long) all_end_positions = torch.tensor([[f.end_position] for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1) model.eval() None batch = iter(eval_dataloader).next() input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch print([t.shape for t in batch]) start_positions.size() pytorch_all_out = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) start_positions = start_positions.to(device) end_positions = end_positions.to(device) total_loss, (start_logits, end_logits) = model(input_ids, segment_ids, input_mask, start_positions, end_positions) eval_feature = eval_features[example_index.item()] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["total_loss"] = total_loss.detach().cpu().numpy() output_json["start_logits"] = start_logits.detach().cpu().numpy() output_json["end_logits"] = end_logits.detach().cpu().numpy() pytorch_all_out.append(output_json) break print(len(pytorch_all_out)) print(len(pytorch_all_out[0])) print(pytorch_all_out[0].keys()) print("number of tokens", len(pytorch_all_out[0]['tokens'])) print("number of start_logits", len(pytorch_all_out[0]['start_logits'])) print("number of end_logits", len(pytorch_all_out[0]['end_logits'])) pytorch_outputs = [pytorch_all_out[0]['start_logits'], pytorch_all_out[0]['end_logits'], pytorch_all_out[0]['total_loss']] ###Output _____no_output_____ ###Markdown 3/ Comparing the standard deviation of start_logits, end_logits and loss of both models ###Code import numpy as np print('shape tensorflow layer, shape pytorch layer, standard deviation') print('\n'.join(list(str((np.array(tensorflow_outputs[i]).shape, np.array(pytorch_outputs[i]).shape, np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(3)))) print("Total loss of the TF model {} - Total loss of the PT model {}".format(tensorflow_outputs[2][0], pytorch_outputs[2])) ###Output Total loss of the TF model 9.06024 - Total loss of the PT model 9.0602445602417 ###Markdown Comparing TensorFlow (original) and PyTorch model on the SQuAD taskYou can use this small notebook to check the loss computation from the TensorFlow model to the PyTorch model. In the following, we compare the total loss computed by the models starting from identical initializations (position prediction linear layers with weights at 1 and bias at 0).To run this notebook, follow these instructions:- make sure that your Python environment has both TensorFlow and PyTorch installed,- download the original TensorFlow implementation,- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code. ###Code import os os.chdir('../') ###Output _____no_output_____ ###Markdown 1/ TensorFlow code ###Code original_tf_inplem_dir = "./tensorflow_code/" model_dir = "../google_models/uncased_L-12_H-768_A-12/" vocab_file = model_dir + "vocab.txt" bert_config_file = model_dir + "bert_config.json" init_checkpoint = model_dir + "bert_model.ckpt" input_file = "../data/squad_data/train-v1.1.json" max_seq_length = 384 outside_pos = max_seq_length + 10 doc_stride = 128 max_query_length = 64 max_answer_length = 30 output_dir = "/tmp/squad_base/" learning_rate = 3e-5 import importlib.util import sys spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/modeling.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['modeling_tensorflow'] = module spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/run_squad.py') module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) sys.modules['run_squad_tensorflow'] = module import modeling_tensorflow from run_squad_tensorflow import * bert_config = modeling_tensorflow.BertConfig.from_json_file(bert_config_file) tokenizer = tokenization.BertTokenizer( vocab_file=vocab_file, do_lower_case=True) eval_examples = read_squad_examples( input_file=input_file, is_training=True, max_num=16) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True) # You can use that to test the behavior of the models when target are outside of the model input sequence # for feature in eval_features: # feature.start_position = outside_pos # feature.end_position = outside_pos eval_unique_id_to_feature = {} for eval_feature in eval_features: eval_unique_id_to_feature[eval_feature.unique_id] = eval_feature def input_fn_builder(features, seq_length, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_start_positions = [] all_end_positions = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_start_positions.append(feature.start_position) all_end_positions.append(feature.end_position) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. feature_map = { "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "start_positions": tf.constant( all_start_positions, shape=[num_examples], dtype=tf.int32), "end_positions": tf.constant( all_end_positions, shape=[num_examples], dtype=tf.int32), } d = tf.data.Dataset.from_tensor_slices(feature_map) d = d.repeat() d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names) = modeling_tensorflow.get_assigment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.PREDICT: batch_size = modeling_tensorflow.get_shape_list(start_logits)[0] seq_length = modeling_tensorflow.get_shape_list(input_ids)[1] def compute_loss(logits, positions): one_hot_positions = tf.one_hot( positions, depth=seq_length, dtype=tf.float32) log_probs = tf.nn.log_softmax(logits, axis=-1) loss = -tf.reduce_mean( tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) return loss start_positions = features["start_positions"] end_positions = features["end_positions"] start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, "total_loss": tf.reshape(total_loss, [batch_size, 1]), "start_loss": tf.reshape(start_loss, [batch_size, 1]), "end_loss": tf.reshape(end_loss, [batch_size, 1]), } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) else: raise ValueError( "Only TRAIN and PREDICT modes are supported: %s" % (mode)) return output_spec return model_fn is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=None, master=None, model_dir=output_dir, save_checkpoints_steps=1000, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=1000, num_shards=8, per_host_input_for_training=is_per_host)) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=init_checkpoint, learning_rate=learning_rate, num_train_steps=None, num_warmup_steps=None, use_tpu=False, use_one_hot_embeddings=False) estimator = tf.contrib.tpu.TPUEstimator( use_tpu=False, model_fn=model_fn, config=run_config, train_batch_size=12, predict_batch_size=1) predict_input_fn = input_fn_builder( features=eval_features, seq_length=max_seq_length, drop_remainder=True) tensorflow_all_out = [] tensorflow_all_results = [] for result in estimator.predict(predict_input_fn, yield_single_examples=True): unique_id = int(result["unique_ids"]) eval_feature = eval_unique_id_to_feature[unique_id] start_logits = result["start_logits"] end_logits = result["end_logits"] total_loss = result["total_loss"] start_loss = result["start_loss"] end_loss = result["end_loss"] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["start_logits"] = [round(float(x), 6) for x in start_logits.flat] output_json["end_logits"] = [round(float(x), 6) for x in end_logits.flat] output_json["total_loss"] = [round(float(x), 6) for x in total_loss.flat] output_json["start_loss"] = [round(float(x), 6) for x in start_loss.flat] output_json["end_loss"] = [round(float(x), 6) for x in end_loss.flat] tensorflow_all_out.append(output_json) tensorflow_all_results.append(RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) break def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def compute_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case): """Compute final predictions.""" example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case) if final_text in seen_predictions: continue seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 all_predictions[example.qas_id] = nbest_json[0]["text"] all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json all_predictions, all_nbest_json = compute_predictions(eval_examples[:1], eval_features[:1], tensorflow_all_results, 20, max_answer_length, True) all_nbest_json print(len(tensorflow_all_out)) print(len(tensorflow_all_out[0])) print(tensorflow_all_out[0].keys()) print("number of tokens", len(tensorflow_all_out[0]['tokens'])) print("number of start_logits", len(tensorflow_all_out[0]['start_logits'])) print("shape of end_logits", len(tensorflow_all_out[0]['end_logits'])) tensorflow_outputs = [tensorflow_all_out[0]['start_logits'], tensorflow_all_out[0]['end_logits'], tensorflow_all_out[0]['total_loss'], tensorflow_all_out[0]['start_loss'], tensorflow_all_out[0]['end_loss']] ###Output _____no_output_____ ###Markdown 2/ PyTorch code ###Code import modeling from run_squad import * init_checkpoint_pt = "../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin" device = torch.device("cpu") model = modeling.BertForQuestionAnswering(bert_config) model.bert.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu')) model.to(device) model.qa_outputs.weight.data.fill_(1.0) model.qa_outputs.bias.data.zero_() all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) all_start_positions = torch.tensor([[f.start_position] for f in eval_features], dtype=torch.long) all_end_positions = torch.tensor([[f.end_position] for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1) model.eval() None batch = iter(eval_dataloader).next() input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch print([t.shape for t in batch]) start_positions.size() pytorch_all_out = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): input_ids, input_mask, segment_ids, start_positions, end_positions, example_index = batch input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) start_positions = start_positions.to(device) end_positions = end_positions.to(device) total_loss, (start_logits, end_logits) = model(input_ids, segment_ids, input_mask, start_positions, end_positions) eval_feature = eval_features[example_index.item()] output_json = collections.OrderedDict() output_json["linex_index"] = unique_id output_json["tokens"] = [token for (i, token) in enumerate(eval_feature.tokens)] output_json["total_loss"] = total_loss.detach().cpu().numpy() output_json["start_logits"] = start_logits.detach().cpu().numpy() output_json["end_logits"] = end_logits.detach().cpu().numpy() pytorch_all_out.append(output_json) break print(len(pytorch_all_out)) print(len(pytorch_all_out[0])) print(pytorch_all_out[0].keys()) print("number of tokens", len(pytorch_all_out[0]['tokens'])) print("number of start_logits", len(pytorch_all_out[0]['start_logits'])) print("number of end_logits", len(pytorch_all_out[0]['end_logits'])) pytorch_outputs = [pytorch_all_out[0]['start_logits'], pytorch_all_out[0]['end_logits'], pytorch_all_out[0]['total_loss']] ###Output _____no_output_____ ###Markdown 3/ Comparing the standard deviation of start_logits, end_logits and loss of both models ###Code import numpy as np print('shape tensorflow layer, shape pytorch layer, standard deviation') print('\n'.join(list(str((np.array(tensorflow_outputs[i]).shape, np.array(pytorch_outputs[i]).shape, np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(3)))) print("Total loss of the TF model {} - Total loss of the PT model {}".format(tensorflow_outputs[2][0], pytorch_outputs[2])) ###Output Total loss of the TF model 9.06024 - Total loss of the PT model 9.0602445602417