Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,991 Bytes
45b4c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9804de3
 
 
 
 
 
 
 
 
 
 
 
 
 
45b4c56
9804de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448fd7e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
dataset_info:
  features:
  - name: src_lang
    dtype: string
  - name: src_sent
    dtype: string
  - name: tgt_lang
    dtype: string
  - name: tgt_sent
    dtype: string
  splits:
  - name: kaa_eng
    num_bytes: 19047157
    num_examples: 100000
  - name: kaa_rus
    num_bytes: 27731049
    num_examples: 100000
  - name: kaa_uzb
    num_bytes: 30608474
    num_examples: 100000
  download_size: 46148914
  dataset_size: 77386680
configs:
- config_name: default
  data_files:
  - split: kaa_eng
    path: data/kaa_eng-*
  - split: kaa_rus
    path: data/kaa_rus-*
  - split: kaa_uzb
    path: data/kaa_uzb-*
language:
- en
- ru
- uz
- kaa
pretty_name: dilmash
size_categories:
- 100K<n<1M
license: mit
task_categories:
- translation
tags:
- dilmash
- karakalpak
---
# Dilmash: Karakalpak Parallel Corpus

This repository contains a parallel corpus for the Karakalpak language, developed as part of the research paper "Open Language Data Initiative: Advancing Low-Resource Machine Translation for Karakalpak".

## Dataset Description

The Karakalpak Parallel Corpus is a collection of 300,000 sentence pairs, designed to support machine translation tasks involving the Karakalpak language. It includes:

- Uzbek-Karakalpak (100,000 pairs)
- Russian-Karakalpak (100,000 pairs)
- English-Karakalpak (100,000 pairs)

## Usage

This dataset is intended for training and evaluating machine translation models involving the Karakalpak language.

To load and use dataset, run this script:

```python
from datasets import load_dataset

dilmash_corpus = load_dataset("tahrirchi/dilmash")
```

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 77.4 MB
- **Size of the generated dataset:** 46.1 MB
- **Total amount of disk used:** 123.5 MB

An example of 'kaa_eng' looks as follows.
```
{'src_lang': 'kaa_Latn',
 'src_sent': 'Pedagogikalıq ideal balaǵa ıktıyatlılıq penen katnasta bolıw principine bárqulla, úlken hám kishi jumıslarda súyeniwdi talan etedi.',
 'tgt_lang': 'eng_Latn',
 'tgt_sent': 'The ideal of education demands that the principle of treating children with care be observed at all times, in both big and small matters.'
}
```

### Data Fields

The data fields are the same among all splits.

- `src_lang`: a `string` feature that contains source language.
- `src_sent`: a `string` feature that contains sentence in source language.
- `tgt_lang`: a `string` feature that contains target language.
- `tgt_sent`: a `string` feature that contains sentence in target language.

### Data Splits

| split_name      |num_examples|
|-----------------|-----------:|
| kaa_eng         | 100000     |
| kaa_rus         | 100000     |
| kaa_uzb         | 100000     |

## Data Sources

The corpus comprises diverse parallel texts sourced from multiple domains:

- 23% sentences from news sources
- 34% sentences from books (novels, non-fiction)
- 24% sentences from bilingual dictionaries
- 19% sentences from school textbooks

Additionally, 4,000 English-Karakalpak pairs were sourced from the Gatitos Project (Jones et al., 2023)[https://aclanthology.org/2023.emnlp-main.26].

## Data Preparation

The data mining process involved local mining techniques, ensuring that parallel sentences were extracted from translations of the same book, document, or article. Sentence alignment was performed using LaBSE (Language-agnostic BERT Sentence Embedding) embeddings.

## Citation

If you use this dataset in your research, please cite our paper:

```bibtex
@inproceedings{mamasaidov2024advancing,
  title={Open Language Data Initiative: Advancing Low-Resource Machine Translation for Karakalpak},
  author={Mamasaidov, Mukhammadsaid and Shopulatov, Abror},
  booktitle={Proceedings of the OLDI Workshop},
  year={2024}
}
```

## Gratitude

We are thankful to these awesome organizations and people for helping to make it happen:

 - [David Dalé](https://daviddale.ru): for advise throughout the process
 - Perizad Najimova: for expertise and assistance with the Karakalpak language
 - [Nurlan Pirjanov](https://www.linkedin.com/in/nurlan-pirjanov/): for expertise and assistance with the Karakalpak language
 - [Atabek Murtazaev](https://www.linkedin.com/in/atabek/): for advise throughout the process
 - Ajiniyaz Nurniyazov: for advise throughout the process

## Contacts

We believe that this work will enable and inspire all enthusiasts around the world to open the hidden beauty of low-resource languages, in particular Karakalpak. 

For further development and issues about the dataset, please use [email protected] or [email protected] to contact.

```
@misc{mamasaidov2024openlanguagedatainitiative,
      title={Open Language Data Initiative: Advancing Low-Resource Machine Translation for Karakalpak}, 
      author={Mukhammadsaid Mamasaidov and Abror Shopulatov},
      year={2024},
      eprint={2409.04269},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.04269}, 
}
```