taiseimatsuoka commited on
Commit
374cec1
·
verified ·
1 Parent(s): 1d69fb0

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - llava
6
+ - multimodal
7
+ - qwen
8
+ license: apache-2.0
9
+ ---
10
+ # nanoLLaVA - Sub 1B Vision-Language Model
11
+
12
+ <p align="center">
13
+ <img src="https://i.postimg.cc/d15k3YNG/nanollava.webp" alt="Logo" width="350">
14
+ </p>
15
+
16
+ ## Description
17
+ nanoLLaVA is a "small but mighty" 1B vision-language model designed to run efficiently on edge devices.
18
+ - **Base LLM**: [Quyen-SE-v0.1](https://huggingface.co/vilm/Quyen-SE-v0.1) (Qwen1.5-0.5B)
19
+ - **Vision Encoder**: [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384)
20
+
21
+ | Model | **VQA v2** | **TextVQA** | **ScienceQA** | **POPE** | **MMMU (Test)** | **MMMU (Eval)** | **GQA** | **MM-VET** |
22
+ |---------|--------|---------|-----------|------|-------------|-------------|------|--------|
23
+ | Score | 70.84 | 46.71 | 58.97 | 84.1 | 28.6 | 30.4 | 54.79| 23.9 |
24
+
25
+ ## Training Data
26
+ Training Data will be released later as I am still writing a paper on this. Expect the final final to be much more powerful than the current one.
27
+
28
+ ## Finetuning Code
29
+ Coming Soon!!!
30
+
31
+ ## Usage
32
+ You can use with `transformers` with the following script:
33
+
34
+ ```bash
35
+ pip install -U transformers accelerate flash_attn
36
+ ```
37
+
38
+ ```python
39
+ import torch
40
+ import transformers
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer
42
+ from PIL import Image
43
+ import warnings
44
+
45
+ # disable some warnings
46
+ transformers.logging.set_verbosity_error()
47
+ transformers.logging.disable_progress_bar()
48
+ warnings.filterwarnings('ignore')
49
+
50
+ # set device
51
+ torch.set_default_device('cuda') # or 'cpu'
52
+
53
+ # create model
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ 'qnguyen3/nanoLLaVA',
56
+ torch_dtype=torch.float16,
57
+ device_map='auto',
58
+ trust_remote_code=True)
59
+ tokenizer = AutoTokenizer.from_pretrained(
60
+ 'qnguyen3/nanoLLaVA',
61
+ trust_remote_code=True)
62
+
63
+ # text prompt
64
+ prompt = 'Describe this image in detail'
65
+
66
+ messages = [
67
+ {"role": "user", "content": f'<image>\n{prompt}'}
68
+ ]
69
+ text = tokenizer.apply_chat_template(
70
+ messages,
71
+ tokenize=False,
72
+ add_generation_prompt=True
73
+ )
74
+
75
+ print(text)
76
+
77
+ text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
78
+ input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
79
+
80
+ # image, sample images can be found in images folder
81
+ image = Image.open('/path/to/image.png')
82
+ image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
83
+
84
+ # generate
85
+ output_ids = model.generate(
86
+ input_ids,
87
+ images=image_tensor,
88
+ max_new_tokens=2048,
89
+ use_cache=True)[0]
90
+
91
+ print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
92
+ ```
93
+
94
+ ## Prompt Format
95
+ The model follow the ChatML standard, however, without `\n` at the end of `<|im_end|>`:
96
+ ```
97
+ <|im_start|>system
98
+ Answer the question<|im_end|><|im_start|>user
99
+ <image>
100
+ What is the picture about?<|im_end|><|im_start|>assistant
101
+ ```
102
+
103
+ ---
104
+ | Image | Example |
105
+ |--------------------------------------|---------------------------------------------------------------------------------------------|
106
+ | ![small](example_1.png) | **What is the text saying?** <br> "Small but mighty". <br>**How does the text correlate to the context of the image?** <br> The text seems to be a playful or humorous representation of a small but mighty figure, possibly a mouse or a mouse toy, holding a weightlifting bar. |
107
+ ---
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/azureuser/nanoLLaVA/checkpoint-5426",
3
+ "architectures": [
4
+ "LlavaQwen2ForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_llava_qwen2.LlavaQwen2Config",
8
+ "AutoModelForCausalLM": "modeling_llava_qwen2.LlavaQwen2ForCausalLM"
9
+ },
10
+ "attention_dropout": 0.0,
11
+ "bos_token_id": 151645,
12
+ "eos_token_id": 151645,
13
+ "freeze_mm_mlp_adapter": false,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 1024,
16
+ "image_aspect_ratio": "pad",
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 2816,
19
+ "max_position_embeddings": 32768,
20
+ "max_window_layers": 21,
21
+ "mm_hidden_size": 1152,
22
+ "mm_projector_lr": null,
23
+ "mm_projector_type": "mlp2x_gelu",
24
+ "mm_vision_tower": "google/siglip-so400m-patch14-384",
25
+ "language_model": "vilm/Quyen-SE-v0.1",
26
+ "model_type": "llava-qwen2",
27
+ "num_attention_heads": 16,
28
+ "num_hidden_layers": 24,
29
+ "num_key_value_heads": 16,
30
+ "rms_norm_eps": 1e-06,
31
+ "rope_theta": 1000000.0,
32
+ "sliding_window": 4096,
33
+ "tie_word_embeddings": false,
34
+ "tokenizer_model_max_length": 4096,
35
+ "tokenizer_padding_side": "right",
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.39.2",
38
+ "tune_mm_mlp_adapter": false,
39
+ "use_cache": false,
40
+ "use_mm_proj": true,
41
+ "use_sliding_window": false,
42
+ "vocab_size": 151936
43
+ }
configuration_llava_qwen2.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Qwen2 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class Qwen2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
31
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
32
+ with the defaults will yield a similar configuration to that of
33
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 151936):
41
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Qwen2Model`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 22016):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer encoder.
51
+ num_key_value_heads (`int`, *optional*, defaults to 32):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
61
+ The maximum sequence length that this model might ever be used with.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
70
+ Whether the model's input and output word embeddings should be tied.
71
+ rope_theta (`float`, *optional*, defaults to 10000.0):
72
+ The base period of the RoPE embeddings.
73
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
74
+ Whether to use sliding window attention.
75
+ sliding_window (`int`, *optional*, defaults to 4096):
76
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
77
+ max_window_layers (`int`, *optional*, defaults to 28):
78
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
79
+ attention_dropout (`float`, *optional*, defaults to 0.0):
80
+ The dropout ratio for the attention probabilities.
81
+
82
+ ```python
83
+ >>> from transformers import Qwen2Model, Qwen2Config
84
+
85
+ >>> # Initializing a Qwen2 style configuration
86
+ >>> configuration = Qwen2Config()
87
+
88
+ >>> # Initializing a model from the Qwen2-7B style configuration
89
+ >>> model = Qwen2Model(configuration)
90
+
91
+ >>> # Accessing the model configuration
92
+ >>> configuration = model.config
93
+ ```"""
94
+
95
+ model_type = "qwen2"
96
+ keys_to_ignore_at_inference = ["past_key_values"]
97
+
98
+ def __init__(
99
+ self,
100
+ vocab_size=151936,
101
+ hidden_size=4096,
102
+ intermediate_size=22016,
103
+ num_hidden_layers=32,
104
+ num_attention_heads=32,
105
+ num_key_value_heads=32,
106
+ hidden_act="silu",
107
+ max_position_embeddings=32768,
108
+ initializer_range=0.02,
109
+ rms_norm_eps=1e-6,
110
+ use_cache=True,
111
+ tie_word_embeddings=False,
112
+ rope_theta=10000.0,
113
+ use_sliding_window=False,
114
+ sliding_window=4096,
115
+ max_window_layers=28,
116
+ attention_dropout=0.0,
117
+ **kwargs,
118
+ ):
119
+ self.vocab_size = vocab_size
120
+ self.max_position_embeddings = max_position_embeddings
121
+ self.hidden_size = hidden_size
122
+ self.intermediate_size = intermediate_size
123
+ self.num_hidden_layers = num_hidden_layers
124
+ self.num_attention_heads = num_attention_heads
125
+ self.use_sliding_window = use_sliding_window
126
+ self.sliding_window = sliding_window
127
+ self.max_window_layers = max_window_layers
128
+
129
+ # for backward compatibility
130
+ if num_key_value_heads is None:
131
+ num_key_value_heads = num_attention_heads
132
+
133
+ self.num_key_value_heads = num_key_value_heads
134
+ self.hidden_act = hidden_act
135
+ self.initializer_range = initializer_range
136
+ self.rms_norm_eps = rms_norm_eps
137
+ self.use_cache = use_cache
138
+ self.rope_theta = rope_theta
139
+ self.attention_dropout = attention_dropout
140
+
141
+ super().__init__(
142
+ tie_word_embeddings=tie_word_embeddings,
143
+ **kwargs,
144
+ )
145
+
146
+ from typing import Union
147
+ from transformers import PretrainedConfig
148
+ import os
149
+
150
+
151
+ class SigLipVisionConfig(PretrainedConfig):
152
+ model_type = "siglip_vision_model"
153
+
154
+ def __init__(
155
+ self,
156
+ hidden_size=1152,
157
+ image_mean=(0.5, 0.5, 0.5),
158
+ intermediate_size=4304,
159
+ num_hidden_layers=27,
160
+ num_attention_heads=16,
161
+ num_channels=3,
162
+ image_size=384,
163
+ patch_size=14,
164
+ hidden_act="gelu_pytorch_tanh",
165
+ layer_norm_eps=1e-6,
166
+ attention_dropout=0.0,
167
+ **kwargs,
168
+ ):
169
+ super().__init__(**kwargs)
170
+
171
+ self.hidden_size = hidden_size
172
+ self.intermediate_size = intermediate_size
173
+ self.num_hidden_layers = num_hidden_layers
174
+ self.num_attention_heads = num_attention_heads
175
+ self.num_channels = num_channels
176
+ self.patch_size = patch_size
177
+ self.image_size = image_size
178
+ self.attention_dropout = attention_dropout
179
+ self.layer_norm_eps = layer_norm_eps
180
+ self.hidden_act = hidden_act
181
+ self.image_mean = image_mean
182
+
183
+ @classmethod
184
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
185
+ cls._set_token_in_kwargs(kwargs)
186
+
187
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
188
+
189
+ # get the vision config dict if we are loading from SigLipConfig
190
+ if config_dict.get("model_type") == "siglip":
191
+ config_dict = config_dict["vision_config"]
192
+
193
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
194
+ logger.warning(
195
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
196
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
197
+ )
198
+
199
+ return cls.from_dict(config_dict, **kwargs)
200
+
201
+ class LlavaQwen2Config(Qwen2Config):
202
+ model_type = "llava-qwen2"
example_1.png ADDED
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151645,
3
+ "do_sample": true,
4
+ "eos_token_id": 151645,
5
+ "max_length": 4096,
6
+ "temperature": 0.7,
7
+ "top_p": 0.8,
8
+ "transformers_version": "4.39.2"
9
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6319126507046d2e020963da2e09e5943432eabb7ede807dab4e71bb858f5407
3
+ size 2100155752
modeling_llava_qwen2.py ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<|endoftext|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": "<|im_end|>",
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nAnswer the questions.<|im_end|>' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 4096,
39
+ "pad_token": "<|endoftext|>",
40
+ "padding_side": "right",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff