parquet-converter commited on
Commit
4140acc
·
1 Parent(s): b02a20b

Update parquet files

Browse files
README.md DELETED
@@ -1,60 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - unknown
4
- language_creators:
5
- - unknown
6
- language:
7
- - en
8
- license:
9
- - unknown
10
- multilinguality:
11
- - monolingual
12
- task_categories:
13
- - text-mining
14
- - text-generation
15
- task_ids:
16
- - keyphrase-generation
17
- - keyphrase-extraction
18
- size_categories:
19
- - 100K<n<1M
20
- pretty_name: KP20k
21
- ---
22
-
23
- # KP20k Benchmark Dataset for Keyphrase Generation
24
-
25
- ## About
26
-
27
- KP20k is a dataset for benchmarking keyphrase extraction and generation models.
28
- The data is composed of 570 809 abstracts and their associated titles from scientific articles.
29
-
30
- Details about the dataset can be found in the original paper:
31
- - Meng et al 2017.
32
- [Deep keyphrase Generation](https://aclanthology.org/P17-1054.pdf)
33
- Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 582–592
34
-
35
- Reference (indexer-assigned) keyphrases are also categorized under the PRMU (<u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen) scheme as proposed in the following paper:
36
- - Florian Boudin and Ygor Gallina. 2021.
37
- [Redefining Absent Keyphrases and their Effect on Retrieval Effectiveness](https://aclanthology.org/2021.naacl-main.330/).
38
- In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4185–4193, Online. Association for Computational Linguistics.
39
-
40
- Text pre-processing (tokenization) is carried out using spacy (en_core_web_sm model) with a special rule to avoid splitting words with hyphens (e.g. graph-based is kept as one token). Stemming (Porter's stemmer implementation provided in nltk) is applied before reference keyphrases are matched against the source text.
41
-
42
- ## Content
43
-
44
- The dataset is divided into the following three splits:
45
-
46
- | Split | # documents | # keyphrases by document (average) | % Present | % Reordered | % Mixed | % Unseen |
47
- | :--------- | ----------: | -----------: | --------: | ----------: | ------: | -------: |
48
- | Train | 530 809 | 5.29 | 58.19 | 10.93 | 17.36 | 13.52 |
49
- | Test | 20 000 | 5.28 | 58.40 | 10.84 | 17.20 | 13.56 |
50
- | Validation | 20 000 | 5.27 | 58.20 | 10.94 | 17.26 | 13.61 |
51
-
52
-
53
- The following data fields are available:
54
- - **id**: unique identifier of the document. **NB** There were no ids in the original dataset. The ids were generated using the python module shortuuid (https://pypi.org/project/shortuuid/)
55
- - **title**: title of the document.
56
- - **abstract**: abstract of the document.
57
- - **keyphrases**: list of reference keyphrases.
58
- - **prmu**: list of <u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen categories for reference keyphrases.
59
-
60
- **NB**: The present keyphrases (represented by the "P" label in the PRMU column) are sorted by their apparition order in the text (title + abstract).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"raw": {"description": "KP20k dataset for keyphrase extraction and generation in scientific paper.\n", "citation": "@InProceedings{meng-EtAl:2017:Long,\n author = {Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu},\n title = {Deep Keyphrase Generation},\n booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},\n month = {July},\n year = {2017},\n address = {Vancouver, Canada},\n publisher = {Association for Computational Linguistics},\n pages = {582--592},\n url = {http://aclweb.org/anthology/P17-1054}\n}\n", "homepage": "http://memray.me/uploads/acl17-keyphrase-generation.pdf", "license": "MIT LICENSE", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}, "keyphrases": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "prmu": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "kp20k", "config_name": "raw", "version": {"version_str": "0.0.1", "description": "", "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 654745019, "num_examples": 530809, "dataset_name": "kp20k"}, "test": {"name": "test", "num_bytes": 24676939, "num_examples": 20000, "dataset_name": "kp20k"}, "validation": {"name": "validation", "num_bytes": 24658967, "num_examples": 20000, "dataset_name": "kp20k"}}, "download_checksums": {"test.json": {"num_bytes": 25256561, "checksum": "bde2d949cc8767c8ec4b3fbc6d25d1d218d1397cba58d130c33d17fd22af25cf"}, "train.json": {"num_bytes": 670114113, "checksum": "5ae4196410dc1e336de4b79e76800bb72c3669ce1888fab0ff46a431c7277c95"}, "validation.json": {"num_bytes": 25238622, "checksum": "a9dd61ed2547485a146b880e84042d002c3ed0fc668d9d0a08631f15e772f691"}}, "download_size": 720609296, "post_processing_size": null, "dataset_size": 704080925, "size_in_bytes": 1424690221}}
 
 
kp20k.py DELETED
@@ -1,138 +0,0 @@
1
- import csv
2
- import json
3
- import os
4
- import datasets
5
-
6
-
7
- _CITATION = """\
8
- @InProceedings{meng-EtAl:2017:Long,
9
- author = {Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu},
10
- title = {Deep Keyphrase Generation},
11
- booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
12
- month = {July},
13
- year = {2017},
14
- address = {Vancouver, Canada},
15
- publisher = {Association for Computational Linguistics},
16
- pages = {582--592},
17
- url = {http://aclweb.org/anthology/P17-1054}
18
- }
19
- """
20
-
21
- # You can copy an official description
22
- _DESCRIPTION = """\
23
- KP20k dataset for keyphrase extraction and generation in scientific paper.
24
- """
25
-
26
- _HOMEPAGE = "http://memray.me/uploads/acl17-keyphrase-generation.pdf"
27
-
28
- # License information from the original source page https://github.com/memray/seq2seq-keyphrase
29
- _LICENSE = "MIT LICENSE"
30
-
31
- # TODO: Add link to the official dataset URLs here
32
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
33
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
34
- _URLS = {
35
- "test": "test.json",
36
- "train": "train.json",
37
- "validation": "validation.json"
38
- }
39
-
40
-
41
-
42
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
43
- class KP20k(datasets.GeneratorBasedBuilder):
44
-
45
- VERSION = datasets.Version("0.0.1","")
46
-
47
- # This is an example of a dataset with multiple configurations.
48
- # If you don't want/need to define several sub-sets in your dataset,
49
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
50
-
51
- # If you need to make complex sub-parts in the datasets with configurable options
52
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
53
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
54
-
55
- # You will be able to load one or the other configurations in the following list with
56
- # data = datasets.load_dataset('my_dataset', 'first_domain')
57
- # data = datasets.load_dataset('my_dataset', 'second_domain')
58
- BUILDER_CONFIGS = [
59
- datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data"),
60
- ]
61
-
62
- #DEFAULT_CONFIG_NAME = "raw" # It's not mandatory to have a default configuration. Just use one if it make sense.
63
-
64
- def _info(self):
65
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
66
- print(self.config)
67
- features = datasets.Features(
68
- {
69
- 'id': datasets.Value(dtype="string"),
70
- "title": datasets.Value("string"),
71
- "abstract": datasets.Value("string"),
72
- "keyphrases": datasets.features.Sequence(datasets.Value("string")),
73
- "prmu": datasets.features.Sequence(datasets.Value("string")),
74
- }
75
- )
76
- return datasets.DatasetInfo(
77
- # This is the description that will appear on the datasets page.
78
- description=_DESCRIPTION,
79
- # This defines the different columns of the dataset and their types
80
- features=features,
81
- homepage=_HOMEPAGE,
82
- # License for the dataset if available
83
- license=_LICENSE,
84
- # Citation for the dataset
85
- citation=_CITATION,
86
- )
87
-
88
- def _split_generators(self, dl_manager):
89
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
90
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
91
-
92
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
93
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
94
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
95
- urls = _URLS
96
- data_dir = dl_manager.download_and_extract(urls)
97
- return [
98
- datasets.SplitGenerator(
99
- name=datasets.Split.TRAIN,
100
- # These kwargs will be passed to _generate_examples
101
- gen_kwargs={
102
- "filepath": os.path.join(data_dir["train"]),
103
- "split": "train",
104
- },
105
- ),
106
- datasets.SplitGenerator(
107
- name=datasets.Split.TEST,
108
- # These kwargs will be passed to _generate_examples
109
- gen_kwargs={
110
- "filepath": os.path.join(data_dir["test"]),
111
- "split": "test"
112
- },
113
- ),
114
- datasets.SplitGenerator(
115
- name=datasets.Split.VALIDATION,
116
- # These kwargs will be passed to _generate_examples
117
- gen_kwargs={
118
- "filepath": os.path.join(data_dir["validation"]),
119
- "split": "validation",
120
- },
121
- ),
122
- ]
123
-
124
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
125
- def _generate_examples(self, filepath, split):
126
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
127
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
128
- with open(filepath, encoding="utf-8") as f:
129
- for key, row in enumerate(f):
130
- data = json.loads(row)
131
- # Yields examples as (key, example) tuples
132
- yield key, {
133
- "id": data["id"],
134
- "title": data["title"],
135
- "abstract": data["abstract"],
136
- "keyphrases": data["keyphrases"],
137
- "prmu": data["prmu"],
138
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
validation.json → raw/kp20k-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a9dd61ed2547485a146b880e84042d002c3ed0fc668d9d0a08631f15e772f691
3
- size 25238622
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c911da6fd7160c9d3c1c8632aa883e61634e395baa190f92a11e48ec885a4167
3
+ size 13861580
train.json → raw/kp20k-train-00000-of-00002.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5ae4196410dc1e336de4b79e76800bb72c3669ce1888fab0ff46a431c7277c95
3
- size 670114113
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:282c13be528f189de34fe841572258c59050fc05699bd74cddc7c478b5b4a3d3
3
+ size 281619031
test.json → raw/kp20k-train-00001-of-00002.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bde2d949cc8767c8ec4b3fbc6d25d1d218d1397cba58d130c33d17fd22af25cf
3
- size 25256561
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba871d9057cb3d1375caef09e1193c1f30b814e76b1ac647784122b8635905b5
3
+ size 86662025
raw/kp20k-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:598eed939f310ed55953a343aecda4cbfde2ec04a3b7698349d0586b3cd6ebc3
3
+ size 13840949