tanganke commited on
Commit
969c5d4
·
verified ·
1 Parent(s): 740f40a

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +444 -0
  2. data/test.zip +3 -0
  3. data/train.zip +3 -0
  4. sun397.py +438 -0
README.md ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: image
5
+ dtype: image
6
+ - name: label
7
+ dtype:
8
+ class_label:
9
+ names:
10
+ '0': abbey
11
+ '1': airplane cabin
12
+ '2': airport terminal
13
+ '3': alley
14
+ '4': amphitheater
15
+ '5': amusement arcade
16
+ '6': amusement park
17
+ '7': anechoic chamber
18
+ '8': apartment building outdoor
19
+ '9': apse indoor
20
+ '10': aquarium
21
+ '11': aqueduct
22
+ '12': arch
23
+ '13': archive
24
+ '14': arrival gate outdoor
25
+ '15': art gallery
26
+ '16': art school
27
+ '17': art studio
28
+ '18': assembly line
29
+ '19': athletic field outdoor
30
+ '20': atrium public
31
+ '21': attic
32
+ '22': auditorium
33
+ '23': auto factory
34
+ '24': badlands
35
+ '25': badminton court indoor
36
+ '26': baggage claim
37
+ '27': bakery shop
38
+ '28': balcony exterior
39
+ '29': balcony interior
40
+ '30': ball pit
41
+ '31': ballroom
42
+ '32': bamboo forest
43
+ '33': banquet hall
44
+ '34': bar
45
+ '35': barn
46
+ '36': barndoor
47
+ '37': baseball field
48
+ '38': basement
49
+ '39': basilica
50
+ '40': basketball court outdoor
51
+ '41': bathroom
52
+ '42': batters box
53
+ '43': bayou
54
+ '44': bazaar indoor
55
+ '45': bazaar outdoor
56
+ '46': beach
57
+ '47': beauty salon
58
+ '48': bedroom
59
+ '49': berth
60
+ '50': biology laboratory
61
+ '51': bistro indoor
62
+ '52': boardwalk
63
+ '53': boat deck
64
+ '54': boathouse
65
+ '55': bookstore
66
+ '56': booth indoor
67
+ '57': botanical garden
68
+ '58': bow window indoor
69
+ '59': bow window outdoor
70
+ '60': bowling alley
71
+ '61': boxing ring
72
+ '62': brewery indoor
73
+ '63': bridge
74
+ '64': building facade
75
+ '65': bullring
76
+ '66': burial chamber
77
+ '67': bus interior
78
+ '68': butchers shop
79
+ '69': butte
80
+ '70': cabin outdoor
81
+ '71': cafeteria
82
+ '72': campsite
83
+ '73': campus
84
+ '74': canal natural
85
+ '75': canal urban
86
+ '76': candy store
87
+ '77': canyon
88
+ '78': car interior backseat
89
+ '79': car interior frontseat
90
+ '80': carrousel
91
+ '81': casino indoor
92
+ '82': castle
93
+ '83': catacomb
94
+ '84': cathedral indoor
95
+ '85': cathedral outdoor
96
+ '86': cavern indoor
97
+ '87': cemetery
98
+ '88': chalet
99
+ '89': cheese factory
100
+ '90': chemistry lab
101
+ '91': chicken coop indoor
102
+ '92': chicken coop outdoor
103
+ '93': childs room
104
+ '94': church indoor
105
+ '95': church outdoor
106
+ '96': classroom
107
+ '97': clean room
108
+ '98': cliff
109
+ '99': cloister indoor
110
+ '100': closet
111
+ '101': clothing store
112
+ '102': coast
113
+ '103': cockpit
114
+ '104': coffee shop
115
+ '105': computer room
116
+ '106': conference center
117
+ '107': conference room
118
+ '108': construction site
119
+ '109': control room
120
+ '110': control tower outdoor
121
+ '111': corn field
122
+ '112': corral
123
+ '113': corridor
124
+ '114': cottage garden
125
+ '115': courthouse
126
+ '116': courtroom
127
+ '117': courtyard
128
+ '118': covered bridge exterior
129
+ '119': creek
130
+ '120': crevasse
131
+ '121': crosswalk
132
+ '122': cubicle office
133
+ '123': dam
134
+ '124': delicatessen
135
+ '125': dentists office
136
+ '126': desert sand
137
+ '127': desert vegetation
138
+ '128': diner indoor
139
+ '129': diner outdoor
140
+ '130': dinette home
141
+ '131': dinette vehicle
142
+ '132': dining car
143
+ '133': dining room
144
+ '134': discotheque
145
+ '135': dock
146
+ '136': doorway outdoor
147
+ '137': dorm room
148
+ '138': driveway
149
+ '139': driving range outdoor
150
+ '140': drugstore
151
+ '141': electrical substation
152
+ '142': elevator door
153
+ '143': elevator interior
154
+ '144': elevator shaft
155
+ '145': engine room
156
+ '146': escalator indoor
157
+ '147': excavation
158
+ '148': factory indoor
159
+ '149': fairway
160
+ '150': fastfood restaurant
161
+ '151': field cultivated
162
+ '152': field wild
163
+ '153': fire escape
164
+ '154': fire station
165
+ '155': firing range indoor
166
+ '156': fishpond
167
+ '157': florist shop indoor
168
+ '158': food court
169
+ '159': forest broadleaf
170
+ '160': forest needleleaf
171
+ '161': forest path
172
+ '162': forest road
173
+ '163': formal garden
174
+ '164': fountain
175
+ '165': galley
176
+ '166': game room
177
+ '167': garage indoor
178
+ '168': garbage dump
179
+ '169': gas station
180
+ '170': gazebo exterior
181
+ '171': general store indoor
182
+ '172': general store outdoor
183
+ '173': gift shop
184
+ '174': golf course
185
+ '175': greenhouse indoor
186
+ '176': greenhouse outdoor
187
+ '177': gymnasium indoor
188
+ '178': hangar indoor
189
+ '179': hangar outdoor
190
+ '180': harbor
191
+ '181': hayfield
192
+ '182': heliport
193
+ '183': herb garden
194
+ '184': highway
195
+ '185': hill
196
+ '186': home office
197
+ '187': hospital
198
+ '188': hospital room
199
+ '189': hot spring
200
+ '190': hot tub outdoor
201
+ '191': hotel outdoor
202
+ '192': hotel room
203
+ '193': house
204
+ '194': hunting lodge outdoor
205
+ '195': ice cream parlor
206
+ '196': ice floe
207
+ '197': ice shelf
208
+ '198': ice skating rink indoor
209
+ '199': ice skating rink outdoor
210
+ '200': iceberg
211
+ '201': igloo
212
+ '202': industrial area
213
+ '203': inn outdoor
214
+ '204': islet
215
+ '205': jacuzzi indoor
216
+ '206': jail cell
217
+ '207': jail indoor
218
+ '208': jewelry shop
219
+ '209': kasbah
220
+ '210': kennel indoor
221
+ '211': kennel outdoor
222
+ '212': kindergarden classroom
223
+ '213': kitchen
224
+ '214': kitchenette
225
+ '215': labyrinth outdoor
226
+ '216': lake natural
227
+ '217': landfill
228
+ '218': landing deck
229
+ '219': laundromat
230
+ '220': lecture room
231
+ '221': library indoor
232
+ '222': library outdoor
233
+ '223': lido deck outdoor
234
+ '224': lift bridge
235
+ '225': lighthouse
236
+ '226': limousine interior
237
+ '227': living room
238
+ '228': lobby
239
+ '229': lock chamber
240
+ '230': locker room
241
+ '231': mansion
242
+ '232': manufactured home
243
+ '233': market indoor
244
+ '234': market outdoor
245
+ '235': marsh
246
+ '236': martial arts gym
247
+ '237': mausoleum
248
+ '238': medina
249
+ '239': moat water
250
+ '240': monastery outdoor
251
+ '241': mosque indoor
252
+ '242': mosque outdoor
253
+ '243': motel
254
+ '244': mountain
255
+ '245': mountain snowy
256
+ '246': movie theater indoor
257
+ '247': museum indoor
258
+ '248': music store
259
+ '249': music studio
260
+ '250': nuclear power plant outdoor
261
+ '251': nursery
262
+ '252': oast house
263
+ '253': observatory outdoor
264
+ '254': ocean
265
+ '255': office
266
+ '256': office building
267
+ '257': oil refinery outdoor
268
+ '258': oilrig
269
+ '259': operating room
270
+ '260': orchard
271
+ '261': outhouse outdoor
272
+ '262': pagoda
273
+ '263': palace
274
+ '264': pantry
275
+ '265': park
276
+ '266': parking garage indoor
277
+ '267': parking garage outdoor
278
+ '268': parking lot
279
+ '269': parlor
280
+ '270': pasture
281
+ '271': patio
282
+ '272': pavilion
283
+ '273': pharmacy
284
+ '274': phone booth
285
+ '275': physics laboratory
286
+ '276': picnic area
287
+ '277': pilothouse indoor
288
+ '278': planetarium outdoor
289
+ '279': playground
290
+ '280': playroom
291
+ '281': plaza
292
+ '282': podium indoor
293
+ '283': podium outdoor
294
+ '284': pond
295
+ '285': poolroom establishment
296
+ '286': poolroom home
297
+ '287': power plant outdoor
298
+ '288': promenade deck
299
+ '289': pub indoor
300
+ '290': pulpit
301
+ '291': putting green
302
+ '292': racecourse
303
+ '293': raceway
304
+ '294': raft
305
+ '295': railroad track
306
+ '296': rainforest
307
+ '297': reception
308
+ '298': recreation room
309
+ '299': residential neighborhood
310
+ '300': restaurant
311
+ '301': restaurant kitchen
312
+ '302': restaurant patio
313
+ '303': rice paddy
314
+ '304': riding arena
315
+ '305': river
316
+ '306': rock arch
317
+ '307': rope bridge
318
+ '308': ruin
319
+ '309': runway
320
+ '310': sandbar
321
+ '311': sandbox
322
+ '312': sauna
323
+ '313': schoolhouse
324
+ '314': sea cliff
325
+ '315': server room
326
+ '316': shed
327
+ '317': shoe shop
328
+ '318': shopfront
329
+ '319': shopping mall indoor
330
+ '320': shower
331
+ '321': skatepark
332
+ '322': ski lodge
333
+ '323': ski resort
334
+ '324': ski slope
335
+ '325': sky
336
+ '326': skyscraper
337
+ '327': slum
338
+ '328': snowfield
339
+ '329': squash court
340
+ '330': stable
341
+ '331': stadium baseball
342
+ '332': stadium football
343
+ '333': stage indoor
344
+ '334': staircase
345
+ '335': street
346
+ '336': subway interior
347
+ '337': subway station platform
348
+ '338': supermarket
349
+ '339': sushi bar
350
+ '340': swamp
351
+ '341': swimming pool indoor
352
+ '342': swimming pool outdoor
353
+ '343': synagogue indoor
354
+ '344': synagogue outdoor
355
+ '345': television studio
356
+ '346': temple east asia
357
+ '347': temple south asia
358
+ '348': tennis court indoor
359
+ '349': tennis court outdoor
360
+ '350': tent outdoor
361
+ '351': theater indoor procenium
362
+ '352': theater indoor seats
363
+ '353': thriftshop
364
+ '354': throne room
365
+ '355': ticket booth
366
+ '356': toll plaza
367
+ '357': topiary garden
368
+ '358': tower
369
+ '359': toyshop
370
+ '360': track outdoor
371
+ '361': train railway
372
+ '362': train station platform
373
+ '363': tree farm
374
+ '364': tree house
375
+ '365': trench
376
+ '366': underwater coral reef
377
+ '367': utility room
378
+ '368': valley
379
+ '369': van interior
380
+ '370': vegetable garden
381
+ '371': veranda
382
+ '372': veterinarians office
383
+ '373': viaduct
384
+ '374': videostore
385
+ '375': village
386
+ '376': vineyard
387
+ '377': volcano
388
+ '378': volleyball court indoor
389
+ '379': volleyball court outdoor
390
+ '380': waiting room
391
+ '381': warehouse indoor
392
+ '382': water tower
393
+ '383': waterfall block
394
+ '384': waterfall fan
395
+ '385': waterfall plunge
396
+ '386': watering hole
397
+ '387': wave
398
+ '388': wet bar
399
+ '389': wheat field
400
+ '390': wind farm
401
+ '391': windmill
402
+ '392': wine cellar barrel storage
403
+ '393': wine cellar bottle storage
404
+ '394': wrestling ring indoor
405
+ '395': yard
406
+ '396': youth hostel
407
+ splits:
408
+ - name: train
409
+ num_bytes: 2597332
410
+ num_examples: 19850
411
+ - name: test
412
+ num_bytes: 2557632
413
+ num_examples: 19850
414
+ download_size: 14342875038
415
+ dataset_size: 5154964
416
+ ---
417
+
418
+
419
+ # SUN397 dataset
420
+
421
+ The database contains 397 categories subset from the SUN dataset for Scene Recognition used in the following paper.
422
+ The number of images varies across categories, but there are at least 100 images per category, and 108,754 images in total.
423
+ All images are in jpg format. The images provided here are for research purposes only.
424
+
425
+ The file ClassName.txt contains the name list for the 397 categories.
426
+
427
+ Please cite the following paper if you use this dataset in your research.
428
+
429
+ J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba.
430
+ SUN Database: Large-scale Scene Recognition from Abbey to Zoo.
431
+ Proceedings of 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR2010).
432
+
433
+ Please visit our project webpage for more information:
434
+ http://groups.csail.mit.edu/vision/SUN/
435
+
436
+
437
+ ## Usage
438
+
439
+ ```python
440
+ from datasets import load_dataset
441
+
442
+ dataset = load_dataset('tanganke/sun397')
443
+ ```
444
+
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a9cd27961918172a4245bfaed70a4239dc80fcd33425d109cc3e4da912178bd
3
+ size 7143245981
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bc8179ecaa9b944a3c8ea9b3080014edd2c8245fc7b21581b156e728e3b4f31
3
+ size 7199629057
sun397.py ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ from datasets.data_files import DataFilesDict
3
+ from datasets.packaged_modules.imagefolder.imagefolder import ImageFolder, ImageFolderConfig
4
+
5
+ logger = datasets.logging.get_logger(__name__)
6
+
7
+
8
+ class SUN397(ImageFolder):
9
+ R"""
10
+ SUN397 dataset for image classification.
11
+ """
12
+
13
+ BUILDER_CONFIG_CLASS = ImageFolderConfig
14
+ BUILDER_CONFIGS = [
15
+ ImageFolderConfig(
16
+ name="default",
17
+ features=("images", "labels"),
18
+ data_files=DataFilesDict({split: f"data/{split}.zip" for split in ["train", "test"]}),
19
+ )
20
+ ]
21
+
22
+ classnames = [
23
+ "abbey",
24
+ "airplane cabin",
25
+ "airport terminal",
26
+ "alley",
27
+ "amphitheater",
28
+ "amusement arcade",
29
+ "amusement park",
30
+ "anechoic chamber",
31
+ "apartment building outdoor",
32
+ "apse indoor",
33
+ "aquarium",
34
+ "aqueduct",
35
+ "arch",
36
+ "archive",
37
+ "arrival gate outdoor",
38
+ "art gallery",
39
+ "art school",
40
+ "art studio",
41
+ "assembly line",
42
+ "athletic field outdoor",
43
+ "atrium public",
44
+ "attic",
45
+ "auditorium",
46
+ "auto factory",
47
+ "badlands",
48
+ "badminton court indoor",
49
+ "baggage claim",
50
+ "bakery shop",
51
+ "balcony exterior",
52
+ "balcony interior",
53
+ "ball pit",
54
+ "ballroom",
55
+ "bamboo forest",
56
+ "banquet hall",
57
+ "bar",
58
+ "barn",
59
+ "barndoor",
60
+ "baseball field",
61
+ "basement",
62
+ "basilica",
63
+ "basketball court outdoor",
64
+ "bathroom",
65
+ "batters box",
66
+ "bayou",
67
+ "bazaar indoor",
68
+ "bazaar outdoor",
69
+ "beach",
70
+ "beauty salon",
71
+ "bedroom",
72
+ "berth",
73
+ "biology laboratory",
74
+ "bistro indoor",
75
+ "boardwalk",
76
+ "boat deck",
77
+ "boathouse",
78
+ "bookstore",
79
+ "booth indoor",
80
+ "botanical garden",
81
+ "bow window indoor",
82
+ "bow window outdoor",
83
+ "bowling alley",
84
+ "boxing ring",
85
+ "brewery indoor",
86
+ "bridge",
87
+ "building facade",
88
+ "bullring",
89
+ "burial chamber",
90
+ "bus interior",
91
+ "butchers shop",
92
+ "butte",
93
+ "cabin outdoor",
94
+ "cafeteria",
95
+ "campsite",
96
+ "campus",
97
+ "canal natural",
98
+ "canal urban",
99
+ "candy store",
100
+ "canyon",
101
+ "car interior backseat",
102
+ "car interior frontseat",
103
+ "carrousel",
104
+ "casino indoor",
105
+ "castle",
106
+ "catacomb",
107
+ "cathedral indoor",
108
+ "cathedral outdoor",
109
+ "cavern indoor",
110
+ "cemetery",
111
+ "chalet",
112
+ "cheese factory",
113
+ "chemistry lab",
114
+ "chicken coop indoor",
115
+ "chicken coop outdoor",
116
+ "childs room",
117
+ "church indoor",
118
+ "church outdoor",
119
+ "classroom",
120
+ "clean room",
121
+ "cliff",
122
+ "cloister indoor",
123
+ "closet",
124
+ "clothing store",
125
+ "coast",
126
+ "cockpit",
127
+ "coffee shop",
128
+ "computer room",
129
+ "conference center",
130
+ "conference room",
131
+ "construction site",
132
+ "control room",
133
+ "control tower outdoor",
134
+ "corn field",
135
+ "corral",
136
+ "corridor",
137
+ "cottage garden",
138
+ "courthouse",
139
+ "courtroom",
140
+ "courtyard",
141
+ "covered bridge exterior",
142
+ "creek",
143
+ "crevasse",
144
+ "crosswalk",
145
+ "cubicle office",
146
+ "dam",
147
+ "delicatessen",
148
+ "dentists office",
149
+ "desert sand",
150
+ "desert vegetation",
151
+ "diner indoor",
152
+ "diner outdoor",
153
+ "dinette home",
154
+ "dinette vehicle",
155
+ "dining car",
156
+ "dining room",
157
+ "discotheque",
158
+ "dock",
159
+ "doorway outdoor",
160
+ "dorm room",
161
+ "driveway",
162
+ "driving range outdoor",
163
+ "drugstore",
164
+ "electrical substation",
165
+ "elevator door",
166
+ "elevator interior",
167
+ "elevator shaft",
168
+ "engine room",
169
+ "escalator indoor",
170
+ "excavation",
171
+ "factory indoor",
172
+ "fairway",
173
+ "fastfood restaurant",
174
+ "field cultivated",
175
+ "field wild",
176
+ "fire escape",
177
+ "fire station",
178
+ "firing range indoor",
179
+ "fishpond",
180
+ "florist shop indoor",
181
+ "food court",
182
+ "forest broadleaf",
183
+ "forest needleleaf",
184
+ "forest path",
185
+ "forest road",
186
+ "formal garden",
187
+ "fountain",
188
+ "galley",
189
+ "game room",
190
+ "garage indoor",
191
+ "garbage dump",
192
+ "gas station",
193
+ "gazebo exterior",
194
+ "general store indoor",
195
+ "general store outdoor",
196
+ "gift shop",
197
+ "golf course",
198
+ "greenhouse indoor",
199
+ "greenhouse outdoor",
200
+ "gymnasium indoor",
201
+ "hangar indoor",
202
+ "hangar outdoor",
203
+ "harbor",
204
+ "hayfield",
205
+ "heliport",
206
+ "herb garden",
207
+ "highway",
208
+ "hill",
209
+ "home office",
210
+ "hospital",
211
+ "hospital room",
212
+ "hot spring",
213
+ "hot tub outdoor",
214
+ "hotel outdoor",
215
+ "hotel room",
216
+ "house",
217
+ "hunting lodge outdoor",
218
+ "ice cream parlor",
219
+ "ice floe",
220
+ "ice shelf",
221
+ "ice skating rink indoor",
222
+ "ice skating rink outdoor",
223
+ "iceberg",
224
+ "igloo",
225
+ "industrial area",
226
+ "inn outdoor",
227
+ "islet",
228
+ "jacuzzi indoor",
229
+ "jail cell",
230
+ "jail indoor",
231
+ "jewelry shop",
232
+ "kasbah",
233
+ "kennel indoor",
234
+ "kennel outdoor",
235
+ "kindergarden classroom",
236
+ "kitchen",
237
+ "kitchenette",
238
+ "labyrinth outdoor",
239
+ "lake natural",
240
+ "landfill",
241
+ "landing deck",
242
+ "laundromat",
243
+ "lecture room",
244
+ "library indoor",
245
+ "library outdoor",
246
+ "lido deck outdoor",
247
+ "lift bridge",
248
+ "lighthouse",
249
+ "limousine interior",
250
+ "living room",
251
+ "lobby",
252
+ "lock chamber",
253
+ "locker room",
254
+ "mansion",
255
+ "manufactured home",
256
+ "market indoor",
257
+ "market outdoor",
258
+ "marsh",
259
+ "martial arts gym",
260
+ "mausoleum",
261
+ "medina",
262
+ "moat water",
263
+ "monastery outdoor",
264
+ "mosque indoor",
265
+ "mosque outdoor",
266
+ "motel",
267
+ "mountain",
268
+ "mountain snowy",
269
+ "movie theater indoor",
270
+ "museum indoor",
271
+ "music store",
272
+ "music studio",
273
+ "nuclear power plant outdoor",
274
+ "nursery",
275
+ "oast house",
276
+ "observatory outdoor",
277
+ "ocean",
278
+ "office",
279
+ "office building",
280
+ "oil refinery outdoor",
281
+ "oilrig",
282
+ "operating room",
283
+ "orchard",
284
+ "outhouse outdoor",
285
+ "pagoda",
286
+ "palace",
287
+ "pantry",
288
+ "park",
289
+ "parking garage indoor",
290
+ "parking garage outdoor",
291
+ "parking lot",
292
+ "parlor",
293
+ "pasture",
294
+ "patio",
295
+ "pavilion",
296
+ "pharmacy",
297
+ "phone booth",
298
+ "physics laboratory",
299
+ "picnic area",
300
+ "pilothouse indoor",
301
+ "planetarium outdoor",
302
+ "playground",
303
+ "playroom",
304
+ "plaza",
305
+ "podium indoor",
306
+ "podium outdoor",
307
+ "pond",
308
+ "poolroom establishment",
309
+ "poolroom home",
310
+ "power plant outdoor",
311
+ "promenade deck",
312
+ "pub indoor",
313
+ "pulpit",
314
+ "putting green",
315
+ "racecourse",
316
+ "raceway",
317
+ "raft",
318
+ "railroad track",
319
+ "rainforest",
320
+ "reception",
321
+ "recreation room",
322
+ "residential neighborhood",
323
+ "restaurant",
324
+ "restaurant kitchen",
325
+ "restaurant patio",
326
+ "rice paddy",
327
+ "riding arena",
328
+ "river",
329
+ "rock arch",
330
+ "rope bridge",
331
+ "ruin",
332
+ "runway",
333
+ "sandbar",
334
+ "sandbox",
335
+ "sauna",
336
+ "schoolhouse",
337
+ "sea cliff",
338
+ "server room",
339
+ "shed",
340
+ "shoe shop",
341
+ "shopfront",
342
+ "shopping mall indoor",
343
+ "shower",
344
+ "skatepark",
345
+ "ski lodge",
346
+ "ski resort",
347
+ "ski slope",
348
+ "sky",
349
+ "skyscraper",
350
+ "slum",
351
+ "snowfield",
352
+ "squash court",
353
+ "stable",
354
+ "stadium baseball",
355
+ "stadium football",
356
+ "stage indoor",
357
+ "staircase",
358
+ "street",
359
+ "subway interior",
360
+ "subway station platform",
361
+ "supermarket",
362
+ "sushi bar",
363
+ "swamp",
364
+ "swimming pool indoor",
365
+ "swimming pool outdoor",
366
+ "synagogue indoor",
367
+ "synagogue outdoor",
368
+ "television studio",
369
+ "temple east asia",
370
+ "temple south asia",
371
+ "tennis court indoor",
372
+ "tennis court outdoor",
373
+ "tent outdoor",
374
+ "theater indoor procenium",
375
+ "theater indoor seats",
376
+ "thriftshop",
377
+ "throne room",
378
+ "ticket booth",
379
+ "toll plaza",
380
+ "topiary garden",
381
+ "tower",
382
+ "toyshop",
383
+ "track outdoor",
384
+ "train railway",
385
+ "train station platform",
386
+ "tree farm",
387
+ "tree house",
388
+ "trench",
389
+ "underwater coral reef",
390
+ "utility room",
391
+ "valley",
392
+ "van interior",
393
+ "vegetable garden",
394
+ "veranda",
395
+ "veterinarians office",
396
+ "viaduct",
397
+ "videostore",
398
+ "village",
399
+ "vineyard",
400
+ "volcano",
401
+ "volleyball court indoor",
402
+ "volleyball court outdoor",
403
+ "waiting room",
404
+ "warehouse indoor",
405
+ "water tower",
406
+ "waterfall block",
407
+ "waterfall fan",
408
+ "waterfall plunge",
409
+ "watering hole",
410
+ "wave",
411
+ "wet bar",
412
+ "wheat field",
413
+ "wind farm",
414
+ "windmill",
415
+ "wine cellar barrel storage",
416
+ "wine cellar bottle storage",
417
+ "wrestling ring indoor",
418
+ "yard",
419
+ "youth hostel",
420
+ ]
421
+
422
+ clip_templates = [
423
+ lambda c: f"a photo of a {c}.",
424
+ lambda c: f"a photo of the {c}.",
425
+ ]
426
+
427
+ def _info(self):
428
+ return datasets.DatasetInfo(
429
+ description="SUN397 dataset for image classification.",
430
+ features=datasets.Features(
431
+ {
432
+ "image": datasets.Image(),
433
+ "label": datasets.ClassLabel(names=self.classnames),
434
+ }
435
+ ),
436
+ supervised_keys=("image", "label"),
437
+ task_templates=[datasets.ImageClassification(image_column="image", label_column="label")],
438
+ )