File size: 8,730 Bytes
ee42464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# -*- coding: utf-8 -*-
"""Untitled2.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1Jy8fwFO774TM_FTwK-0to2L0qHoUAT-U
"""

# -*- coding: utf-8 -*-
"""MGB2.ipynb
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/15ejoy2EWN9bj2s5ORQRZb5aTmFlcgA9d
"""

import datasets
import os


_DESCRIPTION = "MGB2 speech recognition dataset AR"
_HOMEPAGE = "https://arabicspeech.org/mgb2/"
_LICENSE = "MGB-2 License agreement"
_CITATION = """@misc{https://doi.org/10.48550/arxiv.1609.05625,
  doi = {10.48550/ARXIV.1609.05625},
  
  url = {https://arxiv.org/abs/1609.05625},
  
  author = {Ali, Ahmed and Bell, Peter and Glass, James and Messaoui, Yacine and Mubarak, Hamdy and Renals, Steve and Zhang, Yifan},
  
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {The MGB-2 Challenge: Arabic Multi-Dialect Broadcast Media Recognition},
  
  publisher = {arXiv},
  
  year = {2016},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}
"""
_DATA_ARCHIVE_ROOT = "Data/archives/"
_DATA_URL = {
    "test": _DATA_ARCHIVE_ROOT + "mgb2_wav.test.zip",
    "dev": _DATA_ARCHIVE_ROOT + "mgb2_wav.dev.zip",
    "train": _DATA_ARCHIVE_ROOT + "mgb2_wav.train.zip",

    #"train": [_DATA_ARCHIVE_ROOT + f"mgb2_wav_{x}.train.tar.gz" for x in range(48)], # we have 48 archives
}
_TEXT_URL = {
    "test": _DATA_ARCHIVE_ROOT + "mgb2_txt.test.zip",
    "dev": _DATA_ARCHIVE_ROOT + "mgb2_txt.dev.zip",
    "train": _DATA_ARCHIVE_ROOT + "mgb2_txt.train.zip",
}



def absoluteFilePaths(directory):
    for dirpath,_,filenames in os.walk(directory):
        for f in filenames:
            yield os.path.abspath(os.path.join(dirpath, f))

            
class MGDB2Dataset(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
        description=_DESCRIPTION,
        features=datasets.Features(
            {
                "path": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16_000),
                "sentence": datasets.Value("string"),
            }
        ),
        supervised_keys=None,
        homepage=_HOMEPAGE,
        license=_LICENSE,
        citation=_CITATION,
    )

    def _split_generators(self, dl_manager):
        wav_archive = dl_manager.download(_DATA_URL)
        txt_archive = dl_manager.download(_TEXT_URL)
        test_dir = "dataset/test"
        dev_dir = "dataset/dev"
        train_dir = "dataset/train"


        print("Starting write datasets.........................................................")
        
        
        if dl_manager.is_streaming:
            print("from streaming.........................................................")



            
            return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "path_to_txt": test_dir + "/txt",
                    "path_to_wav": test_dir + "/wav",
                    "wav_files": dl_manager.iter_archive(wav_archive['test']),
                    "txt_files": dl_manager.iter_archive(txt_archive['test']),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "path_to_txt": dev_dir + "/txt",
                    "path_to_wav": dev_dir + "/wav",
                    "wav_files": dl_manager.iter_archive(wav_archive['dev']),
                    "txt_files": dl_manager.iter_archive(txt_archive['dev']),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "path_to_txt": train_dir + "/txt",
                    "path_to_wav": train_dir + "/wav",
                    "wav_files": dl_manager.iter_archive(wav_archive['train']),
                    "txt_files": dl_manager.iter_archive(txt_archive['train']),
                },
            ),
        ]
        else:
            print("from non streaming.........................................................")


            dstZipFileName=txt_archive['test']

            sz=os.path.getsize(dstZipFileName)

            print("file size=",sz)
            
            
            #test_txt_files=dl_manager.extract(txt_archive['test']);

            #flist=os.listdir(test_txt_files)

            #print(flist)
            
            #f = open(test_txt_files, 'r')
            #file_contents = f.read()
            #print (file_contents)
            #f.close()
            
            return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "path_to_txt": test_dir + "/txt",
                    "path_to_wav": test_dir + "/wav",
                    "wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['test'])),
                    "txt_files":  absoluteFilePaths(dl_manager.extract(txt_archive['test'])),
                    "data_type":2,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "path_to_txt": dev_dir + "/txt",
                    "path_to_wav": dev_dir + "/wav",
                    "wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['dev'])),
                    "txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['dev'])),
                    "data_type":1,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "path_to_txt": train_dir + "/txt",
                    "path_to_wav": train_dir + "/wav",
                    "wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['train'])),
                    "txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['train'])),
                    "data_type":0,
                },
            ),
        ]
    print("end of generation.........................................................")
      

#0 --> train
#1--> validation
#2-->test
    
    def _generate_examples(self, path_to_txt, path_to_wav, wav_files, txt_files,data_type):
        """ 
        This assumes that the text directory alphabetically precedes the wav dir
        The file names for wav and text seem to match and are unique
        We can use them for the dictionary matching them
        """

        print("start of generate examples.........................................................")

        print("txt file names............................",txt_files)
        print("wav_files names....................................",wav_files)

        examples = {}
        id_ = 0
        # need to prepare the transcript - wave map
        for item in txt_files:


            #print("copying txt file...............",item)
      
            if type(item) is tuple:
                # iter_archive will return path and file
                path, f = item
                txt = f.read().decode(encoding="utf-8").strip()
            else:
                # extract will return path only
                path = item
                with open(path, encoding="utf-8") as f:
                    txt = f.read().strip()

            #if os.path.exists(path_to_txt)==False:
            #    os.makedirs(path_to_txt)
            #if path.find(path_to_txt) > -1:
                # construct the wav path
                # which is used as an identifier
            wav_path = os.path.split(path)[1].replace("_utf8", "").replace(".txt", ".wav").strip()
            #print(wav_path)
            examples[wav_path] = {
                "sentence": txt,
                "path": wav_path,
            }

        #for wf in wav_files:
            #print(wf)
        for item in wav_files:#wf:
            #print(item)
            if type(item) is tuple:
                path, f = item
                wav_data = f.read()
            else:
                path = item
                with open(path, "rb") as f:
                    wav_data = f.read()
            #if os.path.exists(path_to_wav)==False:
            #    os.makedirs(path_to_wav)
            #if path.find(path_to_wav) > -1:
            wav_path = os.path.split(path)[1].strip()
            if not (wav_path in examples):
                print("wav file mismatch:",wav_path)
                continue
            audio = {"path": path, "bytes": wav_data}
            yield id_, {**examples[wav_path], "audio": audio}
            id_ += 1