File size: 8,730 Bytes
ee42464 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# -*- coding: utf-8 -*-
"""Untitled2.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1Jy8fwFO774TM_FTwK-0to2L0qHoUAT-U
"""
# -*- coding: utf-8 -*-
"""MGB2.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/15ejoy2EWN9bj2s5ORQRZb5aTmFlcgA9d
"""
import datasets
import os
_DESCRIPTION = "MGB2 speech recognition dataset AR"
_HOMEPAGE = "https://arabicspeech.org/mgb2/"
_LICENSE = "MGB-2 License agreement"
_CITATION = """@misc{https://doi.org/10.48550/arxiv.1609.05625,
doi = {10.48550/ARXIV.1609.05625},
url = {https://arxiv.org/abs/1609.05625},
author = {Ali, Ahmed and Bell, Peter and Glass, James and Messaoui, Yacine and Mubarak, Hamdy and Renals, Steve and Zhang, Yifan},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {The MGB-2 Challenge: Arabic Multi-Dialect Broadcast Media Recognition},
publisher = {arXiv},
year = {2016},
copyright = {arXiv.org perpetual, non-exclusive license}
}
"""
_DATA_ARCHIVE_ROOT = "Data/archives/"
_DATA_URL = {
"test": _DATA_ARCHIVE_ROOT + "mgb2_wav.test.zip",
"dev": _DATA_ARCHIVE_ROOT + "mgb2_wav.dev.zip",
"train": _DATA_ARCHIVE_ROOT + "mgb2_wav.train.zip",
#"train": [_DATA_ARCHIVE_ROOT + f"mgb2_wav_{x}.train.tar.gz" for x in range(48)], # we have 48 archives
}
_TEXT_URL = {
"test": _DATA_ARCHIVE_ROOT + "mgb2_txt.test.zip",
"dev": _DATA_ARCHIVE_ROOT + "mgb2_txt.dev.zip",
"train": _DATA_ARCHIVE_ROOT + "mgb2_txt.train.zip",
}
def absoluteFilePaths(directory):
for dirpath,_,filenames in os.walk(directory):
for f in filenames:
yield os.path.abspath(os.path.join(dirpath, f))
class MGDB2Dataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"sentence": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
wav_archive = dl_manager.download(_DATA_URL)
txt_archive = dl_manager.download(_TEXT_URL)
test_dir = "dataset/test"
dev_dir = "dataset/dev"
train_dir = "dataset/train"
print("Starting write datasets.........................................................")
if dl_manager.is_streaming:
print("from streaming.........................................................")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"path_to_txt": test_dir + "/txt",
"path_to_wav": test_dir + "/wav",
"wav_files": dl_manager.iter_archive(wav_archive['test']),
"txt_files": dl_manager.iter_archive(txt_archive['test']),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"path_to_txt": dev_dir + "/txt",
"path_to_wav": dev_dir + "/wav",
"wav_files": dl_manager.iter_archive(wav_archive['dev']),
"txt_files": dl_manager.iter_archive(txt_archive['dev']),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"path_to_txt": train_dir + "/txt",
"path_to_wav": train_dir + "/wav",
"wav_files": dl_manager.iter_archive(wav_archive['train']),
"txt_files": dl_manager.iter_archive(txt_archive['train']),
},
),
]
else:
print("from non streaming.........................................................")
dstZipFileName=txt_archive['test']
sz=os.path.getsize(dstZipFileName)
print("file size=",sz)
#test_txt_files=dl_manager.extract(txt_archive['test']);
#flist=os.listdir(test_txt_files)
#print(flist)
#f = open(test_txt_files, 'r')
#file_contents = f.read()
#print (file_contents)
#f.close()
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"path_to_txt": test_dir + "/txt",
"path_to_wav": test_dir + "/wav",
"wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['test'])),
"txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['test'])),
"data_type":2,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"path_to_txt": dev_dir + "/txt",
"path_to_wav": dev_dir + "/wav",
"wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['dev'])),
"txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['dev'])),
"data_type":1,
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"path_to_txt": train_dir + "/txt",
"path_to_wav": train_dir + "/wav",
"wav_files": absoluteFilePaths(dl_manager.extract(wav_archive['train'])),
"txt_files": absoluteFilePaths(dl_manager.extract(txt_archive['train'])),
"data_type":0,
},
),
]
print("end of generation.........................................................")
#0 --> train
#1--> validation
#2-->test
def _generate_examples(self, path_to_txt, path_to_wav, wav_files, txt_files,data_type):
"""
This assumes that the text directory alphabetically precedes the wav dir
The file names for wav and text seem to match and are unique
We can use them for the dictionary matching them
"""
print("start of generate examples.........................................................")
print("txt file names............................",txt_files)
print("wav_files names....................................",wav_files)
examples = {}
id_ = 0
# need to prepare the transcript - wave map
for item in txt_files:
#print("copying txt file...............",item)
if type(item) is tuple:
# iter_archive will return path and file
path, f = item
txt = f.read().decode(encoding="utf-8").strip()
else:
# extract will return path only
path = item
with open(path, encoding="utf-8") as f:
txt = f.read().strip()
#if os.path.exists(path_to_txt)==False:
# os.makedirs(path_to_txt)
#if path.find(path_to_txt) > -1:
# construct the wav path
# which is used as an identifier
wav_path = os.path.split(path)[1].replace("_utf8", "").replace(".txt", ".wav").strip()
#print(wav_path)
examples[wav_path] = {
"sentence": txt,
"path": wav_path,
}
#for wf in wav_files:
#print(wf)
for item in wav_files:#wf:
#print(item)
if type(item) is tuple:
path, f = item
wav_data = f.read()
else:
path = item
with open(path, "rb") as f:
wav_data = f.read()
#if os.path.exists(path_to_wav)==False:
# os.makedirs(path_to_wav)
#if path.find(path_to_wav) > -1:
wav_path = os.path.split(path)[1].strip()
if not (wav_path in examples):
print("wav file mismatch:",wav_path)
continue
audio = {"path": path, "bytes": wav_data}
yield id_, {**examples[wav_path], "audio": audio}
id_ += 1 |