Datasets:
File size: 7,440 Bytes
5657d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Crowdflower datasets"""
from __future__ import absolute_import, division, print_function
import csv
import os
import textwrap
import six
import datasets
_crowdflower_CITATION = r"""
@inproceedings{van2012designing,
title={Designing a scalable crowdsourcing platform},
author={Van Pelt, Chris and Sorokin, Alex},
booktitle={Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data},
pages={765--766},
year={2012}
}
"""
_crowdflower_DESCRIPTION = """
Collection of crowdflower classification datasets
"""
DATA_URL = "https://www.dropbox.com/s/ldrcdsv8d9qiwg0/crowdflower.zip?dl=1"
TASK_TO_LABELS = {'airline-sentiment': ['neutral', 'positive', 'negative'],
'corporate-messaging': ['Information', 'Action', 'Exclude', 'Dialogue'],
'economic-news': ['not sure', 'yes', 'no'],
'political-media-audience': ['constituency', 'national'],
'political-media-bias': ['partisan', 'neutral'],
'political-media-message': ['information',
'support',
'policy',
'constituency',
'personal',
'other',
'media',
'mobilization',
'attack'],
'sentiment_nuclear_power': ['Neutral / author is just sharing information',
'Negative',
'Tweet NOT related to nuclear energy',
'Positive'],
'text_emotion': ['sadness',
'empty',
'relief',
'hate',
'worry',
'enthusiasm',
'happiness',
'neutral',
'love',
'fun',
'anger',
'surprise',
'boredom'],
'tweet_global_warming': ['Yes', 'No']}
def get_labels(task):
return TASK_TO_LABELS[task]
class crowdflowerConfig(datasets.BuilderConfig):
"""BuilderConfig for crowdflower."""
def __init__(
self,
text_features,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for crowdflower.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(crowdflowerConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = "label"
self.label_classes = get_labels(self.name)
self.data_url = DATA_URL
self.data_dir = os.path.join("crowdflower", self.name)
self.citation = textwrap.dedent(_crowdflower_CITATION)
def process_label(x):
x=str(x)
if x=="Y":
return "Yes"
if x=="N":
return "No"
return x
self.process_label = process_label
self.description = ""
self.url = ""
class crowdflower(datasets.GeneratorBasedBuilder):
"""The General Language Understanding Evaluation (crowdflower) benchmark."""
BUILDER_CONFIG_CLASS = crowdflowerConfig
BUILDER_CONFIGS = [
crowdflowerConfig(name="sentiment_nuclear_power",
text_features={"text": "text"},),
crowdflowerConfig(name="tweet_global_warming",
text_features={"text": "text"},),
crowdflowerConfig(name="airline-sentiment",
text_features={"text": "text"},),
crowdflowerConfig(name="corporate-messaging",
text_features={"text": "text"},),
crowdflowerConfig(name="economic-news",
text_features={"text": "text"},),
crowdflowerConfig(name="political-media-audience",
text_features={"text": "text"},),
crowdflowerConfig(name="political-media-bias",
text_features={"text": "text"},),
crowdflowerConfig(name="political-media-message",
text_features={"text": "text"},),
crowdflowerConfig(name="text_emotion",
text_features={"text": "text"},),
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
else:
features["label"] = datasets.Value("float32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_crowdflower_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _crowdflower_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.tsv"),
"split": "train",
},
),
]
def _generate_examples(self, data_file, split):
process_label = self.config.process_label
label_classes = self.config.label_classes
with open(data_file, encoding="latin-1") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for n, row in enumerate(reader):
example = {feat: row[col] for feat, col in six.iteritems(self.config.text_features)}
example["idx"] = n
#print(row)
if self.config.label_column in row:
label = row[self.config.label_column]
label = process_label(label)
if label_classes and label not in label_classes:
continue
example["label"] = label
else:
example["label"] = process_label(-1)
if not example["label"] or not example["text"]:
continue
yield example["idx"], example |