crowdflower / crowdflower.py
sileod's picture
Create crowdflower.py
5657d2f
raw
history blame
7.44 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Crowdflower datasets"""
from __future__ import absolute_import, division, print_function
import csv
import os
import textwrap
import six
import datasets
_crowdflower_CITATION = r"""
@inproceedings{van2012designing,
title={Designing a scalable crowdsourcing platform},
author={Van Pelt, Chris and Sorokin, Alex},
booktitle={Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data},
pages={765--766},
year={2012}
}
"""
_crowdflower_DESCRIPTION = """
Collection of crowdflower classification datasets
"""
DATA_URL = "https://www.dropbox.com/s/ldrcdsv8d9qiwg0/crowdflower.zip?dl=1"
TASK_TO_LABELS = {'airline-sentiment': ['neutral', 'positive', 'negative'],
'corporate-messaging': ['Information', 'Action', 'Exclude', 'Dialogue'],
'economic-news': ['not sure', 'yes', 'no'],
'political-media-audience': ['constituency', 'national'],
'political-media-bias': ['partisan', 'neutral'],
'political-media-message': ['information',
'support',
'policy',
'constituency',
'personal',
'other',
'media',
'mobilization',
'attack'],
'sentiment_nuclear_power': ['Neutral / author is just sharing information',
'Negative',
'Tweet NOT related to nuclear energy',
'Positive'],
'text_emotion': ['sadness',
'empty',
'relief',
'hate',
'worry',
'enthusiasm',
'happiness',
'neutral',
'love',
'fun',
'anger',
'surprise',
'boredom'],
'tweet_global_warming': ['Yes', 'No']}
def get_labels(task):
return TASK_TO_LABELS[task]
class crowdflowerConfig(datasets.BuilderConfig):
"""BuilderConfig for crowdflower."""
def __init__(
self,
text_features,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for crowdflower.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(crowdflowerConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = "label"
self.label_classes = get_labels(self.name)
self.data_url = DATA_URL
self.data_dir = os.path.join("crowdflower", self.name)
self.citation = textwrap.dedent(_crowdflower_CITATION)
def process_label(x):
x=str(x)
if x=="Y":
return "Yes"
if x=="N":
return "No"
return x
self.process_label = process_label
self.description = ""
self.url = ""
class crowdflower(datasets.GeneratorBasedBuilder):
"""The General Language Understanding Evaluation (crowdflower) benchmark."""
BUILDER_CONFIG_CLASS = crowdflowerConfig
BUILDER_CONFIGS = [
crowdflowerConfig(name="sentiment_nuclear_power",
text_features={"text": "text"},),
crowdflowerConfig(name="tweet_global_warming",
text_features={"text": "text"},),
crowdflowerConfig(name="airline-sentiment",
text_features={"text": "text"},),
crowdflowerConfig(name="corporate-messaging",
text_features={"text": "text"},),
crowdflowerConfig(name="economic-news",
text_features={"text": "text"},),
crowdflowerConfig(name="political-media-audience",
text_features={"text": "text"},),
crowdflowerConfig(name="political-media-bias",
text_features={"text": "text"},),
crowdflowerConfig(name="political-media-message",
text_features={"text": "text"},),
crowdflowerConfig(name="text_emotion",
text_features={"text": "text"},),
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
else:
features["label"] = datasets.Value("float32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_crowdflower_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _crowdflower_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.tsv"),
"split": "train",
},
),
]
def _generate_examples(self, data_file, split):
process_label = self.config.process_label
label_classes = self.config.label_classes
with open(data_file, encoding="latin-1") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for n, row in enumerate(reader):
example = {feat: row[col] for feat, col in six.iteritems(self.config.text_features)}
example["idx"] = n
#print(row)
if self.config.label_column in row:
label = row[self.config.label_column]
label = process_label(label)
if label_classes and label not in label_classes:
continue
example["label"] = label
else:
example["label"] = process_label(-1)
if not example["label"] or not example["text"]:
continue
yield example["idx"], example