file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/MeasureTheory/Function/SpecialFunctions/IsROrC.lean
AEMeasurable.im
[]
[ 61, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.mul_apply
[]
[ 71, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 70, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.sup_eq_sSup
[]
[ 1395, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1391, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.mul_inter_subset
[]
[ 460, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 459, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.sub_eq_of_add_eq
[]
[ 558, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 557, 1 ]
Mathlib/Data/Real/Basic.lean
Real.sSup_empty
[ { "state_after": "no goals", "state_before": "x y : ℝ\n⊢ ¬(Set.Nonempty ∅ ∧ BddAbove ∅)", "tactic": "simp" } ]
[ 799, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 798, 1 ]
Mathlib/LinearAlgebra/Matrix/Basis.lean
Basis.toMatrix_map
[ { "state_after": "case a.h\nι : Type u_1\nι' : Type ?u.641315\nκ : Type ?u.641318\nκ' : Type ?u.641321\nR : Type u_2\nM : Type u_3\ninst✝⁷ : CommSemiring R\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : Module R M\nR₂ : Type ?u.641514\nM₂ : Type ?u.641517\ninst✝⁴ : CommRing R₂\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R₂ M₂\ne : Basis ι R M\nv✝ : ι' → M\ni : ι\nj : ι'\nN : Type u_4\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nb✝ : Basis ι R M\nb' : Basis ι' R M\nc : Basis κ R N\nc' : Basis κ' R N\nf✝ : M →ₗ[R] N\nb : Basis ι R M\nf : M ≃ₗ[R] N\nv : ι → N\ni✝ x✝ : ι\n⊢ toMatrix (Basis.map b f) v i✝ x✝ = toMatrix b (↑(LinearEquiv.symm f) ∘ v) i✝ x✝", "state_before": "ι : Type u_1\nι' : Type ?u.641315\nκ : Type ?u.641318\nκ' : Type ?u.641321\nR : Type u_2\nM : Type u_3\ninst✝⁷ : CommSemiring R\ninst✝⁶ : AddCommMonoid M\ninst✝⁵ : Module R M\nR₂ : Type ?u.641514\nM₂ : Type ?u.641517\ninst✝⁴ : CommRing R₂\ninst✝³ : AddCommGroup M₂\ninst✝² : Module R₂ M₂\ne : Basis ι R M\nv✝ : ι' → M\ni : ι\nj : ι'\nN : Type u_4\ninst✝¹ : AddCommMonoid N\ninst✝ : Module R N\nb✝ : Basis ι R M\nb' : Basis ι' R M\nc : Basis κ R N\nc' : Basis κ' R N\nf✝ : M →ₗ[R] N\nb : Basis ι R M\nf : M ≃ₗ[R] N\nv : ι → N\n⊢ toMatrix (Basis.map b f) v = toMatrix b (↑(LinearEquiv.symm f) ∘ v)", "tactic": "ext" } ]
[ 278, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 275, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.continuous_sub_right
[ { "state_after": "case pos\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : a = ⊤\n⊢ Continuous fun x => x - a\n\ncase neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\n⊢ Continuous fun x => x - a", "state_before": "α : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\n⊢ Continuous fun x => x - a", "tactic": "by_cases a_infty : a = ∞" }, { "state_after": "no goals", "state_before": "case pos\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : a = ⊤\n⊢ Continuous fun x => x - a", "tactic": "simp [a_infty, continuous_const]" }, { "state_after": "case neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\n⊢ Continuous ((fun p => p.fst - p.snd) ∘ fun x => (x, a))", "state_before": "case neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\n⊢ Continuous fun x => x - a", "tactic": "rw [show (fun x => x - a) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨x, a⟩ by rfl]" }, { "state_after": "case neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\n⊢ ∀ (x : ℝ≥0∞), (x, a) ∈ {p | p ≠ (⊤, ⊤)}", "state_before": "case neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\n⊢ Continuous ((fun p => p.fst - p.snd) ∘ fun x => (x, a))", "tactic": "apply ContinuousOn.comp_continuous continuousOn_sub (continuous_id'.prod_mk continuous_const)" }, { "state_after": "case neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx✝ y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\nx : ℝ≥0∞\n⊢ (x, a) ∈ {p | p ≠ (⊤, ⊤)}", "state_before": "case neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\n⊢ ∀ (x : ℝ≥0∞), (x, a) ∈ {p | p ≠ (⊤, ⊤)}", "tactic": "intro x" }, { "state_after": "no goals", "state_before": "case neg\nα : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx✝ y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\nx : ℝ≥0∞\n⊢ (x, a) ∈ {p | p ≠ (⊤, ⊤)}", "tactic": "simp only [a_infty, Ne.def, mem_setOf_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff]" }, { "state_after": "no goals", "state_before": "α : Type ?u.110881\nβ : Type ?u.110884\nγ : Type ?u.110887\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\na : ℝ≥0∞\na_infty : ¬a = ⊤\n⊢ (fun x => x - a) = (fun p => p.fst - p.snd) ∘ fun x => (x, a)", "tactic": "rfl" } ]
[ 471, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 465, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.mem_of_le
[]
[ 525, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 524, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.interpolate_eq_nodalWeight_mul_nodal_div_X_sub_C
[ { "state_after": "no goals", "state_before": "F : Type u_1\ninst✝¹ : Field F\nι : Type u_2\ns : Finset ι\nv : ι → F\ni : ι\nr : ι → F\nx : F\ninst✝ : DecidableEq ι\nj : ι\nhj : j ∈ s\n⊢ ↑C (r j) * Lagrange.basis s v j = ↑C (nodalWeight s v j) * (nodal s v / (X - ↑C (v j))) * ↑C (r j)", "tactic": "rw [mul_comm, basis_eq_prod_sub_inv_mul_nodal_div hj]" } ]
[ 595, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 593, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.comap_of_equiv
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nF : Type ?u.1390279\ninst✝² : Ring R\ninst✝¹ : Ring S\ninst✝ : RingHomClass F R S\nf✝ : F\nI✝ I : Ideal R\nf : R ≃+* S\n⊢ comap (↑f) (comap (↑(RingEquiv.symm f)) I) = I", "tactic": "simp [← RingEquiv.toRingHom_eq_coe, comap_comap]" } ]
[ 1720, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1718, 1 ]
Mathlib/Data/Set/Image.lean
Subtype.coe_preimage_self
[ { "state_after": "no goals", "state_before": "α : Type u_1\ns : Set α\n⊢ val ⁻¹' s = univ", "tactic": "rw [← preimage_range, range_coe]" } ]
[ 1413, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1412, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.one_apply_ne
[]
[ 137, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_sigma'
[]
[ 536, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 534, 1 ]
Mathlib/Analysis/SpecificLimits/Normed.lean
hasSum_geometric_of_abs_lt_1
[]
[ 306, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/NumberTheory/LucasPrimality.lean
lucas_primality
[ { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\n⊢ Nat.Prime p", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\n⊢ Nat.Prime p", "tactic": "have h0 : p ≠ 0 := by\n rintro ⟨⟩\n exact hd 2 Nat.prime_two (dvd_zero _) (pow_zero _)" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\n⊢ Nat.Prime p", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\n⊢ Nat.Prime p", "tactic": "have h1 : p ≠ 1 := by\n rintro ⟨⟩\n exact hd 2 Nat.prime_two (dvd_zero _) (pow_zero _)" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\n⊢ Nat.Prime p", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\n⊢ Nat.Prime p", "tactic": "have hp1 : 1 < p := lt_of_le_of_ne h0.bot_lt h1.symm" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\n⊢ Nat.Prime p", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\n⊢ Nat.Prime p", "tactic": "have order_of_a : orderOf a = p - 1 := by\n apply orderOf_eq_of_pow_and_pow_div_prime _ ha hd\n exact tsub_pos_of_lt hp1" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\n⊢ Nat.Prime p", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\n⊢ Nat.Prime p", "tactic": "haveI : NeZero p := ⟨h0⟩" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\n⊢ Fintype.card (ZMod p)ˣ = p - 1", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\n⊢ Nat.Prime p", "tactic": "rw [Nat.prime_iff_card_units]" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\n⊢ p - 1 ≤ Fintype.card (ZMod p)ˣ", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\n⊢ Fintype.card (ZMod p)ˣ = p - 1", "tactic": "refine' le_antisymm (Nat.card_units_zmod_lt_sub_one hp1) _" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\nhp' : p - 2 + 1 = p - 1\n⊢ p - 1 ≤ Fintype.card (ZMod p)ˣ", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\n⊢ p - 1 ≤ Fintype.card (ZMod p)ˣ", "tactic": "have hp' : p - 2 + 1 = p - 1 := tsub_add_eq_add_tsub hp1" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\nhp' : p - 2 + 1 = p - 1\na' : (ZMod p)ˣ := Units.mkOfMulEqOne a (a ^ (p - 2)) (_ : a * a ^ (p - 2) = 1)\n⊢ p - 1 ≤ Fintype.card (ZMod p)ˣ", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\nhp' : p - 2 + 1 = p - 1\n⊢ p - 1 ≤ Fintype.card (ZMod p)ˣ", "tactic": "let a' : (ZMod p)ˣ := Units.mkOfMulEqOne a (a ^ (p - 2)) (by rw [← pow_succ, hp', ha])" }, { "state_after": "no goals", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\nhp' : p - 2 + 1 = p - 1\na' : (ZMod p)ˣ := Units.mkOfMulEqOne a (a ^ (p - 2)) (_ : a * a ^ (p - 2) = 1)\n⊢ p - 1 ≤ Fintype.card (ZMod p)ˣ", "tactic": "calc\n p - 1 = orderOf a := order_of_a.symm\n _ = orderOf a' := (orderOf_injective (Units.coeHom (ZMod p)) Units.ext a')\n _ ≤ Fintype.card (ZMod p)ˣ := orderOf_le_card_univ" }, { "state_after": "case refl\na : ZMod 0\nha : a ^ (0 - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ 0 - 1 → a ^ ((0 - 1) / q) ≠ 1\n⊢ False", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\n⊢ p ≠ 0", "tactic": "rintro ⟨⟩" }, { "state_after": "no goals", "state_before": "case refl\na : ZMod 0\nha : a ^ (0 - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ 0 - 1 → a ^ ((0 - 1) / q) ≠ 1\n⊢ False", "tactic": "exact hd 2 Nat.prime_two (dvd_zero _) (pow_zero _)" }, { "state_after": "case refl\na : ZMod 1\nha : a ^ (1 - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ 1 - 1 → a ^ ((1 - 1) / q) ≠ 1\nh0 : 1 ≠ 0\n⊢ False", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\n⊢ p ≠ 1", "tactic": "rintro ⟨⟩" }, { "state_after": "no goals", "state_before": "case refl\na : ZMod 1\nha : a ^ (1 - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ 1 - 1 → a ^ ((1 - 1) / q) ≠ 1\nh0 : 1 ≠ 0\n⊢ False", "tactic": "exact hd 2 Nat.prime_two (dvd_zero _) (pow_zero _)" }, { "state_after": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\n⊢ 0 < p - 1", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\n⊢ orderOf a = p - 1", "tactic": "apply orderOf_eq_of_pow_and_pow_div_prime _ ha hd" }, { "state_after": "no goals", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\n⊢ 0 < p - 1", "tactic": "exact tsub_pos_of_lt hp1" }, { "state_after": "no goals", "state_before": "p : ℕ\na : ZMod p\nha : a ^ (p - 1) = 1\nhd : ∀ (q : ℕ), Nat.Prime q → q ∣ p - 1 → a ^ ((p - 1) / q) ≠ 1\nh0 : p ≠ 0\nh1 : p ≠ 1\nhp1 : 1 < p\norder_of_a : orderOf a = p - 1\nthis : NeZero p\nhp' : p - 2 + 1 = p - 1\n⊢ a * a ^ (p - 2) = 1", "tactic": "rw [← pow_succ, hp', ha]" } ]
[ 66, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 45, 1 ]
Mathlib/Data/Multiset/Fold.lean
Multiset.fold_cons'_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.6065\nop : α → α → α\nhc : IsCommutative α op\nha : IsAssociative α op\nb a : α\ns : Multiset α\n⊢ fold op b (a ::ₘ s) = fold op (op b a) s", "tactic": "rw [fold_eq_foldl, foldl_cons, ← fold_eq_foldl]" } ]
[ 72, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Order/Filter/Germ.lean
Filter.Germ.coe_le
[]
[ 662, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 661, 1 ]
Mathlib/Algebra/Module/LocalizedModule.lean
LocalizedModule.zero_add'
[ { "state_after": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nx : LocalizedModule S M\nm : M\ns : { x // x ∈ S }\n⊢ ∃ u, u • s • s • m = u • (s * s) • m", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nx : LocalizedModule S M\nm : M\ns : { x // x ∈ S }\n⊢ 0 + mk m s = mk m s", "tactic": "rw [← zero_mk s, mk_add_mk, smul_zero, zero_add, mk_eq]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nx : LocalizedModule S M\nm : M\ns : { x // x ∈ S }\n⊢ ∃ u, u • s • s • m = u • (s * s) • m", "tactic": "exact ⟨1, by rw [one_smul, mul_smul, one_smul]⟩" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nx : LocalizedModule S M\nm : M\ns : { x // x ∈ S }\n⊢ 1 • s • s • m = 1 • (s * s) • m", "tactic": "rw [one_smul, mul_smul, one_smul]" } ]
[ 190, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 185, 9 ]
Mathlib/Control/Traversable/Equiv.lean
Equiv.comp_map
[ { "state_after": "t t' : Type u → Type u\neqv : (α : Type u) → t α ≃ t' α\ninst✝¹ : Functor t\ninst✝ : LawfulFunctor t\nα β γ : Type u\ng : α → β\nh : β → γ\nx : t' α\n⊢ (h ∘ g) <$> ↑(eqv α).symm x = h <$> g <$> ↑(eqv α).symm x", "state_before": "t t' : Type u → Type u\neqv : (α : Type u) → t α ≃ t' α\ninst✝¹ : Functor t\ninst✝ : LawfulFunctor t\nα β γ : Type u\ng : α → β\nh : β → γ\nx : t' α\n⊢ Equiv.map eqv (h ∘ g) x = Equiv.map eqv h (Equiv.map eqv g x)", "tactic": "simp [Equiv.map]" }, { "state_after": "no goals", "state_before": "t t' : Type u → Type u\neqv : (α : Type u) → t α ≃ t' α\ninst✝¹ : Functor t\ninst✝ : LawfulFunctor t\nα β γ : Type u\ng : α → β\nh : β → γ\nx : t' α\n⊢ (h ∘ g) <$> ↑(eqv α).symm x = h <$> g <$> ↑(eqv α).symm x", "tactic": "apply comp_map" } ]
[ 66, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 11 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.mul_coeff_left'
[ { "state_after": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\n⊢ ∑ ij in addAntidiagonal (_ : Set.IsPwo (support x)) (_ : Set.IsPwo (support y)) a, coeff x ij.fst * coeff y ij.snd =\n ∑ ij in addAntidiagonal hs (_ : Set.IsPwo (support y)) a, coeff x ij.fst * coeff y ij.snd", "state_before": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\n⊢ coeff (x * y) a = ∑ ij in addAntidiagonal hs (_ : Set.IsPwo (support y)) a, coeff x ij.fst * coeff y ij.snd", "tactic": "rw [mul_coeff]" }, { "state_after": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\n⊢ ∀ (x_1 : Γ × Γ),\n x_1 ∈\n addAntidiagonal hs (_ : Set.IsPwo (support y)) a \\\n addAntidiagonal (_ : Set.IsPwo (support x)) (_ : Set.IsPwo (support y)) a →\n coeff x x_1.fst * coeff y x_1.snd = 0", "state_before": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\n⊢ ∑ ij in addAntidiagonal (_ : Set.IsPwo (support x)) (_ : Set.IsPwo (support y)) a, coeff x ij.fst * coeff y ij.snd =\n ∑ ij in addAntidiagonal hs (_ : Set.IsPwo (support y)) a, coeff x ij.fst * coeff y ij.snd", "tactic": "apply sum_subset_zero_on_sdiff (addAntidiagonal_mono_left hxs) _ fun _ _ => rfl" }, { "state_after": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\nb : Γ × Γ\nhb :\n b ∈\n addAntidiagonal hs (_ : Set.IsPwo (support y)) a \\\n addAntidiagonal (_ : Set.IsPwo (support x)) (_ : Set.IsPwo (support y)) a\n⊢ coeff x b.fst * coeff y b.snd = 0", "state_before": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\n⊢ ∀ (x_1 : Γ × Γ),\n x_1 ∈\n addAntidiagonal hs (_ : Set.IsPwo (support y)) a \\\n addAntidiagonal (_ : Set.IsPwo (support x)) (_ : Set.IsPwo (support y)) a →\n coeff x x_1.fst * coeff y x_1.snd = 0", "tactic": "intro b hb" }, { "state_after": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\nb : Γ × Γ\nhb : (b.fst ∈ s ∧ coeff y b.snd ≠ 0 ∧ b.fst + b.snd = a) ∧ (coeff y b.snd ≠ 0 ∧ b.fst + b.snd = a → coeff x b.fst = 0)\n⊢ coeff x b.fst * coeff y b.snd = 0", "state_before": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\nb : Γ × Γ\nhb :\n b ∈\n addAntidiagonal hs (_ : Set.IsPwo (support y)) a \\\n addAntidiagonal (_ : Set.IsPwo (support x)) (_ : Set.IsPwo (support y)) a\n⊢ coeff x b.fst * coeff y b.snd = 0", "tactic": "simp only [not_and', mem_sdiff, mem_addAntidiagonal, mem_support, not_ne_iff] at hb" }, { "state_after": "no goals", "state_before": "Γ : Type u_2\nR : Type u_1\ninst✝¹ : OrderedCancelAddCommMonoid Γ\ninst✝ : NonUnitalNonAssocSemiring R\nx y : HahnSeries Γ R\na : Γ\ns : Set Γ\nhs : Set.IsPwo s\nhxs : support x ⊆ s\nb : Γ × Γ\nhb : (b.fst ∈ s ∧ coeff y b.snd ≠ 0 ∧ b.fst + b.snd = a) ∧ (coeff y b.snd ≠ 0 ∧ b.fst + b.snd = a → coeff x b.fst = 0)\n⊢ coeff x b.fst * coeff y b.snd = 0", "tactic": "rw [hb.2 ⟨hb.1.2.1, hb.1.2.2⟩, MulZeroClass.zero_mul]" } ]
[ 661, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 653, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.coe_symmDiff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.286326\nγ : Type ?u.286329\ninst✝ : DecidableEq α\ns t : Finset α\na b x : α\n⊢ x ∈ ↑(s ∆ t) ↔ x ∈ ↑s ∆ ↑t", "tactic": "simp [mem_symmDiff, Set.mem_symmDiff]" } ]
[ 2382, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2381, 1 ]
Mathlib/Analysis/NormedSpace/lpSpace.lean
lp.eq_zero_iff_coeFn_eq_zero
[ { "state_after": "no goals", "state_before": "α : Type u_1\nE : α → Type u_2\np q : ℝ≥0∞\ninst✝ : (i : α) → NormedAddCommGroup (E i)\nf : { x // x ∈ lp E p }\n⊢ f = 0 ↔ ↑f = 0", "tactic": "rw [lp.ext_iff, coeFn_zero]" } ]
[ 481, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 480, 1 ]
Mathlib/Computability/Partrec.lean
Decidable.Partrec.const'
[]
[ 449, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 448, 1 ]
Mathlib/GroupTheory/FreeProduct.lean
FreeProduct.NeWord.append_last
[]
[ 619, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 617, 1 ]
Mathlib/Algebra/Ring/Prod.lean
RingEquiv.coe_prod_comm
[]
[ 286, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Logic/Nontrivial.lean
Function.Injective.nontrivial
[]
[ 148, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 11 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.mulIndicator_apply_le
[]
[ 868, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 866, 1 ]
Mathlib/Algebra/Associated.lean
Associates.quotient_mk_eq_mk
[]
[ 754, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 753, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.disjoint_singleton
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.484138\nγ : Type ?u.484141\nl : Multiset α\na : α\n⊢ Disjoint l {a} ↔ ¬a ∈ l", "tactic": "rw [disjoint_comm, singleton_disjoint]" } ]
[ 2944, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2943, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.toNNReal_apply_of_tsum_ne_top
[]
[ 940, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 938, 1 ]
Mathlib/CategoryTheory/Sites/Subsheaf.lean
CategoryTheory.GrothendieckTopology.top_subpresheaf_obj
[]
[ 354, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 1 ]
Mathlib/LinearAlgebra/Matrix/SpecialLinearGroup.lean
Matrix.SpecialLinearGroup.det_coe
[]
[ 156, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Algebra/Group/Basic.lean
mul_eq_of_eq_div
[ { "state_after": "no goals", "state_before": "α : Type ?u.59709\nβ : Type ?u.59712\nG : Type u_1\ninst✝ : Group G\na b c d : G\nh : a = c / b\n⊢ a * b = c", "tactic": "simp [h]" } ]
[ 785, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 785, 1 ]
Mathlib/CategoryTheory/Limits/Constructions/LimitsOfProductsAndEqualizers.lean
CategoryTheory.Limits.has_limits_of_hasEqualizers_and_products
[]
[ 143, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 1 ]
Std/Data/Int/Lemmas.lean
Int.neg_add_cancel_left
[ { "state_after": "no goals", "state_before": "a b : Int\n⊢ -a + (a + b) = b", "tactic": "rw [← Int.add_assoc, Int.add_left_neg, Int.zero_add]" } ]
[ 318, 55 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 317, 11 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.zero_nmem_multiset_map_X_sub_C
[]
[ 1497, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1494, 1 ]
Mathlib/MeasureTheory/Decomposition/RadonNikodym.lean
MeasureTheory.Measure.withDensity_rnDeriv_toReal_eq
[ { "state_after": "case hfm\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ AEMeasurable fun x => rnDeriv μ ν x\n\ncase hf\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ ∀ᵐ (x : α) ∂restrict ν i, rnDeriv μ ν x < ⊤", "state_before": "α : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ (∫ (x : α) in i, ENNReal.toReal (rnDeriv μ ν x) ∂ν) = ENNReal.toReal (↑↑μ i)", "tactic": "rw [integral_toReal, ← withDensity_apply _ hi, withDensity_rnDeriv_eq μ ν h]" }, { "state_after": "no goals", "state_before": "case hfm\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ AEMeasurable fun x => rnDeriv μ ν x", "tactic": "measurability" }, { "state_after": "case hf\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ (∫⁻ (x : α) in Set.univ, rnDeriv μ ν x ∂ν) < ⊤", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ ∀ᵐ (x : α) ∂restrict ν i, rnDeriv μ ν x < ⊤", "tactic": "refine' ae_lt_top (μ.measurable_rnDeriv ν)\n (lt_of_le_of_lt (lintegral_mono_set i.subset_univ) _).ne" }, { "state_after": "case hf\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ ↑↑μ Set.univ < ⊤", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ (∫⁻ (x : α) in Set.univ, rnDeriv μ ν x ∂ν) < ⊤", "tactic": "rw [← withDensity_apply _ MeasurableSet.univ, withDensity_rnDeriv_eq μ ν h]" }, { "state_after": "no goals", "state_before": "case hf\nα : Type u_1\nβ : Type ?u.2764\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : IsFiniteMeasure μ\ninst✝ : HaveLebesgueDecomposition μ ν\nh : μ ≪ ν\ni : Set α\nhi : MeasurableSet i\n⊢ ↑↑μ Set.univ < ⊤", "tactic": "exact measure_lt_top _ _" } ]
[ 81, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Algebra/Star/Subalgebra.lean
StarSubalgebra.adjoin_le_iff
[]
[ 482, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 481, 1 ]
Mathlib/Data/Quot.lean
Quot.out_eq
[]
[ 365, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 364, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
hasFTaylorSeriesUpToOn_pi'
[ { "state_after": "case h.e'_1.h.e'_11.h.h\n𝕜 : Type u_1\ninst✝¹⁴ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝¹³ : NormedAddCommGroup D\ninst✝¹² : NormedSpace 𝕜 D\nE : Type uE\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nG : Type uG\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedSpace 𝕜 G\nX : Type ?u.1486995\ninst✝⁵ : NormedAddCommGroup X\ninst✝⁴ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nι : Type u_2\nι' : Type ?u.1490476\ninst✝³ : Fintype ι\ninst✝² : Fintype ι'\nF' : ι → Type u_3\ninst✝¹ : (i : ι) → NormedAddCommGroup (F' i)\ninst✝ : (i : ι) → NormedSpace 𝕜 (F' i)\nφ : (i : ι) → E → F' i\np' : (i : ι) → E → FormalMultilinearSeries 𝕜 E (F' i)\nΦ : E → (i : ι) → F' i\nP' : E → FormalMultilinearSeries 𝕜 E ((i : ι) → F' i)\nx✝¹ : E\nx✝ : ℕ\n⊢ P' x✝¹ x✝ =\n ContinuousMultilinearMap.pi fun i =>\n ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) (P' x✝¹ x✝)", "state_before": "𝕜 : Type u_1\ninst✝¹⁴ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝¹³ : NormedAddCommGroup D\ninst✝¹² : NormedSpace 𝕜 D\nE : Type uE\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nG : Type uG\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedSpace 𝕜 G\nX : Type ?u.1486995\ninst✝⁵ : NormedAddCommGroup X\ninst✝⁴ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nι : Type u_2\nι' : Type ?u.1490476\ninst✝³ : Fintype ι\ninst✝² : Fintype ι'\nF' : ι → Type u_3\ninst✝¹ : (i : ι) → NormedAddCommGroup (F' i)\ninst✝ : (i : ι) → NormedSpace 𝕜 (F' i)\nφ : (i : ι) → E → F' i\np' : (i : ι) → E → FormalMultilinearSeries 𝕜 E (F' i)\nΦ : E → (i : ι) → F' i\nP' : E → FormalMultilinearSeries 𝕜 E ((i : ι) → F' i)\n⊢ HasFTaylorSeriesUpToOn n Φ P' s ↔\n ∀ (i : ι),\n HasFTaylorSeriesUpToOn n (fun x => Φ x i)\n (fun x m => ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) (P' x m)) s", "tactic": "convert hasFTaylorSeriesUpToOn_pi (𝕜 := 𝕜) (φ := fun i x ↦ Φ x i)" }, { "state_after": "case h.e'_1.h.e'_11.h.h.H.h\n𝕜 : Type u_1\ninst✝¹⁴ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝¹³ : NormedAddCommGroup D\ninst✝¹² : NormedSpace 𝕜 D\nE : Type uE\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nG : Type uG\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedSpace 𝕜 G\nX : Type ?u.1486995\ninst✝⁵ : NormedAddCommGroup X\ninst✝⁴ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nι : Type u_2\nι' : Type ?u.1490476\ninst✝³ : Fintype ι\ninst✝² : Fintype ι'\nF' : ι → Type u_3\ninst✝¹ : (i : ι) → NormedAddCommGroup (F' i)\ninst✝ : (i : ι) → NormedSpace 𝕜 (F' i)\nφ : (i : ι) → E → F' i\np' : (i : ι) → E → FormalMultilinearSeries 𝕜 E (F' i)\nΦ : E → (i : ι) → F' i\nP' : E → FormalMultilinearSeries 𝕜 E ((i : ι) → F' i)\nx✝³ : E\nx✝² : ℕ\nx✝¹ : Fin x✝² → E\nx✝ : ι\n⊢ ↑(P' x✝³ x✝²) x✝¹ x✝ =\n ↑(ContinuousMultilinearMap.pi fun i =>\n ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) (P' x✝³ x✝²))\n x✝¹ x✝", "state_before": "case h.e'_1.h.e'_11.h.h\n𝕜 : Type u_1\ninst✝¹⁴ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝¹³ : NormedAddCommGroup D\ninst✝¹² : NormedSpace 𝕜 D\nE : Type uE\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nG : Type uG\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedSpace 𝕜 G\nX : Type ?u.1486995\ninst✝⁵ : NormedAddCommGroup X\ninst✝⁴ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nι : Type u_2\nι' : Type ?u.1490476\ninst✝³ : Fintype ι\ninst✝² : Fintype ι'\nF' : ι → Type u_3\ninst✝¹ : (i : ι) → NormedAddCommGroup (F' i)\ninst✝ : (i : ι) → NormedSpace 𝕜 (F' i)\nφ : (i : ι) → E → F' i\np' : (i : ι) → E → FormalMultilinearSeries 𝕜 E (F' i)\nΦ : E → (i : ι) → F' i\nP' : E → FormalMultilinearSeries 𝕜 E ((i : ι) → F' i)\nx✝¹ : E\nx✝ : ℕ\n⊢ P' x✝¹ x✝ =\n ContinuousMultilinearMap.pi fun i =>\n ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) (P' x✝¹ x✝)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h.e'_1.h.e'_11.h.h.H.h\n𝕜 : Type u_1\ninst✝¹⁴ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝¹³ : NormedAddCommGroup D\ninst✝¹² : NormedSpace 𝕜 D\nE : Type uE\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁹ : NormedAddCommGroup F\ninst✝⁸ : NormedSpace 𝕜 F\nG : Type uG\ninst✝⁷ : NormedAddCommGroup G\ninst✝⁶ : NormedSpace 𝕜 G\nX : Type ?u.1486995\ninst✝⁵ : NormedAddCommGroup X\ninst✝⁴ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nι : Type u_2\nι' : Type ?u.1490476\ninst✝³ : Fintype ι\ninst✝² : Fintype ι'\nF' : ι → Type u_3\ninst✝¹ : (i : ι) → NormedAddCommGroup (F' i)\ninst✝ : (i : ι) → NormedSpace 𝕜 (F' i)\nφ : (i : ι) → E → F' i\np' : (i : ι) → E → FormalMultilinearSeries 𝕜 E (F' i)\nΦ : E → (i : ι) → F' i\nP' : E → FormalMultilinearSeries 𝕜 E ((i : ι) → F' i)\nx✝³ : E\nx✝² : ℕ\nx✝¹ : Fin x✝² → E\nx✝ : ι\n⊢ ↑(P' x✝³ x✝²) x✝¹ x✝ =\n ↑(ContinuousMultilinearMap.pi fun i =>\n ContinuousLinearMap.compContinuousMultilinearMap (ContinuousLinearMap.proj i) (P' x✝³ x✝²))\n x✝¹ x✝", "tactic": "rfl" } ]
[ 1143, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1138, 1 ]
Mathlib/RingTheory/NonZeroDivisors.lean
mul_mem_nonZeroDivisors
[ { "state_after": "case mp\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\n⊢ a * b ∈ M₁⁰ → a ∈ M₁⁰ ∧ b ∈ M₁⁰\n\ncase mpr\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\n⊢ a ∈ M₁⁰ ∧ b ∈ M₁⁰ → a * b ∈ M₁⁰", "state_before": "M : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\n⊢ a * b ∈ M₁⁰ ↔ a ∈ M₁⁰ ∧ b ∈ M₁⁰", "tactic": "constructor" }, { "state_after": "case mp\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nh : a * b ∈ M₁⁰\n⊢ a ∈ M₁⁰ ∧ b ∈ M₁⁰", "state_before": "case mp\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\n⊢ a * b ∈ M₁⁰ → a ∈ M₁⁰ ∧ b ∈ M₁⁰", "tactic": "intro h" }, { "state_after": "case mp.left.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nh : a * b ∈ M₁⁰\nx : M₁\nh' : x * a = 0\n⊢ x * (a * b) = 0\n\ncase mp.right.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nh : a * b ∈ M₁⁰\nx : M₁\nh' : x * b = 0\n⊢ x * (a * b) = 0", "state_before": "case mp\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nh : a * b ∈ M₁⁰\n⊢ a ∈ M₁⁰ ∧ b ∈ M₁⁰", "tactic": "constructor <;> intro x h' <;> apply h" }, { "state_after": "no goals", "state_before": "case mp.left.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nh : a * b ∈ M₁⁰\nx : M₁\nh' : x * a = 0\n⊢ x * (a * b) = 0", "tactic": "rw [← mul_assoc, h', zero_mul]" }, { "state_after": "no goals", "state_before": "case mp.right.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nh : a * b ∈ M₁⁰\nx : M₁\nh' : x * b = 0\n⊢ x * (a * b) = 0", "tactic": "rw [mul_comm a b, ← mul_assoc, h', zero_mul]" }, { "state_after": "case mpr.intro\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nha : a ∈ M₁⁰\nhb : b ∈ M₁⁰\nx : M₁\nhx : x * (a * b) = 0\n⊢ x = 0", "state_before": "case mpr\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\n⊢ a ∈ M₁⁰ ∧ b ∈ M₁⁰ → a * b ∈ M₁⁰", "tactic": "rintro ⟨ha, hb⟩ x hx" }, { "state_after": "case mpr.intro.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nha : a ∈ M₁⁰\nhb : b ∈ M₁⁰\nx : M₁\nhx : x * (a * b) = 0\n⊢ x * a = 0", "state_before": "case mpr.intro\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nha : a ∈ M₁⁰\nhb : b ∈ M₁⁰\nx : M₁\nhx : x * (a * b) = 0\n⊢ x = 0", "tactic": "apply ha" }, { "state_after": "case mpr.intro.a.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nha : a ∈ M₁⁰\nhb : b ∈ M₁⁰\nx : M₁\nhx : x * (a * b) = 0\n⊢ x * a * b = 0", "state_before": "case mpr.intro.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nha : a ∈ M₁⁰\nhb : b ∈ M₁⁰\nx : M₁\nhx : x * (a * b) = 0\n⊢ x * a = 0", "tactic": "apply hb" }, { "state_after": "no goals", "state_before": "case mpr.intro.a.a\nM : Type ?u.20654\nM' : Type ?u.20657\nM₁ : Type u_1\nR : Type ?u.20663\nR' : Type ?u.20666\nF : Type ?u.20669\ninst✝⁴ : MonoidWithZero M\ninst✝³ : MonoidWithZero M'\ninst✝² : CommMonoidWithZero M₁\ninst✝¹ : Ring R\ninst✝ : CommRing R'\na b : M₁\nha : a ∈ M₁⁰\nhb : b ∈ M₁⁰\nx : M₁\nhx : x * (a * b) = 0\n⊢ x * a * b = 0", "tactic": "rw [mul_assoc, hx]" } ]
[ 103, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/Data/Setoid/Basic.lean
Setoid.injective_iff_ker_bot
[]
[ 285, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Deprecated/Subgroup.lean
Group.subset_normalClosure
[]
[ 708, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 707, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.Ioo_subset_Ioi_self
[ { "state_after": "no goals", "state_before": "ι : Type ?u.49166\nα : Type u_1\ninst✝² : Preorder α\ninst✝¹ : LocallyFiniteOrder α\na a₁ a₂ b b₁ b₂ c x : α\ninst✝ : LocallyFiniteOrderTop α\n⊢ Ioo a b ⊆ Ioi a", "tactic": "simpa [← coe_subset] using Set.Ioo_subset_Ioi_self" } ]
[ 409, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 408, 1 ]
Mathlib/Topology/Sets/Opens.lean
TopologicalSpace.Opens.iSup_mk
[]
[ 242, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/Algebra/Ring/Defs.lean
ite_and_mul_zero
[ { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\nγ : Type w\nR : Type x\nα : Type u_1\ninst✝² : MulZeroClass α\nP Q : Prop\ninst✝¹ : Decidable P\ninst✝ : Decidable Q\na b : α\n⊢ (if P ∧ Q then a * b else 0) = (if P then a else 0) * if Q then b else 0", "tactic": "simp only [← ite_and, ite_mul, mul_ite, mul_zero, zero_mul, and_comm]" } ]
[ 239, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/Data/Multiset/FinsetOps.lean
Multiset.subset_ndunion_left
[]
[ 187, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Algebra/Algebra/Spectrum.lean
spectrum.subset_starSubalgebra
[]
[ 291, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/Data/Polynomial/Basic.lean
Polynomial.support_X_empty
[ { "state_after": "no goals", "state_before": "R : Type u\na b : R\nm n : ℕ\ninst✝ : Semiring R\np q : R[X]\nH : 1 = 0\n⊢ support X = ∅", "tactic": "rw [X, H, monomial_zero_right, support_zero]" } ]
[ 908, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 907, 1 ]
Mathlib/Analysis/PSeries.lean
Real.summable_abs_int_rpow
[ { "state_after": "case refine'_1\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)\n\ncase refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑(-↑n) ^ (-b)", "state_before": "b : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)", "tactic": "refine'\n summable_int_of_summable_nat (_ : Summable fun n : ℕ => |(n : ℝ)| ^ _)\n (_ : Summable fun n : ℕ => |((-n : ℤ) : ℝ)| ^ _)" }, { "state_after": "case refine'_1\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)\n\ncase refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)", "state_before": "case refine'_1\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)\n\ncase refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑(-↑n) ^ (-b)", "tactic": "on_goal 2 => simp_rw [Int.cast_neg, Int.cast_ofNat, abs_neg]" }, { "state_after": "no goals", "state_before": "case refine'_1\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)\n\ncase refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)", "tactic": "all_goals\n simp_rw [fun n : ℕ => abs_of_nonneg (n.cast_nonneg : 0 ≤ (n : ℝ))]\n rwa [Real.summable_nat_rpow, neg_lt_neg_iff]" }, { "state_after": "case refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)", "state_before": "case refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑(-↑n) ^ (-b)", "tactic": "simp_rw [Int.cast_neg, Int.cast_ofNat, abs_neg]" }, { "state_after": "case refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)", "state_before": "case refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑(-↑n) ^ (-b)", "tactic": "simp_rw [Int.cast_neg, Int.cast_ofNat, abs_neg]" }, { "state_after": "case refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => ↑n ^ (-b)", "state_before": "case refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => abs ↑n ^ (-b)", "tactic": "simp_rw [fun n : ℕ => abs_of_nonneg (n.cast_nonneg : 0 ≤ (n : ℝ))]" }, { "state_after": "no goals", "state_before": "case refine'_2\nb : ℝ\nhb : 1 < b\n⊢ Summable fun n => ↑n ^ (-b)", "tactic": "rwa [Real.summable_nat_rpow, neg_lt_neg_iff]" } ]
[ 243, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/Algebra/Regular/SMul.lean
IsLeftRegular.isSMulRegular
[]
[ 43, 4 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Algebra/Order/Floor.lean
Nat.floor_lt'
[]
[ 210, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/LinearAlgebra/Matrix/Charpoly/LinearMap.lean
Matrix.Represents.one
[ { "state_after": "ι : Type u_1\ninst✝⁴ : Fintype ι\nM : Type u_2\ninst✝³ : AddCommGroup M\nR : Type u_3\ninst✝² : CommRing R\ninst✝¹ : Module R M\nI : Ideal R\nb : ι → M\nhb : Submodule.span R (Set.range b) = ⊤\ninst✝ : DecidableEq ι\n⊢ ↑(LinearMap.comp (↑(LinearMap.llcomp R (ι → R) (ι → R) M) (↑(Fintype.total R R) b))\n (AlgEquiv.toLinearMap (AlgEquiv.symm algEquivMatrix')))\n 1 =\n ↑(PiToModule.fromEnd R b) 1", "state_before": "ι : Type u_1\ninst✝⁴ : Fintype ι\nM : Type u_2\ninst✝³ : AddCommGroup M\nR : Type u_3\ninst✝² : CommRing R\ninst✝¹ : Module R M\nI : Ideal R\nb : ι → M\nhb : Submodule.span R (Set.range b) = ⊤\ninst✝ : DecidableEq ι\n⊢ Represents b 1 1", "tactic": "delta Matrix.Represents PiToModule.fromMatrix" }, { "state_after": "ι : Type u_1\ninst✝⁴ : Fintype ι\nM : Type u_2\ninst✝³ : AddCommGroup M\nR : Type u_3\ninst✝² : CommRing R\ninst✝¹ : Module R M\nI : Ideal R\nb : ι → M\nhb : Submodule.span R (Set.range b) = ⊤\ninst✝ : DecidableEq ι\n⊢ ↑(↑(LinearMap.llcomp R (ι → R) (ι → R) M) (↑(Fintype.total R R) b)) 1 = ↑(PiToModule.fromEnd R b) 1", "state_before": "ι : Type u_1\ninst✝⁴ : Fintype ι\nM : Type u_2\ninst✝³ : AddCommGroup M\nR : Type u_3\ninst✝² : CommRing R\ninst✝¹ : Module R M\nI : Ideal R\nb : ι → M\nhb : Submodule.span R (Set.range b) = ⊤\ninst✝ : DecidableEq ι\n⊢ ↑(LinearMap.comp (↑(LinearMap.llcomp R (ι → R) (ι → R) M) (↑(Fintype.total R R) b))\n (AlgEquiv.toLinearMap (AlgEquiv.symm algEquivMatrix')))\n 1 =\n ↑(PiToModule.fromEnd R b) 1", "tactic": "rw [LinearMap.comp_apply, AlgEquiv.toLinearMap_apply, _root_.map_one]" }, { "state_after": "case h.h\nι : Type u_1\ninst✝⁴ : Fintype ι\nM : Type u_2\ninst✝³ : AddCommGroup M\nR : Type u_3\ninst✝² : CommRing R\ninst✝¹ : Module R M\nI : Ideal R\nb : ι → M\nhb : Submodule.span R (Set.range b) = ⊤\ninst✝ : DecidableEq ι\ni✝ : ι\n⊢ ↑(LinearMap.comp (↑(↑(LinearMap.llcomp R (ι → R) (ι → R) M) (↑(Fintype.total R R) b)) 1) (LinearMap.single i✝)) 1 =\n ↑(LinearMap.comp (↑(PiToModule.fromEnd R b) 1) (LinearMap.single i✝)) 1", "state_before": "ι : Type u_1\ninst✝⁴ : Fintype ι\nM : Type u_2\ninst✝³ : AddCommGroup M\nR : Type u_3\ninst✝² : CommRing R\ninst✝¹ : Module R M\nI : Ideal R\nb : ι → M\nhb : Submodule.span R (Set.range b) = ⊤\ninst✝ : DecidableEq ι\n⊢ ↑(↑(LinearMap.llcomp R (ι → R) (ι → R) M) (↑(Fintype.total R R) b)) 1 = ↑(PiToModule.fromEnd R b) 1", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h.h\nι : Type u_1\ninst✝⁴ : Fintype ι\nM : Type u_2\ninst✝³ : AddCommGroup M\nR : Type u_3\ninst✝² : CommRing R\ninst✝¹ : Module R M\nI : Ideal R\nb : ι → M\nhb : Submodule.span R (Set.range b) = ⊤\ninst✝ : DecidableEq ι\ni✝ : ι\n⊢ ↑(LinearMap.comp (↑(↑(LinearMap.llcomp R (ι → R) (ι → R) M) (↑(Fintype.total R R) b)) 1) (LinearMap.single i✝)) 1 =\n ↑(LinearMap.comp (↑(PiToModule.fromEnd R b) 1) (LinearMap.single i✝)) 1", "tactic": "rfl" } ]
[ 133, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.valMinAbs_natCast_of_half_lt
[ { "state_after": "case zero\na : ℕ\nha : Nat.zero / 2 < a\nha' : a < Nat.zero\n⊢ valMinAbs ↑a = ↑a - ↑Nat.zero\n\ncase succ\na n✝ : ℕ\nha : Nat.succ n✝ / 2 < a\nha' : a < Nat.succ n✝\n⊢ valMinAbs ↑a = ↑a - ↑(Nat.succ n✝)", "state_before": "n a : ℕ\nha : n / 2 < a\nha' : a < n\n⊢ valMinAbs ↑a = ↑a - ↑n", "tactic": "cases n" }, { "state_after": "no goals", "state_before": "case zero\na : ℕ\nha : Nat.zero / 2 < a\nha' : a < Nat.zero\n⊢ valMinAbs ↑a = ↑a - ↑Nat.zero", "tactic": "cases not_lt_bot ha'" }, { "state_after": "no goals", "state_before": "case succ\na n✝ : ℕ\nha : Nat.succ n✝ / 2 < a\nha' : a < Nat.succ n✝\n⊢ valMinAbs ↑a = ↑a - ↑(Nat.succ n✝)", "tactic": "simp [valMinAbs_def_pos, val_nat_cast, Nat.mod_eq_of_lt ha', ha.not_le]" } ]
[ 1079, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1075, 1 ]
Std/Data/String/Lemmas.lean
String.Pos.Valid.mk
[]
[ 155, 94 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 155, 1 ]
Mathlib/Combinatorics/Quiver/Symmetric.lean
Prefunctor.map_reverse
[]
[ 98, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/LinearAlgebra/Finsupp.lean
Finsupp.mapRange.linearEquiv_refl
[]
[ 864, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 862, 1 ]
Mathlib/GroupTheory/GroupAction/Units.lean
Units.val_smul
[]
[ 113, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/MeasureTheory/Measure/AEDisjoint.lean
MeasureTheory.aedisjoint_compl_left
[]
[ 161, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.predAbove_last_apply
[ { "state_after": "no goals", "state_before": "n m : ℕ\ni : Fin n\n⊢ predAbove (last n) ↑↑i = castPred ↑↑i", "tactic": "rw [predAbove_last]" } ]
[ 2353, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2352, 1 ]
Mathlib/Topology/Connected.lean
PreconnectedSpace.constant
[]
[ 1596, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1594, 1 ]
Mathlib/Data/PFun.lean
PFun.prodMap_apply
[]
[ 681, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 679, 1 ]
Mathlib/Algebra/Order/WithZero.lean
mul_le_one₀
[]
[ 128, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
stronglyMeasurable_const_smul_iff₀
[]
[ 506, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 504, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.cons_isCycle_iff
[ { "state_after": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v : V\np : Walk G v u\nh : Adj G u v\n⊢ (¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p ∧ List.Nodup (edges p)) ∧ cons h p ≠ nil ∧ List.Nodup (support p) ↔\n List.Nodup (support p) ∧ ¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v : V\np : Walk G v u\nh : Adj G u v\n⊢ IsCycle (cons h p) ↔ IsPath p ∧ ¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p", "tactic": "simp only [Walk.isCycle_def, Walk.isPath_def, Walk.isTrail_def, edges_cons, List.nodup_cons,\n support_cons, List.tail_cons]" }, { "state_after": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v : V\np : Walk G v u\nh : Adj G u v\nthis : List.Nodup (support p) → List.Nodup (edges p)\n⊢ (¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p ∧ List.Nodup (edges p)) ∧ cons h p ≠ nil ∧ List.Nodup (support p) ↔\n List.Nodup (support p) ∧ ¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v : V\np : Walk G v u\nh : Adj G u v\n⊢ (¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p ∧ List.Nodup (edges p)) ∧ cons h p ≠ nil ∧ List.Nodup (support p) ↔\n List.Nodup (support p) ∧ ¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p", "tactic": "have : p.support.Nodup → p.edges.Nodup := edges_nodup_of_support_nodup" }, { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v : V\np : Walk G v u\nh : Adj G u v\nthis : List.Nodup (support p) → List.Nodup (edges p)\n⊢ (¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p ∧ List.Nodup (edges p)) ∧ cons h p ≠ nil ∧ List.Nodup (support p) ↔\n List.Nodup (support p) ∧ ¬Quotient.mk (Sym2.Rel.setoid V) (u, v) ∈ edges p", "tactic": "tauto" } ]
[ 1014, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1009, 1 ]
Mathlib/Algebra/Algebra/Tower.lean
Submodule.span_smul_of_span_eq_top
[]
[ 319, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 311, 1 ]
Mathlib/Computability/Partrec.lean
Computable.unpair
[]
[ 318, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 317, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
Real.lt_rpow_inv_iff_of_neg
[ { "state_after": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\n⊢ x < y ^ z⁻¹ ↔ y < x ^ z", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\n⊢ x < y ^ z⁻¹ ↔ y < x ^ z", "tactic": "have hz' : 0 < -z := by rwa [lt_neg, neg_zero]" }, { "state_after": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\n⊢ x < y ^ z⁻¹ ↔ y < x ^ z", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\n⊢ x < y ^ z⁻¹ ↔ y < x ^ z", "tactic": "have hxz : 0 < x ^ (-z) := Real.rpow_pos_of_pos hx _" }, { "state_after": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ x < y ^ z⁻¹ ↔ y < x ^ z", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\n⊢ x < y ^ z⁻¹ ↔ y < x ^ z", "tactic": "have hyz : 0 < y ^ z⁻¹ := Real.rpow_pos_of_pos hy _" }, { "state_after": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ x ^ (-z) < y ^ (z⁻¹ * -z) ↔ y < x ^ z", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ x < y ^ z⁻¹ ↔ y < x ^ z", "tactic": "rw [← Real.rpow_lt_rpow_iff hx.le hyz.le hz', ← Real.rpow_mul hy.le]" }, { "state_after": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ x ^ (-z) < y⁻¹ ↔ y < x ^ z", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ x ^ (-z) < y ^ (z⁻¹ * -z) ↔ y < x ^ z", "tactic": "simp only [ne_of_lt hz, Real.rpow_neg_one, mul_neg, inv_mul_cancel, Ne.def, not_false_iff]" }, { "state_after": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ y < x ^ (-z * -1) ↔ y < x ^ z", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ x ^ (-z) < y⁻¹ ↔ y < x ^ z", "tactic": "rw [lt_inv hxz hy, ← Real.rpow_neg_one, ← Real.rpow_mul hx.le]" }, { "state_after": "no goals", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\nhz' : 0 < -z\nhxz : 0 < x ^ (-z)\nhyz : 0 < y ^ z⁻¹\n⊢ y < x ^ (-z * -1) ↔ y < x ^ z", "tactic": "simp" }, { "state_after": "no goals", "state_before": "x y z : ℝ\nhx : 0 < x\nhy : 0 < y\nhz : z < 0\n⊢ 0 < -z", "tactic": "rwa [lt_neg, neg_zero]" } ]
[ 455, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 447, 1 ]
Mathlib/CategoryTheory/EqToHom.lean
CategoryTheory.eqToHom_refl
[]
[ 52, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 51, 1 ]
Mathlib/MeasureTheory/Integral/SetIntegral.lean
measure_le_lintegral_thickenedIndicator
[ { "state_after": "case h.e'_4.h.e'_4.h\nα : Type u_1\nβ : Type ?u.5010653\nE✝ : Type ?u.5010656\nF : Type ?u.5010659\ninst✝² : MeasurableSpace α\nι : Type ?u.5010665\ninst✝¹ : NormedAddCommGroup E✝\ninst✝ : PseudoEMetricSpace α\nμ : MeasureTheory.Measure α\nE : Set α\nE_mble : MeasurableSet E\nδ : ℝ\nδ_pos : 0 < δ\nx✝ : α\n⊢ ↑(↑(thickenedIndicator δ_pos E) x✝) = thickenedIndicatorAux δ E x✝", "state_before": "α : Type u_1\nβ : Type ?u.5010653\nE✝ : Type ?u.5010656\nF : Type ?u.5010659\ninst✝² : MeasurableSpace α\nι : Type ?u.5010665\ninst✝¹ : NormedAddCommGroup E✝\ninst✝ : PseudoEMetricSpace α\nμ : MeasureTheory.Measure α\nE : Set α\nE_mble : MeasurableSet E\nδ : ℝ\nδ_pos : 0 < δ\n⊢ ↑↑μ E ≤ ∫⁻ (a : α), ↑(↑(thickenedIndicator δ_pos E) a) ∂μ", "tactic": "convert measure_le_lintegral_thickenedIndicatorAux μ E_mble δ" }, { "state_after": "case h.e'_4.h.e'_4.h\nα : Type u_1\nβ : Type ?u.5010653\nE✝ : Type ?u.5010656\nF : Type ?u.5010659\ninst✝² : MeasurableSpace α\nι : Type ?u.5010665\ninst✝¹ : NormedAddCommGroup E✝\ninst✝ : PseudoEMetricSpace α\nμ : MeasureTheory.Measure α\nE : Set α\nE_mble : MeasurableSet E\nδ : ℝ\nδ_pos : 0 < δ\nx✝ : α\n⊢ ↑(ENNReal.toNNReal (thickenedIndicatorAux δ E x✝)) = thickenedIndicatorAux δ E x✝", "state_before": "case h.e'_4.h.e'_4.h\nα : Type u_1\nβ : Type ?u.5010653\nE✝ : Type ?u.5010656\nF : Type ?u.5010659\ninst✝² : MeasurableSpace α\nι : Type ?u.5010665\ninst✝¹ : NormedAddCommGroup E✝\ninst✝ : PseudoEMetricSpace α\nμ : MeasureTheory.Measure α\nE : Set α\nE_mble : MeasurableSet E\nδ : ℝ\nδ_pos : 0 < δ\nx✝ : α\n⊢ ↑(↑(thickenedIndicator δ_pos E) x✝) = thickenedIndicatorAux δ E x✝", "tactic": "dsimp" }, { "state_after": "no goals", "state_before": "case h.e'_4.h.e'_4.h\nα : Type u_1\nβ : Type ?u.5010653\nE✝ : Type ?u.5010656\nF : Type ?u.5010659\ninst✝² : MeasurableSpace α\nι : Type ?u.5010665\ninst✝¹ : NormedAddCommGroup E✝\ninst✝ : PseudoEMetricSpace α\nμ : MeasureTheory.Measure α\nE : Set α\nE_mble : MeasurableSet E\nδ : ℝ\nδ_pos : 0 < δ\nx✝ : α\n⊢ ↑(ENNReal.toNNReal (thickenedIndicatorAux δ E x✝)) = thickenedIndicatorAux δ E x✝", "tactic": "simp only [thickenedIndicatorAux_lt_top.ne, ENNReal.coe_toNNReal, Ne.def, not_false_iff]" } ]
[ 1312, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1307, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_biUnion_finset
[]
[ 1218, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1215, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.exists_eq_mul
[]
[ 1952, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1950, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
MvPowerSeries.map_monomial
[ { "state_after": "case h\nσ : Type u_1\nR : Type u_3\nS : Type u_2\nT : Type ?u.869997\ninst✝² : Semiring R\ninst✝¹ : Semiring S\ninst✝ : Semiring T\nf : R →+* S\ng : S →+* T\nn : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\n⊢ ↑(coeff S m) (↑(map σ f) (↑(monomial R n) a)) = ↑(coeff S m) (↑(monomial S n) (↑f a))", "state_before": "σ : Type u_1\nR : Type u_3\nS : Type u_2\nT : Type ?u.869997\ninst✝² : Semiring R\ninst✝¹ : Semiring S\ninst✝ : Semiring T\nf : R →+* S\ng : S →+* T\nn : σ →₀ ℕ\na : R\n⊢ ↑(map σ f) (↑(monomial R n) a) = ↑(monomial S n) (↑f a)", "tactic": "ext m" }, { "state_after": "no goals", "state_before": "case h\nσ : Type u_1\nR : Type u_3\nS : Type u_2\nT : Type ?u.869997\ninst✝² : Semiring R\ninst✝¹ : Semiring S\ninst✝ : Semiring T\nf : R →+* S\ng : S →+* T\nn : σ →₀ ℕ\na : R\nm : σ →₀ ℕ\n⊢ ↑(coeff S m) (↑(map σ f) (↑(monomial R n) a)) = ↑(coeff S m) (↑(monomial S n) (↑f a))", "tactic": "simp [coeff_monomial, apply_ite f]" } ]
[ 614, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 612, 1 ]
Mathlib/Data/Finset/LocallyFinite.lean
Finset.Icc_diff_Ico_self
[ { "state_after": "no goals", "state_before": "ι : Type ?u.95633\nα : Type u_1\ninst✝² : PartialOrder α\ninst✝¹ : LocallyFiniteOrder α\na b c : α\ninst✝ : DecidableEq α\nh : a ≤ b\n⊢ Icc a b \\ Ico a b = {b}", "tactic": "simp [← coe_inj, h]" } ]
[ 585, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 585, 1 ]
Mathlib/Order/Monotone/Monovary.lean
AntivaryOn.dual
[]
[ 228, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 227, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.erase_zero
[]
[ 1009, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1008, 1 ]
Mathlib/CategoryTheory/Bicategory/NaturalTransformation.lean
CategoryTheory.OplaxNatTrans.Modification.whiskerLeft_naturality
[ { "state_after": "no goals", "state_before": "B : Type u₁\ninst✝¹ : Bicategory B\nC : Type u₂\ninst✝ : Bicategory C\nF G : OplaxFunctor B C\nη θ ι : F ⟶ G\nΓ : Modification η θ\na b c : B\na' : C\nf : a' ⟶ (↑F.toPrelaxFunctor).obj b\ng : b ⟶ c\n⊢ f ◁ (↑F.toPrelaxFunctor).map g ◁ app Γ c ≫ f ◁ OplaxNatTrans.naturality θ g =\n f ◁ OplaxNatTrans.naturality η g ≫ f ◁ app Γ b ▷ (↑G.toPrelaxFunctor).map g", "tactic": "simp_rw [← whiskerLeft_comp, naturality]" } ]
[ 268, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
OrderIso.map_ciInf_set
[]
[ 1361, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1359, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.coe_mulₗᵢ
[]
[ 1178, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1177, 1 ]
Mathlib/Order/Basic.lean
le_iff_le_iff_lt_iff_lt
[]
[ 521, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 519, 1 ]
Mathlib/Topology/ContinuousFunction/Compact.lean
ContinuousMap.uniformEmbedding_equivBoundedOfCompact
[]
[ 75, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/CategoryTheory/Limits/Constructions/ZeroObjects.lean
CategoryTheory.Limits.pullbackZeroZeroIso_hom_snd
[ { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝³ : Category C\ninst✝² : HasZeroObject C\ninst✝¹ : HasZeroMorphisms C\nX Y : C\ninst✝ : HasBinaryProduct X Y\n⊢ (pullbackZeroZeroIso X Y).hom ≫ prod.snd = pullback.snd", "tactic": "simp [← Iso.eq_inv_comp]" } ]
[ 193, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Algebra/Star/Module.lean
star_inv_int_cast_smul
[]
[ 61, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Topology/Constructions.lean
nhds_subtype_eq_comap
[]
[ 1076, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1075, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.count_union
[]
[ 2467, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2466, 1 ]
Mathlib/Order/RelClasses.lean
IsAsymm.isIrrefl
[]
[ 124, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 11 ]
Mathlib/Data/Set/Lattice.lean
Set.preimage_sInter
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.226389\nι : Sort ?u.226392\nι' : Sort ?u.226395\nι₂ : Sort ?u.226398\nκ : ι → Sort ?u.226403\nκ₁ : ι → Sort ?u.226408\nκ₂ : ι → Sort ?u.226413\nκ' : ι' → Sort ?u.226418\nf : α → β\ns : Set (Set β)\n⊢ f ⁻¹' ⋂₀ s = ⋂ (t : Set β) (_ : t ∈ s), f ⁻¹' t", "tactic": "rw [sInter_eq_biInter, preimage_iInter₂]" } ]
[ 1742, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1741, 1 ]
Mathlib/Order/WellFounded.lean
Function.argminOn_mem
[]
[ 206, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Algebra/Order/CompleteField.lean
LinearOrderedField.mem_cutMap_iff
[]
[ 116, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Log.lean
Complex.map_exp_comap_re_atTop
[ { "state_after": "⊢ {0}ᶜ ∈ comap (↑abs) atTop", "state_before": "⊢ map exp (comap re atTop) = comap (↑abs) atTop", "tactic": "rw [← comap_exp_comap_abs_atTop, map_comap, range_exp, inf_eq_left, le_principal_iff]" }, { "state_after": "no goals", "state_before": "⊢ {0}ᶜ ∈ comap (↑abs) atTop", "tactic": "exact eventually_ne_of_tendsto_norm_atTop tendsto_comap 0" } ]
[ 224, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 222, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Complex.cos_nat_mul_two_pi
[]
[ 1232, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1231, 1 ]
Mathlib/Data/List/Perm.lean
List.Perm.union_right
[ { "state_after": "case cons\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ : List α\na : α\nl₁✝ l₂✝ : List α\na✝ : l₁✝ ~ l₂✝\nih : List.union l₁✝ t₁ ~ List.union l₂✝ t₁\n⊢ List.insert a (List.union l₁✝ t₁) ~ List.insert a (List.union l₂✝ t₁)\n\ncase swap\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ : List α\nx✝ y✝ : α\nl✝ : List α\n⊢ List.insert y✝ (List.insert x✝ (List.union l✝ t₁)) ~ List.insert x✝ (List.insert y✝ (List.union l✝ t₁))\n\ncase trans\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ l₁✝ l₂✝ l₃✝ : List α\na✝¹ : l₁✝ ~ l₂✝\na✝ : l₂✝ ~ l₃✝\nih_1 : List.union l₁✝ t₁ ~ List.union l₂✝ t₁\nih_2 : List.union l₂✝ t₁ ~ List.union l₃✝ t₁\n⊢ List.union l₁✝ t₁ ~ List.union l₃✝ t₁", "state_before": "α : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ : List α\nh : l₁ ~ l₂\n⊢ List.union l₁ t₁ ~ List.union l₂ t₁", "tactic": "induction' h with a _ _ _ ih _ _ _ _ _ _ _ _ ih_1 ih_2 <;> try simp" }, { "state_after": "case trans\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ l₁✝ l₂✝ l₃✝ : List α\na✝¹ : l₁✝ ~ l₂✝\na✝ : l₂✝ ~ l₃✝\nih_1 : List.union l₁✝ t₁ ~ List.union l₂✝ t₁\nih_2 : List.union l₂✝ t₁ ~ List.union l₃✝ t₁\n⊢ List.union l₁✝ t₁ ~ List.union l₃✝ t₁", "state_before": "case trans\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ l₁✝ l₂✝ l₃✝ : List α\na✝¹ : l₁✝ ~ l₂✝\na✝ : l₂✝ ~ l₃✝\nih_1 : List.union l₁✝ t₁ ~ List.union l₂✝ t₁\nih_2 : List.union l₂✝ t₁ ~ List.union l₃✝ t₁\n⊢ List.union l₁✝ t₁ ~ List.union l₃✝ t₁", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case cons\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ : List α\na : α\nl₁✝ l₂✝ : List α\na✝ : l₁✝ ~ l₂✝\nih : List.union l₁✝ t₁ ~ List.union l₂✝ t₁\n⊢ List.insert a (List.union l₁✝ t₁) ~ List.insert a (List.union l₂✝ t₁)", "tactic": "exact ih.insert a" }, { "state_after": "no goals", "state_before": "case swap\nα : Type uu\nβ : Type vv\nl₁✝ l₂✝ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ : List α\nx✝ y✝ : α\nl✝ : List α\n⊢ List.insert y✝ (List.insert x✝ (List.union l✝ t₁)) ~ List.insert x✝ (List.insert y✝ (List.union l✝ t₁))", "tactic": "apply perm_insert_swap" }, { "state_after": "no goals", "state_before": "case trans\nα : Type uu\nβ : Type vv\nl₁✝¹ l₂✝¹ : List α\ninst✝ : DecidableEq α\nl₁ l₂ t₁ l₁✝ l₂✝ l₃✝ : List α\na✝¹ : l₁✝ ~ l₂✝\na✝ : l₂✝ ~ l₃✝\nih_1 : List.union l₁✝ t₁ ~ List.union l₂✝ t₁\nih_2 : List.union l₂✝ t₁ ~ List.union l₃✝ t₁\n⊢ List.union l₁✝ t₁ ~ List.union l₃✝ t₁", "tactic": "exact ih_1.trans ih_2" } ]
[ 995, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 990, 1 ]
Mathlib/Analysis/NormedSpace/ENorm.lean
ENorm.ext
[]
[ 72, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Order/Filter/AtTopBot.lean
Filter.inf_map_atBot_neBot_iff
[]
[ 456, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 454, 1 ]
Mathlib/LinearAlgebra/Span.lean
Submodule.submodule_eq_sSup_le_nonzero_spans
[ { "state_after": "R : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ p = sSup {T | ∃ m x x, T = span R {m}}", "state_before": "R : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\n⊢ p = sSup {T | ∃ m x x, T = span R {m}}", "tactic": "let S := { T : Submodule R M | ∃ (m : M) (_ : m ∈ p) (_ : m ≠ 0), T = span R {m} }" }, { "state_after": "case a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ p ≤ sSup {T | ∃ m x x, T = span R {m}}\n\ncase a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ sSup {T | ∃ m x x, T = span R {m}} ≤ p", "state_before": "R : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ p = sSup {T | ∃ m x x, T = span R {m}}", "tactic": "apply le_antisymm" }, { "state_after": "case a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\n⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}", "state_before": "case a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ p ≤ sSup {T | ∃ m x x, T = span R {m}}", "tactic": "intro m hm" }, { "state_after": "case pos\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\nh : m = 0\n⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}\n\ncase neg\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\nh : ¬m = 0\n⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}", "state_before": "case a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\n⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}", "tactic": "by_cases h : m = 0" }, { "state_after": "case pos\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\nh : m = 0\n⊢ 0 ∈ sSup {T | ∃ m x x, T = span R {m}}", "state_before": "case pos\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\nh : m = 0\n⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\nh : m = 0\n⊢ 0 ∈ sSup {T | ∃ m x x, T = span R {m}}", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nm : M\nhm : m ∈ p\nh : ¬m = 0\n⊢ m ∈ sSup {T | ∃ m x x, T = span R {m}}", "tactic": "exact @le_sSup _ _ S _ ⟨m, ⟨hm, ⟨h, rfl⟩⟩⟩ m (mem_span_singleton_self m)" }, { "state_after": "case a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ ∀ (b : Submodule R M), b ∈ {T | ∃ m x x, T = span R {m}} → b ≤ p", "state_before": "case a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ sSup {T | ∃ m x x, T = span R {m}} ≤ p", "tactic": "rw [sSup_le_iff]" }, { "state_after": "case a.intro.intro.intro\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nw✝² : M\nw✝¹ : w✝² ∈ p\nw✝ : w✝² ≠ 0\n⊢ span R {w✝²} ≤ p", "state_before": "case a\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\n⊢ ∀ (b : Submodule R M), b ∈ {T | ∃ m x x, T = span R {m}} → b ≤ p", "tactic": "rintro S ⟨_, ⟨_, ⟨_, rfl⟩⟩⟩" }, { "state_after": "no goals", "state_before": "case a.intro.intro.intro\nR : Type u_1\nR₂ : Type ?u.227879\nK : Type ?u.227882\nM : Type u_2\nM₂ : Type ?u.227888\nV : Type ?u.227891\nS✝ : Type ?u.227894\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np✝ p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\np : Submodule R M\nS : Set (Submodule R M) := {T | ∃ m x x, T = span R {m}}\nw✝² : M\nw✝¹ : w✝² ∈ p\nw✝ : w✝² ≠ 0\n⊢ span R {w✝²} ≤ p", "tactic": "rwa [span_singleton_le_iff_mem]" } ]
[ 702, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 691, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.nhdsWithin_Ioi_ofNat_nebot
[]
[ 227, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 226, 1 ]
Std/Data/String/Lemmas.lean
String.get_cons_addChar
[ { "state_after": "no goals", "state_before": "c : Char\ncs : List Char\ni : Pos\n⊢ get { data := c :: cs } (i + c) = get { data := cs } i", "tactic": "simp [get, utf8GetAux, Pos.zero_ne_addChar, utf8GetAux_addChar_right_cancel]" } ]
[ 215, 79 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 213, 1 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.tendsto_atTop
[ { "state_after": "no goals", "state_before": "f g : CircleDeg1Lift\n⊢ Tendsto (fun x => x - 1) atTop atTop", "tactic": "simpa [sub_eq_add_neg] using tendsto_atTop_add_const_right _ _ tendsto_id" } ]
[ 553, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 550, 11 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
differentiableWithinAt_id
[]
[ 1017, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1016, 1 ]