file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/CategoryTheory/CommSq.lean
CategoryTheory.CommSq.of_arrow
[]
[ 63, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 1 ]
Mathlib/Topology/Algebra/Nonarchimedean/AdicTopology.lean
Ideal.adic_basis
[ { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (i j : ℕ), ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (i j : ℕ), ∃ k, I ^ k • ⊤ ≤ I ^ i • ⊤ ⊓ I ^ j • ⊤", "tactic": "suffices ∀ i j : ℕ, ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j by\n simpa only [smul_eq_mul, mul_top, Algebra.id.map_eq_id, map_id, le_inf_iff] using this" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\ni j : ℕ\n⊢ ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (i j : ℕ), ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j", "tactic": "intro i j" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\ni j : ℕ\n⊢ ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j", "tactic": "exact ⟨max i j, pow_le_pow (le_max_left i j), pow_le_pow (le_max_right i j)⟩" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nthis : ∀ (i j : ℕ), ∃ k, I ^ k ≤ I ^ i ∧ I ^ k ≤ I ^ j\n⊢ ∀ (i j : ℕ), ∃ k, I ^ k • ⊤ ≤ I ^ i • ⊤ ⊓ I ^ j • ⊤", "tactic": "simpa only [smul_eq_mul, mul_top, Algebra.id.map_eq_id, map_id, le_inf_iff] using this" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j ≤ I ^ i", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j • ⊤ ≤ I ^ i • ⊤", "tactic": "suffices ∀ (a : R) (i : ℕ), ∃ j : ℕ, a • I ^ j ≤ I ^ i by\n simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nr : R\nn : ℕ\n⊢ ∃ j, r • I ^ j ≤ I ^ n", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j ≤ I ^ i", "tactic": "intro r n" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nr : R\nn : ℕ\n⊢ r • I ^ n ≤ I ^ n", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nr : R\nn : ℕ\n⊢ ∃ j, r • I ^ j ≤ I ^ n", "tactic": "use n" }, { "state_after": "case intro.intro\nR : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nr : R\nn : ℕ\nx : R\nhx : x ∈ ↑(I ^ n)\n⊢ ↑(DistribMulAction.toLinearMap R R r) x ∈ I ^ n", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nr : R\nn : ℕ\n⊢ r • I ^ n ≤ I ^ n", "tactic": "rintro a ⟨x, hx, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nR : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nr : R\nn : ℕ\nx : R\nhx : x ∈ ↑(I ^ n)\n⊢ ↑(DistribMulAction.toLinearMap R R r) x ∈ I ^ n", "tactic": "exact (I ^ n).smul_mem r hx" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nthis : ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j ≤ I ^ i\n⊢ ∀ (a : R) (i : ℕ), ∃ j, a • I ^ j • ⊤ ≤ I ^ i • ⊤", "tactic": "simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (i : ℕ), ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ i)", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (i : ℕ), ∃ j, ↑(I ^ j • ⊤) * ↑(I ^ j • ⊤) ⊆ ↑(I ^ i • ⊤)", "tactic": "suffices ∀ i : ℕ, ∃ j : ℕ, (I ^ j: Set R) * (I ^ j : Set R) ⊆ (I ^ i : Set R) by\n simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nn : ℕ\n⊢ ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ n)", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\n⊢ ∀ (i : ℕ), ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ i)", "tactic": "intro n" }, { "state_after": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nn : ℕ\n⊢ ↑(I ^ n) * ↑(I ^ n) ⊆ ↑(I ^ n)", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nn : ℕ\n⊢ ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ n)", "tactic": "use n" }, { "state_after": "case intro.intro.intro.intro\nR : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nn : ℕ\nx b : R\n_hx : x ∈ ↑(I ^ n)\nhb : b ∈ ↑(I ^ n)\n⊢ (fun x x_1 => x * x_1) x b ∈ ↑(I ^ n)", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nn : ℕ\n⊢ ↑(I ^ n) * ↑(I ^ n) ⊆ ↑(I ^ n)", "tactic": "rintro a ⟨x, b, _hx, hb, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nR : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nn : ℕ\nx b : R\n_hx : x ∈ ↑(I ^ n)\nhb : b ∈ ↑(I ^ n)\n⊢ (fun x x_1 => x * x_1) x b ∈ ↑(I ^ n)", "tactic": "exact (I ^ n).smul_mem x hb" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nI : Ideal R\nthis : ∀ (i : ℕ), ∃ j, ↑(I ^ j) * ↑(I ^ j) ⊆ ↑(I ^ i)\n⊢ ∀ (i : ℕ), ∃ j, ↑(I ^ j • ⊤) * ↑(I ^ j • ⊤) ⊆ ↑(I ^ i • ⊤)", "tactic": "simpa only [smul_top_eq_map, Algebra.id.map_eq_id, map_id] using this" } ]
[ 77, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Combination.lean
Finset.sum_smul_vsub_const_eq_weightedVSub
[ { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_3\nP : Type u_4\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\nι : Type u_2\ns : Finset ι\nι₂ : Type ?u.202333\ns₂ : Finset ι₂\nw : ι → k\np₁ : ι → P\np₂ : P\nh : ∑ i in s, w i = 0\n⊢ ∑ i in s, w i • (p₁ i -ᵥ p₂) = ↑(weightedVSub s p₁) w", "tactic": "rw [sum_smul_vsub_eq_weightedVSub_sub, s.weightedVSub_apply_const _ _ h, sub_zero]" } ]
[ 324, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 322, 1 ]
Mathlib/Data/Polynomial/Mirror.lean
Polynomial.mirror_eq_iff
[]
[ 138, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
differentiable_id'
[]
[ 1025, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1025, 1 ]
Mathlib/Analysis/InnerProductSpace/Orthogonal.lean
Submodule.orthogonal_le
[]
[ 159, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/RingTheory/Ideal/Cotangent.lean
Ideal.toCotangent_eq
[ { "state_after": "R : Type u\nS : Type v\nS' : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : CommSemiring S\ninst✝⁴ : Algebra S R\ninst✝³ : CommSemiring S'\ninst✝² : Algebra S' R\ninst✝¹ : Algebra S S'\ninst✝ : IsScalarTower S S' R\nI : Ideal R\nx y : { x // x ∈ I }\n⊢ ↑(toCotangent I) x - ↑(toCotangent I) y = 0 ↔ ↑x - ↑y ∈ I ^ 2", "state_before": "R : Type u\nS : Type v\nS' : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : CommSemiring S\ninst✝⁴ : Algebra S R\ninst✝³ : CommSemiring S'\ninst✝² : Algebra S' R\ninst✝¹ : Algebra S S'\ninst✝ : IsScalarTower S S' R\nI : Ideal R\nx y : { x // x ∈ I }\n⊢ ↑(toCotangent I) x = ↑(toCotangent I) y ↔ ↑x - ↑y ∈ I ^ 2", "tactic": "rw [← sub_eq_zero]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nS' : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : CommSemiring S\ninst✝⁴ : Algebra S R\ninst✝³ : CommSemiring S'\ninst✝² : Algebra S' R\ninst✝¹ : Algebra S S'\ninst✝ : IsScalarTower S S' R\nI : Ideal R\nx y : { x // x ∈ I }\n⊢ ↑(toCotangent I) x - ↑(toCotangent I) y = 0 ↔ ↑x - ↑y ∈ I ^ 2", "tactic": "exact I.mem_toCotangent_ker" } ]
[ 81, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/Topology/Algebra/Monoid.lean
LocallyFinite.exists_finset_mulSupport
[ { "state_after": "case intro.intro\nι : Type u_2\nα : Type ?u.448737\nX : Type u_3\nM✝ : Type ?u.448743\nN : Type ?u.448746\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace M✝\ninst✝² : CommMonoid M✝\ninst✝¹ : ContinuousMul M✝\nM : Type u_1\ninst✝ : CommMonoid M\nf : ι → X → M\nhf : LocallyFinite fun i => mulSupport (f i)\nx₀ : X\nU : Set X\nhxU : U ∈ 𝓝 x₀\nhUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}\n⊢ ∃ I, ∀ᶠ (x : X) in 𝓝 x₀, (mulSupport fun i => f i x) ⊆ ↑I", "state_before": "ι : Type u_2\nα : Type ?u.448737\nX : Type u_3\nM✝ : Type ?u.448743\nN : Type ?u.448746\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace M✝\ninst✝² : CommMonoid M✝\ninst✝¹ : ContinuousMul M✝\nM : Type u_1\ninst✝ : CommMonoid M\nf : ι → X → M\nhf : LocallyFinite fun i => mulSupport (f i)\nx₀ : X\n⊢ ∃ I, ∀ᶠ (x : X) in 𝓝 x₀, (mulSupport fun i => f i x) ⊆ ↑I", "tactic": "rcases hf x₀ with ⟨U, hxU, hUf⟩" }, { "state_after": "case intro.intro\nι : Type u_2\nα : Type ?u.448737\nX : Type u_3\nM✝ : Type ?u.448743\nN : Type ?u.448746\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace M✝\ninst✝² : CommMonoid M✝\ninst✝¹ : ContinuousMul M✝\nM : Type u_1\ninst✝ : CommMonoid M\nf : ι → X → M\nhf : LocallyFinite fun i => mulSupport (f i)\nx₀ : X\nU : Set X\nhxU : U ∈ 𝓝 x₀\nhUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}\ny : X\nhy : y ∈ U\ni : ι\nhi : i ∈ mulSupport fun i => f i y\n⊢ i ∈ ↑(Finite.toFinset hUf)", "state_before": "case intro.intro\nι : Type u_2\nα : Type ?u.448737\nX : Type u_3\nM✝ : Type ?u.448743\nN : Type ?u.448746\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace M✝\ninst✝² : CommMonoid M✝\ninst✝¹ : ContinuousMul M✝\nM : Type u_1\ninst✝ : CommMonoid M\nf : ι → X → M\nhf : LocallyFinite fun i => mulSupport (f i)\nx₀ : X\nU : Set X\nhxU : U ∈ 𝓝 x₀\nhUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}\n⊢ ∃ I, ∀ᶠ (x : X) in 𝓝 x₀, (mulSupport fun i => f i x) ⊆ ↑I", "tactic": "refine' ⟨hUf.toFinset, mem_of_superset hxU fun y hy i hi => _⟩" }, { "state_after": "case intro.intro\nι : Type u_2\nα : Type ?u.448737\nX : Type u_3\nM✝ : Type ?u.448743\nN : Type ?u.448746\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace M✝\ninst✝² : CommMonoid M✝\ninst✝¹ : ContinuousMul M✝\nM : Type u_1\ninst✝ : CommMonoid M\nf : ι → X → M\nhf : LocallyFinite fun i => mulSupport (f i)\nx₀ : X\nU : Set X\nhxU : U ∈ 𝓝 x₀\nhUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}\ny : X\nhy : y ∈ U\ni : ι\nhi : i ∈ mulSupport fun i => f i y\n⊢ i ∈ {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}", "state_before": "case intro.intro\nι : Type u_2\nα : Type ?u.448737\nX : Type u_3\nM✝ : Type ?u.448743\nN : Type ?u.448746\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace M✝\ninst✝² : CommMonoid M✝\ninst✝¹ : ContinuousMul M✝\nM : Type u_1\ninst✝ : CommMonoid M\nf : ι → X → M\nhf : LocallyFinite fun i => mulSupport (f i)\nx₀ : X\nU : Set X\nhxU : U ∈ 𝓝 x₀\nhUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}\ny : X\nhy : y ∈ U\ni : ι\nhi : i ∈ mulSupport fun i => f i y\n⊢ i ∈ ↑(Finite.toFinset hUf)", "tactic": "rw [hUf.coe_toFinset]" }, { "state_after": "no goals", "state_before": "case intro.intro\nι : Type u_2\nα : Type ?u.448737\nX : Type u_3\nM✝ : Type ?u.448743\nN : Type ?u.448746\ninst✝⁴ : TopologicalSpace X\ninst✝³ : TopologicalSpace M✝\ninst✝² : CommMonoid M✝\ninst✝¹ : ContinuousMul M✝\nM : Type u_1\ninst✝ : CommMonoid M\nf : ι → X → M\nhf : LocallyFinite fun i => mulSupport (f i)\nx₀ : X\nU : Set X\nhxU : U ∈ 𝓝 x₀\nhUf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}\ny : X\nhy : y ∈ U\ni : ι\nhi : i ∈ mulSupport fun i => f i y\n⊢ i ∈ {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ U)}", "tactic": "exact ⟨y, hi, hy⟩" } ]
[ 795, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 789, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.not_mem_mono
[]
[ 529, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 528, 1 ]
Mathlib/LinearAlgebra/Matrix/Determinant.lean
Matrix.det_unique
[ { "state_after": "no goals", "state_before": "m : Type ?u.179266\nn✝ : Type ?u.179269\ninst✝⁷ : DecidableEq n✝\ninst✝⁶ : Fintype n✝\ninst✝⁵ : DecidableEq m\ninst✝⁴ : Fintype m\nR : Type v\ninst✝³ : CommRing R\nn : Type u_1\ninst✝² : Unique n\ninst✝¹ : DecidableEq n\ninst✝ : Fintype n\nA : Matrix n n R\n⊢ det A = A default default", "tactic": "simp [det_apply, univ_unique]" } ]
[ 122, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Computability/Primrec.lean
PrimrecPred.comp
[]
[ 494, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 492, 1 ]
Mathlib/Topology/Algebra/Order/MonotoneContinuity.lean
StrictMonoOn.continuousWithinAt_right_of_closure_image_mem_nhdsWithin
[]
[ 113, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 109, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.Tape.write_move_right_n
[ { "state_after": "case zero\nΓ : Type u_1\ninst✝ : Inhabited Γ\nf : Γ → Γ\nL✝ R✝ L R : ListBlank Γ\n⊢ write (f (ListBlank.nth R Nat.zero)) ((move Dir.right^[Nat.zero]) (mk' L R)) =\n (move Dir.right^[Nat.zero]) (mk' L (ListBlank.modifyNth f Nat.zero R))\n\ncase succ\nΓ : Type u_1\ninst✝ : Inhabited Γ\nf : Γ → Γ\nL✝ R✝ : ListBlank Γ\nn : ℕ\nIH :\n ∀ (L R : ListBlank Γ),\n write (f (ListBlank.nth R n)) ((move Dir.right^[n]) (mk' L R)) =\n (move Dir.right^[n]) (mk' L (ListBlank.modifyNth f n R))\nL R : ListBlank Γ\n⊢ write (f (ListBlank.nth R (Nat.succ n))) ((move Dir.right^[Nat.succ n]) (mk' L R)) =\n (move Dir.right^[Nat.succ n]) (mk' L (ListBlank.modifyNth f (Nat.succ n) R))", "state_before": "Γ : Type u_1\ninst✝ : Inhabited Γ\nf : Γ → Γ\nL R : ListBlank Γ\nn : ℕ\n⊢ write (f (ListBlank.nth R n)) ((move Dir.right^[n]) (mk' L R)) =\n (move Dir.right^[n]) (mk' L (ListBlank.modifyNth f n R))", "tactic": "induction' n with n IH generalizing L R" }, { "state_after": "no goals", "state_before": "case succ\nΓ : Type u_1\ninst✝ : Inhabited Γ\nf : Γ → Γ\nL✝ R✝ : ListBlank Γ\nn : ℕ\nIH :\n ∀ (L R : ListBlank Γ),\n write (f (ListBlank.nth R n)) ((move Dir.right^[n]) (mk' L R)) =\n (move Dir.right^[n]) (mk' L (ListBlank.modifyNth f n R))\nL R : ListBlank Γ\n⊢ write (f (ListBlank.nth R (Nat.succ n))) ((move Dir.right^[Nat.succ n]) (mk' L R)) =\n (move Dir.right^[Nat.succ n]) (mk' L (ListBlank.modifyNth f (Nat.succ n) R))", "tactic": "simp only [ListBlank.head_cons, ListBlank.nth_succ, ListBlank.modifyNth, Tape.move_right_mk',\n ListBlank.tail_cons, iterate_succ_apply, IH]" }, { "state_after": "case zero\nΓ : Type u_1\ninst✝ : Inhabited Γ\nf : Γ → Γ\nL✝ R✝ L R : ListBlank Γ\n⊢ write (f (ListBlank.head R)) (mk' L R) = mk' L (ListBlank.cons (f (ListBlank.head R)) (ListBlank.tail R))", "state_before": "case zero\nΓ : Type u_1\ninst✝ : Inhabited Γ\nf : Γ → Γ\nL✝ R✝ L R : ListBlank Γ\n⊢ write (f (ListBlank.nth R Nat.zero)) ((move Dir.right^[Nat.zero]) (mk' L R)) =\n (move Dir.right^[Nat.zero]) (mk' L (ListBlank.modifyNth f Nat.zero R))", "tactic": "simp only [ListBlank.nth_zero, ListBlank.modifyNth, iterate_zero_apply, Nat.zero_eq]" }, { "state_after": "no goals", "state_before": "case zero\nΓ : Type u_1\ninst✝ : Inhabited Γ\nf : Γ → Γ\nL✝ R✝ L R : ListBlank Γ\n⊢ write (f (ListBlank.head R)) (mk' L R) = mk' L (ListBlank.cons (f (ListBlank.head R)) (ListBlank.tail R))", "tactic": "rw [← Tape.write_mk', ListBlank.cons_head_tail]" } ]
[ 711, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 704, 1 ]
Mathlib/FieldTheory/IntermediateField.lean
toSubalgebra_toIntermediateField
[ { "state_after": "case h\nK : Type u_1\nL : Type u_2\nL' : Type ?u.77095\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field L'\ninst✝¹ : Algebra K L\ninst✝ : Algebra K L'\nS✝ : IntermediateField K L\nS : Subalgebra K L\ninv_mem : ∀ (x : L), x ∈ S → x⁻¹ ∈ S\nx✝ : L\n⊢ x✝ ∈ (Subalgebra.toIntermediateField S inv_mem).toSubalgebra ↔ x✝ ∈ S", "state_before": "K : Type u_1\nL : Type u_2\nL' : Type ?u.77095\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field L'\ninst✝¹ : Algebra K L\ninst✝ : Algebra K L'\nS✝ : IntermediateField K L\nS : Subalgebra K L\ninv_mem : ∀ (x : L), x ∈ S → x⁻¹ ∈ S\n⊢ (Subalgebra.toIntermediateField S inv_mem).toSubalgebra = S", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nK : Type u_1\nL : Type u_2\nL' : Type ?u.77095\ninst✝⁴ : Field K\ninst✝³ : Field L\ninst✝² : Field L'\ninst✝¹ : Algebra K L\ninst✝ : Algebra K L'\nS✝ : IntermediateField K L\nS : Subalgebra K L\ninv_mem : ∀ (x : L), x ∈ S → x⁻¹ ∈ S\nx✝ : L\n⊢ x✝ ∈ (Subalgebra.toIntermediateField S inv_mem).toSubalgebra ↔ x✝ ∈ S", "tactic": "rfl" } ]
[ 298, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 295, 1 ]
Mathlib/Logic/IsEmpty.lean
Subtype.isEmpty_of_false
[]
[ 74, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Data/Holor.lean
Holor.slice_unitVec_mul
[ { "state_after": "no goals", "state_before": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝ : Ring α\ni j : ℕ\nhid : i < d\nx : Holor α ds\nt : HolorIndex ds\nh : i = j\n⊢ slice (unitVec d j ⊗ x) i hid t = ite (i = j) x 0 t", "tactic": "simp [slice, mul, HolorIndex.take, unitVec, HolorIndex.drop, h]" }, { "state_after": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝ : Ring α\ni j : ℕ\nhid : i < d\nx : Holor α ds\nt : HolorIndex ds\nh : ¬i = j\n⊢ 0 = OfNat.ofNat 0 t", "state_before": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝ : Ring α\ni j : ℕ\nhid : i < d\nx : Holor α ds\nt : HolorIndex ds\nh : ¬i = j\n⊢ slice (unitVec d j ⊗ x) i hid t = ite (i = j) x 0 t", "tactic": "simp [slice, mul, HolorIndex.take, unitVec, HolorIndex.drop, h]" }, { "state_after": "no goals", "state_before": "α : Type\nd : ℕ\nds ds₁ ds₂ ds₃ : List ℕ\ninst✝ : Ring α\ni j : ℕ\nhid : i < d\nx : Holor α ds\nt : HolorIndex ds\nh : ¬i = j\n⊢ 0 = OfNat.ofNat 0 t", "tactic": "rfl" } ]
[ 269, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Ordinal.cof_blsub_le
[ { "state_after": "α : Type ?u.39412\nr : α → α → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal\n⊢ cof (blsub o f) ≤ Cardinal.lift (card o)", "state_before": "α : Type ?u.39412\nr : α → α → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal\n⊢ cof (blsub o f) ≤ card o", "tactic": "rw [← o.card.lift_id]" }, { "state_after": "no goals", "state_before": "α : Type ?u.39412\nr : α → α → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal\n⊢ cof (blsub o f) ≤ Cardinal.lift (card o)", "tactic": "exact cof_blsub_le_lift f" } ]
[ 440, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 438, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.insert_sdiff_of_mem
[ { "state_after": "α : Type u_1\nβ : Type ?u.241033\nγ : Type ?u.241036\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na b : α\ns : Finset α\nx : α\nh : x ∈ t\n⊢ insert x ↑s \\ ↑t = ↑s \\ ↑t", "state_before": "α : Type u_1\nβ : Type ?u.241033\nγ : Type ?u.241036\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na b : α\ns : Finset α\nx : α\nh : x ∈ t\n⊢ insert x s \\ t = s \\ t", "tactic": "rw [← coe_inj, coe_sdiff, coe_sdiff, coe_insert]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.241033\nγ : Type ?u.241036\ninst✝ : DecidableEq α\ns✝ t u v : Finset α\na b : α\ns : Finset α\nx : α\nh : x ∈ t\n⊢ insert x ↑s \\ ↑t = ↑s \\ ↑t", "tactic": "exact Set.insert_diff_of_mem _ h" } ]
[ 2183, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2181, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
eq_of_linearIndependent_of_span_subtype
[ { "state_after": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\n⊢ s = t", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\n⊢ s = t", "tactic": "let f : t ↪ s :=\n ⟨fun x => ⟨x.1, h x.2⟩, fun a b hab => Subtype.coe_injective (Subtype.mk.inj hab)⟩" }, { "state_after": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\n⊢ s = t", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\n⊢ s = t", "tactic": "have h_surj : Surjective f := by\n apply surjective_of_linearIndependent_of_span hs f _\n convert hst <;> simp [comp]" }, { "state_after": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\n⊢ s = t", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\n⊢ s = t", "tactic": "show s = t" }, { "state_after": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\n⊢ (range fun x => ↑x) ⊆ ↑(span R (range ((fun x => ↑x) ∘ ↑f)))", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\n⊢ Surjective ↑f", "tactic": "apply surjective_of_linearIndependent_of_span hs f _" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\n⊢ (range fun x => ↑x) ⊆ ↑(span R (range ((fun x => ↑x) ∘ ↑f)))", "tactic": "convert hst <;> simp [comp]" }, { "state_after": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\n⊢ s ⊆ t", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\n⊢ s = t", "tactic": "apply Subset.antisymm _ h" }, { "state_after": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx✝ y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\nx : M\nhx : x ∈ s\n⊢ x ∈ t", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\n⊢ s ⊆ t", "tactic": "intro x hx" }, { "state_after": "case intro\nι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx✝ y✝ : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\nx : M\nhx : x ∈ s\ny : ↑t\nhy : ↑f y = { val := x, property := hx }\n⊢ x ∈ t", "state_before": "ι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx✝ y : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\nx : M\nhx : x ∈ s\n⊢ x ∈ t", "tactic": "rcases h_surj ⟨x, hx⟩ with ⟨y, hy⟩" }, { "state_after": "case h.e'_4\nι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx✝ y✝ : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\nx : M\nhx : x ∈ s\ny : ↑t\nhy : ↑f y = { val := x, property := hx }\n⊢ x = ↑y", "state_before": "case intro\nι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx✝ y✝ : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\nx : M\nhx : x ∈ s\ny : ↑t\nhy : ↑f y = { val := x, property := hx }\n⊢ x ∈ t", "tactic": "convert y.mem" }, { "state_after": "no goals", "state_before": "case h.e'_4\nι : Type u'\nι' : Type ?u.605779\nR : Type u_1\nK : Type ?u.605785\nM : Type u_2\nM' : Type ?u.605791\nM'' : Type ?u.605794\nV : Type u\nV' : Type ?u.605799\nv : ι → M\ninst✝⁷ : Ring R\ninst✝⁶ : AddCommGroup M\ninst✝⁵ : AddCommGroup M'\ninst✝⁴ : AddCommGroup M''\ninst✝³ : Module R M\ninst✝² : Module R M'\ninst✝¹ : Module R M''\na b : R\nx✝ y✝ : M\ninst✝ : Nontrivial R\ns t : Set M\nhs : LinearIndependent R fun x => ↑x\nh : t ⊆ s\nhst : s ⊆ ↑(span R t)\nf : ↑t ↪ ↑s :=\n { toFun := fun x => { val := ↑x, property := (_ : ↑x ∈ s) },\n inj' :=\n (_ :\n ∀ (a b : ↑t),\n (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) a = (fun x => { val := ↑x, property := (_ : ↑x ∈ s) }) b →\n a = b) }\nh_surj : Surjective ↑f\nx : M\nhx : x ∈ s\ny : ↑t\nhy : ↑f y = { val := x, property := hx }\n⊢ x = ↑y", "tactic": "rw [← Subtype.mk.inj hy]" } ]
[ 967, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 955, 1 ]
Mathlib/Analysis/LocallyConvex/Polar.lean
LinearMap.polar_union
[]
[ 97, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Data/Set/Basic.lean
Set.union_compl_self
[]
[ 1718, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1717, 1 ]
Mathlib/Topology/Inseparable.lean
inseparable_iff_specializes_and
[]
[ 273, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 272, 1 ]
Mathlib/Algebra/Star/StarAlgHom.lean
StarAlgEquiv.toRingEquiv_eq_coe
[]
[ 772, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 771, 1 ]
Mathlib/LinearAlgebra/Basis.lean
Basis.smul_eq_zero
[]
[ 789, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 787, 11 ]
Mathlib/Algebra/Hom/Equiv/Basic.lean
MulEquiv.eq_symm_comp
[]
[ 439, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 437, 1 ]
Mathlib/Algebra/Module/LinearMap.lean
LinearMap.id_apply
[]
[ 274, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.ringHom_map_cast
[ { "state_after": "case zero\nR : Type u_1\ninst✝ : Ring R\nf : R →+* ZMod Nat.zero\nk : ZMod Nat.zero\n⊢ ↑f ↑k = k\n\ncase succ\nR : Type u_1\ninst✝ : Ring R\nn✝ : ℕ\nf : R →+* ZMod (Nat.succ n✝)\nk : ZMod (Nat.succ n✝)\n⊢ ↑f ↑k = k", "state_before": "n : ℕ\nR : Type u_1\ninst✝ : Ring R\nf : R →+* ZMod n\nk : ZMod n\n⊢ ↑f ↑k = k", "tactic": "cases n" }, { "state_after": "case succ\nR : Type u_1\ninst✝ : Ring R\nn✝ : ℕ\nf : R →+* ZMod (Nat.succ n✝)\nk : ZMod (Nat.succ n✝)\n⊢ ↑f ↑k = k", "state_before": "case zero\nR : Type u_1\ninst✝ : Ring R\nf : R →+* ZMod Nat.zero\nk : ZMod Nat.zero\n⊢ ↑f ↑k = k\n\ncase succ\nR : Type u_1\ninst✝ : Ring R\nn✝ : ℕ\nf : R →+* ZMod (Nat.succ n✝)\nk : ZMod (Nat.succ n✝)\n⊢ ↑f ↑k = k", "tactic": ". dsimp [ZMod, ZMod.cast] at f k ⊢; simp" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u_1\ninst✝ : Ring R\nn✝ : ℕ\nf : R →+* ZMod (Nat.succ n✝)\nk : ZMod (Nat.succ n✝)\n⊢ ↑f ↑k = k", "tactic": ". dsimp [ZMod, ZMod.cast] at f k ⊢\n erw [map_natCast, Fin.cast_val_eq_self]" }, { "state_after": "case zero\nR : Type u_1\ninst✝ : Ring R\nf : R →+* ℤ\nk : ℤ\n⊢ ↑f ↑k = k", "state_before": "case zero\nR : Type u_1\ninst✝ : Ring R\nf : R →+* ZMod Nat.zero\nk : ZMod Nat.zero\n⊢ ↑f ↑k = k", "tactic": "dsimp [ZMod, ZMod.cast] at f k ⊢" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u_1\ninst✝ : Ring R\nf : R →+* ℤ\nk : ℤ\n⊢ ↑f ↑k = k", "tactic": "simp" }, { "state_after": "case succ\nR : Type u_1\ninst✝ : Ring R\nn✝ : ℕ\nf : R →+* Fin (n✝ + 1)\nk : Fin (n✝ + 1)\n⊢ ↑f ↑(val k) = k", "state_before": "case succ\nR : Type u_1\ninst✝ : Ring R\nn✝ : ℕ\nf : R →+* ZMod (Nat.succ n✝)\nk : ZMod (Nat.succ n✝)\n⊢ ↑f ↑k = k", "tactic": "dsimp [ZMod, ZMod.cast] at f k ⊢" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u_1\ninst✝ : Ring R\nn✝ : ℕ\nf : R →+* Fin (n✝ + 1)\nk : Fin (n✝ + 1)\n⊢ ↑f ↑(val k) = k", "tactic": "erw [map_natCast, Fin.cast_val_eq_self]" } ]
[ 1167, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1163, 1 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.X_sub_C_dvd_derivative_of_X_sub_C_dvd_divByMonic
[ { "state_after": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\nK : Type u_1\ninst✝ : Field K\nf : K[X]\na : K\nhf : X - ↑C a ∣ f /ₘ (X - ↑C a)\nkey : f /ₘ (X - ↑C a) + (X - ↑C a) * ↑derivative (f /ₘ (X - ↑C a)) = ↑derivative f\n⊢ X - ↑C a ∣ ↑derivative f", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\nK : Type u_1\ninst✝ : Field K\nf : K[X]\na : K\nhf : X - ↑C a ∣ f /ₘ (X - ↑C a)\n⊢ X - ↑C a ∣ ↑derivative f", "tactic": "have key := divByMonic_add_X_sub_C_mul_derivate_divByMonic_eq_derivative f a" }, { "state_after": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\nK : Type u_1\ninst✝ : Field K\nf : K[X]\na : K\nhf : X - ↑C a ∣ f /ₘ (X - ↑C a)\nkey : f /ₘ (X - ↑C a) + (X - ↑C a) * ↑derivative (f /ₘ (X - ↑C a)) = ↑derivative f\nu : K[X]\nhu : f /ₘ (X - ↑C a) = (X - ↑C a) * u\n⊢ X - ↑C a ∣ ↑derivative f", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\nK : Type u_1\ninst✝ : Field K\nf : K[X]\na : K\nhf : X - ↑C a ∣ f /ₘ (X - ↑C a)\nkey : f /ₘ (X - ↑C a) + (X - ↑C a) * ↑derivative (f /ₘ (X - ↑C a)) = ↑derivative f\n⊢ X - ↑C a ∣ ↑derivative f", "tactic": "have ⟨u,hu⟩ := hf" }, { "state_after": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\nK : Type u_1\ninst✝ : Field K\nf : K[X]\na : K\nhf : X - ↑C a ∣ f /ₘ (X - ↑C a)\nkey : f /ₘ (X - ↑C a) + (X - ↑C a) * ↑derivative (f /ₘ (X - ↑C a)) = ↑derivative f\nu : K[X]\nhu : f /ₘ (X - ↑C a) = (X - ↑C a) * u\n⊢ X - ↑C a ∣ (X - ↑C a) * (u + ↑derivative ((X - ↑C a) * u))", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\nK : Type u_1\ninst✝ : Field K\nf : K[X]\na : K\nhf : X - ↑C a ∣ f /ₘ (X - ↑C a)\nkey : f /ₘ (X - ↑C a) + (X - ↑C a) * ↑derivative (f /ₘ (X - ↑C a)) = ↑derivative f\nu : K[X]\nhu : f /ₘ (X - ↑C a) = (X - ↑C a) * u\n⊢ X - ↑C a ∣ ↑derivative f", "tactic": "rw [←key, hu, ←mul_add (X - C a) u _]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na✝ b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\nK : Type u_1\ninst✝ : Field K\nf : K[X]\na : K\nhf : X - ↑C a ∣ f /ₘ (X - ↑C a)\nkey : f /ₘ (X - ↑C a) + (X - ↑C a) * ↑derivative (f /ₘ (X - ↑C a)) = ↑derivative f\nu : K[X]\nhu : f /ₘ (X - ↑C a) = (X - ↑C a) * u\n⊢ X - ↑C a ∣ (X - ↑C a) * (u + ↑derivative ((X - ↑C a) * u))", "tactic": "use (u + derivative ((X - C a) * u))" } ]
[ 527, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 522, 1 ]
Mathlib/CategoryTheory/Monoidal/OfChosenFiniteProducts/Symmetric.lean
CategoryTheory.MonoidalOfChosenFiniteProducts.hexagon_reverse
[ { "state_after": "C : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ (BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv =\n IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))", "state_before": "C : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ (BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (BinaryFan.braiding (ℬ (tensorObj ℬ X Y) Z).isLimit (ℬ Z (tensorObj ℬ X Y)).isLimit).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv =\n tensorHom ℬ (𝟙 X) (BinaryFan.braiding (ℬ Y Z).isLimit (ℬ Z Y).isLimit).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n tensorHom ℬ (BinaryFan.braiding (ℬ X Z).isLimit (ℬ Z X).isLimit).hom (𝟙 Y)", "tactic": "dsimp [tensorHom, Limits.BinaryFan.braiding]" }, { "state_after": "C : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ∀ (j : Discrete WalkingPair),\n ((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app j =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app j", "state_before": "C : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ (BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv =\n IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))", "tactic": "apply (ℬ _ _).isLimit.hom_ext" }, { "state_after": "case mk.left\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left } =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left }\n\ncase mk.right\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.right } =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.right }", "state_before": "C : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ∀ (j : Discrete WalkingPair),\n ((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app j =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app j", "tactic": "rintro ⟨⟨⟩⟩" }, { "state_after": "case mk.left\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ∀ (j : Discrete WalkingPair),\n (((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left }) ≫\n (ℬ Z X).cone.π.app j =\n ((IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left }) ≫\n (ℬ Z X).cone.π.app j", "state_before": "case mk.left\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left } =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left }", "tactic": "apply (ℬ _ _).isLimit.hom_ext" }, { "state_after": "case mk.left.mk.right\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ((IsLimit.lift (ℬ (ℬ X Y).cone.pt Z).isLimit (BinaryFan.assocInv (ℬ X Y).isLimit (ℬ X (ℬ Y Z).cone.pt).cone) ≫\n IsLimit.lift (ℬ Z (tensorObj ℬ X Y)).isLimit (BinaryFan.swap (ℬ (tensorObj ℬ X Y) Z).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.assocInv (ℬ Z X).isLimit (ℬ Z (ℬ X Y).cone.pt).cone)) ≫\n BinaryFan.fst (ℬ (ℬ Z X).cone.pt Y).cone) ≫\n BinaryFan.snd (ℬ Z X).cone =\n ((IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫ IsLimit.lift (ℬ Z Y).isLimit (BinaryFan.swap (ℬ Y Z).cone))) ≫\n IsLimit.lift (ℬ (ℬ X Z).cone.pt Y).isLimit (BinaryFan.assocInv (ℬ X Z).isLimit (ℬ X (ℬ Z Y).cone.pt).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫ IsLimit.lift (ℬ Z X).isLimit (BinaryFan.swap (ℬ X Z).cone))\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n BinaryFan.fst (ℬ (ℬ Z X).cone.pt Y).cone) ≫\n BinaryFan.snd (ℬ Z X).cone", "state_before": "case mk.left.mk.right\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ (((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left }) ≫\n (ℬ Z X).cone.π.app { as := WalkingPair.right } =\n ((IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.left }) ≫\n (ℬ Z X).cone.π.app { as := WalkingPair.right }", "tactic": "dsimp [BinaryFan.associatorOfLimitCone, BinaryFan.associator,\n Limits.IsLimit.conePointUniqueUpToIso]" }, { "state_after": "no goals", "state_before": "case mk.left.mk.right\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ((IsLimit.lift (ℬ (ℬ X Y).cone.pt Z).isLimit (BinaryFan.assocInv (ℬ X Y).isLimit (ℬ X (ℬ Y Z).cone.pt).cone) ≫\n IsLimit.lift (ℬ Z (tensorObj ℬ X Y)).isLimit (BinaryFan.swap (ℬ (tensorObj ℬ X Y) Z).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.assocInv (ℬ Z X).isLimit (ℬ Z (ℬ X Y).cone.pt).cone)) ≫\n BinaryFan.fst (ℬ (ℬ Z X).cone.pt Y).cone) ≫\n BinaryFan.snd (ℬ Z X).cone =\n ((IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫ IsLimit.lift (ℬ Z Y).isLimit (BinaryFan.swap (ℬ Y Z).cone))) ≫\n IsLimit.lift (ℬ (ℬ X Z).cone.pt Y).isLimit (BinaryFan.assocInv (ℬ X Z).isLimit (ℬ X (ℬ Z Y).cone.pt).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫ IsLimit.lift (ℬ Z X).isLimit (BinaryFan.swap (ℬ X Z).cone))\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n BinaryFan.fst (ℬ (ℬ Z X).cone.pt Y).cone) ≫\n BinaryFan.snd (ℬ Z X).cone", "tactic": "simp" }, { "state_after": "case mk.right\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ (IsLimit.lift (ℬ (ℬ X Y).cone.pt Z).isLimit (BinaryFan.assocInv (ℬ X Y).isLimit (ℬ X (ℬ Y Z).cone.pt).cone) ≫\n IsLimit.lift (ℬ Z (tensorObj ℬ X Y)).isLimit (BinaryFan.swap (ℬ (tensorObj ℬ X Y) Z).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit (BinaryFan.assocInv (ℬ Z X).isLimit (ℬ Z (ℬ X Y).cone.pt).cone)) ≫\n BinaryFan.snd (ℬ (ℬ Z X).cone.pt Y).cone =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫ IsLimit.lift (ℬ Z Y).isLimit (BinaryFan.swap (ℬ Y Z).cone))) ≫\n IsLimit.lift (ℬ (ℬ X Z).cone.pt Y).isLimit (BinaryFan.assocInv (ℬ X Z).isLimit (ℬ X (ℬ Z Y).cone.pt).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫ IsLimit.lift (ℬ Z X).isLimit (BinaryFan.swap (ℬ X Z).cone))\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n BinaryFan.snd (ℬ (ℬ Z X).cone.pt Y).cone", "state_before": "case mk.right\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ ((BinaryFan.associatorOfLimitCone ℬ X Y Z).inv ≫\n (IsLimit.conePointUniqueUpToIso (ℬ (tensorObj ℬ X Y) Z).isLimit\n (IsLimit.swapBinaryFan (ℬ Z (tensorObj ℬ X Y)).isLimit)).hom ≫\n (BinaryFan.associatorOfLimitCone ℬ Z X Y).inv) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.right } =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ Y Z).isLimit (IsLimit.swapBinaryFan (ℬ Z Y).isLimit)).hom)) ≫\n (BinaryFan.associatorOfLimitCone ℬ X Z Y).inv ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫\n (IsLimit.conePointUniqueUpToIso (ℬ X Z).isLimit (IsLimit.swapBinaryFan (ℬ Z X).isLimit)).hom)\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n (ℬ (ℬ Z X).cone.pt Y).cone.π.app { as := WalkingPair.right }", "tactic": "dsimp [BinaryFan.associatorOfLimitCone, BinaryFan.associator,\n Limits.IsLimit.conePointUniqueUpToIso]" }, { "state_after": "no goals", "state_before": "case mk.right\nC : Type u\ninst✝ : Category C\nX✝ Y✝ : C\n𝒯 : LimitCone (Functor.empty C)\nℬ : (X Y : C) → LimitCone (pair X Y)\nX Y Z : C\n⊢ (IsLimit.lift (ℬ (ℬ X Y).cone.pt Z).isLimit (BinaryFan.assocInv (ℬ X Y).isLimit (ℬ X (ℬ Y Z).cone.pt).cone) ≫\n IsLimit.lift (ℬ Z (tensorObj ℬ X Y)).isLimit (BinaryFan.swap (ℬ (tensorObj ℬ X Y) Z).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit (BinaryFan.assocInv (ℬ Z X).isLimit (ℬ Z (ℬ X Y).cone.pt).cone)) ≫\n BinaryFan.snd (ℬ (ℬ Z X).cone.pt Y).cone =\n (IsLimit.lift (ℬ X (ℬ Z Y).cone.pt).isLimit\n (BinaryFan.mk (BinaryFan.fst (ℬ X (ℬ Y Z).cone.pt).cone ≫ 𝟙 X)\n (BinaryFan.snd (ℬ X (ℬ Y Z).cone.pt).cone ≫ IsLimit.lift (ℬ Z Y).isLimit (BinaryFan.swap (ℬ Y Z).cone))) ≫\n IsLimit.lift (ℬ (ℬ X Z).cone.pt Y).isLimit (BinaryFan.assocInv (ℬ X Z).isLimit (ℬ X (ℬ Z Y).cone.pt).cone) ≫\n IsLimit.lift (ℬ (ℬ Z X).cone.pt Y).isLimit\n (BinaryFan.mk\n (BinaryFan.fst (ℬ (ℬ X Z).cone.pt Y).cone ≫ IsLimit.lift (ℬ Z X).isLimit (BinaryFan.swap (ℬ X Z).cone))\n (BinaryFan.snd (ℬ (ℬ X Z).cone.pt Y).cone ≫ 𝟙 Y))) ≫\n BinaryFan.snd (ℬ (ℬ Z X).cone.pt Y).cone", "tactic": "simp" } ]
[ 78, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.mem_mul
[]
[ 338, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 337, 1 ]
Mathlib/MeasureTheory/Measure/WithDensityVectorMeasure.lean
MeasureTheory.WithDensityᵥEq.congr_ae
[ { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\n⊢ withDensityᵥ μ f = withDensityᵥ μ g\n\ncase neg\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : ¬Integrable f\n⊢ withDensityᵥ μ f = withDensityᵥ μ g", "state_before": "α : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\n⊢ withDensityᵥ μ f = withDensityᵥ μ g", "tactic": "by_cases hf : Integrable f μ" }, { "state_after": "case pos.h\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\ni : Set α\n⊢ MeasurableSet i → ↑(withDensityᵥ μ f) i = ↑(withDensityᵥ μ g) i", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\n⊢ withDensityᵥ μ f = withDensityᵥ μ g", "tactic": "ext i" }, { "state_after": "case pos.h\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\ni : Set α\nhi : MeasurableSet i\n⊢ ↑(withDensityᵥ μ f) i = ↑(withDensityᵥ μ g) i", "state_before": "case pos.h\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\ni : Set α\n⊢ MeasurableSet i → ↑(withDensityᵥ μ f) i = ↑(withDensityᵥ μ g) i", "tactic": "intro hi" }, { "state_after": "case pos.h\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\ni : Set α\nhi : MeasurableSet i\n⊢ (∫ (x : α) in i, f x ∂μ) = ∫ (x : α) in i, g x ∂μ", "state_before": "case pos.h\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\ni : Set α\nhi : MeasurableSet i\n⊢ ↑(withDensityᵥ μ f) i = ↑(withDensityᵥ μ g) i", "tactic": "rw [withDensityᵥ_apply hf hi, withDensityᵥ_apply (hf.congr h) hi]" }, { "state_after": "no goals", "state_before": "case pos.h\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : Integrable f\ni : Set α\nhi : MeasurableSet i\n⊢ (∫ (x : α) in i, f x ∂μ) = ∫ (x : α) in i, g x ∂μ", "tactic": "exact integral_congr_ae (ae_restrict_of_ae h)" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : ¬Integrable f\nhg : ¬Integrable g\n⊢ withDensityᵥ μ f = withDensityᵥ μ g", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : ¬Integrable f\n⊢ withDensityᵥ μ f = withDensityᵥ μ g", "tactic": "have hg : ¬Integrable g μ := by intro hg; exact hf (hg.congr h.symm)" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : ¬Integrable f\nhg : ¬Integrable g\n⊢ withDensityᵥ μ f = withDensityᵥ μ g", "tactic": "rw [withDensityᵥ, withDensityᵥ, dif_neg hf, dif_neg hg]" }, { "state_after": "α : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : ¬Integrable f\nhg : Integrable g\n⊢ False", "state_before": "α : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : ¬Integrable f\n⊢ ¬Integrable g", "tactic": "intro hg" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.63324\nm : MeasurableSpace α\nμ ν : Measure α\nE : Type u_2\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\nf✝ g✝ f g : α → E\nh : f =ᶠ[ae μ] g\nhf : ¬Integrable f\nhg : Integrable g\n⊢ False", "tactic": "exact hf (hg.congr h.symm)" } ]
[ 159, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 152, 1 ]
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
Matrix.toLinearMap₂_compl₁₂
[ { "state_after": "no goals", "state_before": "R : Type u_3\nR₁ : Type ?u.1948955\nR₂ : Type ?u.1948958\nM✝ : Type ?u.1948961\nM₁ : Type u_8\nM₂ : Type u_9\nM₁' : Type u_6\nM₂' : Type u_7\nn : Type u_1\nm : Type u_2\nn' : Type u_4\nm' : Type u_5\nι : Type ?u.1948988\ninst✝¹⁶ : CommRing R\ninst✝¹⁵ : AddCommMonoid M₁\ninst✝¹⁴ : Module R M₁\ninst✝¹³ : AddCommMonoid M₂\ninst✝¹² : Module R M₂\ninst✝¹¹ : DecidableEq n\ninst✝¹⁰ : Fintype n\ninst✝⁹ : DecidableEq m\ninst✝⁸ : Fintype m\nb₁ : Basis n R M₁\nb₂ : Basis m R M₂\ninst✝⁷ : AddCommMonoid M₁'\ninst✝⁶ : Module R M₁'\ninst✝⁵ : AddCommMonoid M₂'\ninst✝⁴ : Module R M₂'\nb₁' : Basis n' R M₁'\nb₂' : Basis m' R M₂'\ninst✝³ : Fintype n'\ninst✝² : Fintype m'\ninst✝¹ : DecidableEq n'\ninst✝ : DecidableEq m'\nM : Matrix n m R\nP : Matrix n n' R\nQ : Matrix m m' R\n⊢ ↑(toMatrix₂ b₁' b₂') (compl₁₂ (↑(toLinearMap₂ b₁ b₂) M) (↑(toLin b₁' b₁) P) (↑(toLin b₂' b₂) Q)) =\n ↑(toMatrix₂ b₁' b₂') (↑(toLinearMap₂ b₁' b₂') (Pᵀ ⬝ M ⬝ Q))", "tactic": "simp only [LinearMap.toMatrix₂_compl₁₂ b₁ b₂, LinearMap.toMatrix₂_toLinearMap₂,\n toMatrix_toLin]" } ]
[ 512, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 506, 1 ]
Mathlib/Algebra/Hom/Group.lean
map_one
[]
[ 226, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/Data/Set/Basic.lean
Set.inclusion_injective
[]
[ 2809, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2808, 1 ]
Mathlib/RingTheory/FractionalIdeal.lean
FractionalIdeal.spanSingleton_le_iff_mem
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝⁶ : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝⁵ : CommRing P\ninst✝⁴ : Algebra R P\nloc : IsLocalization S P\nR₁ : Type ?u.1304874\ninst✝³ : CommRing R₁\nK : Type ?u.1304880\ninst✝² : Field K\ninst✝¹ : Algebra R₁ K\ninst✝ : IsFractionRing R₁ K\nx : P\nI : FractionalIdeal S P\n⊢ spanSingleton S x ≤ I ↔ x ∈ I", "tactic": "rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe]" } ]
[ 1320, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1318, 1 ]
Mathlib/Algebra/DirectLimit.lean
Module.DirectLimit.induction_on
[]
[ 142, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 11 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
fderiv_neg
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_3\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_2\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.436745\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.436840\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\n⊢ fderiv 𝕜 (fun y => -f y) x = -fderiv 𝕜 f x", "tactic": "simp only [← fderivWithin_univ, fderivWithin_neg uniqueDiffWithinAt_univ]" } ]
[ 466, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 465, 1 ]
Mathlib/Algebra/Order/Nonneg/Ring.lean
Nonneg.coe_mul
[]
[ 217, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 11 ]
Mathlib/Topology/Algebra/Module/LocallyConvex.lean
LocallyConvexSpace.convex_basis_zero
[]
[ 71, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.IsCycle.cycleOf_eq
[ { "state_after": "no goals", "state_before": "ι : Type ?u.2371171\nα : Type u_1\nβ : Type ?u.2371177\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf g : Perm α\nx y✝ : α\nhf : IsCycle f\nhx : ↑f x ≠ x\ny : α\nh : SameCycle f x y\n⊢ ↑(cycleOf f x) y = ↑f y", "tactic": "rw [h.cycleOf_apply]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2371171\nα : Type u_1\nβ : Type ?u.2371177\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf g : Perm α\nx y✝ : α\nhf : IsCycle f\nhx : ↑f x ≠ x\ny : α\nh : ¬SameCycle f x y\n⊢ ↑(cycleOf f x) y = ↑f y", "tactic": "rw [cycleOf_apply_of_not_sameCycle h,\n Classical.not_not.1 (mt ((isCycle_iff_sameCycle hx).1 hf).2 h)]" } ]
[ 1045, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1040, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.ne_iff
[]
[ 107, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Data/Set/Finite.lean
Set.Finite.infinite_compl
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ninst✝ : Infinite α\ns : Set α\nhs : Set.Finite s\nh : Set.Finite (sᶜ)\n⊢ Set.Finite univ", "tactic": "simpa using hs.union h" } ]
[ 1304, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1303, 1 ]
Mathlib/Init/Data/Bool/Lemmas.lean
Bool.coe_false
[ { "state_after": "no goals", "state_before": "⊢ (false = true) = False", "tactic": "simp" } ]
[ 112, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Topology/Algebra/GroupWithZero.lean
continuousOn_zpow₀
[]
[ 326, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 325, 1 ]
Mathlib/Topology/Algebra/GroupWithZero.lean
ContinuousWithinAt.inv₀
[]
[ 126, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 8 ]
Mathlib/Analysis/LocallyConvex/WithSeminorms.lean
WithSeminorms.continuous_seminorm
[ { "state_after": "𝕜 : Type ?u.440749\n𝕜₂ : Type ?u.440752\n𝕝 : Type u_1\n𝕝₂ : Type ?u.440758\nE : Type u_2\nF : Type ?u.440764\nG : Type ?u.440767\nι : Type u_3\nι' : Type ?u.440773\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Nonempty ι\nt : TopologicalSpace E\ninst✝³ : TopologicalAddGroup E\ninst✝² : NontriviallyNormedField 𝕝\ninst✝¹ : Module 𝕝 E\ninst✝ : ContinuousConstSMul 𝕝 E\np : SeminormFamily 𝕝 E ι\nhp : WithSeminorms p\ni : ι\n⊢ ball (p i) 0 1 ∈ 𝓝 0", "state_before": "𝕜 : Type ?u.440749\n𝕜₂ : Type ?u.440752\n𝕝 : Type u_1\n𝕝₂ : Type ?u.440758\nE : Type u_2\nF : Type ?u.440764\nG : Type ?u.440767\nι : Type u_3\nι' : Type ?u.440773\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Nonempty ι\nt : TopologicalSpace E\ninst✝³ : TopologicalAddGroup E\ninst✝² : NontriviallyNormedField 𝕝\ninst✝¹ : Module 𝕝 E\ninst✝ : ContinuousConstSMul 𝕝 E\np : SeminormFamily 𝕝 E ι\nhp : WithSeminorms p\ni : ι\n⊢ Continuous ↑(p i)", "tactic": "refine' Seminorm.continuous one_pos _" }, { "state_after": "𝕜 : Type ?u.440749\n𝕜₂ : Type ?u.440752\n𝕝 : Type u_1\n𝕝₂ : Type ?u.440758\nE : Type u_2\nF : Type ?u.440764\nG : Type ?u.440767\nι : Type u_3\nι' : Type ?u.440773\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Nonempty ι\nt : TopologicalSpace E\ninst✝³ : TopologicalAddGroup E\ninst✝² : NontriviallyNormedField 𝕝\ninst✝¹ : Module 𝕝 E\ninst✝ : ContinuousConstSMul 𝕝 E\np : SeminormFamily 𝕝 E ι\nhp : WithSeminorms p\ni : ι\n⊢ ↑(p i) ⁻¹' Metric.ball 0 1 ∈ ⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0)", "state_before": "𝕜 : Type ?u.440749\n𝕜₂ : Type ?u.440752\n𝕝 : Type u_1\n𝕝₂ : Type ?u.440758\nE : Type u_2\nF : Type ?u.440764\nG : Type ?u.440767\nι : Type u_3\nι' : Type ?u.440773\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Nonempty ι\nt : TopologicalSpace E\ninst✝³ : TopologicalAddGroup E\ninst✝² : NontriviallyNormedField 𝕝\ninst✝¹ : Module 𝕝 E\ninst✝ : ContinuousConstSMul 𝕝 E\np : SeminormFamily 𝕝 E ι\nhp : WithSeminorms p\ni : ι\n⊢ ball (p i) 0 1 ∈ 𝓝 0", "tactic": "rw [p.withSeminorms_iff_nhds_eq_iInf.mp hp, ball_zero_eq_preimage_ball]" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.440749\n𝕜₂ : Type ?u.440752\n𝕝 : Type u_1\n𝕝₂ : Type ?u.440758\nE : Type u_2\nF : Type ?u.440764\nG : Type ?u.440767\nι : Type u_3\nι' : Type ?u.440773\ninst✝⁷ : NormedField 𝕜\ninst✝⁶ : AddCommGroup E\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Nonempty ι\nt : TopologicalSpace E\ninst✝³ : TopologicalAddGroup E\ninst✝² : NontriviallyNormedField 𝕝\ninst✝¹ : Module 𝕝 E\ninst✝ : ContinuousConstSMul 𝕝 E\np : SeminormFamily 𝕝 E ι\nhp : WithSeminorms p\ni : ι\n⊢ ↑(p i) ⁻¹' Metric.ball 0 1 ∈ ⨅ (i : ι), Filter.comap (↑(p i)) (𝓝 0)", "tactic": "exact Filter.mem_iInf_of_mem i (Filter.preimage_mem_comap <| Metric.ball_mem_nhds _ one_pos)" } ]
[ 447, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 442, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.Injective.of_comp
[]
[ 129, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 128, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.lift_mk_eq
[]
[ 321, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 317, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.neg_apply
[]
[ 304, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 1 ]
Mathlib/RingTheory/RootsOfUnity/Basic.lean
IsPrimitiveRoot.coe_units_iff
[ { "state_after": "no goals", "state_before": "M : Type u_1\nN : Type ?u.1881352\nG : Type ?u.1881355\nR : Type ?u.1881358\nS : Type ?u.1881361\nF : Type ?u.1881364\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ✝ : M\nf : F\nh : IsPrimitiveRoot ζ✝ k\nζ : Mˣ\n⊢ IsPrimitiveRoot (↑ζ) k ↔ IsPrimitiveRoot ζ k", "tactic": "simp only [iff_def, Units.ext_iff, Units.val_pow_eq_pow_val, Units.val_one]" } ]
[ 414, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 413, 1 ]
Mathlib/Data/Polynomial/CancelLeads.lean
Polynomial.natDegree_cancelLeads_lt_of_natDegree_le_natDegree_of_comm
[ { "state_after": "case pos\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : p = 0\n⊢ natDegree (cancelLeads p q) < natDegree q\n\ncase neg\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\n⊢ natDegree (cancelLeads p q) < natDegree q", "state_before": "R : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\n⊢ natDegree (cancelLeads p q) < natDegree q", "tactic": "by_cases hp : p = 0" }, { "state_after": "case neg\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) < natDegree q", "state_before": "case neg\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\n⊢ natDegree (cancelLeads p q) < natDegree q", "tactic": "rw [cancelLeads, sub_eq_add_neg, tsub_eq_zero_iff_le.mpr h, pow_zero, mul_one]" }, { "state_after": "case pos\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) < natDegree q\n\ncase neg\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) < natDegree q", "state_before": "case neg\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) < natDegree q", "tactic": "by_cases h0 :\n C p.leadingCoeff * q + -(C q.leadingCoeff * X ^ (q.natDegree - p.natDegree) * p) = 0" }, { "state_after": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) ≤ natDegree q\n\ncase neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) ≠ natDegree q", "state_before": "case neg\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) < natDegree q", "tactic": "apply lt_of_le_of_ne" }, { "state_after": "case h.e'_3\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : p = 0\n⊢ natDegree (cancelLeads p q) = 0", "state_before": "case pos\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : p = 0\n⊢ natDegree (cancelLeads p q) < natDegree q", "tactic": "convert hq" }, { "state_after": "no goals", "state_before": "case h.e'_3\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : p = 0\n⊢ natDegree (cancelLeads p q) = 0", "tactic": "simp [hp, cancelLeads]" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) < natDegree q", "tactic": "exact (le_of_eq (by simp only [h0, natDegree_zero])).trans_lt hq" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) = 0", "tactic": "simp only [h0, natDegree_zero]" }, { "state_after": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q) ≤ natDegree q\n\ncase neg.a.qn\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (-(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) ≤ natDegree q", "state_before": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) ≤ natDegree q", "tactic": "rw [natDegree_add_le_iff_left]" }, { "state_after": "case neg.a.qn\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) ≤ natDegree q", "state_before": "case neg.a.qn\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (-(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) ≤ natDegree q", "tactic": "refine (natDegree_neg (C q.leadingCoeff * X ^ (q.natDegree - p.natDegree) * p)).le.trans ?_" }, { "state_after": "no goals", "state_before": "case neg.a.qn\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) ≤ natDegree q", "tactic": "exact natDegree_mul_le.trans <| Nat.add_le_of_le_sub h <| natDegree_C_mul_X_pow_le _ _" }, { "state_after": "no goals", "state_before": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q) ≤ natDegree q", "tactic": "apply natDegree_C_mul_le" }, { "state_after": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) = natDegree q\n⊢ ↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0", "state_before": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : ¬↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0\n⊢ natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) ≠ natDegree q", "tactic": "contrapose! h0" }, { "state_after": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) = natDegree q\n⊢ coeff\n (↑C (leadingCoeff p) * q +\n -(↑C (leadingCoeff q) * (p * X ^ (natDegree p + (natDegree q - natDegree p) - natDegree p))))\n (natDegree p + (natDegree q - natDegree p)) =\n 0", "state_before": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) = natDegree q\n⊢ ↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p) = 0", "tactic": "rw [← leadingCoeff_eq_zero, leadingCoeff, h0, mul_assoc, X_pow_mul, ← tsub_add_cancel_of_le h,\n add_comm _ p.natDegree]" }, { "state_after": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) = natDegree q\n⊢ leadingCoeff p * coeff q (natDegree p + (natDegree q - natDegree p)) + -(leadingCoeff q * coeff p (natDegree p)) = 0", "state_before": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) = natDegree q\n⊢ coeff\n (↑C (leadingCoeff p) * q +\n -(↑C (leadingCoeff q) * (p * X ^ (natDegree p + (natDegree q - natDegree p) - natDegree p))))\n (natDegree p + (natDegree q - natDegree p)) =\n 0", "tactic": "simp only [coeff_mul_X_pow, coeff_neg, coeff_C_mul, add_tsub_cancel_left, coeff_add]" }, { "state_after": "no goals", "state_before": "case neg.a\nR : Type u_1\ninst✝ : Ring R\np q : R[X]\ncomm : leadingCoeff p * leadingCoeff q = leadingCoeff q * leadingCoeff p\nh : natDegree p ≤ natDegree q\nhq : 0 < natDegree q\nhp : ¬p = 0\nh0 : natDegree (↑C (leadingCoeff p) * q + -(↑C (leadingCoeff q) * X ^ (natDegree q - natDegree p) * p)) = natDegree q\n⊢ leadingCoeff p * coeff q (natDegree p + (natDegree q - natDegree p)) + -(leadingCoeff q * coeff p (natDegree p)) = 0", "tactic": "rw [add_comm p.natDegree, tsub_add_cancel_of_le h, ← leadingCoeff, ← leadingCoeff, comm,\n add_right_neg]" } ]
[ 76, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 54, 1 ]
Mathlib/GroupTheory/Solvable.lean
map_derivedSeries_eq
[]
[ 97, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Algebra/DirectSum/Module.lean
DirectSum.IsInternal.addSubmonoid_independent
[]
[ 429, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 427, 1 ]
Mathlib/Data/Nat/Basic.lean
Nat.pred_eq_self_iff
[ { "state_after": "no goals", "state_before": "m n✝ k n : ℕ\n⊢ pred n = n ↔ n = 0", "tactic": "cases n <;> simp [(Nat.succ_ne_self _).symm]" } ]
[ 809, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 808, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.mem_support_iff_exists_append
[ { "state_after": "case mp\nV✝ : Type u\nV' : Type v\nV'' : Type w\nG✝ : SimpleGraph V✝\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝ : DecidableEq V✝\nV : Type u\nG : SimpleGraph V\nu v w : V\np : Walk G u v\n⊢ w ∈ support p → ∃ q r, p = append q r\n\ncase mpr\nV✝ : Type u\nV' : Type v\nV'' : Type w\nG✝ : SimpleGraph V✝\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝ : DecidableEq V✝\nV : Type u\nG : SimpleGraph V\nu v w : V\np : Walk G u v\n⊢ (∃ q r, p = append q r) → w ∈ support p", "state_before": "V✝ : Type u\nV' : Type v\nV'' : Type w\nG✝ : SimpleGraph V✝\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝ : DecidableEq V✝\nV : Type u\nG : SimpleGraph V\nu v w : V\np : Walk G u v\n⊢ w ∈ support p ↔ ∃ q r, p = append q r", "tactic": "constructor" }, { "state_after": "no goals", "state_before": "case mp\nV✝ : Type u\nV' : Type v\nV'' : Type w\nG✝ : SimpleGraph V✝\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝ : DecidableEq V✝\nV : Type u\nG : SimpleGraph V\nu v w : V\np : Walk G u v\n⊢ w ∈ support p → ∃ q r, p = append q r", "tactic": "exact fun h => ⟨_, _, (p.take_spec h).symm⟩" }, { "state_after": "case mpr.intro.intro\nV✝ : Type u\nV' : Type v\nV'' : Type w\nG✝ : SimpleGraph V✝\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝ : DecidableEq V✝\nV : Type u\nG : SimpleGraph V\nu v w : V\nq : Walk G u w\nr : Walk G w v\n⊢ w ∈ support (append q r)", "state_before": "case mpr\nV✝ : Type u\nV' : Type v\nV'' : Type w\nG✝ : SimpleGraph V✝\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝ : DecidableEq V✝\nV : Type u\nG : SimpleGraph V\nu v w : V\np : Walk G u v\n⊢ (∃ q r, p = append q r) → w ∈ support p", "tactic": "rintro ⟨q, r, rfl⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro\nV✝ : Type u\nV' : Type v\nV'' : Type w\nG✝ : SimpleGraph V✝\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝ : DecidableEq V✝\nV : Type u\nG : SimpleGraph V\nu v w : V\nq : Walk G u w\nr : Walk G w v\n⊢ w ∈ support (append q r)", "tactic": "simp only [mem_support_append_iff, end_mem_support, start_mem_support, or_self_iff]" } ]
[ 1080, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1074, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Ordinal.lsub_lt_ord_lift
[ { "state_after": "α : Type ?u.28987\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal\nhι : Cardinal.lift (#ι) < cof (lsub f)\nhf : ∀ (i : ι), f i < lsub f\n⊢ False", "state_before": "α : Type ?u.28987\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal\nc : Ordinal\nhι : Cardinal.lift (#ι) < cof c\nhf : ∀ (i : ι), f i < c\nh : lsub f = c\n⊢ False", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "α : Type ?u.28987\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal\nhι : Cardinal.lift (#ι) < cof (lsub f)\nhf : ∀ (i : ι), f i < lsub f\n⊢ False", "tactic": "exact (cof_lsub_le_lift.{u, v} f).not_lt hι" } ]
[ 335, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 330, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.union_eq_union_iff_left
[]
[ 1494, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1493, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
Left.inv_le_self
[]
[ 444, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/Computability/TMToPartrec.lean
Turing.PartrecToTM2.K'.elim_update_main
[ { "state_after": "case h\na b c d a' : List Γ'\nx : K'\n⊢ update (elim a b c d) main a' x = elim a' b c d x", "state_before": "a b c d a' : List Γ'\n⊢ update (elim a b c d) main a' = elim a' b c d", "tactic": "funext x" }, { "state_after": "no goals", "state_before": "case h\na b c d a' : List Γ'\nx : K'\n⊢ update (elim a b c d) main a' x = elim a' b c d x", "tactic": "cases x <;> rfl" } ]
[ 1283, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1282, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
InnerProductSpace.Core.inner_self_ne_zero
[]
[ 271, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.tendsto_nhdsWithin_nhds
[ { "state_after": "α : Type u\nβ : Type v\nX : Type ?u.99263\nι : Type ?u.99266\ninst✝¹ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\ninst✝ : PseudoMetricSpace β\nf : α → β\na : α\nb : β\n⊢ (∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → f x ∈ univ ∧ dist (f x) b < ε) ↔\n ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → dist (f x) b < ε", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.99263\nι : Type ?u.99266\ninst✝¹ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\ninst✝ : PseudoMetricSpace β\nf : α → β\na : α\nb : β\n⊢ Tendsto f (𝓝[s] a) (𝓝 b) ↔ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → dist (f x) b < ε", "tactic": "rw [← nhdsWithin_univ b, tendsto_nhdsWithin_nhdsWithin]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.99263\nι : Type ?u.99266\ninst✝¹ : PseudoMetricSpace α\nx y z : α\nδ ε ε₁ ε₂ : ℝ\ns : Set α\ninst✝ : PseudoMetricSpace β\nf : α → β\na : α\nb : β\n⊢ (∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → f x ∈ univ ∧ dist (f x) b < ε) ↔\n ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → dist (f x) b < ε", "tactic": "simp only [mem_univ, true_and_iff]" } ]
[ 1044, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1040, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
affineSpan_eq_bot
[ { "state_after": "no goals", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_1\ninst✝³ : Ring k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.336276\ns : Set P\n⊢ affineSpan k s = ⊥ ↔ s = ∅", "tactic": "rw [← not_iff_not, ← Ne.def, ← Ne.def, ← nonempty_iff_ne_bot, affineSpan_nonempty,\n nonempty_iff_ne_empty]" } ]
[ 1166, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1164, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.restrict_union'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.297875\nγ : Type ?u.297878\nδ : Type ?u.297881\nι : Type ?u.297884\nR : Type ?u.297887\nR' : Type ?u.297890\nm0 : MeasurableSpace α\ninst✝¹ : MeasurableSpace β\ninst✝ : MeasurableSpace γ\nμ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α\ns s' t : Set α\nh : Disjoint s t\nhs : MeasurableSet s\n⊢ restrict μ (s ∪ t) = restrict μ s + restrict μ t", "tactic": "rw [union_comm, restrict_union h.symm hs, add_comm]" } ]
[ 1734, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1732, 1 ]
Mathlib/Analysis/Convex/Gauge.lean
gauge_smul
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.169480\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module ℝ E\ns t : Set E\na : ℝ\ninst✝² : IsROrC 𝕜\ninst✝¹ : Module 𝕜 E\ninst✝ : IsScalarTower ℝ 𝕜 E\nhs : Balanced 𝕜 s\nr : 𝕜\nx : E\n⊢ gauge s (r • x) = ‖r‖ * gauge s x", "tactic": "rw [← smul_eq_mul, ← gauge_smul_of_nonneg (norm_nonneg r), gauge_norm_smul hs]" } ]
[ 324, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 323, 1 ]
Mathlib/Algebra/Order/Group/MinMax.lean
max_inv_inv'
[]
[ 50, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiff.clm_comp
[]
[ 886, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 884, 1 ]
Mathlib/GroupTheory/Index.lean
Subgroup.relindex_subgroupOf
[]
[ 121, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/LinearAlgebra/SesquilinearForm.lean
LinearMap.IsAdjointPair.sub
[ { "state_after": "no goals", "state_before": "R : Type u_1\nR₁ : Type ?u.337838\nR₂ : Type ?u.337841\nR₃ : Type ?u.337844\nM : Type u_2\nM₁ : Type u_3\nM₂ : Type ?u.337853\nMₗ₁ : Type ?u.337856\nMₗ₁' : Type ?u.337859\nMₗ₂ : Type ?u.337862\nMₗ₂' : Type ?u.337865\nK : Type ?u.337868\nK₁ : Type ?u.337871\nK₂ : Type ?u.337874\nV : Type ?u.337877\nV₁ : Type ?u.337880\nV₂ : Type ?u.337883\nn : Type ?u.337886\ninst✝⁴ : CommRing R\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : AddCommGroup M₁\ninst✝ : Module R M₁\nB F : M →ₗ[R] M →ₗ[R] R\nB' : M₁ →ₗ[R] M₁ →ₗ[R] R\nf f' : M →ₗ[R] M₁\ng g' : M₁ →ₗ[R] M\nh : IsAdjointPair B B' f g\nh' : IsAdjointPair B B' f' g'\nx : M\nx✝ : M₁\n⊢ ↑(↑B' (↑(f - f') x)) x✝ = ↑(↑B x) (↑(g - g') x✝)", "tactic": "rw [f.sub_apply, g.sub_apply, B'.map_sub₂, (B x).map_sub, h, h']" } ]
[ 484, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 482, 1 ]
Mathlib/Order/CompleteLattice.lean
OrderIso.map_iSup
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nβ₂ : Type ?u.79767\nγ : Type ?u.79770\nι : Sort u_3\nι' : Sort ?u.79776\nκ : ι → Sort ?u.79781\nκ' : ι' → Sort ?u.79786\ninst✝¹ : CompleteLattice α\nf✝ g s t : ι → α\na b : α\ninst✝ : CompleteLattice β\nf : α ≃o β\nx✝ : ι → α\nx : α\n⊢ ↑f (⨆ (i : ι), x✝ i) ≤ ↑f x ↔ (⨆ (i : ι), ↑f (x✝ i)) ≤ ↑f x", "tactic": "simp only [f.le_iff_le, iSup_le_iff]" } ]
[ 968, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 965, 1 ]
Mathlib/Analysis/Asymptotics/Theta.lean
Asymptotics.IsTheta.isLittleO_congr_right
[]
[ 179, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 178, 1 ]
Mathlib/AlgebraicGeometry/StructureSheaf.lean
AlgebraicGeometry.StructureSheaf.toStalk_comp_stalkToFiberRingHom
[ { "state_after": "R : Type u\ninst✝ : CommRing R\nx : ↑(PrimeSpectrum.Top R)\n⊢ toOpen R ⊤ ≫\n openToLocalization R ⊤ ↑{ val := x, property := True.intro } (_ : ↑{ val := x, property := True.intro } ∈ ⊤) =\n algebraMap R (Localization.AtPrime x.asIdeal)", "state_before": "R : Type u\ninst✝ : CommRing R\nx : ↑(PrimeSpectrum.Top R)\n⊢ toStalk R x ≫ stalkToFiberRingHom R x = algebraMap R (Localization.AtPrime x.asIdeal)", "tactic": "erw [toStalk, Category.assoc, germ_comp_stalkToFiberRingHom]" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝ : CommRing R\nx : ↑(PrimeSpectrum.Top R)\n⊢ toOpen R ⊤ ≫\n openToLocalization R ⊤ ↑{ val := x, property := True.intro } (_ : ↑{ val := x, property := True.intro } ∈ ⊤) =\n algebraMap R (Localization.AtPrime x.asIdeal)", "tactic": "rfl" } ]
[ 562, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 559, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iInter_eq_univ
[]
[ 716, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 715, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.coe_finsetWalkLength_eq
[ { "state_after": "case zero\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ u v : V\n⊢ ↑(finsetWalkLength G Nat.zero u v) = {p | Walk.length p = Nat.zero}\n\ncase succ\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\n⊢ ↑(finsetWalkLength G (Nat.succ n) u v) = {p | Walk.length p = Nat.succ n}", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nn : ℕ\nu v : V\n⊢ ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}", "tactic": "induction' n with n ih generalizing u v" }, { "state_after": "no goals", "state_before": "case zero\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ u v : V\n⊢ ↑(finsetWalkLength G Nat.zero u v) = {p | Walk.length p = Nat.zero}", "tactic": "obtain rfl | huv := eq_or_ne u v <;> simp [finsetWalkLength, set_walk_length_zero_eq_of_ne, *]" }, { "state_after": "case succ\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\n⊢ (⋃ (x : ↑(neighborSet G u)),\n ↑(Finset.map\n { toFun := fun p => Walk.cons (_ : ↑x ∈ neighborSet G u) p,\n inj' :=\n (_ :\n ∀ (x_1 x_2 : Walk G (↑x) v),\n Walk.cons (_ : ↑x ∈ neighborSet G u) x_1 = Walk.cons (_ : ↑x ∈ neighborSet G u) x_2 → x_1 = x_2) }\n (finsetWalkLength G n (↑x) v))) =\n ⋃ (w : V) (h : Adj G u w), Walk.cons h '' {p' | Walk.length p' = n}", "state_before": "case succ\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\n⊢ ↑(finsetWalkLength G (Nat.succ n) u v) = {p | Walk.length p = Nat.succ n}", "tactic": "simp only [finsetWalkLength, set_walk_length_succ_eq, Finset.coe_biUnion, Finset.mem_coe,\n Finset.mem_univ, Set.iUnion_true]" }, { "state_after": "case succ.h\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\n⊢ (p ∈\n ⋃ (x : ↑(neighborSet G u)),\n ↑(Finset.map\n { toFun := fun p => Walk.cons (_ : ↑x ∈ neighborSet G u) p,\n inj' :=\n (_ :\n ∀ (x_1 x_2 : Walk G (↑x) v),\n Walk.cons (_ : ↑x ∈ neighborSet G u) x_1 = Walk.cons (_ : ↑x ∈ neighborSet G u) x_2 → x_1 = x_2) }\n (finsetWalkLength G n (↑x) v))) ↔\n p ∈ ⋃ (w : V) (h : Adj G u w), Walk.cons h '' {p' | Walk.length p' = n}", "state_before": "case succ\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\n⊢ (⋃ (x : ↑(neighborSet G u)),\n ↑(Finset.map\n { toFun := fun p => Walk.cons (_ : ↑x ∈ neighborSet G u) p,\n inj' :=\n (_ :\n ∀ (x_1 x_2 : Walk G (↑x) v),\n Walk.cons (_ : ↑x ∈ neighborSet G u) x_1 = Walk.cons (_ : ↑x ∈ neighborSet G u) x_2 → x_1 = x_2) }\n (finsetWalkLength G n (↑x) v))) =\n ⋃ (w : V) (h : Adj G u w), Walk.cons h '' {p' | Walk.length p' = n}", "tactic": "ext p" }, { "state_after": "case succ.h\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\n⊢ (∃ i h x,\n x ∈ finsetWalkLength G n i v ∧\n Walk.cons (_ : ↑{ val := i, property := (_ : i ∈ neighborSet G u) } ∈ neighborSet G u) x = p) ↔\n ∃ i h x, Walk.length x = n ∧ Walk.cons (_ : Adj G u i) x = p", "state_before": "case succ.h\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\n⊢ (p ∈\n ⋃ (x : ↑(neighborSet G u)),\n ↑(Finset.map\n { toFun := fun p => Walk.cons (_ : ↑x ∈ neighborSet G u) p,\n inj' :=\n (_ :\n ∀ (x_1 x_2 : Walk G (↑x) v),\n Walk.cons (_ : ↑x ∈ neighborSet G u) x_1 = Walk.cons (_ : ↑x ∈ neighborSet G u) x_2 → x_1 = x_2) }\n (finsetWalkLength G n (↑x) v))) ↔\n p ∈ ⋃ (w : V) (h : Adj G u w), Walk.cons h '' {p' | Walk.length p' = n}", "tactic": "simp only [mem_neighborSet, Finset.coe_map, Embedding.coeFn_mk, Set.iUnion_coe_set,\n Set.mem_iUnion, Set.mem_image, Finset.mem_coe, Set.mem_setOf_eq]" }, { "state_after": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nx✝² : V\nx✝¹ : Adj G u x✝²\nx✝ : Walk G x✝² v\n⊢ x✝ ∈ finsetWalkLength G n x✝² v ↔ Walk.length x✝ = n", "state_before": "case succ.h\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\n⊢ (∃ i h x,\n x ∈ finsetWalkLength G n i v ∧\n Walk.cons (_ : ↑{ val := i, property := (_ : i ∈ neighborSet G u) } ∈ neighborSet G u) x = p) ↔\n ∃ i h x, Walk.length x = n ∧ Walk.cons (_ : Adj G u i) x = p", "tactic": "congr!" }, { "state_after": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nw : V\nx✝ : Adj G u w\nq : Walk G w v\n⊢ q ∈ finsetWalkLength G n w v ↔ Walk.length q = n", "state_before": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nx✝² : V\nx✝¹ : Adj G u x✝²\nx✝ : Walk G x✝² v\n⊢ x✝ ∈ finsetWalkLength G n x✝² v ↔ Walk.length x✝ = n", "tactic": "rename_i w _ q" }, { "state_after": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nw : V\nx✝ : Adj G u w\nq : Walk G w v\nthis : q ∈ ↑(finsetWalkLength G n w v) ↔ q ∈ {p | Walk.length p = n}\n⊢ q ∈ finsetWalkLength G n w v ↔ Walk.length q = n", "state_before": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nw : V\nx✝ : Adj G u w\nq : Walk G w v\n⊢ q ∈ finsetWalkLength G n w v ↔ Walk.length q = n", "tactic": "have := Set.ext_iff.mp (ih w v) q" }, { "state_after": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nw : V\nx✝ : Adj G u w\nq : Walk G w v\nthis : q ∈ finsetWalkLength G n w v ↔ Walk.length q = n\n⊢ q ∈ finsetWalkLength G n w v ↔ Walk.length q = n", "state_before": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nw : V\nx✝ : Adj G u w\nq : Walk G w v\nthis : q ∈ ↑(finsetWalkLength G n w v) ↔ q ∈ {p | Walk.length p = n}\n⊢ q ∈ finsetWalkLength G n w v ↔ Walk.length q = n", "tactic": "simp only [Finset.mem_coe, Set.mem_setOf_eq] at this" }, { "state_after": "no goals", "state_before": "case succ.h.a.h.e'_2.h.h.e'_2.h.h.e'_2.h.h.e'_1.a\nV : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\ninst✝¹ : DecidableEq V\ninst✝ : LocallyFinite G\nu✝ v✝ : V\nn : ℕ\nih : ∀ (u v : V), ↑(finsetWalkLength G n u v) = {p | Walk.length p = n}\nu v : V\np : Walk G u v\nw : V\nx✝ : Adj G u w\nq : Walk G w v\nthis : q ∈ finsetWalkLength G n w v ↔ Walk.length q = n\n⊢ q ∈ finsetWalkLength G n w v ↔ Walk.length q = n", "tactic": "rw [← this]" } ]
[ 2363, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2350, 1 ]
src/lean/Init/Prelude.lean
ne_false_of_eq_true
[]
[ 653, 35 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 651, 1 ]
Std/Data/String/Lemmas.lean
Substring.prevn_zero
[ { "state_after": "no goals", "state_before": "s : Substring\nn : Nat\n⊢ prevn s (n + 1) 0 = 0", "tactic": "simp [prevn, prevn_zero s n]" } ]
[ 769, 43 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 767, 9 ]
Mathlib/FieldTheory/RatFunc.lean
RatFunc.eval_eq_zero_of_eval₂_denom_eq_zero
[ { "state_after": "no goals", "state_before": "K : Type u\ninst✝¹ : Field K\nL : Type u_1\ninst✝ : Field L\nf : K →+* L\na : L\nx : RatFunc K\nh : Polynomial.eval₂ f a (denom x) = 0\n⊢ eval f a x = 0", "tactic": "rw [eval, h, div_zero]" } ]
[ 1478, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1477, 1 ]
Mathlib/Data/Sym/Sym2.lean
Sym2.out_fst_mem
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.34339\nγ : Type ?u.34342\ne : Sym2 α\n⊢ e = Quotient.mk (Rel.setoid α) ((Quotient.out e).fst, (Quotient.out e).snd)", "tactic": "rw [Prod.mk.eta, e.out_eq]" } ]
[ 343, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 342, 1 ]
Mathlib/Algebra/Order/Archimedean.lean
exists_floor
[ { "state_after": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis : (a : Prop) → Decidable a\n⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x", "state_before": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\n⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x", "tactic": "haveI := Classical.propDecidable" }, { "state_after": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis✝ : (a : Prop) → Decidable a\nthis : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub\n⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x", "state_before": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis : (a : Prop) → Decidable a\n⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x", "tactic": "have : ∃ ub : ℤ, (ub : α) ≤ x ∧ ∀ z : ℤ, (z : α) ≤ x → z ≤ ub :=\n Int.exists_greatest_of_bdd\n (let ⟨n, hn⟩ := exists_int_gt x\n ⟨n, fun z h' => Int.cast_le.1 <| le_trans h' <| le_of_lt hn⟩)\n (let ⟨n, hn⟩ := exists_int_lt x\n ⟨n, le_of_lt hn⟩)" }, { "state_after": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis✝ : (a : Prop) → Decidable a\nthis : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub\nfl : ℤ\nh : ↑fl ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ fl\nz : ℤ\n⊢ z ≤ fl ↔ ↑z ≤ x", "state_before": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis✝ : (a : Prop) → Decidable a\nthis : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub\n⊢ ∃ fl, ∀ (z : ℤ), z ≤ fl ↔ ↑z ≤ x", "tactic": "refine' this.imp fun fl h z => _" }, { "state_after": "case intro\nα : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis✝ : (a : Prop) → Decidable a\nthis : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub\nfl z : ℤ\nh₁ : ↑fl ≤ x\nh₂ : ∀ (z : ℤ), ↑z ≤ x → z ≤ fl\n⊢ z ≤ fl ↔ ↑z ≤ x", "state_before": "α : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis✝ : (a : Prop) → Decidable a\nthis : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub\nfl : ℤ\nh : ↑fl ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ fl\nz : ℤ\n⊢ z ≤ fl ↔ ↑z ≤ x", "tactic": "cases' h with h₁ h₂" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝¹ : StrictOrderedRing α\ninst✝ : Archimedean α\nx : α\nthis✝ : (a : Prop) → Decidable a\nthis : ∃ ub, ↑ub ≤ x ∧ ∀ (z : ℤ), ↑z ≤ x → z ≤ ub\nfl z : ℤ\nh₁ : ↑fl ≤ x\nh₂ : ∀ (z : ℤ), ↑z ≤ x → z ≤ fl\n⊢ z ≤ fl ↔ ↑z ≤ x", "tactic": "exact ⟨fun h => le_trans (Int.cast_le.2 h) h₁, h₂ z⟩" } ]
[ 169, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/Data/Set/Intervals/Group.lean
Set.add_mem_Ioo_iff_right
[]
[ 97, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Std/Data/Int/Lemmas.lean
Int.mul_nonneg
[ { "state_after": "a b : Int\nha : 0 ≤ a\nhb : 0 ≤ b\nn : Nat\nhn : a = ↑n\n⊢ 0 ≤ a * b", "state_before": "a b : Int\nha : 0 ≤ a\nhb : 0 ≤ b\n⊢ 0 ≤ a * b", "tactic": "let ⟨n, hn⟩ := eq_ofNat_of_zero_le ha" }, { "state_after": "a b : Int\nha : 0 ≤ a\nhb : 0 ≤ b\nn : Nat\nhn : a = ↑n\nm : Nat\nhm : b = ↑m\n⊢ 0 ≤ a * b", "state_before": "a b : Int\nha : 0 ≤ a\nhb : 0 ≤ b\nn : Nat\nhn : a = ↑n\n⊢ 0 ≤ a * b", "tactic": "let ⟨m, hm⟩ := eq_ofNat_of_zero_le hb" }, { "state_after": "a b : Int\nha : 0 ≤ a\nhb : 0 ≤ b\nn : Nat\nhn : a = ↑n\nm : Nat\nhm : b = ↑m\n⊢ 0 ≤ ↑(n * m)", "state_before": "a b : Int\nha : 0 ≤ a\nhb : 0 ≤ b\nn : Nat\nhn : a = ↑n\nm : Nat\nhm : b = ↑m\n⊢ 0 ≤ a * b", "tactic": "rw [hn, hm, ← ofNat_mul]" }, { "state_after": "no goals", "state_before": "a b : Int\nha : 0 ≤ a\nhb : 0 ≤ b\nn : Nat\nhn : a = ↑n\nm : Nat\nhm : b = ↑m\n⊢ 0 ≤ ↑(n * m)", "tactic": "apply ofNat_nonneg" } ]
[ 647, 47 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 644, 11 ]
Mathlib/Data/Finset/Lattice.lean
Finset.le_sup_iff
[ { "state_after": "case mp\nF : Type ?u.208752\nα : Type u_1\nβ : Type ?u.208758\nγ : Type ?u.208761\nι : Type u_2\nκ : Type ?u.208767\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nha : ⊥ < a\n⊢ a ≤ sup s f → ∃ b, b ∈ s ∧ a ≤ f b\n\ncase mpr\nF : Type ?u.208752\nα : Type u_1\nβ : Type ?u.208758\nγ : Type ?u.208761\nι : Type u_2\nκ : Type ?u.208767\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nha : ⊥ < a\n⊢ (∃ b, b ∈ s ∧ a ≤ f b) → a ≤ sup s f", "state_before": "F : Type ?u.208752\nα : Type u_1\nβ : Type ?u.208758\nγ : Type ?u.208761\nι : Type u_2\nκ : Type ?u.208767\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nha : ⊥ < a\n⊢ a ≤ sup s f ↔ ∃ b, b ∈ s ∧ a ≤ f b", "tactic": "apply Iff.intro" }, { "state_after": "case mp.cons\nF : Type ?u.208752\nα : Type u_1\nβ : Type ?u.208758\nγ : Type ?u.208761\nι : Type u_2\nκ : Type ?u.208767\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nha : ⊥ < a\nc : ι\nt : Finset ι\nhc : ¬c ∈ t\nih : a ≤ sup t f → ∃ b, b ∈ t ∧ a ≤ f b\n⊢ a ≤ f c ∨ a ≤ sup t f → ∃ b, b ∈ cons c t hc ∧ a ≤ f b", "state_before": "case mp.cons\nF : Type ?u.208752\nα : Type u_1\nβ : Type ?u.208758\nγ : Type ?u.208761\nι : Type u_2\nκ : Type ?u.208767\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nha : ⊥ < a\nc : ι\nt : Finset ι\nhc : ¬c ∈ t\nih : a ≤ sup t f → ∃ b, b ∈ t ∧ a ≤ f b\n⊢ a ≤ sup (cons c t hc) f → ∃ b, b ∈ cons c t hc ∧ a ≤ f b", "tactic": "rw [sup_cons, le_sup_iff]" }, { "state_after": "no goals", "state_before": "case mp.cons\nF : Type ?u.208752\nα : Type u_1\nβ : Type ?u.208758\nγ : Type ?u.208761\nι : Type u_2\nκ : Type ?u.208767\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nha : ⊥ < a\nc : ι\nt : Finset ι\nhc : ¬c ∈ t\nih : a ≤ sup t f → ∃ b, b ∈ t ∧ a ≤ f b\n⊢ a ≤ f c ∨ a ≤ sup t f → ∃ b, b ∈ cons c t hc ∧ a ≤ f b", "tactic": "exact fun\n| Or.inl h => ⟨c, mem_cons.2 (Or.inl rfl), h⟩\n| Or.inr h => let ⟨b, hb, hle⟩ := ih h; ⟨b, mem_cons.2 (Or.inr hb), hle⟩" }, { "state_after": "no goals", "state_before": "case mpr\nF : Type ?u.208752\nα : Type u_1\nβ : Type ?u.208758\nγ : Type ?u.208761\nι : Type u_2\nκ : Type ?u.208767\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nha : ⊥ < a\n⊢ (∃ b, b ∈ s ∧ a ≤ f b) → a ≤ sup s f", "tactic": "exact fun ⟨b, hb, hle⟩ => le_trans hle (le_sup hb)" } ]
[ 688, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 679, 11 ]
Mathlib/Data/List/Basic.lean
List.foldlRecOn_nil
[]
[ 2591, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2589, 1 ]
Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean
convexOn_pow
[ { "state_after": "case zero\n\n⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.zero\n\ncase succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\n⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.succ k", "state_before": "n : ℕ\n⊢ ConvexOn ℝ (Ici 0) fun x => x ^ n", "tactic": "induction' n with k IH" }, { "state_after": "case succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\n⊢ ∀ ⦃x : ℝ⦄,\n x ∈ Ici 0 →\n ∀ ⦃y : ℝ⦄,\n y ∈ Ici 0 →\n ∀ ⦃a b : ℝ⦄,\n 0 ≤ a →\n 0 ≤ b →\n a + b = 1 →\n (fun x => x ^ Nat.succ k) (a • x + b • y) ≤\n a • (fun x => x ^ Nat.succ k) x + b • (fun x => x ^ Nat.succ k) y", "state_before": "case succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\n⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.succ k", "tactic": "refine' ⟨convex_Ici _, _⟩" }, { "state_after": "case succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\n⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b", "state_before": "case succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\n⊢ ∀ ⦃x : ℝ⦄,\n x ∈ Ici 0 →\n ∀ ⦃y : ℝ⦄,\n y ∈ Ici 0 →\n ∀ ⦃a b : ℝ⦄,\n 0 ≤ a →\n 0 ≤ b →\n a + b = 1 →\n (fun x => x ^ Nat.succ k) (a • x + b • y) ≤\n a • (fun x => x ^ Nat.succ k) x + b • (fun x => x ^ Nat.succ k) y", "tactic": "rintro a (ha : 0 ≤ a) b (hb : 0 ≤ b) μ ν hμ hν h" }, { "state_after": "case succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\n⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b", "state_before": "case succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\n⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b", "tactic": "have H := IH.2 ha hb hμ hν h" }, { "state_after": "no goals", "state_before": "case succ\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (fun x => x ^ Nat.succ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ Nat.succ k) a + ν • (fun x => x ^ Nat.succ k) b", "tactic": "calc\n (μ * a + ν * b) ^ k.succ = (μ * a + ν * b) * (μ * a + ν * b) ^ k := pow_succ _ _\n _ ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) := by gcongr; exact H\n _ ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν := by linarith\n _ = (μ + ν) * (μ * a ^ k.succ + ν * b ^ k.succ) := by rw [Nat.succ_eq_add_one]; ring\n _ = μ * a ^ k.succ + ν * b ^ k.succ := by rw [h]; ring" }, { "state_after": "no goals", "state_before": "case zero\n\n⊢ ConvexOn ℝ (Ici 0) fun x => x ^ Nat.zero", "tactic": "exact convexOn_const (1 : ℝ) (convex_Ici _)" }, { "state_after": "case inl\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n\ncase inr\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "cases' le_or_lt a b with hab hab" }, { "state_after": "case inl\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\nthis : a ^ k ≤ b ^ k\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "state_before": "case inl\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "have : a ^ k ≤ b ^ k := by gcongr" }, { "state_after": "case inl\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\nthis✝ : a ^ k ≤ b ^ k\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a)\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "state_before": "case inl\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\nthis : a ^ k ≤ b ^ k\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith" }, { "state_after": "no goals", "state_before": "case inl\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\nthis✝ : a ^ k ≤ b ^ k\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a)\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "positivity" }, { "state_after": "no goals", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\n⊢ a ^ k ≤ b ^ k", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : a ≤ b\nthis : a ^ k ≤ b ^ k\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a)", "tactic": "nlinarith" }, { "state_after": "case inr\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\nthis : b ^ k ≤ a ^ k\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "state_before": "case inr\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "have : b ^ k ≤ a ^ k := by gcongr" }, { "state_after": "case inr\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\nthis✝ : b ^ k ≤ a ^ k\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a)\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "state_before": "case inr\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\nthis : b ^ k ≤ a ^ k\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "have : 0 ≤ (b ^ k - a ^ k) * (b - a) := by nlinarith" }, { "state_after": "no goals", "state_before": "case inr\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\nthis✝ : b ^ k ≤ a ^ k\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a)\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "positivity" }, { "state_after": "no goals", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\n⊢ b ^ k ≤ a ^ k", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nhab : b < a\nthis : b ^ k ≤ a ^ k\n⊢ 0 ≤ (b ^ k - a ^ k) * (b - a)", "tactic": "nlinarith" }, { "state_after": "case h\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ * a + ν * b) ^ k ≤ μ * a ^ k + ν * b ^ k", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ * a + ν * b) * (μ * a + ν * b) ^ k ≤ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k)", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "case h\nk : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ * a + ν * b) ^ k ≤ μ * a ^ k + ν * b ^ k", "tactic": "exact H" }, { "state_after": "no goals", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) ≤\n (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν", "tactic": "linarith" }, { "state_after": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν =\n (μ + ν) * (μ * a ^ (k + 1) + ν * b ^ (k + 1))", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν =\n (μ + ν) * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k)", "tactic": "rw [Nat.succ_eq_add_one]" }, { "state_after": "no goals", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ * a + ν * b) * (μ * a ^ k + ν * b ^ k) + (b ^ k - a ^ k) * (b - a) * μ * ν =\n (μ + ν) * (μ * a ^ (k + 1) + ν * b ^ (k + 1))", "tactic": "ring" }, { "state_after": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ 1 * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) = μ * a ^ Nat.succ k + ν * b ^ Nat.succ k", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ (μ + ν) * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) = μ * a ^ Nat.succ k + ν * b ^ Nat.succ k", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "k : ℕ\nIH : ConvexOn ℝ (Ici 0) fun x => x ^ k\na : ℝ\nha : 0 ≤ a\nb : ℝ\nhb : 0 ≤ b\nμ ν : ℝ\nhμ : 0 ≤ μ\nhν : 0 ≤ ν\nh : μ + ν = 1\nH : (fun x => x ^ k) (μ • a + ν • b) ≤ μ • (fun x => x ^ k) a + ν • (fun x => x ^ k) b\nthis : 0 ≤ (b ^ k - a ^ k) * (b - a) * μ * ν\n⊢ 1 * (μ * a ^ Nat.succ k + ν * b ^ Nat.succ k) = μ * a ^ Nat.succ k + ν * b ^ Nat.succ k", "tactic": "ring" } ]
[ 99, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Data/Fintype/Units.lean
Fintype.card_units_int
[]
[ 31, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 31, 1 ]
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.inter_eq_singleton_orthogonalProjectionFn
[ { "state_after": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ IsCompl (direction s) (direction s)ᗮ", "state_before": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ IsCompl (direction s) (direction (mk' p (direction s)ᗮ))", "tactic": "rw [direction_mk' p s.directionᗮ]" }, { "state_after": "no goals", "state_before": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ IsCompl (direction s) (direction s)ᗮ", "tactic": "exact Submodule.isCompl_orthogonal_of_completeSpace" } ]
[ 258, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 250, 1 ]
Mathlib/LinearAlgebra/ProjectiveSpace/Basic.lean
Projectivization.map_injective
[ { "state_after": "case h\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v : ℙ K V\nh✝ : map f hf u✝ = map f hf v\nu : V\nhu : u ≠ 0\nh : map f hf (mk K u hu) = map f hf v\n⊢ mk K u hu = v", "state_before": "K : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu v : ℙ K V\nh : map f hf u = map f hf v\n⊢ u = v", "tactic": "induction' u using ind with u hu" }, { "state_after": "case h.h\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝² : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝¹ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh✝ : map f hf u✝ = map f hf (mk K v hv)\nh : map f hf (mk K u hu) = map f hf (mk K v hv)\n⊢ mk K u hu = mk K v hv", "state_before": "case h\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v : ℙ K V\nh✝ : map f hf u✝ = map f hf v\nu : V\nhu : u ≠ 0\nh : map f hf (mk K u hu) = map f hf v\n⊢ mk K u hu = v", "tactic": "induction' v using ind with v hv" }, { "state_after": "case h.h\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝² : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝¹ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh✝ : map f hf u✝ = map f hf (mk K v hv)\nh : ∃ a, a • ↑f v = ↑f u\n⊢ ∃ a, a • v = u", "state_before": "case h.h\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝² : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝¹ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh✝ : map f hf u✝ = map f hf (mk K v hv)\nh : map f hf (mk K u hu) = map f hf (mk K v hv)\n⊢ mk K u hu = mk K v hv", "tactic": "simp only [map_mk, mk_eq_mk_iff'] at h ⊢" }, { "state_after": "case h.h.intro\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝¹ : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh : map f hf u✝ = map f hf (mk K v hv)\na : L\nha : a • ↑f v = ↑f u\n⊢ ∃ a, a • v = u", "state_before": "case h.h\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝² : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝¹ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh✝ : map f hf u✝ = map f hf (mk K v hv)\nh : ∃ a, a • ↑f v = ↑f u\n⊢ ∃ a, a • v = u", "tactic": "rcases h with ⟨a, ha⟩" }, { "state_after": "case h.h.intro\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝¹ : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh : map f hf u✝ = map f hf (mk K v hv)\na : L\nha : a • ↑f v = ↑f u\n⊢ ↑f (↑τ a • v) = ↑f u", "state_before": "case h.h.intro\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝¹ : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh : map f hf u✝ = map f hf (mk K v hv)\na : L\nha : a • ↑f v = ↑f u\n⊢ ∃ a, a • v = u", "tactic": "refine ⟨τ a, hf ?_⟩" }, { "state_after": "no goals", "state_before": "case h.h.intro\nK : Type u_1\nV : Type u_3\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\nL : Type u_2\nW : Type u_4\ninst✝³ : DivisionRing L\ninst✝² : AddCommGroup W\ninst✝¹ : Module L W\nσ : K →+* L\nτ : L →+* K\ninst✝ : RingHomInvPair σ τ\nf : V →ₛₗ[σ] W\nhf : Function.Injective ↑f\nu✝ v✝ : ℙ K V\nh✝¹ : map f hf u✝ = map f hf v✝\nu : V\nhu : u ≠ 0\nh✝ : map f hf (mk K u hu) = map f hf v✝\nv : V\nhv : v ≠ 0\nh : map f hf u✝ = map f hf (mk K v hv)\na : L\nha : a • ↑f v = ↑f u\n⊢ ↑f (↑τ a • v) = ↑f u", "tactic": "rwa [f.map_smulₛₗ, RingHomInvPair.comp_apply_eq₂]" } ]
[ 217, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.support_sum
[]
[ 568, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 566, 1 ]
Mathlib/RingTheory/MvPolynomial/Symmetric.lean
MvPolynomial.esymm_eq_sum_monomial
[ { "state_after": "σ : Type u_1\nR : Type u_2\nτ : Type ?u.91991\nS : Type ?u.91994\ninst✝³ : CommSemiring R\ninst✝² : CommSemiring S\ninst✝¹ : Fintype σ\ninst✝ : Fintype τ\nn : ℕ\n⊢ esymm σ R n = ∑ x in powersetLen n univ, ∏ x in x, ↑(monomial (Finsupp.single x 1)) 1", "state_before": "σ : Type u_1\nR : Type u_2\nτ : Type ?u.91991\nS : Type ?u.91994\ninst✝³ : CommSemiring R\ninst✝² : CommSemiring S\ninst✝¹ : Fintype σ\ninst✝ : Fintype τ\nn : ℕ\n⊢ esymm σ R n = ∑ t in powersetLen n univ, ↑(monomial (∑ i in t, Finsupp.single i 1)) 1", "tactic": "simp_rw [monomial_sum_one]" }, { "state_after": "no goals", "state_before": "σ : Type u_1\nR : Type u_2\nτ : Type ?u.91991\nS : Type ?u.91994\ninst✝³ : CommSemiring R\ninst✝² : CommSemiring S\ninst✝¹ : Fintype σ\ninst✝ : Fintype τ\nn : ℕ\n⊢ esymm σ R n = ∑ x in powersetLen n univ, ∏ x in x, ↑(monomial (Finsupp.single x 1)) 1", "tactic": "rfl" } ]
[ 190, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 187, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.le_def
[]
[ 625, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 624, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.isUnit_iff
[ { "state_after": "case mp\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\ns t : Set α\n⊢ IsUnit s → ∃ a, s = {a} ∧ IsUnit a\n\ncase mpr\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\ns t : Set α\n⊢ (∃ a, s = {a} ∧ IsUnit a) → IsUnit s", "state_before": "F : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\ns t : Set α\n⊢ IsUnit s ↔ ∃ a, s = {a} ∧ IsUnit a", "tactic": "constructor" }, { "state_after": "case mp.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\n⊢ ∃ a, ↑u = {a} ∧ IsUnit a", "state_before": "case mp\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\ns t : Set α\n⊢ IsUnit s → ∃ a, s = {a} ∧ IsUnit a", "tactic": "rintro ⟨u, rfl⟩" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\na b : α\nha : ↑u = {a}\nhb : ↑u⁻¹ = {b}\nh : a * b = 1\n⊢ ∃ a, ↑u = {a} ∧ IsUnit a", "state_before": "case mp.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\n⊢ ∃ a, ↑u = {a} ∧ IsUnit a", "tactic": "obtain ⟨a, b, ha, hb, h⟩ := Set.mul_eq_one_iff.1 u.mul_inv" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\na b : α\nha : ↑u = {a}\nhb : ↑u⁻¹ = {b}\nh : a * b = 1\n⊢ {b * a} = {1}", "state_before": "case mp.intro.intro.intro.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\na b : α\nha : ↑u = {a}\nhb : ↑u⁻¹ = {b}\nh : a * b = 1\n⊢ ∃ a, ↑u = {a} ∧ IsUnit a", "tactic": "refine' ⟨a, ha, ⟨a, b, h, singleton_injective _⟩, rfl⟩" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\na b : α\nha : ↑u = {a}\nhb : ↑u⁻¹ = {b}\nh : a * b = 1\n⊢ ↑u⁻¹ * ↑u = {1}", "state_before": "case mp.intro.intro.intro.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\na b : α\nha : ↑u = {a}\nhb : ↑u⁻¹ = {b}\nh : a * b = 1\n⊢ {b * a} = {1}", "tactic": "rw [← singleton_mul_singleton, ← ha, ← hb]" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\nu : (Set α)ˣ\na b : α\nha : ↑u = {a}\nhb : ↑u⁻¹ = {b}\nh : a * b = 1\n⊢ ↑u⁻¹ * ↑u = {1}", "tactic": "exact u.inv_mul" }, { "state_after": "case mpr.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\na : α\nha : IsUnit a\n⊢ IsUnit {a}", "state_before": "case mpr\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\ns t : Set α\n⊢ (∃ a, s = {a} ∧ IsUnit a) → IsUnit s", "tactic": "rintro ⟨a, rfl, ha⟩" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro\nF : Type ?u.88413\nα : Type u_1\nβ : Type ?u.88419\nγ : Type ?u.88422\ninst✝ : DivisionMonoid α\nt : Set α\na : α\nha : IsUnit a\n⊢ IsUnit {a}", "tactic": "exact ha.set" } ]
[ 1080, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1072, 1 ]
Mathlib/SetTheory/Cardinal/Basic.lean
Cardinal.power_def
[]
[ 494, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 493, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsLittleO.congr_left
[]
[ 363, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.mul_coeff
[]
[ 639, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 636, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.natDegree_X_sub_C_le
[]
[ 1324, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1323, 1 ]
Mathlib/Data/Sym/Card.lean
Finset.card_sym2
[ { "state_after": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\n⊢ Disjoint (image Quotient.mk' (Finset.diag s)) (image Quotient.mk' (offDiag s))", "state_before": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\n⊢ Finset.card (Finset.sym2 s) = Finset.card s * (Finset.card s + 1) / 2", "tactic": "rw [← image_diag_union_image_offDiag, card_union_eq, Sym2.card_image_diag,\n Sym2.card_image_offDiag, Nat.choose_two_right, add_comm, ← Nat.triangle_succ, Nat.succ_sub_one,\n mul_comm]" }, { "state_after": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\n⊢ ∀ ⦃a : Quotient (Rel.setoid α)⦄, a ∈ image Quotient.mk' (Finset.diag s) → ¬a ∈ image Quotient.mk' (offDiag s)", "state_before": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\n⊢ Disjoint (image Quotient.mk' (Finset.diag s)) (image Quotient.mk' (offDiag s))", "tactic": "rw [disjoint_left]" }, { "state_after": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\nm : Quotient (Rel.setoid α)\nha : m ∈ image Quotient.mk' (Finset.diag s)\nhb : m ∈ image Quotient.mk' (offDiag s)\n⊢ False", "state_before": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\n⊢ ∀ ⦃a : Quotient (Rel.setoid α)⦄, a ∈ image Quotient.mk' (Finset.diag s) → ¬a ∈ image Quotient.mk' (offDiag s)", "tactic": "rintro m ha hb" }, { "state_after": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\nm : Quotient (Rel.setoid α)\nha : ∃ a, a ∈ Finset.diag s ∧ Quotient.mk' a = m\nhb : ∃ a, a ∈ offDiag s ∧ Quotient.mk' a = m\n⊢ False", "state_before": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\nm : Quotient (Rel.setoid α)\nha : m ∈ image Quotient.mk' (Finset.diag s)\nhb : m ∈ image Quotient.mk' (offDiag s)\n⊢ False", "tactic": "rw [mem_image] at ha hb" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk' b = Quotient.mk' a\n⊢ False", "state_before": "α : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\nm : Quotient (Rel.setoid α)\nha : ∃ a, a ∈ Finset.diag s ∧ Quotient.mk' a = m\nhb : ∃ a, a ∈ offDiag s ∧ Quotient.mk' a = m\n⊢ False", "tactic": "obtain ⟨⟨a, ha, rfl⟩, ⟨b, hb, hab⟩⟩ := ha, hb" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk' b = Quotient.mk' a\n⊢ IsDiag (Quotient.mk (Rel.setoid α) b)", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk' b = Quotient.mk' a\n⊢ False", "tactic": "refine' not_isDiag_mk'_of_mem_offDiag hb _" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk (Rel.setoid α) b = Quotient.mk (Rel.setoid α) a\n⊢ IsDiag (Quotient.mk (Rel.setoid α) b)", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk' b = Quotient.mk' a\n⊢ IsDiag (Quotient.mk (Rel.setoid α) b)", "tactic": "dsimp [Quotient.mk'] at hab" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk (Rel.setoid α) b = Quotient.mk (Rel.setoid α) a\n⊢ IsDiag (Quotient.mk (Rel.setoid α) a)", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk (Rel.setoid α) b = Quotient.mk (Rel.setoid α) a\n⊢ IsDiag (Quotient.mk (Rel.setoid α) b)", "tactic": "rw [hab]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.120254\ninst✝ : DecidableEq α\ns : Finset α\na : α × α\nha : a ∈ Finset.diag s\nb : α × α\nhb : b ∈ offDiag s\nhab : Quotient.mk (Rel.setoid α) b = Quotient.mk (Rel.setoid α) a\n⊢ IsDiag (Quotient.mk (Rel.setoid α) a)", "tactic": "exact isDiag_mk'_of_mem_diag ha" } ]
[ 208, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 197, 1 ]
Mathlib/Topology/ContinuousOn.lean
ContinuousWithinAt.prod_map
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → γ\ng : β → δ\ns : Set α\nt : Set β\nx : α\ny : β\nhf : Tendsto f (𝓝[s] x) (𝓝 (f x))\nhg : Tendsto g (𝓝[t] y) (𝓝 (g y))\n⊢ Tendsto (Prod.map f g) (𝓝[s ×ˢ t] (x, y)) (𝓝 (Prod.map f g (x, y)))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → γ\ng : β → δ\ns : Set α\nt : Set β\nx : α\ny : β\nhf : ContinuousWithinAt f s x\nhg : ContinuousWithinAt g t y\n⊢ ContinuousWithinAt (Prod.map f g) (s ×ˢ t) (x, y)", "tactic": "unfold ContinuousWithinAt at *" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → γ\ng : β → δ\ns : Set α\nt : Set β\nx : α\ny : β\nhf : Tendsto f (𝓝[s] x) (𝓝 (f x))\nhg : Tendsto g (𝓝[t] y) (𝓝 (g y))\n⊢ Tendsto (Prod.map f g) (𝓝[s] x ×ˢ 𝓝[t] y) (𝓝 (f x) ×ˢ 𝓝 (g y))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → γ\ng : β → δ\ns : Set α\nt : Set β\nx : α\ny : β\nhf : Tendsto f (𝓝[s] x) (𝓝 (f x))\nhg : Tendsto g (𝓝[t] y) (𝓝 (g y))\n⊢ Tendsto (Prod.map f g) (𝓝[s ×ˢ t] (x, y)) (𝓝 (Prod.map f g (x, y)))", "tactic": "rw [nhdsWithin_prod_eq, Prod.map, nhds_prod_eq]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type u_4\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nf : α → γ\ng : β → δ\ns : Set α\nt : Set β\nx : α\ny : β\nhf : Tendsto f (𝓝[s] x) (𝓝 (f x))\nhg : Tendsto g (𝓝[t] y) (𝓝 (g y))\n⊢ Tendsto (Prod.map f g) (𝓝[s] x ×ˢ 𝓝[t] y) (𝓝 (f x) ×ˢ 𝓝 (g y))", "tactic": "exact hf.prod_map hg" } ]
[ 567, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 562, 1 ]
Mathlib/Data/PNat/Prime.lean
PNat.not_prime_one
[]
[ 145, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Analysis/Calculus/Deriv/Add.lean
deriv_const_sub
[ { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁴ : NontriviallyNormedField 𝕜\nF : Type v\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace 𝕜 F\nE : Type w\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nf f₀ f₁ g : 𝕜 → F\nf' f₀' f₁' g' : F\nx : 𝕜\ns t : Set 𝕜\nL : Filter 𝕜\nc : F\n⊢ deriv (fun y => c - f y) x = -deriv f x", "tactic": "simp only [← derivWithin_univ,\n derivWithin_const_sub (uniqueDiffWithinAt_univ : UniqueDiffWithinAt 𝕜 _ _)]" } ]
[ 377, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 375, 1 ]
Mathlib/Algebra/Order/Floor.lean
Nat.floor_div_nat
[ { "state_after": "case inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : a ≤ 0\n⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n\n\ncase inr\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\n⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n", "state_before": "F : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\n⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n", "tactic": "cases' le_total a 0 with ha ha" }, { "state_after": "case inr.inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nha : 0 ≤ a\n⊢ ⌊a / ↑0⌋₊ = ⌊a⌋₊ / 0\n\ncase inr.inr\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n", "state_before": "case inr\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\n⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n", "tactic": "obtain rfl | hn := n.eq_zero_or_pos" }, { "state_after": "case inr.inr.refine'_1\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ 0 ≤ a / ↑n\n\ncase inr.inr.refine'_2\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n ∧ a / ↑n < ↑(⌊a⌋₊ / n) + 1", "state_before": "case inr.inr\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n", "tactic": "refine' (floor_eq_iff _).2 _" }, { "state_after": "case inr.inr.refine'_2.left\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n\n\ncase inr.inr.refine'_2.right\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ a / ↑n < ↑(⌊a⌋₊ / n) + 1", "state_before": "case inr.inr.refine'_2\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n ∧ a / ↑n < ↑(⌊a⌋₊ / n) + 1", "tactic": "constructor" }, { "state_after": "case inr.inr.refine'_2.right\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ⌊a⌋₊ < ⌊a⌋₊ / n * n + n\n\ncase inr.inr.refine'_2.right\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ 0 < ↑n", "state_before": "case inr.inr.refine'_2.right\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ a / ↑n < ↑(⌊a⌋₊ / n) + 1", "tactic": "rw [div_lt_iff, add_mul, one_mul, ← cast_mul, ← cast_add, ← floor_lt ha]" }, { "state_after": "case inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : a ≤ 0\n⊢ 0 = 0 / n\n\ncase inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : a ≤ 0\n⊢ a / ↑n ≤ 0", "state_before": "case inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : a ≤ 0\n⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n", "tactic": "rw [floor_of_nonpos, floor_of_nonpos ha]" }, { "state_after": "no goals", "state_before": "case inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : a ≤ 0\n⊢ a / ↑n ≤ 0", "tactic": "apply div_nonpos_of_nonpos_of_nonneg ha n.cast_nonneg" }, { "state_after": "no goals", "state_before": "case inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : a ≤ 0\n⊢ 0 = 0 / n", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case inr.inl\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nha : 0 ≤ a\n⊢ ⌊a / ↑0⌋₊ = ⌊a⌋₊ / 0", "tactic": "rw [cast_zero, div_zero, Nat.div_zero, floor_zero]" }, { "state_after": "no goals", "state_before": "case inr.inr.refine'_1\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ 0 ≤ a / ↑n", "tactic": "exact div_nonneg ha n.cast_nonneg" }, { "state_after": "no goals", "state_before": "case inr.inr.refine'_2.left\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n", "tactic": "exact cast_div_le.trans (div_le_div_of_le_of_nonneg (floor_le ha) n.cast_nonneg)" }, { "state_after": "no goals", "state_before": "case inr.inr.refine'_2.right\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ ⌊a⌋₊ < ⌊a⌋₊ / n * n + n", "tactic": "exact lt_div_mul_add hn" }, { "state_after": "no goals", "state_before": "case inr.inr.refine'_2.right\nF : Type ?u.94914\nα : Type u_1\nβ : Type ?u.94920\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : FloorSemiring α\na : α\nn : ℕ\nha : 0 ≤ a\nhn : n > 0\n⊢ 0 < ↑n", "tactic": "exact cast_pos.2 hn" } ]
[ 520, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 507, 1 ]
Mathlib/Data/Set/Intervals/OrdConnectedComponent.lean
Set.nonempty_ordConnectedComponent
[]
[ 61, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 60, 1 ]