file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Algebra/Order/Hom/Ring.lean
OrderRingHom.coe_OrderAddMonoidHom_id
[]
[ 293, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 292, 1 ]
Mathlib/Data/Multiset/Pi.lean
Multiset.Pi.cons_same
[]
[ 44, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Data/Real/Sign.lean
Real.sign_zero
[ { "state_after": "no goals", "state_before": "⊢ sign 0 = 0", "tactic": "rw [sign, if_neg (lt_irrefl _), if_neg (lt_irrefl _)]" } ]
[ 46, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Cardinal.derivFamily_lt_ord
[ { "state_after": "no goals", "state_before": "α : Type ?u.166484\nr : α → α → Prop\nι : Type u\nf : ι → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : (#ι) < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : ι) (b : Ordinal), b < ord c → f i b < ord c\na : Ordinal\n⊢ lift (#ι) < c", "tactic": "rwa [lift_id]" } ]
[ 1185, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1182, 1 ]
Mathlib/Data/List/Basic.lean
List.replicate_left_injective
[]
[ 485, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 484, 1 ]
Mathlib/Order/Chain.lean
subset_succChain
[ { "state_after": "α : Type u_1\nβ : Type ?u.9526\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\nh : ¬(IsChain r s ∧ ∃ x, SuperChain r s x)\n⊢ s ⊆ SuccChain r s", "state_before": "α : Type u_1\nβ : Type ?u.9526\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\nh : ¬∃ t, IsChain r s ∧ SuperChain r s t\n⊢ s ⊆ SuccChain r s", "tactic": "rw [exists_and_left] at h" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.9526\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\nh : ¬(IsChain r s ∧ ∃ x, SuperChain r s x)\n⊢ s ⊆ SuccChain r s", "tactic": "simp [SuccChain, dif_neg, h, Subset.rfl]" } ]
[ 190, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 186, 1 ]
Mathlib/Data/Set/Function.lean
Set.eqOn_refl
[]
[ 205, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Data/Real/NNReal.lean
Real.nnabs_of_nonneg
[ { "state_after": "case a\nx : ℝ\nh : 0 ≤ x\n⊢ ↑(↑nnabs x) = ↑(toNNReal x)", "state_before": "x : ℝ\nh : 0 ≤ x\n⊢ ↑nnabs x = toNNReal x", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nx : ℝ\nh : 0 ≤ x\n⊢ ↑(↑nnabs x) = ↑(toNNReal x)", "tactic": "rw [coe_toNNReal x h, coe_nnabs, abs_of_nonneg h]" } ]
[ 1068, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1066, 1 ]
Mathlib/Analysis/Normed/Field/Basic.lean
List.norm_prod_le'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.110463\nγ : Type ?u.110466\nι : Type ?u.110469\ninst✝ : SeminormedRing α\na : α\nx✝ : [a] ≠ []\n⊢ ‖prod [a]‖ ≤ prod (map norm [a])", "tactic": "simp" }, { "state_after": "α : Type u_1\nβ : Type ?u.110463\nγ : Type ?u.110466\nι : Type ?u.110469\ninst✝ : SeminormedRing α\na b : α\nl : List α\nx✝ : a :: b :: l ≠ []\n⊢ ‖a * prod (b :: l)‖ ≤ ‖a‖ * prod (map norm (b :: l))", "state_before": "α : Type u_1\nβ : Type ?u.110463\nγ : Type ?u.110466\nι : Type ?u.110469\ninst✝ : SeminormedRing α\na b : α\nl : List α\nx✝ : a :: b :: l ≠ []\n⊢ ‖prod (a :: b :: l)‖ ≤ prod (map norm (a :: b :: l))", "tactic": "rw [List.map_cons, List.prod_cons, @List.prod_cons _ _ _ ‖a‖]" }, { "state_after": "α : Type u_1\nβ : Type ?u.110463\nγ : Type ?u.110466\nι : Type ?u.110469\ninst✝ : SeminormedRing α\na b : α\nl : List α\nx✝ : a :: b :: l ≠ []\n⊢ ‖prod (b :: l)‖ ≤ prod (map norm (b :: l))", "state_before": "α : Type u_1\nβ : Type ?u.110463\nγ : Type ?u.110466\nι : Type ?u.110469\ninst✝ : SeminormedRing α\na b : α\nl : List α\nx✝ : a :: b :: l ≠ []\n⊢ ‖a * prod (b :: l)‖ ≤ ‖a‖ * prod (map norm (b :: l))", "tactic": "refine' le_trans (norm_mul_le _ _) (mul_le_mul_of_nonneg_left _ (norm_nonneg _))" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.110463\nγ : Type ?u.110466\nι : Type ?u.110469\ninst✝ : SeminormedRing α\na b : α\nl : List α\nx✝ : a :: b :: l ≠ []\n⊢ ‖prod (b :: l)‖ ≤ prod (map norm (b :: l))", "tactic": "exact List.norm_prod_le' (List.cons_ne_nil b l)" } ]
[ 320, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 314, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_ite_one
[ { "state_after": "case inl\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ∃ i, i ∈ s ∧ f i\n⊢ (∏ i in s, if f i then a else 1) = a\n\ncase inr\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ¬∃ i, i ∈ s ∧ f i\n⊢ (∏ i in s, if f i then a else 1) = 1", "state_before": "ι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\n⊢ (∏ i in s, if f i then a else 1) = if ∃ i, i ∈ s ∧ f i then a else 1", "tactic": "split_ifs with h" }, { "state_after": "case inl.intro.intro\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\ni : α\nhi : i ∈ s\nhfi : f i\n⊢ (∏ i in s, if f i then a else 1) = a", "state_before": "case inl\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ∃ i, i ∈ s ∧ f i\n⊢ (∏ i in s, if f i then a else 1) = a", "tactic": "obtain ⟨i, hi, hfi⟩ := h" }, { "state_after": "case inl.intro.intro\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\ni : α\nhi : i ∈ s\nhfi : f i\n⊢ ∀ (b : α), b ∈ s → b ≠ i → (if f b then a else 1) = 1", "state_before": "case inl.intro.intro\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\ni : α\nhi : i ∈ s\nhfi : f i\n⊢ (∏ i in s, if f i then a else 1) = a", "tactic": "rw [prod_eq_single_of_mem _ hi, if_pos hfi]" }, { "state_after": "no goals", "state_before": "case inl.intro.intro\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\ni : α\nhi : i ∈ s\nhfi : f i\n⊢ ∀ (b : α), b ∈ s → b ≠ i → (if f b then a else 1) = 1", "tactic": "exact fun j hj h => if_neg fun hfj => (hf hj hi h).le_bot ⟨hfj, hfi⟩" }, { "state_after": "case inr\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ∀ (i : α), i ∈ s → ¬f i\n⊢ (∏ i in s, if f i then a else 1) = 1", "state_before": "case inr\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ¬∃ i, i ∈ s ∧ f i\n⊢ (∏ i in s, if f i then a else 1) = 1", "tactic": "push_neg at h" }, { "state_after": "case inr\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ∀ (i : α), i ∈ s → ¬f i\n⊢ ∀ (x : α), x ∈ s → (if f x then a else 1) = 1", "state_before": "case inr\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ∀ (i : α), i ∈ s → ¬f i\n⊢ (∏ i in s, if f i then a else 1) = 1", "tactic": "rw [prod_eq_one]" }, { "state_after": "no goals", "state_before": "case inr\nι : Type ?u.798449\nβ : Type u\nα : Type v\nγ : Type w\ns s₁ s₂ : Finset α\na✝ : α\nf✝ g : α → β\ninst✝¹ : CommMonoid β\nf : α → Prop\ninst✝ : DecidablePred f\nhf : Set.PairwiseDisjoint (↑s) f\na : β\nh : ∀ (i : α), i ∈ s → ¬f i\n⊢ ∀ (x : α), x ∈ s → (if f x then a else 1) = 1", "tactic": "exact fun i hi => if_neg (h i hi)" } ]
[ 1691, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1683, 1 ]
Mathlib/MeasureTheory/Measure/Lebesgue/EqHaar.lean
MeasureTheory.Measure.add_haar_closedBall_mul
[ { "state_after": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.1994959\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ : Set E\nx : E\nr : ℝ\nhr : 0 ≤ r\ns : ℝ\nhs : 0 ≤ s\nthis : closedBall 0 (r * s) = r • closedBall 0 s\n⊢ ↑↑μ (closedBall x (r * s)) = ENNReal.ofReal (r ^ finrank ℝ E) * ↑↑μ (closedBall 0 s)", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.1994959\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ : Set E\nx : E\nr : ℝ\nhr : 0 ≤ r\ns : ℝ\nhs : 0 ≤ s\n⊢ ↑↑μ (closedBall x (r * s)) = ENNReal.ofReal (r ^ finrank ℝ E) * ↑↑μ (closedBall 0 s)", "tactic": "have : closedBall (0 : E) (r * s) = r • closedBall (0 : E) s := by\n simp [smul_closedBall r (0 : E) hs, abs_of_nonneg hr]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.1994959\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ : Set E\nx : E\nr : ℝ\nhr : 0 ≤ r\ns : ℝ\nhs : 0 ≤ s\nthis : closedBall 0 (r * s) = r • closedBall 0 s\n⊢ ↑↑μ (closedBall x (r * s)) = ENNReal.ofReal (r ^ finrank ℝ E) * ↑↑μ (closedBall 0 s)", "tactic": "simp only [this, add_haar_smul, abs_of_nonneg hr, add_haar_closedBall_center, abs_pow]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁸ : NormedAddCommGroup E\ninst✝⁷ : NormedSpace ℝ E\ninst✝⁶ : MeasurableSpace E\ninst✝⁵ : BorelSpace E\ninst✝⁴ : FiniteDimensional ℝ E\nμ : Measure E\ninst✝³ : IsAddHaarMeasure μ\nF : Type ?u.1994959\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedSpace ℝ F\ninst✝ : CompleteSpace F\ns✝ : Set E\nx : E\nr : ℝ\nhr : 0 ≤ r\ns : ℝ\nhs : 0 ≤ s\n⊢ closedBall 0 (r * s) = r • closedBall 0 s", "tactic": "simp [smul_closedBall r (0 : E) hs, abs_of_nonneg hr]" } ]
[ 452, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 448, 1 ]
Mathlib/RingTheory/RootsOfUnity/Complex.lean
Complex.isPrimitiveRoot_exp_of_coprime
[ { "state_after": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\n⊢ exp (2 * ↑π * I * (↑i / ↑n)) ^ n = 1 ∧ ∀ (l : ℕ), exp (2 * ↑π * I * (↑i / ↑n)) ^ l = 1 → n ∣ l", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\n⊢ IsPrimitiveRoot (exp (2 * ↑π * I * (↑i / ↑n))) n", "tactic": "rw [IsPrimitiveRoot.iff_def]" }, { "state_after": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\n⊢ (∃ n_1, ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) ∧\n ∀ (l : ℕ), (∃ n_1, ↑l * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) → n ∣ l", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\n⊢ exp (2 * ↑π * I * (↑i / ↑n)) ^ n = 1 ∧ ∀ (l : ℕ), exp (2 * ↑π * I * (↑i / ↑n)) ^ l = 1 → n ∣ l", "tactic": "simp only [← exp_nat_mul, exp_eq_one_iff]" }, { "state_after": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ (∃ n_1, ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) ∧\n ∀ (l : ℕ), (∃ n_1, ↑l * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) → n ∣ l", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\n⊢ (∃ n_1, ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) ∧\n ∀ (l : ℕ), (∃ n_1, ↑l * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) → n ∣ l", "tactic": "have hn0 : (n : ℂ) ≠ 0 := by exact_mod_cast h0" }, { "state_after": "case left\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∃ n_1, ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)\n\ncase right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∀ (l : ℕ), (∃ n_1, ↑l * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) → n ∣ l", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ (∃ n_1, ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) ∧\n ∀ (l : ℕ), (∃ n_1, ↑l * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) → n ∣ l", "tactic": "constructor" }, { "state_after": "no goals", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\n⊢ ↑n ≠ 0", "tactic": "exact_mod_cast h0" }, { "state_after": "case left\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑↑i * (2 * ↑π * I)", "state_before": "case left\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∃ n_1, ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)", "tactic": "use i" }, { "state_after": "no goals", "state_before": "case left\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ↑n * (2 * ↑π * I * (↑i / ↑n)) = ↑↑i * (2 * ↑π * I)", "tactic": "field_simp [hn0, mul_comm (i : ℂ), mul_comm (n : ℂ)]" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∀ (l : ℕ) (x : ℤ), ↑i * ↑l * (2 * ↑π * I) = ↑x * (2 * ↑π * I) * ↑n → n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∀ (l : ℕ), (∃ n_1, ↑l * (2 * ↑π * I * (↑i / ↑n)) = ↑n_1 * (2 * ↑π * I)) → n ∣ l", "tactic": "simp only [hn0, mul_right_comm _ _ ↑n, mul_left_inj' two_pi_I_ne_zero, Ne.def, not_false_iff,\n mul_comm _ (i : ℂ), ← mul_assoc _ (i : ℂ), exists_imp, field_simps]" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∀ (l : ℕ) (x : ℤ), ↑(i * l) * (↑(2 * π) * I) = ↑x * (↑(2 * π) * I) * ↑n → n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∀ (l : ℕ) (x : ℤ), ↑i * ↑l * (2 * ↑π * I) = ↑x * (2 * ↑π * I) * ↑n → n ∣ l", "tactic": "norm_cast" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhk : ↑(i * l) * (↑(2 * π) * I) = ↑k * (↑(2 * π) * I) * ↑n\n⊢ n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\n⊢ ∀ (l : ℕ) (x : ℤ), ↑(i * l) * (↑(2 * π) * I) = ↑x * (↑(2 * π) * I) * ↑n → n ∣ l", "tactic": "rintro l k hk" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhk : ↑(i * l) * (↑(2 * π) * I) = ↑n * ↑k * (↑(2 * π) * I)\n⊢ n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhk : ↑(i * l) * (↑(2 * π) * I) = ↑k * (↑(2 * π) * I) * ↑n\n⊢ n ∣ l", "tactic": "conv_rhs at hk => rw [mul_comm, ← mul_assoc]" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhk : ↑(i * l) * (↑(2 * π) * I) = ↑n * ↑k * (↑(2 * π) * I)\nhz : 2 * ↑π * I ≠ 0\n⊢ n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhk : ↑(i * l) * (↑(2 * π) * I) = ↑n * ↑k * (↑(2 * π) * I)\n⊢ n ∣ l", "tactic": "have hz : 2 * ↑π * I ≠ 0 := by simp [pi_pos.ne.symm, I_ne_zero]" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑i * ↑l = ↑n * ↑k\n⊢ n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhk : ↑(i * l) * (↑(2 * π) * I) = ↑n * ↑k * (↑(2 * π) * I)\nhz : 2 * ↑π * I ≠ 0\n⊢ n ∣ l", "tactic": "field_simp [hz] at hk" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑(i * l) = ↑n * k\n⊢ n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑i * ↑l = ↑n * ↑k\n⊢ n ∣ l", "tactic": "norm_cast at hk" }, { "state_after": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑(i * l) = ↑n * k\nthis : n ∣ i * l\n⊢ n ∣ l", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑(i * l) = ↑n * k\n⊢ n ∣ l", "tactic": "have : n ∣ i * l := by rw [← Int.coe_nat_dvd, hk, mul_comm]; apply dvd_mul_left" }, { "state_after": "no goals", "state_before": "case right\ni n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑(i * l) = ↑n * k\nthis : n ∣ i * l\n⊢ n ∣ l", "tactic": "exact hi.symm.dvd_of_dvd_mul_left this" }, { "state_after": "no goals", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhk : ↑(i * l) * (↑(2 * π) * I) = ↑n * ↑k * (↑(2 * π) * I)\n⊢ 2 * ↑π * I ≠ 0", "tactic": "simp [pi_pos.ne.symm, I_ne_zero]" }, { "state_after": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑(i * l) = ↑n * k\n⊢ ↑n ∣ k * ↑n", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑(i * l) = ↑n * k\n⊢ n ∣ i * l", "tactic": "rw [← Int.coe_nat_dvd, hk, mul_comm]" }, { "state_after": "no goals", "state_before": "i n : ℕ\nh0 : n ≠ 0\nhi : Nat.coprime i n\nhn0 : ↑n ≠ 0\nl : ℕ\nk : ℤ\nhz : 2 * ↑π * I ≠ 0\nhk : ↑(i * l) = ↑n * k\n⊢ ↑n ∣ k * ↑n", "tactic": "apply dvd_mul_left" } ]
[ 52, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 35, 1 ]
Mathlib/Topology/MetricSpace/Contracting.lean
ContractingWith.edist_le_of_fixedPoint
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : EMetricSpace α\ncs : CompleteSpace α\nK : ℝ≥0\nf : α → α\nhf : ContractingWith K f\nx y : α\nh : edist x y ≠ ⊤\nhy : IsFixedPt f y\n⊢ edist x y ≤ edist x (f x) / (1 - ↑K)", "tactic": "simpa only [hy.eq, edist_self, add_zero] using hf.edist_inequality h" } ]
[ 82, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_def'
[]
[ 147, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/ModelTheory/Syntax.lean
FirstOrder.Language.BoundedFormula.isPrenex_toPrenexImp
[ { "state_after": "case of_isQF\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α n✝\nhφ : IsQF φ✝\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImp φ✝ ψ)\n\ncase all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α (n✝ + 1)\nh✝ : IsPrenex φ✝\nih1 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ)\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImp (all φ✝) ψ)\n\ncase ex\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α (n✝ + 1)\nh✝ : IsPrenex φ✝\nih2 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ)\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImp (BoundedFormula.ex φ✝) ψ)", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝ ψ✝ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ : BoundedFormula L α n\nhφ : IsPrenex φ\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImp φ ψ)", "tactic": "induction' hφ with _ _ hφ _ _ _ ih1 _ _ _ ih2" }, { "state_after": "case of_isQF\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α n✝\nhφ : IsQF φ✝\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImpRight φ✝ ψ)", "state_before": "case of_isQF\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α n✝\nhφ : IsQF φ✝\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImp φ✝ ψ)", "tactic": "rw [hφ.toPrenexImp]" }, { "state_after": "no goals", "state_before": "case of_isQF\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α n✝\nhφ : IsQF φ✝\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImpRight φ✝ ψ)", "tactic": "exact isPrenex_toPrenexImpRight hφ hψ" }, { "state_after": "no goals", "state_before": "case all\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α (n✝ + 1)\nh✝ : IsPrenex φ✝\nih1 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ)\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImp (all φ✝) ψ)", "tactic": "exact (ih1 hψ.liftAt).ex" }, { "state_after": "no goals", "state_before": "case ex\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.138402\nP : Type ?u.138405\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nα : Type u'\nβ : Type v'\nγ : Type ?u.138433\nn l : ℕ\nφ✝¹ ψ✝¹ : BoundedFormula L α l\nθ : BoundedFormula L α (Nat.succ l)\nv : α → M\nxs : Fin l → M\nφ ψ✝ : BoundedFormula L α n\nhψ✝ : IsPrenex ψ✝\nn✝ : ℕ\nφ✝ : BoundedFormula L α (n✝ + 1)\nh✝ : IsPrenex φ✝\nih2 : ∀ {ψ : BoundedFormula L α (n✝ + 1)}, IsPrenex ψ → IsPrenex (toPrenexImp φ✝ ψ)\nψ : BoundedFormula L α n✝\nhψ : IsPrenex ψ\n⊢ IsPrenex (toPrenexImp (BoundedFormula.ex φ✝) ψ)", "tactic": "exact (ih2 hψ.liftAt).all" } ]
[ 850, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 844, 1 ]
Std/Logic.lean
decide_eq_false_iff_not
[]
[ 525, 40 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 524, 9 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.ofMulEquivOfDom_comp
[]
[ 1534, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1533, 1 ]
Mathlib/MeasureTheory/Decomposition/SignedHahn.lean
MeasureTheory.SignedMeasure.someExistsOneDivLT_measurableSet
[ { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.7479\ninst✝³ : MeasurableSpace α\nM : Type ?u.7485\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬restrict s i ≤ restrict 0 i\n⊢ MeasurableSet (MeasureTheory.SignedMeasure.someExistsOneDivLT s i)\n\ncase neg\nα : Type u_1\nβ : Type ?u.7479\ninst✝³ : MeasurableSpace α\nM : Type ?u.7485\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬¬restrict s i ≤ restrict 0 i\n⊢ MeasurableSet (MeasureTheory.SignedMeasure.someExistsOneDivLT s i)", "state_before": "α : Type u_1\nβ : Type ?u.7479\ninst✝³ : MeasurableSpace α\nM : Type ?u.7485\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\n⊢ MeasurableSet (MeasureTheory.SignedMeasure.someExistsOneDivLT s i)", "tactic": "by_cases hi : ¬s ≤[i] 0" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.7479\ninst✝³ : MeasurableSpace α\nM : Type ?u.7485\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬restrict s i ≤ restrict 0 i\n⊢ MeasurableSet (MeasureTheory.SignedMeasure.someExistsOneDivLT s i)", "tactic": "exact\n let ⟨_, h, _⟩ := someExistsOneDivLT_spec hi\n h" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.7479\ninst✝³ : MeasurableSpace α\nM : Type ?u.7485\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬¬restrict s i ≤ restrict 0 i\n⊢ MeasurableSet ∅", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.7479\ninst✝³ : MeasurableSpace α\nM : Type ?u.7485\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬¬restrict s i ≤ restrict 0 i\n⊢ MeasurableSet (MeasureTheory.SignedMeasure.someExistsOneDivLT s i)", "tactic": "rw [someExistsOneDivLT, dif_neg hi]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.7479\ninst✝³ : MeasurableSpace α\nM : Type ?u.7485\ninst✝² : AddCommMonoid M\ninst✝¹ : TopologicalSpace M\ninst✝ : OrderedAddCommMonoid M\ns : SignedMeasure α\ni j : Set α\nhi : ¬¬restrict s i ≤ restrict 0 i\n⊢ MeasurableSet ∅", "tactic": "exact MeasurableSet.empty" } ]
[ 153, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 9 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.translationNumber_one
[ { "state_after": "no goals", "state_before": "f g : CircleDeg1Lift\n⊢ Tendsto (fun n => (↑1^[n]) 0 / ↑n) atTop (𝓝 0)", "tactic": "simp [tendsto_const_nhds]" } ]
[ 713, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 712, 1 ]
Mathlib/Data/Nat/Factors.lean
Nat.perm_factors_mul
[ { "state_after": "case refine'_1\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\n⊢ prod (factors a ++ factors b) = a * b\n\ncase refine'_2\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\n⊢ ∀ (p : ℕ), p ∈ factors a ++ factors b → Prime p", "state_before": "a b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\n⊢ factors (a * b) ~ factors a ++ factors b", "tactic": "refine' (factors_unique _ _).symm" }, { "state_after": "no goals", "state_before": "case refine'_1\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\n⊢ prod (factors a ++ factors b) = a * b", "tactic": "rw [List.prod_append, prod_factors ha, prod_factors hb]" }, { "state_after": "case refine'_2\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\np : ℕ\nhp : p ∈ factors a ++ factors b\n⊢ Prime p", "state_before": "case refine'_2\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\n⊢ ∀ (p : ℕ), p ∈ factors a ++ factors b → Prime p", "tactic": "intro p hp" }, { "state_after": "case refine'_2\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\np : ℕ\nhp : p ∈ factors a ∨ p ∈ factors b\n⊢ Prime p", "state_before": "case refine'_2\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\np : ℕ\nhp : p ∈ factors a ++ factors b\n⊢ Prime p", "tactic": "rw [List.mem_append] at hp" }, { "state_after": "no goals", "state_before": "case refine'_2\na b : ℕ\nha : a ≠ 0\nhb : b ≠ 0\np : ℕ\nhp : p ∈ factors a ∨ p ∈ factors b\n⊢ Prime p", "tactic": "cases' hp with hp' hp' <;> exact prime_of_mem_factors hp'" } ]
[ 207, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Basic.lean
hasFDerivAt_iff_tendsto
[]
[ 318, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/GroupTheory/FreeProduct.lean
FreeProduct.Word.prod_smul
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\nm : FreeProduct M\n⊢ ∀ (w : Word M), prod (m • w) = m * prod w", "tactic": "induction m using FreeProduct.induction_on with\n| h_one =>\n intro\n rw [one_smul, one_mul]\n| h_of _ =>\n intros\n rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm,\n Equiv.symm_apply_apply]\n| h_mul x y hx hy =>\n intro w\n rw [mul_smul, hx, hy, mul_assoc]" }, { "state_after": "case h_one\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\nw✝ : Word M\n⊢ prod (1 • w✝) = 1 * prod w✝", "state_before": "case h_one\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\n⊢ ∀ (w : Word M), prod (1 • w) = 1 * prod w", "tactic": "intro" }, { "state_after": "no goals", "state_before": "case h_one\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\nw✝ : Word M\n⊢ prod (1 • w✝) = 1 * prod w✝", "tactic": "rw [one_smul, one_mul]" }, { "state_after": "case h_of\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\ni✝ : ι\nm✝ : M i✝\nw✝ : Word M\n⊢ prod (↑of m✝ • w✝) = ↑of m✝ * prod w✝", "state_before": "case h_of\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\ni✝ : ι\nm✝ : M i✝\n⊢ ∀ (w : Word M), prod (↑of m✝ • w) = ↑of m✝ * prod w", "tactic": "intros" }, { "state_after": "no goals", "state_before": "case h_of\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\ni✝ : ι\nm✝ : M i✝\nw✝ : Word M\n⊢ prod (↑of m✝ • w✝) = ↑of m✝ * prod w✝", "tactic": "rw [of_smul_def, prod_rcons, of.map_mul, mul_assoc, ← prod_rcons, ← equivPair_symm,\n Equiv.symm_apply_apply]" }, { "state_after": "case h_mul\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\nx y : FreeProduct M\nhx : ∀ (w : Word M), prod (x • w) = x * prod w\nhy : ∀ (w : Word M), prod (y • w) = y * prod w\nw : Word M\n⊢ prod ((x * y) • w) = x * y * prod w", "state_before": "case h_mul\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\nx y : FreeProduct M\nhx : ∀ (w : Word M), prod (x • w) = x * prod w\nhy : ∀ (w : Word M), prod (y • w) = y * prod w\n⊢ ∀ (w : Word M), prod ((x * y) • w) = x * y * prod w", "tactic": "intro w" }, { "state_after": "no goals", "state_before": "case h_mul\nι : Type u_1\nM : ι → Type u_2\ninst✝³ : (i : ι) → Monoid (M i)\nN : Type ?u.466820\ninst✝² : Monoid N\ninst✝¹ : (i : ι) → DecidableEq (M i)\ninst✝ : DecidableEq ι\nx y : FreeProduct M\nhx : ∀ (w : Word M), prod (x • w) = x * prod w\nhy : ∀ (w : Word M), prod (y • w) = y * prod w\nw : Word M\n⊢ prod ((x * y) • w) = x * y * prod w", "tactic": "rw [mul_smul, hx, hy, mul_assoc]" } ]
[ 458, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 447, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
BoxIntegral.Prepartition.monotone_restrict
[]
[ 506, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 505, 1 ]
Mathlib/Order/Iterate.lean
Function.Commute.iterate_pos_le_iff_map_le
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrder α\nf g : α → α\nh : Commute f g\nhf : Monotone f\nhg : StrictMono g\nx : α\nn : ℕ\nhn : 0 < n\n⊢ (f^[n]) x ≤ (g^[n]) x ↔ f x ≤ g x", "tactic": "simpa only [not_lt] using not_congr (h.symm.iterate_pos_lt_iff_map_lt' hg hf hn)" } ]
[ 211, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Analysis/MeanInequalities.lean
Real.inner_le_Lp_mul_Lq
[ { "state_after": "ι : Type u\ns : Finset ι\nf g : ι → ℝ\np q : ℝ\nhpq : IsConjugateExponent p q\nthis :\n ↑(∑ i in s,\n (fun i => { val := abs (f i), property := (_ : 0 ≤ abs (f i)) }) i *\n (fun i => { val := abs (g i), property := (_ : 0 ≤ abs (g i)) }) i) ≤\n ↑((∑ i in s, (fun i => { val := abs (f i), property := (_ : 0 ≤ abs (f i)) }) i ^ p) ^ (1 / p) *\n (∑ i in s, (fun i => { val := abs (g i), property := (_ : 0 ≤ abs (g i)) }) i ^ q) ^ (1 / q))\n⊢ ∑ i in s, f i * g i ≤ (∑ i in s, abs (f i) ^ p) ^ (1 / p) * (∑ i in s, abs (g i) ^ q) ^ (1 / q)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ\np q : ℝ\nhpq : IsConjugateExponent p q\n⊢ ∑ i in s, f i * g i ≤ (∑ i in s, abs (f i) ^ p) ^ (1 / p) * (∑ i in s, abs (g i) ^ q) ^ (1 / q)", "tactic": "have :=\n NNReal.coe_le_coe.2\n (NNReal.inner_le_Lp_mul_Lq s (fun i => ⟨_, abs_nonneg (f i)⟩) (fun i => ⟨_, abs_nonneg (g i)⟩)\n hpq)" }, { "state_after": "ι : Type u\ns : Finset ι\nf g : ι → ℝ\np q : ℝ\nhpq : IsConjugateExponent p q\nthis : ∑ x in s, abs (f x) * abs (g x) ≤ (∑ x in s, abs (f x) ^ p) ^ (1 / p) * (∑ x in s, abs (g x) ^ q) ^ (1 / q)\n⊢ ∑ i in s, f i * g i ≤ (∑ i in s, abs (f i) ^ p) ^ (1 / p) * (∑ i in s, abs (g i) ^ q) ^ (1 / q)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ\np q : ℝ\nhpq : IsConjugateExponent p q\nthis :\n ↑(∑ i in s,\n (fun i => { val := abs (f i), property := (_ : 0 ≤ abs (f i)) }) i *\n (fun i => { val := abs (g i), property := (_ : 0 ≤ abs (g i)) }) i) ≤\n ↑((∑ i in s, (fun i => { val := abs (f i), property := (_ : 0 ≤ abs (f i)) }) i ^ p) ^ (1 / p) *\n (∑ i in s, (fun i => { val := abs (g i), property := (_ : 0 ≤ abs (g i)) }) i ^ q) ^ (1 / q))\n⊢ ∑ i in s, f i * g i ≤ (∑ i in s, abs (f i) ^ p) ^ (1 / p) * (∑ i in s, abs (g i) ^ q) ^ (1 / q)", "tactic": "push_cast at this" }, { "state_after": "ι : Type u\ns : Finset ι\nf g : ι → ℝ\np q : ℝ\nhpq : IsConjugateExponent p q\nthis : ∑ x in s, abs (f x) * abs (g x) ≤ (∑ x in s, abs (f x) ^ p) ^ (1 / p) * (∑ x in s, abs (g x) ^ q) ^ (1 / q)\ni : ι\nx✝ : i ∈ s\n⊢ f i * g i ≤ abs (f i) * abs (g i)", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ\np q : ℝ\nhpq : IsConjugateExponent p q\nthis : ∑ x in s, abs (f x) * abs (g x) ≤ (∑ x in s, abs (f x) ^ p) ^ (1 / p) * (∑ x in s, abs (g x) ^ q) ^ (1 / q)\n⊢ ∑ i in s, f i * g i ≤ (∑ i in s, abs (f i) ^ p) ^ (1 / p) * (∑ i in s, abs (g i) ^ q) ^ (1 / q)", "tactic": "refine' le_trans (sum_le_sum fun i _ => _) this" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\nf g : ι → ℝ\np q : ℝ\nhpq : IsConjugateExponent p q\nthis : ∑ x in s, abs (f x) * abs (g x) ≤ (∑ x in s, abs (f x) ^ p) ^ (1 / p) * (∑ x in s, abs (g x) ^ q) ^ (1 / q)\ni : ι\nx✝ : i ∈ s\n⊢ f i * g i ≤ abs (f i) * abs (g i)", "tactic": "simp only [← abs_mul, le_abs_self]" } ]
[ 564, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 556, 1 ]
Mathlib/Init/Logic.lean
heq_of_eq_rec_right
[]
[ 76, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/RingTheory/OreLocalization/Basic.lean
OreLocalization.oreDiv_add_oreDiv
[]
[ 607, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 604, 1 ]
Mathlib/Data/Fintype/Basic.lean
Finset.univ_eq_empty_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.2002\nγ : Type ?u.2005\ninst✝ : Fintype α\ns t : Finset α\n⊢ univ = ∅ ↔ IsEmpty α", "tactic": "rw [← not_nonempty_iff, ← univ_nonempty_iff, not_nonempty_iff_eq_empty]" } ]
[ 113, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.sigmaFinite_iff
[]
[ 3442, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3441, 1 ]
Mathlib/Deprecated/Group.lean
Inv.isGroupHom
[]
[ 402, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 401, 1 ]
Mathlib/Topology/Algebra/Constructions.lean
Units.embedding_embedProduct
[]
[ 111, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/AlgebraicTopology/SimplexCategory.lean
SimplexCategory.ext
[]
[ 73, 5 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Data/Fintype/Card.lean
Fintype.card_le_of_surjective
[]
[ 486, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/Algebra/Order/Group/Defs.lean
inv_le_div_iff_le_mul'
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : CommGroup α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ a⁻¹ ≤ b / c ↔ c ≤ a * b", "tactic": "rw [inv_le_div_iff_le_mul, mul_comm]" } ]
[ 834, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 834, 1 ]
Mathlib/Data/Finset/Basic.lean
List.toFinset.ext
[]
[ 3289, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3288, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.hasSum_lt
[ { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nf g : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\nhsf : sf ≠ ⊤\nhf : HasSum f sf\nhg : HasSum g sg\nhsg : sg = ⊤\n⊢ sf < sg\n\ncase neg\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nf g : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\nhsf : sf ≠ ⊤\nhf : HasSum f sf\nhg : HasSum g sg\nhsg : ¬sg = ⊤\n⊢ sf < sg", "state_before": "α : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nf g : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\nhsf : sf ≠ ⊤\nhf : HasSum f sf\nhg : HasSum g sg\n⊢ sf < sg", "tactic": "by_cases hsg : sg = ⊤" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nf g : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\nhsf : sf ≠ ⊤\nhf : HasSum f sf\nhg : HasSum g sg\nhsg : sg = ⊤\n⊢ sf < sg", "tactic": "exact hsg.symm ▸ lt_of_le_of_ne le_top hsf" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nf g : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\nhsf : sf ≠ ⊤\nhf : HasSum f sf\nhg : HasSum g sg\nhsg : ¬sg = ⊤\nhg' : ∀ (x : α), g x ≠ ⊤\n⊢ sf < sg", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nf g : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\nhsf : sf ≠ ⊤\nhf : HasSum f sf\nhg : HasSum g sg\nhsg : ¬sg = ⊤\n⊢ sf < sg", "tactic": "have hg' : ∀ x, g x ≠ ⊤ := ENNReal.ne_top_of_tsum_ne_top (hg.tsum_eq.symm ▸ hsg)" }, { "state_after": "case neg.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\ng : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nhsf : sf ≠ ⊤\nhg : HasSum g sg\nhsg : ¬sg = ⊤\nhg' : ∀ (x : α), g x ≠ ⊤\nf : α → ℝ≥0\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ g a\nhi : (fun i => ↑(f i)) i < g i\nhf : HasSum (fun i => ↑(f i)) sf\n⊢ sf < sg", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nf g : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\nhsf : sf ≠ ⊤\nhf : HasSum f sf\nhg : HasSum g sg\nhsg : ¬sg = ⊤\nhg' : ∀ (x : α), g x ≠ ⊤\n⊢ sf < sg", "tactic": "lift f to α → ℝ≥0 using fun x =>\n ne_of_lt (lt_of_le_of_lt (h x) <| lt_of_le_of_ne le_top (hg' x))" }, { "state_after": "case neg.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nsf sg : ℝ≥0∞\ni : α\nhsf : sf ≠ ⊤\nhsg : ¬sg = ⊤\nf : α → ℝ≥0\nhf : HasSum (fun i => ↑(f i)) sf\ng : α → ℝ≥0\nhg : HasSum (fun i => ↑(g i)) sg\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a\nhi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i\n⊢ sf < sg", "state_before": "case neg.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\ng : α → ℝ≥0∞\nsf sg : ℝ≥0∞\ni : α\nhsf : sf ≠ ⊤\nhg : HasSum g sg\nhsg : ¬sg = ⊤\nhg' : ∀ (x : α), g x ≠ ⊤\nf : α → ℝ≥0\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ g a\nhi : (fun i => ↑(f i)) i < g i\nhf : HasSum (fun i => ↑(f i)) sf\n⊢ sf < sg", "tactic": "lift g to α → ℝ≥0 using hg'" }, { "state_after": "case neg.intro.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nsg : ℝ≥0∞\ni : α\nhsg : ¬sg = ⊤\nf g : α → ℝ≥0\nhg : HasSum (fun i => ↑(g i)) sg\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a\nhi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i\nsf : ℝ≥0\nhf : HasSum (fun i => ↑(f i)) ↑sf\n⊢ ↑sf < sg", "state_before": "case neg.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nsf sg : ℝ≥0∞\ni : α\nhsf : sf ≠ ⊤\nhsg : ¬sg = ⊤\nf : α → ℝ≥0\nhf : HasSum (fun i => ↑(f i)) sf\ng : α → ℝ≥0\nhg : HasSum (fun i => ↑(g i)) sg\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a\nhi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i\n⊢ sf < sg", "tactic": "lift sf to ℝ≥0 using hsf" }, { "state_after": "case neg.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\ni : α\nf g : α → ℝ≥0\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a\nhi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i\nsf : ℝ≥0\nhf : HasSum (fun i => ↑(f i)) ↑sf\nsg : ℝ≥0\nhg : HasSum (fun i => ↑(g i)) ↑sg\n⊢ ↑sf < ↑sg", "state_before": "case neg.intro.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\nsg : ℝ≥0∞\ni : α\nhsg : ¬sg = ⊤\nf g : α → ℝ≥0\nhg : HasSum (fun i => ↑(g i)) sg\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a\nhi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i\nsf : ℝ≥0\nhf : HasSum (fun i => ↑(f i)) ↑sf\n⊢ ↑sf < sg", "tactic": "lift sg to ℝ≥0 using hsg" }, { "state_after": "case neg.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\ni : α\nf g : α → ℝ≥0\nsf : ℝ≥0\nhf : HasSum (fun i => ↑(f i)) ↑sf\nsg : ℝ≥0\nhg : HasSum (fun i => ↑(g i)) ↑sg\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\n⊢ sf < sg", "state_before": "case neg.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\ni : α\nf g : α → ℝ≥0\nh : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a\nhi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i\nsf : ℝ≥0\nhf : HasSum (fun i => ↑(f i)) ↑sf\nsg : ℝ≥0\nhg : HasSum (fun i => ↑(g i)) ↑sg\n⊢ ↑sf < ↑sg", "tactic": "simp only [coe_le_coe, coe_lt_coe] at h hi⊢" }, { "state_after": "no goals", "state_before": "case neg.intro.intro.intro.intro\nα : Type u_1\nβ : Type ?u.336123\nγ : Type ?u.336126\ni : α\nf g : α → ℝ≥0\nsf : ℝ≥0\nhf : HasSum (fun i => ↑(f i)) ↑sf\nsg : ℝ≥0\nhg : HasSum (fun i => ↑(g i)) ↑sg\nh : ∀ (a : α), f a ≤ g a\nhi : f i < g i\n⊢ sf < sg", "tactic": "exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg)" } ]
[ 1276, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1265, 1 ]
Mathlib/Algebra/BigOperators/Basic.lean
Finset.prod_sigma
[ { "state_after": "no goals", "state_before": "ι : Type ?u.312096\nβ : Type u\nα : Type v\nγ : Type w\ns✝ s₁ s₂ : Finset α\na : α\nf✝ g : α → β\ninst✝ : CommMonoid β\nσ : α → Type u_1\ns : Finset α\nt : (a : α) → Finset (σ a)\nf : Sigma σ → β\n⊢ ∏ x in Finset.sigma s t, f x = ∏ a in s, ∏ s in t a, f { fst := a, snd := s }", "tactic": "simp_rw [← disjiUnion_map_sigma_mk, prod_disjiUnion, prod_map, Function.Embedding.sigmaMk_apply]" } ]
[ 529, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 527, 1 ]
Mathlib/Order/Filter/Extr.lean
IsMaxFilter.bicomp_mono
[]
[ 380, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 377, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/EulerSineProd.lean
EulerSine.antideriv_cos_comp_const_mul
[ { "state_after": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "state_before": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "tactic": "have a : HasDerivAt (fun y : ℂ => y * (2 * z)) _ x := hasDerivAt_mul_const _" }, { "state_after": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "state_before": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "tactic": "have b : HasDerivAt (fun y : ℂ => Complex.sin (y * (2 * z))) _ x :=\n HasDerivAt.comp (x : ℂ) (Complex.hasDerivAt_sin (x * (2 * z))) a" }, { "state_after": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\nc : HasDerivAt (fun x => Complex.sin (↑x * (2 * z)) / (2 * z)) (Complex.cos (↑x * (2 * z)) * (2 * z) / (2 * z)) x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "state_before": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "tactic": "have c := b.comp_ofReal.div_const (2 * z)" }, { "state_after": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\nc : HasDerivAt (fun x => Complex.sin (↑x * (2 * z)) / (2 * z)) (Complex.cos (↑x * (2 * z))) x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "state_before": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\nc : HasDerivAt (fun x => Complex.sin (↑x * (2 * z)) / (2 * z)) (Complex.cos (↑x * (2 * z)) * (2 * z) / (2 * z)) x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "tactic": "field_simp at c" }, { "state_after": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\nc : HasDerivAt (fun x => Complex.sin (2 * z * ↑x) / (2 * z)) (Complex.cos (2 * z * ↑x)) x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "state_before": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\nc : HasDerivAt (fun x => Complex.sin (↑x * (2 * z)) / (2 * z)) (Complex.cos (↑x * (2 * z))) x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "tactic": "simp only [fun y => mul_comm y (2 * z)] at c" }, { "state_after": "no goals", "state_before": "z : ℂ\nn : ℕ\nhz : z ≠ 0\nx : ℝ\na : HasDerivAt (fun y => y * (2 * z)) (2 * z) ↑x\nb : HasDerivAt (fun y => Complex.sin (y * (2 * z))) (Complex.cos (↑x * (2 * z)) * (2 * z)) ↑x\nc : HasDerivAt (fun x => Complex.sin (2 * z * ↑x) / (2 * z)) (Complex.cos (2 * z * ↑x)) x\n⊢ HasDerivAt (fun y => Complex.sin (2 * z * ↑y) / (2 * z)) (Complex.cos (2 * z * ↑x)) x", "tactic": "exact c" } ]
[ 52, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 45, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
UniqueFactorizationMonoid.factors_pow
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn : ℕ\n⊢ Multiset.Rel Associated (factors (x ^ 0)) (0 • factors x)", "tactic": "rw [zero_smul, pow_zero, factors_one, Multiset.rel_zero_right]" }, { "state_after": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : x = 0\n⊢ Multiset.Rel Associated (factors (x ^ (n + 1))) ((n + 1) • factors x)\n\ncase neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors (x ^ (n + 1))) ((n + 1) • factors x)", "state_before": "α : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\n⊢ Multiset.Rel Associated (factors (x ^ (n + 1))) ((n + 1) • factors x)", "tactic": "by_cases h0 : x = 0" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : x = 0\n⊢ Multiset.Rel Associated (factors (x ^ (n + 1))) ((n + 1) • factors x)", "tactic": "simp [h0, zero_pow n.succ_pos, smul_zero]" }, { "state_after": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors (x * x ^ n)) (factors x + n • factors x)", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors (x ^ (n + 1))) ((n + 1) • factors x)", "tactic": "rw [pow_succ, succ_nsmul]" }, { "state_after": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors x + factors (x ^ n)) (factors x + n • factors x)", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors (x * x ^ n)) (factors x + n • factors x)", "tactic": "refine' Multiset.Rel.trans _ (factors_mul h0 (pow_ne_zero n h0)) _" }, { "state_after": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors x) (factors x)", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors x + factors (x ^ n)) (factors x + n • factors x)", "tactic": "refine' Multiset.Rel.add _ <| factors_pow n" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\ninst✝² : CancelCommMonoidWithZero α\ninst✝¹ : DecidableEq α\ninst✝ : UniqueFactorizationMonoid α\nx : α\nn✝ n : ℕ\nh0 : ¬x = 0\n⊢ Multiset.Rel Associated (factors x) (factors x)", "tactic": "exact Multiset.rel_refl_of_refl_on fun y _ => Associated.refl _" } ]
[ 530, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 520, 1 ]
Mathlib/Data/Dfinsupp/Basic.lean
Dfinsupp.single_add
[ { "state_after": "case pos\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝ : (i : ι) → AddZeroClass (β i)\ni : ι\nb₁ b₂ : β i\ni' : ι\nh : i = i'\n⊢ ↑(single i (b₁ + b₂)) i' = ↑(single i b₁ + single i b₂) i'\n\ncase neg\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝ : (i : ι) → AddZeroClass (β i)\ni : ι\nb₁ b₂ : β i\ni' : ι\nh : ¬i = i'\n⊢ ↑(single i (b₁ + b₂)) i' = ↑(single i b₁ + single i b₂) i'", "state_before": "ι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝ : (i : ι) → AddZeroClass (β i)\ni : ι\nb₁ b₂ : β i\ni' : ι\n⊢ ↑(single i (b₁ + b₂)) i' = ↑(single i b₁ + single i b₂) i'", "tactic": "by_cases h : i = i'" }, { "state_after": "case pos\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝ : (i : ι) → AddZeroClass (β i)\ni : ι\nb₁ b₂ : β i\n⊢ ↑(single i (b₁ + b₂)) i = ↑(single i b₁ + single i b₂) i", "state_before": "case pos\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝ : (i : ι) → AddZeroClass (β i)\ni : ι\nb₁ b₂ : β i\ni' : ι\nh : i = i'\n⊢ ↑(single i (b₁ + b₂)) i' = ↑(single i b₁ + single i b₂) i'", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "case pos\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝ : (i : ι) → AddZeroClass (β i)\ni : ι\nb₁ b₂ : β i\n⊢ ↑(single i (b₁ + b₂)) i = ↑(single i b₁ + single i b₂) i", "tactic": "simp only [add_apply, single_eq_same]" }, { "state_after": "no goals", "state_before": "case neg\nι : Type u\nγ : Type w\nβ : ι → Type v\nβ₁ : ι → Type v₁\nβ₂ : ι → Type v₂\ndec : DecidableEq ι\ninst✝ : (i : ι) → AddZeroClass (β i)\ni : ι\nb₁ b₂ : β i\ni' : ι\nh : ¬i = i'\n⊢ ↑(single i (b₁ + b₂)) i' = ↑(single i b₁ + single i b₂) i'", "tactic": "simp only [add_apply, single_eq_of_ne h, zero_add]" } ]
[ 884, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 879, 1 ]
Mathlib/ModelTheory/Types.lean
FirstOrder.Language.Theory.CompleteType.compl_setOf_mem
[]
[ 114, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/NumberTheory/Zsqrtd/Basic.lean
Zsqrtd.nonneg_mul_lem
[ { "state_after": "d x y : ℕ\na : ℤ√↑d\nha : Nonneg a\nthis : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)\n⊢ Nonneg ({ re := ↑x, im := ↑y } * a)", "state_before": "d x y : ℕ\na : ℤ√↑d\nha : Nonneg a\n⊢ Nonneg ({ re := ↑x, im := ↑y } * a)", "tactic": "have : (⟨x, y⟩ * a : ℤ√d) = (x : ℤ√d) * a + sqrtd * ((y : ℤ√d) * a) := by\n rw [decompose, right_distrib, mul_assoc, Int.cast_ofNat, Int.cast_ofNat]" }, { "state_after": "d x y : ℕ\na : ℤ√↑d\nha : Nonneg a\nthis : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)\n⊢ Nonneg (↑x * a + sqrtd * (↑y * a))", "state_before": "d x y : ℕ\na : ℤ√↑d\nha : Nonneg a\nthis : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)\n⊢ Nonneg ({ re := ↑x, im := ↑y } * a)", "tactic": "rw [this]" }, { "state_after": "no goals", "state_before": "d x y : ℕ\na : ℤ√↑d\nha : Nonneg a\nthis : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)\n⊢ Nonneg (↑x * a + sqrtd * (↑y * a))", "tactic": "exact (nonneg_smul ha).add (nonneg_muld <| nonneg_smul ha)" }, { "state_after": "no goals", "state_before": "d x y : ℕ\na : ℤ√↑d\nha : Nonneg a\n⊢ { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)", "tactic": "rw [decompose, right_distrib, mul_assoc, Int.cast_ofNat, Int.cast_ofNat]" } ]
[ 825, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 821, 1 ]
Mathlib/Topology/MetricSpace/EMetricSpace.lean
uniformity_basis_edist_inv_nat
[]
[ 255, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 251, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.tendsto_lintegral_of_dominated_convergence'
[ { "state_after": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ Tendsto (fun n => ∫⁻ (a : α), F n a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\n⊢ Tendsto (fun n => ∫⁻ (a : α), F n a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))", "tactic": "have : ∀ n, (∫⁻ a, F n a ∂μ) = ∫⁻ a, (hF_meas n).mk (F n) a ∂μ := fun n =>\n lintegral_congr_ae (hF_meas n).ae_eq_mk" }, { "state_after": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ Tendsto (fun n => ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ Tendsto (fun n => ∫⁻ (a : α), F n a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))", "tactic": "simp_rw [this]" }, { "state_after": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))\n\nα : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) ≤ᵐ[μ] bound", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ Tendsto (fun n => ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ) atTop (𝓝 (∫⁻ (a : α), f a ∂μ))", "tactic": "apply\n tendsto_lintegral_of_dominated_convergence bound (fun n => (hF_meas n).measurable_mk) _ h_fin" }, { "state_after": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\n⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))", "tactic": "have : ∀ n, ∀ᵐ a ∂μ, (hF_meas n).mk (F n) a = F n a := fun n => (hF_meas n).ae_eq_mk.symm" }, { "state_after": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝¹ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis✝ : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nthis : ∀ᵐ (a : α) ∂μ, ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\n⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\n⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))", "tactic": "have : ∀ᵐ a ∂μ, ∀ n, (hF_meas n).mk (F n) a = F n a := ae_all_iff.mpr this" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝¹ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis✝ : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nthis : ∀ᵐ (a : α) ∂μ, ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\na : α\nH : ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nH' : Tendsto (fun n => F n a) atTop (𝓝 (f a))\n⊢ Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝¹ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis✝ : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nthis : ∀ᵐ (a : α) ∂μ, ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\n⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))", "tactic": "filter_upwards [this, h_lim] with a H H'" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝¹ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis✝ : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nthis : ∀ᵐ (a : α) ∂μ, ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\na : α\nH : ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nH' : Tendsto (fun n => F n a) atTop (𝓝 (f a))\n⊢ Tendsto (fun n => F n a) atTop (𝓝 (f a))", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝¹ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis✝ : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nthis : ∀ᵐ (a : α) ∂μ, ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\na : α\nH : ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nH' : Tendsto (fun n => F n a) atTop (𝓝 (f a))\n⊢ Tendsto (fun n => AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a) atTop (𝓝 (f a))", "tactic": "simp_rw [H]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis✝¹ : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nthis✝ : ∀ (n : ℕ), ∀ᵐ (a : α) ∂μ, AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nthis : ∀ᵐ (a : α) ∂μ, ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\na : α\nH : ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a = F n a\nH' : Tendsto (fun n => F n a) atTop (𝓝 (f a))\n⊢ Tendsto (fun n => F n a) atTop (𝓝 (f a))", "tactic": "exact H'" }, { "state_after": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nn : ℕ\n⊢ AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) ≤ᵐ[μ] bound", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\n⊢ ∀ (n : ℕ), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) ≤ᵐ[μ] bound", "tactic": "intro n" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nn : ℕ\na : α\nH : F n a ≤ bound a\nH' : F n a = AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a\n⊢ AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ≤ bound a", "state_before": "α : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nn : ℕ\n⊢ AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) ≤ᵐ[μ] bound", "tactic": "filter_upwards [h_bound n, (hF_meas n).ae_eq_mk] with a H H'" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type ?u.1001538\nγ : Type ?u.1001541\nδ : Type ?u.1001544\nm : MeasurableSpace α\nμ ν : Measure α\nF : ℕ → α → ℝ≥0∞\nf bound : α → ℝ≥0∞\nhF_meas : ∀ (n : ℕ), AEMeasurable (F n)\nh_bound : ∀ (n : ℕ), F n ≤ᵐ[μ] bound\nh_fin : (∫⁻ (a : α), bound a ∂μ) ≠ ⊤\nh_lim : ∀ᵐ (a : α) ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))\nthis : ∀ (n : ℕ), (∫⁻ (a : α), F n a ∂μ) = ∫⁻ (a : α), AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ∂μ\nn : ℕ\na : α\nH : F n a ≤ bound a\nH' : F n a = AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a\n⊢ AEMeasurable.mk (F n) (_ : AEMeasurable (F n)) a ≤ bound a", "tactic": "rwa [H'] at H" } ]
[ 1077, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1061, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.mul_self_inj
[]
[ 322, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 320, 1 ]
Mathlib/GroupTheory/Exponent.lean
Monoid.lcm_orderOf_dvd_exponent
[ { "state_after": "case a\nG : Type u\ninst✝¹ : Monoid G\ninst✝ : Fintype G\n⊢ ∀ (b : G), b ∈ Finset.univ → orderOf b ∣ exponent G", "state_before": "G : Type u\ninst✝¹ : Monoid G\ninst✝ : Fintype G\n⊢ Finset.lcm Finset.univ orderOf ∣ exponent G", "tactic": "apply Finset.lcm_dvd" }, { "state_after": "case a\nG : Type u\ninst✝¹ : Monoid G\ninst✝ : Fintype G\ng : G\na✝ : g ∈ Finset.univ\n⊢ orderOf g ∣ exponent G", "state_before": "case a\nG : Type u\ninst✝¹ : Monoid G\ninst✝ : Fintype G\n⊢ ∀ (b : G), b ∈ Finset.univ → orderOf b ∣ exponent G", "tactic": "intro g _" }, { "state_after": "no goals", "state_before": "case a\nG : Type u\ninst✝¹ : Monoid G\ninst✝ : Fintype G\ng : G\na✝ : g ∈ Finset.univ\n⊢ orderOf g ∣ exponent G", "tactic": "exact order_dvd_exponent g" } ]
[ 187, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 183, 1 ]
Mathlib/MeasureTheory/Constructions/Prod/Basic.lean
IsCountablySpanning.prod
[ { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nα' : Type ?u.552\nβ : Type u_2\nβ' : Type ?u.558\nγ : Type ?u.561\nE : Type ?u.564\nC : Set (Set α)\nD : Set (Set β)\ns : ℕ → Set α\nh1s : ∀ (n : ℕ), s n ∈ C\nh2s : (⋃ (n : ℕ), s n) = univ\nt : ℕ → Set β\nh1t : ∀ (n : ℕ), t n ∈ D\nh2t : (⋃ (n : ℕ), t n) = univ\n⊢ IsCountablySpanning (image2 (fun x x_1 => x ×ˢ x_1) C D)", "state_before": "α : Type u_1\nα' : Type ?u.552\nβ : Type u_2\nβ' : Type ?u.558\nγ : Type ?u.561\nE : Type ?u.564\nC : Set (Set α)\nD : Set (Set β)\nhC : IsCountablySpanning C\nhD : IsCountablySpanning D\n⊢ IsCountablySpanning (image2 (fun x x_1 => x ×ˢ x_1) C D)", "tactic": "rcases hC, hD with ⟨⟨s, h1s, h2s⟩, t, h1t, h2t⟩" }, { "state_after": "case intro.intro.intro.intro\nα : Type u_1\nα' : Type ?u.552\nβ : Type u_2\nβ' : Type ?u.558\nγ : Type ?u.561\nE : Type ?u.564\nC : Set (Set α)\nD : Set (Set β)\ns : ℕ → Set α\nh1s : ∀ (n : ℕ), s n ∈ C\nh2s : (⋃ (n : ℕ), s n) = univ\nt : ℕ → Set β\nh1t : ∀ (n : ℕ), t n ∈ D\nh2t : (⋃ (n : ℕ), t n) = univ\n⊢ (⋃ (n : ℕ), (fun n => s (Nat.unpair n).fst ×ˢ t (Nat.unpair n).snd) n) = univ", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nα' : Type ?u.552\nβ : Type u_2\nβ' : Type ?u.558\nγ : Type ?u.561\nE : Type ?u.564\nC : Set (Set α)\nD : Set (Set β)\ns : ℕ → Set α\nh1s : ∀ (n : ℕ), s n ∈ C\nh2s : (⋃ (n : ℕ), s n) = univ\nt : ℕ → Set β\nh1t : ∀ (n : ℕ), t n ∈ D\nh2t : (⋃ (n : ℕ), t n) = univ\n⊢ IsCountablySpanning (image2 (fun x x_1 => x ×ˢ x_1) C D)", "tactic": "refine' ⟨fun n => s n.unpair.1 ×ˢ t n.unpair.2, fun n => mem_image2_of_mem (h1s _) (h1t _), _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nα : Type u_1\nα' : Type ?u.552\nβ : Type u_2\nβ' : Type ?u.558\nγ : Type ?u.561\nE : Type ?u.564\nC : Set (Set α)\nD : Set (Set β)\ns : ℕ → Set α\nh1s : ∀ (n : ℕ), s n ∈ C\nh2s : (⋃ (n : ℕ), s n) = univ\nt : ℕ → Set β\nh1t : ∀ (n : ℕ), t n ∈ D\nh2t : (⋃ (n : ℕ), t n) = univ\n⊢ (⋃ (n : ℕ), (fun n => s (Nat.unpair n).fst ×ˢ t (Nat.unpair n).snd) n) = univ", "tactic": "rw [iUnion_unpair_prod, h2s, h2t, univ_prod_univ]" } ]
[ 87, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/Data/MvPolynomial/Basic.lean
MvPolynomial.mul_def
[]
[ 172, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/RingTheory/Finiteness.lean
Submodule.fg_unit
[ { "state_after": "R✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\n⊢ FG ↑I", "state_before": "R✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\n⊢ FG ↑I", "tactic": "have : (1 : A) ∈ (I * ↑I⁻¹ : Submodule R A) := by\n rw [I.mul_inv]\n exact one_le.mp le_rfl" }, { "state_after": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ FG ↑I", "state_before": "R✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\n⊢ FG ↑I", "tactic": "obtain ⟨T, T', hT, hT', one_mem⟩ := mem_span_mul_finite_of_mem_mul this" }, { "state_after": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑I ≤ span R ↑T", "state_before": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ FG ↑I", "tactic": "refine' ⟨T, span_eq_of_le _ hT _⟩" }, { "state_after": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑(1 * I) ≤ span R ↑T * 1", "state_before": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑I ≤ span R ↑T", "tactic": "rw [← one_mul I, ← mul_one (span R (T : Set A))]" }, { "state_after": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑(1 * I) ≤ span R ↑T * ↑I⁻¹ * ↑I", "state_before": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑(1 * I) ≤ span R ↑T * 1", "tactic": "conv_rhs => rw [← I.inv_mul, ← mul_assoc]" }, { "state_after": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑1 ≤ span R ↑T * span R ↑T'", "state_before": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑(1 * I) ≤ span R ↑T * ↑I⁻¹ * ↑I", "tactic": "refine' mul_le_mul_left (le_trans _ <| mul_le_mul_right <| span_le.mpr hT')" }, { "state_after": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ 1 ≤ span R (↑T * ↑T')", "state_before": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ ↑1 ≤ span R ↑T * span R ↑T'", "tactic": "simp only [Units.val_one, span_mul_span]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\nR✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\nthis : 1 ∈ ↑I * ↑I⁻¹\nT T' : Finset A\nhT : ↑T ⊆ ↑↑I\nhT' : ↑T' ⊆ ↑↑I⁻¹\none_mem : 1 ∈ span R (↑T * ↑T')\n⊢ 1 ≤ span R (↑T * ↑T')", "tactic": "rwa [one_le]" }, { "state_after": "R✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\n⊢ 1 ∈ 1", "state_before": "R✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\n⊢ 1 ∈ ↑I * ↑I⁻¹", "tactic": "rw [I.mul_inv]" }, { "state_after": "no goals", "state_before": "R✝ : Type ?u.75765\nM : Type ?u.75768\ninst✝⁵ : Semiring R✝\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R✝ M\nR : Type u_1\nA : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : Semiring A\ninst✝ : Algebra R A\nI : (Submodule R A)ˣ\n⊢ 1 ∈ 1", "tactic": "exact one_le.mp le_rfl" } ]
[ 166, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
SimpleGraph.Subgraph.coeSubgraph_injective
[]
[ 1014, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1012, 1 ]
Mathlib/Data/List/AList.lean
AList.lookup_insert_ne
[]
[ 311, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 309, 1 ]
Mathlib/Data/Fintype/Units.lean
Fintype.card_units
[ { "state_after": "α : Type u_1\ninst✝² : GroupWithZero α\ninst✝¹ : Fintype α\ninst✝ : Fintype αˣ\n⊢ card α = card { a // a ≠ 0 } + Nat.succ 0", "state_before": "α : Type u_1\ninst✝² : GroupWithZero α\ninst✝¹ : Fintype α\ninst✝ : Fintype αˣ\n⊢ card αˣ = card α - 1", "tactic": "rw [eq_comm, Nat.sub_eq_iff_eq_add (Fintype.card_pos_iff.2 ⟨(0 : α)⟩),\n Fintype.card_congr (unitsEquivNeZero α)]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : GroupWithZero α\ninst✝¹ : Fintype α\ninst✝ : Fintype αˣ\nthis : card α = card ({ a // a = 0 } ⊕ { a // ¬a = 0 })\n⊢ card α = card { a // a ≠ 0 } + Nat.succ 0", "tactic": "rwa [Fintype.card_sum, add_comm, Fintype.card_subtype_eq] at this" } ]
[ 45, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 39, 1 ]
Mathlib/Analysis/Calculus/LocalExtr.lean
IsLocalExtr.hasFDerivAt_eq_zero
[]
[ 215, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 214, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
zero_lt_mul_left
[ { "state_after": "α : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : Preorder α\ninst✝¹ : PosMulStrictMono α\ninst✝ : PosMulReflectLT α\nh : 0 < c\n⊢ 0 < b ↔ c * 0 < b", "state_before": "α : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : Preorder α\ninst✝¹ : PosMulStrictMono α\ninst✝ : PosMulReflectLT α\nh : 0 < c\n⊢ 0 < c * b ↔ 0 < b", "tactic": "rw [←mul_zero c, mul_lt_mul_left h]" }, { "state_after": "no goals", "state_before": "α : Type u_1\na b c d : α\ninst✝³ : MulZeroClass α\ninst✝² : Preorder α\ninst✝¹ : PosMulStrictMono α\ninst✝ : PosMulReflectLT α\nh : 0 < c\n⊢ 0 < b ↔ c * 0 < b", "tactic": "simp" } ]
[ 355, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 352, 1 ]
Mathlib/Topology/ContinuousFunction/Algebra.lean
ContinuousMap.tsum_apply
[]
[ 442, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/Topology/Algebra/Constructions.lean
MulOpposite.map_op_nhds
[]
[ 67, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 66, 1 ]
Mathlib/Data/Int/Cast/Field.lean
Int.cast_div
[ { "state_after": "case intro\nα : Type u_1\ninst✝ : DivisionRing α\nn : ℤ\nn_nonzero : ↑n ≠ 0\nk : ℤ\n⊢ ↑(n * k / n) = ↑(n * k) / ↑n", "state_before": "α : Type u_1\ninst✝ : DivisionRing α\nm n : ℤ\nn_dvd : n ∣ m\nn_nonzero : ↑n ≠ 0\n⊢ ↑(m / n) = ↑m / ↑n", "tactic": "rcases n_dvd with ⟨k, rfl⟩" }, { "state_after": "case intro\nα : Type u_1\ninst✝ : DivisionRing α\nn : ℤ\nn_nonzero : ↑n ≠ 0\nk : ℤ\nthis : n ≠ 0\n⊢ ↑(n * k / n) = ↑(n * k) / ↑n", "state_before": "case intro\nα : Type u_1\ninst✝ : DivisionRing α\nn : ℤ\nn_nonzero : ↑n ≠ 0\nk : ℤ\n⊢ ↑(n * k / n) = ↑(n * k) / ↑n", "tactic": "have : n ≠ 0 := by\n rintro rfl\n simp at n_nonzero" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝ : DivisionRing α\nn : ℤ\nn_nonzero : ↑n ≠ 0\nk : ℤ\nthis : n ≠ 0\n⊢ ↑(n * k / n) = ↑(n * k) / ↑n", "tactic": "rw [Int.mul_ediv_cancel_left _ this, mul_comm n k, Int.cast_mul, mul_div_cancel _ n_nonzero]" }, { "state_after": "α : Type u_1\ninst✝ : DivisionRing α\nk : ℤ\nn_nonzero : ↑0 ≠ 0\n⊢ False", "state_before": "α : Type u_1\ninst✝ : DivisionRing α\nn : ℤ\nn_nonzero : ↑n ≠ 0\nk : ℤ\n⊢ n ≠ 0", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DivisionRing α\nk : ℤ\nn_nonzero : ↑0 ≠ 0\n⊢ False", "tactic": "simp at n_nonzero" } ]
[ 48, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 42, 1 ]
Mathlib/Data/Seq/Seq.lean
Stream'.Seq.ofList_append
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nl l' : List α\n⊢ ↑(l ++ l') = append ↑l ↑l'", "tactic": "induction l <;> simp [*]" } ]
[ 820, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 819, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.lift_mul_left
[ { "state_after": "no goals", "state_before": "M : Type u_2\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_3\ninst✝¹ : CommMonoid N\nP : Type u_1\ninst✝ : CommMonoid P\nf : LocalizationMap S N\ng : M →* P\nhg : ∀ (y : { x // x ∈ S }), IsUnit (↑g ↑y)\nz : N\n⊢ ↑g ↑(sec f z).snd * ↑(lift f hg) z = ↑g (sec f z).fst", "tactic": "rw [mul_comm, lift_mul_right]" } ]
[ 1005, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1004, 1 ]
Mathlib/Topology/Constructions.lean
exists_finset_piecewise_mem_of_mem_nhds
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type ?u.340703\nδ : Type ?u.340706\nε : Type ?u.340709\nζ : Type ?u.340712\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.340723\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ninst✝ : DecidableEq ι\ns : Set ((a : ι) → π a)\nx y : (a : ι) → π a\nhs : ∃ I t, (∀ (i : ι), t i ∈ 𝓝 (x i)) ∧ Set.pi (↑I) t ⊆ s\n⊢ ∃ I, Finset.piecewise I x y ∈ s", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.340703\nδ : Type ?u.340706\nε : Type ?u.340709\nζ : Type ?u.340712\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.340723\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ninst✝ : DecidableEq ι\ns : Set ((a : ι) → π a)\nx : (a : ι) → π a\nhs : s ∈ 𝓝 x\ny : (a : ι) → π a\n⊢ ∃ I, Finset.piecewise I x y ∈ s", "tactic": "simp only [nhds_pi, Filter.mem_pi'] at hs" }, { "state_after": "case intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type ?u.340703\nδ : Type ?u.340706\nε : Type ?u.340709\nζ : Type ?u.340712\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.340723\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ninst✝ : DecidableEq ι\ns : Set ((a : ι) → π a)\nx y : (a : ι) → π a\nI : Finset ι\nt : (i : ι) → Set (π i)\nhtx : ∀ (i : ι), t i ∈ 𝓝 (x i)\nhts : Set.pi (↑I) t ⊆ s\n⊢ ∃ I, Finset.piecewise I x y ∈ s", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.340703\nδ : Type ?u.340706\nε : Type ?u.340709\nζ : Type ?u.340712\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.340723\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ninst✝ : DecidableEq ι\ns : Set ((a : ι) → π a)\nx y : (a : ι) → π a\nhs : ∃ I t, (∀ (i : ι), t i ∈ 𝓝 (x i)) ∧ Set.pi (↑I) t ⊆ s\n⊢ ∃ I, Finset.piecewise I x y ∈ s", "tactic": "rcases hs with ⟨I, t, htx, hts⟩" }, { "state_after": "case intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type ?u.340703\nδ : Type ?u.340706\nε : Type ?u.340709\nζ : Type ?u.340712\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.340723\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ninst✝ : DecidableEq ι\ns : Set ((a : ι) → π a)\nx y : (a : ι) → π a\nI : Finset ι\nt : (i : ι) → Set (π i)\nhtx : ∀ (i : ι), t i ∈ 𝓝 (x i)\nhts : Set.pi (↑I) t ⊆ s\ni : ι\nhi : i ∈ ↑I\n⊢ Finset.piecewise I x y i ∈ t i", "state_before": "case intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type ?u.340703\nδ : Type ?u.340706\nε : Type ?u.340709\nζ : Type ?u.340712\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.340723\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ninst✝ : DecidableEq ι\ns : Set ((a : ι) → π a)\nx y : (a : ι) → π a\nI : Finset ι\nt : (i : ι) → Set (π i)\nhtx : ∀ (i : ι), t i ∈ 𝓝 (x i)\nhts : Set.pi (↑I) t ⊆ s\n⊢ ∃ I, Finset.piecewise I x y ∈ s", "tactic": "refine' ⟨I, hts fun i hi => _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nα : Type u\nβ : Type v\nγ : Type ?u.340703\nδ : Type ?u.340706\nε : Type ?u.340709\nζ : Type ?u.340712\nι : Type u_1\nπ : ι → Type u_2\nκ : Type ?u.340723\ninst✝² : TopologicalSpace α\ninst✝¹ : (i : ι) → TopologicalSpace (π i)\nf : α → (i : ι) → π i\ninst✝ : DecidableEq ι\ns : Set ((a : ι) → π a)\nx y : (a : ι) → π a\nI : Finset ι\nt : (i : ι) → Set (π i)\nhtx : ∀ (i : ι), t i ∈ 𝓝 (x i)\nhts : Set.pi (↑I) t ⊆ s\ni : ι\nhi : i ∈ ↑I\n⊢ Finset.piecewise I x y i ∈ t i", "tactic": "simpa [Finset.mem_coe.1 hi] using mem_of_mem_nhds (htx i)" } ]
[ 1365, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1360, 1 ]
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
MeasureTheory.Measure.singularPart_zero
[ { "state_after": "α : Type u_1\nβ : Type ?u.43416\nm : MeasurableSpace α\nμ ν✝ ν : Measure α\n⊢ 0 = 0 + withDensity ν 0", "state_before": "α : Type u_1\nβ : Type ?u.43416\nm : MeasurableSpace α\nμ ν✝ ν : Measure α\n⊢ singularPart 0 ν = 0", "tactic": "refine' (eq_singularPart measurable_zero MutuallySingular.zero_left _).symm" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.43416\nm : MeasurableSpace α\nμ ν✝ ν : Measure α\n⊢ 0 = 0 + withDensity ν 0", "tactic": "rw [zero_add, withDensity_zero]" } ]
[ 268, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 266, 1 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
HasDerivAt.congr_of_eventuallyEq
[]
[ 600, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 598, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.natDegree_eq_of_le_of_coeff_ne_zero
[]
[ 194, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.mulIndicator_compl_mul_self_apply
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.58114\nι : Type ?u.58117\nM : Type u_2\nN : Type ?u.58123\ninst✝ : MulOneClass M\ns✝ t : Set α\nf✝ g : α → M\na✝ : α\ns : Set α\nf : α → M\na : α\nha : a ∈ s\n⊢ mulIndicator (sᶜ) f a * mulIndicator s f a = f a", "tactic": "simp [ha]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.58114\nι : Type ?u.58117\nM : Type u_2\nN : Type ?u.58123\ninst✝ : MulOneClass M\ns✝ t : Set α\nf✝ g : α → M\na✝ : α\ns : Set α\nf : α → M\na : α\nha : ¬a ∈ s\n⊢ mulIndicator (sᶜ) f a * mulIndicator s f a = f a", "tactic": "simp [ha]" } ]
[ 419, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 417, 1 ]
Mathlib/Order/Monotone/Monovary.lean
MonotoneOn.monovaryOn
[]
[ 337, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 336, 11 ]
Mathlib/Data/Polynomial/Derivative.lean
Polynomial.of_mem_support_derivative
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nι : Type y\nA : Type z\na b : R\nn✝ : ℕ\ninst✝ : Semiring R\np : R[X]\nn : ℕ\nh : n ∈ support (↑derivative p)\nh1 : coeff p (n + 1) = 0\n⊢ coeff (↑derivative p) n = 0", "tactic": "rw [coeff_derivative, h1, zero_mul]" } ]
[ 202, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 199, 1 ]
Mathlib/Algebra/Ring/Equiv.lean
RingEquiv.toAddEquiv_eq_coe
[]
[ 193, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Algebra/Lie/Classical.lean
LieAlgebra.matrix_trace_commutator_zero
[]
[ 94, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/RingTheory/Ideal/QuotientOperations.lean
Ideal.Quotient.mk_comp_algebraMap
[]
[ 219, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 217, 1 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
HasDerivAtFilter.mono
[]
[ 362, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 360, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.mem_center_iff
[]
[ 732, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 731, 1 ]
Mathlib/Topology/Sequences.lean
SeqContinuous.continuous
[]
[ 225, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 223, 11 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Icc_union_Ici'
[ { "state_after": "case h\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\n⊢ x ∈ Icc a b ∪ Ici c ↔ x ∈ Ici (min a c)", "state_before": "α : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\n⊢ Icc a b ∪ Ici c = Ici (min a c)", "tactic": "ext1 x" }, { "state_after": "case h\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x", "state_before": "case h\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\n⊢ x ∈ Icc a b ∪ Ici c ↔ x ∈ Ici (min a c)", "tactic": "simp_rw [mem_union, mem_Icc, mem_Ici, min_le_iff]" }, { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\nhc : c ≤ x\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x\n\ncase neg\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\nhc : ¬c ≤ x\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x", "state_before": "case h\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x", "tactic": "by_cases hc : c ≤ x" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\nhc : c ≤ x\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x", "tactic": "simp only [hc, or_true]" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\nhc : ¬c ≤ x\nhxb : x ≤ b\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\nhc : ¬c ≤ x\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x", "tactic": "have hxb : x ≤ b := (le_of_not_ge hc).trans h₁" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.91582\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\nh₁ : c ≤ b\nx : α\nhc : ¬c ≤ x\nhxb : x ≤ b\n⊢ a ≤ x ∧ x ≤ b ∨ c ≤ x ↔ a ≤ x ∨ c ≤ x", "tactic": "simp only [hxb, and_true]" } ]
[ 1348, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1342, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
Measurable.norm
[]
[ 2038, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2037, 1 ]
src/lean/Init/Control/ExceptCps.lean
ExceptCpsT.runCatch_bind_lift
[]
[ 69, 177 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 69, 9 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.deriv_integral_left
[]
[ 809, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 806, 1 ]
Mathlib/LinearAlgebra/Determinant.lean
Basis.isUnit_det
[]
[ 571, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 570, 1 ]
Mathlib/CategoryTheory/Quotient.lean
CategoryTheory.Quotient.lift_spec
[ { "state_after": "case h_map\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ autoParam\n (∀ (X Y : C) (f : X ⟶ Y),\n (functor r ⋙ lift r F H).map f =\n eqToHom (_ : ?F.obj X = ?G.obj X) ≫ F.map f ≫ eqToHom (_ : F.obj Y = (functor r ⋙ lift r F H).obj Y))\n _auto✝\n\ncase h_obj\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ ∀ (X : C), (functor r ⋙ lift r F H).obj X = F.obj X", "state_before": "C : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ functor r ⋙ lift r F H = F", "tactic": "apply Functor.ext" }, { "state_after": "case h_obj\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ ∀ (X : C), (functor r ⋙ lift r F H).obj X = F.obj X\n\ncase h_map\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ autoParam\n (∀ (X Y : C) (f : X ⟶ Y),\n (functor r ⋙ lift r F H).map f =\n eqToHom (_ : ?F.obj X = ?G.obj X) ≫ F.map f ≫ eqToHom (_ : F.obj Y = (functor r ⋙ lift r F H).obj Y))\n _auto✝", "state_before": "case h_map\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ autoParam\n (∀ (X Y : C) (f : X ⟶ Y),\n (functor r ⋙ lift r F H).map f =\n eqToHom (_ : ?F.obj X = ?G.obj X) ≫ F.map f ≫ eqToHom (_ : F.obj Y = (functor r ⋙ lift r F H).obj Y))\n _auto✝\n\ncase h_obj\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ ∀ (X : C), (functor r ⋙ lift r F H).obj X = F.obj X", "tactic": "rotate_left" }, { "state_after": "case h_obj\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\nX : C\n⊢ (functor r ⋙ lift r F H).obj X = F.obj X", "state_before": "case h_obj\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ ∀ (X : C), (functor r ⋙ lift r F H).obj X = F.obj X", "tactic": "rintro X" }, { "state_after": "no goals", "state_before": "case h_obj\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\nX : C\n⊢ (functor r ⋙ lift r F H).obj X = F.obj X", "tactic": "rfl" }, { "state_after": "case h_map\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\nX Y : C\nf : X ⟶ Y\n⊢ (functor r ⋙ lift r F H).map f =\n eqToHom (_ : (functor r ⋙ lift r F H).obj X = (functor r ⋙ lift r F H).obj X) ≫\n F.map f ≫ eqToHom (_ : F.obj Y = (functor r ⋙ lift r F H).obj Y)", "state_before": "case h_map\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\n⊢ autoParam\n (∀ (X Y : C) (f : X ⟶ Y),\n (functor r ⋙ lift r F H).map f =\n eqToHom (_ : (functor r ⋙ lift r F H).obj X = (functor r ⋙ lift r F H).obj X) ≫\n F.map f ≫ eqToHom (_ : F.obj Y = (functor r ⋙ lift r F H).obj Y))\n _auto✝", "tactic": "rintro X Y f" }, { "state_after": "no goals", "state_before": "case h_map\nC : Type u_1\ninst✝¹ : Category C\nr : HomRel C\nD : Type u_3\ninst✝ : Category D\nF : C ⥤ D\nH : ∀ (x y : C) (f₁ f₂ : x ⟶ y), r f₁ f₂ → F.map f₁ = F.map f₂\nX Y : C\nf : X ⟶ Y\n⊢ (functor r ⋙ lift r F H).map f =\n eqToHom (_ : (functor r ⋙ lift r F H).obj X = (functor r ⋙ lift r F H).obj X) ≫\n F.map f ≫ eqToHom (_ : F.obj Y = (functor r ⋙ lift r F H).obj Y)", "tactic": "simp" } ]
[ 186, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 181, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.zero_lf_one
[]
[ 1890, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1889, 1 ]
Mathlib/LinearAlgebra/Dimension.lean
LinearMap.rank_zero
[ { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1100037\ninst✝⁷ : Ring K\ninst✝⁶ : AddCommGroup V\ninst✝⁵ : Module K V\ninst✝⁴ : AddCommGroup V₁\ninst✝³ : Module K V₁\ninst✝² : AddCommGroup V'\ninst✝¹ : Module K V'\ninst✝ : Nontrivial K\n⊢ rank 0 = 0", "tactic": "rw [rank, LinearMap.range_zero, rank_bot]" } ]
[ 1328, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1327, 1 ]
Mathlib/Data/MvPolynomial/Funext.lean
MvPolynomial.funext_iff
[ { "state_after": "R : Type u_2\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nσ : Type u_1\np : MvPolynomial σ R\n⊢ ∀ (x : σ → R), ↑(eval x) p = ↑(eval x) p", "state_before": "R : Type u_2\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nσ : Type u_1\np q : MvPolynomial σ R\n⊢ p = q → ∀ (x : σ → R), ↑(eval x) p = ↑(eval x) q", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "R : Type u_2\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nσ : Type u_1\np : MvPolynomial σ R\n⊢ ∀ (x : σ → R), ↑(eval x) p = ↑(eval x) p", "tactic": "simp only [forall_const, eq_self_iff_true]" } ]
[ 67, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.cos_two_mul
[ { "state_after": "no goals", "state_before": "x y : ℂ\n⊢ cos (2 * x) = 2 * cos x ^ 2 - 1", "tactic": "rw [cos_two_mul', eq_sub_iff_add_eq.2 (sin_sq_add_cos_sq x), ← sub_add, sub_add_eq_add_sub,\n two_mul]" } ]
[ 1034, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1032, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearIndependent_iUnion_finite
[ { "state_after": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ LinearIndependent R fun ji => f ji.fst ji.snd", "state_before": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n⊢ LinearIndependent R fun ji => f ji.fst ji.snd", "tactic": "nontriviality R" }, { "state_after": "case hf\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ Injective fun ji => f ji.fst ji.snd\n\ncase a\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ LinearIndependent R Subtype.val", "state_before": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ LinearIndependent R fun ji => f ji.fst ji.snd", "tactic": "apply LinearIndependent.of_subtype_range" }, { "state_after": "case a\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ LinearIndependent R Subtype.val", "state_before": "case a\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ LinearIndependent R Subtype.val", "tactic": "rw [range_sigma_eq_iUnion_range]" }, { "state_after": "no goals", "state_before": "case a\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ LinearIndependent R Subtype.val", "tactic": "apply linearIndependent_iUnion_finite_subtype (fun j => (hindep j).to_subtype_range) hd" }, { "state_after": "case hf.mk.mk\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "state_before": "case hf\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\n⊢ Injective fun ji => f ji.fst ji.snd", "tactic": "rintro ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ hxy" }, { "state_after": "case pos\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : x₁ = y₁\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }\n\ncase neg\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "state_before": "case hf.mk.mk\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "tactic": "by_cases h_cases : x₁ = y₁" }, { "state_after": "case pos\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ } = { fst := x₁, snd := y₂ }\n\ncase neg\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "state_before": "case pos\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : x₁ = y₁\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }\n\ncase neg\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "tactic": "subst h_cases" }, { "state_after": "case pos.a\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ Eq.recOn ?pos.h₁✝ { fst := x₁, snd := x₂ }.snd = { fst := x₁, snd := y₂ }.snd\n\ncase pos.h₁\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst", "state_before": "case pos\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ } = { fst := x₁, snd := y₂ }", "tactic": "apply Sigma.eq" }, { "state_after": "case pos.h₁\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst\n\ncase pos.h₁\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst", "state_before": "case pos.a\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ Eq.recOn ?pos.h₁✝ { fst := x₁, snd := x₂ }.snd = { fst := x₁, snd := y₂ }.snd\n\ncase pos.h₁\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst", "tactic": "rw [LinearIndependent.injective (hindep _) hxy]" }, { "state_after": "no goals", "state_before": "case pos.h₁\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst\n\ncase pos.h₁\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ y₂ : ιs x₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := x₁, snd := y₂ }\n⊢ { fst := x₁, snd := x₂ }.fst = { fst := x₁, snd := y₂ }.fst", "tactic": "rfl" }, { "state_after": "case neg\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\nh0 : f x₁ x₂ = 0\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "state_before": "case neg\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "tactic": "have h0 : f x₁ x₂ = 0 := by\n apply\n disjoint_def.1 (hd x₁ {y₁} (finite_singleton y₁) fun h => h_cases (eq_of_mem_singleton h))\n (f x₁ x₂) (subset_span (mem_range_self _))\n rw [iSup_singleton]\n simp only at hxy\n rw [hxy]\n exact subset_span (mem_range_self y₂)" }, { "state_after": "no goals", "state_before": "case neg\nι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\nh0 : f x₁ x₂ = 0\n⊢ { fst := x₁, snd := x₂ } = { fst := y₁, snd := y₂ }", "tactic": "exact False.elim ((hindep x₁).ne_zero _ h0)" }, { "state_after": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ f x₁ x₂ ∈ ⨆ (i : η) (_ : i ∈ {y₁}), span R (range (f i))", "state_before": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ f x₁ x₂ = 0", "tactic": "apply\n disjoint_def.1 (hd x₁ {y₁} (finite_singleton y₁) fun h => h_cases (eq_of_mem_singleton h))\n (f x₁ x₂) (subset_span (mem_range_self _))" }, { "state_after": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ f x₁ x₂ ∈ span R (range (f y₁))", "state_before": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ f x₁ x₂ ∈ ⨆ (i : η) (_ : i ∈ {y₁}), span R (range (f i))", "tactic": "rw [iSup_singleton]" }, { "state_after": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : f x₁ x₂ = f y₁ y₂\nh_cases : ¬x₁ = y₁\n⊢ f x₁ x₂ ∈ span R (range (f y₁))", "state_before": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : (fun ji => f ji.fst ji.snd) { fst := x₁, snd := x₂ } = (fun ji => f ji.fst ji.snd) { fst := y₁, snd := y₂ }\nh_cases : ¬x₁ = y₁\n⊢ f x₁ x₂ ∈ span R (range (f y₁))", "tactic": "simp only at hxy" }, { "state_after": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : f x₁ x₂ = f y₁ y₂\nh_cases : ¬x₁ = y₁\n⊢ f y₁ y₂ ∈ span R (range (f y₁))", "state_before": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : f x₁ x₂ = f y₁ y₂\nh_cases : ¬x₁ = y₁\n⊢ f x₁ x₂ ∈ span R (range (f y₁))", "tactic": "rw [hxy]" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.387224\nR : Type u_3\nK : Type ?u.387230\nM : Type u_4\nM' : Type ?u.387236\nM'' : Type ?u.387239\nV : Type u\nV' : Type ?u.387244\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nη : Type u_1\nιs : η → Type u_2\nf : (j : η) → ιs j → M\nhindep : ∀ (j : η), LinearIndependent R (f j)\nhd :\n ∀ (i : η) (t : Set η),\n Set.Finite t → ¬i ∈ t → Disjoint (span R (range (f i))) (⨆ (i : η) (_ : i ∈ t), span R (range (f i)))\n✝ : Nontrivial R\nx₁ : η\nx₂ : ιs x₁\ny₁ : η\ny₂ : ιs y₁\nhxy : f x₁ x₂ = f y₁ y₂\nh_cases : ¬x₁ = y₁\n⊢ f y₁ y₂ ∈ span R (range (f y₁))", "tactic": "exact subset_span (mem_range_self y₂)" } ]
[ 736, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 713, 1 ]
Mathlib/Analysis/Normed/Group/AddTorsor.lean
dist_vadd_cancel_right
[ { "state_after": "no goals", "state_before": "α : Type ?u.8057\nV : Type u_2\nP : Type u_1\nW : Type ?u.8066\nQ : Type ?u.8069\ninst✝⁵ : SeminormedAddCommGroup V\ninst✝⁴ : PseudoMetricSpace P\ninst✝³ : NormedAddTorsor V P\ninst✝² : NormedAddCommGroup W\ninst✝¹ : MetricSpace Q\ninst✝ : NormedAddTorsor W Q\nv₁ v₂ : V\nx : P\n⊢ dist (v₁ +ᵥ x) (v₂ +ᵥ x) = dist v₁ v₂", "tactic": "rw [dist_eq_norm_vsub V, dist_eq_norm, vadd_vsub_vadd_cancel_right]" } ]
[ 108, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
PadicSeq.norm_eq_of_equiv_aux
[ { "state_after": "p : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\n⊢ False", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\n⊢ False", "tactic": "have hpn : 0 < padicNorm p (f (stationaryPoint hf)) - padicNorm p (g (stationaryPoint hg)) :=\n sub_pos_of_lt hlt" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\n⊢ False", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\n⊢ False", "tactic": "cases' hfg _ hpn with N hN" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\n⊢ False", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\n⊢ False", "tactic": "let i := max N (max (stationaryPoint hf) (stationaryPoint hg))" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\n⊢ False", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\n⊢ False", "tactic": "have hi : N ≤ i := le_max_left _ _" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' : padicNorm p (↑(f - g) i) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\n⊢ False", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\n⊢ False", "tactic": "have hN' := hN _ hi" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑(f - g) i) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\n⊢ False", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nh : padicNorm p (↑f (stationaryPoint hf)) ≠ padicNorm p (↑g (stationaryPoint hg))\nhlt : padicNorm p (↑g (stationaryPoint hg)) < padicNorm p (↑f (stationaryPoint hf))\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' : padicNorm p (↑(f - g) i) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\n⊢ False", "tactic": "rw [lift_index_left hf N (stationaryPoint hg), lift_index_right hg N (stationaryPoint hf)]\n at hN' h hlt" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑(f - g) i) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ False", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑(f - g) i) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\n⊢ False", "tactic": "have hpne : padicNorm p (f i) ≠ padicNorm p (-g i) := by rwa [← padicNorm.neg (g i)] at h" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ False", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑(f - g) i) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ False", "tactic": "rw [CauSeq.sub_apply, sub_eq_add_neg, add_eq_max_of_ne hpne, padicNorm.neg, max_eq_left_of_lt hlt]\n at hN'" }, { "state_after": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\nthis : padicNorm p (↑f i) < padicNorm p (↑f i)\n⊢ False", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ False", "tactic": "have : padicNorm p (f i) < padicNorm p (f i) := by\n apply lt_of_lt_of_le hN'\n apply sub_le_self\n apply padicNorm.nonneg" }, { "state_after": "no goals", "state_before": "case intro\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\nthis : padicNorm p (↑f i) < padicNorm p (↑f i)\n⊢ False", "tactic": "exact lt_irrefl _ this" }, { "state_after": "no goals", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑(f - g) i) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\n⊢ padicNorm p (↑f i) ≠ padicNorm p (-↑g i)", "tactic": "rwa [← padicNorm.neg (g i)] at h" }, { "state_after": "p : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≤\n padicNorm p (↑f i)", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ padicNorm p (↑f i) < padicNorm p (↑f i)", "tactic": "apply lt_of_lt_of_le hN'" }, { "state_after": "case a\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ 0 ≤ padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))", "state_before": "p : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≤\n padicNorm p (↑f i)", "tactic": "apply sub_le_self" }, { "state_after": "no goals", "state_before": "case a\np : ℕ\nhp : Fact (Nat.Prime p)\nf g : PadicSeq p\nhf : ¬f ≈ 0\nhg : ¬g ≈ 0\nhfg : f ≈ g\nhpn : 0 < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\nN : ℕ\nhlt :\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nh :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) ≠\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhN :\n ∀ (j : ℕ),\n j ≥ N → padicNorm p (↑(f - g) j) < padicNorm p (↑f (stationaryPoint hf)) - padicNorm p (↑g (stationaryPoint hg))\ni : ℕ := max N (max (stationaryPoint hf) (stationaryPoint hg))\nhi : N ≤ i\nhN' :\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) <\n padicNorm p (↑f (max N (max (stationaryPoint hf) (stationaryPoint hg)))) -\n padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))\nhpne : padicNorm p (↑f i) ≠ padicNorm p (-↑g i)\n⊢ 0 ≤ padicNorm p (↑g (max N (max (stationaryPoint hf) (stationaryPoint hg))))", "tactic": "apply padicNorm.nonneg" } ]
[ 348, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 328, 9 ]
Mathlib/CategoryTheory/Monoidal/Category.lean
CategoryTheory.MonoidalCategory.id_tensor_associator_naturality
[ { "state_after": "no goals", "state_before": "C✝ : Type u\n𝒞 : Category C✝\ninst✝² : MonoidalCategory C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : MonoidalCategory C\nU V W X✝ Y✝ Z✝ X Y Z Z' : C\nh : Z ⟶ Z'\n⊢ (𝟙 (X ⊗ Y) ⊗ h) ≫ (α_ X Y Z').hom = (α_ X Y Z).hom ≫ (𝟙 X ⊗ 𝟙 Y ⊗ h)", "tactic": "rw [← tensor_id, associator_naturality]" } ]
[ 344, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 342, 1 ]
Mathlib/Topology/ContinuousFunction/Compact.lean
BoundedContinuousFunction.dist_toContinuousMap
[]
[ 123, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
TensorProduct.lid_symm_apply
[]
[ 638, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 637, 1 ]
Mathlib/LinearAlgebra/TensorProduct.lean
LinearMap.rTensor_id
[]
[ 1106, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1105, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.mk'_eq_iff_mk'_eq
[]
[ 372, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 370, 1 ]
Mathlib/FieldTheory/Adjoin.lean
IntermediateField.inf_toSubalgebra
[]
[ 135, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.indicator_eq_zero_iff_not_mem
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.142655\nι : Type ?u.142658\nM : Type u_2\nN : Type ?u.142664\ninst✝¹ : MulZeroOneClass M\ninst✝ : Nontrivial M\nU : Set α\nx : α\n⊢ indicator U 1 x = 0 ↔ ¬x ∈ U", "tactic": "classical simp [indicator_apply, imp_false]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.142655\nι : Type ?u.142658\nM : Type u_2\nN : Type ?u.142664\ninst✝¹ : MulZeroOneClass M\ninst✝ : Nontrivial M\nU : Set α\nx : α\n⊢ indicator U 1 x = 0 ↔ ¬x ∈ U", "tactic": "simp [indicator_apply, imp_false]" } ]
[ 734, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 733, 1 ]
Mathlib/Topology/ContinuousFunction/Compact.lean
ContinuousMap.dist_apply_le_dist
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nE : Type ?u.70790\ninst✝³ : TopologicalSpace α\ninst✝² : CompactSpace α\ninst✝¹ : MetricSpace β\ninst✝ : NormedAddCommGroup E\nf g : C(α, β)\nC : ℝ\nx : α\n⊢ dist (↑f x) (↑g x) ≤ dist f g", "tactic": "simp only [← dist_mkOfCompact, dist_coe_le_dist, ← mkOfCompact_apply]" } ]
[ 134, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Dynamics/Circle/RotationNumber/TranslationNumber.lean
CircleDeg1Lift.tendsto_translation_number₀'
[ { "state_after": "f g : CircleDeg1Lift\nn : ℕ\n⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ ((fun n => 1 / ↑n) ∘ fun a => a + 1) n", "state_before": "f g : CircleDeg1Lift\n⊢ Tendsto (fun n => ↑(f ^ (n + 1)) 0 / (↑n + 1)) atTop (𝓝 (τ f))", "tactic": "refine'\n tendsto_iff_dist_tendsto_zero.2 <|\n squeeze_zero (fun _ => dist_nonneg) (fun n => _)\n ((tendsto_const_div_atTop_nhds_0_nat 1).comp (tendsto_add_atTop_nat 1))" }, { "state_after": "f g : CircleDeg1Lift\nn : ℕ\n⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1)", "state_before": "f g : CircleDeg1Lift\nn : ℕ\n⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ ((fun n => 1 / ↑n) ∘ fun a => a + 1) n", "tactic": "dsimp" }, { "state_after": "f g : CircleDeg1Lift\nn : ℕ\nthis : 0 < ↑n + 1\n⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1)", "state_before": "f g : CircleDeg1Lift\nn : ℕ\n⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1)", "tactic": "have : (0 : ℝ) < n + 1 := n.cast_add_one_pos" }, { "state_after": "f g : CircleDeg1Lift\nn : ℕ\nthis : 0 < ↑n + 1\n⊢ dist (↑(f ^ (n + 1)) 0) (↑(n + 1) * τ f) ≤ 1", "state_before": "f g : CircleDeg1Lift\nn : ℕ\nthis : 0 < ↑n + 1\n⊢ dist (↑(f ^ (n + 1)) 0 / (↑n + 1)) (τ f) ≤ 1 / ↑(n + 1)", "tactic": "rw [Real.dist_eq, div_sub' _ _ _ (ne_of_gt this), abs_div, ← Real.dist_eq, abs_of_pos this,\n Nat.cast_add_one, div_le_div_right this, ← Nat.cast_add_one]" }, { "state_after": "no goals", "state_before": "f g : CircleDeg1Lift\nn : ℕ\nthis : 0 < ↑n + 1\n⊢ dist (↑(f ^ (n + 1)) 0) (↑(n + 1) * τ f) ≤ 1", "tactic": "apply dist_pow_map_zero_mul_translationNumber_le" } ]
[ 785, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 775, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isBigO_sup
[]
[ 654, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 653, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.sum
[ { "state_after": "case empty\nα : Type u_2\nβ : Type ?u.590520\nE : Type ?u.590523\nF : Type u_4\nG : Type ?u.590529\nE' : Type u_3\nF' : Type ?u.590535\nG' : Type ?u.590538\nE'' : Type ?u.590541\nF'' : Type ?u.590544\nG'' : Type ?u.590547\nR : Type ?u.590550\nR' : Type ?u.590553\n𝕜 : Type ?u.590556\n𝕜' : Type ?u.590559\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\nA : ι → α → E'\nC : ι → ℝ\ns : Finset ι\nh✝ : ∀ (i : ι), i ∈ s → IsBigOWith (C i) l (A i) g\nh : ∀ (i : ι), i ∈ ∅ → IsBigOWith (C i) l (A i) g\n⊢ IsBigOWith (∑ i in ∅, C i) l (fun x => ∑ i in ∅, A i x) g\n\ncase insert\nα : Type u_2\nβ : Type ?u.590520\nE : Type ?u.590523\nF : Type u_4\nG : Type ?u.590529\nE' : Type u_3\nF' : Type ?u.590535\nG' : Type ?u.590538\nE'' : Type ?u.590541\nF'' : Type ?u.590544\nG'' : Type ?u.590547\nR : Type ?u.590550\nR' : Type ?u.590553\n𝕜 : Type ?u.590556\n𝕜' : Type ?u.590559\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\nA : ι → α → E'\nC : ι → ℝ\ns✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ s✝ → IsBigOWith (C i) l (A i) g\ni : ι\ns : Finset ι\nis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsBigOWith (C i) l (A i) g) → IsBigOWith (∑ i in s, C i) l (fun x => ∑ i in s, A i x) g\nh : ∀ (i_1 : ι), i_1 ∈ Insert.insert i s → IsBigOWith (C i_1) l (A i_1) g\n⊢ IsBigOWith (∑ i in Insert.insert i s, C i) l (fun x => ∑ i in Insert.insert i s, A i x) g", "state_before": "α : Type u_2\nβ : Type ?u.590520\nE : Type ?u.590523\nF : Type u_4\nG : Type ?u.590529\nE' : Type u_3\nF' : Type ?u.590535\nG' : Type ?u.590538\nE'' : Type ?u.590541\nF'' : Type ?u.590544\nG'' : Type ?u.590547\nR : Type ?u.590550\nR' : Type ?u.590553\n𝕜 : Type ?u.590556\n𝕜' : Type ?u.590559\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\nA : ι → α → E'\nC : ι → ℝ\ns : Finset ι\nh : ∀ (i : ι), i ∈ s → IsBigOWith (C i) l (A i) g\n⊢ IsBigOWith (∑ i in s, C i) l (fun x => ∑ i in s, A i x) g", "tactic": "induction' s using Finset.induction_on with i s is IH" }, { "state_after": "no goals", "state_before": "case empty\nα : Type u_2\nβ : Type ?u.590520\nE : Type ?u.590523\nF : Type u_4\nG : Type ?u.590529\nE' : Type u_3\nF' : Type ?u.590535\nG' : Type ?u.590538\nE'' : Type ?u.590541\nF'' : Type ?u.590544\nG'' : Type ?u.590547\nR : Type ?u.590550\nR' : Type ?u.590553\n𝕜 : Type ?u.590556\n𝕜' : Type ?u.590559\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\nA : ι → α → E'\nC : ι → ℝ\ns : Finset ι\nh✝ : ∀ (i : ι), i ∈ s → IsBigOWith (C i) l (A i) g\nh : ∀ (i : ι), i ∈ ∅ → IsBigOWith (C i) l (A i) g\n⊢ IsBigOWith (∑ i in ∅, C i) l (fun x => ∑ i in ∅, A i x) g", "tactic": "simp only [isBigOWith_zero', Finset.sum_empty, forall_true_iff]" }, { "state_after": "case insert\nα : Type u_2\nβ : Type ?u.590520\nE : Type ?u.590523\nF : Type u_4\nG : Type ?u.590529\nE' : Type u_3\nF' : Type ?u.590535\nG' : Type ?u.590538\nE'' : Type ?u.590541\nF'' : Type ?u.590544\nG'' : Type ?u.590547\nR : Type ?u.590550\nR' : Type ?u.590553\n𝕜 : Type ?u.590556\n𝕜' : Type ?u.590559\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\nA : ι → α → E'\nC : ι → ℝ\ns✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ s✝ → IsBigOWith (C i) l (A i) g\ni : ι\ns : Finset ι\nis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsBigOWith (C i) l (A i) g) → IsBigOWith (∑ i in s, C i) l (fun x => ∑ i in s, A i x) g\nh : ∀ (i_1 : ι), i_1 ∈ Insert.insert i s → IsBigOWith (C i_1) l (A i_1) g\n⊢ IsBigOWith (C i + ∑ i in s, C i) l (fun x => A i x + ∑ i in s, A i x) g", "state_before": "case insert\nα : Type u_2\nβ : Type ?u.590520\nE : Type ?u.590523\nF : Type u_4\nG : Type ?u.590529\nE' : Type u_3\nF' : Type ?u.590535\nG' : Type ?u.590538\nE'' : Type ?u.590541\nF'' : Type ?u.590544\nG'' : Type ?u.590547\nR : Type ?u.590550\nR' : Type ?u.590553\n𝕜 : Type ?u.590556\n𝕜' : Type ?u.590559\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\nA : ι → α → E'\nC : ι → ℝ\ns✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ s✝ → IsBigOWith (C i) l (A i) g\ni : ι\ns : Finset ι\nis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsBigOWith (C i) l (A i) g) → IsBigOWith (∑ i in s, C i) l (fun x => ∑ i in s, A i x) g\nh : ∀ (i_1 : ι), i_1 ∈ Insert.insert i s → IsBigOWith (C i_1) l (A i_1) g\n⊢ IsBigOWith (∑ i in Insert.insert i s, C i) l (fun x => ∑ i in Insert.insert i s, A i x) g", "tactic": "simp only [is, Finset.sum_insert, not_false_iff]" }, { "state_after": "no goals", "state_before": "case insert\nα : Type u_2\nβ : Type ?u.590520\nE : Type ?u.590523\nF : Type u_4\nG : Type ?u.590529\nE' : Type u_3\nF' : Type ?u.590535\nG' : Type ?u.590538\nE'' : Type ?u.590541\nF'' : Type ?u.590544\nG'' : Type ?u.590547\nR : Type ?u.590550\nR' : Type ?u.590553\n𝕜 : Type ?u.590556\n𝕜' : Type ?u.590559\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\nι : Type u_1\nA : ι → α → E'\nC : ι → ℝ\ns✝ : Finset ι\nh✝ : ∀ (i : ι), i ∈ s✝ → IsBigOWith (C i) l (A i) g\ni : ι\ns : Finset ι\nis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsBigOWith (C i) l (A i) g) → IsBigOWith (∑ i in s, C i) l (fun x => ∑ i in s, A i x) g\nh : ∀ (i_1 : ι), i_1 ∈ Insert.insert i s → IsBigOWith (C i_1) l (A i_1) g\n⊢ IsBigOWith (C i + ∑ i in s, C i) l (fun x => A i x + ∑ i in s, A i x) g", "tactic": "exact (h _ (Finset.mem_insert_self i s)).add (IH fun j hj => h _ (Finset.mem_insert_of_mem hj))" } ]
[ 1794, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1789, 1 ]
Mathlib/Analysis/InnerProductSpace/Calculus.lean
ContDiffAt.inner
[]
[ 86, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 8 ]
Mathlib/Algebra/Lie/Nilpotent.lean
LieSubmodule.ucs_le_of_normalizer_eq_self
[ { "state_after": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : normalizer N₁ = N₁\nk : ℕ\n⊢ ucs k ⊥ ≤ ucs k N₁", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : normalizer N₁ = N₁\nk : ℕ\n⊢ ucs k ⊥ ≤ N₁", "tactic": "rw [← ucs_eq_self_of_normalizer_eq_self h k]" }, { "state_after": "case h\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : normalizer N₁ = N₁\nk : ℕ\nh_symm : N₁ = normalizer N₁\n⊢ ⊥ ≤ N₁", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : normalizer N₁ = N₁\nk : ℕ\n⊢ ucs k ⊥ ≤ ucs k N₁", "tactic": "mono" }, { "state_after": "no goals", "state_before": "case h\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : normalizer N₁ = N₁\nk : ℕ\nh_symm : N₁ = normalizer N₁\n⊢ ⊥ ≤ N₁", "tactic": "simp" } ]
[ 400, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 396, 1 ]
Mathlib/LinearAlgebra/Matrix/Charpoly/Basic.lean
charmatrix_reindex
[ { "state_after": "case a.h.a\nR : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\ni j : m\nx : ℕ\n⊢ coeff (charmatrix (↑(reindex e e) M) i j) x = coeff (↑(reindex e e) (charmatrix M) i j) x", "state_before": "R : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\n⊢ charmatrix (↑(reindex e e) M) = ↑(reindex e e) (charmatrix M)", "tactic": "ext (i j x)" }, { "state_after": "case pos\nR : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\ni j : m\nx : ℕ\nh : i = j\n⊢ coeff (charmatrix (↑(reindex e e) M) i j) x = coeff (↑(reindex e e) (charmatrix M) i j) x\n\ncase neg\nR : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\ni j : m\nx : ℕ\nh : ¬i = j\n⊢ coeff (charmatrix (↑(reindex e e) M) i j) x = coeff (↑(reindex e e) (charmatrix M) i j) x", "state_before": "case a.h.a\nR : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\ni j : m\nx : ℕ\n⊢ coeff (charmatrix (↑(reindex e e) M) i j) x = coeff (↑(reindex e e) (charmatrix M) i j) x", "tactic": "by_cases h : i = j" }, { "state_after": "no goals", "state_before": "case pos\nR : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\ni j : m\nx : ℕ\nh : i = j\n⊢ coeff (charmatrix (↑(reindex e e) M) i j) x = coeff (↑(reindex e e) (charmatrix M) i j) x\n\ncase neg\nR : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\ni j : m\nx : ℕ\nh : ¬i = j\n⊢ coeff (charmatrix (↑(reindex e e) M) i j) x = coeff (↑(reindex e e) (charmatrix M) i j) x", "tactic": "all_goals simp [h]" }, { "state_after": "no goals", "state_before": "case neg\nR : Type u\ninst✝⁴ : CommRing R\nn : Type w\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nm : Type v\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\ne : n ≃ m\nM : Matrix n n R\ni j : m\nx : ℕ\nh : ¬i = j\n⊢ coeff (charmatrix (↑(reindex e e) M) i j) x = coeff (↑(reindex e e) (charmatrix M) i j) x", "tactic": "simp [h]" } ]
[ 89, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]