Datasets:
Tasks:
Text Classification
Sub-tasks:
natural-language-inference
Languages:
English
Size:
1K<n<10K
License:
Create recast.py
Browse files
recast.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Recast datasets"""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import csv
|
22 |
+
import os
|
23 |
+
import textwrap
|
24 |
+
|
25 |
+
import six
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
|
29 |
+
|
30 |
+
_Recast_CITATION = r"""inproceedings{poliak-etal-2018-collecting,
|
31 |
+
title = "Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation",
|
32 |
+
author = "Poliak, Adam and
|
33 |
+
Haldar, Aparajita and
|
34 |
+
Rudinger, Rachel and
|
35 |
+
Hu, J. Edward and
|
36 |
+
Pavlick, Ellie and
|
37 |
+
White, Aaron Steven and
|
38 |
+
Van Durme, Benjamin",
|
39 |
+
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
|
40 |
+
month = oct # "-" # nov,
|
41 |
+
year = "2018",
|
42 |
+
address = "Brussels, Belgium",
|
43 |
+
publisher = "Association for Computational Linguistics",
|
44 |
+
url = "https://aclanthology.org/D18-1007",
|
45 |
+
doi = "10.18653/v1/D18-1007",
|
46 |
+
pages = "67--81",
|
47 |
+
abstract = "We present a large-scale collection of diverse natural language inference (NLI) datasets that help provide insight into how well a sentence representation captures distinct types of reasoning. The collection results from recasting 13 existing datasets from 7 semantic phenomena into a common NLI structure, resulting in over half a million labeled context-hypothesis pairs in total. We refer to our collection as the DNC: Diverse Natural Language Inference Collection. The DNC is available online at \url{https://www.decomp.net}, and will grow over time as additional resources are recast and added from novel sources.",
|
48 |
+
}
|
49 |
+
"""
|
50 |
+
|
51 |
+
_Recast_DESCRIPTION = """\
|
52 |
+
A diverse collection of tasks recasted as natural language inference tasks.
|
53 |
+
"""
|
54 |
+
|
55 |
+
DATA_URL = "https://www.dropbox.com/s/z1mcq6ygfsae0wj/recast.zip?dl=1"
|
56 |
+
|
57 |
+
TASK_TO_LABELS = {
|
58 |
+
"recast_kg_relations": ["1", "2", "3", "4", "5", "6"],
|
59 |
+
"recast_puns": ["not-entailed", "entailed"],
|
60 |
+
"recast_factuality": ["not-entailed", "entailed"],
|
61 |
+
"recast_verbnet": ["not-entailed", "entailed"],
|
62 |
+
"recast_verbcorner": ["not-entailed", "entailed"],
|
63 |
+
"recast_sentiment": ["not-entailed", "entailed"],
|
64 |
+
"recast_megaveridicality": ["not-entailed", "entailed"],
|
65 |
+
"recast_ner": ["not-entailed", "entailed"],
|
66 |
+
"recast_winogender": ["not-entailed", "entailed"],
|
67 |
+
"recast_ner": ["not-entailed", "entailed"],
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
def get_labels(task):
|
72 |
+
return TASK_TO_LABELS[task]
|
73 |
+
|
74 |
+
|
75 |
+
class RecastConfig(datasets.BuilderConfig):
|
76 |
+
"""BuilderConfig for Recast."""
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
text_features,
|
81 |
+
label_classes=None,
|
82 |
+
process_label=lambda x: x,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
"""BuilderConfig for Recast.
|
86 |
+
Args:
|
87 |
+
text_features: `dict[string, string]`, map from the name of the feature
|
88 |
+
dict for each text field to the name of the column in the tsv file
|
89 |
+
label_column: `string`, name of the column in the tsv file corresponding
|
90 |
+
to the label
|
91 |
+
data_url: `string`, url to download the zip file from
|
92 |
+
data_dir: `string`, the path to the folder containing the tsv files in the
|
93 |
+
downloaded zip
|
94 |
+
citation: `string`, citation for the data set
|
95 |
+
url: `string`, url for information about the data set
|
96 |
+
label_classes: `list[string]`, the list of classes if the label is
|
97 |
+
categorical. If not provided, then the label will be of type
|
98 |
+
`datasets.Value('float32')`.
|
99 |
+
process_label: `Function[string, any]`, function taking in the raw value
|
100 |
+
of the label and processing it to the form required by the label feature
|
101 |
+
**kwargs: keyword arguments forwarded to super.
|
102 |
+
"""
|
103 |
+
|
104 |
+
super(RecastConfig, self).__init__(
|
105 |
+
version=datasets.Version("1.0.0", ""), **kwargs
|
106 |
+
)
|
107 |
+
|
108 |
+
self.text_features = text_features
|
109 |
+
self.label_column = "label"
|
110 |
+
self.label_classes = get_labels(self.name)
|
111 |
+
self.data_url = DATA_URL
|
112 |
+
self.data_dir = os.path.join("recast", self.name)
|
113 |
+
self.citation = textwrap.dedent(_Recast_CITATION)
|
114 |
+
self.process_label = lambda x: str(x)
|
115 |
+
self.description = ""
|
116 |
+
self.url = ""
|
117 |
+
|
118 |
+
|
119 |
+
class Recast(datasets.GeneratorBasedBuilder):
|
120 |
+
|
121 |
+
"""The General Language Understanding Evaluation (Recast) benchmark."""
|
122 |
+
|
123 |
+
BUILDER_CONFIG_CLASS = RecastConfig
|
124 |
+
|
125 |
+
BUILDER_CONFIGS = [
|
126 |
+
RecastConfig(
|
127 |
+
name="recast_kg_relations",
|
128 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
129 |
+
),
|
130 |
+
RecastConfig(
|
131 |
+
name="recast_puns",
|
132 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
133 |
+
),
|
134 |
+
RecastConfig(
|
135 |
+
name="recast_factuality",
|
136 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
137 |
+
),
|
138 |
+
RecastConfig(
|
139 |
+
name="recast_verbnet",
|
140 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
141 |
+
),
|
142 |
+
RecastConfig(
|
143 |
+
name="recast_verbcorner",
|
144 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
145 |
+
),
|
146 |
+
RecastConfig(
|
147 |
+
name="recast_ner",
|
148 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
149 |
+
),
|
150 |
+
RecastConfig(
|
151 |
+
name="recast_sentiment",
|
152 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
153 |
+
),
|
154 |
+
RecastConfig(
|
155 |
+
name="recast_megaveridicality",
|
156 |
+
text_features={"context": "context", "hypothesis": "hypothesis"},
|
157 |
+
),
|
158 |
+
]
|
159 |
+
|
160 |
+
def _info(self):
|
161 |
+
features = {
|
162 |
+
text_feature: datasets.Value("string")
|
163 |
+
for text_feature in six.iterkeys(self.config.text_features)
|
164 |
+
}
|
165 |
+
if self.config.label_classes:
|
166 |
+
features["label"] = datasets.features.ClassLabel(
|
167 |
+
names=self.config.label_classes
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
features["label"] = datasets.Value("float32")
|
171 |
+
features["idx"] = datasets.Value("int32")
|
172 |
+
return datasets.DatasetInfo(
|
173 |
+
description=_Recast_DESCRIPTION,
|
174 |
+
features=datasets.Features(features),
|
175 |
+
homepage=self.config.url,
|
176 |
+
citation=self.config.citation + "\n" + _Recast_CITATION,
|
177 |
+
)
|
178 |
+
|
179 |
+
def _split_generators(self, dl_manager):
|
180 |
+
dl_dir = dl_manager.download_and_extract(self.config.data_url)
|
181 |
+
data_dir = os.path.join(dl_dir, self.config.data_dir)
|
182 |
+
|
183 |
+
return [
|
184 |
+
datasets.SplitGenerator(
|
185 |
+
name=datasets.Split.TRAIN,
|
186 |
+
gen_kwargs={
|
187 |
+
"data_file": os.path.join(data_dir or "", "train.tsv"),
|
188 |
+
"split": "train",
|
189 |
+
},
|
190 |
+
),
|
191 |
+
datasets.SplitGenerator(
|
192 |
+
name=datasets.Split.VALIDATION,
|
193 |
+
gen_kwargs={
|
194 |
+
"data_file": os.path.join(data_dir or "", "dev.tsv"),
|
195 |
+
"split": "dev",
|
196 |
+
},
|
197 |
+
),
|
198 |
+
datasets.SplitGenerator(
|
199 |
+
name=datasets.Split.TEST,
|
200 |
+
gen_kwargs={
|
201 |
+
"data_file": os.path.join(data_dir or "", "test.tsv"),
|
202 |
+
"split": "test",
|
203 |
+
},
|
204 |
+
),
|
205 |
+
]
|
206 |
+
|
207 |
+
def _generate_examples(self, data_file, split):
|
208 |
+
|
209 |
+
process_label = self.config.process_label
|
210 |
+
label_classes = self.config.label_classes
|
211 |
+
|
212 |
+
with open(data_file, encoding="utf8") as f:
|
213 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
214 |
+
|
215 |
+
for n, row in enumerate(reader):
|
216 |
+
|
217 |
+
example = {
|
218 |
+
feat: row[col]
|
219 |
+
for feat, col in six.iteritems(self.config.text_features)
|
220 |
+
}
|
221 |
+
example["idx"] = n
|
222 |
+
|
223 |
+
if self.config.label_column in row:
|
224 |
+
label = row[self.config.label_column]
|
225 |
+
if label_classes and label not in label_classes:
|
226 |
+
label = int(label) if label else None
|
227 |
+
example["label"] = process_label(label)
|
228 |
+
else:
|
229 |
+
example["label"] = process_label(-1)
|
230 |
+
yield example["idx"], example
|