|
import json |
|
import os |
|
|
|
import datasets |
|
from citations_and_descriptions import ( |
|
_SUMM_SCREEN_DESCRIPTION, _SUMM_SCREEN_CITATION, |
|
_GOV_REPORT_CITATION, _GOV_REPORT_DESCRIPTION, |
|
_ARXIV_CITATION, _ARXIV_DESCRIPTION, |
|
_FS_DESCRIPTION, _FS_CITATION, |
|
) |
|
from configs.arxiv import ArxivConfig |
|
from configs.scrolls import ScrollsConfig |
|
|
|
|
|
class FS(datasets.GeneratorBasedBuilder): |
|
"""The SCROLLS benchmark.""" |
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
BUILDER_CONFIGS = [ |
|
ScrollsConfig( |
|
additional_features=["id"], |
|
name="summ_screen_fd_debug", |
|
description=_SUMM_SCREEN_DESCRIPTION, |
|
data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd_debug.zip", |
|
citation=_SUMM_SCREEN_CITATION, |
|
url="https://github.com/mingdachen/SummScreen" |
|
), |
|
ScrollsConfig( |
|
additional_features=["id"], |
|
name="gov_report", |
|
description=_GOV_REPORT_CITATION, |
|
data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/gov_report.zip", |
|
citation=_GOV_REPORT_DESCRIPTION, |
|
url="https://gov-report-data.github.io/" |
|
), |
|
ArxivConfig( |
|
additional_features=['section_names', 'sections'], |
|
name="arxiv_debug", |
|
description=_ARXIV_CITATION, |
|
data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/arxiv_debug.zip", |
|
citation=_ARXIV_DESCRIPTION, |
|
url="https://github.com/armancohan/long-summarization" |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
|
|
return datasets.DatasetInfo( |
|
description=_FS_DESCRIPTION + self.config.description, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation + "\n" + _FS_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
data_files = {} if self.config.data_files is not None else None |
|
if data_files is not None: |
|
for split, paths in self.config.data_files.items(): |
|
data_files[split] = paths[0] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, self.config.train_file), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, self.config.validation_file), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, self.config.test_file), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file): |
|
with open(data_file, encoding="utf-8") as f: |
|
for line in f: |
|
row = json.loads(line) |
|
self.config.process(row) |
|
yield row[self.config.id_key], row |
|
|