Datasets:
tau
/

Modalities:
Text
Libraries:
Datasets
yuvalkirstain commited on
Commit
3e38ab8
·
1 Parent(s): 2d36b82

starting reader from scrolls

Browse files
Files changed (1) hide show
  1. fs.py +171 -0
fs.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Lint as: python3
3
+ """The SCROLLS benchmark."""
4
+
5
+ import json
6
+ import os
7
+ import datasets
8
+
9
+ _FS_CITATION = """
10
+ TBD
11
+ """
12
+
13
+ _FS_DESCRIPTION = """
14
+ TBD
15
+ """
16
+
17
+ _SUMM_SCREEN_DESCRIPTION = """
18
+ SummScreenFD (Chen et al., 2021) is a summarization dataset in the domain of TV shows (e.g. Friends, Game of Thrones).
19
+ Given a transcript of a specific episode, the goal is to produce the episode's recap.
20
+ The original dataset is divided into two complementary subsets, based on the source of its community contributed transcripts.
21
+ For SCROLLS, we use the ForeverDreaming (FD) subset, as it incorporates 88 different shows,
22
+ making it a more diverse alternative to the TV MegaSite (TMS) subset, which has only 10 shows.
23
+ Community-authored recaps for the ForeverDreaming transcripts were collected from English Wikipedia and TVMaze."""
24
+
25
+
26
+ _GOV_REPORT_DESCRIPTION = """
27
+ GovReport (Huang et al., 2021) is a summarization dataset of reports addressing various national policy issues published by the
28
+ Congressional Research Service and the U.S. Government Accountability Office, where each document is paired with a hand-written executive summary.
29
+ The reports and their summaries are longer than their equivalents in other popular long-document summarization datasets;
30
+ for example, GovReport's documents are approximately 1.5 and 2.5 times longer than the documents in Arxiv and PubMed, respectively."""
31
+
32
+
33
+
34
+ _SUMM_SCREEN_CITATION = r"""
35
+ @misc{chen2021summscreen,
36
+ title={SummScreen: A Dataset for Abstractive Screenplay Summarization},
37
+ author={Mingda Chen and Zewei Chu and Sam Wiseman and Kevin Gimpel},
38
+ year={2021},
39
+ eprint={2104.07091},
40
+ archivePrefix={arXiv},
41
+ primaryClass={cs.CL}
42
+ }"""
43
+
44
+ _GOV_REPORT_CITATION = r"""
45
+ @inproceedings{huang-etal-2021-efficient,
46
+ title = "Efficient Attentions for Long Document Summarization",
47
+ author = "Huang, Luyang and
48
+ Cao, Shuyang and
49
+ Parulian, Nikolaus and
50
+ Ji, Heng and
51
+ Wang, Lu",
52
+ booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
53
+ month = jun,
54
+ year = "2021",
55
+ address = "Online",
56
+ publisher = "Association for Computational Linguistics",
57
+ url = "https://aclanthology.org/2021.naacl-main.112",
58
+ doi = "10.18653/v1/2021.naacl-main.112",
59
+ pages = "1419--1436",
60
+ abstract = "The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.",
61
+ }"""
62
+
63
+
64
+ class FSConfig(datasets.BuilderConfig):
65
+ """BuilderConfig for SCROLLS."""
66
+
67
+ def __init__(self, features, data_url, citation, url, **kwargs):
68
+ """BuilderConfig for SCROLLS.
69
+ Args:
70
+ features: `list[string]`, list of the features that will appear in the
71
+ feature dict. Should not include "label".
72
+ data_url: `string`, url to download the zip file from.
73
+ citation: `string`, citation for the data set.
74
+ url: `string`, url for information about the data set.
75
+ label_classes: `list[string]`, the list of classes for the label if the
76
+ label is present as a string. Non-string labels will be cast to either
77
+ 'False' or 'True'.
78
+ **kwargs: keyword arguments forwarded to super.
79
+ """
80
+ super(FSConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
81
+ self.features = features
82
+ self.data_url = data_url
83
+ self.citation = citation
84
+ self.url = url
85
+
86
+
87
+ class Scrolls(datasets.GeneratorBasedBuilder):
88
+ """The SCROLLS benchmark."""
89
+
90
+ features = ["id", "pid", "input", "output"]
91
+ DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset
92
+ BUILDER_CONFIGS = [
93
+ FSConfig(
94
+ name="summ_screen_fd",
95
+ description=_SUMM_SCREEN_DESCRIPTION,
96
+ features=features,
97
+ data_url="https://scrolls-tau.s3.us-east-2.amazonaws.com/summ_screen_fd.zip",
98
+ citation=_SUMM_SCREEN_CITATION,
99
+ url="https://github.com/mingdachen/SummScreen",
100
+ ),
101
+ FSConfig(
102
+ name="gov_report",
103
+ description=_GOV_REPORT_CITATION,
104
+ features=features,
105
+ data_url="https://scrolls-tau.s3.us-east-2.amazonaws.com/gov_report.zip",
106
+ citation=_GOV_REPORT_DESCRIPTION,
107
+ url="https://gov-report-data.github.io/",
108
+ ),
109
+ ]
110
+
111
+ def _info(self):
112
+ features = {feature: datasets.Value("string") for feature in self.config.features}
113
+
114
+ return datasets.DatasetInfo(
115
+ description=_FS_DESCRIPTION + self.config.description,
116
+ features=datasets.Features(features),
117
+ homepage=self.config.url,
118
+ citation=self.config.citation + "\n" + _FS_CITATION,
119
+ )
120
+
121
+ def _split_generators(self, dl_manager):
122
+ dl_dir = dl_manager.download_and_extract(self.config.data_url)
123
+ task_name = _get_task_name_from_data_url(self.config.data_url)
124
+ dl_dir = os.path.join(dl_dir, task_name)
125
+
126
+ data_files = {} if self.config.data_files is not None else None
127
+ if data_files is not None:
128
+ for split, paths in self.config.data_files.items():
129
+ data_files[split] = paths[0]
130
+
131
+ return [
132
+ datasets.SplitGenerator(
133
+ name=datasets.Split.TRAIN,
134
+ gen_kwargs={
135
+ "data_file": os.path.join(dl_dir, "train.jsonl"),
136
+ "split": datasets.Split.TRAIN,
137
+ },
138
+ ),
139
+ datasets.SplitGenerator(
140
+ name=datasets.Split.VALIDATION,
141
+ gen_kwargs={
142
+ "data_file": os.path.join(dl_dir, "validation.jsonl"),
143
+ "split": datasets.Split.VALIDATION,
144
+ },
145
+ ),
146
+ datasets.SplitGenerator(
147
+ name=datasets.Split.TEST,
148
+ gen_kwargs={
149
+ "data_file": os.path.join(dl_dir, "test.jsonl") if data_files is None else data_files["test"],
150
+ "split": datasets.Split.TEST,
151
+ },
152
+ ),
153
+ ]
154
+
155
+ def _generate_examples(self, data_file, split):
156
+ with open(data_file, encoding="utf-8") as f:
157
+ for line in f:
158
+ row = json.loads(line)
159
+ yield row["pid"], row
160
+
161
+
162
+ def _get_task_name_from_data_url(data_url):
163
+ return data_url.split("/")[-1].split(".")[0]
164
+
165
+
166
+ if __name__ == '__main__':
167
+ builder = Scrolls("scrolls", "summ_screen_fd")
168
+ builder.download_and_prepare()
169
+ dataset = builder.as_dataset("validation")
170
+ x = 5
171
+