Update fs.py
Browse files
fs.py
CHANGED
@@ -6,7 +6,7 @@ import json
|
|
6 |
import os
|
7 |
import datasets
|
8 |
from datasets import load_dataset
|
9 |
-
from transformers import AutoTokenizer
|
10 |
|
11 |
_FS_CITATION = """
|
12 |
TBD
|
@@ -66,7 +66,7 @@ _GOV_REPORT_CITATION = r"""
|
|
66 |
class FSConfig(datasets.BuilderConfig):
|
67 |
"""BuilderConfig for FS."""
|
68 |
|
69 |
-
def __init__(self, features, data_url, citation, url, max_source_length, tokenizer, **kwargs):
|
70 |
"""BuilderConfig for FS.
|
71 |
Args:
|
72 |
features: `list[string]`, list of the features that will appear in the
|
@@ -86,12 +86,13 @@ class FSConfig(datasets.BuilderConfig):
|
|
86 |
self.url = url
|
87 |
self.max_source_length = max_source_length
|
88 |
self.tokenizer = tokenizer
|
|
|
89 |
|
90 |
|
91 |
class Fs(datasets.GeneratorBasedBuilder):
|
92 |
"""The SCROLLS benchmark."""
|
93 |
|
94 |
-
features = ["id", "pid", "input", "output"
|
95 |
DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset
|
96 |
BUILDER_CONFIGS = [
|
97 |
FSConfig(
|
@@ -103,6 +104,7 @@ class Fs(datasets.GeneratorBasedBuilder):
|
|
103 |
url="https://github.com/mingdachen/SummScreen",
|
104 |
max_source_length=None,
|
105 |
tokenizer=None,
|
|
|
106 |
),
|
107 |
FSConfig(
|
108 |
name="gov_report",
|
@@ -113,6 +115,7 @@ class Fs(datasets.GeneratorBasedBuilder):
|
|
113 |
url="https://gov-report-data.github.io/",
|
114 |
max_source_length=None,
|
115 |
tokenizer=None,
|
|
|
116 |
),
|
117 |
]
|
118 |
|
@@ -141,6 +144,7 @@ class Fs(datasets.GeneratorBasedBuilder):
|
|
141 |
"data_file": os.path.join(dl_dir, "train.jsonl"),
|
142 |
"split": datasets.Split.TRAIN,
|
143 |
"max_source_length": self.config.max_source_length,
|
|
|
144 |
"tokenizer": self.config.tokenizer,
|
145 |
},
|
146 |
),
|
@@ -150,6 +154,7 @@ class Fs(datasets.GeneratorBasedBuilder):
|
|
150 |
"data_file": os.path.join(dl_dir, "validation.jsonl"),
|
151 |
"split": datasets.Split.VALIDATION,
|
152 |
"max_source_length": self.config.max_source_length,
|
|
|
153 |
"tokenizer": self.config.tokenizer,
|
154 |
},
|
155 |
),
|
@@ -159,6 +164,7 @@ class Fs(datasets.GeneratorBasedBuilder):
|
|
159 |
"data_file": os.path.join(dl_dir, "test.jsonl") if data_files is None else data_files["test"],
|
160 |
"split": datasets.Split.TEST,
|
161 |
"max_source_length": self.config.max_source_length,
|
|
|
162 |
"tokenizer": self.config.tokenizer,
|
163 |
},
|
164 |
),
|
@@ -168,25 +174,21 @@ class Fs(datasets.GeneratorBasedBuilder):
|
|
168 |
with open(data_file, encoding="utf-8") as f:
|
169 |
for line in f:
|
170 |
row = json.loads(line)
|
|
|
|
|
|
|
171 |
|
172 |
-
prefix, addition = row["source"].strip(), "Summary:"
|
173 |
-
encoded_input = tokenizer.encode(prefix + "\n" + addition)
|
174 |
-
input_length = len(encoded_input)
|
175 |
-
|
176 |
n_truncations = 0
|
177 |
-
while
|
178 |
-
overflow =
|
179 |
tokenized_prefix = tokenizer.encode(prefix, add_special_tokens=False)
|
180 |
if overflow > 0:
|
181 |
tokenized_prefix = tokenized_prefix[:-overflow]
|
182 |
n_truncations += 1
|
183 |
prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip()
|
184 |
-
encoded_input = tokenizer.encode(prefix +
|
185 |
-
input_length = len(encoded_input)
|
186 |
-
|
187 |
-
valid_input = prefix + "\n" + addition
|
188 |
|
189 |
-
row["input"] =
|
190 |
row["output"] = row["target"]
|
191 |
|
192 |
yield row["pid"], row
|
@@ -198,10 +200,9 @@ def _get_task_name_from_data_url(data_url):
|
|
198 |
|
199 |
if __name__ == '__main__':
|
200 |
tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
201 |
-
dataset = load_dataset("tau/fs",
|
202 |
x = 5
|
203 |
# builder = Scrolls("scrolls", "summ_screen_fd")
|
204 |
# builder.download_and_prepare()
|
205 |
# dataset = builder.as_dataset("validation")
|
206 |
-
# x = 5
|
207 |
-
|
|
|
6 |
import os
|
7 |
import datasets
|
8 |
from datasets import load_dataset
|
9 |
+
from transformers import AutoTokenizer # TODO comment out when getting rid of __main__:
|
10 |
|
11 |
_FS_CITATION = """
|
12 |
TBD
|
|
|
66 |
class FSConfig(datasets.BuilderConfig):
|
67 |
"""BuilderConfig for FS."""
|
68 |
|
69 |
+
def __init__(self, features, data_url, citation, url, max_source_length, tokenizer,prompt, **kwargs):
|
70 |
"""BuilderConfig for FS.
|
71 |
Args:
|
72 |
features: `list[string]`, list of the features that will appear in the
|
|
|
86 |
self.url = url
|
87 |
self.max_source_length = max_source_length
|
88 |
self.tokenizer = tokenizer
|
89 |
+
self.prompt = prompt
|
90 |
|
91 |
|
92 |
class Fs(datasets.GeneratorBasedBuilder):
|
93 |
"""The SCROLLS benchmark."""
|
94 |
|
95 |
+
features = ["id", "pid", "input", "output"]
|
96 |
DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset
|
97 |
BUILDER_CONFIGS = [
|
98 |
FSConfig(
|
|
|
104 |
url="https://github.com/mingdachen/SummScreen",
|
105 |
max_source_length=None,
|
106 |
tokenizer=None,
|
107 |
+
prompt=None
|
108 |
),
|
109 |
FSConfig(
|
110 |
name="gov_report",
|
|
|
115 |
url="https://gov-report-data.github.io/",
|
116 |
max_source_length=None,
|
117 |
tokenizer=None,
|
118 |
+
prompt=None
|
119 |
),
|
120 |
]
|
121 |
|
|
|
144 |
"data_file": os.path.join(dl_dir, "train.jsonl"),
|
145 |
"split": datasets.Split.TRAIN,
|
146 |
"max_source_length": self.config.max_source_length,
|
147 |
+
"prompt": self.config.prompt,
|
148 |
"tokenizer": self.config.tokenizer,
|
149 |
},
|
150 |
),
|
|
|
154 |
"data_file": os.path.join(dl_dir, "validation.jsonl"),
|
155 |
"split": datasets.Split.VALIDATION,
|
156 |
"max_source_length": self.config.max_source_length,
|
157 |
+
"prompt": self.config.prompt,
|
158 |
"tokenizer": self.config.tokenizer,
|
159 |
},
|
160 |
),
|
|
|
164 |
"data_file": os.path.join(dl_dir, "test.jsonl") if data_files is None else data_files["test"],
|
165 |
"split": datasets.Split.TEST,
|
166 |
"max_source_length": self.config.max_source_length,
|
167 |
+
"prompt": self.config.prompt,
|
168 |
"tokenizer": self.config.tokenizer,
|
169 |
},
|
170 |
),
|
|
|
174 |
with open(data_file, encoding="utf-8") as f:
|
175 |
for line in f:
|
176 |
row = json.loads(line)
|
177 |
+
prefix = row["source"].strip()
|
178 |
+
suffix = "\n" + self.config.prompt
|
179 |
+
encoded_input = tokenizer.encode(prefix + suffix)
|
180 |
|
|
|
|
|
|
|
|
|
181 |
n_truncations = 0
|
182 |
+
while len(encoded_input) > max_source_length:
|
183 |
+
overflow = len(encoded_input) - max_source_length
|
184 |
tokenized_prefix = tokenizer.encode(prefix, add_special_tokens=False)
|
185 |
if overflow > 0:
|
186 |
tokenized_prefix = tokenized_prefix[:-overflow]
|
187 |
n_truncations += 1
|
188 |
prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip()
|
189 |
+
encoded_input = tokenizer.encode(prefix + suffix)
|
|
|
|
|
|
|
190 |
|
191 |
+
row["input"] = prefix + suffix
|
192 |
row["output"] = row["target"]
|
193 |
|
194 |
yield row["pid"], row
|
|
|
200 |
|
201 |
if __name__ == '__main__':
|
202 |
tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
203 |
+
dataset = load_dataset("tau/fs",name="summ_screen_fd", max_source_length=512, tokenizer=tokenizer, prompt="Summary:")
|
204 |
x = 5
|
205 |
# builder = Scrolls("scrolls", "summ_screen_fd")
|
206 |
# builder.download_and_prepare()
|
207 |
# dataset = builder.as_dataset("validation")
|
208 |
+
# x = 5
|
|