import json import os import datasets from citations_and_descriptions import ( _SUMM_SCREEN_DESCRIPTION, _SUMM_SCREEN_CITATION, _GOV_REPORT_CITATION, _GOV_REPORT_DESCRIPTION, _ARXIV_CITATION, _ARXIV_DESCRIPTION, _FS_DESCRIPTION, _FS_CITATION, ) from configs.arxiv import ArxivConfig from configs.scrolls import ScrollsConfig from configs.super_glue import BoolQConfig class FS(datasets.GeneratorBasedBuilder): """The SCROLLS benchmark.""" DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset BUILDER_CONFIGS = [ ScrollsConfig( additional_features=["id"], name="summ_screen_fd_debug", description=_SUMM_SCREEN_DESCRIPTION, data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd_debug.zip", citation=_SUMM_SCREEN_CITATION, url="https://github.com/mingdachen/SummScreen" ), ScrollsConfig( additional_features=["id"], name="gov_report", description=_GOV_REPORT_CITATION, data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/gov_report.zip", citation=_GOV_REPORT_DESCRIPTION, url="https://gov-report-data.github.io/" ), ArxivConfig( additional_features=['section_names', 'sections'], name="arxiv_debug", description=_ARXIV_CITATION, data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/arxiv_debug.zip", citation=_ARXIV_DESCRIPTION, url="https://github.com/armancohan/long-summarization" ), BoolQConfig( additional_features=[], name="boolq", description="", # TODO data_url="https://dl.fbaipublicfiles.com/glue/superglue/data/v2/BoolQ.zip", citation=_ARXIV_DESCRIPTION, url="" # TODO ) ] def _info(self): features = {feature: datasets.Value("string") for feature in self.config.features} return datasets.DatasetInfo( description=_FS_DESCRIPTION + self.config.description, features=datasets.Features(features), homepage=self.config.url, citation=self.config.citation + "\n" + _FS_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(self.config.data_url) task_name = _get_task_name_from_data_url(self.config.data_url) dl_dir = os.path.join(dl_dir, task_name) data_files = {} if self.config.data_files is not None else None if data_files is not None: for split, paths in self.config.data_files.items(): data_files[split] = paths[0] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": os.path.join(dl_dir, self.config.train_file), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": os.path.join(dl_dir, self.config.validation_file), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": os.path.join(dl_dir, self.config.test_file), }, ), ] def _generate_examples(self, data_file): with open(data_file, encoding="utf-8") as f: for line in f: row = json.loads(line) self.config.process(row) if self.config.target_key not in row: row[self.config.target_key] = None yield row[self.config.id_key], row def _get_task_name_from_data_url(data_url): return data_url.split("/")[-1].split(".")[0]