File size: 837 Bytes
4a0c85e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946abd7
 
 
 
 
 
 
 
 
 
4a0c85e
d4dc284
6c19fc4
d4dc284
 
6c19fc4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: audio_file
    dtype: string
  - name: slice
    dtype: int16
  splits:
  - name: train
    num_bytes: 1903861364.293
    num_examples: 10663
  download_size: 1903696036
  dataset_size: 1903861364.293
pretty_name: Mel spectrograms of music
size_categories:
- 10K<n<100K
source_datasets: []
tags:
- audio
- spectrograms
task_categories:
- image-to-image
task_ids: []
---
Over 20,000 512x512 mel spectrograms of 5 second samples of music from my Spotify liked playlist. The code to convert from audio to spectrogram and vice versa can be found in https://github.com/teticio/audio-diffusion along with scripts to train and run inference using De-noising Diffusion Probabilistic Models.
```
x_res = 512
y_res = 512
sample_rate = 22050
n_fft = 2048
hop_length = 512
```