desc
stringlengths
3
26.7k
decl
stringlengths
11
7.89k
bodies
stringlengths
8
553k
'call signature:: bar(left, height, width=0.8, bottom=0, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align=\'edge\', orientation=\'vertical\', log=False) Make a bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *left*, *height*, *width*, and *bottom* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: Argument Description *left* the x coordinates of the left sides of the bars *height* the heights of the bars Optional keyword arguments: Keyword Description *width* the widths of the bars *bottom* the y coordinates of the bottom edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don\'t draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* \'edge\' (default) | \'center\' *orientation* \'vertical\' | \'horizontal\' *log* [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale For vertical bars, *align* = \'edge\' aligns bars by their left edges in left, while *align* = \'center\' interprets these values as the *x* coordinates of the bar centers. For horizontal bars, *align* = \'edge\' aligns bars by their bottom edges in bottom, while *align* = \'center\' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts, or candlestick plots. Other optional kwargs: %(Rectangle)s **Example:** A stacked bar chart. .. plot:: mpl_examples/pylab_examples/bar_stacked.py'
def bar(self, left, height, width=0.8, bottom=None, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align='edge', orientation='vertical', log=False, **kwargs):
if (not self._hold): self.cla() label = kwargs.pop('label', '') def make_iterable(x): if (not iterable(x)): return [x] else: return x _left = left left = make_iterable(left) height = make_iterable(height) width = make_iterable(width) _bottom = bottom bottom = make_iterable(bottom) linewidth = make_iterable(linewidth) adjust_ylim = False adjust_xlim = False if (orientation == 'vertical'): self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs) if log: self.set_yscale('log') if (_bottom is None): if (self.get_yscale() == 'log'): bottom = [1e-100] adjust_ylim = True else: bottom = [0] nbars = len(left) if (len(width) == 1): width *= nbars if (len(bottom) == 1): bottom *= nbars elif (orientation == 'horizontal'): self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs) if log: self.set_xscale('log') if (_left is None): if (self.get_xscale() == 'log'): left = [1e-100] adjust_xlim = True else: left = [0] nbars = len(bottom) if (len(left) == 1): left *= nbars if (len(height) == 1): height *= nbars else: raise ValueError, ('invalid orientation: %s' % orientation) if (len(linewidth) < nbars): linewidth *= nbars if (color is None): color = ([None] * nbars) else: color = list(mcolors.colorConverter.to_rgba_array(color)) if (len(color) < nbars): color *= nbars if (edgecolor is None): edgecolor = ([None] * nbars) else: edgecolor = list(mcolors.colorConverter.to_rgba_array(edgecolor)) if (len(edgecolor) < nbars): edgecolor *= nbars if (yerr is not None): if (not iterable(yerr)): yerr = ([yerr] * nbars) if (xerr is not None): if (not iterable(xerr)): xerr = ([xerr] * nbars) assert (len(left) == nbars), ("argument 'left' must be %d or scalar" % nbars) assert (len(height) == nbars), ("argument 'height' must be %d or scalar" % nbars) assert (len(width) == nbars), ("argument 'width' must be %d or scalar" % nbars) assert (len(bottom) == nbars), ("argument 'bottom' must be %d or scalar" % nbars) if ((yerr is not None) and (len(yerr) != nbars)): raise ValueError(("bar() argument 'yerr' must be len(%s) or scalar" % nbars)) if ((xerr is not None) and (len(xerr) != nbars)): raise ValueError(("bar() argument 'xerr' must be len(%s) or scalar" % nbars)) patches = [] if (self.xaxis is not None): xconv = self.xaxis.converter if (xconv is not None): units = self.xaxis.get_units() left = xconv.convert(left, units) width = xconv.convert(width, units) if (self.yaxis is not None): yconv = self.yaxis.converter if (yconv is not None): units = self.yaxis.get_units() bottom = yconv.convert(bottom, units) height = yconv.convert(height, units) if (align == 'edge'): pass elif (align == 'center'): if (orientation == 'vertical'): left = [(left[i] - (width[i] / 2.0)) for i in xrange(len(left))] elif (orientation == 'horizontal'): bottom = [(bottom[i] - (height[i] / 2.0)) for i in xrange(len(bottom))] else: raise ValueError, ('invalid alignment: %s' % align) args = zip(left, bottom, width, height, color, edgecolor, linewidth) for (l, b, w, h, c, e, lw) in args: if (h < 0): b += h h = abs(h) if (w < 0): l += w w = abs(w) r = mpatches.Rectangle(xy=(l, b), width=w, height=h, facecolor=c, edgecolor=e, linewidth=lw, label=label) label = '_nolegend_' r.update(kwargs) self.add_patch(r) patches.append(r) holdstate = self._hold self.hold(True) if ((xerr is not None) or (yerr is not None)): if (orientation == 'vertical'): x = [(l + (0.5 * w)) for (l, w) in zip(left, width)] y = [(b + h) for (b, h) in zip(bottom, height)] elif (orientation == 'horizontal'): x = [(l + w) for (l, w) in zip(left, width)] y = [(b + (0.5 * h)) for (b, h) in zip(bottom, height)] self.errorbar(x, y, yerr=yerr, xerr=xerr, fmt=None, ecolor=ecolor, capsize=capsize) self.hold(holdstate) if adjust_xlim: (xmin, xmax) = self.dataLim.intervalx xmin = np.amin(width[(width != 0)]) if (xerr is not None): xmin = (xmin - np.amax(xerr)) xmin = max((xmin * 0.9), 1e-100) self.dataLim.intervalx = (xmin, xmax) if adjust_ylim: (ymin, ymax) = self.dataLim.intervaly ymin = np.amin(height[(height != 0)]) if (yerr is not None): ymin = (ymin - np.amax(yerr)) ymin = max((ymin * 0.9), 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() return patches
'call signature:: barh(bottom, width, height=0.8, left=0, **kwargs) Make a horizontal bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *bottom*, *width*, *height*, and *left* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: Argument Description *bottom* the vertical positions of the bottom edges of the bars *width* the lengths of the bars Optional keyword arguments: Keyword Description *height* the heights (thicknesses) of the bars *left* the x coordinates of the left edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don\'t draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* \'edge\' (default) | \'center\' *log* [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale Setting *align* = \'edge\' aligns bars by their bottom edges in bottom, while *align* = \'center\' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts, or candlestick plots. other optional kwargs: %(Rectangle)s'
def barh(self, bottom, width, height=0.8, left=None, **kwargs):
patches = self.bar(left=left, height=height, width=width, bottom=bottom, orientation='horizontal', **kwargs) return patches
'call signature:: broken_barh(self, xranges, yrange, **kwargs) A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. Required arguments: Argument Description *xranges* sequence of (*xmin*, *xwidth*) *yrange* sequence of (*ymin*, *ywidth*) kwargs are :class:`matplotlib.collections.BrokenBarHCollection` properties: %(BrokenBarHCollection)s these can either be a single argument, ie:: facecolors = \'black\' or a sequence of arguments for the various bars, ie:: facecolors = (\'black\', \'red\', \'green\') **Example:** .. plot:: mpl_examples/pylab_examples/broken_barh.py'
def broken_barh(self, xranges, yrange, **kwargs):
col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs) self.add_collection(col, autolim=True) self.autoscale_view() return col
'call signature:: stem(x, y, linefmt=\'b-\', markerfmt=\'bo\', basefmt=\'r-\') A stem plot plots vertical lines (using *linefmt*) at each *x* location from the baseline to *y*, and places a marker there using *markerfmt*. A horizontal line at 0 is is plotted using *basefmt*. Return value is a tuple (*markerline*, *stemlines*, *baseline*). .. seealso:: `this document`__ for details :file:`examples/pylab_examples/stem_plot.py`: for a demo __ http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html'
def stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-'):
remember_hold = self._hold if (not self._hold): self.cla() self.hold(True) (markerline,) = self.plot(x, y, markerfmt) stemlines = [] for (thisx, thisy) in zip(x, y): (l,) = self.plot([thisx, thisx], [0, thisy], linefmt) stemlines.append(l) (baseline,) = self.plot([np.amin(x), np.amax(x)], [0, 0], basefmt) self.hold(remember_hold) return (markerline, stemlines, baseline)
'call signature:: pie(x, explode=None, labels=None, colors=(\'b\', \'g\', \'r\', \'c\', \'m\', \'y\', \'k\', \'w\'), autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False) Make a pie chart of array *x*. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1, then the values of x give the fractional area directly and the array will not be normalized. Keyword arguments: *explode*: [ None | len(x) sequence ] If not *None*, is a len(*x*) array which specifies the fraction of the radius with which to offset each wedge. *colors*: [ None | color sequence ] A sequence of matplotlib color args through which the pie chart will cycle. *labels*: [ None | len(x) sequence of strings ] A sequence of strings providing the labels for each wedge *autopct*: [ None | format string | format function ] If not *None*, is a string or function used to label the wedges with their numeric value. The label will be placed inside the wedge. If it is a format string, the label will be ``fmt%pct``. If it is a function, it will be called. *pctdistance*: scalar The ratio between the center of each pie slice and the start of the text generated by *autopct*. Ignored if *autopct* is *None*; default is 0.6. *labeldistance*: scalar The radial distance at which the pie labels are drawn *shadow*: [ False | True ] Draw a shadow beneath the pie. The pie chart will probably look best if the figure and axes are square. Eg.:: figure(figsize=(8,8)) ax = axes([0.1, 0.1, 0.8, 0.8]) Return value: If *autopct* is None, return the tuple (*patches*, *texts*): - *patches* is a sequence of :class:`matplotlib.patches.Wedge` instances - *texts* is a list of the label :class:`matplotlib.text.Text` instances. If *autopct* is not *None*, return the tuple (*patches*, *texts*, *autotexts*), where *patches* and *texts* are as above, and *autotexts* is a list of :class:`~matplotlib.text.Text` instances for the numeric labels.'
def pie(self, x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1):
self.set_frame_on(False) x = np.asarray(x).astype(np.float32) sx = float(x.sum()) if (sx > 1): x = np.divide(x, sx) if (labels is None): labels = ([''] * len(x)) if (explode is None): explode = ([0] * len(x)) assert (len(x) == len(labels)) assert (len(x) == len(explode)) if (colors is None): colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w') center = (0, 0) radius = 1 theta1 = 0 i = 0 texts = [] slices = [] autotexts = [] for (frac, label, expl) in cbook.safezip(x, labels, explode): (x, y) = center theta2 = (theta1 + frac) thetam = (((2 * math.pi) * 0.5) * (theta1 + theta2)) x += (expl * math.cos(thetam)) y += (expl * math.sin(thetam)) w = mpatches.Wedge((x, y), radius, (360.0 * theta1), (360.0 * theta2), facecolor=colors[(i % len(colors))]) slices.append(w) self.add_patch(w) w.set_label(label) if shadow: shad = mpatches.Shadow(w, (-0.02), (-0.02)) shad.set_zorder((0.9 * w.get_zorder())) self.add_patch(shad) xt = (x + ((labeldistance * radius) * math.cos(thetam))) yt = (y + ((labeldistance * radius) * math.sin(thetam))) label_alignment = (((xt > 0) and 'left') or 'right') t = self.text(xt, yt, label, size=rcParams['xtick.labelsize'], horizontalalignment=label_alignment, verticalalignment='center') texts.append(t) if (autopct is not None): xt = (x + ((pctdistance * radius) * math.cos(thetam))) yt = (y + ((pctdistance * radius) * math.sin(thetam))) if is_string_like(autopct): s = (autopct % (100.0 * frac)) elif callable(autopct): s = autopct((100.0 * frac)) else: raise TypeError('autopct must be callable or a format string') t = self.text(xt, yt, s, horizontalalignment='center', verticalalignment='center') autotexts.append(t) theta1 = theta2 i += 1 self.set_xlim(((-1.25), 1.25)) self.set_ylim(((-1.25), 1.25)) self.set_xticks([]) self.set_yticks([]) if (autopct is None): return (slices, texts) else: return (slices, texts, autotexts)
'call signature:: errorbar(x, y, yerr=None, xerr=None, fmt=\'-\', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False) Plot *x* versus *y* with error deltas in *yerr* and *xerr*. Vertical errorbars are plotted if *yerr* is not *None*. Horizontal errorbars are plotted if *xerr* is not *None*. *x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a single error bar at *x*, *y*. Optional keyword arguments: *xerr*/*yerr*: [ scalar | N, Nx1, Nx2 array-like ] If a scalar number, len(N) array-like object, or an Nx1 array-like object, errorbars are drawn +/- value. If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and +column2 *fmt*: \'-\' The plot format symbol for *y*. If *fmt* is *None*, just plot the errorbars with no line symbols. This can be useful for creating a bar plot with errorbars. *ecolor*: [ None | mpl color ] a matplotlib color arg which gives the color the errorbar lines; if *None*, use the marker color. *elinewidth*: scalar the linewidth of the errorbar lines. If *None*, use the linewidth. *capsize*: scalar the size of the error bar caps in points *barsabove*: [ True | False ] if *True*, will plot the errorbars above the plot symbols. Default is below. *lolims*/*uplims*/*xlolims*/*xuplims*: [ False | True ] These arguments can be used to indicate that a value gives only upper/lower limits. In that case a caret symbol is used to indicate this. lims-arguments may be of the same type as *xerr* and *yerr*. All other keyword arguments are passed on to the plot command for the markers, so you can add additional key=value pairs to control the errorbar markers. For example, this code makes big red squares with thick green edges:: x,y,yerr = rand(3,10) errorbar(x, y, yerr, marker=\'s\', mfc=\'red\', mec=\'green\', ms=20, mew=4) where *mfc*, *mec*, *ms* and *mew* are aliases for the longer property names, *markerfacecolor*, *markeredgecolor*, *markersize* and *markeredgewith*. valid kwargs for the marker properties are %(Line2D)s Return value is a length 3 tuple. The first element is the :class:`~matplotlib.lines.Line2D` instance for the *y* symbol lines. The second element is a list of error bar cap lines, the third element is a list of :class:`~matplotlib.collections.LineCollection` instances for the horizontal and vertical error ranges. **Example:** .. plot:: mpl_examples/pylab_examples/errorbar_demo.py'
def errorbar(self, x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs):
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) if (not self._hold): self.cla() if (not iterable(x)): x = [x] if (not iterable(y)): y = [y] if (xerr is not None): if (not iterable(xerr)): xerr = ([xerr] * len(x)) if (yerr is not None): if (not iterable(yerr)): yerr = ([yerr] * len(y)) l0 = None if (barsabove and (fmt is not None)): (l0,) = self.plot(x, y, fmt, **kwargs) barcols = [] caplines = [] lines_kw = {'label': '_nolegend_'} if elinewidth: lines_kw['linewidth'] = elinewidth else: if ('linewidth' in kwargs): lines_kw['linewidth'] = kwargs['linewidth'] if ('lw' in kwargs): lines_kw['lw'] = kwargs['lw'] if ('transform' in kwargs): lines_kw['transform'] = kwargs['transform'] if (not iterable(lolims)): lolims = np.asarray(([lolims] * len(x)), bool) else: lolims = np.asarray(lolims, bool) if (not iterable(uplims)): uplims = np.array(([uplims] * len(x)), bool) else: uplims = np.asarray(uplims, bool) if (not iterable(xlolims)): xlolims = np.array(([xlolims] * len(x)), bool) else: xlolims = np.asarray(xlolims, bool) if (not iterable(xuplims)): xuplims = np.array(([xuplims] * len(x)), bool) else: xuplims = np.asarray(xuplims, bool) def xywhere(xs, ys, mask): '\n return xs[mask], ys[mask] where mask is True but xs and\n ys are not arrays\n ' assert (len(xs) == len(ys)) assert (len(xs) == len(mask)) xs = [thisx for (thisx, b) in zip(xs, mask) if b] ys = [thisy for (thisy, b) in zip(ys, mask) if b] return (xs, ys) if (capsize > 0): plot_kw = {'ms': (2 * capsize), 'label': '_nolegend_'} if ('markeredgewidth' in kwargs): plot_kw['markeredgewidth'] = kwargs['markeredgewidth'] if ('mew' in kwargs): plot_kw['mew'] = kwargs['mew'] if ('transform' in kwargs): plot_kw['transform'] = kwargs['transform'] if (xerr is not None): if (iterable(xerr) and (len(xerr) == 2) and iterable(xerr[0]) and iterable(xerr[1])): left = [(thisx - thiserr) for (thisx, thiserr) in cbook.safezip(x, xerr[0])] right = [(thisx + thiserr) for (thisx, thiserr) in cbook.safezip(x, xerr[1])] else: left = [(thisx - thiserr) for (thisx, thiserr) in cbook.safezip(x, xerr)] right = [(thisx + thiserr) for (thisx, thiserr) in cbook.safezip(x, xerr)] barcols.append(self.hlines(y, left, right, **lines_kw)) if (capsize > 0): if xlolims.any(): (leftlo, ylo) = xywhere(left, y, xlolims) caplines.extend(self.plot(leftlo, ylo, ls='None', marker=mlines.CARETLEFT, **plot_kw)) xlolims = (~ xlolims) (leftlo, ylo) = xywhere(left, y, xlolims) caplines.extend(self.plot(leftlo, ylo, 'k|', **plot_kw)) else: caplines.extend(self.plot(left, y, 'k|', **plot_kw)) if xuplims.any(): (rightup, yup) = xywhere(right, y, xuplims) caplines.extend(self.plot(rightup, yup, ls='None', marker=mlines.CARETRIGHT, **plot_kw)) xuplims = (~ xuplims) (rightup, yup) = xywhere(right, y, xuplims) caplines.extend(self.plot(rightup, yup, 'k|', **plot_kw)) else: caplines.extend(self.plot(right, y, 'k|', **plot_kw)) if (yerr is not None): if (iterable(yerr) and (len(yerr) == 2) and iterable(yerr[0]) and iterable(yerr[1])): lower = [(thisy - thiserr) for (thisy, thiserr) in cbook.safezip(y, yerr[0])] upper = [(thisy + thiserr) for (thisy, thiserr) in cbook.safezip(y, yerr[1])] else: lower = [(thisy - thiserr) for (thisy, thiserr) in cbook.safezip(y, yerr)] upper = [(thisy + thiserr) for (thisy, thiserr) in cbook.safezip(y, yerr)] barcols.append(self.vlines(x, lower, upper, **lines_kw)) if (capsize > 0): if lolims.any(): (xlo, lowerlo) = xywhere(x, lower, lolims) caplines.extend(self.plot(xlo, lowerlo, ls='None', marker=mlines.CARETDOWN, **plot_kw)) lolims = (~ lolims) (xlo, lowerlo) = xywhere(x, lower, lolims) caplines.extend(self.plot(xlo, lowerlo, 'k_', **plot_kw)) else: caplines.extend(self.plot(x, lower, 'k_', **plot_kw)) if uplims.any(): (xup, upperup) = xywhere(x, upper, uplims) caplines.extend(self.plot(xup, upperup, ls='None', marker=mlines.CARETUP, **plot_kw)) uplims = (~ uplims) (xup, upperup) = xywhere(x, upper, uplims) caplines.extend(self.plot(xup, upperup, 'k_', **plot_kw)) else: caplines.extend(self.plot(x, upper, 'k_', **plot_kw)) if ((not barsabove) and (fmt is not None)): (l0,) = self.plot(x, y, fmt, **kwargs) if (ecolor is None): if (l0 is None): ecolor = self._get_lines._get_next_cycle_color() else: ecolor = l0.get_color() for l in barcols: l.set_color(ecolor) for l in caplines: l.set_color(ecolor) self.autoscale_view() return (l0, caplines, barcols)
'call signature:: boxplot(x, notch=0, sym=\'+\', vert=1, whis=1.5, positions=None, widths=None) Make a box and whisker plot for each column of *x* or each vector in sequence *x*. The box extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Flier points are those past the end of the whiskers. - *notch* = 0 (default) produces a rectangular box plot. - *notch* = 1 will produce a notched box plot *sym* (default \'b+\') is the default symbol for flier points. Enter an empty string (\'\') if you don\'t want to show fliers. - *vert* = 1 (default) makes the boxes vertical. - *vert* = 0 makes horizontal boxes. This seems goofy, but that\'s how Matlab did it. *whis* (default 1.5) defines the length of the whiskers as a function of the inner quartile range. They extend to the most extreme data point within ( ``whis*(75%-25%)`` ) data range. *positions* (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are automatically set to match the positions. *widths* is either a scalar or a vector and sets the width of each box. The default is 0.5, or ``0.15*(distance between extreme positions)`` if that is smaller. *x* is an array or a sequence of vectors. Returns a dictionary mapping each component of the boxplot to a list of the :class:`matplotlib.lines.Line2D` instances created. **Example:** .. plot:: pyplots/boxplot_demo.py'
def boxplot(self, x, notch=0, sym='b+', vert=1, whis=1.5, positions=None, widths=None):
if (not self._hold): self.cla() holdStatus = self._hold (whiskers, caps, boxes, medians, fliers) = ([], [], [], [], []) if hasattr(x, 'shape'): if (len(x.shape) == 1): if hasattr(x[0], 'shape'): x = list(x) else: x = [x] elif (len(x.shape) == 2): (nr, nc) = x.shape if (nr == 1): x = [x] elif (nc == 1): x = [x.ravel()] else: x = [x[:, i] for i in xrange(nc)] else: raise ValueError, 'input x can have no more than 2 dimensions' if (not hasattr(x[0], '__len__')): x = [x] col = len(x) if (positions is None): positions = range(1, (col + 1)) if (widths is None): distance = (max(positions) - min(positions)) widths = min((0.15 * max(distance, 1.0)), 0.5) if (isinstance(widths, float) or isinstance(widths, int)): widths = (np.ones((col,), float) * widths) self.hold(True) for (i, pos) in enumerate(positions): d = np.ravel(x[i]) row = len(d) (q1, med, q3) = mlab.prctile(d, [25, 50, 75]) iq = (q3 - q1) hi_val = (q3 + (whis * iq)) wisk_hi = np.compress((d <= hi_val), d) if (len(wisk_hi) == 0): wisk_hi = q3 else: wisk_hi = max(wisk_hi) lo_val = (q1 - (whis * iq)) wisk_lo = np.compress((d >= lo_val), d) if (len(wisk_lo) == 0): wisk_lo = q1 else: wisk_lo = min(wisk_lo) flier_hi = [] flier_lo = [] flier_hi_x = [] flier_lo_x = [] if (len(sym) != 0): flier_hi = np.compress((d > wisk_hi), d) flier_lo = np.compress((d < wisk_lo), d) flier_hi_x = (np.ones(flier_hi.shape[0]) * pos) flier_lo_x = (np.ones(flier_lo.shape[0]) * pos) box_x_min = (pos - (widths[i] * 0.5)) box_x_max = (pos + (widths[i] * 0.5)) wisk_x = (np.ones(2) * pos) cap_x_min = (pos - (widths[i] * 0.25)) cap_x_max = (pos + (widths[i] * 0.25)) cap_x = [cap_x_min, cap_x_max] med_y = [med, med] if (notch == 0): box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min] box_y = [q1, q1, q3, q3, q1] med_x = [box_x_min, box_x_max] else: notch_max = (med + ((1.57 * iq) / np.sqrt(row))) notch_min = (med - ((1.57 * iq) / np.sqrt(row))) if (notch_max > q3): notch_max = q3 if (notch_min < q1): notch_min = q1 box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max, box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min, box_x_min] box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max, med, notch_min, q1] med_x = [cap_x_min, cap_x_max] med_y = [med, med] if vert: def doplot(*args): return self.plot(*args) else: def doplot(*args): shuffled = [] for i in xrange(0, len(args), 3): shuffled.extend([args[(i + 1)], args[i], args[(i + 2)]]) return self.plot(*shuffled) whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--', wisk_x, [q3, wisk_hi], 'b--')) caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-', cap_x, [wisk_lo, wisk_lo], 'k-')) boxes.extend(doplot(box_x, box_y, 'b-')) medians.extend(doplot(med_x, med_y, 'r-')) fliers.extend(doplot(flier_hi_x, flier_hi, sym, flier_lo_x, flier_lo, sym)) if (1 == vert): (setticks, setlim) = (self.set_xticks, self.set_xlim) else: (setticks, setlim) = (self.set_yticks, self.set_ylim) newlimits = ((min(positions) - 0.5), (max(positions) + 0.5)) setlim(newlimits) setticks(positions) self.hold(holdStatus) return dict(whiskers=whiskers, caps=caps, boxes=boxes, medians=medians, fliers=fliers)
'call signatures:: scatter(x, y, s=20, c=\'b\', marker=\'o\', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, verts=None, **kwargs) Make a scatter plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. Keyword arguments: *s*: size in points^2. It is a scalar or an array of the same length as *x* and *y*. *c*: a color. *c* can be a single color format string, or a sequence of color specifications of length *N*, or a sequence of *N* numbers to be mapped to colors using the *cmap* and *norm* specified via kwargs (see below). Note that *c* should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. *c* can be a 2-D array in which the rows are RGB or RGBA, however. *marker*: can be one of: Value Description \'s\' square \'o\' circle \'^\' triangle up \'>\' triangle right \'v\' triangle down \'<\' triangle left \'d\' diamond \'p\' pentagram \'h\' hexagon \'8\' octagon \'+\' plus \'x\' cross The marker can also be a tuple (*numsides*, *style*, *angle*), which will create a custom, regular symbol. *numsides*: the number of sides *style*: the style of the regular symbol: Value Description 0 a regular polygon 1 a star-like symbol 2 an asterisk 3 a circle (*numsides* and *angle* is ignored) *angle*: the angle of rotation of the symbol Finally, *marker* can be (*verts*, 0): *verts* is a sequence of (*x*, *y*) vertices for a custom scatter symbol. Alternatively, use the kwarg combination *marker* = *None*, *verts* = *verts*. Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted. Other keyword arguments: the color mapping and normalization arguments will be used only if *c* is an array of floats. *cmap*: [ None | Colormap ] A :class:`matplotlib.colors.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *cmap* is only used if *c* is an array of floats. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0, 1. If *None*, use the default :func:`normalize`. *norm* is only used if *c* is an array of floats. *vmin*/*vmax*: *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are None, the min and max of the color array *C* is used. Note if you pass a *norm* instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: 0 <= scalar <= 1 The alpha value for the patches *linewidths*: [ None | scalar | sequence ] If *None*, defaults to (lines.linewidth,). Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Optional kwargs control the :class:`~matplotlib.collections.Collection` properties; in particular: *edgecolors*: \'none\' to plot faces with no outlines *facecolors*: \'none\' to plot unfilled outlines Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s A :class:`~matplotlib.collections.Collection` instance is returned.'
def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, faceted=True, verts=None, **kwargs):
if (not self._hold): self.cla() syms = {'s': (4, (math.pi / 4.0), 0), 'o': (20, 3, 0), '^': (3, 0, 0), '>': (3, (math.pi / 2.0), 0), 'v': (3, math.pi, 0), '<': (3, ((3 * math.pi) / 2.0), 0), 'd': (4, 0, 0), 'p': (5, 0, 0), 'h': (6, 0, 0), '8': (8, 0, 0), '+': (4, 0, 2), 'x': (4, (math.pi / 4.0), 2)} self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) (x, y, s, c) = cbook.delete_masked_points(x, y, s, c) if (is_string_like(c) or cbook.is_sequence_of_strings(c)): colors = mcolors.colorConverter.to_rgba_array(c, alpha) else: sh = np.shape(c) if ((len(sh) == 1) and (sh[0] == len(x))): colors = None else: colors = mcolors.colorConverter.to_rgba_array(c, alpha) if (not iterable(s)): scales = (s,) else: scales = s if faceted: edgecolors = None else: edgecolors = 'none' warnings.warn('replace "faceted=False" with "edgecolors=\'none\'"', DeprecationWarning) sym = None symstyle = 0 if ((marker is None) and (not (verts is None))): marker = (verts, 0) verts = None if is_string_like(marker): sym = syms.get(marker) if ((sym is None) and (verts is None)): raise ValueError('Unknown marker symbol to scatter') (numsides, rotation, symstyle) = syms[marker] elif iterable(marker): if ((len(marker) < 2) or (len(marker) > 3)): raise ValueError('Cannot create markersymbol from marker') if cbook.is_numlike(marker[0]): if (len(marker) == 2): (numsides, rotation) = (marker[0], 0.0) elif (len(marker) == 3): (numsides, rotation) = (marker[0], marker[2]) sym = True if (marker[1] in (1, 2)): symstyle = marker[1] else: verts = np.asarray(marker[0]) if (sym is not None): if (symstyle == 0): collection = mcoll.RegularPolyCollection(numsides, rotation, scales, facecolors=colors, edgecolors=edgecolors, linewidths=linewidths, offsets=zip(x, y), transOffset=self.transData) elif (symstyle == 1): collection = mcoll.StarPolygonCollection(numsides, rotation, scales, facecolors=colors, edgecolors=edgecolors, linewidths=linewidths, offsets=zip(x, y), transOffset=self.transData) elif (symstyle == 2): collection = mcoll.AsteriskPolygonCollection(numsides, rotation, scales, facecolors=colors, edgecolors=edgecolors, linewidths=linewidths, offsets=zip(x, y), transOffset=self.transData) elif (symstyle == 3): collection = mcoll.CircleCollection(scales, facecolors=colors, edgecolors=edgecolors, linewidths=linewidths, offsets=zip(x, y), transOffset=self.transData) else: rescale = np.sqrt(max(((verts[:, 0] ** 2) + (verts[:, 1] ** 2)))) verts /= rescale collection = mcoll.PolyCollection((verts,), scales, facecolors=colors, edgecolors=edgecolors, linewidths=linewidths, offsets=zip(x, y), transOffset=self.transData) collection.set_transform(mtransforms.IdentityTransform()) collection.set_alpha(alpha) collection.update(kwargs) if (colors is None): if (norm is not None): assert isinstance(norm, mcolors.Normalize) if (cmap is not None): assert isinstance(cmap, mcolors.Colormap) collection.set_array(np.asarray(c)) collection.set_cmap(cmap) collection.set_norm(norm) if ((vmin is not None) or (vmax is not None)): collection.set_clim(vmin, vmax) else: collection.autoscale_None() temp_x = x temp_y = y minx = np.amin(temp_x) maxx = np.amax(temp_x) miny = np.amin(temp_y) maxy = np.amax(temp_y) w = (maxx - minx) h = (maxy - miny) (padx, pady) = ((0.05 * w), (0.05 * h)) corners = (((minx - padx), (miny - pady)), ((maxx + padx), (maxy + pady))) self.update_datalim(corners) self.autoscale_view() self.add_collection(collection) return collection
'call signature:: hexbin(x, y, C = None, gridsize = 100, bins = None, xscale = \'linear\', yscale = \'linear\', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors=\'none\' reduce_C_function = np.mean, **kwargs) Make a hexagonal binning plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. If *C* is None (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]). If *C* is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each hexagonal bin and then reduced according to *reduce_C_function*, which defaults to numpy\'s mean function (np.mean). (If *C* is specified, it must also be a 1-D sequence of the same length as *x* and *y*.) *x*, *y* and/or *C* may be masked arrays, in which case only unmasked points will be plotted. Optional keyword arguments: *gridsize*: [ 100 | integer ] The number of hexagons in the *x*-direction, default is 100. The corresponding number of hexagons in the *y*-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the *x*-direction and the *y*-direction. *bins*: [ None | \'log\' | integer | sequence ] If *None*, no binning is applied; the color of each hexagon directly corresponds to its count value. If \'log\', use a logarithmic scale for the color map. Internally, :math:`log_{10}(i+1)` is used to determine the hexagon color. If an integer, divide the counts in the specified number of bins, and color the hexagons accordingly. If a sequence of values, the values of the lower bound of the bins to be used. *xscale*: [ \'linear\' | \'log\' ] Use a linear or log10 scale on the horizontal axis. *scale*: [ \'linear\' | \'log\' ] Use a linear or log10 scale on the vertical axis. Other keyword arguments controlling color mapping and normalization arguments: *cmap*: [ None | Colormap ] a :class:`matplotlib.cm.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *norm*: [ None | Normalize ] :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. *vmin*/*vmax*: scalar *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. Note if you pass a norm instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: scalar the alpha value for the patches *linewidths*: [ None | scalar ] If *None*, defaults to rc lines.linewidth. Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Other keyword arguments controlling the Collection properties: *edgecolors*: [ None | mpl color | color sequence ] If \'none\', draws the edges in the same color as the fill color. This is the default, as it avoids unsightly unpainted pixels between the hexagons. If *None*, draws the outlines in the default color. If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified color. Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s The return value is a :class:`~matplotlib.collections.PolyCollection` instance; use :meth:`~matplotlib.collection.PolyCollection.get_array` on this :class:`~matplotlib.collections.PolyCollection` to get the counts in each hexagon. **Example:** .. plot:: mpl_examples/pylab_examples/hexbin_demo.py'
def hexbin(self, x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors='none', reduce_C_function=np.mean, **kwargs):
if (not self._hold): self.cla() self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) (x, y, C) = cbook.delete_masked_points(x, y, C) if iterable(gridsize): (nx, ny) = gridsize else: nx = gridsize ny = int((nx / math.sqrt(3))) x = np.array(x, float) y = np.array(y, float) if (xscale == 'log'): x = np.log10(x) if (yscale == 'log'): y = np.log10(y) xmin = np.amin(x) xmax = np.amax(x) ymin = np.amin(y) ymax = np.amax(y) padding = (1e-09 * (xmax - xmin)) xmin -= padding xmax += padding sx = ((xmax - xmin) / nx) sy = ((ymax - ymin) / ny) x = ((x - xmin) / sx) y = ((y - ymin) / sy) ix1 = np.round(x).astype(int) iy1 = np.round(y).astype(int) ix2 = np.floor(x).astype(int) iy2 = np.floor(y).astype(int) nx1 = (nx + 1) ny1 = (ny + 1) nx2 = nx ny2 = ny n = ((nx1 * ny1) + (nx2 * ny2)) d1 = (((x - ix1) ** 2) + (3.0 * ((y - iy1) ** 2))) d2 = ((((x - ix2) - 0.5) ** 2) + (3.0 * (((y - iy2) - 0.5) ** 2))) bdist = (d1 < d2) if (C is None): accum = np.zeros(n) lattice1 = accum[:(nx1 * ny1)] lattice2 = accum[(nx1 * ny1):] lattice1.shape = (nx1, ny1) lattice2.shape = (nx2, ny2) for i in xrange(len(x)): if bdist[i]: lattice1[(ix1[i], iy1[i])] += 1 else: lattice2[(ix2[i], iy2[i])] += 1 else: lattice1 = np.empty((nx1, ny1), dtype=object) for i in xrange(nx1): for j in xrange(ny1): lattice1[(i, j)] = [] lattice2 = np.empty((nx2, ny2), dtype=object) for i in xrange(nx2): for j in xrange(ny2): lattice2[(i, j)] = [] for i in xrange(len(x)): if bdist[i]: lattice1[(ix1[i], iy1[i])].append(C[i]) else: lattice2[(ix2[i], iy2[i])].append(C[i]) for i in xrange(nx1): for j in xrange(ny1): vals = lattice1[(i, j)] if len(vals): lattice1[(i, j)] = reduce_C_function(vals) else: lattice1[(i, j)] = np.nan for i in xrange(nx2): for j in xrange(ny2): vals = lattice2[(i, j)] if len(vals): lattice2[(i, j)] = reduce_C_function(vals) else: lattice2[(i, j)] = np.nan accum = np.hstack((lattice1.astype(float).ravel(), lattice2.astype(float).ravel())) good_idxs = (~ np.isnan(accum)) px = (xmin + (sx * np.array([0.5, 0.5, 0.0, (-0.5), (-0.5), 0.0]))) py = (ymin + ((sy * np.array([(-0.5), 0.5, 1.0, 0.5, (-0.5), (-1.0)])) / 3.0)) polygons = np.zeros((6, n, 2), float) polygons[:, :(nx1 * ny1), 0] = np.repeat(np.arange(nx1), ny1) polygons[:, :(nx1 * ny1), 1] = np.tile(np.arange(ny1), nx1) polygons[:, (nx1 * ny1):, 0] = np.repeat((np.arange(nx2) + 0.5), ny2) polygons[:, (nx1 * ny1):, 1] = (np.tile(np.arange(ny2), nx2) + 0.5) if (C is not None): polygons = polygons[:, good_idxs, :] accum = accum[good_idxs] polygons = np.transpose(polygons, axes=[1, 0, 2]) polygons[:, :, 0] *= sx polygons[:, :, 1] *= sy polygons[:, :, 0] += px polygons[:, :, 1] += py if (xscale == 'log'): polygons[:, :, 0] = (10 ** polygons[:, :, 0]) xmin = (10 ** xmin) xmax = (10 ** xmax) self.set_xscale('log') if (yscale == 'log'): polygons[:, :, 1] = (10 ** polygons[:, :, 1]) ymin = (10 ** ymin) ymax = (10 ** ymax) self.set_yscale('log') if (edgecolors == 'none'): edgecolors = 'face' collection = mcoll.PolyCollection(polygons, edgecolors=edgecolors, linewidths=linewidths, transOffset=self.transData) if (bins == 'log'): accum = np.log10((accum + 1)) elif (bins != None): if (not iterable(bins)): (minimum, maximum) = (min(accum), max(accum)) bins -= 1 bins = (minimum + (((maximum - minimum) * np.arange(bins)) / bins)) bins = np.sort(bins) accum = bins.searchsorted(accum) if (norm is not None): assert isinstance(norm, mcolors.Normalize) if (cmap is not None): assert isinstance(cmap, mcolors.Colormap) collection.set_array(accum) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_alpha(alpha) collection.update(kwargs) if ((vmin is not None) or (vmax is not None)): collection.set_clim(vmin, vmax) else: collection.autoscale_None() corners = ((xmin, ymin), (xmax, ymax)) self.update_datalim(corners) self.autoscale_view() self.add_collection(collection) return collection
'call signature:: arrow(x, y, dx, dy, **kwargs) Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*, *y* + *dy*). Optional kwargs control the arrow properties: %(FancyArrow)s **Example:** .. plot:: mpl_examples/pylab_examples/arrow_demo.py'
def arrow(self, x, y, dx, dy, **kwargs):
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs) self.add_artist(a) return a
'%(barbs_doc)s **Example:** .. plot:: mpl_examples/pylab_examples/barb_demo.py'
def barbs(self, *args, **kw):
if (not self._hold): self.cla() b = mquiver.Barbs(self, *args, **kw) self.add_collection(b) self.update_datalim(b.get_offsets()) self.autoscale_view() return b
'call signature:: fill(*args, **kwargs) Plot filled polygons. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional color format string; see :func:`~matplotlib.pyplot.plot` for details on the argument parsing. For example, to plot a polygon with vertices at *x*, *y* in blue.:: ax.fill(x,y, \'b\' ) An arbitrary number of *x*, *y*, *color* groups can be specified:: ax.fill(x1, y1, \'g\', x2, y2, \'r\') Return value is a list of :class:`~matplotlib.patches.Patch` instances that were added. The same color strings that :func:`~matplotlib.pyplot.plot` supports are supported by the fill format string. If you would like to fill below a curve, eg. shade a region between 0 and *y* along *x*, use :meth:`fill_between` The *closed* kwarg will close the polygon when *True* (default). kwargs control the Polygon properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/fill_demo.py'
def fill(self, *args, **kwargs):
if (not self._hold): self.cla() patches = [] for poly in self._get_patches_for_fill(*args, **kwargs): self.add_patch(poly) patches.append(poly) self.autoscale_view() return patches
'call signature:: fill_between(x, y1, y2=0, where=None, **kwargs) Create a :class:`~matplotlib.collections.PolyCollection` filling the regions between *y1* and *y2* where ``where==True`` *x* an N length np array of the x data *y1* an N length scalar or np array of the x data *y2* an N length scalar or np array of the x data *where* if None, default to fill between everywhere. If not None, it is a a N length numpy boolean array and the fill will only happen over the regions where ``where==True`` *kwargs* keyword args passed on to the :class:`PolyCollection` kwargs control the Polygon properties: %(PolyCollection)s .. plot:: mpl_examples/pylab_examples/fill_between.py'
def fill_between(self, x, y1, y2=0, where=None, **kwargs):
self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs) self._process_unit_info(ydata=y2) x = np.asarray(self.convert_xunits(x)) y1 = np.asarray(self.convert_yunits(y1)) y2 = np.asarray(self.convert_yunits(y2)) if (not cbook.iterable(y1)): y1 = (np.ones_like(x) * y1) if (not cbook.iterable(y2)): y2 = (np.ones_like(x) * y2) if (where is None): where = np.ones(len(x), np.bool) where = np.asarray(where) assert ((len(x) == len(y1)) and (len(x) == len(y2)) and (len(x) == len(where))) polys = [] for (ind0, ind1) in mlab.contiguous_regions(where): theseverts = [] xslice = x[ind0:ind1] y1slice = y1[ind0:ind1] y2slice = y2[ind0:ind1] if (not len(xslice)): continue N = len(xslice) X = np.zeros((((2 * N) + 2), 2), np.float) X[0] = (xslice[0], y2slice[0]) X[(N + 1)] = (xslice[(-1)], y2slice[(-1)]) X[1:(N + 1), 0] = xslice X[1:(N + 1), 1] = y1slice X[(N + 2):, 0] = xslice[::(-1)] X[(N + 2):, 1] = y2slice[::(-1)] polys.append(X) collection = mcoll.PolyCollection(polys, **kwargs) XY1 = np.array([x[where], y1[where]]).T XY2 = np.array([x[where], y2[where]]).T self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits, updatex=True, updatey=True) self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits, updatex=False, updatey=True) self.add_collection(collection) self.autoscale_view() return collection
'call signature:: imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, **kwargs) Display the image in *X* to current axes. *X* may be a float array, a uint8 array or a PIL image. If *X* is an array, *X* can have the following shapes: * MxN -- luminance (grayscale, float array only) * MxNx3 -- RGB (float or uint8 array) * MxNx4 -- RGBA (float or uint8 array) The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0; MxN float arrays may be normalised. An :class:`matplotlib.image.AxesImage` instance is returned. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance, eg. cm.jet. If *None*, default to rc ``image.cmap`` value. *cmap* is ignored when *X* has RGB(A) information *aspect*: [ None | \'auto\' | \'equal\' | scalar ] If \'auto\', changes the image aspect ratio to match that of the axes If \'equal\', and *extent* is *None*, changes the axes aspect ratio to match that of the image. If *extent* is not *None*, the axes aspect ratio is changed to match that of the extent. If *None*, default to rc ``image.aspect`` value. *interpolation*: Acceptable values are *None*, \'nearest\', \'bilinear\', \'bicubic\', \'spline16\', \'spline36\', \'hanning\', \'hamming\', \'hermite\', \'kaiser\', \'quadric\', \'catrom\', \'gaussian\', \'bessel\', \'mitchell\', \'sinc\', \'lanczos\', If *interpolation* is *None*, default to rc ``image.interpolation``. See also the *filternorm* and *filterrad* parameters *norm*: [ None | Normalize ] An :class:`matplotlib.colors.Normalize` instance; if *None*, default is ``normalization()``. This scales luminance -> 0-1 *norm* is only used for an MxN float array. *vmin*/*vmax*: [ None | scalar ] Used to scale a luminance image to 0-1. If either is *None*, the min and max of the luminance values will be used. Note if *norm* is not *None*, the settings for *vmin* and *vmax* will be ignored. *alpha*: scalar The alpha blending value, between 0 (transparent) and 1 (opaque) *origin*: [ None | \'upper\' | \'lower\' ] Place the [0,0] index of the array in the upper left or lower left corner of the axes. If *None*, default to rc ``image.origin``. *extent*: [ None | scalars (left, right, bottom, top) ] Eata values of the axes. The default assigns zero-based row, column indices to the *x*, *y* centers of the pixels. *shape*: [ None | scalars (columns, rows) ] For raw buffer images *filternorm*: A parameter for the antigrain image resize filter. From the antigrain documentation, if *filternorm* = 1, the filter normalizes integer values and corrects the rounding errors. It doesn\'t do anything with the source floating point values, it corrects only integers according to the rule of 1.0 which means that any sum of pixel weights must be equal to 1.0. So, the filter function must produce a graph of the proper shape. *filterrad*: The filter radius for filters that have a radius parameter, i.e. when interpolation is one of: \'sinc\', \'lanczos\' or \'blackman\' Additional kwargs are :class:`~matplotlib.artist.Artist` properties: %(Artist)s **Example:** .. plot:: mpl_examples/pylab_examples/image_demo.py'
def imshow(self, X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, **kwargs):
if (not self._hold): self.cla() if (norm is not None): assert isinstance(norm, mcolors.Normalize) if (cmap is not None): assert isinstance(cmap, mcolors.Colormap) if (aspect is None): aspect = rcParams['image.aspect'] self.set_aspect(aspect) im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs) im.set_data(X) im.set_alpha(alpha) self._set_artist_props(im) im.set_clip_path(self.patch) if ((vmin is not None) or (vmax is not None)): im.set_clim(vmin, vmax) else: im.autoscale_None() im.set_url(url) (xmin, xmax, ymin, ymax) = im.get_extent() corners = ((xmin, ymin), (xmax, ymax)) self.update_datalim(corners) if self._autoscaleon: self.set_xlim((xmin, xmax)) self.set_ylim((ymin, ymax)) self.images.append(im) return im
'call signatures:: pcolor(C, **kwargs) pcolor(X, Y, C, **kwargs) Create a pseudocolor plot of a 2-D array. *C* is the array of color values. *X* and *Y*, if given, specify the (*x*, *y*) coordinates of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at:: (X[i, j], Y[i, j]), (X[i, j+1], Y[i, j+1]), (X[i+1, j], Y[i+1, j]), (X[i+1, j+1], Y[i+1, j+1]). Ideally the dimensions of *X* and *Y* should be one greater than those of *C*; if the dimensions are the same, then the last row and column of *C* will be ignored. Note that the the column index corresponds to the *x*-coordinate, and the row index corresponds to *y*; for details, see the :ref:`Grid Orientation <axes-pcolor-grid-orientation>` section below. If either or both of *X* and *Y* are 1-D arrays or column vectors, they will be expanded as needed into the appropriate 2-D arrays, making a rectangular grid. *X*, *Y* and *C* may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance. If *None*, use rc settings. norm: [ None | Normalize ] An :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to :func:`normalize`. *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a *norm* instance, *vmin* and *vmax* will be ignored. *shading*: [ \'flat\' | \'faceted\' ] If \'faceted\', a black grid is drawn around each rectangle; if \'flat\', edges are not drawn. Default is \'flat\', contrary to Matlab(TM). This kwarg is deprecated; please use \'edgecolors\' instead: * shading=\'flat\' -- edgecolors=\'None\' * shading=\'faceted -- edgecolors=\'k\' *edgecolors*: [ None | \'None\' | color | color sequence] If *None*, the rc setting is used by default. If \'None\', edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is a :class:`matplotlib.collection.Collection` instance. .. _axes-pcolor-grid-orientation: The grid orientation follows the Matlab(TM) convention: an array *C* with shape (*nrows*, *ncolumns*) is plotted with the column number as *X* and the row number as *Y*, increasing up; hence it is plotted the way the array would be printed, except that the *Y* axis is reversed. That is, *C* is taken as *C*(*y*, *x*). Similarly for :func:`~matplotlib.pyplot.meshgrid`:: x = np.arange(5) y = np.arange(3) X, Y = meshgrid(x,y) is equivalent to: X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) so if you have:: C = rand( len(x), len(y)) then you need:: pcolor(X, Y, C.T) or:: pcolor(C.T) Matlab :func:`pcolor` always discards the last row and column of *C*, but matplotlib displays the last row and column if *X* and *Y* are not specified, or if *X* and *Y* have one more row and column than *C*. kwargs can be used to control the :class:`~matplotlib.collection.PolyCollection` properties: %(PolyCollection)s'
def pcolor(self, *args, **kwargs):
if (not self._hold): self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') (X, Y, C) = self._pcolorargs('pcolor', *args) (Ny, Nx) = X.shape C = ma.asarray(C) X = ma.asarray(X) Y = ma.asarray(Y) mask = (ma.getmaskarray(X) + ma.getmaskarray(Y)) xymask = (((mask[0:(-1), 0:(-1)] + mask[1:, 1:]) + mask[0:(-1), 1:]) + mask[1:, 0:(-1)]) mask = (ma.getmaskarray(C)[0:(Ny - 1), 0:(Nx - 1)] + xymask) newaxis = np.newaxis compress = np.compress ravelmask = (mask == 0).ravel() X1 = compress(ravelmask, ma.filled(X[0:(-1), 0:(-1)]).ravel()) Y1 = compress(ravelmask, ma.filled(Y[0:(-1), 0:(-1)]).ravel()) X2 = compress(ravelmask, ma.filled(X[1:, 0:(-1)]).ravel()) Y2 = compress(ravelmask, ma.filled(Y[1:, 0:(-1)]).ravel()) X3 = compress(ravelmask, ma.filled(X[1:, 1:]).ravel()) Y3 = compress(ravelmask, ma.filled(Y[1:, 1:]).ravel()) X4 = compress(ravelmask, ma.filled(X[0:(-1), 1:]).ravel()) Y4 = compress(ravelmask, ma.filled(Y[0:(-1), 1:]).ravel()) npoly = len(X1) xy = np.concatenate((X1[:, newaxis], Y1[:, newaxis], X2[:, newaxis], Y2[:, newaxis], X3[:, newaxis], Y3[:, newaxis], X4[:, newaxis], Y4[:, newaxis], X1[:, newaxis], Y1[:, newaxis]), axis=1) verts = xy.reshape((npoly, 5, 2)) C = compress(ravelmask, ma.filled(C[0:(Ny - 1), 0:(Nx - 1)]).ravel()) if (shading == 'faceted'): edgecolors = ((0, 0, 0, 1),) linewidths = (0.25,) else: edgecolors = 'face' linewidths = (1.0,) kwargs.setdefault('edgecolors', edgecolors) kwargs.setdefault('antialiaseds', (0,)) kwargs.setdefault('linewidths', linewidths) collection = mcoll.PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if (norm is not None): assert isinstance(norm, mcolors.Normalize) if (cmap is not None): assert isinstance(cmap, mcolors.Colormap) collection.set_cmap(cmap) collection.set_norm(norm) if ((vmin is not None) or (vmax is not None)): collection.set_clim(vmin, vmax) else: collection.autoscale_None() self.grid(False) x = X.compressed() y = Y.compressed() minx = np.amin(x) maxx = np.amax(x) miny = np.amin(y) maxy = np.amax(y) corners = ((minx, miny), (maxx, maxy)) self.update_datalim(corners) self.autoscale_view() self.add_collection(collection) return collection
'call signatures:: pcolormesh(C) pcolormesh(X, Y, C) pcolormesh(C, **kwargs) *C* may be a masked array, but *X* and *Y* may not. Masked array support is implemented via *cmap* and *norm*; in contrast, :func:`~matplotlib.pyplot.pcolor` simply does not draw quadrilaterals with masked colors or vertices. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance. If None, use rc settings. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If None, defaults to :func:`normalize`. *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a *norm* instance, *vmin* and *vmax* will be ignored. *shading*: [ \'flat\' | \'faceted\' ] If \'faceted\', a black grid is drawn around each rectangle; if \'flat\', edges are not drawn. Default is \'flat\', contrary to Matlab(TM). This kwarg is deprecated; please use \'edgecolors\' instead: * shading=\'flat\' -- edgecolors=\'None\' * shading=\'faceted -- edgecolors=\'k\' *edgecolors*: [ None | \'None\' | color | color sequence] If None, the rc setting is used by default. If \'None\', edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is a :class:`matplotlib.collection.QuadMesh` object. kwargs can be used to control the :class:`matplotlib.collections.QuadMesh` properties: %(QuadMesh)s .. seealso:: :func:`~matplotlib.pyplot.pcolor`: For an explanation of the grid orientation and the expansion of 1-D *X* and/or *Y* to 2-D arrays.'
def pcolormesh(self, *args, **kwargs):
if (not self._hold): self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') edgecolors = kwargs.pop('edgecolors', 'None') antialiased = kwargs.pop('antialiased', False) (X, Y, C) = self._pcolorargs('pcolormesh', *args) (Ny, Nx) = X.shape C = ma.ravel(C[0:(Ny - 1), 0:(Nx - 1)]) X = X.ravel() Y = Y.ravel() coords = np.zeros(((Nx * Ny), 2), dtype=float) coords[:, 0] = X coords[:, 1] = Y if ((shading == 'faceted') or (edgecolors != 'None')): showedges = 1 else: showedges = 0 collection = mcoll.QuadMesh((Nx - 1), (Ny - 1), coords, showedges, antialiased=antialiased) collection.set_alpha(alpha) collection.set_array(C) if (norm is not None): assert isinstance(norm, mcolors.Normalize) if (cmap is not None): assert isinstance(cmap, mcolors.Colormap) collection.set_cmap(cmap) collection.set_norm(norm) if ((vmin is not None) or (vmax is not None)): collection.set_clim(vmin, vmax) else: collection.autoscale_None() self.grid(False) minx = np.amin(X) maxx = np.amax(X) miny = np.amin(Y) maxy = np.amax(Y) corners = ((minx, miny), (maxx, maxy)) self.update_datalim(corners) self.autoscale_view() self.add_collection(collection) return collection
'pseudocolor plot of a 2-D array Experimental; this is a version of pcolor that does not draw lines, that provides the fastest possible rendering with the Agg backend, and that can handle any quadrilateral grid. Call signatures:: pcolor(C, **kwargs) pcolor(xr, yr, C, **kwargs) pcolor(x, y, C, **kwargs) pcolor(X, Y, C, **kwargs) C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape. C may be a masked array. ``pcolor(C, **kwargs)`` is equivalent to ``pcolor([0,nc], [0,nr], C, **kwargs)`` *xr*, *yr* specify the ranges of *x* and *y* corresponding to the rectangular region bounding *C*. If:: xr = [x0, x1] and:: yr = [y0,y1] then *x* goes from *x0* to *x1* as the second index of *C* goes from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of cell (0,0), and (*x1*, *y1*) is the outermost corner of cell (*nr*-1, *nc*-1). All cells are rectangles of the same size. This is the fastest version. *x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively, giving the x and y boundaries of the cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate. (The grid is checked, and if found to be uniform the fast version is used.) *X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify the (x,y) coordinates of the corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular. This is the most general, but the slowest to render. It may produce faster and more compact output using ps, pdf, and svg backends, however. Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y; for details, see the "Grid Orientation" section below. Optional keyword arguments: *cmap*: [ None | Colormap ] A cm Colormap instance from cm. If None, use rc settings. *norm*: [ None | Normalize ] An mcolors.Normalize instance is used to scale luminance data to 0,1. If None, defaults to normalize() *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a norm instance, *vmin* and *vmax* will be *None*. *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is an image if a regular or rectangular grid is specified, and a QuadMesh collection in the general quadrilateral case.'
def pcolorfast(self, *args, **kwargs):
if (not self._hold): self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) if (norm is not None): assert isinstance(norm, mcolors.Normalize) if (cmap is not None): assert isinstance(cmap, mcolors.Colormap) C = args[(-1)] (nr, nc) = C.shape if (len(args) == 1): style = 'image' x = [0, nc] y = [0, nr] elif (len(args) == 3): (x, y) = args[:2] x = np.asarray(x) y = np.asarray(y) if ((x.ndim == 1) and (y.ndim == 1)): if ((x.size == 2) and (y.size == 2)): style = 'image' else: dx = np.diff(x) dy = np.diff(y) if ((np.ptp(dx) < (0.01 * np.abs(dx.mean()))) and (np.ptp(dy) < (0.01 * np.abs(dy.mean())))): style = 'image' else: style = 'pcolorimage' elif ((x.ndim == 2) and (y.ndim == 2)): style = 'quadmesh' else: raise TypeError('arguments do not match valid signatures') else: raise TypeError('need 1 argument or 3 arguments') if (style == 'quadmesh'): C = ma.ravel(C) X = x.ravel() Y = y.ravel() Nx = (nc + 1) Ny = (nr + 1) coords = np.empty(((Nx * Ny), 2), np.float64) coords[:, 0] = X coords[:, 1] = Y collection = mcoll.QuadMesh(nc, nr, coords, 0) collection.set_alpha(alpha) collection.set_array(C) collection.set_cmap(cmap) collection.set_norm(norm) self.add_collection(collection) (xl, xr, yb, yt) = (X.min(), X.max(), Y.min(), Y.max()) ret = collection else: (xl, xr, yb, yt) = (x[0], x[(-1)], y[0], y[(-1)]) if (style == 'image'): im = mimage.AxesImage(self, cmap, norm, interpolation='nearest', origin='lower', extent=(xl, xr, yb, yt), **kwargs) im.set_data(C) im.set_alpha(alpha) self.images.append(im) ret = im if (style == 'pcolorimage'): im = mimage.PcolorImage(self, x, y, C, cmap=cmap, norm=norm, alpha=alpha, **kwargs) self.images.append(im) ret = im self._set_artist_props(ret) if ((vmin is not None) or (vmax is not None)): ret.set_clim(vmin, vmax) else: ret.autoscale_None() self.update_datalim(np.array([[xl, yb], [xr, yt]])) self.autoscale_view(tight=True) return ret
'call signature:: table(cellText=None, cellColours=None, cellLoc=\'right\', colWidths=None, rowLabels=None, rowColours=None, rowLoc=\'left\', colLabels=None, colColours=None, colLoc=\'center\', loc=\'bottom\', bbox=None): Add a table to the current axes. Returns a :class:`matplotlib.table.Table` instance. For finer grained control over tables, use the :class:`~matplotlib.table.Table` class and add it to the axes with :meth:`~matplotlib.axes.Axes.add_table`. Thanks to John Gill for providing the class and table. kwargs control the :class:`~matplotlib.table.Table` properties: %(Table)s'
def table(self, **kwargs):
return mtable.table(self, **kwargs)
'call signature:: ax = twinx() create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The y-axis of self will have ticks on left and the returned axes will have ticks on the right'
def twinx(self):
ax2 = self.figure.add_axes(self.get_position(True), sharex=self, frameon=False) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') self.yaxis.tick_left() return ax2
'call signature:: ax = twiny() create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The x-axis of self will have ticks on bottom and the returned axes will have ticks on the top'
def twiny(self):
ax2 = self.figure.add_axes(self.get_position(True), sharey=self, frameon=False) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') self.xaxis.tick_bottom() return ax2
'Return a copy of the shared axes Grouper object for x axes'
def get_shared_x_axes(self):
return self._shared_x_axes
'Return a copy of the shared axes Grouper object for y axes'
def get_shared_y_axes(self):
return self._shared_y_axes
'call signature:: hist(x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype=\'bar\', align=\'mid\', orientation=\'vertical\', rwidth=None, log=False, **kwargs) Compute and draw the histogram of *x*. The return value is a tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*, *patches1*,...]) if the input contains multiple data. Keyword arguments: *bins*: Either an integer number of bins or a sequence giving the bins. *x* are the data to be binned. *x* can be an array, a 2D array with multiple data in its columns, or a list of arrays with data of different length. Note, if *bins* is an integer input argument=numbins, *bins* + 1 bin edges will be returned, compatible with the semantics of :func:`numpy.histogram` with the *new* = True argument. Unequally spaced bins are supported if *bins* is a sequence. *range*: The lower and upper range of the bins. Lower and upper outliers are ignored. If not provided, *range* is (x.min(), x.max()). Range has no effect if *bins* is a sequence. If *bins* is a sequence or *range* is specified, autoscaling is set off (*autoscale_on* is set to *False*) and the xaxis limits are set to encompass the full specified bin range. *normed*: If *True*, the first element of the return tuple will be the counts normalized to form a probability density, i.e., ``n/(len(x)*dbin)``. In a probability density, the integral of the histogram should be 1; you can verify that with a trapezoidal integration of the probability density function:: pdf, bins, patches = ax.hist(...) print np.sum(pdf * np.diff(bins)) *cumulative*: If *True*, then a histogram is computed where each bin gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. If *normed* is also *True* then the histogram is normalized such that the last bin equals 1. If *cumulative* evaluates to less than 0 (e.g. -1), the direction of accumulation is reversed. In this case, if *normed* is also *True*, then the histogram is normalized such that the first bin equals 1. *histtype*: [ \'bar\' | \'barstacked\' | \'step\' | \'stepfilled\' ] The type of histogram to draw. - \'bar\' is a traditional bar-type histogram. If multiple data are given the bars are aranged side by side. - \'barstacked\' is a bar-type histogram where multiple data are stacked on top of each other. - \'step\' generates a lineplot that is by default unfilled. - \'stepfilled\' generates a lineplot that is by default filled. *align*: [\'left\' | \'mid\' | \'right\' ] Controls how the histogram is plotted. - \'left\': bars are centered on the left bin edges. - \'mid\': bars are centered between the bin edges. - \'right\': bars are centered on the right bin edges. *orientation*: [ \'horizontal\' | \'vertical\' ] If \'horizontal\', :func:`~matplotlib.pyplot.barh` will be used for bar-type histograms and the *bottom* kwarg will be the left edges. *rwidth*: The relative width of the bars as a fraction of the bin width. If *None*, automatically compute the width. Ignored if *histtype* = \'step\' or \'stepfilled\'. *log*: If *True*, the histogram axis will be set to a log scale. If *log* is *True* and *x* is a 1D array, empty bins will be filtered out and only the non-empty (*n*, *bins*, *patches*) will be returned. kwargs are used to update the properties of the hist :class:`~matplotlib.patches.Rectangle` instances: %(Rectangle)s You can use labels for your histogram, and only the first :class:`~matplotlib.patches.Rectangle` gets the label (the others get the magic string \'_nolegend_\'. This will make the histograms work in the intuitive way for bar charts:: ax.hist(10+2*np.random.randn(1000), label=\'men\') ax.hist(12+3*np.random.randn(1000), label=\'women\', alpha=0.5) ax.legend() **Example:** .. plot:: mpl_examples/pylab_examples/histogram_demo.py'
def hist(self, x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, **kwargs):
if (not self._hold): self.cla() if (kwargs.get('width') is not None): raise DeprecationWarning('hist now uses the rwidth to give relative width and not absolute width') try: x = np.transpose(np.array(x)) if (len(x.shape) == 1): x.shape = (1, x.shape[0]) elif ((len(x.shape) == 2) and (x.shape[1] < x.shape[0])): warnings.warn('2D hist should be nsamples x nvariables; this looks transposed') except ValueError: if (iterable(x[0]) and (not is_string_like(x[0]))): tx = [] for i in xrange(len(x)): tx.append(np.array(x[i])) x = tx else: raise ValueError, 'Can not use providet data to create a histogram' binsgiven = (cbook.iterable(bins) or (range != None)) if (np.__version__ < '1.3'): hist_kwargs = dict(range=range, normed=bool(normed), new=True) else: hist_kwargs = dict(range=range, normed=bool(normed)) n = [] for i in xrange(len(x)): (m, bins) = np.histogram(x[i], bins, **hist_kwargs) n.append(m) if cumulative: slc = slice(None) if (cbook.is_numlike(cumulative) and (cumulative < 0)): slc = slice(None, None, (-1)) if normed: n = [(m * np.diff(bins))[slc].cumsum()[slc] for m in n] else: n = [m[slc].cumsum()[slc] for m in n] patches = [] if histtype.startswith('bar'): totwidth = np.diff(bins) stacked = False if (rwidth is not None): dr = min(1.0, max(0.0, rwidth)) elif (len(n) > 1): dr = 0.8 else: dr = 1.0 if (histtype == 'bar'): width = ((dr * totwidth) / len(n)) dw = width if (len(n) > 1): boffset = ((((-0.5) * dr) * totwidth) * (1.0 - (1.0 / len(n)))) else: boffset = 0.0 elif (histtype == 'barstacked'): width = (dr * totwidth) (boffset, dw) = (0.0, 0.0) stacked = True else: raise ValueError, ('invalid histtype: %s' % histtype) if ((align == 'mid') or (align == 'edge')): boffset += (0.5 * totwidth) elif (align == 'right'): boffset += totwidth elif ((align != 'left') and (align != 'center')): raise ValueError, ('invalid align: %s' % align) if (orientation == 'horizontal'): for m in n: color = self._get_lines._get_next_cycle_color() patch = self.barh((bins[:(-1)] + boffset), m, height=width, left=bottom, align='center', log=log, color=color) patches.append(patch) if stacked: if (bottom is None): bottom = 0.0 bottom += m boffset += dw elif (orientation == 'vertical'): for m in n: color = self._get_lines._get_next_cycle_color() patch = self.bar((bins[:(-1)] + boffset), m, width=width, bottom=bottom, align='center', log=log, color=color) patches.append(patch) if stacked: if (bottom is None): bottom = 0.0 bottom += m boffset += dw else: raise ValueError, ('invalid orientation: %s' % orientation) elif histtype.startswith('step'): x = np.zeros((2 * len(bins)), np.float) y = np.zeros((2 * len(bins)), np.float) (x[0::2], x[1::2]) = (bins, bins) if ((align == 'left') or (align == 'center')): x -= (0.5 * (bins[1] - bins[0])) elif (align == 'right'): x += (0.5 * (bins[1] - bins[0])) elif ((align != 'mid') and (align != 'edge')): raise ValueError, ('invalid align: %s' % align) if log: (y[0], y[(-1)]) = (1e-100, 1e-100) if (orientation == 'horizontal'): self.set_xscale('log') elif (orientation == 'vertical'): self.set_yscale('log') fill = False if (histtype == 'stepfilled'): fill = True elif (histtype != 'step'): raise ValueError, ('invalid histtype: %s' % histtype) for m in n: (y[1:(-1):2], y[2::2]) = (m, m) if (orientation == 'horizontal'): (x, y) = (y, x) elif (orientation != 'vertical'): raise ValueError, ('invalid orientation: %s' % orientation) color = self._get_lines._get_next_cycle_color() if fill: patches.append(self.fill(x, y, closed=False, facecolor=color)) else: patches.append(self.fill(x, y, closed=False, edgecolor=color, fill=False)) if (orientation == 'horizontal'): (xmin, xmax) = (0, self.dataLim.intervalx[1]) for m in n: xmin = np.amin(m[(m != 0)]) xmin = max((xmin * 0.9), 1e-100) self.dataLim.intervalx = (xmin, xmax) elif (orientation == 'vertical'): (ymin, ymax) = (0, self.dataLim.intervaly[1]) for m in n: ymin = np.amin(m[(m != 0)]) ymin = max((ymin * 0.9), 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() else: raise ValueError, ('invalid histtype: %s' % histtype) label = kwargs.pop('label', '') for patch in patches: for p in patch: p.update(kwargs) p.set_label(label) label = '_nolegend_' if binsgiven: self.set_autoscale_on(False) if (orientation == 'vertical'): self.autoscale_view(scalex=False, scaley=True) XL = self.xaxis.get_major_locator().view_limits(bins[0], bins[(-1)]) self.set_xbound(XL) else: self.autoscale_view(scalex=True, scaley=False) YL = self.yaxis.get_major_locator().view_limits(bins[0], bins[(-1)]) self.set_ybound(YL) if (len(n) == 1): return (n[0], bins, cbook.silent_list('Patch', patches[0])) else: return (n, bins, cbook.silent_list('Lists of Patches', patches))
'call signature:: psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides=\'default\', scale_by_freq=None, **kwargs) The power spectral density by Welch\'s average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. *Fs* is the sampling frequency. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. Returns the tuple (*Pxx*, *freqs*). For plotting, the power is plotted as :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself is returned. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/psd_demo.py'
def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs):
if (not self._hold): self.cla() (pxx, freqs) = mlab.psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxx.shape = (len(freqs),) freqs += Fc if (scale_by_freq in (None, True)): psd_units = 'dB/Hz' else: psd_units = 'dB' self.plot(freqs, (10 * np.log10(pxx)), **kwargs) self.set_xlabel('Frequency') self.set_ylabel(('Power Spectral Density (%s)' % psd_units)) self.grid(True) (vmin, vmax) = self.viewLim.intervaly intv = (vmax - vmin) logi = int(np.log10(intv)) if (logi == 0): logi = 0.1 step = (10 * logi) ticks = np.arange(math.floor(vmin), (math.ceil(vmax) + 1), step) self.set_yticks(ticks) return (pxx, freqs)
'call signature:: csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides=\'default\', scale_by_freq=None, **kwargs) The cross spectral density :math:`P_{xy}` by Welch\'s average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum (complex valued), and :math:`10\log_{10}|P_{xy}|` is plotted. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the Line2D properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/csd_demo.py .. seealso: :meth:`psd` For a description of the optional parameters.'
def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs):
if (not self._hold): self.cla() (pxy, freqs) = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxy.shape = (len(freqs),) freqs += Fc self.plot(freqs, (10 * np.log10(np.absolute(pxy))), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Cross Spectrum Magnitude (dB)') self.grid(True) (vmin, vmax) = self.viewLim.intervaly intv = (vmax - vmin) step = (10 * int(np.log10(intv))) ticks = np.arange(math.floor(vmin), (math.ceil(vmax) + 1), step) self.set_yticks(ticks) return (pxy, freqs)
'call signature:: cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none, window = mlab.window_hanning, noverlap=0, pad_to=None, sides=\'default\', scale_by_freq=None, **kwargs) cohere the coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}} %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. The return value is a tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. kwargs are applied to the lines. References: * Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties of the coherence plot: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/cohere_demo.py'
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs):
if (not self._hold): self.cla() (cxy, freqs) = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap, scale_by_freq) freqs += Fc self.plot(freqs, cxy, **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Coherence') self.grid(True) return (cxy, freqs)
'call signature:: specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides=\'default\', scale_by_freq=None) Compute a spectrogram of data in *x*. Data are split into *NFFT* length segments and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the y extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. *cmap*: A :class:`matplotlib.cm.Colormap` instance; if *None* use default determined by rc *xextent*: The image extent along the x-axis. xextent = (xmin,xmax) The default is (0,max(bins)), where bins is the return value from :func:`mlab.specgram` Return value is (*Pxx*, *freqs*, *bins*, *im*): - *bins* are the time points the spectrogram is calculated over - *freqs* is an array of frequencies - *Pxx* is a len(times) x len(freqs) array of power - *im* is a :class:`matplotlib.image.AxesImage` instance Note: If *x* is real (i.e. non-complex), only the positive spectrum is shown. If *x* is complex, both positive and negative parts of the spectrum are shown. This can be overridden using the *sides* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/specgram_demo.py'
def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None):
if (not self._hold): self.cla() (Pxx, freqs, bins) = mlab.specgram(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Z = (10.0 * np.log10(Pxx)) Z = np.flipud(Z) if (xextent is None): xextent = (0, np.amax(bins)) (xmin, xmax) = xextent freqs += Fc extent = (xmin, xmax, freqs[0], freqs[(-1)]) im = self.imshow(Z, cmap, extent=extent) self.axis('auto') return (Pxx, freqs, bins, im)
'call signature:: spy(Z, precision=0, marker=None, markersize=None, aspect=\'equal\', **kwargs) ``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*. If *precision* is 0, any non-zero value will be plotted; else, values of :math:`|Z| > precision` will be plotted. For :class:`scipy.sparse.spmatrix` instances, there is a special case: if *precision* is \'present\', any value present in the array will be plotted, even if it is identically zero. The array will be plotted as it would be printed, with the first index (row) increasing down and the second index (column) increasing to the right. By default aspect is \'equal\', so that each array element occupies a square space; set the aspect kwarg to \'auto\' to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an array element directly. Two plotting styles are available: image or marker. Both are available for full arrays, but only the marker style works for :class:`scipy.sparse.spmatrix` instances. If *marker* and *markersize* are *None*, an image will be returned and any remaining kwargs are passed to :func:`~matplotlib.pyplot.imshow`; else, a :class:`~matplotlib.lines.Line2D` object will be returned with the value of marker determining the marker type, and any remaining kwargs passed to the :meth:`~matplotlib.axes.Axes.plot` method. If *marker* and *markersize* are *None*, useful kwargs include: * *cmap* * *alpha* .. seealso:: :func:`~matplotlib.pyplot.imshow` For controlling colors, e.g. cyan background and red marks, use:: cmap = mcolors.ListedColormap([\'c\',\'r\']) If *marker* or *markersize* is not *None*, useful kwargs include: * *marker* * *markersize* * *color* Useful values for *marker* include: * \'s\' square (default) * \'o\' circle * \'.\' point * \',\' pixel .. seealso:: :func:`~matplotlib.pyplot.plot`'
def spy(self, Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs):
if (precision is None): precision = 0 warnings.DeprecationWarning('Use precision=0 instead of None') if ((marker is None) and (markersize is None) and hasattr(Z, 'tocoo')): marker = 's' if ((marker is None) and (markersize is None)): Z = np.asarray(Z) mask = (np.absolute(Z) > precision) if ('cmap' not in kwargs): kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'], name='binary') (nr, nc) = Z.shape extent = [(-0.5), (nc - 0.5), (nr - 0.5), (-0.5)] ret = self.imshow(mask, interpolation='nearest', aspect=aspect, extent=extent, origin='upper', **kwargs) else: if hasattr(Z, 'tocoo'): c = Z.tocoo() if (precision == 'present'): y = c.row x = c.col else: nonzero = (np.absolute(c.data) > precision) y = c.row[nonzero] x = c.col[nonzero] else: Z = np.asarray(Z) nonzero = (np.absolute(Z) > precision) (y, x) = np.nonzero(nonzero) if (marker is None): marker = 's' if (markersize is None): markersize = 10 marks = mlines.Line2D(x, y, linestyle='None', marker=marker, markersize=markersize, **kwargs) self.add_line(marks) (nr, nc) = Z.shape self.set_xlim(xmin=(-0.5), xmax=(nc - 0.5)) self.set_ylim(ymin=(nr - 0.5), ymax=(-0.5)) self.set_aspect(aspect) ret = marks self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return ret
'Plot a matrix or array as an image. The matrix will be shown the way it would be printed, with the first row at the top. Row and column numbering is zero-based. Argument: *Z* anything that can be interpreted as a 2-D array kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`. :meth:`matshow` sets defaults for *extent*, *origin*, *interpolation*, and *aspect*; use care in overriding the *extent* and *origin* kwargs, because they interact. (Also, if you want to change them, you probably should be using imshow directly in your own version of matshow.) Returns: an :class:`matplotlib.image.AxesImage` instance.'
def matshow(self, Z, **kwargs):
Z = np.asarray(Z) (nr, nc) = Z.shape extent = [(-0.5), (nc - 0.5), (nr - 0.5), (-0.5)] kw = {'extent': extent, 'origin': 'upper', 'interpolation': 'nearest', 'aspect': 'equal'} kw.update(kwargs) im = self.imshow(Z, **kw) self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return im
'*fig* is a :class:`matplotlib.figure.Figure` instance. *args* is the tuple (*numRows*, *numCols*, *plotNum*), where the array of subplots in the figure has dimensions *numRows*, *numCols*, and where *plotNum* is the number of the subplot being created. *plotNum* starts at 1 in the upper left corner and increases to the right. If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*.'
def __init__(self, fig, *args, **kwargs):
self.figure = fig if (len(args) == 1): s = str(args[0]) if (len(s) != 3): raise ValueError('Argument to subplot must be a 3 digits long') (rows, cols, num) = map(int, s) elif (len(args) == 3): (rows, cols, num) = args else: raise ValueError('Illegal argument to subplot') total = (rows * cols) num -= 1 if (num >= total): raise ValueError('Subplot number exceeds total subplots') self._rows = rows self._cols = cols self._num = num self.update_params() self._axes_class.__init__(self, fig, self.figbox, **kwargs)
'get the subplot geometry, eg 2,2,3'
def get_geometry(self):
return (self._rows, self._cols, (self._num + 1))
'change subplot geometry, eg. from 1,1,1 to 2,2,3'
def change_geometry(self, numrows, numcols, num):
self._rows = numrows self._cols = numcols self._num = (num - 1) self.update_params() self.set_position(self.figbox)
'update the subplot position from fig.subplotpars'
def update_params(self):
rows = self._rows cols = self._cols num = self._num pars = self.figure.subplotpars left = pars.left right = pars.right bottom = pars.bottom top = pars.top wspace = pars.wspace hspace = pars.hspace totWidth = (right - left) totHeight = (top - bottom) figH = (totHeight / (rows + (hspace * (rows - 1)))) sepH = (hspace * figH) figW = (totWidth / (cols + (wspace * (cols - 1)))) sepW = (wspace * figW) (rowNum, colNum) = divmod(num, cols) figBottom = ((top - ((rowNum + 1) * figH)) - (rowNum * sepH)) figLeft = (left + (colNum * (figW + sepW))) self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom, figW, figH) self.rowNum = rowNum self.colNum = colNum self.numRows = rows self.numCols = cols if 0: print 'rcn', rows, cols, num print 'lbrt', left, bottom, right, top print 'self.figBottom', self.figBottom print 'self.figLeft', self.figLeft print 'self.figW', self.figW print 'self.figH', self.figH print 'self.rowNum', self.rowNum print 'self.colNum', self.colNum print 'self.numRows', self.numRows print 'self.numCols', self.numCols
'set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last row and yticklabels are visible only if the subplot is in the first column'
def label_outer(self):
lastrow = self.is_last_row() firstcol = self.is_first_col() for label in self.get_xticklabels(): label.set_visible(lastrow) for label in self.get_yticklabels(): label.set_visible(firstcol)
'Initialize the object. This takes the filename as input and opens the file; actually reading the file happens when iterating through the pages of the file.'
def __init__(self, filename, dpi):
matplotlib.verbose.report(('Dvi: ' + filename), 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre
'Iterate through the pages of the file. Returns (text, pages) pairs, where: text is a list of (x, y, fontnum, glyphnum, width) tuples boxes is a list of (x, y, height, width) tuples The coordinates are transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers.'
def __iter__(self):
while True: have_page = self._read() if have_page: (yield self._output()) else: break
'Close the underlying file if it is open.'
def close(self):
if (not self.file.closed): self.file.close()
'Output the text and boxes belonging to the most recent page. page = dvi._output()'
def _output(self):
(minx, miny, maxx, maxy) = (np.inf, np.inf, (- np.inf), (- np.inf)) maxy_pure = (- np.inf) for elt in (self.text + self.boxes): if (len(elt) == 4): (x, y, h, w) = elt e = 0 else: (x, y, font, g, w) = elt h = _mul2012(font._scale, font._tfm.height[g]) e = _mul2012(font._scale, font._tfm.depth[g]) minx = min(minx, x) miny = min(miny, (y - h)) maxx = max(maxx, (x + w)) maxy = max(maxy, (y + e)) maxy_pure = max(maxy_pure, y) if (self.dpi is None): return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=(maxx - minx), height=(maxy_pure - miny), descent=(maxy - maxy_pure)) d = (self.dpi / (72.27 * (2 ** 16))) text = [(((x - minx) * d), ((maxy - y) * d), f, g, (w * d)) for (x, y, f, g, w) in self.text] boxes = [(((x - minx) * d), ((maxy - y) * d), (h * d), (w * d)) for (x, y, h, w) in self.boxes] return mpl_cbook.Bunch(text=text, boxes=boxes, width=((maxx - minx) * d), height=((maxy_pure - miny) * d), descent=((maxy - maxy_pure) * d))
'Read one page from the file. Return True if successful, False if there were no more pages.'
def _read(self):
while True: byte = ord(self.file.read(1)) self._dispatch(byte) if (byte == 140): return True if (self.state == _dvistate.post_post): self.close() return False
'Read and return an integer argument "nbytes" long. Signedness is determined by the "signed" keyword.'
def _arg(self, nbytes, signed=False):
str = self.file.read(nbytes) value = ord(str[0]) if (signed and (value >= 128)): value = (value - 256) for i in range(1, nbytes): value = ((256 * value) + ord(str[i])) return value
'Based on the opcode "byte", read the correct kinds of arguments from the dvi file and call the method implementing that opcode with those arguments.'
def _dispatch(self, byte):
if (0 <= byte <= 127): self._set_char(byte) elif (byte == 128): self._set_char(self._arg(1)) elif (byte == 129): self._set_char(self._arg(2)) elif (byte == 130): self._set_char(self._arg(3)) elif (byte == 131): self._set_char(self._arg(4, True)) elif (byte == 132): self._set_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 133): self._put_char(self._arg(1)) elif (byte == 134): self._put_char(self._arg(2)) elif (byte == 135): self._put_char(self._arg(3)) elif (byte == 136): self._put_char(self._arg(4, True)) elif (byte == 137): self._put_rule(self._arg(4, True), self._arg(4, True)) elif (byte == 138): self._nop() elif (byte == 139): self._bop(*[self._arg(4, True) for i in range(11)]) elif (byte == 140): self._eop() elif (byte == 141): self._push() elif (byte == 142): self._pop() elif (byte == 143): self._right(self._arg(1, True)) elif (byte == 144): self._right(self._arg(2, True)) elif (byte == 145): self._right(self._arg(3, True)) elif (byte == 146): self._right(self._arg(4, True)) elif (byte == 147): self._right_w(None) elif (byte == 148): self._right_w(self._arg(1, True)) elif (byte == 149): self._right_w(self._arg(2, True)) elif (byte == 150): self._right_w(self._arg(3, True)) elif (byte == 151): self._right_w(self._arg(4, True)) elif (byte == 152): self._right_x(None) elif (byte == 153): self._right_x(self._arg(1, True)) elif (byte == 154): self._right_x(self._arg(2, True)) elif (byte == 155): self._right_x(self._arg(3, True)) elif (byte == 156): self._right_x(self._arg(4, True)) elif (byte == 157): self._down(self._arg(1, True)) elif (byte == 158): self._down(self._arg(2, True)) elif (byte == 159): self._down(self._arg(3, True)) elif (byte == 160): self._down(self._arg(4, True)) elif (byte == 161): self._down_y(None) elif (byte == 162): self._down_y(self._arg(1, True)) elif (byte == 163): self._down_y(self._arg(2, True)) elif (byte == 164): self._down_y(self._arg(3, True)) elif (byte == 165): self._down_y(self._arg(4, True)) elif (byte == 166): self._down_z(None) elif (byte == 167): self._down_z(self._arg(1, True)) elif (byte == 168): self._down_z(self._arg(2, True)) elif (byte == 169): self._down_z(self._arg(3, True)) elif (byte == 170): self._down_z(self._arg(4, True)) elif (171 <= byte <= 234): self._fnt_num((byte - 171)) elif (byte == 235): self._fnt_num(self._arg(1)) elif (byte == 236): self._fnt_num(self._arg(2)) elif (byte == 237): self._fnt_num(self._arg(3)) elif (byte == 238): self._fnt_num(self._arg(4, True)) elif (239 <= byte <= 242): len = self._arg((byte - 238)) special = self.file.read(len) self._xxx(special) elif (243 <= byte <= 246): k = self._arg((byte - 242), (byte == 246)) (c, s, d, a, l) = [self._arg(x) for x in (4, 4, 4, 1, 1)] n = self.file.read((a + l)) self._fnt_def(k, c, s, d, a, l, n) elif (byte == 247): (i, num, den, mag, k) = [self._arg(x) for x in (1, 4, 4, 4, 1)] x = self.file.read(k) self._pre(i, num, den, mag, x) elif (byte == 248): self._post() elif (byte == 249): self._post_post() else: raise ValueError, ('unknown command: byte %d' % byte)
'Width of char in dvi units. For internal use by dviread.py.'
def _width_of(self, char):
width = self._tfm.width.get(char, None) if (width is not None): return _mul2012(width, self._scale) matplotlib.verbose.report(('No width for char %d in font %s' % (char, self.texname)), 'debug') return 0
'Parse each line into words.'
def _parse(self, file):
for line in file: line = line.strip() if ((line == '') or line.startswith('%')): continue (words, pos) = ([], 0) while (pos < len(line)): if (line[pos] == '"'): pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = (end + 1) else: end = line.find(' ', (pos + 1)) if (end == (-1)): end = len(line) words.append(line[pos:end]) pos = end while ((pos < len(line)) and (line[pos] == ' ')): pos += 1 self._register(words)
'Register a font described by "words". The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation.'
def _register(self, words):
(texname, psname) = words[:2] (effects, encoding, filename) = ([], None, None) for word in words[2:]: if (not word.startswith('<')): effects.append(word) else: word = word.lstrip('<') if word.startswith('['): assert (encoding is None) encoding = word[1:] elif word.endswith('.enc'): assert (encoding is None) encoding = word else: assert (filename is None) filename = word self._font[texname] = mpl_cbook.Bunch(texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename)
'Create a Collection %(Collection)s'
def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', antialiaseds=None, offsets=None, transOffset=None, norm=None, cmap=None, pickradius=5.0, urls=None, **kwargs):
artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self.set_edgecolor(edgecolors) self.set_facecolor(facecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_urls(urls) self._uniform_offsets = None self._offsets = np.array([], np.float_) if (offsets is not None): offsets = np.asarray(offsets) if (len(offsets.shape) == 1): offsets = offsets[np.newaxis, :] if (transOffset is not None): self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._pickradius = pickradius self.update(kwargs)
'Point prep for drawing and hit testing'
def _prepare_points(self):
transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices (xs, ys) = (vertices[:, 0], vertices[:, 1]) xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(zip(xs, ys), path.codes)) if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if (not transform.is_affine): paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if (not transOffset.is_affine): offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() return (transform, transOffset, offsets, paths)
'Test whether the mouse event occurred in the collection. Returns True | False, ``dict(ind=itemlist)``, where every item in itemlist contains the event.'
def contains(self, mouseevent):
if callable(self._contains): return self._contains(self, mouseevent) if (not self.get_visible()): return (False, {}) (transform, transOffset, offsets, paths) = self._prepare_points() ind = mpath.point_in_path_collection(mouseevent.x, mouseevent.y, self._pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, (len(self._facecolors) > 0)) return ((len(ind) > 0), dict(ind=ind))
'Set the offsets for the collection. *offsets* can be a scalar or a sequence. ACCEPTS: float or sequence of floats'
def set_offsets(self, offsets):
offsets = np.asarray(offsets, np.float_) if (len(offsets.shape) == 1): offsets = offsets[np.newaxis, :] if (self._uniform_offsets is None): self._offsets = offsets else: self._uniform_offsets = offsets
'Return the offsets for the collection.'
def get_offsets(self):
if (self._uniform_offsets is None): return self._offsets else: return self._uniform_offsets
'Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence ACCEPTS: float or sequence of floats'
def set_linewidth(self, lw):
if (lw is None): lw = mpl.rcParams['patch.linewidth'] self._linewidths = self._get_value(lw)
'alias for set_linewidth'
def set_linewidths(self, lw):
return self.set_linewidth(lw)
'alias for set_linewidth'
def set_lw(self, lw):
return self.set_linewidth(lw)
'Set the linestyle(s) for the collection. ACCEPTS: [\'solid\' | \'dashed\', \'dashdot\', \'dotted\' | (offset, on-off-dash-seq) ]'
def set_linestyle(self, ls):
try: dashd = backend_bases.GraphicsContextBase.dashd if cbook.is_string_like(ls): if (ls in dashd): dashes = [dashd[ls]] elif (ls in cbook.ls_mapper): dashes = [dashd[cbook.ls_mapper[ls]]] else: raise ValueError() elif cbook.iterable(ls): try: dashes = [] for x in ls: if cbook.is_string_like(x): if (x in dashd): dashes.append(dashd[x]) elif (x in cbook.ls_mapper): dashes.append(dashd[cbook.ls_mapper[x]]) else: raise ValueError() elif (cbook.iterable(x) and (len(x) == 2)): dashes.append(x) else: raise ValueError() except ValueError: if (len(ls) == 2): dashes = ls else: raise ValueError() else: raise ValueError() except ValueError: raise ValueError(('Do not know how to convert %s to dashes' % ls)) self._linestyles = dashes
'alias for set_linestyle'
def set_linestyles(self, ls):
return self.set_linestyle(ls)
'alias for set_linestyle'
def set_dashes(self, ls):
return self.set_linestyle(ls)
'Set the antialiasing state for rendering. ACCEPTS: Boolean or sequence of booleans'
def set_antialiased(self, aa):
if (aa is None): aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = self._get_bool(aa)
'alias for set_antialiased'
def set_antialiaseds(self, aa):
return self.set_antialiased(aa)
'Set both the edgecolor and the facecolor. ACCEPTS: matplotlib color arg or sequence of rgba tuples .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor`'
def set_color(self, c):
self.set_facecolor(c) self.set_edgecolor(c)
'Set the facecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples'
def set_facecolor(self, c):
if (c is None): c = mpl.rcParams['patch.facecolor'] self._facecolors_original = c self._facecolors = _colors.colorConverter.to_rgba_array(c, self._alpha)
'alias for set_facecolor'
def set_facecolors(self, c):
return self.set_facecolor(c)
'Set the edgecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence. If *c* is \'face\', the edge color will always be the same as the face color. ACCEPTS: matplotlib color arg or sequence of rgba tuples'
def set_edgecolor(self, c):
if (c == 'face'): self._edgecolors = 'face' self._edgecolors_original = 'face' else: if (c is None): c = mpl.rcParams['patch.edgecolor'] self._edgecolors_original = c self._edgecolors = _colors.colorConverter.to_rgba_array(c, self._alpha)
'alias for set_edgecolor'
def set_edgecolors(self, c):
return self.set_edgecolor(c)
'Set the alpha tranparencies of the collection. *alpha* must be a float. ACCEPTS: float'
def set_alpha(self, alpha):
try: float(alpha) except TypeError: raise TypeError('alpha must be a float') else: artist.Artist.set_alpha(self, alpha) try: self._facecolors = _colors.colorConverter.to_rgba_array(self._facecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass try: if (self._edgecolors_original != 'face'): self._edgecolors = _colors.colorConverter.to_rgba_array(self._edgecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass
'If the scalar mappable array is not none, update colors from scalar data'
def update_scalarmappable(self):
if (self._A is None): return if (self._A.ndim > 1): raise ValueError('Collections can only map rank 1 arrays') if len(self._facecolors): self._facecolors = self.to_rgba(self._A, self._alpha) else: self._edgecolors = self.to_rgba(self._A, self._alpha)
'copy properties from other to self'
def update_from(self, other):
artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._edgecolors_original = other._edgecolors_original self._edgecolors = other._edgecolors self._facecolors_original = other._facecolors_original self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._pickradius = other._pickradius
'Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support quadmeshes. This function is primarily of use to backend implementers.'
def convert_mesh_to_paths(meshWidth, meshHeight, coordinates):
Path = mpath.Path if ma.isMaskedArray(coordinates): c = coordinates.data else: c = coordinates points = np.concatenate((c[0:(-1), 0:(-1)], c[0:(-1), 1:], c[1:, 1:], c[1:, 0:(-1)], c[0:(-1), 0:(-1)]), axis=2) points = points.reshape(((meshWidth * meshHeight), 5, 2)) return [Path(x) for x in points]
'*verts* is a sequence of ( *verts0*, *verts1*, ...) where *verts_i* is a sequence of *xy* tuples of vertices, or an equivalent :mod:`numpy` array of shape (*nv*, 2). *sizes* is *None* (default) or a sequence of floats that scale the corresponding *verts_i*. The scaling is applied before the Artist master transform; if the latter is an identity transform, then the overall scaling is such that if *verts_i* specify a unit square, then *sizes_i* is the area of that square in points^2. If len(*sizes*) < *nv*, the additional values will be taken cyclically from the array. *closed*, when *True*, will explicitly close the polygon. %(Collection)s'
def __init__(self, verts, sizes=None, closed=True, **kwargs):
Collection.__init__(self, **kwargs) self._sizes = sizes self.set_verts(verts, closed)
'This allows one to delay initialization of the vertices.'
def set_verts(self, verts, closed=True):
if closed: self._paths = [] for xy in verts: if np.ma.isMaskedArray(xy): if (len(xy) and (xy[0] != xy[(-1)]).any()): xy = np.ma.concatenate([xy, [xy[0]]]) else: xy = np.asarray(xy) if (len(xy) and (xy[0] != xy[(-1)]).any()): xy = np.concatenate([xy, [xy[0]]]) self._paths.append(mpath.Path(xy)) else: self._paths = [mpath.Path(xy) for xy in verts]
'*xranges* sequence of (*xmin*, *xwidth*) *yrange* *ymin*, *ywidth* %(Collection)s'
def __init__(self, xranges, yrange, **kwargs):
(ymin, ywidth) = yrange ymax = (ymin + ywidth) verts = [[(xmin, ymin), (xmin, ymax), ((xmin + xwidth), ymax), ((xmin + xwidth), ymin), (xmin, ymin)] for (xmin, xwidth) in xranges] PolyCollection.__init__(self, verts, **kwargs)
'Create a BrokenBarHCollection to plot horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* A :class:`BrokenBarHCollection` is returned. *kwargs* are passed on to the collection'
@staticmethod def span_where(x, ymin, ymax, where, **kwargs):
xranges = [] for (ind0, ind1) in mlab.contiguous_regions(where): xslice = x[ind0:ind1] if (not len(xslice)): continue xranges.append((xslice[0], (xslice[(-1)] - xslice[0]))) collection = BrokenBarHCollection(xranges, [ymin, (ymax - ymin)], **kwargs) return collection
'*numsides* the number of sides of the polygon *rotation* the rotation of the polygon in radians *sizes* gives the area of the circle circumscribing the regular polygon in points^2 %(Collection)s Example: see :file:`examples/dynamic_collection.py` for complete example:: offsets = np.random.rand(20,2) facecolors = [cm.jet(x) for x in np.random.rand(20)] black = (0,0,0,1) collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors = facecolors, edgecolors = (black,), linewidths = (1,), offsets = offsets, transOffset = ax.transData,'
def __init__(self, numsides, rotation=0, sizes=(1,), **kwargs):
Collection.__init__(self, **kwargs) self._sizes = sizes self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform())
'*segments* a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can be a different length. *colors* must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed). *antialiaseds* must be a sequence of ones or zeros *linestyles* [ \'solid\' | \'dashed\' | \'dashdot\' | \'dotted\' ] a string or dash tuple. The dash tuple is:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. If *linewidths*, *colors*, or *antialiaseds* is None, they default to their rcParams setting, in sequence form. If *offsets* and *transOffset* are not None, then *offsets* are transformed by *transOffset* and applied after the segments have been transformed to display coordinates. If *offsets* is not None but *transOffset* is None, then the *offsets* are added to the segments before any transformation. In this case, a single offset can be specified as:: offsets=(xo,yo) and this value will be added cumulatively to each successive segment, so as to produce a set of successively offset curves. *norm* None (optional for :class:`matplotlib.cm.ScalarMappable`) *cmap* None (optional for :class:`matplotlib.cm.ScalarMappable`) *pickradius* is the tolerance for mouse clicks picking a line. The default is 5 pt. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix :attr:`~matplotlib.cm.ScalarMappable._A` is not None (ie a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors.'
def __init__(self, segments, linewidths=None, colors=None, antialiaseds=None, linestyles='solid', offsets=None, transOffset=None, norm=None, cmap=None, pickradius=5, **kwargs):
if (colors is None): colors = mpl.rcParams['lines.color'] if (linewidths is None): linewidths = (mpl.rcParams['lines.linewidth'],) if (antialiaseds is None): antialiaseds = (mpl.rcParams['lines.antialiased'],) self.set_linestyles(linestyles) colors = _colors.colorConverter.to_rgba_array(colors) Collection.__init__(self, edgecolors=colors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, pickradius=pickradius, **kwargs) self.set_facecolors([]) self.set_segments(segments)
'Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples'
def set_color(self, c):
self._edgecolors = _colors.colorConverter.to_rgba_array(c)
'Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples'
def color(self, c):
warnings.warn('LineCollection.color deprecated; use set_color instead') return self.set_color(c)
'*sizes* Gives the area of the circle in points^2 %(Collection)s'
def __init__(self, sizes, **kwargs):
Collection.__init__(self, **kwargs) self._sizes = sizes self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()]
'*widths*: sequence half-lengths of first axes (e.g., semi-major axis lengths) *heights*: sequence half-lengths of second axes *angles*: sequence angles of first axes, degrees CCW from the X-axis *units*: [\'points\' | \'inches\' | \'dots\' | \'width\' | \'height\' | \'x\' | \'y\'] units in which majors and minors are given; \'width\' and \'height\' refer to the dimensions of the axes, while \'x\' and \'y\' refer to the *offsets* data units. Additional kwargs inherited from the base :class:`Collection`: %(Collection)s'
def __init__(self, widths, heights, angles, units='points', **kwargs):
Collection.__init__(self, **kwargs) self._widths = np.asarray(widths).ravel() self._heights = np.asarray(heights).ravel() self._angles = (np.asarray(angles).ravel() * (np.pi / 180.0)) self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = [] self._paths = [mpath.Path.unit_circle()] self._initialized = False
'*patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors.'
def __init__(self, patches, match_original=False, **kwargs):
if match_original: def determine_facecolor(patch): if patch.fill: return patch.get_facecolor() return [0, 0, 0, 0] facecolors = [determine_facecolor(p) for p in patches] edgecolors = [p.get_edgecolor() for p in patches] linewidths = [p.get_linewidths() for p in patches] antialiaseds = [p.get_antialiased() for p in patches] Collection.__init__(self, edgecolors=edgecolors, facecolors=facecolors, linewidths=linewidths, linestyles='solid', antialiaseds=antialiaseds) else: Collection.__init__(self, **kwargs) paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths
'Parse the AFM file in file object *fh*'
def __init__(self, fh):
(dhead, dcmetrics_ascii, dcmetrics_name, dkernpairs, dcomposite) = parse_afm(fh) self._header = dhead self._kern = dkernpairs self._metrics = dcmetrics_ascii self._metrics_by_name = dcmetrics_name self._composite = dcomposite
'Return the string width (including kerning) and string height as a (*w*, *h*) tuple.'
def string_width_height(self, s):
if (not len(s)): return (0, 0) totalw = 0 namelast = None miny = 1000000000.0 maxy = 0 for c in s: if (c == '\n'): continue (wx, name, bbox) = self._metrics[ord(c)] (l, b, w, h) = bbox try: kp = self._kern[(namelast, name)] except KeyError: kp = 0 totalw += (wx + kp) thismax = (b + h) if (thismax > maxy): maxy = thismax thismin = b if (thismin < miny): miny = thismin return (totalw, (maxy - miny))
'Return the string bounding box'
def get_str_bbox_and_descent(self, s):
if (not len(s)): return (0, 0, 0, 0) totalw = 0 namelast = None miny = 1000000000.0 maxy = 0 left = 0 if (not isinstance(s, unicode)): s = s.decode() for c in s: if (c == '\n'): continue name = uni2type1.get(ord(c), 'question') try: (wx, bbox) = self._metrics_by_name[name] except KeyError: name = 'question' (wx, bbox) = self._metrics_by_name[name] (l, b, w, h) = bbox if (l < left): left = l try: kp = self._kern[(namelast, name)] except KeyError: kp = 0 totalw += (wx + kp) thismax = (b + h) if (thismax > maxy): maxy = thismax thismin = b if (thismin < miny): miny = thismin return (left, miny, totalw, (maxy - miny), (- miny))
'Return the string bounding box'
def get_str_bbox(self, s):
return self.get_str_bbox_and_descent(s)[:4]
'Get the name of the character, ie, \';\' is \'semicolon\''
def get_name_char(self, c, isord=False):
if (not isord): c = ord(c) (wx, name, bbox) = self._metrics[c] return name
'Get the width of the character from the character metric WX field'
def get_width_char(self, c, isord=False):
if (not isord): c = ord(c) (wx, name, bbox) = self._metrics[c] return wx
'Get the width of the character from a type1 character name'
def get_width_from_char_name(self, name):
(wx, bbox) = self._metrics_by_name[name] return wx
'Get the height of character *c* from the bounding box. This is the ink height (space is 0)'
def get_height_char(self, c, isord=False):
if (not isord): c = ord(c) (wx, name, bbox) = self._metrics[c] return bbox[(-1)]
'Return the kerning pair distance (possibly 0) for chars *c1* and *c2*'
def get_kern_dist(self, c1, c2):
(name1, name2) = (self.get_name_char(c1), self.get_name_char(c2)) return self.get_kern_dist_from_name(name1, name2)
'Return the kerning pair distance (possibly 0) for chars *name1* and *name2*'
def get_kern_dist_from_name(self, name1, name2):
try: return self._kern[(name1, name2)] except: return 0
'Return the font name, eg, \'Times-Roman\''
def get_fontname(self):
return self._header['FontName']
'Return the font full name, eg, \'Times-Roman\''
def get_fullname(self):
name = self._header.get('FullName') if (name is None): name = self._header['FontName'] return name
'Return the font family name, eg, \'Times\''
def get_familyname(self):
name = self._header.get('FamilyName') if (name is not None): return name name = self.get_fullname() extras = '(?i)([ -](regular|plain|italic|oblique|bold|semibold|light|ultralight|extra|condensed))+$' return re.sub(extras, '', name)
'Return the font weight, eg, \'Bold\' or \'Roman\''
def get_weight(self):
return self._header['Weight']
'Return the fontangle as float'
def get_angle(self):
return self._header['ItalicAngle']
'Return the cap height as float'
def get_capheight(self):
return self._header['CapHeight']
'Return the xheight as float'
def get_xheight(self):
return self._header['XHeight']
'Return the underline thickness as float'
def get_underline_thickness(self):
return self._header['UnderlineThickness']
'Return the standard horizontal stem width as float, or *None* if not specified in AFM file.'
def get_horizontal_stem_width(self):
return self._header.get('StdHW', None)
'Return the standard vertical stem width as float, or *None* if not specified in AFM file.'
def get_vertical_stem_width(self):
return self._header.get('StdVW', None)
'Remove the artist from the figure if possible. The effect will not be visible until the figure is redrawn, e.g., with :meth:`matplotlib.axes.Axes.draw_idle`. Call :meth:`matplotlib.axes.Axes.relim` to update the axes limits if desired. Note: :meth:`~matplotlib.axes.Axes.relim` will not see collections even if the collection was added to axes with *autolim* = True. Note: there is no support for removing the artist\'s legend entry.'
def remove(self):
if (self._remove_method != None): self._remove_method(self) else: raise NotImplementedError('cannot remove artist')
'Return *True* if units are set on the *x* or *y* axes'
def have_units(self):
ax = self.axes if ((ax is None) or (ax.xaxis is None)): return False return (ax.xaxis.have_units() or ax.yaxis.have_units())
'For artists in an axes, if the xaxis has units support, convert *x* using xaxis unit type'
def convert_xunits(self, x):
ax = getattr(self, 'axes', None) if ((ax is None) or (ax.xaxis is None)): return x return ax.xaxis.convert_units(x)