|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
DESCRIPTION = """\ |
|
Multi-photo texture captures in outdoor nature scenes focusing on the ground. Each set contains variations of the same texture theme. |
|
""" |
|
|
|
REPO_PREFIX = "https://huggingface.co/datasets/texturedesign/td01_natural-ground-textures" |
|
DOWNLOAD_PREFIX = REPO_PREFIX + "/resolve/main" |
|
|
|
INDEX_URLS = { |
|
"train": REPO_PREFIX + "/raw/main/train/metadata.jsonl", |
|
"test": REPO_PREFIX + "/raw/main/test/metadata.jsonl", |
|
} |
|
|
|
|
|
class NaturalGroundTextures(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="4K", version=VERSION, description="The original resolution dataset."), |
|
datasets.BuilderConfig(name="2K", version=VERSION, description="Half-resolution dataset."), |
|
datasets.BuilderConfig(name="1K", version=VERSION, description="Quarter-resolution dataset."), |
|
|
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "2k" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=DESCRIPTION, |
|
citation="", |
|
homepage="https://huggingface.co/texturedesign", |
|
license="cc-by-nc-4.0", |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"set": datasets.Value("uint8"), |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(INDEX_URLS) |
|
train_lines = [json.loads(l) for l in open(data_dir["train"], "r", encoding="utf-8").readlines()] |
|
test_lines = [json.loads(l) for l in open(data_dir["test"], "r", encoding="utf-8").readlines()] |
|
|
|
train_files = dl_manager.download_and_extract([(DOWNLOAD_PREFIX + '/train/' + row['file_name']) for row in train_lines]) |
|
test_files = dl_manager.download_and_extract([(DOWNLOAD_PREFIX + '/test/' + row['file_name']) for row in test_lines]) |
|
|
|
return [ |
|
datasets.SplitGenerator(datasets.Split.TRAIN, dict(lines=train_lines, filenames=train_files)), |
|
datasets.SplitGenerator(datasets.Split.TEST, dict(lines=test_lines, filenames=test_files)), |
|
] |
|
|
|
def _generate_examples(self, lines, filenames): |
|
from jxlpy import JXLImagePlugin |
|
import PIL.Image |
|
|
|
for key, (data, filename) in enumerate(zip(lines, filenames)): |
|
image = PIL.Image.open(filename, formats=["jxl"]) |
|
sz = image.size |
|
|
|
if self.config.name == "1K": |
|
image = image.resize(size=(sz[0]//4, sz[1]//4), resample=PIL.Image.Resampling.LANCZOS) |
|
elif self.config.name == "2K": |
|
image = image.resize(size=(sz[0]//2, sz[1]//2), resample=PIL.Image.Resampling.LANCZOS) |
|
else: |
|
assert self.config.name == "4K" |
|
|
|
yield key, {"image": image, "set": data["set"]} |
|
|