Prototype of dataset loading script that supports JXL.
Browse files
td01.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, texture.design.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import json
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
|
21 |
+
DESCRIPTION = """\
|
22 |
+
"""
|
23 |
+
|
24 |
+
REPO_PREFIX = "https://huggingface.co/datasets/texturedesign/td01_natural-ground-textures"
|
25 |
+
DOWNLOAD_PREFIX = REPO_PREFIX + "/resolve/main"
|
26 |
+
|
27 |
+
INDEX_URLS = {
|
28 |
+
"train": REPO_PREFIX + "/raw/main/train/metadata.jsonl",
|
29 |
+
"test": REPO_PREFIX + "/raw/main/test/metadata.jsonl",
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
class NaturalGroundTextures(datasets.GeneratorBasedBuilder):
|
34 |
+
|
35 |
+
VERSION = datasets.Version("0.1.0")
|
36 |
+
|
37 |
+
BUILDER_CONFIGS = [
|
38 |
+
datasets.BuilderConfig(name="4K", version=VERSION, description="The original resolution dataset."),
|
39 |
+
datasets.BuilderConfig(name="2K", version=VERSION, description="Half-resolution dataset."),
|
40 |
+
datasets.BuilderConfig(name="1K", version=VERSION, description="Quarter-resolution dataset."),
|
41 |
+
|
42 |
+
]
|
43 |
+
|
44 |
+
DEFAULT_CONFIG_NAME = "2k"
|
45 |
+
|
46 |
+
def _info(self):
|
47 |
+
return datasets.DatasetInfo(
|
48 |
+
description=DESCRIPTION,
|
49 |
+
citation="",
|
50 |
+
homepage="",
|
51 |
+
license="",
|
52 |
+
features=datasets.Features(
|
53 |
+
{
|
54 |
+
"image": datasets.Image(),
|
55 |
+
"set": datasets.Value("uint8"),
|
56 |
+
}
|
57 |
+
)
|
58 |
+
)
|
59 |
+
|
60 |
+
def _split_generators(self, dl_manager):
|
61 |
+
data_dir = dl_manager.download_and_extract(INDEX_URLS)
|
62 |
+
train_lines = [json.loads(l) for l in open(data_dir["train"], "r", encoding="utf-8").readlines()]
|
63 |
+
test_lines = [json.loads(l) for l in open(data_dir["test"], "r", encoding="utf-8").readlines()]
|
64 |
+
|
65 |
+
train_files = dl_manager.download_and_extract([(DOWNLOAD_PREFIX + '/train/' + row['file_name']) for row in train_lines])
|
66 |
+
test_files = dl_manager.download_and_extract([(DOWNLOAD_PREFIX + '/test/' + row['file_name']) for row in test_lines])
|
67 |
+
|
68 |
+
return [
|
69 |
+
datasets.SplitGenerator(datasets.Split.TRAIN, dict(lines=train_lines, filenames=train_files)),
|
70 |
+
datasets.SplitGenerator(datasets.Split.TEST, dict(lines=test_lines, filenames=test_files)),
|
71 |
+
]
|
72 |
+
|
73 |
+
def _generate_examples(self, lines, filenames):
|
74 |
+
from jxlpy import JXLImagePlugin
|
75 |
+
import PIL.Image
|
76 |
+
|
77 |
+
for key, (data, filename) in enumerate(zip(lines, filenames)):
|
78 |
+
image = PIL.Image.open(filename, formats=["jxl"])
|
79 |
+
sz = image.size
|
80 |
+
|
81 |
+
if self.config.name == "1K":
|
82 |
+
image = image.resize(size=(sz[0]//4, sz[1]//4), resample=PIL.Image.Resampling.LANCZOS)
|
83 |
+
elif self.config.name == "2K":
|
84 |
+
image = image.resize(size=(sz[0]//2, sz[1]//2), resample=PIL.Image.Resampling.LANCZOS)
|
85 |
+
else:
|
86 |
+
assert self.config.name == "4K"
|
87 |
+
|
88 |
+
yield key, {"image": image, "set": data["set"]}
|