thbndi commited on
Commit
034ddc7
·
1 Parent(s): 05f0346

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +3 -25
Mimic4Dataset.py CHANGED
@@ -200,7 +200,6 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
200
 
201
  return ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
202
 
203
-
204
  def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
205
  meds=data['Med']
206
  proc = data['Proc']
@@ -376,7 +375,6 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
376
 
377
  return stat, demo, meds, chart, out, proc, lab, y
378
 
379
-
380
  def getXY(dyn,stat,demo,concat_cols,concat):
381
  X_df=pd.DataFrame()
382
  if concat:
@@ -449,17 +447,6 @@ def generate_split(path,task,concat,feat_cond,feat_chart,feat_proc, feat_meds, f
449
  X_df = encoding(X_df)
450
  return X_df
451
 
452
- def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out):
453
- with open(path, 'rb') as fp:
454
- dico = pickle.load(fp)
455
- X = pd.DataFrame.from_dict(dico, orient='index')
456
- X_dict = {}
457
- taskf=task.replace(" ","_")
458
- for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
459
- stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
460
- X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, 'label': y}
461
-
462
- return X_dict
463
 
464
 
465
  def task_cohort(task, mimic_path, config_path):
@@ -527,6 +514,7 @@ def task_cohort(task, mimic_path, config_path):
527
  elif version == '1':
528
  cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
529
  #----------------------------------------------FEATURES-------------------------------------------------------
 
530
  if data_icu :
531
  feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
532
  #----------------------------------------------GROUPING-------------------------------------------------------
@@ -715,7 +703,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
715
  config = self.config_path.split('/')[-1]
716
 
717
  #####################create task cohort
718
- task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
 
719
 
720
  #####################Split data into train, test and val
721
  with open(data_dir, 'rb') as fp:
@@ -941,16 +930,6 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
941
  yield i, row.to_dict()
942
  ######################################################DEEP###############################################################
943
  def _info_deep(self):
944
- X_train_deep = generate_split_deep(self.path+'/train_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
945
- X_test_deep = generate_split_deep(self.path+'/test_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
946
- X_val_deep = generate_split_deep(self.path+'/val_data.pkl',self.config.name,self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out)
947
-
948
- with open(self.path+"/X_train_deep.pkl", 'wb') as f:
949
- pickle.dump(X_train_deep, f)
950
- with open(self.path+"/X_test_deep.pkl", 'wb') as f:
951
- pickle.dump(X_test_deep, f)
952
- with open(self.path+"/X_val_deep.pkl", 'wb') as f:
953
- pickle.dump(X_val_deep, f)
954
  features = datasets.Features(
955
  {
956
  "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
@@ -983,7 +962,6 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
983
  def _generate_examples_deep(self, filepath):
984
  with open(filepath, 'rb') as fp:
985
  dico = pickle.load(fp)
986
-
987
  task=self.config.name.replace(" ","_")
988
  if 'Custom' in task:
989
  task = task.rsplit('_', 1)[0]
 
200
 
201
  return ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
202
 
 
203
  def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
204
  meds=data['Med']
205
  proc = data['Proc']
 
375
 
376
  return stat, demo, meds, chart, out, proc, lab, y
377
 
 
378
  def getXY(dyn,stat,demo,concat_cols,concat):
379
  X_df=pd.DataFrame()
380
  if concat:
 
447
  X_df = encoding(X_df)
448
  return X_df
449
 
 
 
 
 
 
 
 
 
 
 
 
450
 
451
 
452
  def task_cohort(task, mimic_path, config_path):
 
514
  elif version == '1':
515
  cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, root_dir,version_path,disease_label)
516
  #----------------------------------------------FEATURES-------------------------------------------------------
517
+ print(data_icu)
518
  if data_icu :
519
  feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
520
  #----------------------------------------------GROUPING-------------------------------------------------------
 
703
  config = self.config_path.split('/')[-1]
704
 
705
  #####################create task cohort
706
+ if not os.path.exists(data_dir):
707
+ task_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
708
 
709
  #####################Split data into train, test and val
710
  with open(data_dir, 'rb') as fp:
 
930
  yield i, row.to_dict()
931
  ######################################################DEEP###############################################################
932
  def _info_deep(self):
 
 
 
 
 
 
 
 
 
 
933
  features = datasets.Features(
934
  {
935
  "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
 
962
  def _generate_examples_deep(self, filepath):
963
  with open(filepath, 'rb') as fp:
964
  dico = pickle.load(fp)
 
965
  task=self.config.name.replace(" ","_")
966
  if 'Custom' in task:
967
  task = task.rsplit('_', 1)[0]