Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +9 -8
Mimic4Dataset.py
CHANGED
@@ -201,7 +201,7 @@ def vocab(task,diag_flag,proc_flag,out_flag,chart_flag,med_flag,lab_flag):
|
|
201 |
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
202 |
labVocabDict = pickle.load(fp)
|
203 |
|
204 |
-
return ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
205 |
|
206 |
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
207 |
meds=data['Med']
|
@@ -346,7 +346,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
346 |
stat_df = torch.zeros(size=(1,0))
|
347 |
demo_df = torch.zeros(size=(1,0))
|
348 |
|
349 |
-
eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
350 |
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
|
351 |
|
352 |
keys=dyn.columns.levels[0]
|
@@ -946,11 +946,11 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
946 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
947 |
"DEMO": datasets.Array2D(shape=(1, 4), dtype="int64"),
|
948 |
"COND" : datasets.Array2D(shape=(1, 1025), dtype='int64') ,
|
949 |
-
"MEDS" : datasets.Array2D(shape=(None,
|
950 |
-
"PROC" : datasets.Array2D(shape=(None,
|
951 |
-
"CHART" : datasets.Array2D(shape=(None,
|
952 |
-
"OUT" : datasets.Array2D(shape=(None,
|
953 |
-
"LAB" : datasets.Array2D(shape=(None,
|
954 |
|
955 |
}
|
956 |
)
|
@@ -984,7 +984,8 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
984 |
#############################################################################################################################
|
985 |
def _info(self):
|
986 |
self.path = self.create_cohort()
|
987 |
-
|
|
|
988 |
if self.encoding == 'onehot' :
|
989 |
return self._info_encoded()
|
990 |
|
|
|
201 |
with open ('./data/dict/'+task+'/'+file, 'rb') as fp:
|
202 |
labVocabDict = pickle.load(fp)
|
203 |
|
204 |
+
return len(condVocabDict),len(procVocabDict),len(medVocabDict),len(outVocabDict),len(chartVocabDict),len(labVocabDict),ethVocabDict,genderVocabDict,ageVocabDict,insVocabDict
|
205 |
|
206 |
def concat_data(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
207 |
meds=data['Med']
|
|
|
346 |
stat_df = torch.zeros(size=(1,0))
|
347 |
demo_df = torch.zeros(size=(1,0))
|
348 |
|
349 |
+
size_cond, size_proc, size_meds, size_out, size_chart, size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds,False)
|
350 |
dyn,cond_df,demo=concat_data(data,task.replace(" ","_"),feat_cond,feat_proc,feat_out,feat_chart,feat_meds)
|
351 |
|
352 |
keys=dyn.columns.levels[0]
|
|
|
946 |
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
947 |
"DEMO": datasets.Array2D(shape=(1, 4), dtype="int64"),
|
948 |
"COND" : datasets.Array2D(shape=(1, 1025), dtype='int64') ,
|
949 |
+
"MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='int64') ,
|
950 |
+
"PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='int64') ,
|
951 |
+
"CHART" : datasets.Array2D(shape=(None, self.size_chart), dtype='int64') ,
|
952 |
+
"OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='int64') ,
|
953 |
+
"LAB" : datasets.Array2D(shape=(None, self.size_lab), dtype='int64') ,
|
954 |
|
955 |
}
|
956 |
)
|
|
|
984 |
#############################################################################################################################
|
985 |
def _info(self):
|
986 |
self.path = self.create_cohort()
|
987 |
+
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,False)
|
988 |
+
|
989 |
if self.encoding == 'onehot' :
|
990 |
return self._info_encoded()
|
991 |
|