Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +6 -6
Mimic4Dataset.py
CHANGED
@@ -274,7 +274,7 @@ def getXY_deep(data,task,feat_cond,feat_proc,feat_out,feat_chart,feat_meds):
|
|
274 |
stat=stat.to_numpy()
|
275 |
stat=stat.tolist()
|
276 |
|
277 |
-
y = demo['label']
|
278 |
|
279 |
demo["gender"].replace(gender_vocab, inplace=True)
|
280 |
demo["ethnicity"].replace(eth_vocab, inplace=True)
|
@@ -366,7 +366,7 @@ def generate_split_deep(path,task,feat_cond,feat_chart,feat_proc, feat_meds, fea
|
|
366 |
taskf=task.replace(" ","_")
|
367 |
for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
|
368 |
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
|
369 |
-
X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, '
|
370 |
|
371 |
return X_dict
|
372 |
|
@@ -746,10 +746,10 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
746 |
for i, row in df.iterrows():
|
747 |
yield i, row.to_dict()
|
748 |
######################################################DEEP###############################################################
|
749 |
-
def _info_deep(self
|
750 |
features = datasets.Features(
|
751 |
{
|
752 |
-
|
753 |
"DEMO": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
754 |
"COND" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
755 |
"MEDS" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
@@ -786,7 +786,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
786 |
out_features = data['out']
|
787 |
cond_features = data['stat']
|
788 |
demo= data['demo']
|
789 |
-
label = data['
|
790 |
lab=data['lab']
|
791 |
|
792 |
yield int(key), {
|
@@ -826,7 +826,7 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
826 |
with open(self.path+"/X_val_deep.pkl", 'wb') as f:
|
827 |
pickle.dump(X_val_deep, f)
|
828 |
|
829 |
-
return self._info_deep(
|
830 |
|
831 |
else:
|
832 |
return self._info_raw()
|
|
|
274 |
stat=stat.to_numpy()
|
275 |
stat=stat.tolist()
|
276 |
|
277 |
+
y = int(demo['label'])
|
278 |
|
279 |
demo["gender"].replace(gender_vocab, inplace=True)
|
280 |
demo["ethnicity"].replace(eth_vocab, inplace=True)
|
|
|
366 |
taskf=task.replace(" ","_")
|
367 |
for hid, data in tqdm(X.iterrows(),desc='Encoding Splits Data for '+task+' task'):
|
368 |
stat, demo, meds, chart, out, proc, lab, y = getXY_deep(data, taskf, feat_cond, feat_proc, feat_out, feat_chart,feat_meds)
|
369 |
+
X_dict[hid] = {'stat': stat, 'demo': demo, 'meds': meds, 'chart': chart, 'out': out, 'proc': proc, 'lab': lab, 'label': y}
|
370 |
|
371 |
return X_dict
|
372 |
|
|
|
746 |
for i, row in df.iterrows():
|
747 |
yield i, row.to_dict()
|
748 |
######################################################DEEP###############################################################
|
749 |
+
def _info_deep(self):
|
750 |
features = datasets.Features(
|
751 |
{
|
752 |
+
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
|
753 |
"DEMO": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
754 |
"COND" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
755 |
"MEDS" : datasets.Sequence(datasets.Sequence(datasets.Value("float64"))) ,
|
|
|
786 |
out_features = data['out']
|
787 |
cond_features = data['stat']
|
788 |
demo= data['demo']
|
789 |
+
label = data['label']
|
790 |
lab=data['lab']
|
791 |
|
792 |
yield int(key), {
|
|
|
826 |
with open(self.path+"/X_val_deep.pkl", 'wb') as f:
|
827 |
pickle.dump(X_val_deep, f)
|
828 |
|
829 |
+
return self._info_deep()
|
830 |
|
831 |
else:
|
832 |
return self._info_raw()
|