Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +33 -29
Mimic4Dataset.py
CHANGED
@@ -82,13 +82,14 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
82 |
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
83 |
procDic = pickle.load(fp)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
else:
|
93 |
procs=pd.DataFrame(columns=feat)
|
94 |
for p,v in zip(feat,proc_val):
|
@@ -101,13 +102,14 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
101 |
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
102 |
outDic = pickle.load(fp)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
111 |
else:
|
112 |
outs=pd.DataFrame(columns=feat)
|
113 |
for o,v in zip(feat,out_val):
|
@@ -120,14 +122,15 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
120 |
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
|
121 |
chartDic = pickle.load(fp)
|
122 |
|
123 |
-
charts
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
else:
|
132 |
chart=pd.DataFrame(columns=feat)
|
133 |
for c,v in zip(feat,chart_val):
|
@@ -140,13 +143,14 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
140 |
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
141 |
medDic = pickle.load(fp)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
150 |
else:
|
151 |
med=pd.DataFrame(columns=feat)
|
152 |
for m,v in zip(feat,med_val):
|
|
|
82 |
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
83 |
procDic = pickle.load(fp)
|
84 |
|
85 |
+
if proc :
|
86 |
+
feat=proc.keys()
|
87 |
+
proc_val=[proc[key] for key in feat]
|
88 |
+
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
89 |
+
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
90 |
+
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
91 |
+
if feat==[]:
|
92 |
+
proc_df=features.fillna(0)
|
93 |
else:
|
94 |
procs=pd.DataFrame(columns=feat)
|
95 |
for p,v in zip(feat,proc_val):
|
|
|
102 |
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
103 |
outDic = pickle.load(fp)
|
104 |
|
105 |
+
if out :
|
106 |
+
feat=out.keys()
|
107 |
+
out_val=[out[key] for key in feat]
|
108 |
+
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
109 |
+
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
110 |
+
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
111 |
+
if feat==[]:
|
112 |
+
out_df=features.fillna(0)
|
113 |
else:
|
114 |
outs=pd.DataFrame(columns=feat)
|
115 |
for o,v in zip(feat,out_val):
|
|
|
122 |
with open("./data/dict/"+task+"/chartVocab", 'rb') as fp:
|
123 |
chartDic = pickle.load(fp)
|
124 |
|
125 |
+
if charts:
|
126 |
+
charts=chart['val']
|
127 |
+
feat=charts.keys()
|
128 |
+
chart_val=[charts[key] for key in feat]
|
129 |
+
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
130 |
+
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
131 |
+
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
132 |
+
if feat==[]:
|
133 |
+
chart_df=features.fillna(0)
|
134 |
else:
|
135 |
chart=pd.DataFrame(columns=feat)
|
136 |
for c,v in zip(feat,chart_val):
|
|
|
143 |
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
144 |
medDic = pickle.load(fp)
|
145 |
|
146 |
+
if meds:
|
147 |
+
feat=meds['signal'].keys()
|
148 |
+
med_val=[meds['amount'][key] for key in feat]
|
149 |
+
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
150 |
+
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
151 |
+
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
152 |
+
if feat==[]:
|
153 |
+
meds_df=features.fillna(0)
|
154 |
else:
|
155 |
med=pd.DataFrame(columns=feat)
|
156 |
for m,v in zip(feat,med_val):
|