thbndi commited on
Commit
f3a4834
·
1 Parent(s): a3e3728

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +15 -14
Mimic4Dataset.py CHANGED
@@ -38,11 +38,11 @@ _CONFIG_URLS = {'los' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/re
38
 
39
 
40
  def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=False,feat_meds=False):
41
- meds=data['MEDS']
42
- proc = data['PROC']
43
- out = data['OUT']
44
- chart = data['CHART']
45
- cond= data['COND']
46
 
47
  cond_df=pd.DataFrame()
48
  proc_df=pd.DataFrame()
@@ -82,8 +82,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
82
  with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
83
  procDic = pickle.load(fp)
84
 
85
- feat=proc['id']
86
- proc_val=proc['value']
87
  procedures=pd.DataFrame(procDic,columns=['PROC'])
88
  features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
89
  features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
@@ -101,8 +101,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
101
  with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
102
  outDic = pickle.load(fp)
103
 
104
- feat=out['id']
105
- out_val=out['value']
106
  outputs=pd.DataFrame(outDic,columns=['OUT'])
107
  features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
108
  features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
@@ -121,8 +121,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
121
  chartDic = pickle.load(fp)
122
 
123
  charts=chart['val']
124
- feat=charts['id']
125
- chart_val=charts['value']
126
  charts=pd.DataFrame(chartDic,columns=['CHART'])
127
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
128
  features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
@@ -140,8 +140,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
140
  with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
141
  medDic = pickle.load(fp)
142
 
143
- feat=meds['signal']['id']
144
- med_val=meds['amount']['value']
145
  meds=pd.DataFrame(medDic,columns=['MEDS'])
146
  features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
147
  features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
@@ -204,10 +204,11 @@ def generate_split(path,task,concat,feat_cond=True,feat_chart=True,feat_proc=Tru
204
  with open(path, 'rb') as fp:
205
  dico = pickle.load(fp)
206
  df = pd.DataFrame.from_dict(dico, orient='index')
 
207
  task=task.replace(" ","_")
208
  X_df=pd.DataFrame()
209
  #y_df=pd.DataFrame(df['label'],columns=['label'])
210
- for hid, data in df.iterrows():
211
  concat_cols=[]
212
  sample=data
213
  dyn_df,cond_df,demo=onehot(sample,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
 
38
 
39
 
40
  def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=False,feat_meds=False):
41
+ meds=data['Med']
42
+ proc = data['Proc']
43
+ out = data['Out']
44
+ chart = data['Chart']
45
+ cond= data['Cond']['fids']
46
 
47
  cond_df=pd.DataFrame()
48
  proc_df=pd.DataFrame()
 
82
  with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
83
  procDic = pickle.load(fp)
84
 
85
+ feat=proc.keys()
86
+ proc_val=[proc[key] for key in feat]
87
  procedures=pd.DataFrame(procDic,columns=['PROC'])
88
  features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
89
  features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
 
101
  with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
102
  outDic = pickle.load(fp)
103
 
104
+ feat=out.keys()
105
+ out_val=[out[key] for key in feat]
106
  outputs=pd.DataFrame(outDic,columns=['OUT'])
107
  features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
108
  features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
 
121
  chartDic = pickle.load(fp)
122
 
123
  charts=chart['val']
124
+ feat=charts.keys()
125
+ chart_val=[charts[key] for key in feat]
126
  charts=pd.DataFrame(chartDic,columns=['CHART'])
127
  features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
128
  features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
 
140
  with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
141
  medDic = pickle.load(fp)
142
 
143
+ feat=meds['signal'].keys()
144
+ med_val=[meds['amount'][key] for key in feat]
145
  meds=pd.DataFrame(medDic,columns=['MEDS'])
146
  features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
147
  features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
 
204
  with open(path, 'rb') as fp:
205
  dico = pickle.load(fp)
206
  df = pd.DataFrame.from_dict(dico, orient='index')
207
+ df = pd.DataFrame.from_dict(path)
208
  task=task.replace(" ","_")
209
  X_df=pd.DataFrame()
210
  #y_df=pd.DataFrame(df['label'],columns=['label'])
211
+ for hid, data in tqdm(df.iterrows()):
212
  concat_cols=[]
213
  sample=data
214
  dyn_df,cond_df,demo=onehot(sample,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)