Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +15 -14
Mimic4Dataset.py
CHANGED
@@ -38,11 +38,11 @@ _CONFIG_URLS = {'los' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/re
|
|
38 |
|
39 |
|
40 |
def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=False,feat_meds=False):
|
41 |
-
meds=data['
|
42 |
-
proc = data['
|
43 |
-
out = data['
|
44 |
-
chart = data['
|
45 |
-
cond= data['
|
46 |
|
47 |
cond_df=pd.DataFrame()
|
48 |
proc_df=pd.DataFrame()
|
@@ -82,8 +82,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
82 |
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
83 |
procDic = pickle.load(fp)
|
84 |
|
85 |
-
feat=proc
|
86 |
-
proc_val=proc[
|
87 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
88 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
89 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
@@ -101,8 +101,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
101 |
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
102 |
outDic = pickle.load(fp)
|
103 |
|
104 |
-
feat=out
|
105 |
-
out_val=out[
|
106 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
107 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
108 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
@@ -121,8 +121,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
121 |
chartDic = pickle.load(fp)
|
122 |
|
123 |
charts=chart['val']
|
124 |
-
feat=charts
|
125 |
-
chart_val=charts[
|
126 |
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
127 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
128 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
@@ -140,8 +140,8 @@ def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=F
|
|
140 |
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
141 |
medDic = pickle.load(fp)
|
142 |
|
143 |
-
feat=meds['signal']
|
144 |
-
med_val=meds['amount'][
|
145 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
146 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
147 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
@@ -204,10 +204,11 @@ def generate_split(path,task,concat,feat_cond=True,feat_chart=True,feat_proc=Tru
|
|
204 |
with open(path, 'rb') as fp:
|
205 |
dico = pickle.load(fp)
|
206 |
df = pd.DataFrame.from_dict(dico, orient='index')
|
|
|
207 |
task=task.replace(" ","_")
|
208 |
X_df=pd.DataFrame()
|
209 |
#y_df=pd.DataFrame(df['label'],columns=['label'])
|
210 |
-
for hid, data in df.iterrows():
|
211 |
concat_cols=[]
|
212 |
sample=data
|
213 |
dyn_df,cond_df,demo=onehot(sample,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
|
|
|
38 |
|
39 |
|
40 |
def onehot(data,task,feat_cond=False,feat_proc=False,feat_out=False,feat_chart=False,feat_meds=False):
|
41 |
+
meds=data['Med']
|
42 |
+
proc = data['Proc']
|
43 |
+
out = data['Out']
|
44 |
+
chart = data['Chart']
|
45 |
+
cond= data['Cond']['fids']
|
46 |
|
47 |
cond_df=pd.DataFrame()
|
48 |
proc_df=pd.DataFrame()
|
|
|
82 |
with open("./data/dict/"+task+"/procVocab", 'rb') as fp:
|
83 |
procDic = pickle.load(fp)
|
84 |
|
85 |
+
feat=proc.keys()
|
86 |
+
proc_val=[proc[key] for key in feat]
|
87 |
procedures=pd.DataFrame(procDic,columns=['PROC'])
|
88 |
features=pd.DataFrame(np.zeros([1,len(procedures)]),columns=procedures['PROC'])
|
89 |
features.columns=pd.MultiIndex.from_product([["PROC"], features.columns])
|
|
|
101 |
with open("./data/dict/"+task+"/outVocab", 'rb') as fp:
|
102 |
outDic = pickle.load(fp)
|
103 |
|
104 |
+
feat=out.keys()
|
105 |
+
out_val=[out[key] for key in feat]
|
106 |
outputs=pd.DataFrame(outDic,columns=['OUT'])
|
107 |
features=pd.DataFrame(np.zeros([1,len(outputs)]),columns=outputs['OUT'])
|
108 |
features.columns=pd.MultiIndex.from_product([["OUT"], features.columns])
|
|
|
121 |
chartDic = pickle.load(fp)
|
122 |
|
123 |
charts=chart['val']
|
124 |
+
feat=charts.keys()
|
125 |
+
chart_val=[charts[key] for key in feat]
|
126 |
charts=pd.DataFrame(chartDic,columns=['CHART'])
|
127 |
features=pd.DataFrame(np.zeros([1,len(charts)]),columns=charts['CHART'])
|
128 |
features.columns=pd.MultiIndex.from_product([["CHART"], features.columns])
|
|
|
140 |
with open("./data/dict/"+task+"/medVocab", 'rb') as fp:
|
141 |
medDic = pickle.load(fp)
|
142 |
|
143 |
+
feat=meds['signal'].keys()
|
144 |
+
med_val=[meds['amount'][key] for key in feat]
|
145 |
meds=pd.DataFrame(medDic,columns=['MEDS'])
|
146 |
features=pd.DataFrame(np.zeros([1,len(meds)]),columns=meds['MEDS'])
|
147 |
features.columns=pd.MultiIndex.from_product([["MEDS"], features.columns])
|
|
|
204 |
with open(path, 'rb') as fp:
|
205 |
dico = pickle.load(fp)
|
206 |
df = pd.DataFrame.from_dict(dico, orient='index')
|
207 |
+
df = pd.DataFrame.from_dict(path)
|
208 |
task=task.replace(" ","_")
|
209 |
X_df=pd.DataFrame()
|
210 |
#y_df=pd.DataFrame(df['label'],columns=['label'])
|
211 |
+
for hid, data in tqdm(df.iterrows()):
|
212 |
concat_cols=[]
|
213 |
sample=data
|
214 |
dyn_df,cond_df,demo=onehot(sample,task,feat_cond,feat_chart,feat_proc, feat_meds, feat_out)
|