diff --git "a/Was_node_suite/WAS_Node_Suite.py" "b/Was_node_suite/WAS_Node_Suite.py" new file mode 100644--- /dev/null +++ "b/Was_node_suite/WAS_Node_Suite.py" @@ -0,0 +1,14842 @@ +# By WASasquatch (Discord: WAS#0263) +# +# Copyright 2023 Jordan Thompson (WASasquatch) +# +# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to +# deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, +# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +# THE SOFTWARE. + + +from PIL import Image, ImageFilter, ImageEnhance, ImageOps, ImageDraw, ImageChops, ImageFont +from PIL.PngImagePlugin import PngInfo +from io import BytesIO +from typing import Optional, Union, List +from urllib.request import urlopen +import comfy.diffusers_convert +import comfy.samplers +import comfy.sd +import comfy.utils +import comfy.clip_vision +import comfy.model_management +import folder_paths as comfy_paths +from comfy_extras.chainner_models import model_loading +import ast +import glob +import hashlib +import json +import nodes +import math +import numpy as np +from numba import jit +import os +import random +import re +import requests +import socket +import subprocess +import sys +import datetime +import time +import torch +from tqdm import tqdm + + +p310_plus = (sys.version_info >= (3, 10)) + +MANIFEST = { + "name": "WAS Node Suite", + "version": (2,2,2), + "author": "WASasquatch", + "project": "https://github.com/WASasquatch/was-node-suite-comfyui", + "description": "An extensive node suite for ComfyUI with over 180 new nodes", +} + +sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "was_node_suite_comfyui")) +sys.path.append(comfy_paths.base_path) + +#! SYSTEM HOOKS + +class cstr(str): + class color: + END = '\33[0m' + BOLD = '\33[1m' + ITALIC = '\33[3m' + UNDERLINE = '\33[4m' + BLINK = '\33[5m' + BLINK2 = '\33[6m' + SELECTED = '\33[7m' + + BLACK = '\33[30m' + RED = '\33[31m' + GREEN = '\33[32m' + YELLOW = '\33[33m' + BLUE = '\33[34m' + VIOLET = '\33[35m' + BEIGE = '\33[36m' + WHITE = '\33[37m' + + BLACKBG = '\33[40m' + REDBG = '\33[41m' + GREENBG = '\33[42m' + YELLOWBG = '\33[43m' + BLUEBG = '\33[44m' + VIOLETBG = '\33[45m' + BEIGEBG = '\33[46m' + WHITEBG = '\33[47m' + + GREY = '\33[90m' + LIGHTRED = '\33[91m' + LIGHTGREEN = '\33[92m' + LIGHTYELLOW = '\33[93m' + LIGHTBLUE = '\33[94m' + LIGHTVIOLET = '\33[95m' + LIGHTBEIGE = '\33[96m' + LIGHTWHITE = '\33[97m' + + GREYBG = '\33[100m' + LIGHTREDBG = '\33[101m' + LIGHTGREENBG = '\33[102m' + LIGHTYELLOWBG = '\33[103m' + LIGHTBLUEBG = '\33[104m' + LIGHTVIOLETBG = '\33[105m' + LIGHTBEIGEBG = '\33[106m' + LIGHTWHITEBG = '\33[107m' + + @staticmethod + def add_code(name, code): + if not hasattr(cstr.color, name.upper()): + setattr(cstr.color, name.upper(), code) + else: + raise ValueError(f"'cstr' object already contains a code with the name '{name}'.") + + def __new__(cls, text): + return super().__new__(cls, text) + + def __getattr__(self, attr): + if attr.lower().startswith("_cstr"): + code = getattr(self.color, attr.upper().lstrip("_cstr")) + modified_text = self.replace(f"__{attr[1:]}__", f"{code}") + return cstr(modified_text) + elif attr.upper() in dir(self.color): + code = getattr(self.color, attr.upper()) + modified_text = f"{code}{self}{self.color.END}" + return cstr(modified_text) + elif attr.lower() in dir(cstr): + return getattr(cstr, attr.lower()) + else: + raise AttributeError(f"'cstr' object has no attribute '{attr}'") + + def print(self, **kwargs): + print(self, **kwargs) + +#! MESSAGE TEMPLATES +cstr.color.add_code("msg", f"{cstr.color.BLUE}WAS Node Suite: {cstr.color.END}") +cstr.color.add_code("warning", f"{cstr.color.BLUE}WAS Node Suite {cstr.color.LIGHTYELLOW}Warning: {cstr.color.END}") +cstr.color.add_code("error", f"{cstr.color.RED}WAS Node Suite {cstr.color.END}Error: {cstr.color.END}") + +#! GLOBALS +NODE_FILE = os.path.abspath(__file__) +MIDAS_INSTALLED = False +CUSTOM_NODES_DIR = comfy_paths.folder_names_and_paths["custom_nodes"][0][0] +MODELS_DIR = comfy_paths.models_dir +WAS_SUITE_ROOT = os.path.dirname(NODE_FILE) +WAS_CONFIG_DIR = os.environ.get('WAS_CONFIG_DIR', WAS_SUITE_ROOT) +WAS_DATABASE = os.path.join(WAS_CONFIG_DIR, 'was_suite_settings.json') +WAS_HISTORY_DATABASE = os.path.join(WAS_CONFIG_DIR, 'was_history.json') +WAS_CONFIG_FILE = os.path.join(WAS_CONFIG_DIR, 'was_suite_config.json') +STYLES_PATH = os.path.join(WAS_CONFIG_DIR, 'styles.json') +DEFAULT_NSP_PANTRY_PATH = os.path.join(WAS_CONFIG_DIR, 'nsp_pantry.json') +ALLOWED_EXT = ('.jpeg', '.jpg', '.png', + '.tiff', '.gif', '.bmp', '.webp') + + +#! INSTALLATION CLEANUP + +# Delete legacy nodes +legacy_was_nodes = ['fDOF_WAS.py', 'Image_Blank_WAS.py', 'Image_Blend_WAS.py', 'Image_Canny_Filter_WAS.py', 'Canny_Filter_WAS.py', 'Image_Combine_WAS.py', 'Image_Edge_Detection_WAS.py', 'Image_Film_Grain_WAS.py', 'Image_Filters_WAS.py', + 'Image_Flip_WAS.py', 'Image_Nova_Filter_WAS.py', 'Image_Rotate_WAS.py', 'Image_Style_Filter_WAS.py', 'Latent_Noise_Injection_WAS.py', 'Latent_Upscale_WAS.py', 'MiDaS_Depth_Approx_WAS.py', 'NSP_CLIPTextEncoder.py', 'Samplers_WAS.py'] +legacy_was_nodes_found = [] + +if os.path.basename(CUSTOM_NODES_DIR) == 'was-node-suite-comfyui': + legacy_was_nodes.append('WAS_Node_Suite.py') + +f_disp = False +node_path_dir = os.getcwd()+os.sep+'ComfyUI'+os.sep+'custom_nodes'+os.sep +for f in legacy_was_nodes: + file = f'{node_path_dir}{f}' + if os.path.exists(file): + if not f_disp: + cstr("Found legacy nodes. Archiving legacy nodes...").msg.print() + f_disp = True + legacy_was_nodes_found.append(file) +if legacy_was_nodes_found: + import zipfile + from os.path import basename + archive = zipfile.ZipFile( + f'{node_path_dir}WAS_Legacy_Nodes_Backup_{round(time.time())}.zip', "w") + for f in legacy_was_nodes_found: + archive.write(f, basename(f)) + try: + os.remove(f) + except OSError: + pass + archive.close() +if f_disp: + cstr("Legacy cleanup complete.").msg.print() + +#! WAS SUITE CONFIG + +was_conf_template = { + "run_requirements": True, + "suppress_uncomfy_warnings": True, + "show_startup_junk": True, + "show_inspiration_quote": True, + "text_nodes_type": "STRING", + "webui_styles": None, + "webui_styles_persistent_update": True, + "sam_model_vith_url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", + "sam_model_vitl_url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", + "sam_model_vitb_url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", + "history_display_limit": 36, + "use_legacy_ascii_text": False, + "ffmpeg_bin_path": "/path/to/ffmpeg", + "ffmpeg_extra_codecs": { + "avc1": ".mp4", + "h264": ".mkv", + }, + "wildcards_path": os.path.join(WAS_SUITE_ROOT, "wildcards"), + "wildcard_api": True, + } + +# Create, Load, or Update Config + +def getSuiteConfig(): + global was_conf_template + try: + with open(WAS_CONFIG_FILE, "r") as f: + was_config = json.load(f) + except OSError as e: + cstr(f"Unable to load conf file at `{WAS_CONFIG_FILE}`. Using internal config template.").error.print() + return was_conf_template + except Exception as e: + cstr(f"Unable to load conf file at `{WAS_CONFIG_FILE}`. Using internal config template.").error.print() + return was_conf_template + return was_config + return was_config + +def updateSuiteConfig(conf): + try: + with open(WAS_CONFIG_FILE, "w", encoding='utf-8') as f: + json.dump(conf, f, indent=4) + except OSError as e: + print(e) + return False + except Exception as e: + print(e) + return False + return True + +if not os.path.exists(WAS_CONFIG_FILE): + if updateSuiteConfig(was_conf_template): + cstr(f'Created default conf file at `{WAS_CONFIG_FILE}`.').msg.print() + was_config = getSuiteConfig() + else: + cstr(f"Unable to create default conf file at `{WAS_CONFIG_FILE}`. Using internal config template.").error.print() + was_config = was_conf_template + +else: + was_config = getSuiteConfig() + + update_config = False + for sett_ in was_conf_template.keys(): + if not was_config.__contains__(sett_): + was_config.update({sett_: was_conf_template[sett_]}) + update_config = True + + if update_config: + updateSuiteConfig(was_config) + +# WAS Suite Locations Debug +if was_config.__contains__('show_startup_junk'): + if was_config['show_startup_junk']: + cstr(f"Running At: {NODE_FILE}") + cstr(f"Running From: {WAS_SUITE_ROOT}") + +# Check Write Access +if not os.access(WAS_SUITE_ROOT, os.W_OK) or not os.access(MODELS_DIR, os.W_OK): + cstr(f"There is no write access to `{WAS_SUITE_ROOT}` or `{MODELS_DIR}`. Write access is required!").error.print() + exit + +# SET TEXT TYPE +TEXT_TYPE = "STRING" +if was_config and was_config.__contains__('text_nodes_type'): + if was_config['text_nodes_type'].strip() != '': + TEXT_TYPE = was_config['text_nodes_type'].strip() +if was_config and was_config.__contains__('use_legacy_ascii_text'): + if was_config['use_legacy_ascii_text']: + TEXT_TYPE = "ASCII" + cstr("use_legacy_ascii_text is `True` in `was_suite_config.json`. `ASCII` type is deprecated and the default will be `STRING` in the future.").warning.print() + +# Convert WebUI Styles - TODO: Convert to PromptStyles class +if was_config.__contains__('webui_styles'): + + if was_config['webui_styles'] not in [None, 'None', 'none', '']: + + webui_styles_file = was_config['webui_styles'] + + if was_config.__contains__('webui_styles_persistent_update'): + styles_persist = was_config['webui_styles_persistent_update'] + else: + styles_persist = True + + if webui_styles_file not in [None, 'none', 'None', ''] and os.path.exists(webui_styles_file): + + cstr(f"Importing styles from `{webui_styles_file}`.").msg.print() + + import csv + + styles = {} + with open(webui_styles_file, "r", encoding="utf-8-sig", newline='') as file: + reader = csv.DictReader(file) + for row in reader: + prompt = row.get("prompt") or row.get("text", "") # Old files + negative_prompt = row.get("negative_prompt", "") + styles[row["name"]] = { + "prompt": prompt, + "negative_prompt": negative_prompt + } + + if styles: + if not os.path.exists(STYLES_PATH) or styles_persist: + with open(STYLES_PATH, "w", encoding='utf-8') as f: + json.dump(styles, f, indent=4) + + del styles + + cstr(f"Styles import complete.").msg.print() + + else: + cstr(f"Styles file `{webui_styles_file}` does not exist.").error.print() + + +#! SUITE SPECIFIC CLASSES & FUNCTIONS + +# Freeze PIP modules +def packages(versions=False): + import sys + import subprocess + try: + result = subprocess.check_output([sys.executable, '-m', 'pip', 'freeze'], stderr=subprocess.STDOUT) + lines = result.decode().splitlines() + return [line if versions else line.split('==')[0] for line in lines] + except subprocess.CalledProcessError as e: + print("An error occurred while fetching packages:", e.output.decode()) + return [] + +def install_package(package, uninstall_first: Union[List[str], str] = None): + if os.getenv("WAS_BLOCK_AUTO_INSTALL", 'False').lower() in ('true', '1', 't'): + cstr(f"Preventing package install of '{package}' due to WAS_BLOCK_INSTALL env").msg.print() + else: + if uninstall_first is None: + return + + if isinstance(uninstall_first, str): + uninstall_first = [uninstall_first] + + cstr(f"Uninstalling {', '.join(uninstall_first)}..") + subprocess.check_call([sys.executable, '-s', '-m', 'pip', 'uninstall', *uninstall_first]) + cstr("Installing package...").msg.print() + subprocess.check_call([sys.executable, '-s', '-m', 'pip', '-q', 'install', package]) + +# Tensor to PIL +def tensor2pil(image): + return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + +# PIL to Tensor +def pil2tensor(image): + return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) + +# PIL Hex +def pil2hex(image): + return hashlib.sha256(np.array(tensor2pil(image)).astype(np.uint16).tobytes()).hexdigest() + +# PIL to Mask +def pil2mask(image): + image_np = np.array(image.convert("L")).astype(np.float32) / 255.0 + mask = torch.from_numpy(image_np) + return 1.0 - mask + +# Mask to PIL +def mask2pil(mask): + if mask.ndim > 2: + mask = mask.squeeze(0) + mask_np = mask.cpu().numpy().astype('uint8') + mask_pil = Image.fromarray(mask_np, mode="L") + return mask_pil + +# Tensor to SAM-compatible NumPy +def tensor2sam(image): + # Convert tensor to numpy array in HWC uint8 format with pixel values in [0, 255] + sam_image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + # Transpose the image to HWC format if it's in CHW format + if sam_image.shape[0] == 3: + sam_image = np.transpose(sam_image, (1, 2, 0)) + return sam_image + +# SAM-compatible NumPy to tensor +def sam2tensor(image): + # Convert the image to float32 and normalize the pixel values to [0, 1] + float_image = image.astype(np.float32) / 255.0 + # Transpose the image from HWC format to CHW format + chw_image = np.transpose(float_image, (2, 0, 1)) + # Convert the numpy array to a tensor + tensor_image = torch.from_numpy(chw_image) + return tensor_image + +# Median Filter +def medianFilter(img, diameter, sigmaColor, sigmaSpace): + import cv2 as cv + diameter = int(diameter) + sigmaColor = int(sigmaColor) + sigmaSpace = int(sigmaSpace) + img = img.convert('RGB') + img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR) + img = cv.bilateralFilter(img, diameter, sigmaColor, sigmaSpace) + img = cv.cvtColor(np.array(img), cv.COLOR_BGR2RGB) + return Image.fromarray(img).convert('RGB') + +# Resize Image +def resizeImage(image, max_size): + width, height = image.size + if width > height: + if width > max_size: + new_width = max_size + new_height = int(height * (max_size / width)) + else: + if height > max_size: + new_height = max_size + new_width = int(width * (max_size / height)) + resized_image = image.resize((new_width, new_height)) + return resized_image + +# Image Seed +def image2seed(image): + image_data = image.tobytes() + hash_object = hashlib.sha256(image_data) + hash_digest = hash_object.digest() + seed = int.from_bytes(hash_digest[:4], byteorder='big') + return seed + + +# SHA-256 Hash +def get_sha256(file_path): + sha256_hash = hashlib.sha256() + with open(file_path, 'rb') as file: + for chunk in iter(lambda: file.read(4096), b''): + sha256_hash.update(chunk) + return sha256_hash.hexdigest() + +# Batch Seed Generator +def seed_batch(seed, batches, seeds): + rng = np.random.default_rng(seed) + btch = [rng.choice(2**32 - 1, seeds, replace=False).tolist() for _ in range(batches)] + return btch + +# Download File +def download_file(url, filename=None, path=None): + if not filename: + filename = url.split('/')[-1] + if not path: + path = '.' + save_path = os.path.join(path, filename) + response = requests.get(url, stream=True) + if response.status_code == requests.codes.ok: + file_size = int(response.headers.get('Content-Length', 0)) + with open(save_path, 'wb') as file: + with tqdm(total=file_size, unit='B', unit_scale=True, unit_divisor=1024) as progress: + for chunk in response.iter_content(chunk_size=1024): + file.write(chunk) + progress.update(len(chunk)) + print(f"Downloaded file saved at: {save_path}") + return True + elif response.status_code == requests.codes.not_found: + cstr("Error: File not found.").error.print() + else: + cstr(f"Error: Failed to download file. Status code: {response.status_code}").error.print() + return False + +# NSP Function + +def nsp_parse(text, seed=0, noodle_key='__', nspterminology=None, pantry_path=None): + if nspterminology is None: + # Fetch the NSP Pantry + if pantry_path is None: + pantry_path = DEFAULT_NSP_PANTRY_PATH + if not os.path.exists(pantry_path): + response = urlopen('https://raw.githubusercontent.com/WASasquatch/noodle-soup-prompts/main/nsp_pantry.json') + tmp_pantry = json.loads(response.read()) + # Dump JSON locally + pantry_serialized = json.dumps(tmp_pantry, indent=4) + with open(pantry_path, "w") as f: + f.write(pantry_serialized) + del response, tmp_pantry + + # Load local pantry + with open(pantry_path, 'r') as f: + nspterminology = json.load(f) + + if seed > 0 or seed < 0: + random.seed(seed) + + # Parse Text + new_text = text + for term in nspterminology: + # Target Noodle + tkey = f'{noodle_key}{term}{noodle_key}' + # How many occurrences? + tcount = new_text.count(tkey) + # Apply random results for each noodle counted + for _ in range(tcount): + new_text = new_text.replace( + tkey, random.choice(nspterminology[term]), 1) + seed += 1 + random.seed(seed) + + return new_text + +# Simple wildcard parser: + +def replace_wildcards(text, seed=None, noodle_key='__'): + + def replace_nested(text, key_path_dict): + if re.findall(f"{noodle_key}(.+?){noodle_key}", text): + for key, file_path in key_path_dict.items(): + with open(file_path, "r", encoding="utf-8") as file: + lines = file.readlines() + if lines: + random_line = None + while not random_line: + line = random.choice(lines).strip() + if not line.startswith('#') and not line.startswith('//'): + random_line = line + text = text.replace(key, random_line) + return text + + conf = getSuiteConfig() + wildcard_dir = os.path.join(WAS_SUITE_ROOT, 'wildcards') + if not os.path.exists(wildcard_dir): + os.makedirs(wildcard_dir, exist_ok=True) + if conf.__contains__('wildcards_path'): + if conf['wildcards_path'] not in [None, ""]: + wildcard_dir = conf['wildcards_path'] + + cstr(f"Wildcard Path: {wildcard_dir}").msg.print() + + # Set the random seed for reproducibility + if seed: + random.seed(seed) + + # Create a dictionary of key to file path pairs + key_path_dict = {} + for root, dirs, files in os.walk(wildcard_dir): + for file in files: + file_path = os.path.join(root, file) + key = os.path.relpath(file_path, wildcard_dir).replace(os.path.sep, "/").rsplit(".", 1)[0] + key_path_dict[f"{noodle_key}{key}{noodle_key}"] = os.path.abspath(file_path) + + # Replace keys in text with random lines from corresponding files + for key, file_path in key_path_dict.items(): + with open(file_path, "r", encoding="utf-8") as file: + lines = file.readlines() + if lines: + random_line = None + while not random_line: + line = random.choice(lines).strip() + if not line.startswith('#') and not line.startswith('//'): + random_line = line + text = text.replace(key, random_line) + + # Replace sub-wildacrds in result + text = replace_nested(text, key_path_dict) + + return text + +# Parse Prompt Variables + +def parse_prompt_vars(input_string, optional_vars=None): + variables = optional_vars or {} + pattern = r"\$\|(.*?)\|\$" + variable_count = len(variables) + 1 + + def replace_variable(match): + nonlocal variable_count + variable_name = f"${variable_count}" + variables[variable_name] = match.group(1) + variable_count += 1 + return variable_name + + output_string = re.sub(pattern, replace_variable, input_string) + + for variable_name, phrase in variables.items(): + variable_pattern = re.escape(variable_name) + output_string = re.sub(variable_pattern, phrase, output_string) + + return output_string, variables + +# Parse Dynamic Prompts + +def parse_dynamic_prompt(prompt, seed): + random.seed(seed) + + def replace_match(match): + options = match.group(1).split('|') + return random.choice(options) + + parse_prompt = re.sub(r'\<(.*?)\>', replace_match, prompt) + while re.search(r'\<(.*?)\>', parse_prompt): + parse_prompt = re.sub(r'\<(.*?)\>', replace_match, parse_prompt) + + return parse_prompt + +# Ambient Occlusion Factor + +@jit(nopython=True) +def calculate_ambient_occlusion_factor(rgb_normalized, depth_normalized, height, width, radius): + occlusion_array = np.zeros((height, width), dtype=np.uint8) + + for y in range(height): + for x in range(width): + if radius == 0: + occlusion_factor = 0 + else: + y_min = max(y - radius, 0) + y_max = min(y + radius + 1, height) + x_min = max(x - radius, 0) + x_max = min(x + radius + 1, width) + + neighborhood_depth = depth_normalized[y_min:y_max, x_min:x_max] + neighborhood_rgb = rgb_normalized[y_min:y_max, x_min:x_max, :] + + depth_diff = depth_normalized[y, x] - neighborhood_depth + rgb_diff = np.abs(rgb_normalized[y, x] - neighborhood_rgb) + occlusion_factor = np.maximum(0, depth_diff).mean() + np.maximum(0, np.sum(rgb_diff, axis=2)).mean() + + occlusion_value = int(255 - occlusion_factor * 255) + occlusion_array[y, x] = occlusion_value + + return occlusion_array + +# Direct Occlusion Factor + +@jit(nopython=True) +def calculate_direct_occlusion_factor(rgb_normalized, depth_normalized, height, width, radius): + occlusion_array = np.empty((int(height), int(width)), dtype=np.uint8) + depth_normalized = depth_normalized[:, :, 0] + + for y in range(int(height)): + for x in range(int(width)): + if radius == 0: + occlusion_factor = 0 + else: + y_min = max(int(y - radius), 0) + y_max = min(int(y + radius + 1), int(height)) + x_min = max(int(x - radius), 0) + x_max = min(int(x + radius + 1), int(width)) + + neighborhood_depth = np.zeros((y_max - y_min, x_max - x_min), dtype=np.float64) + neighborhood_rgb = np.empty((y_max - y_min, x_max - x_min, 3)) + + for i in range(y_min, y_max): + for j in range(x_min, x_max): + neighborhood_depth[i - y_min, j - x_min] = depth_normalized[i, j] + neighborhood_rgb[i - y_min, j - x_min, :] = rgb_normalized[i, j, :] + + depth_diff = neighborhood_depth - depth_normalized[y, x] + rgb_diff = np.abs(neighborhood_rgb - rgb_normalized[y, x]) + occlusion_factor = np.maximum(0, depth_diff).mean() + np.maximum(0, np.sum(np.abs(rgb_diff), axis=2)).mean() + + occlusion_value = int(occlusion_factor * 255) + occlusion_array[y, x] = occlusion_value + + occlusion_min = np.min(occlusion_array) + occlusion_max = np.max(occlusion_array) + occlusion_scaled = ((occlusion_array - occlusion_min) / (occlusion_max - occlusion_min) * 255).astype(np.uint8) + + return occlusion_scaled + + +class PromptStyles: + def __init__(self, styles_file, preview_length = 32): + self.styles_file = styles_file + self.styles = {} + self.preview_length = preview_length + + if os.path.exists(self.styles_file): + with open(self.styles_file, 'r') as f: + self.styles = json.load(f) + + def add_style(self, prompt="", negative_prompt="", auto=False, name=None): + if auto: + date_format = '%A, %d %B %Y %I:%M %p' + date_str = datetime.datetime.now().strftime(date_format) + key = None + if prompt.strip() != "": + if len(prompt) > self.preview_length: + length = self.preview_length + else: + length = len(prompt) + key = f"[{date_str}] Positive: {prompt[:length]} ..." + elif negative_prompt.strip() != "": + if len(negative_prompt) > self.preview_length: + length = self.preview_length + else: + length = len(negative_prompt) + key = f"[{date_str}] Negative: {negative_prompt[:length]} ..." + else: + cstr("At least a `prompt`, or `negative_prompt` input is required!").error.print() + return + else: + if name == None or str(name).strip() == "": + cstr("A `name` input is required when not using `auto=True`").error.print() + return + key = str(name) + + + for k, v in self.styles.items(): + if v['prompt'] == prompt and v['negative_prompt'] == negative_prompt: + return + + self.styles[key] = {"prompt": prompt, "negative_prompt": negative_prompt} + + with open(self.styles_file, "w", encoding='utf-8') as f: + json.dump(self.styles, f, indent=4) + + def get_prompts(self): + return self.styles + + def get_prompt(self, prompt_key): + if prompt_key in self.styles: + return self.styles[prompt_key]['prompt'], self.styles[prompt_key]['negative_prompt'] + else: + cstr(f"Prompt style `{prompt_key}` was not found!").error.print() + return None, None + + + +# WAS SETTINGS MANAGER + +class WASDatabase: + """ + The WAS Suite Database Class provides a simple key-value database that stores + data in a flatfile using the JSON format. Each key-value pair is associated with + a category. + + Attributes: + filepath (str): The path to the JSON file where the data is stored. + data (dict): The dictionary that holds the data read from the JSON file. + + Methods: + insert(category, key, value): Inserts a key-value pair into the database + under the specified category. + get(category, key): Retrieves the value associated with the specified + key and category from the database. + update(category, key): Update a value associated with the specified + key and category from the database. + delete(category, key): Deletes the key-value pair associated with the + specified key and category from the database. + _save(): Saves the current state of the database to the JSON file. + """ + def __init__(self, filepath): + self.filepath = filepath + try: + with open(filepath, 'r') as f: + self.data = json.load(f) + except FileNotFoundError: + self.data = {} + + def catExists(self, category): + return category in self.data + + def keyExists(self, category, key): + return category in self.data and key in self.data[category] + + def insert(self, category, key, value): + if not isinstance(category, str) or not isinstance(key, str): + cstr("Category and key must be strings").error.print() + return + + if category not in self.data: + self.data[category] = {} + self.data[category][key] = value + self._save() + + def update(self, category, key, value): + if category in self.data and key in self.data[category]: + self.data[category][key] = value + self._save() + + def updateCat(self, category, dictionary): + self.data[category].update(dictionary) + self._save() + + def get(self, category, key): + return self.data.get(category, {}).get(key, None) + + def getDB(self): + return self.data + + def insertCat(self, category): + if not isinstance(category, str): + cstr("Category must be a string").error.print() + return + + if category in self.data: + cstr(f"The database category '{category}' already exists!").error.print() + return + self.data[category] = {} + self._save() + + def getDict(self, category): + if category not in self.data: + cstr(f"The database category '{category}' does not exist!").error.print() + return {} + return self.data[category] + + def delete(self, category, key): + if category in self.data and key in self.data[category]: + del self.data[category][key] + self._save() + + def _save(self): + try: + with open(self.filepath, 'w') as f: + json.dump(self.data, f, indent=4) + except FileNotFoundError: + cstr(f"Cannot save database to file '{self.filepath}'. " + "Storing the data in the object instead. Does the folder and node file have write permissions?").warning.print() + except Exception as e: + cstr(f"Error while saving JSON data: {e}").error.print() + +# Initialize the settings database +WDB = WASDatabase(WAS_DATABASE) + +# WAS Token Class + +class TextTokens: + def __init__(self): + self.WDB = WDB + if not self.WDB.getDB().__contains__('custom_tokens'): + self.WDB.insertCat('custom_tokens') + self.custom_tokens = self.WDB.getDict('custom_tokens') + + self.tokens = { + '[time]': str(time.time()).replace('.','_'), + '[hostname]': socket.gethostname(), + '[cuda_device]': str(comfy.model_management.get_torch_device()), + '[cuda_name]': str(comfy.model_management.get_torch_device_name(device=comfy.model_management.get_torch_device())), + } + + if '.' in self.tokens['[time]']: + self.tokens['[time]'] = self.tokens['[time]'].split('.')[0] + + try: + self.tokens['[user]'] = os.getlogin() if os.getlogin() else 'null' + except Exception: + self.tokens['[user]'] = 'null' + + def addToken(self, name, value): + self.custom_tokens.update({name: value}) + self._update() + + def removeToken(self, name): + self.custom_tokens.pop(name) + self._update() + + def format_time(self, format_code): + return time.strftime(format_code, time.localtime(time.time())) + + def parseTokens(self, text): + tokens = self.tokens.copy() + if self.custom_tokens: + tokens.update(self.custom_tokens) + + # Update time + tokens['[time]'] = str(time.time()) + if '.' in tokens['[time]']: + tokens['[time]'] = tokens['[time]'].split('.')[0] + + for token, value in tokens.items(): + if token.startswith('[time('): + continue + pattern = re.compile(re.escape(token)) + text = pattern.sub(value, text) + + def replace_custom_time(match): + format_code = match.group(1) + return self.format_time(format_code) + + text = re.sub(r'\[time\((.*?)\)\]', replace_custom_time, text) + + return text + + def _update(self): + self.WDB.updateCat('custom_tokens', self.custom_tokens) + + +# Update image history + +def update_history_images(new_paths): + HDB = WASDatabase(WAS_HISTORY_DATABASE) + if HDB.catExists("History") and HDB.keyExists("History", "Images"): + saved_paths = HDB.get("History", "Images") + for path_ in saved_paths: + if not os.path.exists(path_): + saved_paths.remove(path_) + if isinstance(new_paths, str): + if new_paths in saved_paths: + saved_paths.remove(new_paths) + saved_paths.append(new_paths) + elif isinstance(new_paths, list): + for path_ in new_paths: + if path_ in saved_paths: + saved_paths.remove(path_) + saved_paths.append(path_) + HDB.update("History", "Images", saved_paths) + else: + if not HDB.catExists("History"): + HDB.insertCat("History") + if isinstance(new_paths, str): + HDB.insert("History", "Images", [new_paths]) + elif isinstance(new_paths, list): + HDB.insert("History", "Images", new_paths) + +# Update output image history + +def update_history_output_images(new_paths): + HDB = WASDatabase(WAS_HISTORY_DATABASE) + category = "Output_Images" + if HDB.catExists("History") and HDB.keyExists("History", category): + saved_paths = HDB.get("History", category) + for path_ in saved_paths: + if not os.path.exists(path_): + saved_paths.remove(path_) + if isinstance(new_paths, str): + if new_paths in saved_paths: + saved_paths.remove(new_paths) + saved_paths.append(new_paths) + elif isinstance(new_paths, list): + for path_ in new_paths: + if path_ in saved_paths: + saved_paths.remove(path_) + saved_paths.append(path_) + HDB.update("History", category, saved_paths) + else: + if not HDB.catExists("History"): + HDB.insertCat("History") + if isinstance(new_paths, str): + HDB.insert("History", category, [new_paths]) + elif isinstance(new_paths, list): + HDB.insert("History", category, new_paths) + +# Update text file history + +def update_history_text_files(new_paths): + HDB = WASDatabase(WAS_HISTORY_DATABASE) + if HDB.catExists("History") and HDB.keyExists("History", "TextFiles"): + saved_paths = HDB.get("History", "TextFiles") + for path_ in saved_paths: + if not os.path.exists(path_): + saved_paths.remove(path_) + if isinstance(new_paths, str): + if new_paths in saved_paths: + saved_paths.remove(new_paths) + saved_paths.append(new_paths) + elif isinstance(new_paths, list): + for path_ in new_paths: + if path_ in saved_paths: + saved_paths.remove(path_) + saved_paths.append(path_) + HDB.update("History", "TextFiles", saved_paths) + else: + if not HDB.catExists("History"): + HDB.insertCat("History") + if isinstance(new_paths, str): + HDB.insert("History", "TextFiles", [new_paths]) + elif isinstance(new_paths, list): + HDB.insert("History", "TextFiles", new_paths) +# WAS Filter Class + +class WAS_Tools_Class(): + """ + Contains various tools and filters for WAS Node Suite + """ + # TOOLS + + def fig2img(self, plot): + import io + buf = io.BytesIO() + plot.savefig(buf) + buf.seek(0) + img = Image.open(buf) + return img + + def stitch_image(self, image_a, image_b, mode='right', fuzzy_zone=50): + + def linear_gradient(start_color, end_color, size, start, end, mode='horizontal'): + width, height = size + gradient = Image.new('RGB', (width, height), end_color) + draw = ImageDraw.Draw(gradient) + + for i in range(0, start): + if mode == "horizontal": + draw.line((i, 0, i, height-1), start_color) + elif mode == "vertical": + draw.line((0, i, width-1, i), start_color) + + for i in range(start, end): + if mode == "horizontal": + curr_color = ( + int(start_color[0] + (float(i - start) / (end - start)) * (end_color[0] - start_color[0])), + int(start_color[1] + (float(i - start) / (end - start)) * (end_color[1] - start_color[1])), + int(start_color[2] + (float(i - start) / (end - start)) * (end_color[2] - start_color[2])) + ) + draw.line((i, 0, i, height-1), curr_color) + elif mode == "vertical": + curr_color = ( + int(start_color[0] + (float(i - start) / (end - start)) * (end_color[0] - start_color[0])), + int(start_color[1] + (float(i - start) / (end - start)) * (end_color[1] - start_color[1])), + int(start_color[2] + (float(i - start) / (end - start)) * (end_color[2] - start_color[2])) + ) + draw.line((0, i, width-1, i), curr_color) + + for i in range(end, width if mode == 'horizontal' else height): + if mode == "horizontal": + draw.line((i, 0, i, height-1), end_color) + elif mode == "vertical": + draw.line((0, i, width-1, i), end_color) + + return gradient + + image_a = image_a.convert('RGB') + image_b = image_b.convert('RGB') + + offset = int(fuzzy_zone / 2) + canvas_width = int(image_a.size[0] + image_b.size[0] - fuzzy_zone) if mode == 'right' or mode == 'left' else image_a.size[0] + canvas_height = int(image_a.size[1] + image_b.size[1] - fuzzy_zone) if mode == 'top' or mode == 'bottom' else image_a.size[1] + canvas = Image.new('RGB', (canvas_width, canvas_height), (0,0,0)) + + im_ax = 0 + im_ay = 0 + im_bx = 0 + im_by = 0 + + image_a_mask = None + image_b_mask = None + + if mode == 'top': + + image_a_mask = linear_gradient((0,0,0), (255,255,255), image_a.size, 0, fuzzy_zone, 'vertical') + image_b_mask = linear_gradient((255,255,255), (0,0,0), image_b.size, int(image_b.size[1] - fuzzy_zone), image_b.size[1], 'vertical') + im_ay = image_b.size[1] - fuzzy_zone + + elif mode == 'bottom': + + image_a_mask = linear_gradient((255,255,255), (0,0,0), image_a.size, int(image_a.size[1] - fuzzy_zone), image_a.size[1], 'vertical') + image_b_mask = linear_gradient((0,0,0), (255,255,255), image_b.size, 0, fuzzy_zone, 'vertical').convert('L') + im_by = image_a.size[1] - fuzzy_zone + + elif mode == 'left': + + image_a_mask = linear_gradient((0,0,0), (255,255,255), image_a.size, 0, fuzzy_zone, 'horizontal') + image_b_mask = linear_gradient((255,255,255), (0,0,0), image_b.size, int(image_b.size[0] - fuzzy_zone), image_b.size[0], 'horizontal') + im_ax = image_b.size[0] - fuzzy_zone + + elif mode == 'right': + + image_a_mask = linear_gradient((255,255,255), (0,0,0), image_a.size, int(image_a.size[0] - fuzzy_zone), image_a.size[0], 'horizontal') + image_b_mask = linear_gradient((0,0,0), (255,255,255), image_b.size, 0, fuzzy_zone, 'horizontal') + im_bx = image_a.size[0] - fuzzy_zone + + Image.Image.paste(canvas, image_a, (im_ax, im_ay), image_a_mask.convert('L')) + Image.Image.paste(canvas, image_b, (im_bx, im_by), image_b_mask.convert('L')) + + + return canvas + + + def morph_images(self, images, steps=10, max_size=512, loop=None, still_duration=30, duration=0.1, output_path='output', filename="morph", filetype="GIF"): + + import cv2 + import imageio + + output_file = os.path.abspath(os.path.join(os.path.join(*output_path.split('/')), filename)) + output_file += ( '.png' if filetype == 'APNG' else '.gif' ) + + max_width = max(im.size[0] for im in images) + max_height = max(im.size[1] for im in images) + max_aspect_ratio = max_width / max_height + + def padded_images(): + for im in images: + aspect_ratio = im.size[0] / im.size[1] + if aspect_ratio > max_aspect_ratio: + new_height = int(max_width / aspect_ratio) + padding = (max_height - new_height) // 2 + padded_im = Image.new('RGB', (max_width, max_height), color=(0, 0, 0)) + padded_im.paste(im.resize((max_width, new_height)), (0, padding)) + else: + new_width = int(max_height * aspect_ratio) + padding = (max_width - new_width) // 2 + padded_im = Image.new('RGB', (max_width, max_height), color=(0, 0, 0)) + padded_im.paste(im.resize((new_width, max_height)), (padding, 0)) + yield np.array(padded_im) + + padded_images = list(padded_images()) + padded_images.append(padded_images[0].copy()) + images = padded_images + frames = [] + durations = [] + + for i in range(len(images)-1): + frames.append(Image.fromarray(images[i]).convert('RGB')) + durations.append(still_duration) + + for j in range(steps): + alpha = j / float(steps) + morph = cv2.addWeighted(images[i], 1 - alpha, images[i+1], alpha, 0) + frames.append(Image.fromarray(morph).convert('RGB')) + durations.append(duration) + + frames.append(Image.fromarray(images[-1]).convert('RGB')) + durations.insert(0, still_duration) + + if loop is not None: + for i in range(loop): + durations.insert(0, still_duration) + durations.append(still_duration) + + try: + imageio.mimsave(output_file, frames, filetype, duration=durations, loop=loop) + except OSError as e: + cstr(f"Unable to save output to {output_file} due to the following error:").error.print() + print(e) + return + except Exception as e: + cstr(f"\033[34mWAS NS\033[0m Error: Unable to generate GIF due to the following error:").error.print() + print(e) + + cstr(f"Morphing completed. Output saved as {output_file}").msg.print() + + return output_file + + class GifMorphWriter: + def __init__(self, transition_frames=30, duration_ms=100, still_image_delay_ms=2500, loop=0): + self.transition_frames = transition_frames + self.duration_ms = duration_ms + self.still_image_delay_ms = still_image_delay_ms + self.loop = loop + + def write(self, image, gif_path): + + import cv2 + + if not os.path.isfile(gif_path): + with Image.new("RGBA", image.size) as new_gif: + new_gif.paste(image.convert("RGBA")) + new_gif.info["duration"] = self.still_image_delay_ms + new_gif.save(gif_path, format="GIF", save_all=True, append_images=[], duration=self.still_image_delay_ms, loop=0) + cstr(f"Created new GIF animation at: {gif_path}").msg.print() + else: + with Image.open(gif_path) as gif: + n_frames = gif.n_frames + if n_frames > 0: + gif.seek(n_frames - 1) + last_frame = gif.copy() + else: + last_frame = None + + end_image = image + steps = self.transition_frames - 1 if last_frame is not None else self.transition_frames + + if last_frame is not None: + image = self.pad_to_size(image, last_frame.size) + + frames = self.generate_transition_frames(last_frame, image, steps) + + still_frame = end_image.copy() + + gif_frames = [] + for i in range(n_frames): + gif.seek(i) + gif_frame = gif.copy() + gif_frames.append(gif_frame) + + for frame in frames: + frame.info["duration"] = self.duration_ms + gif_frames.append(frame) + + still_frame.info['duration'] = self.still_image_delay_ms + gif_frames.append(still_frame) + + gif_frames[0].save( + gif_path, + format="GIF", + save_all=True, + append_images=gif_frames[1:], + optimize=True, + loop=self.loop, + ) + + cstr(f"Edited existing GIF animation at: {gif_path}").msg.print() + + + def pad_to_size(self, image, size): + new_image = Image.new("RGBA", size, color=(0, 0, 0, 0)) + x_offset = (size[0] - image.width) // 2 + y_offset = (size[1] - image.height) // 2 + new_image.paste(image, (x_offset, y_offset)) + return new_image + + def generate_transition_frames(self, start_frame, end_image, num_frames): + + if start_frame is None: + return [] + + start_frame = start_frame.convert("RGBA") + end_image = end_image.convert("RGBA") + + frames = [] + for i in range(1, num_frames + 1): + weight = i / (num_frames + 1) + frame = Image.blend(start_frame, end_image, weight) + frames.append(frame) + return frames + + class VideoWriter: + def __init__(self, transition_frames=30, fps=25, still_image_delay_sec=2, + max_size=512, codec="mp4v"): + conf = getSuiteConfig() + self.transition_frames = transition_frames + self.fps = fps + self.still_image_delay_frames = round(still_image_delay_sec * fps) + self.max_size = int(max_size) + self.valid_codecs = ["ffv1","mp4v"] + self.extensions = {"ffv1":".mkv","mp4v":".mp4"} + if conf.__contains__('ffmpeg_extra_codecs'): + self.add_codecs(conf['ffmpeg_extra_codecs']) + self.codec = codec.lower() if codec.lower() in self.valid_codecs else "mp4v" + + def write(self, image, video_path): + video_path += self.extensions[self.codec] + end_image = self.rescale(self.pil2cv(image), self.max_size) + + if os.path.isfile(video_path): + cap = cv2.VideoCapture(video_path) + + width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = int(cap.get(cv2.CAP_PROP_FPS)) + total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) + + if width <= 0 or height <= 0: + raise ValueError("Invalid video dimensions") + + temp_file_path = video_path.replace(self.extensions[self.codec], '_temp' + self.extensions[self.codec]) + fourcc = cv2.VideoWriter_fourcc(*self.codec) + out = cv2.VideoWriter(temp_file_path, fourcc, fps, (width, height), isColor=True) + + for i in tqdm(range(total_frames), desc="Copying original frames"): + ret, frame = cap.read() + if not ret: + break + out.write(frame) + + if self.transition_frames > 0: + cap.set(cv2.CAP_PROP_POS_FRAMES, total_frames - 1) + ret, last_frame = cap.read() + if ret: + transition_frames = self.generate_transition_frames(last_frame, end_image, self.transition_frames) + for i, transition_frame in tqdm(enumerate(transition_frames), desc="Generating transition frames", total=self.transition_frames): + try: + transition_frame_resized = cv2.resize(transition_frame, (width, height)) + out.write(transition_frame_resized) + except cv2.error as e: + print(f"Error resizing frame {i}: {e}") + continue + + for i in tqdm(range(self.still_image_delay_frames), desc="Adding new frames"): + out.write(end_image) + + cap.release() + out.release() + + os.remove(video_path) + os.rename(temp_file_path, video_path) + + cstr(f"Edited video at: {video_path}").msg.print() + + return video_path + + else: + fourcc = cv2.VideoWriter_fourcc(*self.codec) + height, width, _ = end_image.shape + if width <= 0 or height <= 0: + raise ValueError("Invalid image dimensions") + + out = cv2.VideoWriter(video_path, fourcc, self.fps, (width, height), isColor=True) + + for i in tqdm(range(self.still_image_delay_frames), desc="Adding new frames"): + out.write(end_image) + + out.release() + + cstr(f"Created new video at: {video_path}").msg.print() + + return video_path + + return "" + + def create_video(self, image_folder, video_path): + import cv2 + from tqdm import tqdm + + image_paths = sorted([os.path.join(image_folder, f) for f in os.listdir(image_folder) + if os.path.isfile(os.path.join(image_folder, f)) + and os.path.join(image_folder, f).lower().endswith(ALLOWED_EXT)]) + + if len(image_paths) == 0: + cstr(f"No valid image files found in `{image_folder}` directory.").error.print() + cstr(f"The valid formats are: {', '.join(sorted(ALLOWED_EXT))}").error.print() + return + + output_file = video_path + self.extensions[self.codec] + image = self.rescale(cv2.imread(image_paths[0]), self.max_size) + height, width = image.shape[:2] + fourcc = cv2.VideoWriter_fourcc(*self.codec) + out = cv2.VideoWriter(output_file, fourcc, self.fps, (width, height), isColor=True) + out.write(image) + for _ in range(self.still_image_delay_frames - 1): + out.write(image) + + for i in tqdm(range(len(image_paths)), desc="Writing video frames"): + start_frame = cv2.imread(image_paths[i]) + end_frame = None + if i+1 <= len(image_paths)-1: + end_frame = self.rescale(cv2.imread(image_paths[i+1]), self.max_size) + + if isinstance(end_frame, np.ndarray): + transition_frames = self.generate_transition_frames(start_frame, end_frame, self.transition_frames) + transition_frames = [cv2.resize(frame, (width, height)) for frame in transition_frames] + for _, frame in enumerate(transition_frames): + out.write(frame) + + for _ in range(self.still_image_delay_frames - self.transition_frames): + out.write(end_frame) + + else: + out.write(start_frame) + for _ in range(self.still_image_delay_frames - 1): + out.write(start_frame) + + out.release() + + if os.path.exists(output_file): + cstr(f"Created video at: {output_file}").msg.print() + return output_file + else: + cstr(f"Unable to create video at: {output_file}").error.print() + return "" + + def extract(self, video_file, output_folder, prefix='frame_', extension="png", zero_padding_digits=-1): + os.makedirs(output_folder, exist_ok=True) + + video = cv2.VideoCapture(video_file) + + fps = video.get(cv2.CAP_PROP_FPS) + frame_number = 0 + + while True: + success, frame = video.read() + + if success: + if zero_padding_digits > 0: + frame_path = os.path.join(output_folder, f"{prefix}{frame_number:0{zero_padding_digits}}.{extension}") + else: + frame_path = os.path.join(output_folder, f"{prefix}{frame_number}.{extension}") + + cv2.imwrite(frame_path, frame) + print(f"Saved frame {frame_number} to {frame_path}") + frame_number += 1 + else: + break + + video.release() + + def rescale(self, image, max_size): + f1 = max_size / image.shape[1] + f2 = max_size / image.shape[0] + f = min(f1, f2) + dim = (int(image.shape[1] * f), int(image.shape[0] * f)) + resized = cv2.resize(image, dim) + return resized + + def generate_transition_frames(self, img1, img2, num_frames): + import cv2 + if img1 is None and img2 is None: + return [] + + if img1 is not None and img2 is not None: + if img1.shape != img2.shape: + img2 = cv2.resize(img2, img1.shape[:2][::-1]) + elif img1 is not None: + img2 = np.zeros_like(img1) + else: + img1 = np.zeros_like(img2) + + height, width, _ = img2.shape + + frame_sequence = [] + for i in range(num_frames): + alpha = i / float(num_frames) + blended = cv2.addWeighted(img1, 1 - alpha, img2, alpha, + gamma=0.0, dtype=cv2.CV_8U) + frame_sequence.append(blended) + + return frame_sequence + + def pil2cv(self, img): + import cv2 + img = np.array(img) + img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + return img + + def add_codecs(self, codecs): + if isinstance(codecs, dict): + codec_forcc_codes = codecs.keys() + self.valid_codecs.extend(codec_forcc_codes) + self.extensions.update(codecs) + + def get_codecs(self): + return self.valid_codecs + + + # FILTERS + + class Masking: + + @staticmethod + def crop_dominant_region(image, padding=0): + from scipy.ndimage import label + grayscale_image = image.convert("L") + binary_image = grayscale_image.point(lambda x: 255 if x > 128 else 0, mode="1") + labeled_image, num_labels = label(np.array(binary_image)) + largest_label = max(range(1, num_labels + 1), key=lambda i: np.sum(labeled_image == i)) + largest_region_mask = (labeled_image == largest_label).astype(np.uint8) * 255 + bbox = Image.fromarray(largest_region_mask, mode="L").getbbox() + cropped_image = image.crop(bbox) + size = max(cropped_image.size) + padded_size = size + 2 * padding + centered_crop = Image.new("L", (padded_size, padded_size), color="black") + left = (padded_size - cropped_image.width) // 2 + top = (padded_size - cropped_image.height) // 2 + centered_crop.paste(cropped_image, (left, top), mask=cropped_image) + + return ImageOps.invert(centered_crop) + + @staticmethod + def crop_minority_region(image, padding=0): + from scipy.ndimage import label + grayscale_image = image.convert("L") + binary_image = grayscale_image.point(lambda x: 255 if x > 128 else 0, mode="1") + labeled_image, num_labels = label(np.array(binary_image)) + smallest_label = min(range(1, num_labels + 1), key=lambda i: np.sum(labeled_image == i)) + smallest_region_mask = (labeled_image == smallest_label).astype(np.uint8) * 255 + bbox = Image.fromarray(smallest_region_mask, mode="L").getbbox() + cropped_image = image.crop(bbox) + size = max(cropped_image.size) + padded_size = size + 2 * padding + centered_crop = Image.new("L", (padded_size, padded_size), color="black") + left = (padded_size - cropped_image.width) // 2 + top = (padded_size - cropped_image.height) // 2 + centered_crop.paste(cropped_image, (left, top), mask=cropped_image) + + return ImageOps.invert(centered_crop) + + @staticmethod + def crop_region(mask, region_type, padding=0): + from scipy.ndimage import label, find_objects + binary_mask = np.array(mask.convert("L")) > 0 + bbox = mask.getbbox() + if bbox is None: + return mask, (mask.size, (0, 0, 0, 0)) + + bbox_width = bbox[2] - bbox[0] + bbox_height = bbox[3] - bbox[1] + + side_length = max(bbox_width, bbox_height) + 2 * padding + + center_x = (bbox[2] + bbox[0]) // 2 + center_y = (bbox[3] + bbox[1]) // 2 + + crop_x = center_x - side_length // 2 + crop_y = center_y - side_length // 2 + + crop_x = max(crop_x, 0) + crop_y = max(crop_y, 0) + crop_x2 = min(crop_x + side_length, mask.width) + crop_y2 = min(crop_y + side_length, mask.height) + + cropped_mask = mask.crop((crop_x, crop_y, crop_x2, crop_y2)) + crop_data = (cropped_mask.size, (crop_x, crop_y, crop_x2, crop_y2)) + + return cropped_mask, crop_data + + @staticmethod + def dominant_region(image, threshold=128): + from scipy.ndimage import label + image = ImageOps.invert(image.convert("L")) + binary_image = image.point(lambda x: 255 if x > threshold else 0, mode="1") + l, n = label(np.array(binary_image)) + sizes = np.bincount(l.flatten()) + dominant = 0 + try: + dominant = np.argmax(sizes[1:]) + 1 + except ValueError: + pass + dominant_region_mask = (l == dominant).astype(np.uint8) * 255 + result = Image.fromarray(dominant_region_mask, mode="L") + return result.convert("RGB") + + @staticmethod + def minority_region(image, threshold=128): + from scipy.ndimage import label + image = image.convert("L") + binary_image = image.point(lambda x: 255 if x > threshold else 0, mode="1") + labeled_array, num_features = label(np.array(binary_image)) + sizes = np.bincount(labeled_array.flatten()) + smallest_region = 0 + try: + smallest_region = np.argmin(sizes[1:]) + 1 + except ValueError: + pass + smallest_region_mask = (labeled_array == smallest_region).astype(np.uint8) * 255 + inverted_mask = Image.fromarray(smallest_region_mask, mode="L") + rgb_image = Image.merge("RGB", [inverted_mask, inverted_mask, inverted_mask]) + + return rgb_image + + @staticmethod + def arbitrary_region(image, size, threshold=128): + from skimage.measure import label, regionprops + image = image.convert("L") + binary_image = image.point(lambda x: 255 if x > threshold else 0, mode="1") + labeled_image = label(np.array(binary_image)) + regions = regionprops(labeled_image) + + image_area = binary_image.size[0] * binary_image.size[1] + scaled_size = size * image_area / 10000 + + filtered_regions = [region for region in regions if region.area >= scaled_size] + if len(filtered_regions) > 0: + filtered_regions.sort(key=lambda region: region.area) + smallest_region = filtered_regions[0] + region_mask = (labeled_image == smallest_region.label).astype(np.uint8) * 255 + result = Image.fromarray(region_mask, mode="L") + return result + + return image + + @staticmethod + def smooth_region(image, tolerance): + from scipy.ndimage import gaussian_filter + image = image.convert("L") + mask_array = np.array(image) + smoothed_array = gaussian_filter(mask_array, sigma=tolerance) + threshold = np.max(smoothed_array) / 2 + smoothed_mask = np.where(smoothed_array >= threshold, 255, 0).astype(np.uint8) + smoothed_image = Image.fromarray(smoothed_mask, mode="L") + return ImageOps.invert(smoothed_image.convert("RGB")) + + @staticmethod + def erode_region(image, iterations=1): + from scipy.ndimage import binary_erosion + image = image.convert("L") + binary_mask = np.array(image) > 0 + eroded_mask = binary_erosion(binary_mask, iterations=iterations) + eroded_image = Image.fromarray(eroded_mask.astype(np.uint8) * 255, mode="L") + return ImageOps.invert(eroded_image.convert("RGB")) + + @staticmethod + def dilate_region(image, iterations=1): + from scipy.ndimage import binary_dilation + image = image.convert("L") + binary_mask = np.array(image) > 0 + dilated_mask = binary_dilation(binary_mask, iterations=iterations) + dilated_image = Image.fromarray(dilated_mask.astype(np.uint8) * 255, mode="L") + return ImageOps.invert(dilated_image.convert("RGB")) + + @staticmethod + def fill_region(image): + from scipy.ndimage import binary_fill_holes + image = image.convert("L") + binary_mask = np.array(image) > 0 + filled_mask = binary_fill_holes(binary_mask) + filled_image = Image.fromarray(filled_mask.astype(np.uint8) * 255, mode="L") + return ImageOps.invert(filled_image.convert("RGB")) + + @staticmethod + def combine_masks(*masks): + if len(masks) < 1: + raise ValueError("\033[34mWAS NS\033[0m Error: At least one mask must be provided.") + dimensions = masks[0].size + for mask in masks: + if mask.size != dimensions: + raise ValueError("\033[34mWAS NS\033[0m Error: All masks must have the same dimensions.") + + inverted_masks = [mask.convert("L") for mask in masks] + combined_mask = Image.new("L", dimensions, 255) + for mask in inverted_masks: + combined_mask = Image.fromarray(np.minimum(np.array(combined_mask), np.array(mask)), mode="L") + + return combined_mask + + @staticmethod + def threshold_region(image, black_threshold=0, white_threshold=255): + gray_image = image.convert("L") + mask_array = np.array(gray_image) + mask_array[mask_array < black_threshold] = 0 + mask_array[mask_array > white_threshold] = 255 + thresholded_image = Image.fromarray(mask_array, mode="L") + return ImageOps.invert(thresholded_image) + + @staticmethod + def floor_region(image): + gray_image = image.convert("L") + mask_array = np.array(gray_image) + non_black_pixels = mask_array[mask_array > 0] + + if non_black_pixels.size > 0: + threshold_value = non_black_pixels.min() + mask_array[mask_array > threshold_value] = 255 # Set whites to 255 + mask_array[mask_array <= threshold_value] = 0 # Set blacks to 0 + + thresholded_image = Image.fromarray(mask_array, mode="L") + return ImageOps.invert(thresholded_image) + + @staticmethod + def ceiling_region(image, offset=30): + if offset < 0: + offset = 0 + elif offset > 255: + offset = 255 + grayscale_image = image.convert("L") + mask_array = np.array(grayscale_image) + mask_array[mask_array < 255 - offset] = 0 + mask_array[mask_array >= 250] = 255 + filtered_image = Image.fromarray(mask_array, mode="L") + return ImageOps.invert(filtered_image) + + @staticmethod + def gaussian_region(image, radius=5.0): + image = ImageOps.invert(image.convert("L")) + image = image.filter(ImageFilter.GaussianBlur(radius=int(radius))) + return image.convert("RGB") + + # SHADOWS AND HIGHLIGHTS ADJUSTMENTS + + def shadows_and_highlights(self, image, shadow_thresh=30, highlight_thresh=220, shadow_factor=0.5, highlight_factor=1.5, shadow_smooth=None, highlight_smooth=None, simplify_masks=None): + + if 'pilgram' not in packages(): + install_package('pilgram') + + import pilgram + + alpha = None + if image.mode.endswith('A'): + alpha = image.getchannel('A') + image = image.convert('RGB') + + grays = image.convert('L') + + if shadow_smooth is not None or highlight_smooth is not None and simplify_masks is not None: + simplify = float(simplify_masks) + grays = grays.filter(ImageFilter.GaussianBlur(radius=simplify)) + + shadow_mask = Image.eval(grays, lambda x: 255 if x < shadow_thresh else 0) + highlight_mask = Image.eval(grays, lambda x: 255 if x > highlight_thresh else 0) + + image_shadow = image.copy() + image_highlight = image.copy() + + if shadow_smooth is not None: + shadow_mask = shadow_mask.filter(ImageFilter.GaussianBlur(radius=shadow_smooth)) + if highlight_smooth is not None: + highlight_mask = highlight_mask.filter(ImageFilter.GaussianBlur(radius=highlight_smooth)) + + image_shadow = Image.eval(image_shadow, lambda x: x * shadow_factor) + image_highlight = Image.eval(image_highlight, lambda x: x * highlight_factor) + + if shadow_smooth is not None: + shadow_mask = shadow_mask.filter(ImageFilter.GaussianBlur(radius=shadow_smooth)) + if highlight_smooth is not None: + highlight_mask = highlight_mask.filter(ImageFilter.GaussianBlur(radius=highlight_smooth)) + + result = image.copy() + result.paste(image_shadow, shadow_mask) + result.paste(image_highlight, highlight_mask) + result = pilgram.css.blending.color(result, image) + + if alpha: + result.putalpha(alpha) + + return (result, shadow_mask, highlight_mask) + + # DRAGAN PHOTOGRAPHY FILTER + + + def dragan_filter(self, image, saturation=1, contrast=1, sharpness=1, brightness=1, highpass_radius=3, highpass_samples=1, highpass_strength=1, colorize=True): + + if 'pilgram' not in packages(): + install_package('pilgram') + + import pilgram + + alpha = None + if image.mode == 'RGBA': + alpha = image.getchannel('A') + + grayscale_image = image if image.mode == 'L' else image.convert('L') + + contrast_enhancer = ImageEnhance.Contrast(grayscale_image) + contrast_image = contrast_enhancer.enhance(contrast) + + saturation_enhancer = ImageEnhance.Color(contrast_image) if image.mode != 'L' else None + saturation_image = contrast_image if saturation_enhancer is None else saturation_enhancer.enhance(saturation) + + sharpness_enhancer = ImageEnhance.Sharpness(saturation_image) + sharpness_image = sharpness_enhancer.enhance(sharpness) + + brightness_enhancer = ImageEnhance.Brightness(sharpness_image) + brightness_image = brightness_enhancer.enhance(brightness) + + blurred_image = brightness_image.filter(ImageFilter.GaussianBlur(radius=-highpass_radius)) + highpass_filter = ImageChops.subtract(image, blurred_image.convert('RGB')) + blank_image = Image.new('RGB', image.size, (127, 127, 127)) + highpass_image = ImageChops.screen(blank_image, highpass_filter.resize(image.size)) + if not colorize: + highpass_image = highpass_image.convert('L').convert('RGB') + highpassed_image = pilgram.css.blending.overlay(brightness_image.convert('RGB'), highpass_image) + for _ in range((highpass_samples if highpass_samples > 0 else 1)): + highpassed_image = pilgram.css.blending.overlay(highpassed_image, highpass_image) + + final_image = ImageChops.blend(brightness_image.convert('RGB'), highpassed_image, highpass_strength) + + if colorize: + final_image = pilgram.css.blending.color(final_image, image) + + if alpha: + final_image.putalpha(alpha) + + return final_image + + def sparkle(self, image): + + if 'pilgram' not in packages(): + install_package('pilgram') + + import pilgram + + image = image.convert('RGBA') + contrast_enhancer = ImageEnhance.Contrast(image) + image = contrast_enhancer.enhance(1.25) + saturation_enhancer = ImageEnhance.Color(image) + image = saturation_enhancer.enhance(1.5) + + bloom = image.filter(ImageFilter.GaussianBlur(radius=20)) + bloom = ImageEnhance.Brightness(bloom).enhance(1.2) + bloom.putalpha(128) + bloom = bloom.convert(image.mode) + image = Image.alpha_composite(image, bloom) + + width, height = image.size + + particles = Image.new('RGBA', (width, height), (0, 0, 0, 0)) + draw = ImageDraw.Draw(particles) + for i in range(5000): + x = random.randint(0, width) + y = random.randint(0, height) + r = random.randint(0, 255) + g = random.randint(0, 255) + b = random.randint(0, 255) + draw.point((x, y), fill=(r, g, b, 255)) + particles = particles.filter(ImageFilter.GaussianBlur(radius=1)) + particles.putalpha(128) + + particles2 = Image.new('RGBA', (width, height), (0, 0, 0, 0)) + draw = ImageDraw.Draw(particles2) + for i in range(5000): + x = random.randint(0, width) + y = random.randint(0, height) + r = random.randint(0, 255) + g = random.randint(0, 255) + b = random.randint(0, 255) + draw.point((x, y), fill=(r, g, b, 255)) + particles2 = particles2.filter(ImageFilter.GaussianBlur(radius=1)) + particles2.putalpha(128) + + image = pilgram.css.blending.color_dodge(image, particles) + image = pilgram.css.blending.lighten(image, particles2) + + return image + + def digital_distortion(self, image, amplitude=5, line_width=2): + + im = np.array(image) + + x, y, z = im.shape + sine_wave = amplitude * np.sin(np.linspace(-np.pi, np.pi, y)) + sine_wave = sine_wave.astype(int) + + left_distortion = np.zeros((x, y, z), dtype=np.uint8) + right_distortion = np.zeros((x, y, z), dtype=np.uint8) + for i in range(y): + left_distortion[:, i, :] = np.roll(im[:, i, :], -sine_wave[i], axis=0) + right_distortion[:, i, :] = np.roll(im[:, i, :], sine_wave[i], axis=0) + + distorted_image = np.maximum(left_distortion, right_distortion) + scan_lines = np.zeros((x, y), dtype=np.float32) + scan_lines[::line_width, :] = 1 + scan_lines = np.minimum(scan_lines * amplitude*50.0, 1) # Scale scan line values + scan_lines = np.tile(scan_lines[:, :, np.newaxis], (1, 1, z)) # Add channel dimension + distorted_image = np.where(scan_lines > 0, np.random.permutation(im), distorted_image) + distorted_image = np.roll(distorted_image, np.random.randint(0, y), axis=1) + + distorted_image = Image.fromarray(distorted_image) + + return distorted_image + + def signal_distortion(self, image, amplitude): + + img_array = np.array(image) + row_shifts = np.random.randint(-amplitude, amplitude + 1, size=img_array.shape[0]) + distorted_array = np.zeros_like(img_array) + + for y in range(img_array.shape[0]): + x_shift = row_shifts[y] + x_shift = x_shift + y % (amplitude * 2) - amplitude + distorted_array[y,:] = np.roll(img_array[y,:], x_shift, axis=0) + + distorted_image = Image.fromarray(distorted_array) + + return distorted_image + + def tv_vhs_distortion(self, image, amplitude=10): + np_image = np.array(image) + offset_variance = int(image.height / amplitude) + row_shifts = np.random.randint(-offset_variance, offset_variance + 1, size=image.height) + distorted_array = np.zeros_like(np_image) + + for y in range(np_image.shape[0]): + x_shift = row_shifts[y] + x_shift = x_shift + y % (offset_variance * 2) - offset_variance + distorted_array[y,:] = np.roll(np_image[y,:], x_shift, axis=0) + + h, w, c = distorted_array.shape + x_scale = np.linspace(0, 1, w) + y_scale = np.linspace(0, 1, h) + x_idx = np.broadcast_to(x_scale, (h, w)) + y_idx = np.broadcast_to(y_scale.reshape(h, 1), (h, w)) + noise = np.random.rand(h, w, c) * 0.1 + distortion = np.sin(x_idx * 50) * 0.5 + np.sin(y_idx * 50) * 0.5 + distorted_array = distorted_array + distortion[:, :, np.newaxis] + noise + + distorted_image = Image.fromarray(np.uint8(distorted_array)) + distorted_image = distorted_image.resize((image.width, image.height)) + + image_enhance = ImageEnhance.Color(image) + image = image_enhance.enhance(0.5) + + effect_image = ImageChops.overlay(image, distorted_image) + result_image = ImageChops.overlay(image, effect_image) + result_image = ImageChops.blend(image, result_image, 0.25) + + return result_image + + def gradient(self, size, mode='horizontal', colors=None, tolerance=0): + + if isinstance(colors, str): + colors = json.loads(colors) + + if colors is None: + colors = {0: [255, 0, 0], 50: [0, 255, 0], 100: [0, 0, 255]} + + colors = {int(k): [int(c) for c in v] for k, v in colors.items()} + + colors[0] = colors[min(colors.keys())] + colors[255] = colors[max(colors.keys())] + + img = Image.new('RGB', size, color=(0, 0, 0)) + + color_stop_positions = sorted(colors.keys()) + color_stop_count = len(color_stop_positions) + spectrum = [] + for i in range(256): + start_pos = max(p for p in color_stop_positions if p <= i) + end_pos = min(p for p in color_stop_positions if p >= i) + start = colors[start_pos] + end = colors[end_pos] + + if start_pos == end_pos: + factor = 0 + else: + factor = (i - start_pos) / (end_pos - start_pos) + + r = round(start[0] + (end[0] - start[0]) * factor) + g = round(start[1] + (end[1] - start[1]) * factor) + b = round(start[2] + (end[2] - start[2]) * factor) + spectrum.append((r, g, b)) + + draw = ImageDraw.Draw(img) + if mode == 'horizontal': + for x in range(size[0]): + pos = int(x * 100 / (size[0] - 1)) + color = spectrum[pos] + if tolerance > 0: + color = tuple([round(c / tolerance) * tolerance for c in color]) + draw.line((x, 0, x, size[1]), fill=color) + elif mode == 'vertical': + for y in range(size[1]): + pos = int(y * 100 / (size[1] - 1)) + color = spectrum[pos] + if tolerance > 0: + color = tuple([round(c / tolerance) * tolerance for c in color]) + draw.line((0, y, size[0], y), fill=color) + + blur = 1.5 + if size[0] > 512 or size[1] > 512: + multiplier = max(size[0], size[1]) / 512 + if multiplier < 1.5: + multiplier = 1.5 + blur = blur * multiplier + + img = img.filter(ImageFilter.GaussianBlur(radius=blur)) + + return img + + # Version 2 optimized based on Mark Setchell's ideas + def gradient_map(self, image, gradient_map_input, reverse=False): + + # Reverse the image + if reverse: + gradient_map_input = gradient_map_input.transpose(Image.FLIP_LEFT_RIGHT) + + # Convert image to Numpy array and average RGB channels + # grey = self.greyscale(np.array(image)) + grey = np.array(image.convert('L')) + + # Convert gradient map to Numpy array + cmap = np.array(gradient_map_input.convert('RGB')) + + # smush the map into the proper size -- 256 gradient colors + cmap = cv2.resize(cmap, (256, 256)) + + # lop off a single row for the LUT mapper + cmap = cmap[0,:,:].reshape((256, 1, 3)).astype(np.uint8) + + # map with our "custom" LUT + result = cv2.applyColorMap(grey, cmap) + + # Convert result to PIL image + return Image.fromarray(result) + + def greyscale(self, image): + if image.dtype in [np.float16, np.float32, np.float64]: + image = np.clip(image * 255, 0, 255).astype(np.uint8) + cc = image.shape[2] if image.ndim == 3 else 1 + if cc == 1: + return image + typ = cv2.COLOR_BGR2HSV + if cc == 4: + typ = cv2.COLOR_BGRA2GRAY + image = cv2.cvtColor(image, typ)[:,:,2] + return np.expand_dims(image, -1) + + # Generate Perlin Noise (Finally in house version) + + def perlin_noise(self, width, height, octaves, persistence, scale, seed=None): + + @jit(nopython=True) + def fade(t): + return 6 * t**5 - 15 * t**4 + 10 * t**3 + + + @jit(nopython=True) + def lerp(t, a, b): + return a + t * (b - a) + + + @jit(nopython=True) + def grad(hash, x, y, z): + h = hash & 15 + u = x if h < 8 else y + v = y if h < 4 else (x if h == 12 or h == 14 else z) + return (u if (h & 1) == 0 else -u) + (v if (h & 2) == 0 else -v) + + + @jit(nopython=True) + def noise(x, y, z, p): + X = np.int32(np.floor(x)) & 255 + Y = np.int32(np.floor(y)) & 255 + Z = np.int32(np.floor(z)) & 255 + + x -= np.floor(x) + y -= np.floor(y) + z -= np.floor(z) + + u = fade(x) + v = fade(y) + w = fade(z) + + A = p[X] + Y + AA = p[A] + Z + AB = p[A + 1] + Z + B = p[X + 1] + Y + BA = p[B] + Z + BB = p[B + 1] + Z + + return lerp(w, lerp(v, lerp(u, grad(p[AA], x, y, z), grad(p[BA], x - 1, y, z)), + lerp(u, grad(p[AB], x, y - 1, z), grad(p[BB], x - 1, y - 1, z))), + lerp(v, lerp(u, grad(p[AA + 1], x, y, z - 1), grad(p[BA + 1], x - 1, y, z - 1)), + lerp(u, grad(p[AB + 1], x, y - 1, z - 1), grad(p[BB + 1], x - 1, y - 1, z - 1)))) + + if seed: + random.seed(seed) + + p = np.arange(256, dtype=np.int32) + random.shuffle(p) + p = np.concatenate((p, p)) + + noise_map = np.zeros((height, width)) + amplitude = 1.0 + total_amplitude = 0.0 + + for octave in range(octaves): + frequency = 2 ** octave + total_amplitude += amplitude + + for y in range(height): + for x in range(width): + nx = x / scale * frequency + ny = y / scale * frequency + noise_value = noise(nx, ny, 0, p) * amplitude + current_value = noise_map[y, x] + noise_map[y, x] = current_value + noise_value + + amplitude *= persistence + + min_value = np.min(noise_map) + max_value = np.max(noise_map) + noise_map = np.interp(noise_map, (min_value, max_value), (0, 255)).astype(np.uint8) + image = Image.fromarray(noise_map, mode='L').convert("RGB") + + return image + + + # Generate Perlin Power Fractal (Based on in-house perlin noise) + + def perlin_power_fractal(self, width, height, octaves, persistence, lacunarity, exponent, scale, seed=None): + + @jit(nopython=True) + def fade(t): + return 6 * t**5 - 15 * t**4 + 10 * t**3 + + @jit(nopython=True) + def lerp(t, a, b): + return a + t * (b - a) + + @jit(nopython=True) + def grad(hash, x, y, z): + h = hash & 15 + u = x if h < 8 else y + v = y if h < 4 else (x if h == 12 or h == 14 else z) + return (u if (h & 1) == 0 else -u) + (v if (h & 2) == 0 else -v) + + @jit(nopython=True) + def noise(x, y, z, p): + X = np.int32(np.floor(x)) & 255 + Y = np.int32(np.floor(y)) & 255 + Z = np.int32(np.floor(z)) & 255 + + x -= np.floor(x) + y -= np.floor(y) + z -= np.floor(z) + + u = fade(x) + v = fade(y) + w = fade(z) + + A = p[X] + Y + AA = p[A] + Z + AB = p[A + 1] + Z + B = p[X + 1] + Y + BA = p[B] + Z + BB = p[B + 1] + Z + + return lerp(w, lerp(v, lerp(u, grad(p[AA], x, y, z), grad(p[BA], x - 1, y, z)), + lerp(u, grad(p[AB], x, y - 1, z), grad(p[BB], x - 1, y - 1, z))), + lerp(v, lerp(u, grad(p[AA + 1], x, y, z - 1), grad(p[BA + 1], x - 1, y, z - 1)), + lerp(u, grad(p[AB + 1], x, y - 1, z - 1), grad(p[BB + 1], x - 1, y - 1, z - 1)))) + + if seed: + random.seed(seed) + + p = np.arange(256, dtype=np.int32) + random.shuffle(p) + p = np.concatenate((p, p)) + + noise_map = np.zeros((height, width)) + amplitude = 1.0 + total_amplitude = 0.0 + + for octave in range(octaves): + frequency = lacunarity ** octave + amplitude *= persistence + total_amplitude += amplitude + + for y in range(height): + for x in range(width): + nx = x / scale * frequency + ny = y / scale * frequency + noise_value = noise(nx, ny, 0, p) * amplitude ** exponent + current_value = noise_map[y, x] + noise_map[y, x] = current_value + noise_value + + min_value = np.min(noise_map) + max_value = np.max(noise_map) + noise_map = np.interp(noise_map, (min_value, max_value), (0, 255)).astype(np.uint8) + image = Image.fromarray(noise_map, mode='L').convert("RGB") + + return image + + # Worley Noise Generator + class worley_noise: + + def __init__(self, height=512, width=512, density=50, option=0, use_broadcast_ops=True, flat=False, seed=None): + + self.height = height + self.width = width + self.density = density + self.use_broadcast_ops = use_broadcast_ops + self.seed = seed + self.generate_points_and_colors() + self.calculate_noise(option) + self.image = self.generateImage(option, flat_mode=flat) + + def generate_points_and_colors(self): + rng = np.random.default_rng(self.seed) + self.points = rng.integers(0, self.width, (self.density, 2)) + self.colors = rng.integers(0, 256, (self.density, 3)) + + def calculate_noise(self, option): + self.data = np.zeros((self.height, self.width)) + for h in range(self.height): + for w in range(self.width): + distances = np.sqrt(np.sum((self.points - np.array([w, h])) ** 2, axis=1)) + self.data[h, w] = np.sort(distances)[option] + + def broadcast_calculate_noise(self, option): + xs = np.arange(self.width) + ys = np.arange(self.height) + x_dist = np.power(self.points[:, 0, np.newaxis] - xs, 2) + y_dist = np.power(self.points[:, 1, np.newaxis] - ys, 2) + d = np.sqrt(x_dist[:, :, np.newaxis] + y_dist[:, np.newaxis, :]) + distances = np.sort(d, axis=0) + self.data = distances[option] + + def generateImage(self, option, flat_mode=False): + if flat_mode: + flat_color_data = np.zeros((self.height, self.width, 3), dtype=np.uint8) + for h in range(self.height): + for w in range(self.width): + closest_point_idx = np.argmin(np.sum((self.points - np.array([w, h])) ** 2, axis=1)) + flat_color_data[h, w, :] = self.colors[closest_point_idx] + return Image.fromarray(flat_color_data, 'RGB') + else: + min_val, max_val = np.min(self.data), np.max(self.data) + data_scaled = (self.data - min_val) / (max_val - min_val) * 255 + data_scaled = data_scaled.astype(np.uint8) + return Image.fromarray(data_scaled, 'L') + + # Make Image Seamless + + def make_seamless(self, image, blending=0.5, tiled=False, tiles=2): + + if 'img2texture' not in packages(): + install_package('git+https://github.com/WASasquatch/img2texture.git') + + from img2texture import img2tex + from img2texture._tiling import tile + + texture = img2tex(src=image, dst=None, pct=blending, return_result=True) + if tiled: + texture = tile(source=texture, target=None, horizontal=tiles, vertical=tiles, return_result=True) + + return texture + + # Image Displacement Warp + + def displace_image(self, image, displacement_map, amplitude): + + image = image.convert('RGB') + displacement_map = displacement_map.convert('L') + width, height = image.size + result = Image.new('RGB', (width, height)) + + for y in range(height): + for x in range(width): + + # Calculate the displacements n' stuff + displacement = displacement_map.getpixel((x, y)) + displacement_amount = amplitude * (displacement / 255) + new_x = x + int(displacement_amount) + new_y = y + int(displacement_amount) + + # Apply mirror reflection at edges and corners + if new_x < 0: + new_x = abs(new_x) + elif new_x >= width: + new_x = 2 * width - new_x - 1 + + if new_y < 0: + new_y = abs(new_y) + elif new_y >= height: + new_y = 2 * height - new_y - 1 + + if new_x < 0: + new_x = abs(new_x) + if new_y < 0: + new_y = abs(new_y) + + if new_x >= width: + new_x = 2 * width - new_x - 1 + if new_y >= height: + new_y = 2 * height - new_y - 1 + + # Consider original image color at new location for RGB results, oops + pixel = image.getpixel((new_x, new_y)) + result.putpixel((x, y), pixel) + + return result + + # Analyze Filters + + def black_white_levels(self, image): + + if 'matplotlib' not in packages(): + install_package('matplotlib') + + import matplotlib.pyplot as plt + + # convert to grayscale + image = image.convert('L') + + # Calculate the histogram of grayscale intensities + hist = image.histogram() + + # Find the minimum and maximum grayscale intensity values + min_val = 0 + max_val = 255 + for i in range(256): + if hist[i] > 0: + min_val = i + break + for i in range(255, -1, -1): + if hist[i] > 0: + max_val = i + break + + # Create a graph of the grayscale histogram + plt.figure(figsize=(16, 8)) + plt.hist(image.getdata(), bins=256, range=(0, 256), color='black', alpha=0.7) + plt.xlim([0, 256]) + plt.ylim([0, max(hist)]) + plt.axvline(min_val, color='red', linestyle='dashed') + plt.axvline(max_val, color='red', linestyle='dashed') + plt.title('Black and White Levels') + plt.xlabel('Intensity') + plt.ylabel('Frequency') + + return self.fig2img(plt) + + def channel_frequency(self, image): + + if 'matplotlib' not in packages(): + install_package('matplotlib') + + import matplotlib.pyplot as plt + + # Split the image into its RGB channels + r, g, b = image.split() + + # Calculate the frequency of each color in each channel + r_freq = r.histogram() + g_freq = g.histogram() + b_freq = b.histogram() + + # Create a graph to hold the frequency maps + fig, axs = plt.subplots(1, 3, figsize=(16, 4)) + axs[0].set_title('Red Channel') + axs[1].set_title('Green Channel') + axs[2].set_title('Blue Channel') + + # Plot the frequency of each color in each channel + axs[0].plot(range(256), r_freq, color='red') + axs[1].plot(range(256), g_freq, color='green') + axs[2].plot(range(256), b_freq, color='blue') + + # Set the axis limits and labels + for ax in axs: + ax.set_xlim([0, 255]) + ax.set_xlabel('Color Intensity') + ax.set_ylabel('Frequency') + + return self.fig2img(plt) + + def generate_palette(self, img, n_colors=16, cell_size=128, padding=0, font_path=None, font_size=15, mode='chart'): + if 'scikit-learn' not in packages(): + install_package('scikit-learn') + + from sklearn.cluster import KMeans + + img = img.resize((img.width // 2, img.height // 2), resample=Image.BILINEAR) + pixels = np.array(img) + pixels = pixels.reshape((-1, 3)) + kmeans = KMeans(n_clusters=n_colors, random_state=0, n_init='auto').fit(pixels) + cluster_centers = np.uint8(kmeans.cluster_centers_) + + # Get the sorted indices based on luminance + luminance = np.sqrt(np.dot(cluster_centers, [0.299, 0.587, 0.114])) + sorted_indices = np.argsort(luminance) + + # Rearrange the cluster centers and luminance based on sorted indices + cluster_centers = cluster_centers[sorted_indices] + luminance = luminance[sorted_indices] + + # Group colors by their individual types + reds = [] + greens = [] + blues = [] + others = [] + + for i in range(n_colors): + color = cluster_centers[i] + color_type = np.argmax(color) # Find the dominant color component + + if color_type == 0: + reds.append((color, luminance[i])) + elif color_type == 1: + greens.append((color, luminance[i])) + elif color_type == 2: + blues.append((color, luminance[i])) + else: + others.append((color, luminance[i])) + + # Sort each color group by luminance + reds.sort(key=lambda x: x[1]) + greens.sort(key=lambda x: x[1]) + blues.sort(key=lambda x: x[1]) + others.sort(key=lambda x: x[1]) + + # Combine the sorted color groups + sorted_colors = reds + greens + blues + others + + if mode == 'back_to_back': + # Calculate the size of the palette image based on the number of colors + palette_width = n_colors * cell_size + palette_height = cell_size + else: + # Calculate the number of rows and columns based on the number of colors + num_rows = int(np.sqrt(n_colors)) + num_cols = int(np.ceil(n_colors / num_rows)) + + # Calculate the size of the palette image based on the number of rows and columns + palette_width = num_cols * cell_size + palette_height = num_rows * cell_size + + palette_size = (palette_width, palette_height) + + palette = Image.new('RGB', palette_size, color='white') + draw = ImageDraw.Draw(palette) + if font_path: + font = ImageFont.truetype(font_path, font_size) + else: + font = ImageFont.load_default() + + hex_palette = [] + for i, (color, _) in enumerate(sorted_colors): + if mode == 'back_to_back': + cell_x = i * cell_size + cell_y = 0 + else: + row = i % num_rows + col = i // num_rows + cell_x = col * cell_size + cell_y = row * cell_size + + cell_width = cell_size + cell_height = cell_size + + color = tuple(color) + + cell = Image.new('RGB', (cell_width, cell_height), color=color) + palette.paste(cell, (cell_x, cell_y)) + + if mode != 'back_to_back': + text_x = cell_x + (cell_width / 2) + text_y = cell_y + cell_height + padding + + draw.text((text_x + 1, text_y + 1), f"R: {color[0]} G: {color[1]} B: {color[2]}", font=font, fill='black', anchor='ms') + draw.text((text_x, text_y), f"R: {color[0]} G: {color[1]} B: {color[2]}", font=font, fill='white', anchor='ms') + + hex_palette.append('#%02x%02x%02x' % color) + + return palette, '\n'.join(hex_palette) + + +from transformers import BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering + +class BlipWrapper: + def __init__(self, caption_model_id="Salesforce/blip-image-captioning-base", vqa_model_id="Salesforce/blip-vqa-base", device="cuda", cache_dir=None): + self.device = torch.device(device='cuda' if device == "cuda" and torch.cuda.is_available() else 'cpu') + self.caption_processor = BlipProcessor.from_pretrained(caption_model_id, cache_dir=cache_dir) + self.caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_id, cache_dir=cache_dir).to(self.device) + self.vqa_processor = BlipProcessor.from_pretrained(vqa_model_id, cache_dir=cache_dir) + self.vqa_model = BlipForQuestionAnswering.from_pretrained(vqa_model_id, cache_dir=cache_dir).to(self.device) + + def generate_caption(self, image: Image.Image, min_length=50, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=False): + self.caption_model.eval() + inputs = self.caption_processor(images=image, return_tensors="pt").to(self.device) + outputs = self.caption_model.generate(**inputs, min_length=min_length, max_length=max_length, num_beams=num_beams, no_repeat_ngram_size=no_repeat_ngram_size, early_stopping=early_stopping) + return self.caption_processor.decode(outputs[0], skip_special_tokens=True) + + def answer_question(self, image: Image.Image, question: str, min_length=50, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=False): + self.vqa_model.eval() + inputs = self.vqa_processor(images=image, text=question, return_tensors="pt").to(self.device) + answer_ids = self.vqa_model.generate(**inputs, min_length=min_length, max_length=max_length, num_beams=num_beams, no_repeat_ngram_size=no_repeat_ngram_size, early_stopping=early_stopping) + return self.vqa_processor.decode(answer_ids[0], skip_special_tokens=True) + + +#! IMAGE FILTER NODES + +# IMAGE SHADOW AND HIGHLIGHT ADJUSTMENTS + +class WAS_Shadow_And_Highlight_Adjustment: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "shadow_threshold": ("FLOAT", {"default": 75, "min": 0.0, "max": 255.0, "step": 0.1}), + "shadow_factor": ("FLOAT", {"default": 1.5, "min": -12.0, "max": 12.0, "step": 0.1}), + "shadow_smoothing": ("FLOAT", {"default": 0.25, "min": -255.0, "max": 255.0, "step": 0.1}), + "highlight_threshold": ("FLOAT", {"default": 175, "min": 0.0, "max": 255.0, "step": 0.1}), + "highlight_factor": ("FLOAT", {"default": 0.5, "min": -12.0, "max": 12.0, "step": 0.1}), + "highlight_smoothing": ("FLOAT", {"default": 0.25, "min": -255.0, "max": 255.0, "step": 0.1}), + "simplify_isolation": ("FLOAT", {"default": 0, "min": -255.0, "max": 255.0, "step": 0.1}), + } + } + + RETURN_TYPES = ("IMAGE","IMAGE","IMAGE") + RETURN_NAMES = ("image","shadow_map","highlight_map") + FUNCTION = "apply_shadow_and_highlight" + + CATEGORY = "WAS Suite/Image/Adjustment" + + def apply_shadow_and_highlight(self, image, shadow_threshold=30, highlight_threshold=220, shadow_factor=1.5, highlight_factor=0.5, shadow_smoothing=0, highlight_smoothing=0, simplify_isolation=0): + + WTools = WAS_Tools_Class() + + result, shadows, highlights = WTools.shadows_and_highlights(tensor2pil(image), shadow_threshold, highlight_threshold, shadow_factor, highlight_factor, shadow_smoothing, highlight_smoothing, simplify_isolation) + result, shadows, highlights = WTools.shadows_and_highlights(tensor2pil(image), shadow_threshold, highlight_threshold, shadow_factor, highlight_factor, shadow_smoothing, highlight_smoothing, simplify_isolation) + + return (pil2tensor(result), pil2tensor(shadows), pil2tensor(highlights) ) + + +# IMAGE PIXELATE + +class WAS_Image_Pixelate: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "pixelation_size": ("FLOAT", {"default": 164, "min": 16, "max": 480, "step": 1}), + "num_colors": ("FLOAT", {"default": 16, "min": 2, "max": 256, "step": 1}), + "init_mode": (["k-means++", "random", "none"],), + "max_iterations": ("FLOAT", {"default": 100, "min": 1, "max": 256, "step": 1}), + "dither": (["False", "True"],), + "dither_mode": (["FloydSteinberg", "Ordered"],), + }, + "optional": { + "color_palettes": ("LIST", {"forceInput": True}), + "color_palette_mode": (["Brightness", "BrightnessAndTonal", "Linear", "Tonal"],), + "reverse_palette":(["False","True"],), + } + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "image_pixelate" + + CATEGORY = "WAS Suite/Image/Process" + + def image_pixelate(self, images, pixelation_size=164, num_colors=16, init_mode='random', max_iterations=100, + color_palettes=None, color_palette_mode="Linear", reverse_palette='False', dither='False', dither_mode='FloydSteinberg'): + + if 'scikit-learn' not in packages(): + install_package('scikit-learn') + + pixelation_size = int(pixelation_size) + num_colors = int(num_colors) + max_iterations = int(max_iterations) + color_palette_mode = color_palette_mode + dither = (dither == 'True') + + color_palettes_list = [] + if color_palettes: + for palette in color_palettes: + color_palettes_list.append([color.strip() for color in palette.splitlines() if not color.startswith('//') or not color.startswith(';')]) + + reverse_palette = (True if reverse_palette == 'True' else False) + + return ( self.pixel_art_batch(images, pixelation_size, num_colors, init_mode, max_iterations, 42, + (color_palettes_list if color_palettes_list else None), color_palette_mode, reverse_palette, dither, dither_mode), ) + + def pixel_art_batch(self, batch, min_size, num_colors=16, init_mode='random', max_iter=100, random_state=42, + palette=None, palette_mode="Linear", reverse_palette=False, dither=False, dither_mode='FloydSteinberg'): + + from sklearn.cluster import KMeans + + hex_palette_to_rgb = lambda hex: tuple(int(hex[i:i+2], 16) for i in (0, 2, 4)) + + def flatten_colors(image, num_colors, init_mode='random', max_iter=100, random_state=42): + np_image = np.array(image) + pixels = np_image.reshape(-1, 3) + kmeans = KMeans(n_clusters=num_colors, init=init_mode, max_iter=max_iter, tol=1e-3, random_state=random_state, n_init='auto') + labels = kmeans.fit_predict(pixels) + colors = kmeans.cluster_centers_.astype(np.uint8) + flattened_pixels = colors[labels] + flattened_image = flattened_pixels.reshape(np_image.shape) + return Image.fromarray(flattened_image) + + def dither_image(image, mode, nc): + + def clamp(value, min_value=0, max_value=255): + return max(min(value, max_value), min_value) + + def get_new_val(old_val, nc): + return np.round(old_val * (nc - 1)) / (nc - 1) + + def fs_dither(img, nc): + arr = np.array(img, dtype=float) / 255 + new_width, new_height = img.size + + for ir in range(new_height): + for ic in range(new_width): + old_val = arr[ir, ic].copy() + new_val = get_new_val(old_val, nc) + arr[ir, ic] = new_val + err = old_val - new_val + + if ic < new_width - 1: + arr[ir, ic + 1] += err * 7/16 + if ir < new_height - 1: + if ic > 0: + arr[ir + 1, ic - 1] += err * 3/16 + arr[ir + 1, ic] += err * 5/16 + if ic < new_width - 1: + arr[ir + 1, ic + 1] += err / 16 + + carr = np.array(arr * 255, dtype=np.uint8) + return Image.fromarray(carr) + + def ordered_dither(img, nc): + width, height = img.size + dither_matrix = [ + [0, 8, 2, 10], + [12, 4, 14, 6], + [3, 11, 1, 9], + [15, 7, 13, 5] + ] + dithered_image = Image.new('RGB', (width, height)) + num_colors = min(2 ** int(np.log2(nc)), 16) + + for y in range(height): + for x in range(width): + old_pixel = img.getpixel((x, y)) + threshold = dither_matrix[x % 4][y % 4] * num_colors + new_pixel = tuple(int(c * num_colors / 256) * (256 // num_colors) for c in old_pixel) + error = tuple(old - new for old, new in zip(old_pixel, new_pixel)) + dithered_image.putpixel((x, y), new_pixel) + + if x < width - 1: + neighboring_pixel = img.getpixel((x + 1, y)) + neighboring_pixel = tuple(int(c * num_colors / 256) * (256 // num_colors) for c in neighboring_pixel) + neighboring_error = tuple(neighboring - new for neighboring, new in zip(neighboring_pixel, new_pixel)) + neighboring_pixel = tuple(int(clamp(pixel + error * 7 / 16)) for pixel, error in zip(neighboring_pixel, neighboring_error)) + img.putpixel((x + 1, y), neighboring_pixel) + + if x < width - 1 and y < height - 1: + neighboring_pixel = img.getpixel((x + 1, y + 1)) + neighboring_pixel = tuple(int(c * num_colors / 256) * (256 // num_colors) for c in neighboring_pixel) + neighboring_error = tuple(neighboring - new for neighboring, new in zip(neighboring_pixel, new_pixel)) + neighboring_pixel = tuple(int(clamp(pixel + error * 1 / 16)) for pixel, error in zip(neighboring_pixel, neighboring_error)) + img.putpixel((x + 1, y + 1), neighboring_pixel) + + if y < height - 1: + neighboring_pixel = img.getpixel((x, y + 1)) + neighboring_pixel = tuple(int(c * num_colors / 256) * (256 // num_colors) for c in neighboring_pixel) + neighboring_error = tuple(neighboring - new for neighboring, new in zip(neighboring_pixel, new_pixel)) + neighboring_pixel = tuple(int(clamp(pixel + error * 5 / 16)) for pixel, error in zip(neighboring_pixel, neighboring_error)) + img.putpixel((x, y + 1), neighboring_pixel) + + if x > 0 and y < height - 1: + neighboring_pixel = img.getpixel((x - 1, y + 1)) + neighboring_pixel = tuple(int(c * num_colors / 256) * (256 // num_colors) for c in neighboring_pixel) + neighboring_error = tuple(neighboring - new for neighboring, new in zip(neighboring_pixel, new_pixel)) + neighboring_pixel = tuple(int(clamp(pixel + error * 3 / 16)) for pixel, error in zip(neighboring_pixel, neighboring_error)) + img.putpixel((x - 1, y + 1), neighboring_pixel) + + return dithered_image + + if mode == 'FloydSteinberg': + return fs_dither(image, nc) + elif mode == 'Ordered': + return ordered_dither(image, nc) + else: + cstr(f"Inavlid dithering mode `{mode}` selected.").error.print() + return image + + return image + + def color_palette_from_hex_lines(image, colors, palette_mode='Linear', reverse_palette=False): + + def color_distance(color1, color2): + r1, g1, b1 = color1 + r2, g2, b2 = color2 + return np.sqrt((r1 - r2)**2 + (g1 - g2)**2 + (b1 - b2)**2) + + def find_nearest_color_index(color, palette): + distances = [color_distance(color, palette_color) for palette_color in palette] + return distances.index(min(distances)) + + def find_nearest_color_index_tonal(color, palette): + distances = [color_distance_tonal(color, palette_color) for palette_color in palette] + return distances.index(min(distances)) + + def find_nearest_color_index_both(color, palette): + distances = [color_distance_both(color, palette_color) for palette_color in palette] + return distances.index(min(distances)) + + def color_distance_tonal(color1, color2): + r1, g1, b1 = color1 + r2, g2, b2 = color2 + l1 = 0.299 * r1 + 0.587 * g1 + 0.114 * b1 + l2 = 0.299 * r2 + 0.587 * g2 + 0.114 * b2 + return abs(l1 - l2) + + def color_distance_both(color1, color2): + r1, g1, b1 = color1 + r2, g2, b2 = color2 + l1 = 0.299 * r1 + 0.587 * g1 + 0.114 * b1 + l2 = 0.299 * r2 + 0.587 * g2 + 0.114 * b2 + return abs(l1 - l2) + sum(abs(c1 - c2) for c1, c2 in zip(color1, color2)) + + def color_distance(color1, color2): + return sum(abs(c1 - c2) for c1, c2 in zip(color1, color2)) + + color_palette = [hex_palette_to_rgb(color.lstrip('#')) for color in colors] + + if reverse_palette: + color_palette = color_palette[::-1] + + np_image = np.array(image) + labels = np_image.reshape(image.size[1], image.size[0], -1) + width, height = image.size + new_image = Image.new("RGB", image.size) + + if palette_mode == 'Linear': + color_palette_indices = list(range(len(color_palette))) + elif palette_mode == 'Brightness': + color_palette_indices = sorted(range(len(color_palette)), key=lambda i: sum(color_palette[i]) / 3) + elif palette_mode == 'Tonal': + color_palette_indices = sorted(range(len(color_palette)), key=lambda i: color_distance(color_palette[i], (128, 128, 128))) + elif palette_mode == 'BrightnessAndTonal': + color_palette_indices = sorted(range(len(color_palette)), key=lambda i: (sum(color_palette[i]) / 3, color_distance(color_palette[i], (128, 128, 128)))) + else: + raise ValueError(f"Unsupported mapping mode: {palette_mode}") + + for x in range(width): + for y in range(height): + pixel_color = labels[y, x, :] + + if palette_mode == 'Linear': + color_index = pixel_color[0] % len(color_palette) + elif palette_mode == 'Brightness': + color_index = find_nearest_color_index(pixel_color, [color_palette[i] for i in color_palette_indices]) + elif palette_mode == 'Tonal': + color_index = find_nearest_color_index_tonal(pixel_color, [color_palette[i] for i in color_palette_indices]) + elif palette_mode == 'BrightnessAndTonal': + color_index = find_nearest_color_index_both(pixel_color, [color_palette[i] for i in color_palette_indices]) + else: + raise ValueError(f"Unsupported mapping mode: {palette_mode}") + + color = color_palette[color_palette_indices[color_index]] + new_image.putpixel((x, y), color) + + return new_image + + pil_images = [tensor2pil(image) for image in batch] + pixel_art_images = [] + original_sizes = [] + total_images = len(pil_images) + for image in pil_images: + width, height = image.size + original_sizes.append((width, height)) + if max(width, height) > min_size: + if width > height: + new_width = min_size + new_height = int(height * (min_size / width)) + else: + new_height = min_size + new_width = int(width * (min_size / height)) + pixel_art_images.append(image.resize((new_width, int(new_height)), Image.NEAREST)) + else: + pixel_art_images.append(image) + if init_mode != 'none': + pixel_art_images = [flatten_colors(image, num_colors, init_mode) for image in pixel_art_images] + if dither: + pixel_art_images = [dither_image(image, dither_mode, num_colors) for image in pixel_art_images] + if palette: + pixel_art_images = [color_palette_from_hex_lines(pixel_art_image, palette[i], palette_mode, reverse_palette) for i, pixel_art_image in enumerate(pixel_art_images)] + else: + pixel_art_images = pixel_art_images + pixel_art_images = [image.resize(size, Image.NEAREST) for image, size in zip(pixel_art_images, original_sizes)] + + tensor_images = [pil2tensor(image) for image in pixel_art_images] + + batch_tensor = torch.cat(tensor_images, dim=0) + return batch_tensor + +# SIMPLE IMAGE ADJUST + +class WAS_Image_Filters: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "brightness": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.01}), + "contrast": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 2.0, "step": 0.01}), + "saturation": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01}), + "sharpness": ("FLOAT", {"default": 1.0, "min": -5.0, "max": 5.0, "step": 0.01}), + "blur": ("INT", {"default": 0, "min": 0, "max": 16, "step": 1}), + "gaussian_blur": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1024.0, "step": 0.1}), + "edge_enhance": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "detail_enhance": (["false", "true"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_filters" + + CATEGORY = "WAS Suite/Image/Filter" + + def image_filters(self, image, brightness, contrast, saturation, sharpness, blur, gaussian_blur, edge_enhance, detail_enhance): + + + tensors = [] + if len(image) > 1: + for img in image: + + pil_image = None + + # Apply NP Adjustments + if brightness > 0.0 or brightness < 0.0: + # Apply brightness + img = np.clip(img + brightness, 0.0, 1.0) + + if contrast > 1.0 or contrast < 1.0: + # Apply contrast + img = np.clip(img * contrast, 0.0, 1.0) + + # Apply PIL Adjustments + if saturation > 1.0 or saturation < 1.0: + # PIL Image + pil_image = tensor2pil(img) + # Apply saturation + pil_image = ImageEnhance.Color(pil_image).enhance(saturation) + + if sharpness > 1.0 or sharpness < 1.0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Apply sharpness + pil_image = ImageEnhance.Sharpness(pil_image).enhance(sharpness) + + if blur > 0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Apply blur + for _ in range(blur): + pil_image = pil_image.filter(ImageFilter.BLUR) + + if gaussian_blur > 0.0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Apply Gaussian blur + pil_image = pil_image.filter( + ImageFilter.GaussianBlur(radius=gaussian_blur)) + + if edge_enhance > 0.0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Edge Enhancement + edge_enhanced_img = pil_image.filter(ImageFilter.EDGE_ENHANCE_MORE) + # Blend Mask + blend_mask = Image.new( + mode="L", size=pil_image.size, color=(round(edge_enhance * 255))) + # Composite Original and Enhanced Version + pil_image = Image.composite( + edge_enhanced_img, pil_image, blend_mask) + # Clean-up + del blend_mask, edge_enhanced_img + + if detail_enhance == "true": + pil_image = pil_image if pil_image else tensor2pil(img) + pil_image = pil_image.filter(ImageFilter.DETAIL) + + # Output image + out_image = (pil2tensor(pil_image) if pil_image else img.unsqueeze(0)) + + tensors.append(out_image) + + tensors = torch.cat(tensors, dim=0) + + else: + + pil_image = None + img = image + + # Apply NP Adjustments + if brightness > 0.0 or brightness < 0.0: + # Apply brightness + img = np.clip(img + brightness, 0.0, 1.0) + + if contrast > 1.0 or contrast < 1.0: + # Apply contrast + img = np.clip(img * contrast, 0.0, 1.0) + + # Apply PIL Adjustments + if saturation > 1.0 or saturation < 1.0: + # PIL Image + pil_image = tensor2pil(img) + # Apply saturation + pil_image = ImageEnhance.Color(pil_image).enhance(saturation) + + if sharpness > 1.0 or sharpness < 1.0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Apply sharpness + pil_image = ImageEnhance.Sharpness(pil_image).enhance(sharpness) + + if blur > 0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Apply blur + for _ in range(blur): + pil_image = pil_image.filter(ImageFilter.BLUR) + + if gaussian_blur > 0.0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Apply Gaussian blur + pil_image = pil_image.filter( + ImageFilter.GaussianBlur(radius=gaussian_blur)) + + if edge_enhance > 0.0: + # Assign or create PIL Image + pil_image = pil_image if pil_image else tensor2pil(img) + # Edge Enhancement + edge_enhanced_img = pil_image.filter(ImageFilter.EDGE_ENHANCE_MORE) + # Blend Mask + blend_mask = Image.new( + mode="L", size=pil_image.size, color=(round(edge_enhance * 255))) + # Composite Original and Enhanced Version + pil_image = Image.composite( + edge_enhanced_img, pil_image, blend_mask) + # Clean-up + del blend_mask, edge_enhanced_img + + if detail_enhance == "true": + pil_image = pil_image if pil_image else tensor2pil(img) + pil_image = pil_image.filter(ImageFilter.DETAIL) + + # Output image + out_image = (pil2tensor(pil_image) if pil_image else img) + + tensors = out_image + + return (tensors, ) + +# RICHARDSON LUCY SHARPEN + +class WAS_Lucy_Sharpen: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "iterations": ("INT", {"default": 2, "min": 1, "max": 12, "step": 1}), + "kernel_size": ("INT", {"default": 3, "min": 1, "max": 16, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "sharpen" + + CATEGORY = "WAS Suite/Image/Filter" + + def sharpen(self, images, iterations, kernel_size): + + tensors = [] + if len(images) > 1: + for img in images: + tensors.append(pil2tensor(self.lucy_sharpen(tensor2pil(img), iterations, kernel_size))) + tensors = torch.cat(tensors, dim=0) + else: + return (pil2tensor(self.lucy_sharpen(tensor2pil(images), iterations, kernel_size)),) + + return (tensors,) + + + def lucy_sharpen(self, image, iterations=10, kernel_size=3): + + from scipy.signal import convolve2d + + image_array = np.array(image, dtype=np.float32) / 255.0 + kernel = np.ones((kernel_size, kernel_size), dtype=np.float32) / (kernel_size ** 2) + sharpened_channels = [] + + padded_image_array = np.pad(image_array, ((kernel_size, kernel_size), (kernel_size, kernel_size), (0, 0)), mode='edge') + + for channel in range(3): + channel_array = padded_image_array[:, :, channel] + + for _ in range(iterations): + blurred_channel = convolve2d(channel_array, kernel, mode='same') + ratio = channel_array / (blurred_channel + 1e-6) + channel_array *= convolve2d(ratio, kernel, mode='same') + + sharpened_channels.append(channel_array) + + cropped_sharpened_image_array = np.stack(sharpened_channels, axis=-1)[kernel_size:-kernel_size, kernel_size:-kernel_size, :] + sharpened_image_array = np.clip(cropped_sharpened_image_array * 255.0, 0, 255).astype(np.uint8) + sharpened_image = Image.fromarray(sharpened_image_array) + return sharpened_image + +# IMAGE STYLE FILTER + +class WAS_Image_Style_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "style": ([ + "1977", + "aden", + "brannan", + "brooklyn", + "clarendon", + "earlybird", + "fairy tale", + "gingham", + "hudson", + "inkwell", + "kelvin", + "lark", + "lofi", + "maven", + "mayfair", + "moon", + "nashville", + "perpetua", + "reyes", + "rise", + "slumber", + "stinson", + "toaster", + "valencia", + "walden", + "willow", + "xpro2" + ],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_style_filter" + + CATEGORY = "WAS Suite/Image/Filter" + + def image_style_filter(self, image, style): + + # Install Pilgram + if 'pilgram' not in packages(): + install_package('pilgram') + + # Import Pilgram module + import pilgram + + # WAS Filters + WTools = WAS_Tools_Class() + + # Apply blending + tensors = [] + for img in image: + if style == "1977": + tensors.append(pil2tensor(pilgram._1977(tensor2pil(img)))) + elif style == "aden": + tensors.append(pil2tensor(pilgram.aden(tensor2pil(img)))) + elif style == "brannan": + tensors.append(pil2tensor(pilgram.brannan(tensor2pil(img)))) + elif style == "brooklyn": + tensors.append(pil2tensor(pilgram.brooklyn(tensor2pil(img)))) + elif style == "clarendon": + tensors.append(pil2tensor(pilgram.clarendon(tensor2pil(img)))) + elif style == "earlybird": + tensors.append(pil2tensor(pilgram.earlybird(tensor2pil(img)))) + elif style == "fairy tale": + tensors.append(pil2tensor(WTools.sparkle(tensor2pil(img)))) + elif style == "gingham": + tensors.append(pil2tensor(pilgram.gingham(tensor2pil(img)))) + elif style == "hudson": + tensors.append(pil2tensor(pilgram.hudson(tensor2pil(img)))) + elif style == "inkwell": + tensors.append(pil2tensor(pilgram.inkwell(tensor2pil(img)))) + elif style == "kelvin": + tensors.append(pil2tensor(pilgram.kelvin(tensor2pil(img)))) + elif style == "lark": + tensors.append(pil2tensor(pilgram.lark(tensor2pil(img)))) + elif style == "lofi": + tensors.append(pil2tensor(pilgram.lofi(tensor2pil(img)))) + elif style == "maven": + tensors.append(pil2tensor(pilgram.maven(tensor2pil(img)))) + elif style == "mayfair": + tensors.append(pil2tensor(pilgram.mayfair(tensor2pil(img)))) + elif style == "moon": + tensors.append(pil2tensor(pilgram.moon(tensor2pil(img)))) + elif style == "nashville": + tensors.append(pil2tensor(pilgram.nashville(tensor2pil(img)))) + elif style == "perpetua": + tensors.append(pil2tensor(pilgram.perpetua(tensor2pil(img)))) + elif style == "reyes": + tensors.append(pil2tensor(pilgram.reyes(tensor2pil(img)))) + elif style == "rise": + tensors.append(pil2tensor(pilgram.rise(tensor2pil(img)))) + elif style == "slumber": + tensors.append(pil2tensor(pilgram.slumber(tensor2pil(img)))) + elif style == "stinson": + tensors.append(pil2tensor(pilgram.stinson(tensor2pil(img)))) + elif style == "toaster": + tensors.append(pil2tensor(pilgram.toaster(tensor2pil(img)))) + elif style == "valencia": + tensors.append(pil2tensor(pilgram.valencia(tensor2pil(img)))) + elif style == "walden": + tensors.append(pil2tensor(pilgram.walden(tensor2pil(img)))) + elif style == "willow": + tensors.append(pil2tensor(pilgram.willow(tensor2pil(img)))) + elif style == "xpro2": + tensors.append(pil2tensor(pilgram.xpro2(tensor2pil(img)))) + else: + tensors.append(img) + + tensors = torch.cat(tensors, dim=0) + + return (tensors, ) + + +# IMAGE CROP FACE + +class WAS_Image_Crop_Face: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "crop_padding_factor": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 2.0, "step": 0.01}), + "cascade_xml": ([ + "lbpcascade_animeface.xml", + "haarcascade_frontalface_default.xml", + "haarcascade_frontalface_alt.xml", + "haarcascade_frontalface_alt2.xml", + "haarcascade_frontalface_alt_tree.xml", + "haarcascade_profileface.xml", + "haarcascade_upperbody.xml", + "haarcascade_eye.xml" + ],), + } + } + + RETURN_TYPES = ("IMAGE", "CROP_DATA") + FUNCTION = "image_crop_face" + + CATEGORY = "WAS Suite/Image/Process" + + def image_crop_face(self, image, cascade_xml=None, crop_padding_factor=0.25): + return self.crop_face(tensor2pil(image), cascade_xml, crop_padding_factor) + + def crop_face(self, image, cascade_name=None, padding=0.25): + + import cv2 + + img = np.array(image.convert('RGB')) + + face_location = None + + cascades = [ os.path.join(os.path.join(WAS_SUITE_ROOT, 'res'), 'lbpcascade_animeface.xml'), + os.path.join(os.path.join(WAS_SUITE_ROOT, 'res'), 'haarcascade_frontalface_default.xml'), + os.path.join(os.path.join(WAS_SUITE_ROOT, 'res'), 'haarcascade_frontalface_alt.xml'), + os.path.join(os.path.join(WAS_SUITE_ROOT, 'res'), 'haarcascade_frontalface_alt2.xml'), + os.path.join(os.path.join(WAS_SUITE_ROOT, 'res'), 'haarcascade_frontalface_alt_tree.xml'), + os.path.join(os.path.join(WAS_SUITE_ROOT, 'res'), 'haarcascade_profileface.xml'), + os.path.join(os.path.join(WAS_SUITE_ROOT, 'res'), 'haarcascade_upperbody.xml') ] + + if cascade_name: + for cascade in cascades: + if os.path.basename(cascade) == cascade_name: + cascades.remove(cascade) + cascades.insert(0, cascade) + break + + faces = None + if not face_location: + for cascade in cascades: + if not os.path.exists(cascade): + cstr(f"Unable to find cascade XML file at `{cascade}`. Did you pull the latest files from https://github.com/WASasquatch/was-node-suite-comfyui repo?").error.print() + return (pil2tensor(Image.new("RGB", (512,512), (0,0,0))), False) + face_cascade = cv2.CascadeClassifier(cascade) + gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) + faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) + if len(faces) != 0: + cstr(f"Face found with: {os.path.basename(cascade)}").msg.print() + break + if len(faces) == 0: + cstr("No faces found in the image!").warning.print() + return (pil2tensor(Image.new("RGB", (512,512), (0,0,0))), False) + else: + cstr("Face found with: face_recognition model").warning.print() + faces = face_location + + # Assume there is only one face in the image + x, y, w, h = faces[0] + + # Check if the face region aligns with the edges of the original image + left_adjust = max(0, -x) + right_adjust = max(0, x + w - img.shape[1]) + top_adjust = max(0, -y) + bottom_adjust = max(0, y + h - img.shape[0]) + + # Check if the face region is near any edges, and if so, pad in the opposite direction + if left_adjust < w: + x += right_adjust + elif right_adjust < w: + x -= left_adjust + if top_adjust < h: + y += bottom_adjust + elif bottom_adjust < h: + y -= top_adjust + + w -= left_adjust + right_adjust + h -= top_adjust + bottom_adjust + + # Calculate padding around face + face_size = min(h, w) + y_pad = int(face_size * padding) + x_pad = int(face_size * padding) + + # Calculate square coordinates around face + center_x = x + w // 2 + center_y = y + h // 2 + half_size = (face_size + max(x_pad, y_pad)) // 2 + top = max(0, center_y - half_size) + bottom = min(img.shape[0], center_y + half_size) + left = max(0, center_x - half_size) + right = min(img.shape[1], center_x + half_size) + + # Ensure square crop of the original image + crop_size = min(right - left, bottom - top) + left = center_x - crop_size // 2 + right = center_x + crop_size // 2 + top = center_y - crop_size // 2 + bottom = center_y + crop_size // 2 + + # Crop face from original image + face_img = img[top:bottom, left:right, :] + + # Resize image + size = max(face_img.copy().shape[:2]) + pad_h = (size - face_img.shape[0]) // 2 + pad_w = (size - face_img.shape[1]) // 2 + face_img = cv2.copyMakeBorder(face_img, pad_h, pad_h, pad_w, pad_w, cv2.BORDER_CONSTANT, value=[0,0,0]) + min_size = 64 # Set minimum size for padded image + if size < min_size: + size = min_size + face_img = cv2.resize(face_img, (size, size)) + + # Convert numpy array back to PIL image + face_img = Image.fromarray(face_img) + + # Resize image to a multiple of 64 + original_size = face_img.size + face_img.resize((((face_img.size[0] // 64) * 64 + 64), ((face_img.size[1] // 64) * 64 + 64))) + + # Return face image and coordinates + return (pil2tensor(face_img.convert('RGB')), (original_size, (left, top, right, bottom))) + + +# IMAGE PASTE FACE CROP + +class WAS_Image_Paste_Face_Crop: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "crop_image": ("IMAGE",), + "crop_data": ("CROP_DATA",), + "crop_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}), + "crop_sharpening": ("INT", {"default": 0, "min": 0, "max": 3, "step": 1}), + } + } + + RETURN_TYPES = ("IMAGE", "IMAGE") + RETURN_NAMES = ("IMAGE", "MASK_IMAGE") + FUNCTION = "image_paste_face" + + CATEGORY = "WAS Suite/Image/Process" + + def image_paste_face(self, image, crop_image, crop_data=None, crop_blending=0.25, crop_sharpening=0): + + if crop_data == False: + cstr("No valid crop data found!").error.print() + return (image, pil2tensor(Image.new("RGB", tensor2pil(image).size, (0,0,0)))) + + result_image, result_mask = self.paste_image(tensor2pil(image), tensor2pil(crop_image), crop_data, crop_blending, crop_sharpening) + return(result_image, result_mask) + + def paste_image(self, image, crop_image, crop_data, blend_amount=0.25, sharpen_amount=1): + + def lingrad(size, direction, white_ratio): + image = Image.new('RGB', size) + draw = ImageDraw.Draw(image) + if direction == 'vertical': + black_end = int(size[1] * (1 - white_ratio)) + range_start = 0 + range_end = size[1] + range_step = 1 + for y in range(range_start, range_end, range_step): + color_ratio = y / size[1] + if y <= black_end: + color = (0, 0, 0) + else: + color_value = int(((y - black_end) / (size[1] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(0, y), (size[0], y)], fill=color) + elif direction == 'horizontal': + black_end = int(size[0] * (1 - white_ratio)) + range_start = 0 + range_end = size[0] + range_step = 1 + for x in range(range_start, range_end, range_step): + color_ratio = x / size[0] + if x <= black_end: + color = (0, 0, 0) + else: + color_value = int(((x - black_end) / (size[0] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(x, 0), (x, size[1])], fill=color) + + return image.convert("L") + + crop_size, (top, left, right, bottom) = crop_data + crop_image = crop_image.resize(crop_size) + + if sharpen_amount > 0: + for _ in range(int(sharpen_amount)): + crop_image = crop_image.filter(ImageFilter.SHARPEN) + + blended_image = Image.new('RGBA', image.size, (0, 0, 0, 255)) + blended_mask = Image.new('L', image.size, 0) + crop_padded = Image.new('RGBA', image.size, (0, 0, 0, 0)) + blended_image.paste(image, (0, 0)) + crop_padded.paste(crop_image, (top, left)) + crop_mask = Image.new('L', crop_image.size, 0) + + if top > 0: + gradient_image = ImageOps.flip(lingrad(crop_image.size, 'vertical', blend_amount)) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if left > 0: + gradient_image = ImageOps.mirror(lingrad(crop_image.size, 'horizontal', blend_amount)) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if right < image.width: + gradient_image = lingrad(crop_image.size, 'horizontal', blend_amount) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if bottom < image.height: + gradient_image = lingrad(crop_image.size, 'vertical', blend_amount) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + crop_mask = ImageOps.invert(crop_mask) + blended_mask.paste(crop_mask, (top, left)) + blended_mask = blended_mask.convert("L") + blended_image.paste(crop_padded, (0, 0), blended_mask) + + return (pil2tensor(blended_image.convert("RGB")), pil2tensor(blended_mask.convert("RGB"))) + + +# IMAGE CROP LOCATION + +class WAS_Image_Crop_Location: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "top": ("INT", {"default":0, "max": 10000000, "min":0, "step":1}), + "left": ("INT", {"default":0, "max": 10000000, "min":0, "step":1}), + "right": ("INT", {"default":256, "max": 10000000, "min":0, "step":1}), + "bottom": ("INT", {"default":256, "max": 10000000, "min":0, "step":1}), + } + } + + RETURN_TYPES = ("IMAGE", "CROP_DATA") + FUNCTION = "image_crop_location" + + CATEGORY = "WAS Suite/Image/Process" + + def image_crop_location(self, image, top=0, left=0, right=256, bottom=256): + image = tensor2pil(image) + img_width, img_height = image.size + + # Calculate the final coordinates for cropping + crop_top = max(top, 0) + crop_left = max(left, 0) + crop_bottom = min(bottom, img_height) + crop_right = min(right, img_width) + + # Ensure that the cropping region has non-zero width and height + crop_width = crop_right - crop_left + crop_height = crop_bottom - crop_top + if crop_width <= 0 or crop_height <= 0: + raise ValueError("Invalid crop dimensions. Please check the values for top, left, right, and bottom.") + + # Crop the image and resize + crop = image.crop((crop_left, crop_top, crop_right, crop_bottom)) + crop_data = (crop.size, (crop_left, crop_top, crop_right, crop_bottom)) + crop = crop.resize((((crop.size[0] // 8) * 8), ((crop.size[1] // 8) * 8))) + + return (pil2tensor(crop), crop_data) + + +# IMAGE SQUARE CROP LOCATION + +class WAS_Image_Crop_Square_Location: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "x": ("INT", {"default":0, "max": 24576, "min":0, "step":1}), + "y": ("INT", {"default":0, "max": 24576, "min":0, "step":1}), + "size": ("INT", {"default":256, "max": 4096, "min":5, "step":1}), + } + } + + RETURN_TYPES = ("IMAGE", "CROP_DATA") + FUNCTION = "image_crop_location" + + CATEGORY = "WAS Suite/Image/Process" + + def image_crop_location(self, image, x=256, y=256, size=512): + + image = tensor2pil(image) + img_width, img_height = image.size + exp_size = size // 2 + left = max(x - exp_size, 0) + top = max(y - exp_size, 0) + right = min(x + exp_size, img_width) + bottom = min(y + exp_size, img_height) + + if right - left < size: + if right < img_width: + right = min(right + size - (right - left), img_width) + elif left > 0: + left = max(left - (size - (right - left)), 0) + if bottom - top < size: + if bottom < img_height: + bottom = min(bottom + size - (bottom - top), img_height) + elif top > 0: + top = max(top - (size - (bottom - top)), 0) + + crop = image.crop((left, top, right, bottom)) + + # Original Crop Data + crop_data = (crop.size, (left, top, right, bottom)) + + # Output resize + crop = crop.resize((((crop.size[0] // 8) * 8), ((crop.size[1] // 8) * 8))) + + return (pil2tensor(crop), crop_data) + + +# IMAGE SQUARE CROP LOCATION + +class WAS_Image_Tile_Batch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "num_tiles": ("INT", {"default":4, "max": 64, "min":2, "step":1}), + } + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("IMAGES",) + FUNCTION = "tile_image" + + CATEGORY = "WAS Suite/Image/Process" + + def tile_image(self, image, num_tiles=6): + image = tensor2pil(image.squeeze(0)) + img_width, img_height = image.size + + num_rows = int(num_tiles ** 0.5) + num_cols = (num_tiles + num_rows - 1) // num_rows + tile_width = img_width // num_cols + tile_height = img_height // num_rows + + tiles = [] + for y in range(0, img_height, tile_height): + for x in range(0, img_width, tile_width): + tile = image.crop((x, y, x + tile_width, y + tile_height)) + tiles.append(pil2tensor(tile)) + + tiles = torch.stack(tiles, dim=0).squeeze(1) + + return (tiles, ) + + +# IMAGE PASTE CROP + +class WAS_Image_Paste_Crop: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "crop_image": ("IMAGE",), + "crop_data": ("CROP_DATA",), + "crop_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}), + "crop_sharpening": ("INT", {"default": 0, "min": 0, "max": 3, "step": 1}), + } + } + + RETURN_TYPES = ("IMAGE", "IMAGE") + RETURN_NAMES = ("IMAGE", "MASK") + FUNCTION = "image_paste_crop" + + CATEGORY = "WAS Suite/Image/Process" + + def image_paste_crop(self, image, crop_image, crop_data=None, crop_blending=0.25, crop_sharpening=0): + + if crop_data == False: + cstr("No valid crop data found!").error.print() + return (image, pil2tensor(Image.new("RGB", tensor2pil(image).size, (0,0,0)))) + + result_image, result_mask = self.paste_image(tensor2pil(image), tensor2pil(crop_image), crop_data, crop_blending, crop_sharpening) + + return (result_image, result_mask) + + def paste_image(self, image, crop_image, crop_data, blend_amount=0.25, sharpen_amount=1): + + def lingrad(size, direction, white_ratio): + image = Image.new('RGB', size) + draw = ImageDraw.Draw(image) + if direction == 'vertical': + black_end = int(size[1] * (1 - white_ratio)) + range_start = 0 + range_end = size[1] + range_step = 1 + for y in range(range_start, range_end, range_step): + color_ratio = y / size[1] + if y <= black_end: + color = (0, 0, 0) + else: + color_value = int(((y - black_end) / (size[1] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(0, y), (size[0], y)], fill=color) + elif direction == 'horizontal': + black_end = int(size[0] * (1 - white_ratio)) + range_start = 0 + range_end = size[0] + range_step = 1 + for x in range(range_start, range_end, range_step): + color_ratio = x / size[0] + if x <= black_end: + color = (0, 0, 0) + else: + color_value = int(((x - black_end) / (size[0] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(x, 0), (x, size[1])], fill=color) + + return image.convert("L") + + crop_size, (left, top, right, bottom) = crop_data + crop_image = crop_image.resize(crop_size) + + if sharpen_amount > 0: + for _ in range(int(sharpen_amount)): + crop_image = crop_image.filter(ImageFilter.SHARPEN) + + blended_image = Image.new('RGBA', image.size, (0, 0, 0, 255)) + blended_mask = Image.new('L', image.size, 0) + crop_padded = Image.new('RGBA', image.size, (0, 0, 0, 0)) + blended_image.paste(image, (0, 0)) + crop_padded.paste(crop_image, (left, top)) + crop_mask = Image.new('L', crop_image.size, 0) + + if top > 0: + gradient_image = ImageOps.flip(lingrad(crop_image.size, 'vertical', blend_amount)) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if left > 0: + gradient_image = ImageOps.mirror(lingrad(crop_image.size, 'horizontal', blend_amount)) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if right < image.width: + gradient_image = lingrad(crop_image.size, 'horizontal', blend_amount) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if bottom < image.height: + gradient_image = lingrad(crop_image.size, 'vertical', blend_amount) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + crop_mask = ImageOps.invert(crop_mask) + blended_mask.paste(crop_mask, (left, top)) + blended_mask = blended_mask.convert("L") + blended_image.paste(crop_padded, (0, 0), blended_mask) + + return (pil2tensor(blended_image.convert("RGB")), pil2tensor(blended_mask.convert("RGB"))) + + +# IMAGE PASTE CROP BY LOCATION + +class WAS_Image_Paste_Crop_Location: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "crop_image": ("IMAGE",), + "top": ("INT", {"default":0, "max": 10000000, "min":0, "step":1}), + "left": ("INT", {"default":0, "max": 10000000, "min":0, "step":1}), + "right": ("INT", {"default":256, "max": 10000000, "min":0, "step":1}), + "bottom": ("INT", {"default":256, "max": 10000000, "min":0, "step":1}), + "crop_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}), + "crop_sharpening": ("INT", {"default": 0, "min": 0, "max": 3, "step": 1}), + } + } + + RETURN_TYPES = ("IMAGE", "IMAGE") + RETURN_NAMES = ("IMAGE", "MASK") + FUNCTION = "image_paste_crop_location" + + CATEGORY = "WAS Suite/Image/Process" + + def image_paste_crop_location(self, image, crop_image, top=0, left=0, right=256, bottom=256, crop_blending=0.25, crop_sharpening=0): + result_image, result_mask = self.paste_image(tensor2pil(image), tensor2pil(crop_image), top, left, right, bottom, crop_blending, crop_sharpening) + return (result_image, result_mask) + + def paste_image(self, image, crop_image, top=0, left=0, right=256, bottom=256, blend_amount=0.25, sharpen_amount=1): + + image = image.convert("RGBA") + crop_image = crop_image.convert("RGBA") + + def inset_border(image, border_width=20, border_color=(0)): + width, height = image.size + bordered_image = Image.new(image.mode, (width, height), border_color) + bordered_image.paste(image, (0, 0)) + draw = ImageDraw.Draw(bordered_image) + draw.rectangle((0, 0, width-1, height-1), outline=border_color, width=border_width) + return bordered_image + + img_width, img_height = image.size + + # Ensure that the coordinates are within the image bounds + top = min(max(top, 0), img_height) + left = min(max(left, 0), img_width) + bottom = min(max(bottom, 0), img_height) + right = min(max(right, 0), img_width) + + crop_size = (right - left, bottom - top) + crop_img = crop_image.resize(crop_size) + crop_img = crop_img.convert("RGBA") + + if sharpen_amount > 0: + for _ in range(sharpen_amount): + crop_img = crop_img.filter(ImageFilter.SHARPEN) + + if blend_amount > 1.0: + blend_amount = 1.0 + elif blend_amount < 0.0: + blend_amount = 0.0 + blend_ratio = (max(crop_size) / 2) * float(blend_amount) + + blend = image.copy() + mask = Image.new("L", image.size, 0) + + mask_block = Image.new("L", crop_size, 255) + mask_block = inset_border(mask_block, int(blend_ratio/2), (0)) + + Image.Image.paste(mask, mask_block, (left, top)) + blend.paste(crop_img, (left, top), crop_img) + + mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio/4)) + mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio/4)) + + blend.putalpha(mask) + image = Image.alpha_composite(image, blend) + + return (pil2tensor(image), pil2tensor(mask.convert('RGB'))) + + +# IMAGE GRID IMAGE + +class WAS_Image_Grid_Image_Batch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "border_width": ("INT", {"default":3, "min": 0, "max": 100, "step":1}), + "number_of_columns": ("INT", {"default":6, "min": 1, "max": 24, "step":1}), + "max_cell_size": ("INT", {"default":256, "min":32, "max":2048, "step":1}), + "border_red": ("INT", {"default":0, "min": 0, "max": 255, "step":1}), + "border_green": ("INT", {"default":0, "min": 0, "max": 255, "step":1}), + "border_blue": ("INT", {"default":0, "min": 0, "max": 255, "step":1}), + } + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "smart_grid_image" + + CATEGORY = "WAS Suite/Image/Process" + + def smart_grid_image(self, images, number_of_columns=6, max_cell_size=256, add_border=False, border_red=255, border_green=255, border_blue=255, border_width=3): + + cols = number_of_columns + border_color = (border_red, border_green, border_blue) + + images_resized = [] + max_row_height = 0 + + for tensor_img in images: + img = tensor2pil(tensor_img) + img_w, img_h = img.size + aspect_ratio = img_w / img_h + + if img_w > img_h: + cell_w = min(img_w, max_cell_size) + cell_h = int(cell_w / aspect_ratio) + else: + cell_h = min(img_h, max_cell_size) + cell_w = int(cell_h * aspect_ratio) + + img_resized = img.resize((cell_w, cell_h)) + + if add_border: + img_resized = ImageOps.expand(img_resized, border=border_width // 2, fill=border_color) + + images_resized.append(img_resized) + max_row_height = max(max_row_height, cell_h) + + max_row_height = int(max_row_height) + total_images = len(images_resized) + rows = math.ceil(total_images / cols) + + grid_width = cols * max_cell_size + (cols - 1) * border_width + grid_height = rows * max_row_height + (rows - 1) * border_width + + new_image = Image.new('RGB', (grid_width, grid_height), border_color) + + for i, img in enumerate(images_resized): + x = (i % cols) * (max_cell_size + border_width) + y = (i // cols) * (max_row_height + border_width) + + img_w, img_h = img.size + paste_x = x + (max_cell_size - img_w) // 2 + paste_y = y + (max_row_height - img_h) // 2 + + new_image.paste(img, (paste_x, paste_y, paste_x + img_w, paste_y + img_h)) + + if add_border: + new_image = ImageOps.expand(new_image, border=border_width, fill=border_color) + + return (pil2tensor(new_image), ) + + +# IMAGE GRID IMAGE FROM PATH + +class WAS_Image_Grid_Image: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images_path": ("STRING", {"default":"./ComfyUI/input/", "multiline": False}), + "pattern_glob": ("STRING", {"default":"*", "multiline": False}), + "include_subfolders": (["false", "true"],), + "border_width": ("INT", {"default":3, "min": 0, "max": 100, "step":1}), + "number_of_columns": ("INT", {"default":6, "min": 1, "max": 24, "step":1}), + "max_cell_size": ("INT", {"default":256, "min":32, "max":1280, "step":1}), + "border_red": ("INT", {"default":0, "min": 0, "max": 255, "step":1}), + "border_green": ("INT", {"default":0, "min": 0, "max": 255, "step":1}), + "border_blue": ("INT", {"default":0, "min": 0, "max": 255, "step":1}), + } + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "create_grid_image" + + CATEGORY = "WAS Suite/Image/Process" + + def create_grid_image(self, images_path, pattern_glob="*", include_subfolders="false", number_of_columns=6, + max_cell_size=256, border_width=3, border_red=0, border_green=0, border_blue=0): + + if not os.path.exists(images_path): + cstr(f"The grid image path `{images_path}` does not exist!").error.print() + return (pil2tensor(Image.new("RGB", (512,512), (0,0,0))),) + + paths = glob.glob(os.path.join(images_path, pattern_glob), recursive=(False if include_subfolders == "false" else True)) + image_paths = [] + for path in paths: + if path.lower().endswith(ALLOWED_EXT) and os.path.exists(path): + image_paths.append(path) + + grid_image = self.smart_grid_image(image_paths, int(number_of_columns), (int(max_cell_size), int(max_cell_size)), + (False if border_width <= 0 else True), (int(border_red), + int(border_green), int(border_blue)), int(border_width)) + + return (pil2tensor(grid_image),) + + def smart_grid_image(self, images, cols=6, size=(256,256), add_border=False, border_color=(0,0,0), border_width=3): + + # calculate row height + max_width, max_height = size + row_height = 0 + images_resized = [] + for image in images: + img = Image.open(image).convert('RGB') + + img_w, img_h = img.size + aspect_ratio = img_w / img_h + if aspect_ratio > 1: # landscape + thumb_w = min(max_width, img_w-border_width) + thumb_h = thumb_w / aspect_ratio + else: # portrait + thumb_h = min(max_height, img_h-border_width) + thumb_w = thumb_h * aspect_ratio + + # pad the image to match the maximum size and center it within the cell + pad_w = max_width - int(thumb_w) + pad_h = max_height - int(thumb_h) + left = pad_w // 2 + top = pad_h // 2 + right = pad_w - left + bottom = pad_h - top + padding = (left, top, right, bottom) # left, top, right, bottom + img_resized = ImageOps.expand(img.resize((int(thumb_w), int(thumb_h))), padding) + + if add_border: + img_resized_bordered = ImageOps.expand(img_resized, border=border_width//2, fill=border_color) + + images_resized.append(img_resized) + row_height = max(row_height, img_resized.size[1]) + row_height = int(row_height) + + # calculate the number of rows + total_images = len(images_resized) + rows = math.ceil(total_images / cols) + + # create empty image to put thumbnails + new_image = Image.new('RGB', (cols*size[0]+(cols-1)*border_width, rows*row_height+(rows-1)*border_width), border_color) + + for i, img in enumerate(images_resized): + if add_border: + border_img = ImageOps.expand(img, border=border_width//2, fill=border_color) + x = (i % cols) * (size[0]+border_width) + y = (i // cols) * (row_height+border_width) + if border_img.size == (size[0], size[1]): + new_image.paste(border_img, (x, y, x+size[0], y+size[1])) + else: + # Resize image to match size parameter + border_img = border_img.resize((size[0], size[1])) + new_image.paste(border_img, (x, y, x+size[0], y+size[1])) + else: + x = (i % cols) * (size[0]+border_width) + y = (i // cols) * (row_height+border_width) + if img.size == (size[0], size[1]): + new_image.paste(img, (x, y, x+img.size[0], y+img.size[1])) + else: + # Resize image to match size parameter + img = img.resize((size[0], size[1])) + new_image.paste(img, (x, y, x+size[0], y+size[1])) + + new_image = ImageOps.expand(new_image, border=border_width, fill=border_color) + + return new_image + +# IMAGE MORPH GIF + +class WAS_Image_Morph_GIF: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_a": ("IMAGE",), + "image_b": ("IMAGE",), + "transition_frames": ("INT", {"default":30, "min":2, "max":60, "step":1}), + "still_image_delay_ms": ("FLOAT", {"default":2500.0, "min":0.1, "max":60000.0, "step":0.1}), + "duration_ms": ("FLOAT", {"default":0.1, "min":0.1, "max":60000.0, "step":0.1}), + "loops": ("INT", {"default":0, "min":0, "max":100, "step":1}), + "max_size": ("INT", {"default":512, "min":128, "max":1280, "step":1}), + "output_path": ("STRING", {"default": "./ComfyUI/output", "multiline": False}), + "filename": ("STRING", {"default": "morph", "multiline": False}), + "filetype": (["GIF", "APNG"],), + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + RETURN_TYPES = ("IMAGE","IMAGE",TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("image_a_pass","image_b_pass","filepath_text","filename_text") + FUNCTION = "create_morph_gif" + + CATEGORY = "WAS Suite/Animation" + + def create_morph_gif(self, image_a, image_b, transition_frames=10, still_image_delay_ms=10, duration_ms=0.1, loops=0, max_size=512, + output_path="./ComfyUI/output", filename="morph", filetype="GIF"): + + tokens = TextTokens() + WTools = WAS_Tools_Class() + + if 'imageio' not in packages(): + install_package('imageio') + + if filetype not in ["APNG", "GIF"]: + filetype = "GIF" + if output_path.strip() in [None, "", "."]: + output_path = "./ComfyUI/output" + output_path = tokens.parseTokens(os.path.join(*output_path.split('/'))) + if not os.path.exists(output_path): + os.makedirs(output_path, exist_ok=True) + + if image_a == None: + image_a = pil2tensor(Image.new("RGB", (512,512), (0,0,0))) + if image_b == None: + image_b = pil2tensor(Image.new("RGB", (512,512), (255,255,255))) + + if transition_frames < 2: + transition_frames = 2 + elif transition_frames > 60: + transition_frames = 60 + + if duration_ms < 0.1: + duration_ms = 0.1 + elif duration_ms > 60000.0: + duration_ms = 60000.0 + + output_file = WTools.morph_images([tensor2pil(image_a), tensor2pil(image_b)], steps=int(transition_frames), max_size=int(max_size), loop=int(loops), + still_duration=int(still_image_delay_ms), duration=int(duration_ms), output_path=output_path, + filename=tokens.parseTokens(filename), filetype=filetype) + + return (image_a, image_b, output_file) + + +# IMAGE MORPH GIF WRITER + +class WAS_Image_Morph_GIF_Writer: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "transition_frames": ("INT", {"default":30, "min":2, "max":60, "step":1}), + "image_delay_ms": ("FLOAT", {"default":2500.0, "min":0.1, "max":60000.0, "step":0.1}), + "duration_ms": ("FLOAT", {"default":0.1, "min":0.1, "max":60000.0, "step":0.1}), + "loops": ("INT", {"default":0, "min":0, "max":100, "step":1}), + "max_size": ("INT", {"default":512, "min":128, "max":1280, "step":1}), + "output_path": ("STRING", {"default": comfy_paths.output_directory, "multiline": False}), + "filename": ("STRING", {"default": "morph_writer", "multiline": False}), + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + RETURN_TYPES = ("IMAGE",TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("image_pass","filepath_text","filename_text") + FUNCTION = "write_to_morph_gif" + + CATEGORY = "WAS Suite/Animation/Writer" + + def write_to_morph_gif(self, image, transition_frames=10, image_delay_ms=10, duration_ms=0.1, loops=0, max_size=512, + output_path="./ComfyUI/output", filename="morph"): + + if 'imageio' not in packages(): + install_package("imageio") + + if output_path.strip() in [None, "", "."]: + output_path = "./ComfyUI/output" + + if image is None: + image = pil2tensor(Image.new("RGB", (512, 512), (0, 0, 0))).unsqueeze(0) + + if transition_frames < 2: + transition_frames = 2 + elif transition_frames > 60: + transition_frames = 60 + + if duration_ms < 0.1: + duration_ms = 0.1 + elif duration_ms > 60000.0: + duration_ms = 60000.0 + + tokens = TextTokens() + output_path = os.path.abspath(os.path.join(*tokens.parseTokens(output_path).split('/'))) + output_file = os.path.join(output_path, tokens.parseTokens(filename) + '.gif') + + if not os.path.exists(output_path): + os.makedirs(output_path, exist_ok=True) + + WTools = WAS_Tools_Class() + GifMorph = WTools.GifMorphWriter(int(transition_frames), int(duration_ms), int(image_delay_ms)) + + for img in image: + pil_img = tensor2pil(img) + GifMorph.write(pil_img, output_file) + + return (image, output_file, filename) + +# IMAGE MORPH GIF BY PATH + +class WAS_Image_Morph_GIF_By_Path: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "transition_frames": ("INT", {"default":30, "min":2, "max":60, "step":1}), + "still_image_delay_ms": ("FLOAT", {"default":2500.0, "min":0.1, "max":60000.0, "step":0.1}), + "duration_ms": ("FLOAT", {"default":0.1, "min":0.1, "max":60000.0, "step":0.1}), + "loops": ("INT", {"default":0, "min":0, "max":100, "step":1}), + "max_size": ("INT", {"default":512, "min":128, "max":1280, "step":1}), + "input_path": ("STRING",{"default":"./ComfyUI", "multiline": False}), + "input_pattern": ("STRING",{"default":"*", "multiline": False}), + "output_path": ("STRING", {"default": "./ComfyUI/output", "multiline": False}), + "filename": ("STRING", {"default": "morph", "multiline": False}), + "filetype": (["GIF", "APNG"],), + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + RETURN_TYPES = (TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("filepath_text","filename_text") + FUNCTION = "create_morph_gif" + + CATEGORY = "WAS Suite/Animation" + + def create_morph_gif(self, transition_frames=30, still_image_delay_ms=2500, duration_ms=0.1, loops=0, max_size=512, + input_path="./ComfyUI/output", input_pattern="*", output_path="./ComfyUI/output", filename="morph", filetype="GIF"): + + if 'imageio' not in packages(): + install_package("imageio") + + if not os.path.exists(input_path): + cstr(f"The input_path `{input_path}` does not exist!").error.print() + return ("",) + + images = self.load_images(input_path, input_pattern) + if not images: + cstr(f"The input_path `{input_path}` does not contain any valid images!").msg.print() + return ("",) + + if filetype not in ["APNG", "GIF"]: + filetype = "GIF" + if output_path.strip() in [None, "", "."]: + output_path = "./ComfyUI/output" + + if transition_frames < 2: + transition_frames = 2 + elif transition_frames > 60: + transition_frames = 60 + + if duration_ms < 0.1: + duration_ms = 0.1 + elif duration_ms > 60000.0: + duration_ms = 60000.0 + + tokens = TextTokens() + WTools = WAS_Tools_Class() + + output_file = WTools.morph_images(images, steps=int(transition_frames), max_size=int(max_size), loop=int(loops), still_duration=int(still_image_delay_ms), + duration=int(duration_ms), output_path=tokens.parseTokens(os.path.join(*output_path.split('/'))), + filename=tokens.parseTokens(filename), filetype=filetype) + + return (output_file,filename) + + + def load_images(self, directory_path, pattern): + images = [] + for file_name in glob.glob(os.path.join(directory_path, pattern), recursive=False): + if file_name.lower().endswith(ALLOWED_EXT): + images.append(Image.open(file_name).convert("RGB")) + return images + + +# COMBINE NODE + +class WAS_Image_Blending_Mode: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_a": ("IMAGE",), + "image_b": ("IMAGE",), + "mode": ([ + "add", + "color", + "color_burn", + "color_dodge", + "darken", + "difference", + "exclusion", + "hard_light", + "hue", + "lighten", + "multiply", + "overlay", + "screen", + "soft_light" + ],), + "blend_percentage": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "image_blending_mode" + + CATEGORY = "WAS Suite/Image" + + def image_blending_mode(self, image_a, image_b, mode='add', blend_percentage=1.0): + + # Install Pilgram + if 'pilgram' not in packages(): + install_package("pilgram") + + # Import Pilgram module + import pilgram + + # Convert images to PIL + img_a = tensor2pil(image_a) + img_b = tensor2pil(image_b) + + # Apply blending + if mode: + if mode == "color": + out_image = pilgram.css.blending.color(img_a, img_b) + elif mode == "color_burn": + out_image = pilgram.css.blending.color_burn(img_a, img_b) + elif mode == "color_dodge": + out_image = pilgram.css.blending.color_dodge(img_a, img_b) + elif mode == "darken": + out_image = pilgram.css.blending.darken(img_a, img_b) + elif mode == "difference": + out_image = pilgram.css.blending.difference(img_a, img_b) + elif mode == "exclusion": + out_image = pilgram.css.blending.exclusion(img_a, img_b) + elif mode == "hard_light": + out_image = pilgram.css.blending.hard_light(img_a, img_b) + elif mode == "hue": + out_image = pilgram.css.blending.hue(img_a, img_b) + elif mode == "lighten": + out_image = pilgram.css.blending.lighten(img_a, img_b) + elif mode == "multiply": + out_image = pilgram.css.blending.multiply(img_a, img_b) + elif mode == "add": + out_image = pilgram.css.blending.normal(img_a, img_b) + elif mode == "overlay": + out_image = pilgram.css.blending.overlay(img_a, img_b) + elif mode == "screen": + out_image = pilgram.css.blending.screen(img_a, img_b) + elif mode == "soft_light": + out_image = pilgram.css.blending.soft_light(img_a, img_b) + else: + out_image = img_a + + out_image = out_image.convert("RGB") + + # Blend image + blend_mask = Image.new(mode="L", size=img_a.size, + color=(round(blend_percentage * 255))) + blend_mask = ImageOps.invert(blend_mask) + out_image = Image.composite(img_a, out_image, blend_mask) + + return (pil2tensor(out_image), ) + + +# IMAGE BLEND NODE + +class WAS_Image_Blend: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_a": ("IMAGE",), + "image_b": ("IMAGE",), + "blend_percentage": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "image_blend" + + CATEGORY = "WAS Suite/Image" + + def image_blend(self, image_a, image_b, blend_percentage): + + # Convert images to PIL + img_a = tensor2pil(image_a) + img_b = tensor2pil(image_b) + + # Blend image + blend_mask = Image.new(mode="L", size=img_a.size, + color=(round(blend_percentage * 255))) + blend_mask = ImageOps.invert(blend_mask) + img_result = Image.composite(img_a, img_b, blend_mask) + + del img_a, img_b, blend_mask + + return (pil2tensor(img_result), ) + + + +# IMAGE MONITOR DISTORTION FILTER + +class WAS_Image_Monitor_Distortion_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "mode": (["Digital Distortion", "Signal Distortion", "TV Distortion"],), + "amplitude": ("INT", {"default": 5, "min": 1, "max": 255, "step": 1}), + "offset": ("INT", {"default": 10, "min": 1, "max": 255, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "image_monitor_filters" + + CATEGORY = "WAS Suite/Image/Filter" + + def image_monitor_filters(self, image, mode="Digital Distortion", amplitude=5, offset=5): + + # Convert images to PIL + image = tensor2pil(image) + + # WAS Filters + WTools = WAS_Tools_Class() + + # Apply image effect + if mode: + if mode == 'Digital Distortion': + image = WTools.digital_distortion(image, amplitude, offset) + elif mode == 'Signal Distortion': + image = WTools.signal_distortion(image, amplitude) + elif mode == 'TV Distortion': + image = WTools.tv_vhs_distortion(image, amplitude) + else: + image = image + + return (pil2tensor(image), ) + + + +# IMAGE PERLIN NOISE + +class WAS_Image_Perlin_Noise: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "width": ("INT", {"default": 512, "max": 2048, "min": 64, "step": 1}), + "height": ("INT", {"default": 512, "max": 2048, "min": 64, "step": 1}), + "scale": ("INT", {"default": 100, "max": 2048, "min": 2, "step": 1}), + "octaves": ("INT", {"default": 4, "max": 8, "min": 0, "step": 1}), + "persistence": ("FLOAT", {"default": 0.5, "max": 100.0, "min": 0.01, "step": 0.01}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "perlin_noise" + + CATEGORY = "WAS Suite/Image/Generate/Noise" + + def perlin_noise(self, width, height, scale, octaves, persistence, seed): + + WTools = WAS_Tools_Class() + + image = WTools.perlin_noise(width, height, octaves, persistence, scale, seed) + + return (pil2tensor(image), ) + + +# IMAGE PERLIN POWER FRACTAL + +class WAS_Image_Perlin_Power_Fractal: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "width": ("INT", {"default": 512, "max": 8192, "min": 64, "step": 1}), + "height": ("INT", {"default": 512, "max": 8192, "min": 64, "step": 1}), + "scale": ("INT", {"default": 100, "max": 2048, "min": 2, "step": 1}), + "octaves": ("INT", {"default": 4, "max": 8, "min": 0, "step": 1}), + "persistence": ("FLOAT", {"default": 0.5, "max": 100.0, "min": 0.01, "step": 0.01}), + "lacunarity": ("FLOAT", {"default": 2.0, "max": 100.0, "min": 0.01, "step": 0.01}), + "exponent": ("FLOAT", {"default": 2.0, "max": 100.0, "min": 0.01, "step": 0.01}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "perlin_power_fractal" + + CATEGORY = "WAS Suite/Image/Generate/Noise" + + def perlin_power_fractal(self, width, height, scale, octaves, persistence, lacunarity, exponent, seed): + + WTools = WAS_Tools_Class() + + image = WTools.perlin_power_fractal(width, height, octaves, persistence, lacunarity, exponent, scale, seed) + + return (pil2tensor(image), ) + + +# IMAGE VORONOI NOISE FILTER + +class WAS_Image_Voronoi_Noise_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "width": ("INT", {"default": 512, "max": 4096, "min": 64, "step": 1}), + "height": ("INT", {"default": 512, "max": 4096, "min": 64, "step": 1}), + "density": ("INT", {"default": 50, "max": 256, "min": 10, "step": 2}), + "modulator": ("INT", {"default": 0, "max": 8, "min": 0, "step": 1}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + }, + "optional": { + "flat": (["False", "True"],), + "RGB_output": (["True", "False"],), + } + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "voronoi_noise_filter" + + CATEGORY = "WAS Suite/Image/Generate/Noise" + + def voronoi_noise_filter(self, width, height, density, modulator, seed, flat="False", RGB_output="True"): + + WTools = WAS_Tools_Class() + + image = WTools.worley_noise(height=height, width=width, density=density, option=modulator, use_broadcast_ops=True, seed=seed, flat=(flat == "True")).image + + if RGB_output == "True": + image = image.convert("RGB") + else: + image = image.convert("L") + + return (pil2tensor(image), ) + +# IMAGE POWER NOISE + +class WAS_Image_Power_Noise: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "width": ("INT", {"default": 512, "max": 4096, "min": 64, "step": 1}), + "height": ("INT", {"default": 512, "max": 4096, "min": 64, "step": 1}), + "frequency": ("FLOAT", {"default": 0.5, "max": 10.0, "min": 0.0, "step": 0.01}), + "attenuation": ("FLOAT", {"default": 0.5, "max": 10.0, "min": 0.0, "step": 0.01}), + "noise_type": (["grey", "white", "pink", "blue", "green", "mix"],), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "power_noise" + + CATEGORY = "WAS Suite/Image/Generate/Noise" + + def power_noise(self, width, height, frequency, attenuation, noise_type, seed): + + noise_image = self.generate_power_noise(width, height, frequency, attenuation, noise_type, seed) + + return (pil2tensor(noise_image), ) + + def generate_power_noise(self, width, height, frequency=None, attenuation=None, noise_type="white", seed=None): + def white_noise(width, height): + noise = np.random.random((height, width)) + return noise + + def grey_noise(width, height, attenuation): + noise = np.random.normal(0, attenuation, (height, width)) + return noise + + def blue_noise(width, height, frequency, attenuation): + noise = grey_noise(width, height, attenuation) + scale = 1.0 / (width * height) + fy = np.fft.fftfreq(height)[:, np.newaxis] ** 2 + fx = np.fft.fftfreq(width) ** 2 + f = fy + fx + power = np.sqrt(f) + power[0, 0] = 1 + noise = np.fft.ifft2(np.fft.fft2(noise) / power) + noise *= scale / noise.std() + return np.real(noise) + + def green_noise(width, height, frequency, attenuation): + noise = grey_noise(width, height, attenuation) + scale = 1.0 / (width * height) + fy = np.fft.fftfreq(height)[:, np.newaxis] ** 2 + fx = np.fft.fftfreq(width) ** 2 + f = fy + fx + power = np.sqrt(f) + power[0, 0] = 1 + noise = np.fft.ifft2(np.fft.fft2(noise) / np.sqrt(power)) + noise *= scale / noise.std() + return np.real(noise) + + def pink_noise(width, height, frequency, attenuation): + noise = grey_noise(width, height, attenuation) + scale = 1.0 / (width * height) + fy = np.fft.fftfreq(height)[:, np.newaxis] ** 2 + fx = np.fft.fftfreq(width) ** 2 + f = fy + fx + power = np.sqrt(f) + power[0, 0] = 1 + noise = np.fft.ifft2(np.fft.fft2(noise) * power) + noise *= scale / noise.std() + return np.real(noise) + + def blue_noise_mask(width, height, frequency, attenuation, seed, num_masks=3): + masks = [] + for i in range(num_masks): + mask_seed = seed + i + np.random.seed(mask_seed) + mask = blue_noise(width, height, frequency, attenuation) + masks.append(mask) + return masks + + def blend_noise(width, height, masks, noise_types, attenuations): + blended_image = Image.new("L", (width, height), color=0) + fy = np.fft.fftfreq(height)[:, np.newaxis] ** 2 + fx = np.fft.fftfreq(width) ** 2 + f = fy + fx + i = 0 + for mask, noise_type, attenuation in zip(masks, noise_types, attenuations): + mask = Image.fromarray((255 * (mask - np.min(mask)) / (np.max(mask) - np.min(mask))).astype(np.uint8).real) + if noise_type == "white": + noise = white_noise(width, height) + noise = Image.fromarray((255 * (noise - np.min(noise)) / (np.max(noise) - np.min(noise))).astype(np.uint8).real) + elif noise_type == "grey": + noise = grey_noise(width, height, attenuation) + noise = Image.fromarray((255 * (noise - np.min(noise)) / (np.max(noise) - np.min(noise))).astype(np.uint8).real) + elif noise_type == "pink": + noise = pink_noise(width, height, frequency, attenuation) + noise = Image.fromarray((255 * (noise - np.min(noise)) / (np.max(noise) - np.min(noise))).astype(np.uint8).real) + elif noise_type == "green": + noise = green_noise(width, height, frequency, attenuation) + noise = Image.fromarray((255 * (noise - np.min(noise)) / (np.max(noise) - np.min(noise))).astype(np.uint8).real) + elif noise_type == "blue": + noise = blue_noise(width, height, frequency, attenuation) + noise = Image.fromarray((255 * (noise - np.min(noise)) / (np.max(noise) - np.min(noise))).astype(np.uint8).real) + + blended_image = Image.composite(blended_image, noise, mask) + i += 1 + + return np.asarray(blended_image) + + def shorten_to_range(value, min_value, max_value): + range_length = max_value - min_value + 1 + return ((value - min_value) % range_length) + min_value + + if seed is not None: + if seed > 4294967294: + seed = shorten_to_range(seed, 0, 4294967293) + cstr(f"Seed too large for power noise; rescaled to: {seed}").warning.print() + + np.random.seed(seed) + + if noise_type == "white": + noise = white_noise(width, height) + elif noise_type == "grey": + noise = grey_noise(width, height, attenuation) + elif noise_type == "pink": + if frequency is None: + cstr("Pink noise requires a frequency value.").error.print() + return None + noise = pink_noise(width, height, frequency, attenuation) + elif noise_type == "green": + if frequency is None: + cstr("Green noise requires a frequency value.").error.print() + return None + noise = green_noise(width, height, frequency, attenuation) + elif noise_type == "blue": + if frequency is None: + cstr("Blue noise requires a frequency value.").error.print() + return None + noise = blue_noise(width, height, frequency, attenuation) + elif noise_type == "mix": + if frequency is None: + cstr("Mix noise requires a frequency value.").error.print() + return None + if seed is None: + cstr("Mix noise requires a seed value.").error.print() + return None + + blue_noise_masks = blue_noise_mask(width, height, frequency, attenuation, seed=seed, num_masks=3) + noise_types = ["white", "grey", "pink", "green", "blue"] + attenuations = [attenuation] * len(noise_types) + noise = blend_noise(width, height, blue_noise_masks, noise_types, attenuations) + else: + cstr(f"Unsupported noise type `{noise_type}`").error.print() + return None + if noise_type != 'mix': + noise = 255 * (noise - np.min(noise)) / (np.max(noise) - np.min(noise)) + noise_image = Image.fromarray(noise.astype(np.uint8).real) + + return noise_image.convert("RGB") + +# IMAGE TO NOISE + +class WAS_Image_To_Noise: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "num_colors": ("INT", {"default": 16, "max": 256, "min": 2, "step": 2}), + "black_mix": ("INT", {"default": 0, "max": 20, "min": 0, "step": 1}), + "gaussian_mix": ("FLOAT", {"default": 0.0, "max": 1024, "min": 0, "step": 0.1}), + "brightness": ("FLOAT", {"default": 1.0, "max": 2.0, "min": 0.0, "step": 0.01}), + "output_mode": (["batch","list"],), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + OUTPUT_IS_LIST = (False,) + FUNCTION = "image_to_noise" + + CATEGORY = "WAS Suite/Image/Generate/Noise" + + def image_to_noise(self, images, num_colors, black_mix, gaussian_mix, brightness, output_mode, seed): + + noise_images = [] + for image in images: + noise_images.append(pil2tensor(self.image2noise(tensor2pil(image), num_colors, black_mix, brightness, gaussian_mix, seed))) + if output_mode == "list": + self.OUTPUT_IS_LIST = (True,) + else: + noise_images = torch.cat(noise_images, dim=0) + return (noise_images, ) + + def image2noise(self, image, num_colors=16, black_mix=0, brightness=1.0, gaussian_mix=0, seed=0): + + random.seed(int(seed)) + image = image.quantize(colors=num_colors) + image = image.convert("RGBA") + pixel_data = list(image.getdata()) + random.shuffle(pixel_data) + randomized_image = Image.new("RGBA", image.size) + randomized_image.putdata(pixel_data) + + width, height = image.size + black_noise = Image.new("RGBA", (width, height), (0, 0, 0, 0)) + + for _ in range(black_mix): + for x in range(width): + for y in range(height): + if random.randint(0,1) == 1: + black_noise.putpixel((x, y), (0, 0, 0, 255)) + + randomized_image = Image.alpha_composite(randomized_image, black_noise) + enhancer = ImageEnhance.Brightness(randomized_image) + randomized_image = enhancer.enhance(brightness) + + if gaussian_mix > 0: + original_noise = randomized_image.copy() + randomized_gaussian = randomized_image.filter(ImageFilter.GaussianBlur(radius=gaussian_mix)) + randomized_image = Image.blend(randomized_image, randomized_gaussian, 0.65) + randomized_image = Image.blend(randomized_image, original_noise, 0.25) + + return randomized_image + +# IMAGE MAKE SEAMLESS + +class WAS_Image_Make_Seamless: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "blending": ("FLOAT", {"default": 0.4, "max": 1.0, "min": 0.0, "step": 0.01}), + "tiled": (["true", "false"],), + "tiles": ("INT", {"default": 2, "max": 6, "min": 2, "step": 2}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "make_seamless" + + CATEGORY = "WAS Suite/Image/Process" + + def make_seamless(self, images, blending, tiled, tiles): + + WTools = WAS_Tools_Class() + + seamless_images = [] + for image in images: + seamless_images.append(pil2tensor(WTools.make_seamless(tensor2pil(image), blending, tiled, tiles))) + + seamless_images = torch.cat(seamless_images, dim=0) + + return (seamless_images, ) + + +# IMAGE DISPLACEMENT WARP + +class WAS_Image_Displacement_Warp: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "displacement_maps": ("IMAGE",), + "amplitude": ("FLOAT", {"default": 25.0, "min": -4096, "max": 4096, "step": 0.1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "displace_image" + + CATEGORY = "WAS Suite/Image/Transform" + + def displace_image(self, images, displacement_maps, amplitude): + + WTools = WAS_Tools_Class() + + displaced_images = [] + for i in range(len(images)): + img = tensor2pil(images[i]) + if i < len(displacement_maps): + disp = tensor2pil(displacement_maps[i]) + else: + disp = tensor2pil(displacement_maps[-1]) + disp = self.resize_and_crop(disp, img.size) + displaced_images.append(pil2tensor(WTools.displace_image(img, disp, amplitude))) + + displaced_images = torch.cat(displaced_images, dim=0) + + return (displaced_images, ) + + + def resize_and_crop(self, image, target_size): + width, height = image.size + target_width, target_height = target_size + aspect_ratio = width / height + target_aspect_ratio = target_width / target_height + + if aspect_ratio > target_aspect_ratio: + new_height = target_height + new_width = int(new_height * aspect_ratio) + else: + new_width = target_width + new_height = int(new_width / aspect_ratio) + + image = image.resize((new_width, new_height)) + left = (new_width - target_width) // 2 + top = (new_height - target_height) // 2 + right = left + target_width + bottom = top + target_height + image = image.crop((left, top, right, bottom)) + + return image + +# IMAGE TO BATCH + +class WAS_Image_Batch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + }, + "optional": { + "images_a": ("IMAGE",), + "images_b": ("IMAGE",), + "images_c": ("IMAGE",), + "images_d": ("IMAGE",), + # "images_e": ("IMAGE",), + # "images_f": ("IMAGE",), + # Theoretically, an infinite number of image input parameters can be added. + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("image",) + FUNCTION = "image_batch" + CATEGORY = "WAS Suite/Image" + + def _check_image_dimensions(self, tensors, names): + reference_dimensions = tensors[0].shape[1:] # Ignore batch dimension + mismatched_images = [names[i] for i, tensor in enumerate(tensors) if tensor.shape[1:] != reference_dimensions] + + if mismatched_images: + raise ValueError(f"WAS Image Batch Warning: Input image dimensions do not match for images: {mismatched_images}") + + def image_batch(self, **kwargs): + batched_tensors = [kwargs[key] for key in kwargs if kwargs[key] is not None] + image_names = [key for key in kwargs if kwargs[key] is not None] + + if not batched_tensors: + raise ValueError("At least one input image must be provided.") + + self._check_image_dimensions(batched_tensors, image_names) + batched_tensors = torch.cat(batched_tensors, dim=0) + return (batched_tensors,) + + +# Latent TO BATCH + +class WAS_Latent_Batch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + }, + "optional": { + "latent_a": ("LATENT",), + "latent_b": ("LATENT",), + "latent_c": ("LATENT",), + "latent_d": ("LATENT",), + }, + } + + RETURN_TYPES = ("LATENT",) + RETURN_NAMES = ("latent",) + FUNCTION = "latent_batch" + CATEGORY = "WAS Suite/Latent" + + def _check_latent_dimensions(self, tensors, names): + dimensions = [(tensor["samples"].shape) for tensor in tensors] + if len(set(dimensions)) > 1: + mismatched_indices = [i for i, dim in enumerate(dimensions) if dim[1] != dimensions[0][1]] + mismatched_latents = [names[i] for i in mismatched_indices] + if mismatched_latents: + raise ValueError(f"WAS latent Batch Warning: Input latent dimensions do not match for latents: {mismatched_latents}") + + def latent_batch(self, **kwargs): + batched_tensors = [kwargs[key] for key in kwargs if kwargs[key] is not None] + latent_names = [key for key in kwargs if kwargs[key] is not None] + + if not batched_tensors: + raise ValueError("At least one input latent must be provided.") + + self._check_latent_dimensions(batched_tensors, latent_names) + samples_out = {} + samples_out["samples"] = torch.cat([tensor["samples"] for tensor in batched_tensors], dim=0) + samples_out["batch_index"] = [] + for tensor in batched_tensors: + cindex = tensor.get("batch_index", list(range(tensor["samples"].shape[0]))) + samples_out["batch_index"] += cindex + return (samples_out,) + + +# MASK TO BATCH + +class WAS_Mask_Batch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "optional": { + "masks_a": ("MASK",), + "masks_b": ("MASK",), + "masks_c": ("MASK",), + "masks_d": ("MASK",), + # "masks_e": ("MASK",), + # "masks_f": ("MASK",), + # Theoretically, an infinite number of mask input parameters can be added. + }, + } + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("masks",) + FUNCTION = "mask_batch" + CATEGORY = "WAS Suite/Image/Masking" + + def _check_mask_dimensions(self, tensors, names): + dimensions = [tensor.shape[1:] for tensor in tensors] # Exclude the batch dimension (if present) + if len(set(dimensions)) > 1: + mismatched_indices = [i for i, dim in enumerate(dimensions) if dim != dimensions[0]] + mismatched_masks = [names[i] for i in mismatched_indices] + raise ValueError(f"WAS Mask Batch Warning: Input mask dimensions do not match for masks: {mismatched_masks}") + + def mask_batch(self, **kwargs): + batched_tensors = [kwargs[key] for key in kwargs if kwargs[key] is not None] + mask_names = [key for key in kwargs if kwargs[key] is not None] + + if not batched_tensors: + raise ValueError("At least one input mask must be provided.") + + self._check_mask_dimensions(batched_tensors, mask_names) + batched_tensors = torch.stack(batched_tensors, dim=0) + batched_tensors = batched_tensors.unsqueeze(1) # Add a channel dimension + return (batched_tensors,) + +# IMAGE GENERATE COLOR PALETTE + +class WAS_Image_Color_Palette: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "colors": ("INT", {"default": 16, "min": 8, "max": 256, "step": 1}), + "mode": (["Chart", "back_to_back"],), + }, + } + + RETURN_TYPES = ("IMAGE","LIST") + RETURN_NAMES = ("image","color_palettes") + FUNCTION = "image_generate_palette" + + CATEGORY = "WAS Suite/Image/Analyze" + + def image_generate_palette(self, image, colors=16, mode="chart"): + + # WAS Filters + WTools = WAS_Tools_Class() + + res_dir = os.path.join(WAS_SUITE_ROOT, 'res') + font = os.path.join(res_dir, 'font.ttf') + + if not os.path.exists(font): + font = None + else: + if mode == "Chart": + cstr(f'Found font at `{font}`').msg.print() + + if len(image) > 1: + palette_strings = [] + palette_images = [] + for img in image: + img = tensor2pil(img) + palette_image, palette = WTools.generate_palette(img, colors, 128, 10, font, 15, mode.lower()) + palette_images.append(pil2tensor(palette_image)) + palette_strings.append(palette) + palette_images = torch.cat(palette_images, dim=0) + return (palette_images, palette_strings) + else: + image = tensor2pil(image) + palette_image, palette = WTools.generate_palette(image, colors, 128, 10, font, 15, mode.lower()) + return (pil2tensor(palette_image), [palette,]) + + +# HEX TO HSL + +class WAS_Hex_to_HSL: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "hex_color": ("STRING", {"default": "#FF0000"}), + }, + "optional": { + "include_alpha": ("BOOLEAN", {"default": False}) + } + } + + RETURN_TYPES = ("INT", "INT", "INT", "FLOAT", "STRING") + RETURN_NAMES = ("hue", "saturation", "lightness", "alpha", "hsl") + + FUNCTION = "hex_to_hsl" + CATEGORY = "WAS Suite/Utilities" + + @staticmethod + def hex_to_hsl(hex_color, include_alpha=False): + if hex_color.startswith("#"): + hex_color = hex_color[1:] + + red = int(hex_color[0:2], 16) / 255.0 + green = int(hex_color[2:4], 16) / 255.0 + blue = int(hex_color[4:6], 16) / 255.0 + alpha = int(hex_color[6:8], 16) / 255.0 if include_alpha and len(hex_color) == 8 else 1.0 + max_val = max(red, green, blue) + min_val = min(red, green, blue) + delta = max_val - min_val + luminance = (max_val + min_val) / 2.0 + + if delta == 0: + hue = 0 + saturation = 0 + else: + saturation = delta / (1 - abs(2 * luminance - 1)) + if max_val == red: + hue = ((green - blue) / delta) % 6 + elif max_val == green: + hue = (blue - red) / delta + 2 + elif max_val == blue: + hue = (red - green) / delta + 4 + hue *= 60 + if hue < 0: + hue += 360 + + luminance = luminance * 100 + saturation = saturation * 100 + + hsl_string = f'hsl({round(hue)}, {round(saturation)}%, {round(luminance)}%)' if not include_alpha else f'hsla({round(hue)}, {round(saturation)}%, {round(luminance)}%, {round(alpha, 2)})' + output = (round(hue), round(saturation), round(luminance), round(alpha, 2), hsl_string) + + return output + + +# HSL TO HEX + + +class WAS_HSL_to_Hex: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "hsl_color": ("STRING", {"default": "hsl(0, 100%, 50%)"}), + } + } + + RETURN_TYPES = ("STRING",) + RETURN_NAMES = ("hex_color",) + + FUNCTION = "hsl_to_hex" + CATEGORY = "WAS Suite/Utilities" + + @staticmethod + def hsl_to_hex(hsl_color): + import re + + hsl_pattern = re.compile(r'hsla?\(\s*(\d+),\s*(\d+)%?,\s*(\d+)%?(?:,\s*([\d.]+))?\s*\)') + match = hsl_pattern.match(hsl_color) + + if not match: + raise ValueError("Invalid HSL(A) color format") + + h, s, l = map(int, match.groups()[:3]) + a = float(match.groups()[3]) if match.groups()[3] else 1.0 + + s /= 100 + l /= 100 + + c = (1 - abs(2 * l - 1)) * s + x = c * (1 - abs((h / 60) % 2 - 1)) + m = l - c/2 + + if 0 <= h < 60: + r, g, b = c, x, 0 + elif 60 <= h < 120: + r, g, b = x, c, 0 + elif 120 <= h < 180: + r, g, b = 0, c, x + elif 180 <= h < 240: + r, g, b = 0, x, c + elif 240 <= h < 300: + r, g, b = x, 0, c + elif 300 <= h < 360: + r, g, b = c, 0, x + else: + r, g, b = 0, 0, 0 + + r = int((r + m) * 255) + g = int((g + m) * 255) + b = int((b + m) * 255) + alpha = int(a * 255) + + hex_color = f'#{r:02X}{g:02X}{b:02X}' + if a < 1: + hex_color += f'{alpha:02X}' + + return (hex_color,) + + +# IMAGE ANALYZE + + +class WAS_Image_Analyze: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "mode": (["Black White Levels", "RGB Levels"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_analyze" + + CATEGORY = "WAS Suite/Image/Analyze" + + def image_analyze(self, image, mode='Black White Levels'): + + # Convert images to PIL + image = tensor2pil(image) + + # WAS Filters + WTools = WAS_Tools_Class() + + # Analye Image + if mode: + if mode == 'Black White Levels': + image = WTools.black_white_levels(image) + elif mode == 'RGB Levels': + image = WTools.channel_frequency(image) + else: + image = image + + return (pil2tensor(image), ) + + +# IMAGE GENERATE GRADIENT + +class WAS_Image_Generate_Gradient: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + gradient_stops = '''0:255,0,0 +25:255,255,255 +50:0,255,0 +75:0,0,255''' + return { + "required": { + "width": ("INT", {"default":512, "max": 4096, "min": 64, "step":1}), + "height": ("INT", {"default":512, "max": 4096, "min": 64, "step":1}), + "direction": (["horizontal", "vertical"],), + "tolerance": ("INT", {"default":0, "max": 255, "min": 0, "step":1}), + "gradient_stops": ("STRING", {"default": gradient_stops, "multiline": True}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_gradient" + + CATEGORY = "WAS Suite/Image/Generate" + + def image_gradient(self, gradient_stops, width=512, height=512, direction='horizontal', tolerance=0): + + import io + + # WAS Filters + WTools = WAS_Tools_Class() + + colors_dict = {} + stops = io.StringIO(gradient_stops.strip().replace(' ','')) + for stop in stops: + parts = stop.split(':') + colors = parts[1].replace('\n','').split(',') + colors_dict[parts[0].replace('\n','')] = colors + + image = WTools.gradient((width, height), direction, colors_dict, tolerance) + + return (pil2tensor(image), ) + +# IMAGE GRADIENT MAP + +class WAS_Image_Gradient_Map: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "gradient_image": ("IMAGE",), + "flip_left_right": (["false", "true"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_gradient_map" + + CATEGORY = "WAS Suite/Image/Filter" + + def image_gradient_map(self, image, gradient_image, flip_left_right='false'): + + # Convert images to PIL + image = tensor2pil(image) + gradient_image = tensor2pil(gradient_image) + + # WAS Filters + WTools = WAS_Tools_Class() + + image = WTools.gradient_map(image, gradient_image, (True if flip_left_right == 'true' else False)) + + return (pil2tensor(image), ) + + +# IMAGE TRANSPOSE + +class WAS_Image_Transpose: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "image_overlay": ("IMAGE",), + "width": ("INT", {"default": 512, "min": -48000, "max": 48000, "step": 1}), + "height": ("INT", {"default": 512, "min": -48000, "max": 48000, "step": 1}), + "X": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}), + "Y": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}), + "rotation": ("INT", {"default": 0, "min": -360, "max": 360, "step": 1}), + "feathering": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_transpose" + + CATEGORY = "WAS Suite/Image/Transform" + + def image_transpose(self, image: torch.Tensor, image_overlay: torch.Tensor, width: int, height: int, X: int, Y: int, rotation: int, feathering: int = 0): + return (pil2tensor(self.apply_transpose_image(tensor2pil(image), tensor2pil(image_overlay), (width, height), (X, Y), rotation, feathering)), ) + + def apply_transpose_image(self, image_bg, image_element, size, loc, rotate=0, feathering=0): + + # Apply transformations to the element image + image_element = image_element.rotate(rotate, expand=True) + image_element = image_element.resize(size) + + # Create a mask for the image with the faded border + if feathering > 0: + mask = Image.new('L', image_element.size, 255) # Initialize with 255 instead of 0 + draw = ImageDraw.Draw(mask) + for i in range(feathering): + alpha_value = int(255 * (i + 1) / feathering) # Invert the calculation for alpha value + draw.rectangle((i, i, image_element.size[0] - i, image_element.size[1] - i), fill=alpha_value) + alpha_mask = Image.merge('RGBA', (mask, mask, mask, mask)) + image_element = Image.composite(image_element, Image.new('RGBA', image_element.size, (0, 0, 0, 0)), alpha_mask) + + # Create a new image of the same size as the base image with an alpha channel + new_image = Image.new('RGBA', image_bg.size, (0, 0, 0, 0)) + new_image.paste(image_element, loc) + + # Paste the new image onto the base image + image_bg = image_bg.convert('RGBA') + image_bg.paste(new_image, (0, 0), new_image) + + return image_bg + + + +# IMAGE RESCALE + +class WAS_Image_Rescale: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "mode": (["rescale", "resize"],), + "supersample": (["true", "false"],), + "resampling": (["lanczos", "nearest", "bilinear", "bicubic"],), + "rescale_factor": ("FLOAT", {"default": 2, "min": 0.01, "max": 16.0, "step": 0.01}), + "resize_width": ("INT", {"default": 1024, "min": 1, "max": 48000, "step": 1}), + "resize_height": ("INT", {"default": 1536, "min": 1, "max": 48000, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_rescale" + + CATEGORY = "WAS Suite/Image/Transform" + + def image_rescale(self, image, mode="rescale", supersample='true', resampling="lanczos", rescale_factor=2, resize_width=1024, resize_height=1024): + scaled_images = [] + for img in image: + scaled_images.append(pil2tensor(self.apply_resize_image(tensor2pil(img), mode, supersample, rescale_factor, resize_width, resize_height, resampling))) + scaled_images = torch.cat(scaled_images, dim=0) + + return (scaled_images, ) + + def apply_resize_image(self, image: Image.Image, mode='scale', supersample='true', factor: int = 2, width: int = 1024, height: int = 1024, resample='bicubic'): + + # Get the current width and height of the image + current_width, current_height = image.size + + # Calculate the new width and height based on the given mode and parameters + if mode == 'rescale': + new_width, new_height = int( + current_width * factor), int(current_height * factor) + else: + new_width = width if width % 8 == 0 else width + (8 - width % 8) + new_height = height if height % 8 == 0 else height + \ + (8 - height % 8) + + # Define a dictionary of resampling filters + resample_filters = { + 'nearest': 0, + 'bilinear': 2, + 'bicubic': 3, + 'lanczos': 1 + } + + # Apply supersample + if supersample == 'true': + image = image.resize((new_width * 8, new_height * 8), resample=Image.Resampling(resample_filters[resample])) + + # Resize the image using the given resampling filter + resized_image = image.resize((new_width, new_height), resample=Image.Resampling(resample_filters[resample])) + + return resized_image + + +# LOAD IMAGE BATCH + +class WAS_Load_Image_Batch: + def __init__(self): + self.HDB = WASDatabase(WAS_HISTORY_DATABASE) + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mode": (["single_image", "incremental_image", "random"],), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "index": ("INT", {"default": 0, "min": 0, "max": 150000, "step": 1}), + "label": ("STRING", {"default": 'Batch 001', "multiline": False}), + "path": ("STRING", {"default": '', "multiline": False}), + "pattern": ("STRING", {"default": '*', "multiline": False}), + "allow_RGBA_output": (["false","true"],), + }, + "optional": { + "filename_text_extension": (["true", "false"],), + } + } + + RETURN_TYPES = ("IMAGE",TEXT_TYPE) + RETURN_NAMES = ("image","filename_text") + FUNCTION = "load_batch_images" + + CATEGORY = "WAS Suite/IO" + + def load_batch_images(self, path, pattern='*', index=0, mode="single_image", seed=0, label='Batch 001', allow_RGBA_output='false', filename_text_extension='true'): + + allow_RGBA_output = (allow_RGBA_output == 'true') + + if not os.path.exists(path): + return (None, ) + fl = self.BatchImageLoader(path, label, pattern) + new_paths = fl.image_paths + if mode == 'single_image': + image, filename = fl.get_image_by_id(index) + if image == None: + cstr(f"No valid image was found for the inded `{index}`").error.print() + return (None, None) + elif mode == 'incremental_image': + image, filename = fl.get_next_image() + if image == None: + cstr(f"No valid image was found for the next ID. Did you remove images from the source directory?").error.print() + return (None, None) + else: + random.seed(seed) + newindex = int(random.random() * len(fl.image_paths)) + image, filename = fl.get_image_by_id(newindex) + if image == None: + cstr(f"No valid image was found for the next ID. Did you remove images from the source directory?").error.print() + return (None, None) + + + # Update history + update_history_images(new_paths) + + if not allow_RGBA_output: + image = image.convert("RGB") + + if filename_text_extension == "false": + filename = os.path.splitext(filename)[0] + + return (pil2tensor(image), filename) + + class BatchImageLoader: + def __init__(self, directory_path, label, pattern): + self.WDB = WDB + self.image_paths = [] + self.load_images(directory_path, pattern) + self.image_paths.sort() + stored_directory_path = self.WDB.get('Batch Paths', label) + stored_pattern = self.WDB.get('Batch Patterns', label) + if stored_directory_path != directory_path or stored_pattern != pattern: + self.index = 0 + self.WDB.insert('Batch Counters', label, 0) + self.WDB.insert('Batch Paths', label, directory_path) + self.WDB.insert('Batch Patterns', label, pattern) + else: + self.index = self.WDB.get('Batch Counters', label) + self.label = label + + def load_images(self, directory_path, pattern): + for file_name in glob.glob(os.path.join(glob.escape(directory_path), pattern), recursive=True): + if file_name.lower().endswith(ALLOWED_EXT): + abs_file_path = os.path.abspath(file_name) + self.image_paths.append(abs_file_path) + + def get_image_by_id(self, image_id): + if image_id < 0 or image_id >= len(self.image_paths): + cstr(f"Invalid image index `{image_id}`").error.print() + return + i = Image.open(self.image_paths[image_id]) + i = ImageOps.exif_transpose(i) + return (i, os.path.basename(self.image_paths[image_id])) + + def get_next_image(self): + if self.index >= len(self.image_paths): + self.index = 0 + image_path = self.image_paths[self.index] + self.index += 1 + if self.index == len(self.image_paths): + self.index = 0 + cstr(f'{cstr.color.YELLOW}{self.label}{cstr.color.END} Index: {self.index}').msg.print() + self.WDB.insert('Batch Counters', self.label, self.index) + i = Image.open(image_path) + i = ImageOps.exif_transpose(i) + return (i, os.path.basename(image_path)) + + def get_current_image(self): + if self.index >= len(self.image_paths): + self.index = 0 + image_path = self.image_paths[self.index] + return os.path.basename(image_path) + + @classmethod + def IS_CHANGED(cls, **kwargs): + if kwargs['mode'] != 'single_image': + return float("NaN") + else: + fl = WAS_Load_Image_Batch.BatchImageLoader(kwargs['path'], kwargs['label'], kwargs['pattern']) + filename = fl.get_current_image() + image = os.path.join(kwargs['path'], filename) + sha = get_sha256(image) + return sha + + +# IMAGE HISTORY NODE + +class WAS_Image_History: + def __init__(self): + self.HDB = WASDatabase(WAS_HISTORY_DATABASE) + self.conf = getSuiteConfig() + + @classmethod + def INPUT_TYPES(cls): + HDB = WASDatabase(WAS_HISTORY_DATABASE) + conf = getSuiteConfig() + paths = ['No History'] + if HDB.catExists("History") and HDB.keyExists("History", "Images"): + history_paths = HDB.get("History", "Images") + if conf.__contains__('history_display_limit'): + history_paths = history_paths[-conf['history_display_limit']:] + paths = [] + for path_ in history_paths: + paths.append(os.path.join('...'+os.sep+os.path.basename(os.path.dirname(path_)), os.path.basename(path_))) + + return { + "required": { + "image": (paths,), + }, + } + + RETURN_TYPES = ("IMAGE",TEXT_TYPE) + RETURN_NAMES = ("image","filename_text") + FUNCTION = "image_history" + + CATEGORY = "WAS Suite/History" + + def image_history(self, image): + self.HDB = WASDatabase(WAS_HISTORY_DATABASE) + paths = {} + if self.HDB.catExists("History") and self.HDB.keyExists("History", "Images"): + history_paths = self.HDB.get("History", "Images") + for path_ in history_paths: + paths.update({os.path.join('...'+os.sep+os.path.basename(os.path.dirname(path_)), os.path.basename(path_)): path_}) + if os.path.exists(paths[image]) and paths.__contains__(image): + return (pil2tensor(Image.open(paths[image]).convert('RGB')), os.path.basename(paths[image])) + else: + cstr(f"The image `{image}` does not exist!").error.print() + return (pil2tensor(Image.new('RGB', (512,512), (0, 0, 0, 0))), 'null') + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + +# IMAGE PADDING + +class WAS_Image_Stitch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_a": ("IMAGE",), + "image_b": ("IMAGE",), + "stitch": (["top", "left", "bottom", "right"],), + "feathering": ("INT", {"default": 50, "min": 0, "max": 2048, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_stitching" + + CATEGORY = "WAS Suite/Image/Transform" + + def image_stitching(self, image_a, image_b, stitch="right", feathering=50): + + valid_stitches = ["top", "left", "bottom", "right"] + if stitch not in valid_stitches: + cstr(f"The stitch mode `{stitch}` is not valid. Valid sitch modes are {', '.join(valid_stitches)}").error.print() + if feathering > 2048: + cstr(f"The stitch feathering of `{feathering}` is too high. Please choose a value between `0` and `2048`").error.print() + + WTools = WAS_Tools_Class(); + + stitched_image = WTools.stitch_image(tensor2pil(image_a), tensor2pil(image_b), stitch, feathering) + + return (pil2tensor(stitched_image), ) + + + +# IMAGE PADDING + +class WAS_Image_Padding: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "feathering": ("INT", {"default": 120, "min": 0, "max": 2048, "step": 1}), + "feather_second_pass": (["true", "false"],), + "left_padding": ("INT", {"default": 512, "min": 8, "max": 48000, "step": 1}), + "right_padding": ("INT", {"default": 512, "min": 8, "max": 48000, "step": 1}), + "top_padding": ("INT", {"default": 512, "min": 8, "max": 48000, "step": 1}), + "bottom_padding": ("INT", {"default": 512, "min": 8, "max": 48000, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE", "IMAGE") + RETURN_NAMES = ("IMAGE", "MASK") + FUNCTION = "image_padding" + + CATEGORY = "WAS Suite/Image/Transform" + + def image_padding(self, image, feathering, left_padding, right_padding, top_padding, bottom_padding, feather_second_pass=True): + padding = self.apply_image_padding(tensor2pil( + image), left_padding, right_padding, top_padding, bottom_padding, feathering, second_pass=feather_second_pass) + return (pil2tensor(padding[0]), pil2tensor(padding[1])) + + def apply_image_padding(self, image, left_pad=100, right_pad=100, top_pad=100, bottom_pad=100, feather_radius=50, second_pass=True): + # Create a mask for the feathered edge + mask = Image.new('L', image.size, 255) + draw = ImageDraw.Draw(mask) + + # Draw black rectangles at each edge of the image with the specified feather radius + draw.rectangle((0, 0, feather_radius*2, image.height), fill=0) + draw.rectangle((image.width-feather_radius*2, 0, + image.width, image.height), fill=0) + draw.rectangle((0, 0, image.width, feather_radius*2), fill=0) + draw.rectangle((0, image.height-feather_radius*2, + image.width, image.height), fill=0) + + # Blur the mask to create a smooth gradient between the black shapes and the white background + mask = mask.filter(ImageFilter.GaussianBlur(radius=feather_radius)) + + # Apply mask if second_pass is False, apply both masks if second_pass is True + if second_pass: + + # Create a second mask for the additional feathering pass + mask2 = Image.new('L', image.size, 255) + draw2 = ImageDraw.Draw(mask2) + + # Draw black rectangles at each edge of the image with a smaller feather radius + feather_radius2 = int(feather_radius / 4) + draw2.rectangle((0, 0, feather_radius2*2, image.height), fill=0) + draw2.rectangle((image.width-feather_radius2*2, 0, + image.width, image.height), fill=0) + draw2.rectangle((0, 0, image.width, feather_radius2*2), fill=0) + draw2.rectangle((0, image.height-feather_radius2*2, + image.width, image.height), fill=0) + + # Blur the mask to create a smooth gradient between the black shapes and the white background + mask2 = mask2.filter( + ImageFilter.GaussianBlur(radius=feather_radius2)) + + feathered_im = Image.new('RGBA', image.size, (0, 0, 0, 0)) + feathered_im.paste(image, (0, 0), mask) + feathered_im.paste(image, (0, 0), mask) + + # Apply the second mask to the feathered image + feathered_im.paste(image, (0, 0), mask2) + feathered_im.paste(image, (0, 0), mask2) + + else: + + # Apply the fist maskk + feathered_im = Image.new('RGBA', image.size, (0, 0, 0, 0)) + feathered_im.paste(image, (0, 0), mask) + + # Calculate the new size of the image with padding added + new_size = (feathered_im.width + left_pad + right_pad, + feathered_im.height + top_pad + bottom_pad) + + # Create a new transparent image with the new size + new_im = Image.new('RGBA', new_size, (0, 0, 0, 0)) + + # Paste the feathered image onto the new image with the padding + new_im.paste(feathered_im, (left_pad, top_pad)) + + # Create Padding Mask + padding_mask = Image.new('L', new_size, 0) + + # Create a mask where the transparent pixels have a gradient + gradient = [(int(255 * (1 - p[3] / 255)) if p[3] != 0 else 255) + for p in new_im.getdata()] + padding_mask.putdata(gradient) + + # Save the new image with alpha channel as a PNG file + return (new_im, padding_mask.convert('RGB')) + + +# IMAGE THRESHOLD NODE + +class WAS_Image_Threshold: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_threshold" + + CATEGORY = "WAS Suite/Image/Process" + + def image_threshold(self, image, threshold=0.5): + images = [] + for img in image: + images.append(pil2tensor(self.apply_threshold(tensor2pil(img), threshold))) + return (torch.cat(images, dim=0), ) + + def apply_threshold(self, input_image, threshold=0.5): + # Convert the input image to grayscale + grayscale_image = input_image.convert('L') + + # Apply the threshold to the grayscale image + threshold_value = int(threshold * 255) + thresholded_image = grayscale_image.point( + lambda x: 255 if x >= threshold_value else 0, mode='L') + + return thresholded_image + + +# IMAGE CHROMATIC ABERRATION NODE + +class WAS_Image_Chromatic_Aberration: + + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "red_offset": ("INT", {"default": 2, "min": -255, "max": 255, "step": 1}), + "green_offset": ("INT", {"default": -1, "min": -255, "max": 255, "step": 1}), + "blue_offset": ("INT", {"default": 1, "min": -255, "max": 255, "step": 1}), + "intensity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), + "fade_radius": ("INT", {"default": 12, "min": 0, "max": 1024, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_chromatic_aberration" + + CATEGORY = "WAS Suite/Image/Filter" + + def image_chromatic_aberration(self, image, red_offset=4, green_offset=2, blue_offset=0, intensity=1, fade_radius=12): + return (pil2tensor(self.apply_chromatic_aberration(tensor2pil(image), red_offset, green_offset, blue_offset, intensity, fade_radius)), ) + + def apply_chromatic_aberration(self, img, r_offset, g_offset, b_offset, intensity, fade_radius): + + def lingrad(size, direction, white_ratio): + image = Image.new('RGB', size) + draw = ImageDraw.Draw(image) + if direction == 'vertical': + black_end = size[1] - white_ratio + range_start = 0 + range_end = size[1] + range_step = 1 + for y in range(range_start, range_end, range_step): + color_ratio = y / size[1] + if y <= black_end: + color = (0, 0, 0) + else: + color_value = int(((y - black_end) / (size[1] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(0, y), (size[0], y)], fill=color) + elif direction == 'horizontal': + black_end = size[0] - white_ratio + range_start = 0 + range_end = size[0] + range_step = 1 + for x in range(range_start, range_end, range_step): + color_ratio = x / size[0] + if x <= black_end: + color = (0, 0, 0) + else: + color_value = int(((x - black_end) / (size[0] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(x, 0), (x, size[1])], fill=color) + + return image.convert("L") + + def create_fade_mask(size, fade_radius): + mask = Image.new("L", size, 255) + + left = ImageOps.invert(lingrad(size, 'horizontal', int(fade_radius * 2))) + right = left.copy().transpose(Image.FLIP_LEFT_RIGHT) + top = ImageOps.invert(lingrad(size, 'vertical', int(fade_radius *2))) + bottom = top.copy().transpose(Image.FLIP_TOP_BOTTOM) + + # Multiply masks with the original mask image + mask = ImageChops.multiply(mask, left) + mask = ImageChops.multiply(mask, right) + mask = ImageChops.multiply(mask, top) + mask = ImageChops.multiply(mask, bottom) + mask = ImageChops.multiply(mask, mask) + + return mask + + # split the channels of the image + r, g, b = img.split() + + # apply the offset to each channel + r_offset_img = ImageChops.offset(r, r_offset, 0) + g_offset_img = ImageChops.offset(g, 0, g_offset) + b_offset_img = ImageChops.offset(b, 0, b_offset) + + # merge the channels with the offsets + merged = Image.merge("RGB", (r_offset_img, g_offset_img, b_offset_img)) + + # create fade masks for blending + fade_mask = create_fade_mask(img.size, fade_radius) + + # merge the blended channels back into an RGB image + result = Image.composite(merged, img, fade_mask).convert("RGB") + + return result + + +# IMAGE BLOOM FILTER + +class WAS_Image_Bloom_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "radius": ("FLOAT", {"default": 10, "min": 0.0, "max": 1024, "step": 0.1}), + "intensity": ("FLOAT", {"default": 1, "min": 0.0, "max": 1.0, "step": 0.1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_bloom" + + CATEGORY = "WAS Suite/Image/Filter" + + def image_bloom(self, image, radius=0.5, intensity=1.0): + return (pil2tensor(self.apply_bloom_filter(tensor2pil(image), radius, intensity)), ) + + def apply_bloom_filter(self, input_image, radius, bloom_factor): + # Apply a blur filter to the input image + blurred_image = input_image.filter( + ImageFilter.GaussianBlur(radius=radius)) + + # Subtract the blurred image from the input image to create a high-pass filter + high_pass_filter = ImageChops.subtract(input_image, blurred_image) + + # Create a blurred version of the bloom filter + bloom_filter = high_pass_filter.filter( + ImageFilter.GaussianBlur(radius=radius*2)) + + # Adjust brightness and levels of bloom filter + bloom_filter = ImageEnhance.Brightness(bloom_filter).enhance(2.0) + + # Multiply the bloom image with the bloom factor + bloom_filter = ImageChops.multiply(bloom_filter, Image.new('RGB', input_image.size, (int( + 255 * bloom_factor), int(255 * bloom_factor), int(255 * bloom_factor)))) + + # Multiply the bloom filter with the original image using the bloom factor + blended_image = ImageChops.screen(input_image, bloom_filter) + + return blended_image + + +# IMAGE ROTATE HUE + +class WAS_Image_Rotate_Hue: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "hue_shift": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "rotate_hue" + + CATEGORY = "WAS Suite/Image/Adjustment" + + def rotate_hue(self, image, hue_shift=0.0): + if hue_shift > 1.0 or hue_shift < 0.0: + cstr(f"The hue_shift `{cstr.color.LIGHTYELLOW}{hue_shift}{cstr.color.END}` is out of range. Valid range is {cstr.color.BOLD}0.0 - 1.0{cstr.color.END}").error.print() + hue_shift = 0.0 + shifted_hue = pil2tensor(self.hue_rotation(image, hue_shift)) + return (shifted_hue, ) + + def hue_rotation(self, image, hue_shift=0.0): + import colorsys + if hue_shift > 1.0 or hue_shift < 0.0: + print(f"The hue_shift '{hue_shift}' is out of range. Valid range is 0.0 - 1.0") + hue_shift = 0.0 + + pil_image = tensor2pil(image) + width, height = pil_image.size + rotated_image = Image.new("RGB", (width, height)) + + for x in range(width): + for y in range(height): + r, g, b = pil_image.getpixel((x, y)) + h, l, s = colorsys.rgb_to_hls(r / 255, g / 255, b / 255) + h = (h + hue_shift) % 1.0 + r, g, b = colorsys.hls_to_rgb(h, l, s) + r, g, b = int(r * 255), int(g * 255), int(b * 255) + rotated_image.putpixel((x, y), (r, g, b)) + + return rotated_image + + +# IMAGE REMOVE COLOR + +class WAS_Image_Remove_Color: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "target_red": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "target_green": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "target_blue": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "replace_red": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "replace_green": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "replace_blue": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "clip_threshold": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_remove_color" + + CATEGORY = "WAS Suite/Image/Process" + + def image_remove_color(self, image, clip_threshold=10, target_red=255, target_green=255, target_blue=255, replace_red=255, replace_green=255, replace_blue=255): + return (pil2tensor(self.apply_remove_color(tensor2pil(image), clip_threshold, (target_red, target_green, target_blue), (replace_red, replace_green, replace_blue))), ) + + def apply_remove_color(self, image, threshold=10, color=(255, 255, 255), rep_color=(0, 0, 0)): + # Create a color image with the same size as the input image + color_image = Image.new('RGB', image.size, color) + + # Calculate the difference between the input image and the color image + diff_image = ImageChops.difference(image, color_image) + + # Convert the difference image to grayscale + gray_image = diff_image.convert('L') + + # Apply a threshold to the grayscale difference image + mask_image = gray_image.point(lambda x: 255 if x > threshold else 0) + + # Invert the mask image + mask_image = ImageOps.invert(mask_image) + + # Apply the mask to the original image + result_image = Image.composite( + Image.new('RGB', image.size, rep_color), image, mask_image) + + return result_image + + +# IMAGE REMOVE BACKGROUND + +class WAS_Remove_Background: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "mode": (["background", "foreground"],), + "threshold": ("INT", {"default": 127, "min": 0, "max": 255, "step": 1}), + "threshold_tolerance": ("INT", {"default": 2, "min": 1, "max": 24, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "image_remove_background" + + CATEGORY = "WAS Suite/Image/Process" + + def image_remove_background(self, images, mode='background', threshold=127, threshold_tolerance=2): + return (self.remove_background(images, mode, threshold, threshold_tolerance), ) + + def remove_background(self, image, mode, threshold, threshold_tolerance): + images = [] + image = [tensor2pil(img) for img in image] + for img in image: + grayscale_image = img.convert('L') + if mode == 'background': + grayscale_image = ImageOps.invert(grayscale_image) + threshold = 255 - threshold # adjust the threshold for "background" mode + blurred_image = grayscale_image.filter( + ImageFilter.GaussianBlur(radius=threshold_tolerance)) + binary_image = blurred_image.point( + lambda x: 0 if x < threshold else 255, '1') + mask = binary_image.convert('L') + inverted_mask = ImageOps.invert(mask) + transparent_image = img.copy() + transparent_image.putalpha(inverted_mask) + images.append(pil2tensor(transparent_image)) + batch = torch.cat(images, dim=0) + + return batch + +# IMAGE REMBG +# Sam model needs additional input, may need to be new node entirely +# See: https://github.com/danielgatis/rembg/blob/main/USAGE.md#using-input-points +# u2net_cloth_seg model needs additional inputs, may create a new node +# An undocumented feature "putaplha" changes how alpha is applied, but does not appear to make a difference + +class WAS_Remove_Rembg: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "transparency": ("BOOLEAN", {"default": True},), + "model": (["u2net", "u2netp", "u2net_human_seg", "silueta", "isnet-general-use", "isnet-anime"],), + "post_processing": ("BOOLEAN", {"default": False}), + "only_mask": ("BOOLEAN", {"default": False},), + "alpha_matting": ("BOOLEAN", {"default": False},), + "alpha_matting_foreground_threshold": ("INT", {"default": 240, "min": 0, "max": 255}), + "alpha_matting_background_threshold": ("INT", {"default": 10, "min": 0, "max": 255}), + "alpha_matting_erode_size": ("INT", {"default": 10, "min": 0, "max": 255}), + "background_color": (["none", "black", "white", "magenta", "chroma green", "chroma blue"],), + # "putalpha": ("BOOLEAN", {"default": True},), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "image_rembg" + + CATEGORY = "WAS Suite/Image/AI" + + # A helper function to convert from strings to logical boolean + # Conforms to https://docs.python.org/3/library/stdtypes.html#truth-value-testing + # With the addition of evaluating string representations of Falsey types + def __convertToBool(self, x): + + # Evaluate string representation of False types + if type(x) == str: + x = x.strip() + if (x.lower() == 'false' + or x.lower() == 'none' + or x == '0' + or x == '0.0' + or x == '0j' + or x == "''" + or x == '""' + or x == "()" + or x == "[]" + or x == "{}" + or x.lower() == "decimal(0)" + or x.lower() == "fraction(0,1)" + or x.lower() == "set()" + or x.lower() == "range(0)" + ): + return False + else: + return True + + # Anything else will be evaluated by the bool function + return bool(x) + + def image_rembg( + self, + images, + transparency=True, + model="u2net", + alpha_matting=False, + alpha_matting_foreground_threshold=240, + alpha_matting_background_threshold=10, + alpha_matting_erode_size=10, + post_processing=False, + only_mask=False, + background_color="none", + # putalpha = False, + ): + + # ComfyUI will allow strings in place of booleans, validate the input. + transparency = transparency if type(transparency) is bool else self.__convertToBool(transparency) + alpha_matting = alpha_matting if type(alpha_matting) is bool else self.__convertToBool(alpha_matting) + post_processing = post_processing if type(post_processing) is bool else self.__convertToBool(post_processing) + only_mask = only_mask if type(only_mask) is bool else self.__convertToBool(only_mask) + + if "rembg" not in packages(): + install_package("rembg") + + from rembg import remove, new_session + + os.environ['U2NET_HOME'] = os.path.join(MODELS_DIR, 'rembg') + os.makedirs(os.environ['U2NET_HOME'], exist_ok=True) + + # Set bgcolor + bgrgba = None + if background_color == "black": + bgrgba = [0, 0, 0, 255] + elif background_color == "white": + bgrgba = [255, 255, 255, 255] + elif background_color == "magenta": + bgrgba = [255, 0, 255, 255] + elif background_color == "chroma green": + bgrgba = [0, 177, 64, 255] + elif background_color == "chroma blue": + bgrgba = [0, 71, 187, 255] + else: + bgrgba = None + + if transparency and bgrgba is not None: + bgrgba[3] = 0 + + batch_tensor = [] + for image in images: + image = tensor2pil(image) + batch_tensor.append(pil2tensor( + remove( + image, + session=new_session(model), + post_process_mask=post_processing, + alpha_matting=alpha_matting, + alpha_matting_foreground_threshold=alpha_matting_foreground_threshold, + alpha_matting_background_threshold=alpha_matting_background_threshold, + alpha_matting_erode_size=alpha_matting_erode_size, + only_mask=only_mask, + bgcolor=bgrgba, + # putalpha = putalpha, + ) + .convert(('RGBA' if transparency else 'RGB')))) + batch_tensor = torch.cat(batch_tensor, dim=0) + + return (batch_tensor,) + + +# IMAGE BLEND MASK NODE + +class WAS_Image_Blend_Mask: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_a": ("IMAGE",), + "image_b": ("IMAGE",), + "mask": ("IMAGE",), + "blend_percentage": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_blend_mask" + + CATEGORY = "WAS Suite/Image" + + def image_blend_mask(self, image_a, image_b, mask, blend_percentage): + + # Convert images to PIL + img_a = tensor2pil(image_a) + img_b = tensor2pil(image_b) + mask = ImageOps.invert(tensor2pil(mask).convert('L')) + + # Mask image + masked_img = Image.composite(img_a, img_b, mask.resize(img_a.size)) + + # Blend image + blend_mask = Image.new(mode="L", size=img_a.size, + color=(round(blend_percentage * 255))) + blend_mask = ImageOps.invert(blend_mask) + img_result = Image.composite(img_a, masked_img, blend_mask) + + del img_a, img_b, blend_mask, mask + + return (pil2tensor(img_result), ) + + +# IMAGE BLANK NOE + + +class WAS_Image_Blank: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "width": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 1}), + "height": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 1}), + "red": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "green": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + "blue": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), + } + } + RETURN_TYPES = ("IMAGE",) + FUNCTION = "blank_image" + + CATEGORY = "WAS Suite/Image" + + def blank_image(self, width, height, red, green, blue): + + # Ensure multiples + width = (width // 8) * 8 + height = (height // 8) * 8 + + # Blend image + blank = Image.new(mode="RGB", size=(width, height), + color=(red, green, blue)) + + return (pil2tensor(blank), ) + + +# IMAGE HIGH PASS + +class WAS_Image_High_Pass_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "radius": ("INT", {"default": 10, "min": 1, "max": 500, "step": 1}), + "strength": ("FLOAT", {"default": 1.5, "min": 0.0, "max": 255.0, "step": 0.1}), + "color_output": (["true", "false"],), + "neutral_background": (["true", "false"],), + } + } + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "high_pass" + + CATEGORY = "WAS Suite/Image/Filter" + + def high_pass(self, images, radius=10, strength=1.5, color_output="true", neutral_background="true"): + batch_tensor = [] + for image in images: + transformed_image = self.apply_hpf(tensor2pil(image), radius, strength, color_output, neutral_background) + batch_tensor.append(pil2tensor(transformed_image)) + batch_tensor = torch.cat(batch_tensor, dim=0) + return (batch_tensor, ) + + def apply_hpf(self, img, radius=10, strength=1.5, color_output="true", neutral_background="true"): + img_arr = np.array(img).astype('float') + blurred_arr = np.array(img.filter(ImageFilter.GaussianBlur(radius=radius))).astype('float') + hpf_arr = img_arr - blurred_arr + hpf_arr = np.clip(hpf_arr * strength, 0, 255).astype('uint8') + + if color_output == "true": + high_pass = Image.fromarray(hpf_arr, mode='RGB') + else: + grayscale_arr = np.mean(hpf_arr, axis=2).astype('uint8') + high_pass = Image.fromarray(grayscale_arr, mode='L') + + if neutral_background == "true": + neutral_color = (128, 128, 128) if high_pass.mode == 'RGB' else 128 + neutral_bg = Image.new(high_pass.mode, high_pass.size, neutral_color) + high_pass = ImageChops.screen(neutral_bg, high_pass) + + return high_pass.convert("RGB") + + +# IMAGE LEVELS NODE + +class WAS_Image_Levels: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "black_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 255.0, "step": 0.1}), + "mid_level": ("FLOAT", {"default": 127.5, "min": 0.0, "max": 255.0, "step": 0.1}), + "white_level": ("FLOAT", {"default": 255, "min": 0.0, "max": 255.0, "step": 0.1}), + } + } + RETURN_TYPES = ("IMAGE",) + FUNCTION = "apply_image_levels" + + CATEGORY = "WAS Suite/Image/Adjustment" + + def apply_image_levels(self, image, black_level, mid_level, white_level): + + # Convert image to PIL + tensor_images = [] + for img in image: + img = tensor2pil(img) + levels = self.AdjustLevels(black_level, mid_level, white_level) + tensor_images.append(pil2tensor(levels.adjust(img))) + tensor_images = torch.cat(tensor_images, dim=0) + + # Return adjust image tensor + return (tensor_images, ) + + + class AdjustLevels: + def __init__(self, min_level, mid_level, max_level): + self.min_level = min_level + self.mid_level = mid_level + self.max_level = max_level + + def adjust(self, im): + + im_arr = np.array(im).astype(np.float32) + im_arr[im_arr < self.min_level] = self.min_level + im_arr = (im_arr - self.min_level) * \ + (255 / (self.max_level - self.min_level)) + im_arr = np.clip(im_arr, 0, 255) + + # mid-level adjustment + gamma = math.log(0.5) / math.log((self.mid_level - self.min_level) / (self.max_level - self.min_level)) + im_arr = np.power(im_arr / 255, gamma) * 255 + + im_arr = im_arr.astype(np.uint8) + + im = Image.fromarray(im_arr) + + return im + + +# FILM GRAIN NODE + +class WAS_Film_Grain: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "density": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 1.0, "step": 0.01}), + "intensity": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 1.0, "step": 0.01}), + "highlights": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 255.0, "step": 0.01}), + "supersample_factor": ("INT", {"default": 4, "min": 1, "max": 8, "step": 1}) + } + } + RETURN_TYPES = ("IMAGE",) + FUNCTION = "film_grain" + + CATEGORY = "WAS Suite/Image/Filter" + + def film_grain(self, image, density, intensity, highlights, supersample_factor): + return (pil2tensor(self.apply_film_grain(tensor2pil(image), density, intensity, highlights, supersample_factor)), ) + + def apply_film_grain(self, img, density=0.1, intensity=1.0, highlights=1.0, supersample_factor=4): + """ + Apply grayscale noise with specified density, intensity, and highlights to a PIL image. + """ + img_gray = img.convert('L') + original_size = img.size + img_gray = img_gray.resize( + ((img.size[0] * supersample_factor), (img.size[1] * supersample_factor)), Image.Resampling(2)) + num_pixels = int(density * img_gray.size[0] * img_gray.size[1]) + + noise_pixels = [] + for i in range(num_pixels): + x = random.randint(0, img_gray.size[0]-1) + y = random.randint(0, img_gray.size[1]-1) + noise_pixels.append((x, y)) + + for x, y in noise_pixels: + value = random.randint(0, 255) + img_gray.putpixel((x, y), value) + + img_noise = img_gray.convert('RGB') + img_noise = img_noise.filter(ImageFilter.GaussianBlur(radius=0.125)) + img_noise = img_noise.resize(original_size, Image.Resampling(1)) + img_noise = img_noise.filter(ImageFilter.EDGE_ENHANCE_MORE) + img_final = Image.blend(img, img_noise, intensity) + enhancer = ImageEnhance.Brightness(img_final) + img_highlights = enhancer.enhance(highlights) + + # Return the final image + return img_highlights + + +# IMAGE FLIP NODE + +class WAS_Image_Flip: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "mode": (["horizontal", "vertical",],), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "image_flip" + + CATEGORY = "WAS Suite/Image/Transform" + + def image_flip(self, images, mode): + + batch_tensor = [] + for image in images: + image = tensor2pil(image) + if mode == 'horizontal': + image = image.transpose(0) + if mode == 'vertical': + image = image.transpose(1) + batch_tensor.append(pil2tensor(image)) + batch_tensor = torch.cat(batch_tensor, dim=0) + + return (batch_tensor, ) + + +class WAS_Image_Rotate: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "mode": (["transpose", "internal",],), + "rotation": ("INT", {"default": 0, "min": 0, "max": 360, "step": 90}), + "sampler": (["nearest", "bilinear", "bicubic"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "image_rotate" + + CATEGORY = "WAS Suite/Image/Transform" + + def image_rotate(self, images, mode, rotation, sampler): + + batch_tensor = [] + for image in images: + # PIL Image + image = tensor2pil(image) + + # Check rotation + if rotation > 360: + rotation = int(360) + if (rotation % 90 != 0): + rotation = int((rotation//90)*90) + + # Set Sampler + if sampler: + if sampler == 'nearest': + sampler = Image.NEAREST + elif sampler == 'bicubic': + sampler = Image.BICUBIC + elif sampler == 'bilinear': + sampler = Image.BILINEAR + else: + sampler == Image.BILINEAR + + # Rotate Image + if mode == 'internal': + image = image.rotate(rotation, sampler) + else: + rot = int(rotation / 90) + for _ in range(rot): + image = image.transpose(2) + + batch_tensor.append(pil2tensor(image)) + + batch_tensor = torch.cat(batch_tensor, dim=0) + + return (batch_tensor, ) + + +# IMAGE NOVA SINE FILTER + +class WAS_Image_Nova_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "amplitude": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.001}), + "frequency": ("FLOAT", {"default": 3.14, "min": 0.0, "max": 100.0, "step": 0.001}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "nova_sine" + + CATEGORY = "WAS Suite/Image/Filter" + + def nova_sine(self, image, amplitude, frequency): + + # Convert image to numpy + img = tensor2pil(image) + + # Convert the image to a numpy array + img_array = np.array(img) + + # Define a sine wave function + def sine(x, freq, amp): + return amp * np.sin(2 * np.pi * freq * x) + + # Calculate the sampling frequency of the image + resolution = img.info.get('dpi') # PPI + physical_size = img.size # pixels + + if resolution is not None: + # Convert PPI to pixels per millimeter (PPM) + ppm = 25.4 / resolution + physical_size = tuple(int(pix * ppm) for pix in physical_size) + + # Set the maximum frequency for the sine wave + max_freq = img.width / 2 + + # Ensure frequency isn't outside visual representable range + if frequency > max_freq: + frequency = max_freq + + # Apply levels to the image using the sine function + for i in range(img_array.shape[0]): + for j in range(img_array.shape[1]): + for k in range(img_array.shape[2]): + img_array[i, j, k] = int( + sine(img_array[i, j, k]/255, frequency, amplitude) * 255) + + return (torch.from_numpy(img_array.astype(np.float32) / 255.0).unsqueeze(0), ) + + +# IMAGE CANNY FILTER + + +class WAS_Canny_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "enable_threshold": (['false', 'true'],), + "threshold_low": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "threshold_high": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }, + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "canny_filter" + + CATEGORY = "WAS Suite/Image/Filter" + + def canny_filter(self, images, threshold_low, threshold_high, enable_threshold): + + if enable_threshold == 'false': + threshold_low = None + threshold_high = None + + batch_tensor = [] + for image in images: + + image_canny = Image.fromarray(self.Canny_detector( + 255. * image.cpu().numpy().squeeze(), threshold_low, threshold_high)).convert('RGB') + + batch_tensor.append(pil2tensor(image_canny)) + + batch_tensor = torch.cat(batch_tensor, dim=0) + + return (pil2tensor(image_canny), ) + + def Canny_detector(self, img, weak_th=None, strong_th=None): + + import cv2 + + img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) + img = cv2.GaussianBlur(img, (5, 5), 1.4) + gx = cv2.Sobel(np.float32(img), cv2.CV_64F, 1, 0, 3) # type: ignore + gy = cv2.Sobel(np.float32(img), cv2.CV_64F, 0, 1, 3) # type: ignore + + mag, ang = cv2.cartToPolar(gx, gy, angleInDegrees=True) + + mag_max = np.max(mag) + if not weak_th: + weak_th = mag_max * 0.1 + if not strong_th: + strong_th = mag_max * 0.5 + + height, width = img.shape + + for i_x in range(width): + for i_y in range(height): + + grad_ang = ang[i_y, i_x] + grad_ang = abs( + grad_ang-180) if abs(grad_ang) > 180 else abs(grad_ang) + + neighb_1_x, neighb_1_y = -1, -1 + neighb_2_x, neighb_2_y = -1, -1 + + if grad_ang <= 22.5: + neighb_1_x, neighb_1_y = i_x-1, i_y + neighb_2_x, neighb_2_y = i_x + 1, i_y + + elif grad_ang > 22.5 and grad_ang <= (22.5 + 45): + neighb_1_x, neighb_1_y = i_x-1, i_y-1 + neighb_2_x, neighb_2_y = i_x + 1, i_y + 1 + elif grad_ang > (22.5 + 45) and grad_ang <= (22.5 + 90): + neighb_1_x, neighb_1_y = i_x, i_y-1 + neighb_2_x, neighb_2_y = i_x, i_y + 1 + elif grad_ang > (22.5 + 90) and grad_ang <= (22.5 + 135): + neighb_1_x, neighb_1_y = i_x-1, i_y + 1 + neighb_2_x, neighb_2_y = i_x + 1, i_y-1 + elif grad_ang > (22.5 + 135) and grad_ang <= (22.5 + 180): + neighb_1_x, neighb_1_y = i_x-1, i_y + neighb_2_x, neighb_2_y = i_x + 1, i_y + if width > neighb_1_x >= 0 and height > neighb_1_y >= 0: + if mag[i_y, i_x] < mag[neighb_1_y, neighb_1_x]: + mag[i_y, i_x] = 0 + continue + + if width > neighb_2_x >= 0 and height > neighb_2_y >= 0: + if mag[i_y, i_x] < mag[neighb_2_y, neighb_2_x]: + mag[i_y, i_x] = 0 + + weak_ids = np.zeros_like(img) + strong_ids = np.zeros_like(img) + ids = np.zeros_like(img) + + for i_x in range(width): + for i_y in range(height): + + grad_mag = mag[i_y, i_x] + + if grad_mag < weak_th: + mag[i_y, i_x] = 0 + elif strong_th > grad_mag >= weak_th: + ids[i_y, i_x] = 1 + else: + ids[i_y, i_x] = 2 + + return mag + +# IMAGE EDGE DETECTION + +class WAS_Image_Edge: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "mode": (["normal", "laplacian"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_edges" + + CATEGORY = "WAS Suite/Image/Filter" + + def image_edges(self, image, mode): + + # Convert image to PIL + image = tensor2pil(image) + + # Detect edges + if mode: + if mode == "normal": + image = image.filter(ImageFilter.FIND_EDGES) + elif mode == "laplacian": + image = image.filter(ImageFilter.Kernel((3, 3), (-1, -1, -1, -1, 8, + -1, -1, -1, -1), 1, 0)) + else: + image = image + + return (torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0), ) + + +# IMAGE FDOF NODE + +class WAS_Image_fDOF: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "depth": ("IMAGE",), + "mode": (["mock", "gaussian", "box"],), + "radius": ("INT", {"default": 8, "min": 1, "max": 128, "step": 1}), + "samples": ("INT", {"default": 1, "min": 1, "max": 3, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "fdof_composite" + + CATEGORY = "WAS Suite/Image/Filter" + + def fdof_composite(self, image, depth, radius, samples, mode): + + import cv2 as cv + + # Convert tensor to a PIL Image + tensor_images = [] + for i in range(len(image)): + if i <= len(image): + img = tensor2pil(image[i]) + else: + img = tensor2pil(image[-1]) + if i <= len(depth): + dpth = tensor2pil(depth[i]) + else: + dpth = tensor2pil(depth[-1]) + tensor_images.append(pil2tensor(self.portraitBlur(img, dpth, radius, samples, mode))) + tensor_images = torch.cat(tensor_images, dim=0) + + return (tensor_images, ) + + def portraitBlur(self, img, mask, radius, samples, mode='mock'): + mask = mask.resize(img.size).convert('L') + bimg: Optional[Image.Image] = None + if mode == 'mock': + bimg = medianFilter(img, radius, (radius * 1500), 75) + elif mode == 'gaussian': + bimg = img.filter(ImageFilter.GaussianBlur(radius=radius)) + elif mode == 'box': + bimg = img.filter(ImageFilter.BoxBlur(radius)) + else: + return + bimg.convert(img.mode) + rimg: Optional[Image.Image] = None + if samples > 1: + for i in range(samples): + if not rimg: + rimg = Image.composite(img, bimg, mask) + else: + rimg = Image.composite(rimg, bimg, mask) + else: + rimg = Image.composite(img, bimg, mask).convert('RGB') + + return rimg + + +# IMAGE DRAGAN PHOTOGRAPHY FILTER + +class WAS_Dragon_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "saturation": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 16.0, "step": 0.01}), + "contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 16.0, "step": 0.01}), + "brightness": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 16.0, "step": 0.01}), + "sharpness": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 6.0, "step": 0.01}), + "highpass_radius": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 255.0, "step": 0.01}), + "highpass_samples": ("INT", {"default": 1, "min": 0, "max": 6.0, "step": 1}), + "highpass_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01}), + "colorize": (["true","false"],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "apply_dragan_filter" + + CATEGORY = "WAS Suite/Image/Filter" + + def apply_dragan_filter(self, image, saturation, contrast, sharpness, brightness, highpass_radius, highpass_samples, highpass_strength, colorize): + + WTools = WAS_Tools_Class() + + tensor_images = [] + for img in image: + tensor_images.append(pil2tensor(WTools.dragan_filter(tensor2pil(img), saturation, contrast, sharpness, brightness, highpass_radius, highpass_samples, highpass_strength, colorize))) + tensor_images = torch.cat(tensor_images, dim=0) + + return (tensor_images, ) + + + +# IMAGE MEDIAN FILTER NODE + +class WAS_Image_Median_Filter: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "diameter": ("INT", {"default": 2.0, "min": 0.1, "max": 255, "step": 1}), + "sigma_color": ("FLOAT", {"default": 10.0, "min": -255.0, "max": 255.0, "step": 0.1}), + "sigma_space": ("FLOAT", {"default": 10.0, "min": -255.0, "max": 255.0, "step": 0.1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "apply_median_filter" + + CATEGORY = "WAS Suite/Image/Filter" + + def apply_median_filter(self, image, diameter, sigma_color, sigma_space): + + tensor_images = [] + for img in image: + img = tensor2pil(img) + # Apply Median Filter effect + tensor_images.append(pil2tensor(medianFilter(img, diameter, sigma_color, sigma_space))) + tensor_images = torch.cat(tensor_images, dim=0) + + return (tensor_images, ) + +# IMAGE SELECT COLOR + + +class WAS_Image_Select_Color: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "red": ("INT", {"default": 255.0, "min": 0.0, "max": 255.0, "step": 0.1}), + "green": ("INT", {"default": 255.0, "min": 0.0, "max": 255.0, "step": 0.1}), + "blue": ("INT", {"default": 255.0, "min": 0.0, "max": 255.0, "step": 0.1}), + "variance": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "select_color" + + CATEGORY = "WAS Suite/Image/Process" + + def select_color(self, image, red=255, green=255, blue=255, variance=10): + + image = self.color_pick(tensor2pil(image), red, green, blue, variance) + + return (pil2tensor(image), ) + + def color_pick(self, image, red=255, green=255, blue=255, variance=10): + # Convert image to RGB mode + image = image.convert('RGB') + + # Create a new black image of the same size as the input image + selected_color = Image.new('RGB', image.size, (0, 0, 0)) + + # Get the width and height of the image + width, height = image.size + + # Loop through every pixel in the image + for x in range(width): + for y in range(height): + # Get the color of the pixel + pixel = image.getpixel((x, y)) + r, g, b = pixel + + # Check if the pixel is within the specified color range + if ((r >= red-variance) and (r <= red+variance) and + (g >= green-variance) and (g <= green+variance) and + (b >= blue-variance) and (b <= blue+variance)): + # Set the pixel in the selected_color image to the RGB value of the pixel + selected_color.putpixel((x, y), (r, g, b)) + + # Return the selected color image + return selected_color + +# IMAGE CONVERT TO CHANNEL + + +class WAS_Image_Select_Channel: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "channel": (['red', 'green', 'blue'],), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "select_channel" + + CATEGORY = "WAS Suite/Image/Process" + + def select_channel(self, image, channel='red'): + + image = self.convert_to_single_channel(tensor2pil(image), channel) + + return (pil2tensor(image), ) + + def convert_to_single_channel(self, image, channel='red'): + + # Convert to RGB mode to access individual channels + image = image.convert('RGB') + + # Extract the desired channel and convert to greyscale + if channel == 'red': + channel_img = image.split()[0].convert('L') + elif channel == 'green': + channel_img = image.split()[1].convert('L') + elif channel == 'blue': + channel_img = image.split()[2].convert('L') + else: + raise ValueError( + "Invalid channel option. Please choose 'red', 'green', or 'blue'.") + + # Convert the greyscale channel back to RGB mode + channel_img = Image.merge( + 'RGB', (channel_img, channel_img, channel_img)) + + return channel_img + +# IMAGES TO RGB + +class WAS_Images_To_RGB: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_to_rgb" + + CATEGORY = "WAS Suite/Image" + + def image_to_rgb(self, images): + + if len(images) > 1: + tensors = [] + for image in images: + tensors.append(pil2tensor(tensor2pil(image).convert('RGB'))) + tensors = torch.cat(tensors, dim=0) + return (tensors, ) + else: + return (pil2tensor(tensor2pil(images).convert("RGB")), ) + +# IMAGES TO LINEAR + +class WAS_Images_To_Linear: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_to_linear" + + CATEGORY = "WAS Suite/Image" + + def image_to_linear(self, images): + + if len(images) > 1: + tensors = [] + for image in images: + tensors.append(pil2tensor(tensor2pil(image).convert('L'))) + tensors = torch.cat(tensors, dim=0) + return (tensors, ) + else: + return (pil2tensor(tensor2pil(images).convert("L")), ) + + +# IMAGE MERGE RGB CHANNELS + +class WAS_Image_RGB_Merge: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "red_channel": ("IMAGE",), + "green_channel": ("IMAGE",), + "blue_channel": ("IMAGE",), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "merge_channels" + + CATEGORY = "WAS Suite/Image/Process" + + def merge_channels(self, red_channel, green_channel, blue_channel): + + # Apply mix rgb channels + image = self.mix_rgb_channels(tensor2pil(red_channel).convert('L'), tensor2pil( + green_channel).convert('L'), tensor2pil(blue_channel).convert('L')) + + return (pil2tensor(image), ) + + def mix_rgb_channels(self, red, green, blue): + # Create an empty image with the same size as the channels + width, height = red.size + merged_img = Image.new('RGB', (width, height)) + + # Merge the channels into the new image + merged_img = Image.merge('RGB', (red, green, blue)) + + return merged_img + +# IMAGE Ambient Occlusion + +class WAS_Image_Ambient_Occlusion: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "depth_images": ("IMAGE",), + "strength": ("FLOAT", {"min": 0.0, "max": 5.0, "default": 1.0, "step": 0.01}), + "radius": ("FLOAT", {"min": 0.01, "max": 1024, "default": 30, "step": 0.01}), + "ao_blur": ("FLOAT", {"min": 0.01, "max": 1024, "default": 2.5, "step": 0.01}), + "specular_threshold": ("INT", {"min":0, "max": 255, "default": 25, "step": 1}), + "enable_specular_masking": (["True", "False"],), + "tile_size": ("INT", {"min": 1, "max": 512, "default": 1, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE","IMAGE","IMAGE") + RETURN_NAMES = ("composited_images", "ssao_images", "specular_mask_images") + FUNCTION = "ambient_occlusion" + + CATEGORY = "WAS Suite/Image/Filter" + + def ambient_occlusion(self, images, depth_images, strength, radius, ao_blur, specular_threshold, enable_specular_masking, tile_size): + + enable_specular_masking = (enable_specular_masking == 'True') + composited = [] + occlusions = [] + speculars = [] + for i, image in enumerate(images): + cstr(f"Processing SSAO image {i+1}/{len(images)} ...").msg.print() + composited_image, occlusion_image, specular_mask = self.create_ambient_occlusion( + tensor2pil(image), + tensor2pil(depth_images[(i if len(depth_images) >= i else -1)]), + strength=strength, + radius=radius, + ao_blur=ao_blur, + spec_threshold=specular_threshold, + enable_specular_masking=enable_specular_masking, + tile_size=tile_size + ) + composited.append(pil2tensor(composited_image)) + occlusions.append(pil2tensor(occlusion_image)) + speculars.append(pil2tensor(specular_mask)) + + composited = torch.cat(composited, dim=0) + occlusions = torch.cat(occlusions, dim=0) + speculars = torch.cat(speculars, dim=0) + + return ( composited, occlusions, speculars ) + + def process_tile(self, tile_rgb, tile_depth, tile_x, tile_y, radius): + tile_occlusion = calculate_ambient_occlusion_factor(tile_rgb, tile_depth, tile_rgb.shape[0], tile_rgb.shape[1], radius) + return tile_x, tile_y, tile_occlusion + + + def create_ambient_occlusion(self, rgb_image, depth_image, strength=1.0, radius=30, ao_blur=5, spec_threshold=200, enable_specular_masking=False, tile_size=1): + + import concurrent.futures + + if depth_image.size != rgb_image.size: + depth_image = depth_image.resize(rgb_image.size) + rgb_normalized = np.array(rgb_image, dtype=np.float32) / 255.0 + depth_normalized = np.array(depth_image, dtype=np.float32) / 255.0 + + height, width, _ = rgb_normalized.shape + + if tile_size <= 1: + print("Processing single-threaded AO (highest quality) ...") + occlusion_array = calculate_ambient_occlusion_factor(rgb_normalized, depth_normalized, height, width, radius) + else: + tile_size = ((tile_size if tile_size <= 8 else 8) if tile_size > 1 else 1) + num_tiles_x = (width - 1) // tile_size + 1 + num_tiles_y = (height - 1) // tile_size + 1 + + occlusion_array = np.zeros((height, width), dtype=np.uint8) + + with concurrent.futures.ThreadPoolExecutor() as executor: + futures = [] + + with tqdm(total=num_tiles_y * num_tiles_x) as pbar: + for tile_y in range(num_tiles_y): + for tile_x in range(num_tiles_x): + tile_left = tile_x * tile_size + tile_upper = tile_y * tile_size + tile_right = min(tile_left + tile_size, width) + tile_lower = min(tile_upper + tile_size, height) + + tile_rgb = rgb_normalized[tile_upper:tile_lower, tile_left:tile_right] + tile_depth = depth_normalized[tile_upper:tile_lower, tile_left:tile_right] + + future = executor.submit(self.process_tile, tile_rgb, tile_depth, tile_x, tile_y, radius) + futures.append(future) + + for future in concurrent.futures.as_completed(futures): + tile_x, tile_y, tile_occlusion = future.result() + tile_left = tile_x * tile_size + tile_upper = tile_y * tile_size + tile_right = min(tile_left + tile_size, width) + tile_lower = min(tile_upper + tile_size, height) + + occlusion_array[tile_upper:tile_lower, tile_left:tile_right] = tile_occlusion + + pbar.update(1) + + occlusion_array = (occlusion_array * strength).clip(0, 255).astype(np.uint8) + + occlusion_image = Image.fromarray(occlusion_array, mode='L') + occlusion_image = occlusion_image.filter(ImageFilter.GaussianBlur(radius=ao_blur)) + occlusion_image = occlusion_image.filter(ImageFilter.SMOOTH) + occlusion_image = ImageChops.multiply(occlusion_image, ImageChops.multiply(occlusion_image, occlusion_image)) + + mask = rgb_image.convert('L') + mask = mask.point(lambda x: x > spec_threshold, mode='1') + mask = mask.convert("RGB") + mask = mask.filter(ImageFilter.GaussianBlur(radius=2.5)).convert("L") + + if enable_specular_masking: + occlusion_image = Image.composite(Image.new("L", rgb_image.size, 255), occlusion_image, mask) + occlsuion_result = ImageChops.multiply(rgb_image, occlusion_image.convert("RGB")) + + return occlsuion_result, occlusion_image, mask + +# IMAGE Direct Occlusion + +class WAS_Image_Direct_Occlusion: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "depth_images": ("IMAGE",), + "strength": ("FLOAT", {"min": 0.0, "max": 5.0, "default": 1.0, "step": 0.01}), + "radius": ("FLOAT", {"min": 0.01, "max": 1024, "default": 30, "step": 0.01}), + "specular_threshold": ("INT", {"min":0, "max": 255, "default": 128, "step": 1}), + "colored_occlusion": (["True", "False"],), + }, + } + + RETURN_TYPES = ("IMAGE","IMAGE","IMAGE", "IMAGE") + RETURN_NAMES = ("composited_images", "ssdo_images", "ssdo_image_masks", "light_source_image_masks") + FUNCTION = "direct_occlusion" + + CATEGORY = "WAS Suite/Image/Filter" + + def direct_occlusion(self, images, depth_images, strength, radius, specular_threshold, colored_occlusion): + + composited = [] + occlusions = [] + occlusion_masks = [] + light_sources = [] + for i, image in enumerate(images): + cstr(f"Processing SSDO image {i+1}/{len(images)} ...").msg.print() + composited_image, occlusion_image, occlusion_mask, light_source = self.create_direct_occlusion( + tensor2pil(image), + tensor2pil(depth_images[(i if len(depth_images) >= i else -1)]), + strength=strength, + radius=radius, + threshold=specular_threshold, + colored=True + ) + composited.append(pil2tensor(composited_image)) + occlusions.append(pil2tensor(occlusion_image)) + occlusion_masks.append(pil2tensor(occlusion_mask)) + light_sources.append(pil2tensor(light_source)) + + composited = torch.cat(composited, dim=0) + occlusions = torch.cat(occlusions, dim=0) + occlusion_masks = torch.cat(occlusion_masks, dim=0) + light_sources = torch.cat(light_sources, dim=0) + + return ( composited, occlusions, occlusion_masks, light_sources ) + + def find_light_source(self, rgb_normalized, threshold): + from skimage.measure import regionprops + from skimage import measure + rgb_uint8 = (rgb_normalized * 255).astype(np.uint8) + rgb_to_grey = Image.fromarray(rgb_uint8, mode="RGB") + dominant = self.dominant_region(rgb_to_grey, threshold) + grayscale_image = np.array(dominant.convert("L"), dtype=np.float32) / 255.0 + regions = measure.label(grayscale_image > 0) + + if np.max(regions) > 0: + region_sums = measure.regionprops(regions, intensity_image=grayscale_image) + brightest_region = max(region_sums, key=lambda r: r.mean_intensity) + light_y, light_x = brightest_region.centroid + light_mask = (regions == brightest_region.label).astype(np.uint8) + light_mask_cluster = light_mask + else: + light_x, light_y = np.nan, np.nan + light_mask_cluster = np.zeros_like(dominant, dtype=np.uint8) + return light_mask_cluster, light_x, light_y + + + def dominant_region(self, image, threshold=128): + from scipy.ndimage import label + image = ImageOps.invert(image.convert("L")) + binary_image = image.point(lambda x: 255 if x > threshold else 0, mode="1") + l, n = label(np.array(binary_image)) + sizes = np.bincount(l.flatten()) + dominant = 0 + try: + dominant = np.argmax(sizes[1:]) + 1 + except ValueError: + pass + dominant_region_mask = (l == dominant).astype(np.uint8) * 255 + result = Image.fromarray(dominant_region_mask, mode="L") + return result.convert("RGB") + + def create_direct_occlusion(self, rgb_image, depth_image, strength=1.0, radius=10, threshold=200, colored=False): + rgb_normalized = np.array(rgb_image, dtype=np.float32) / 255.0 + depth_normalized = np.array(depth_image, dtype=np.float32) / 255.0 + height, width, _ = rgb_normalized.shape + light_mask, light_x, light_y = self.find_light_source(rgb_normalized, threshold) + occlusion_array = calculate_direct_occlusion_factor(rgb_normalized, depth_normalized, height, width, radius) + #occlusion_scaled = (occlusion_array / np.max(occlusion_array) * 255).astype(np.uint8) + occlusion_scaled = ((occlusion_array - np.min(occlusion_array)) / (np.max(occlusion_array) - np.min(occlusion_array)) * 255).astype(np.uint8) + occlusion_image = Image.fromarray(occlusion_scaled, mode="L") + occlusion_image = occlusion_image.filter(ImageFilter.GaussianBlur(radius=0.5)) + occlusion_image = occlusion_image.filter(ImageFilter.SMOOTH_MORE) + + if colored: + occlusion_result = Image.composite( + Image.new("RGB", rgb_image.size, (0, 0, 0)), + rgb_image, + occlusion_image + ) + occlusion_result = ImageOps.autocontrast(occlusion_result, cutoff=(0, strength)) + else: + occlusion_result = Image.blend(occlusion_image, occlusion_image, strength) + + light_image = ImageOps.invert(Image.fromarray(light_mask * 255, mode="L")) + + direct_occlusion_image = ImageChops.screen(rgb_image, occlusion_result.convert("RGB")) + + return direct_occlusion_image, occlusion_result, occlusion_image, light_image + +# EXPORT API + +class WAS_Export_API: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "save_prompt_api": (["true","true"],), + "output_path": ("STRING", {"default": "./ComfyUI/output/", "multiline": False}), + "filename_prefix": ("STRING", {"default": "ComfyUI_Prompt"}), + "filename_delimiter": ("STRING", {"default":"_"}), + "filename_number_padding": ("INT", {"default":4, "min":2, "max":9, "step":1}), + "parse_text_tokens": ("BOOLEAN", {"default": False}) + }, + "hidden": { + "prompt": "PROMPT" + } + } + + OUTPUT_NODE = True + RETURN_TYPES = () + FUNCTION = "export_api" + + CATEGORY = "WAS Suite/Debug" + + def export_api(self, output_path=None, filename_prefix="ComfyUI", filename_number_padding=4, + filename_delimiter='_', prompt=None, save_prompt_api="true", parse_text_tokens=False): + delimiter = filename_delimiter + number_padding = filename_number_padding if filename_number_padding > 1 else 4 + + tokens = TextTokens() + + if output_path in [None, '', "none", "."]: + output_path = comfy_paths.output_directory + else: + output_path = tokens.parseTokens(output_path) + + pattern = f"{re.escape(filename_prefix)}{re.escape(filename_delimiter)}(\\d{{{number_padding}}})" + existing_counters = [ + int(re.search(pattern, filename).group(1)) + for filename in os.listdir(output_path) + if re.match(pattern, filename) + ] + existing_counters.sort(reverse=True) + + if existing_counters: + counter = existing_counters[0] + 1 + else: + counter = 1 + + file = f"{filename_prefix}{filename_delimiter}{counter:0{number_padding}}.json" + output_file = os.path.abspath(os.path.join(output_path, file)) + + if prompt: + + if parse_text_tokens: + prompt = self.parse_prompt(prompt, tokens, keys_to_parse) + + prompt_json = json.dumps(prompt, indent=4) + cstr("Prompt API JSON").msg.print() + print(prompt_json) + + if save_prompt_api == "true": + + with open(output_file, 'w') as f: + f.write(prompt_json) + + cstr(f"Output file path: {output_file}").msg.print() + + return {"ui": {"string": prompt_json}} + + def parse_prompt(self, obj, tokens, keys_to_parse): + if isinstance(obj, dict): + return { + key: self.parse_prompt(value, tokens, keys_to_parse) + if key in keys_to_parse else value + for key, value in obj.items() + } + elif isinstance(obj, list): + return [self.parse_prompt(element, tokens, keys_to_parse) for element in obj] + elif isinstance(obj, str): + return tokens.parseTokens(obj) + else: + return obj + + +# Image Save (NSP Compatible) +# Originally From ComfyUI/nodes.py + +class WAS_Image_Save: + def __init__(self): + self.output_dir = comfy_paths.output_directory + self.type = 'output' + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE", ), + "output_path": ("STRING", {"default": '[time(%Y-%m-%d)]', "multiline": False}), + "filename_prefix": ("STRING", {"default": "ComfyUI"}), + "filename_delimiter": ("STRING", {"default":"_"}), + "filename_number_padding": ("INT", {"default":4, "min":1, "max":9, "step":1}), + "filename_number_start": (["false", "true"],), + "extension": (['png', 'jpg', 'jpeg', 'gif', 'tiff', 'webp', 'bmp'], ), + "dpi": ("INT", {"default": 300, "min": 1, "max": 2400, "step": 1}), + "quality": ("INT", {"default": 100, "min": 1, "max": 100, "step": 1}), + "optimize_image": (["true", "false"],), + "lossless_webp": (["false", "true"],), + "overwrite_mode": (["false", "prefix_as_filename"],), + "show_history": (["false", "true"],), + "show_history_by_prefix": (["true", "false"],), + "embed_workflow": (["true", "false"],), + "show_previews": (["true", "false"],), + }, + "hidden": { + "prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO" + }, + } + + RETURN_TYPES = ("IMAGE", "STRING",) + RETURN_NAMES = ("images", "files",) + + FUNCTION = "was_save_images" + + OUTPUT_NODE = True + + CATEGORY = "WAS Suite/IO" + + def was_save_images(self, images, output_path='', filename_prefix="ComfyUI", filename_delimiter='_', + extension='png', dpi=96, quality=100, optimize_image="true", lossless_webp="false", prompt=None, extra_pnginfo=None, + overwrite_mode='false', filename_number_padding=4, filename_number_start='false', + show_history='false', show_history_by_prefix="true", embed_workflow="true", + show_previews="true"): + + delimiter = filename_delimiter + number_padding = filename_number_padding + lossless_webp = (lossless_webp == "true") + optimize_image = (optimize_image == "true") + + # Define token system + tokens = TextTokens() + + original_output = self.output_dir + # Parse prefix tokens + filename_prefix = tokens.parseTokens(filename_prefix) + + # Setup output path + if output_path in [None, '', "none", "."]: + output_path = self.output_dir + else: + output_path = tokens.parseTokens(output_path) + if not os.path.isabs(output_path): + output_path = os.path.join(self.output_dir, output_path) + base_output = os.path.basename(output_path) + if output_path.endswith("ComfyUI/output") or output_path.endswith("ComfyUI\output"): + base_output = "" + + # Check output destination + if output_path.strip() != '': + if not os.path.isabs(output_path): + output_path = os.path.join(comfy_paths.output_directory, output_path) + if not os.path.exists(output_path.strip()): + cstr(f'The path `{output_path.strip()}` specified doesn\'t exist! Creating directory.').warning.print() + os.makedirs(output_path, exist_ok=True) + + # Find existing counter values + if filename_number_start == 'true': + pattern = f"(\\d+){re.escape(delimiter)}{re.escape(filename_prefix)}" + else: + pattern = f"{re.escape(filename_prefix)}{re.escape(delimiter)}(\\d+)" + existing_counters = [ + int(re.search(pattern, filename).group(1)) + for filename in os.listdir(output_path) + if re.match(pattern, os.path.basename(filename)) + ] + existing_counters.sort(reverse=True) + + # Set initial counter value + if existing_counters: + counter = existing_counters[0] + 1 + else: + counter = 1 + + # Set initial counter value + if existing_counters: + counter = existing_counters[0] + 1 + else: + counter = 1 + + # Set Extension + file_extension = '.' + extension + if file_extension not in ALLOWED_EXT: + cstr(f"The extension `{extension}` is not valid. The valid formats are: {', '.join(sorted(ALLOWED_EXT))}").error.print() + file_extension = "png" + + results = list() + output_files = list() + for image in images: + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + + # Delegate metadata/pnginfo + if extension == 'webp': + img_exif = img.getexif() + if embed_workflow == 'true': + workflow_metadata = '' + prompt_str = '' + if prompt is not None: + prompt_str = json.dumps(prompt) + img_exif[0x010f] = "Prompt:" + prompt_str + if extra_pnginfo is not None: + for x in extra_pnginfo: + workflow_metadata += json.dumps(extra_pnginfo[x]) + img_exif[0x010e] = "Workflow:" + workflow_metadata + exif_data = img_exif.tobytes() + else: + metadata = PngInfo() + if embed_workflow == 'true': + if prompt is not None: + metadata.add_text("prompt", json.dumps(prompt)) + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata.add_text(x, json.dumps(extra_pnginfo[x])) + exif_data = metadata + + # Delegate the filename stuffs + if overwrite_mode == 'prefix_as_filename': + file = f"{filename_prefix}{file_extension}" + else: + if filename_number_start == 'true': + file = f"{counter:0{number_padding}}{delimiter}{filename_prefix}{file_extension}" + else: + file = f"{filename_prefix}{delimiter}{counter:0{number_padding}}{file_extension}" + if os.path.exists(os.path.join(output_path, file)): + counter += 1 + + # Save the images + try: + output_file = os.path.abspath(os.path.join(output_path, file)) + if extension in ["jpg", "jpeg"]: + img.save(output_file, + quality=quality, optimize=optimize_image, dpi=(dpi, dpi)) + elif extension == 'webp': + img.save(output_file, + quality=quality, lossless=lossless_webp, exif=exif_data) + elif extension == 'png': + img.save(output_file, + pnginfo=exif_data, optimize=optimize_image) + elif extension == 'bmp': + img.save(output_file) + elif extension == 'tiff': + img.save(output_file, + quality=quality, optimize=optimize_image) + else: + img.save(output_file, + pnginfo=exif_data, optimize=optimize_image) + + cstr(f"Image file saved to: {output_file}").msg.print() + output_files.append(output_file) + + if show_history != 'true' and show_previews == 'true': + subfolder = self.get_subfolder_path(output_file, original_output) + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }) + + # Update the output image history + update_history_output_images(output_file) + + except OSError as e: + cstr(f'Unable to save file to: {output_file}').error.print() + print(e) + except Exception as e: + cstr('Unable to save file due to the to the following error:').error.print() + print(e) + + if overwrite_mode == 'false': + counter += 1 + + filtered_paths = [] + if show_history == 'true' and show_previews == 'true': + HDB = WASDatabase(WAS_HISTORY_DATABASE) + conf = getSuiteConfig() + if HDB.catExists("History") and HDB.keyExists("History", "Output_Images"): + history_paths = HDB.get("History", "Output_Images") + else: + history_paths = None + + if history_paths: + + for image_path in history_paths: + image_subdir = self.get_subfolder_path(image_path, self.output_dir) + current_subdir = self.get_subfolder_path(output_file, self.output_dir) + if not os.path.exists(image_path): + continue + if show_history_by_prefix == 'true' and image_subdir != current_subdir: + continue + if show_history_by_prefix == 'true' and not os.path.basename(image_path).startswith(filename_prefix): + continue + filtered_paths.append(image_path) + + if conf.__contains__('history_display_limit'): + filtered_paths = filtered_paths[-conf['history_display_limit']:] + + filtered_paths.reverse() + + if filtered_paths: + for image_path in filtered_paths: + subfolder = self.get_subfolder_path(image_path, self.output_dir) + image_data = { + "filename": os.path.basename(image_path), + "subfolder": subfolder, + "type": self.type + } + results.append(image_data) + + if show_previews == 'true': + return {"ui": {"images": results, "files": output_files}, "result": (images, output_files,)} + else: + return {"ui": {"images": []}, "result": (images, output_files,)} + + def get_subfolder_path(self, image_path, output_path): + output_parts = output_path.strip(os.sep).split(os.sep) + image_parts = image_path.strip(os.sep).split(os.sep) + common_parts = os.path.commonprefix([output_parts, image_parts]) + subfolder_parts = image_parts[len(common_parts):] + subfolder_path = os.sep.join(subfolder_parts[:-1]) + return subfolder_path + + +# Image Send HTTP +# Sends images over http +class WAS_Image_Send_HTTP: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "url": ("STRING", {"default": "example.com"}), + "method_type": (["post", "put", "patch"], {"default": "post"}), + "request_field_name": ("STRING", {"default": "image"}), + }, + "optional": { + "additional_request_headers": ("DICT",) + } + } + + RETURN_TYPES = ("INT", "STRING") + RETURN_NAMES = ("status_code", "result_text") + + FUNCTION = "was_send_images_http" + OUTPUT_NODE = True + + CATEGORY = "WAS Suite/IO" + + def was_send_images_http(self, images, url="example.com", + method_type="post", + request_field_name="image", + additional_request_headers=None): + from io import BytesIO + + images_to_send = [] + for idx, image in enumerate(images): + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + byte_io = BytesIO() + img.save(byte_io, 'png') + byte_io.seek(0) + images_to_send.append( + (request_field_name, (f"image_{idx}.png", byte_io, "image/png")) + ) + request = requests.Request(url=url, method=method_type.upper(), + headers=additional_request_headers, + files=images_to_send) + prepped = request.prepare() + session = requests.Session() + + response = session.send(prepped) + return (response.status_code, response.text,) + + +# LOAD IMAGE NODE +class WAS_Load_Image: + + def __init__(self): + self.input_dir = comfy_paths.input_directory + self.HDB = WASDatabase(WAS_HISTORY_DATABASE) + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_path": ("STRING", {"default": './ComfyUI/input/example.png', "multiline": False}), + "RGBA": (["false","true"],), + }, + "optional": { + "filename_text_extension": (["true", "false"],), + } + } + + RETURN_TYPES = ("IMAGE", "MASK", TEXT_TYPE) + RETURN_NAMES = ("image", "mask", "filename_text") + FUNCTION = "load_image" + + CATEGORY = "WAS Suite/IO" + + def load_image(self, image_path, RGBA='false', filename_text_extension="true"): + + RGBA = (RGBA == 'true') + + if image_path.startswith('http'): + from io import BytesIO + i = self.download_image(image_path) + i = ImageOps.exif_transpose(i) + else: + try: + i = Image.open(image_path) + i = ImageOps.exif_transpose(i) + except OSError: + cstr(f"The image `{image_path.strip()}` specified doesn't exist!").error.print() + i = Image.new(mode='RGB', size=(512, 512), color=(0, 0, 0)) + if not i: + return + + # Update history + update_history_images(image_path) + + image = i + if not RGBA: + image = image.convert('RGB') + image = np.array(image).astype(np.float32) / 255.0 + image = torch.from_numpy(image)[None,] + + if 'A' in i.getbands(): + mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 + mask = 1. - torch.from_numpy(mask) + else: + mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") + + if filename_text_extension == "true": + filename = os.path.basename(image_path) + else: + filename = os.path.splitext(os.path.basename(image_path))[0] + + return (image, mask, filename) + + def download_image(self, url): + try: + response = requests.get(url) + response.raise_for_status() + img = Image.open(BytesIO(response.content)) + return img + except requests.exceptions.HTTPError as errh: + cstr(f"HTTP Error: ({url}): {errh}").error.print() + except requests.exceptions.ConnectionError as errc: + cstr(f"Connection Error: ({url}): {errc}").error.print() + except requests.exceptions.Timeout as errt: + cstr(f"Timeout Error: ({url}): {errt}").error.print() + except requests.exceptions.RequestException as err: + cstr(f"Request Exception: ({url}): {err}").error.print() + + @classmethod + def IS_CHANGED(cls, image_path): + if image_path.startswith('http'): + return float("NaN") + m = hashlib.sha256() + with open(image_path, 'rb') as f: + m.update(f.read()) + return m.digest().hex() + +# MASK BATCH TO MASK + +class WAS_Mask_Batch_to_Single_Mask: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "batch_number": ("INT", {"default": 0, "min": 0, "max": 64, "step": 1}), + }, + } + + RETURN_TYPES = ("MASK",) + FUNCTION = "mask_batch_to_mask" + + CATEGORY = "WAS Suite/Image/Masking" + + def mask_batch_to_mask(self, masks=[], batch_number=0): + count = 0 + for _ in masks: + if batch_number == count: + tensor = masks[batch_number][0] + return (tensor,) + count += 1 + + cstr(f"Batch number `{batch_number}` is not defined, returning last image").error.print() + last_tensor = masks[-1][0] + return (last_tensor,) + +# TENSOR BATCH TO IMAGE + +class WAS_Tensor_Batch_to_Image: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images_batch": ("IMAGE",), + "batch_image_number": ("INT", {"default": 0, "min": 0, "max": 64, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "tensor_batch_to_image" + + CATEGORY = "WAS Suite/Latent/Transform" + + def tensor_batch_to_image(self, images_batch=[], batch_image_number=0): + + count = 0 + for _ in images_batch: + if batch_image_number == count: + return (images_batch[batch_image_number].unsqueeze(0), ) + count = count+1 + + cstr(f"Batch number `{batch_image_number}` is not defined, returning last image").error.print() + return (images_batch[-1].unsqueeze(0), ) + + +#! LATENT NODES + +# IMAGE TO MASK + +class WAS_Image_To_Mask: + + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "channel": (["alpha", "red", "green", "blue"], ), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "image_to_mask" + + def image_to_mask(self, images, channel): + mask_images = [] + for image in images: + + image = tensor2pil(image).convert("RGBA") + r, g, b, a = image.split() + if channel == "red": + channel_image = r + elif channel == "green": + channel_image = g + elif channel == "blue": + channel_image = b + elif channel == "alpha": + channel_image = a + + mask = torch.from_numpy(np.array(channel_image.convert("L")).astype(np.float32) / 255.0) + mask_images.append(mask) + + return (torch.cat(mask_images, dim=0), ) + +from PIL import Image, ImageOps, ImageSequence +import requests +from io import BytesIO +import numpy as np +import torch +import hashlib + +class RD_Load_Image: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "image_url": ("STRING", {"multiline": False}), + } + } + + CATEGORY = "image" + + RETURN_TYPES = ("IMAGE", "MASK") + FUNCTION = "load_image" + + def load_image(self, image_url): + response = requests.get(image_url) + img = Image.open(BytesIO(response.content)) + + output_images = [] + output_masks = [] + w, h = None, None + + excluded_formats = ['MPO'] + + for i in ImageSequence.Iterator(img): + i = ImageOps.exif_transpose(i) + + if i.mode == 'I': + i = i.point(lambda i: i * (1 / 255)) + image = i.convert("RGB") + + if len(output_images) == 0: + w = image.size[0] + h = image.size[1] + + if image.size[0] != w or image.size[1] != h: + continue + + image = np.array(image).astype(np.float32) / 255.0 + image = torch.from_numpy(image)[None,] + if 'A' in i.getbands(): + mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 + mask = 1. - torch.from_numpy(mask) + else: + mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") + output_images.append(image) + output_masks.append(mask.unsqueeze(0)) + + if len(output_images) > 1 and img.format not in excluded_formats: + output_image = torch.cat(output_images, dim=0) + output_mask = torch.cat(output_masks, dim=0) + else: + output_image = output_images[0] + output_mask = output_masks[0] + + return (output_image, output_mask) + + @classmethod + def IS_CHANGED(s, image_url): + response = requests.get(image_url) + m = hashlib.sha256() + m.update(response.content) + return m.digest().hex() + + @classmethod + def VALIDATE_INPUTS(s, image_url): + response = requests.get(image_url) + return True if response.status_code == 200 else f"Invalid image URL: {image_url}" + +import io +import boto3 +from botocore.client import Config +import folder_paths +import comfy.model_management +from comfy.cli_args import args +import time + +class RD_Upload_Image: + def __init__(self): + self.output_dir = folder_paths.get_output_directory() + self.type = "output" + self.prefix_append = "" + self.compress_level = 4 + + self.linode_obj_config = { + "aws_access_key_id": "GOOG1EGJGNTKEGCJONFQLTXIGTGMMRMDWQSCLEWHDA3RSTF5TMTCMZVPWAXBN", + "aws_secret_access_key": "syUDgATScYoWrHYSq4oSWVbEZ3qY+AlwQx3/I1aX", + "endpoint_url": "https://storage.googleapis.com", + } + + # Initialize boto3 client + self.s3_client = boto3.client("s3", **self.linode_obj_config) + self.bucket_name = "dev-ixink-public-resource" + + @classmethod + def INPUT_TYPES(s): + return {"required": + {"images": ("IMAGE", ), + "filename_prefix": ("STRING", {"default": "ComfyUI"})}, + "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, + } + + RETURN_TYPES = ("STRING",) + FUNCTION = "save_images" + + OUTPUT_NODE = True + + CATEGORY = "image" + + def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): + filename_prefix += self.prefix_append + _, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path( + filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0] + ) + results = list() + file_urls = list() + + for (batch_number, image) in enumerate(images): + i = 255. * image.cpu().numpy() + img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) + metadata = None + if not args.disable_metadata: + metadata = PngInfo() + if prompt is not None: + metadata.add_text("prompt", json.dumps(prompt)) + if extra_pnginfo is not None: + for x in extra_pnginfo: + metadata.add_text(x, json.dumps(extra_pnginfo[x])) + + filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) + file = f"{filename_with_batch_num}_{counter:05}_.png" + img_path = os.path.join(self.output_dir, file) + img.save(img_path, pnginfo=metadata, compress_level=self.compress_level) + + s3_key = f"{int(time.time() * 1000)}/{file}" + + # Upload file with correct content type + self.s3_client.upload_file( + Filename=img_path, + Bucket=self.bucket_name, + Key=s3_key, + ExtraArgs={ + 'ContentType': 'image/png' # Ensures the image is identified as PNG + } + ) + + file_url = f"https://storage.googleapis.com/{self.bucket_name}/{s3_key}" + print(f"Uploaded to: {file_url}") + + results.append({ + "filename": file, + "subfolder": subfolder, + "type": self.type + }) + counter += 1 + file_urls.append(file_url) + + return (str(file_urls),) + + +# MASK TO IMAGE + +class WAS_Mask_To_Image: + + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("IMAGES",) + + FUNCTION = "mask_to_image" + + def mask_to_image(self, masks): + if masks.ndim == 4: + # If input has shape [N, C, H, W] + tensor = masks.permute(0, 2, 3, 1) + tensor_rgb = torch.cat([tensor] * 3, dim=-1) + return (tensor_rgb,) + elif masks.ndim == 3: + # If Input has shape [N, H, W] + tensor = masks.unsqueeze(-1) + tensor_rgb = torch.cat([tensor] * 3, dim=-1) + return (tensor_rgb, ) + elif masks.ndim == 2: + # If input has shape [H, W] + tensor = masks.unsqueeze(0).unsqueeze(-1) + tensor_rgb = torch.cat([tensor] * 3, dim=-1) + return (tensor_rgb,) + else: + cstr("Invalid input shape. Expected [N, C, H, W] or [H, W].").error.print() + return masks + + +# MASK CROP DOMINANT REGION + +class WAS_Mask_Crop_Dominant_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "padding": ("INT", {"default": 24, "min": 0, "max": 4096, "step": 1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "crop_dominant_region" + + def crop_dominant_region(self, masks, padding=24): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_pil = Image.fromarray(np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + region_mask = self.WT.Masking.crop_dominant_region(mask_pil, padding) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_pil = Image.fromarray(np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + region_mask = self.WT.Masking.crop_dominant_region(mask_pil, padding) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK CROP MINORITY REGION + +class WAS_Mask_Crop_Minority_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "padding": ("INT", {"default": 24, "min": 0, "max": 4096, "step": 1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "crop_minority_region" + + def crop_minority_region(self, masks, padding=24): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_pil = Image.fromarray(np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + region_mask = self.WT.Masking.crop_minority_region(mask_pil, padding) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_pil = Image.fromarray(np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + region_mask = self.WT.Masking.crop_minority_region(mask_pil, padding) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK CROP REGION + +class WAS_Mask_Crop_Region: + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mask": ("MASK",), + "padding": ("INT",{"default": 24, "min": 0, "max": 4096, "step": 1}), + "region_type": (["dominant", "minority"],), + } + } + + RETURN_TYPES = ("MASK", "CROP_DATA", "INT", "INT", "INT", "INT", "INT", "INT") + RETURN_NAMES = ("cropped_mask", "crop_data", "top_int", "left_int", "right_int", "bottom_int", "width_int", "height_int") + FUNCTION = "mask_crop_region" + + CATEGORY = "WAS Suite/Image/Masking" + + def mask_crop_region(self, mask, padding=24, region_type="dominant"): + + mask_pil = Image.fromarray(np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + region_mask, crop_data = self.WT.Masking.crop_region(mask_pil, region_type, padding) + region_tensor = pil2mask(ImageOps.invert(region_mask)).unsqueeze(0).unsqueeze(1) + + (width, height), (left, top, right, bottom) = crop_data + + return (region_tensor, crop_data, top, left, right, bottom, width, height) + + +# IMAGE PASTE CROP + +class WAS_Mask_Paste_Region: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mask": ("MASK",), + "crop_mask": ("MASK",), + "crop_data": ("CROP_DATA",), + "crop_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}), + "crop_sharpening": ("INT", {"default": 0, "min": 0, "max": 3, "step": 1}), + } + } + + RETURN_TYPES = ("MASK", "MASK") + RETURN_NAMES = ("RESULT_MASK", "CROP_MASK") + FUNCTION = "mask_paste_region" + + CATEGORY = "WAS Suite/Image/Masking" + + def mask_paste_region(self, mask, crop_mask, crop_data=None, crop_blending=0.25, crop_sharpening=0): + + if crop_data == False: + cstr("No valid crop data found!").error.print() + return( pil2mask(Image.new("L", (512, 512), 0)).unsqueeze(0).unsqueeze(1), + pil2mask(Image.new("L", (512, 512), 0)).unsqueeze(0).unsqueeze(1) ) + + mask_pil = Image.fromarray(np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + mask_crop_pil = Image.fromarray(np.clip(255. * crop_mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + + result_mask, result_crop_mask = self.paste_image(mask_pil, mask_crop_pil, crop_data, crop_blending, crop_sharpening) + + return (pil2mask(result_mask).unsqueeze(0).unsqueeze(1), pil2mask(result_crop_mask).unsqueeze(0).unsqueeze(1)) + + def paste_image(self, image, crop_image, crop_data, blend_amount=0.25, sharpen_amount=1): + + def lingrad(size, direction, white_ratio): + image = Image.new('RGB', size) + draw = ImageDraw.Draw(image) + if direction == 'vertical': + black_end = int(size[1] * (1 - white_ratio)) + range_start = 0 + range_end = size[1] + range_step = 1 + for y in range(range_start, range_end, range_step): + color_ratio = y / size[1] + if y <= black_end: + color = (0, 0, 0) + else: + color_value = int(((y - black_end) / (size[1] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(0, y), (size[0], y)], fill=color) + elif direction == 'horizontal': + black_end = int(size[0] * (1 - white_ratio)) + range_start = 0 + range_end = size[0] + range_step = 1 + for x in range(range_start, range_end, range_step): + color_ratio = x / size[0] + if x <= black_end: + color = (0, 0, 0) + else: + color_value = int(((x - black_end) / (size[0] - black_end)) * 255) + color = (color_value, color_value, color_value) + draw.line([(x, 0), (x, size[1])], fill=color) + + return image.convert("L") + + crop_size, (left, top, right, bottom) = crop_data + crop_image = crop_image.resize(crop_size) + + if sharpen_amount > 0: + for _ in range(int(sharpen_amount)): + crop_image = crop_image.filter(ImageFilter.SHARPEN) + + blended_image = Image.new('RGBA', image.size, (0, 0, 0, 255)) + blended_mask = Image.new('L', image.size, 0) # Update to 'L' mode for MASK image + crop_padded = Image.new('RGBA', image.size, (0, 0, 0, 0)) + blended_image.paste(image, (0, 0)) + crop_padded.paste(crop_image, (left, top)) + crop_mask = Image.new('L', crop_image.size, 0) + + if top > 0: + gradient_image = ImageOps.flip(lingrad(crop_image.size, 'vertical', blend_amount)) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if left > 0: + gradient_image = ImageOps.mirror(lingrad(crop_image.size, 'horizontal', blend_amount)) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if right < image.width: + gradient_image = lingrad(crop_image.size, 'horizontal', blend_amount) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + if bottom < image.height: + gradient_image = lingrad(crop_image.size, 'vertical', blend_amount) + crop_mask = ImageChops.screen(crop_mask, gradient_image) + + crop_mask = ImageOps.invert(crop_mask) + blended_mask.paste(crop_mask, (left, top)) + blended_mask = blended_mask.convert("L") + blended_image.paste(crop_padded, (0, 0), blended_mask) + + return (ImageOps.invert(blended_image.convert("RGB")).convert("L"), ImageOps.invert(blended_mask.convert("RGB")).convert("L")) + + + + +# MASK DOMINANT REGION + +class WAS_Mask_Dominant_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "threshold": ("INT", {"default":128, "min":0, "max":255, "step":1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "dominant_region" + + def dominant_region(self, masks, threshold=128): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_pil = Image.fromarray(np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + region_mask = self.WT.Masking.dominant_region(mask_pil, threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_pil = Image.fromarray(np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) + region_mask = self.WT.Masking.dominant_region(mask_pil, threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK MINORITY REGION + +class WAS_Mask_Minority_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "threshold": ("INT", {"default":128, "min":0, "max":255, "step":1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "minority_region" + + def minority_region(self, masks, threshold=128): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.minority_region(pil_image, threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.minority_region(pil_image, threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + + +# MASK ARBITRARY REGION + +class WAS_Mask_Arbitrary_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "size": ("INT", {"default":256, "min":1, "max":4096, "step":1}), + "threshold": ("INT", {"default":128, "min":0, "max":255, "step":1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "arbitrary_region" + + def arbitrary_region(self, masks, size=256, threshold=128): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.arbitrary_region(pil_image, size, threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.arbitrary_region(pil_image, size, threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + +# MASK SMOOTH REGION + +class WAS_Mask_Smooth_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "sigma": ("FLOAT", {"default":5.0, "min":0.0, "max":128.0, "step":0.1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "smooth_region" + + def smooth_region(self, masks, sigma=128): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.smooth_region(pil_image, sigma) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.smooth_region(pil_image, sigma) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK ERODE REGION + +class WAS_Mask_Erode_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "iterations": ("INT", {"default":5, "min":1, "max":64, "step":1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "erode_region" + + def erode_region(self, masks, iterations=5): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.erode_region(pil_image, iterations) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.erode_region(pil_image, iterations) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + +# MASKS SUBTRACT + +class WAS_Mask_Subtract: + + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks_a": ("MASK",), + "masks_b": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "subtract_masks" + + def subtract_masks(self, masks_a, masks_b): + subtracted_masks = torch.clamp(masks_a - masks_b, 0, 255) + return (subtracted_masks,) + +# MASKS ADD + +class WAS_Mask_Add: + + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks_a": ("MASK",), + "masks_b": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "add_masks" + + def add_masks(self, masks_a, masks_b): + if masks_a.ndim > 2 and masks_b.ndim > 2: + added_masks = masks_a + masks_b + else: + added_masks = torch.clamp(masks_a.unsqueeze(1) + masks_b.unsqueeze(1), 0, 255) + added_masks = added_masks.squeeze(1) + return (added_masks,) + +# MASKS ADD + +class WAS_Mask_Invert: + + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "add_masks" + + def add_masks(self, masks): + return (1. - masks,) + +# MASK DILATE REGION + +class WAS_Mask_Dilate_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "iterations": ("INT", {"default":5, "min":1, "max":64, "step":1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "dilate_region" + + def dilate_region(self, masks, iterations=5): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.dilate_region(pil_image, iterations) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.dilate_region(pil_image, iterations) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK FILL REGION + +class WAS_Mask_Fill_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "fill_region" + + def fill_region(self, masks): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.fill_region(pil_image) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.fill_region(pil_image) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK THRESHOLD + +class WAS_Mask_Threshold_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "black_threshold": ("INT",{"default":75, "min":0, "max": 255, "step": 1}), + "white_threshold": ("INT",{"default":175, "min":0, "max": 255, "step": 1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "threshold_region" + + def threshold_region(self, masks, black_threshold=75, white_threshold=255): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.threshold_region(pil_image, black_threshold, white_threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.threshold_region(pil_image, black_threshold, white_threshold) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK FLOOR REGION + +class WAS_Mask_Floor_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "floor_region" + + def floor_region(self, masks): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.floor_region(pil_image) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.floor_region(pil_image) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK CEILING REGION + +class WAS_Mask_Ceiling_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "ceiling_region" + + def ceiling_region(self, masks): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.ceiling_region(pil_image) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.ceiling_region(pil_image) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK GAUSSIAN REGION + +class WAS_Mask_Gaussian_Region: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + "radius": ("FLOAT", {"default": 5.0, "min": 0.0, "max": 1024, "step": 0.1}), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + RETURN_NAMES = ("MASKS",) + + FUNCTION = "gaussian_region" + + def gaussian_region(self, masks, radius=5.0): + if masks.ndim > 3: + regions = [] + for mask in masks: + mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.gaussian_region(pil_image, radius) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + regions.append(region_tensor) + regions_tensor = torch.cat(regions, dim=0) + return (regions_tensor,) + else: + mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) + pil_image = Image.fromarray(mask_np, mode="L") + region_mask = self.WT.Masking.gaussian_region(pil_image, radius) + region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1) + return (region_tensor,) + + +# MASK COMBINE + +class WAS_Mask_Combine: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mask_a": ("MASK",), + "mask_b": ("MASK",), + }, + "optional": { + "mask_c": ("MASK",), + "mask_d": ("MASK",), + "mask_e": ("MASK",), + "mask_f": ("MASK",), + } + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "combine_masks" + + def combine_masks(self, mask_a, mask_b, mask_c=None, mask_d=None, mask_e=None, mask_f=None): + masks = [mask_a, mask_b] + if mask_c: + masks.append(mask_c) + if mask_d: + masks.append(mask_d) + if mask_e: + masks.append(mask_e) + if mask_f: + masks.append(mask_f) + combined_mask = torch.sum(torch.stack(masks, dim=0), dim=0) + combined_mask = torch.clamp(combined_mask, 0, 1) # Ensure values are between 0 and 1 + return (combined_mask, ) + +class WAS_Mask_Combine_Batch: + + def __init__(self): + self.WT = WAS_Tools_Class() + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "masks": ("MASK",), + }, + } + + CATEGORY = "WAS Suite/Image/Masking" + + RETURN_TYPES = ("MASK",) + + FUNCTION = "combine_masks" + + def combine_masks(self, masks): + combined_mask = torch.sum(torch.stack([mask.unsqueeze(0) for mask in masks], dim=0), dim=0) + combined_mask = torch.clamp(combined_mask, 0, 1) # Ensure values are between 0 and 1 + return (combined_mask, ) + +# LATENT UPSCALE NODE + +class WAS_Latent_Upscale: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return {"required": {"samples": ("LATENT",), "mode": (["area", "bicubic", "bilinear", "nearest"],), + "factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 8.0, "step": 0.01}), + "align": (["true", "false"], )}} + RETURN_TYPES = ("LATENT",) + FUNCTION = "latent_upscale" + + CATEGORY = "WAS Suite/Latent/Transform" + + def latent_upscale(self, samples, mode, factor, align): + valid_modes = ["area", "bicubic", "bilinear", "nearest"] + if mode not in valid_modes: + cstr(f"Invalid interpolation mode `{mode}` selected. Valid modes are: {', '.join(valid_modes)}").error.print() + return (s, ) + align = True if align == 'true' else False + if not isinstance(factor, float) or factor <= 0: + cstr(f"The input `factor` is `{factor}`, but should be a positive or negative float.").error.print() + return (s, ) + s = samples.copy() + shape = s['samples'].shape + size = tuple(int(round(dim * factor)) for dim in shape[-2:]) + if mode in ['linear', 'bilinear', 'bicubic', 'trilinear']: + s["samples"] = torch.nn.functional.interpolate( + s['samples'], size=size, mode=mode, align_corners=align) + else: + s["samples"] = torch.nn.functional.interpolate(s['samples'], size=size, mode=mode) + return (s,) + +# LATENT NOISE INJECTION NODE + + +class WAS_Latent_Noise: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "samples": ("LATENT",), + "noise_std": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01}), + } + } + + RETURN_TYPES = ("LATENT",) + FUNCTION = "inject_noise" + + CATEGORY = "WAS Suite/Latent/Generate" + + def inject_noise(self, samples, noise_std): + s = samples.copy() + noise = torch.randn_like(s["samples"]) * noise_std + s["samples"] = s["samples"] + noise + return (s,) + + + +# MIDAS DEPTH APPROXIMATION NODE + +class MiDaS_Model_Loader: + def __init__(self): + self.midas_dir = os.path.join(MODELS_DIR, 'midas') + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "midas_model": (["DPT_Large", "DPT_Hybrid"],), + }, + } + + RETURN_TYPES = ("MIDAS_MODEL",) + RETURN_NAMES = ("midas_model",) + FUNCTION = "load_midas_model" + + CATEGORY = "WAS Suite/Loaders" + + def load_midas_model(self, midas_model): + + global MIDAS_INSTALLED + + if not MIDAS_INSTALLED: + self.install_midas() + + if midas_model == 'DPT_Large': + model_name = 'dpt_large_384.pt' + elif midas_model == 'DPT_Hybrid': + model_name = 'dpt_hybrid_384.pt' + else: + model_name = 'dpt_large_384.pt' + + model_path = os.path.join(self.midas_dir, 'checkpoints'+os.sep+model_name) + + torch.hub.set_dir(self.midas_dir) + if os.path.exists(model_path): + cstr(f"Loading MiDaS Model from `{model_path}`").msg.print() + midas_type = model_path + else: + cstr("Downloading and loading MiDaS Model...").msg.print() + midas = torch.hub.load("intel-isl/MiDaS", midas_model, trust_repo=True) + device = torch.device("cpu") + + cstr(f"MiDaS is using passive device `{device}` until in use.").msg.print() + + midas.to(device) + midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") + transform = midas_transforms.dpt_transform + + return ( (midas, transform), ) + + def install_midas(self): + global MIDAS_INSTALLED + if 'timm' not in packages(): + install_package("timm") + MIDAS_INSTALLED = True + + +# MIDAS DEPTH APPROXIMATION NODE + +class MiDaS_Depth_Approx: + def __init__(self): + self.midas_dir = os.path.join(MODELS_DIR, 'midas') + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "use_cpu": (["false", "true"],), + "midas_type": (["DPT_Large", "DPT_Hybrid"],), + "invert_depth": (["false", "true"],), + }, + "optional": { + "midas_model": ("MIDAS_MODEL",), + } + } + + RETURN_TYPES = ("IMAGE",) + RETURN_NAMES = ("images",) + FUNCTION = "midas_approx" + + CATEGORY = "WAS Suite/Image/AI" + + def midas_approx(self, image, use_cpu, midas_type, invert_depth, midas_model=None): + + global MIDAS_INSTALLED + + if not MIDAS_INSTALLED: + self.install_midas() + + import cv2 as cv + + if midas_model: + + midas = midas_model[0] + transform = midas_model[1] + device = torch.device("cuda") if torch.cuda.is_available() and use_cpu == 'false' else torch.device("cpu") + cstr(f"MiDaS is using device: {device}").msg.print() + midas.to(device).eval() + + else: + + if midas_model == 'DPT_Large': + model_name = 'dpt_large_384.pt' + elif midas_model == 'DPT_Hybrid': + model_name = 'dpt_hybrid_384.pt' + else: + model_name = 'dpt_large_384.pt' + + model_path = os.path.join(self.midas_dir, 'checkpoints'+os.sep+model_name) + + torch.hub.set_dir(self.midas_dir) + if os.path.exists(model_path): + cstr(f"Loading MiDaS Model from `{model_path}`").msg.print() + midas_type = model_path + else: + cstr("Downloading and loading MiDaS Model...").msg.print() + midas = torch.hub.load("intel-isl/MiDaS", midas_type, trust_repo=True) + + cstr(f"MiDaS is using device: {device}").msg.print() + + midas.to(device).eval() + midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") + + transform = midas_transforms.dpt_transform + + tensor_images = [] + for i, img in enumerate(image): + + img = np.array(tensor2pil(img)) + + img = cv.cvtColor(img, cv.COLOR_BGR2RGB) + input_batch = transform(img).to(device) + + cstr(f"Approximating depth for image {i+1}/{len(image)}").msg.print() + + with torch.no_grad(): + prediction = midas(input_batch) + prediction = torch.nn.functional.interpolate( + prediction.unsqueeze(1), + size=img.shape[:2], + mode="bicubic", + align_corners=False, + ).squeeze() + + + # Normalize and convert to uint8 + min_val = torch.min(prediction) + max_val = torch.max(prediction) + prediction = (prediction - min_val) / (max_val - min_val) + prediction = (prediction * 255).clamp(0, 255).round().cpu().numpy().astype(np.uint8) + + depth = Image.fromarray(prediction) + + # Invert depth map + if invert_depth == 'true': + depth = ImageOps.invert(depth) + + tensor_images.append(pil2tensor(depth.convert("RGB"))) + + tensor_images = torch.cat(tensor_images, dim=0) + if not midas_model: + del midas, device, midas_transforms + del midas, transform, img, input_batch, prediction + + return (tensor_images, ) + + def install_midas(self): + global MIDAS_INSTALLED + if 'timm' not in packages(): + install_package("timm") + MIDAS_INSTALLED = True + +# MIDAS REMOVE BACKGROUND/FOREGROUND NODE + + +class MiDaS_Background_Foreground_Removal: + def __init__(self): + self.midas_dir = os.path.join(MODELS_DIR, 'midas') + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "use_cpu": (["false", "true"],), + "midas_model": (["DPT_Large", "DPT_Hybrid", "DPT_Small"],), + "remove": (["background", "foregroud"],), + "threshold": (["false", "true"],), + "threshold_low": ("FLOAT", {"default": 10, "min": 0, "max": 255, "step": 1}), + "threshold_mid": ("FLOAT", {"default": 200, "min": 0, "max": 255, "step": 1}), + "threshold_high": ("FLOAT", {"default": 210, "min": 0, "max": 255, "step": 1}), + "smoothing": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 16.0, "step": 0.01}), + "background_red": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}), + "background_green": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}), + "background_blue": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}), + }, + } + + RETURN_TYPES = ("IMAGE", "IMAGE") + RETURN_NAMES = ("RESULT", "DEPTH") + FUNCTION = "midas_remove" + + CATEGORY = "WAS Suite/Image/AI" + + def midas_remove(self, + image, + midas_model, + use_cpu='false', + remove='background', + threshold='false', + threshold_low=0, + threshold_mid=127, + threshold_high=255, + smoothing=0.25, + background_red=0, + background_green=0, + background_blue=0): + + global MIDAS_INSTALLED + + if not MIDAS_INSTALLED: + self.install_midas() + + import cv2 as cv + + # Convert the input image tensor to a numpy and PIL Image + i = 255. * image.cpu().numpy().squeeze() + img = i + # Original image + img_original = tensor2pil(image).convert('RGB') + + cstr("Downloading and loading MiDaS Model...").msg.print() + torch.hub.set_dir(self.midas_dir) + midas = torch.hub.load("intel-isl/MiDaS", midas_model, trust_repo=True) + device = torch.device("cuda") if torch.cuda.is_available( + ) and use_cpu == 'false' else torch.device("cpu") + + cstr(f"MiDaS is using device: {device}").msg.print() + + midas.to(device).eval() + midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") + + if midas_model == "DPT_Large" or midas_model == "DPT_Hybrid": + transform = midas_transforms.dpt_transform + else: + transform = midas_transforms.small_transform + + img = cv.cvtColor(img, cv.COLOR_BGR2RGB) + input_batch = transform(img).to(device) + + cstr("Approximating depth from image.").msg.print() + + with torch.no_grad(): + prediction = midas(input_batch) + prediction = torch.nn.functional.interpolate( + prediction.unsqueeze(1), + size=img.shape[:2], + mode="bicubic", + align_corners=False, + ).squeeze() + + # Invert depth map + if remove == 'foreground': + depth = (255 - prediction.cpu().numpy().astype(np.uint8)) + depth = depth.astype(np.float32) + else: + depth = prediction.cpu().numpy().astype(np.float32) + depth = depth * 255 / (np.max(depth)) / 255 + depth = Image.fromarray(np.uint8(depth * 255)) + + # Threshold depth mask + if threshold == 'true': + levels = self.AdjustLevels( + threshold_low, threshold_mid, threshold_high) + depth = levels.adjust(depth.convert('RGB')).convert('L') + if smoothing > 0: + depth = depth.filter(ImageFilter.GaussianBlur(radius=smoothing)) + depth = depth.resize(img_original.size).convert('L') + + # Validate background color arguments + background_red = int(background_red) if isinstance( + background_red, (int, float)) else 0 + background_green = int(background_green) if isinstance( + background_green, (int, float)) else 0 + background_blue = int(background_blue) if isinstance( + background_blue, (int, float)) else 0 + + # Create background color tuple + background_color = (background_red, background_green, background_blue) + + # Create background image + background = Image.new( + mode="RGB", size=img_original.size, color=background_color) + + # Composite final image + result_img = Image.composite(img_original, background, depth) + + del midas, device, midas_transforms + del transform, img, img_original, input_batch, prediction + + return (pil2tensor(result_img), pil2tensor(depth.convert('RGB'))) + + class AdjustLevels: + def __init__(self, min_level, mid_level, max_level): + self.min_level = min_level + self.mid_level = mid_level + self.max_level = max_level + + def adjust(self, im): + # load the image + + # convert the image to a numpy array + im_arr = np.array(im) + + # apply the min level adjustment + im_arr[im_arr < self.min_level] = self.min_level + + # apply the mid level adjustment + im_arr = (im_arr - self.min_level) * \ + (255 / (self.max_level - self.min_level)) + im_arr[im_arr < 0] = 0 + im_arr[im_arr > 255] = 255 + im_arr = im_arr.astype(np.uint8) + + # apply the max level adjustment + im = Image.fromarray(im_arr) + im = ImageOps.autocontrast(im, cutoff=self.max_level) + + return im + + def install_midas(self): + global MIDAS_INSTALLED + if 'timm' not in packages(): + install_package("timm") + MIDAS_INSTALLED = True + + +#! CONDITIONING NODES + + +# NSP CLIPTextEncode NODE + +class WAS_NSP_CLIPTextEncoder: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mode": (["Noodle Soup Prompts", "Wildcards"],), + "noodle_key": ("STRING", {"default": '__', "multiline": False}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "text": ("STRING", {"multiline": True}), + "clip": ("CLIP",), + } + } + + OUTPUT_NODE = True + RETURN_TYPES = ("CONDITIONING", TEXT_TYPE, TEXT_TYPE) + RETURN_NAMES = ("conditioning", "parsed_text", "raw_text") + FUNCTION = "nsp_encode" + + CATEGORY = "WAS Suite/Conditioning" + + def nsp_encode(self, clip, text, mode="Noodle Soup Prompts", noodle_key='__', seed=0): + + if mode == "Noodle Soup Prompts": + new_text = nsp_parse(text, seed, noodle_key) + else: + new_text = replace_wildcards(text, (None if seed == 0 else seed), noodle_key) + + new_text = parse_dynamic_prompt(new_text, seed) + new_text, text_vars = parse_prompt_vars(new_text) + cstr(f"CLIPTextEncode Prased Prompt:\n {new_text}").msg.print() + CLIPTextEncode = nodes.CLIPTextEncode() + encoded = CLIPTextEncode.encode(clip=clip, text=new_text) + + return (encoded[0], new_text, text, { "ui": { "string": new_text } }) + + +#! SAMPLING NODES + +# KSAMPLER + +class WAS_KSampler: + @classmethod + def INPUT_TYPES(cls): + return {"required": + + {"model": ("MODEL", ), + "seed": ("SEED", ), + "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), + "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), + "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "latent_image": ("LATENT", ), + "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + }} + + RETURN_TYPES = ("LATENT",) + FUNCTION = "sample" + + CATEGORY = "WAS Suite/Sampling" + + def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): + return nodes.common_ksampler(model, seed['seed'], steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) + +# KSampler Cycle + +class WAS_KSampler_Cycle: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "model": ("MODEL",), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), + "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), + "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), + "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), + "positive": ("CONDITIONING", ), + "negative": ("CONDITIONING", ), + "latent_image": ("LATENT", ), + "tiled_vae": (["disable", "enable"], ), + "latent_upscale": (["disable","nearest-exact", "bilinear", "area", "bicubic", "bislerp"],), + "upscale_factor": ("FLOAT", {"default":2.0, "min": 0.1, "max": 8.0, "step": 0.1}), + "upscale_cycles": ("INT", {"default": 2, "min": 2, "max": 12, "step": 1}), + "starting_denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), + "cycle_denoise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), + "scale_denoise": (["enable", "disable"],), + "scale_sampling": (["bilinear", "bicubic", "nearest", "lanczos"],), + "vae": ("VAE",), + }, + "optional": { + "secondary_model": ("MODEL",), + "secondary_start_cycle": ("INT", {"default": 2, "min": 2, "max": 16, "step": 1}), + "upscale_model": ("UPSCALE_MODEL",), + "processor_model": ("UPSCALE_MODEL",), + "pos_additive": ("CONDITIONING",), + "neg_additive": ("CONDITIONING",), + "pos_add_mode": (["increment", "decrement"],), + "pos_add_strength": ("FLOAT", {"default": 0.25, "min": 0.01, "max": 1.0, "step": 0.01}), + "pos_add_strength_scaling": (["enable", "disable"],), + "pos_add_strength_cutoff": ("FLOAT", {"default": 2.0, "min": 0.01, "max": 10.0, "step": 0.01}), + "neg_add_mode": (["increment", "decrement"],), + "neg_add_strength": ("FLOAT", {"default": 0.25, "min": 0.01, "max": 1.0, "step": 0.01}), + "neg_add_strength_scaling": (["enable", "disable"],), + "neg_add_strength_cutoff": ("FLOAT", {"default": 2.0, "min": 0.01, "max": 10.0, "step": 0.01}), + "sharpen_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}), + "sharpen_radius": ("INT", {"default": 2, "min": 1, "max": 12, "step": 1}), + "steps_scaling": (["enable", "disable"],), + "steps_control": (["decrement", "increment"],), + "steps_scaling_value": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}), + "steps_cutoff": ("INT", {"default": 20, "min": 4, "max": 1000, "step": 1}), + "denoise_cutoff": ("FLOAT", {"default": 0.25, "min": 0.01, "max": 1.0, "step": 0.01}), + } + } + + RETURN_TYPES = ("LATENT",) + RETURN_NAMES = ("latent(s)",) + FUNCTION = "sample" + + CATEGORY = "WAS Suite/Sampling" + + def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, tiled_vae, latent_upscale, upscale_factor, + upscale_cycles, starting_denoise, cycle_denoise, scale_denoise, scale_sampling, vae, secondary_model=None, secondary_start_cycle=None, + pos_additive=None, pos_add_mode=None, pos_add_strength=None, pos_add_strength_scaling=None, pos_add_strength_cutoff=None, + neg_additive=None, neg_add_mode=None, neg_add_strength=None, neg_add_strength_scaling=None, neg_add_strength_cutoff=None, + upscale_model=None, processor_model=None, sharpen_strength=0, sharpen_radius=2, steps_scaling=None, steps_control=None, + steps_scaling_value=None, steps_cutoff=None, denoise_cutoff=0.25): + + upscale_steps = upscale_cycles + division_factor = upscale_steps if steps >= upscale_steps else steps + current_upscale_factor = upscale_factor ** (1 / (division_factor - 1)) + tiled_vae = (tiled_vae == "enable") + scale_denoise = (scale_denoise == "enable") + pos_add_strength_scaling = (pos_add_strength_scaling == "enable") + neg_add_strength_scaling = (neg_add_strength_scaling == "enable") + steps_scaling = (steps_scaling == "enable") + run_model = model + secondary_switched = False + + for i in range(division_factor): + + cstr(f"Cycle Pass {i+1}/{division_factor}").msg.print() + + if scale_denoise: + denoise = ( + ( round(cycle_denoise * (2 ** (-(i-1))), 2) if i > 0 else cycle_denoise ) + if i > 0 else round(starting_denoise, 2) + ) + else: + denoise = round((cycle_denoise if i > 0 else starting_denoise), 2) + + if denoise < denoise_cutoff and scale_denoise: + denoise = denoise_cutoff + + if i >= (secondary_start_cycle - 1) and secondary_model and not secondary_switched: + run_model = secondary_model + denoise = cycle_denoise + model = None + secondary_switched = True + + if steps_scaling and i > 0: + + steps = ( + steps + steps_scaling_value + if steps_control == 'increment' + else steps - steps_scaling_value + ) + steps = ( + ( steps + if steps <= steps_cutoff + else steps_cutoff ) + if steps_control == 'increment' + else ( steps + if steps >= steps_cutoff + else steps_cutoff ) + ) + + print("Steps:", steps) + print("Denoise:", denoise) + + if pos_additive: + + pos_strength = 0.0 if i <= 0 else pos_add_strength + + if pos_add_mode == 'increment': + pos_strength = ( + ( round(pos_add_strength * (2 ** (i-1)), 2) + if i > 0 + else pos_add_strength ) + if pos_add_strength_scaling + else pos_add_strength + ) + pos_strength = ( + pos_add_strength_cutoff + if pos_strength > pos_add_strength_cutoff + else pos_strength + ) + else: + pos_strength = ( + ( round(pos_add_strength / (2 ** (i-1)), 2) + if i > 0 + else pos_add_strength ) + if pos_add_strength_scaling + else pos_add_strength + ) + pos_strength = ( + pos_add_strength_cutoff + if pos_strength < pos_add_strength_cutoff + else pos_strength + ) + comb = nodes.ConditioningAverage() + positive = comb.addWeighted(pos_additive, positive, pos_strength)[0] + print("Positive Additive Strength:", pos_strength) + + if neg_additive: + + neg_strength = 0.0 if i <= 0 else pos_add_strength + + if neg_add_mode == 'increment': + neg_strength = ( + ( round(neg_add_strength * (2 ** (i-1)), 2) + if i > 0 + else neg_add_strength ) + if neg_add_strength_scaling + else neg_add_strength + ) + neg_strength = ( + neg_add_strength_cutoff + if neg_strength > neg_add_strength_cutoff + else neg_strength + ) + else: + neg_strength = ( + ( round(neg_add_strength / (2 ** (i-1)), 2) + if i > 0 + else neg_add_strength ) + if neg_add_strength_scaling + else neg_add_strength + ) + neg_strength = ( + neg_add_strength_cutoff + if neg_strength < neg_add_strength_cutoff + else neg_strength + ) + + comb = nodes.ConditioningAverage() + negative = comb.addWeighted(neg_additive, negative, neg_strength)[0] + print("Negative Additive Strength:", neg_strength) + + if i != 0: + latent_image = latent_image_result + + samples = nodes.common_ksampler( + run_model, + seed, + steps, + cfg, + sampler_name, + scheduler, + positive, + negative, + latent_image, + denoise=denoise, + ) + + # Upscale + if i < division_factor - 1: + + tensors = None + upscaler = None + + resample_filters = { + 'nearest': 0, + 'bilinear': 2, + 'bicubic': 3, + 'lanczos': 1 + } + + if latent_upscale == 'disable': + + if tiled_vae: + tensors = vae.decode_tiled(samples[0]['samples']) + else: + tensors = vae.decode(samples[0]['samples']) + + if processor_model or upscale_model: + + from comfy_extras import nodes_upscale_model + upscaler = nodes_upscale_model.ImageUpscaleWithModel() + + if processor_model: + + original_size = tensor2pil(tensors[0]).size + upscaled_tensors = upscaler.upscale(processor_model, tensors) + tensor_images = [] + for tensor in upscaled_tensors[0]: + pil = tensor2pil(tensor) + if pil.size[0] != original_size[0] or pil.size[1] != original_size[1]: + pil = pil.resize((original_size[0], original_size[1]), Image.Resampling(resample_filters[scale_sampling])) + if sharpen_strength != 0.0: + pil = self.unsharp_filter(pil, sharpen_radius, sharpen_strength) + tensor_images.append(pil2tensor(pil)) + + tensor_images = torch.cat(tensor_images, dim=0) + + if upscale_model: + + if processor_model: + tensors = tensor_images + del tensor_images + + original_size = tensor2pil(tensors[0]).size + new_width = round(original_size[0] * current_upscale_factor) + new_height = round(original_size[1] * current_upscale_factor) + new_width = int(round(new_width / 32) * 32) + new_height = int(round(new_height / 32) * 32) + upscaled_tensors = upscaler.upscale(upscale_model, tensors) + tensor_images = [] + for tensor in upscaled_tensors[0]: + tensor = pil2tensor(tensor2pil(tensor).resize((new_width, new_height), Image.Resampling(resample_filters[scale_sampling]))) + size = max(tensor2pil(tensor).size) + if sharpen_strength != 0.0: + tensor = pil2tensor(self.unsharp_filter(tensor2pil(tensor), sharpen_radius, sharpen_strength)) + tensor_images.append(tensor) + + tensor_images = torch.cat(tensor_images, dim=0) + + else: + + tensor_images = [] + scale = WAS_Image_Rescale() + for tensor in tensors: + tensor = scale.image_rescale(tensor.unsqueeze(0), "rescale", "true", scale_sampling, current_upscale_factor, 0, 0)[0] + size = max(tensor2pil(tensor).size) + if sharpen_strength > 0.0: + tensor = pil2tensor(self.unsharp_filter(tensor2pil(tensor), sharpen_radius, sharpen_strength)) + tensor_images.append(tensor) + tensor_images = torch.cat(tensor_images, dim=0) + + if tiled_vae: + latent_image_result = {"samples": vae.encode_tiled(self.vae_encode_crop_pixels(tensor_images)[:,:,:,:3])} + else: + latent_image_result = {"samples": vae.encode(self.vae_encode_crop_pixels(tensor_images)[:,:,:,:3])} + + else: + + upscaler = nodes.LatentUpscaleBy() + latent_image_result = upscaler.upscale(samples[0], latent_upscale, current_upscale_factor)[0] + + else: + + latent_image_result = samples[0] + + return (latent_image_result, ) + + @staticmethod + def vae_encode_crop_pixels(pixels): + x = (pixels.shape[1] // 8) * 8 + y = (pixels.shape[2] // 8) * 8 + if pixels.shape[1] != x or pixels.shape[2] != y: + x_offset = (pixels.shape[1] % 8) // 2 + y_offset = (pixels.shape[2] % 8) // 2 + pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :] + return pixels + + @staticmethod + def unsharp_filter(image, radius=2, amount=1.0): + from skimage.filters import unsharp_mask + img_array = np.array(image) + img_array = img_array / 255.0 + sharpened = unsharp_mask(img_array, radius=radius, amount=amount, channel_axis=2) + sharpened = (sharpened * 255.0).astype(np.uint8) + sharpened_pil = Image.fromarray(sharpened) + + return sharpened_pil + + +# Latent Blend + +class WAS_Blend_Latents: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "latent_a": ("LATENT",), + "latent_b": ("LATENT",), + "operation": (["add", "multiply", "divide", "subtract", "overlay", "hard_light", "soft_light", "screen", "linear_dodge", "difference", "exclusion", "random"],), + "blend": ("FLOAT", {"default": 0.5, "min": 0.01, "max": 1.0, "step": 0.01}), + } + } + + RETURN_TYPES = ("LATENT",) + FUNCTION = "latent_blend" + + CATEGORY = "WAS Suite/Latent" + + def latent_blend(self, latent_a, latent_b, operation, blend): + return ( {"samples": self.blend_latents(latent_a['samples'], latent_b['samples'], operation, blend)}, ) + + def blend_latents(self, latent1, latent2, mode='add', blend_percentage=0.5): + + def overlay_blend(latent1, latent2, blend_factor): + low = 2 * latent1 * latent2 + high = 1 - 2 * (1 - latent1) * (1 - latent2) + blended_latent = (latent1 * blend_factor) * low + (latent2 * blend_factor) * high + return blended_latent + + def screen_blend(latent1, latent2, blend_factor): + inverted_latent1 = 1 - latent1 + inverted_latent2 = 1 - latent2 + blended_latent = 1 - (inverted_latent1 * inverted_latent2 * (1 - blend_factor)) + return blended_latent + + def difference_blend(latent1, latent2, blend_factor): + blended_latent = abs(latent1 - latent2) * blend_factor + return blended_latent + + def exclusion_blend(latent1, latent2, blend_factor): + blended_latent = (latent1 + latent2 - 2 * latent1 * latent2) * blend_factor + return blended_latent + + def hard_light_blend(latent1, latent2, blend_factor): + blended_latent = torch.where(latent2 < 0.5, 2 * latent1 * latent2, 1 - 2 * (1 - latent1) * (1 - latent2)) * blend_factor + return blended_latent + + def linear_dodge_blend(latent1, latent2, blend_factor): + blended_latent = torch.clamp(latent1 + latent2, 0, 1) * blend_factor + return blended_latent + + def soft_light_blend(latent1, latent2, blend_factor): + low = 2 * latent1 * latent2 + latent1 ** 2 - 2 * latent1 * latent2 * latent1 + high = 2 * latent1 * (1 - latent2) + torch.sqrt(latent1) * (2 * latent2 - 1) + blended_latent = (latent1 * blend_factor) * low + (latent2 * blend_factor) * high + return blended_latent + + def random_noise(latent1, latent2, blend_factor): + noise1 = torch.randn_like(latent1) + noise2 = torch.randn_like(latent2) + noise1 = (noise1 - noise1.min()) / (noise1.max() - noise1.min()) + noise2 = (noise2 - noise2.min()) / (noise2.max() - noise2.min()) + blended_noise = (latent1 * blend_factor) * noise1 + (latent2 * blend_factor) * noise2 + blended_noise = torch.clamp(blended_noise, 0, 1) + return blended_noise + + blend_factor1 = blend_percentage + blend_factor2 = 1 - blend_percentage + + if mode == 'add': + blended_latent = (latent1 * blend_factor1) + (latent2 * blend_factor2) + elif mode == 'multiply': + blended_latent = (latent1 * blend_factor1) * (latent2 * blend_factor2) + elif mode == 'divide': + blended_latent = (latent1 * blend_factor1) / (latent2 * blend_factor2) + elif mode == 'subtract': + blended_latent = (latent1 * blend_factor1) - (latent2 * blend_factor2) + elif mode == 'overlay': + blended_latent = overlay_blend(latent1, latent2, blend_factor1) + elif mode == 'screen': + blended_latent = screen_blend(latent1, latent2, blend_factor1) + elif mode == 'difference': + blended_latent = difference_blend(latent1, latent2, blend_factor1) + elif mode == 'exclusion': + blended_latent = exclusion_blend(latent1, latent2, blend_factor1) + elif mode == 'hard_light': + blended_latent = hard_light_blend(latent1, latent2, blend_factor1) + elif mode == 'linear_dodge': + blended_latent = linear_dodge_blend(latent1, latent2, blend_factor1) + elif mode == 'soft_light': + blended_latent = soft_light_blend(latent1, latent2, blend_factor1) + elif mode == 'random': + blended_latent = random_noise(latent1, latent2, blend_factor1) + else: + raise ValueError("Unsupported blending mode. Please choose from 'add', 'multiply', 'divide', 'subtract', 'overlay', 'screen', 'difference', 'exclusion', 'hard_light', 'linear_dodge', 'soft_light', 'custom_noise'.") + + blended_latent = self.normalize(blended_latent) + return blended_latent + + def normalize(self, latent): + return (latent - latent.min()) / (latent.max() - latent.min()) + + + +# SEED NODE + +class WAS_Seed: + @classmethod + def INPUT_TYPES(cls): + return {"required": + {"seed": ("INT", {"default": 0, "min": 0, + "max": 0xffffffffffffffff})} + } + + RETURN_TYPES = ("SEED", "NUMBER", "FLOAT", "INT") + RETURN_NAMES = ("seed", "number", "float", "int") + FUNCTION = "seed" + + CATEGORY = "WAS Suite/Number" + + def seed(self, seed): + return ({"seed": seed, }, seed, float(seed), int(seed) ) + + +# IMAGE SEED + +class WAS_Image_To_Seed: + @classmethod + def INPUT_TYPES(cls): + return {"required": { + "images": ("IMAGE",), + } + } + + RETURN_TYPES = ("INT",) + OUTPUT_IS_LIST = (True,) + + FUNCTION = "image_to_seed" + CATEGORY = "WAS Suite/Image/Analyze" + + def image_to_seed(self, images): + + seeds = [] + for image in images: + image = tensor2pil(image) + seeds.append(image2seed(image)) + + return (seeds, ) + + +#! TEXT NODES + +class WAS_Prompt_Styles_Selector: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + style_list = [] + if os.path.exists(STYLES_PATH): + with open(STYLES_PATH, "r") as f: + if len(f.readlines()) != 0: + f.seek(0) + data = f.read() + styles = json.loads(data) + for style in styles.keys(): + style_list.append(style) + if not style_list: + style_list.append("None") + return { + "required": { + "style": (style_list,), + } + } + + RETURN_TYPES = (TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("positive_string", "negative_string") + FUNCTION = "load_style" + + CATEGORY = "WAS Suite/Text" + + def load_style(self, style): + + styles = {} + if os.path.exists(STYLES_PATH): + with open(STYLES_PATH, 'r') as data: + styles = json.load(data) + else: + cstr(f"The styles file does not exist at `{STYLES_PATH}`. Unable to load styles! Have you imported your AUTOMATIC1111 WebUI styles?").error.print() + + if styles and style != None or style != 'None': + prompt = styles[style]['prompt'] + negative_prompt = styles[style]['negative_prompt'] + else: + prompt = '' + negative_prompt = '' + + return (prompt, negative_prompt) + +class WAS_Prompt_Multiple_Styles_Selector: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + style_list = [] + if os.path.exists(STYLES_PATH): + with open(STYLES_PATH, "r") as f: + if len(f.readlines()) != 0: + f.seek(0) + data = f.read() + styles = json.loads(data) + for style in styles.keys(): + style_list.append(style) + if not style_list: + style_list.append("None") + return { + "required": { + "style1": (style_list,), + "style2": (style_list,), + "style3": (style_list,), + "style4": (style_list,), + } + } + + RETURN_TYPES = (TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("positive_string", "negative_string") + FUNCTION = "load_style" + + CATEGORY = "WAS Suite/Text" + + def load_style(self, style1, style2, style3, style4): + styles = {} + if os.path.exists(STYLES_PATH): + with open(STYLES_PATH, 'r') as data: + styles = json.load(data) + else: + cstr(f"The styles file does not exist at `{STYLES_PATH}`. Unable to load styles! Have you imported your AUTOMATIC1111 WebUI styles?").error.print() + return ('', '') + + # Check if the selected styles exist in the loaded styles dictionary + selected_styles = [style1, style2, style3, style4] + for style in selected_styles: + if style not in styles: + print(f"Style '{style}' was not found in the styles file.") + return ('', '') + + prompt = "" + negative_prompt = "" + + # Concatenate the prompts and negative prompts of the selected styles + for style in selected_styles: + prompt += styles[style]['prompt'] + " " + negative_prompt += styles[style]['negative_prompt'] + " " + + return (prompt.strip(), negative_prompt.strip()) + +# Text Multiline Node + +class WAS_Text_Multiline: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": ("STRING", {"default": '', "multiline": True, "dynamicPrompts": True}), + } + } + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_multiline" + + CATEGORY = "WAS Suite/Text" + + def text_multiline(self, text): + import io + new_text = [] + for line in io.StringIO(text): + if not line.strip().startswith('#'): + new_text.append(line.replace("\n", '')) + new_text = "\n".join(new_text) + + tokens = TextTokens() + new_text = tokens.parseTokens(new_text) + + return (new_text, ) + + +class WAS_Text_Multiline_Raw: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": ("STRING", {"default": '', "multiline": True, "dynamicPrompts": False}), + } + } + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_multiline" + + CATEGORY = "WAS Suite/Text" + + def text_multiline(self, text): + tokens = TextTokens() + new_text = tokens.parseTokens(text) + + return (new_text, ) + + +# Text List Concatenate Node + +class WAS_Text_List_Concatenate: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + }, + "optional": { + "list_a": ("LIST", {"forceInput": True}), + "list_b": ("LIST", {"forceInput": True}), + "list_c": ("LIST", {"forceInput": True}), + "list_d": ("LIST", {"forceInput": True}), + } + } + + RETURN_TYPES = ("LIST",) + FUNCTION = "text_concatenate_list" + + CATEGORY = "WAS Suite/Text" + + def text_concatenate_list(self, **kwargs): + merged_list: list[str] = [] + + # Iterate over the received inputs in sorted order. + for k in sorted(kwargs.keys()): + v = kwargs[k] + + # Only process "list" input ports. + if isinstance(v, list): + merged_list += v + + return (merged_list,) + + +# Text List Node + +class WAS_Text_List: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + }, + "optional": { + "text_a": ("STRING", {"forceInput": True}), + "text_b": ("STRING", {"forceInput": True}), + "text_c": ("STRING", {"forceInput": True}), + "text_d": ("STRING", {"forceInput": True}), + "text_e": ("STRING", {"forceInput": True}), + "text_f": ("STRING", {"forceInput": True}), + "text_g": ("STRING", {"forceInput": True}), + } + } + RETURN_TYPES = ("LIST",) + FUNCTION = "text_as_list" + + CATEGORY = "WAS Suite/Text" + + def text_as_list(self, **kwargs): + text_list: list[str] = [] + + # Iterate over the received inputs in sorted order. + for k in sorted(kwargs.keys()): + v = kwargs[k] + + # Only process string input ports. + if isinstance(v, str): + text_list.append(v) + + return (text_list,) + + +# Text List to Text Node + +class WAS_Text_List_to_Text: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "delimiter": ("STRING", {"default": ", "}), + "text_list": ("LIST", {"forceInput": True}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_list_to_text" + + CATEGORY = "WAS Suite/Text" + + def text_list_to_text(self, delimiter, text_list): + # Handle special case where delimiter is "\n" (literal newline). + if delimiter == "\\n": + delimiter = "\n" + + merged_text = delimiter.join(text_list) + + return (merged_text,) + + +# Text Parse Embeddings + +class WAS_Text_Parse_Embeddings_By_Name: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_parse_embeddings" + + CATEGORY = "WAS Suite/Text/Parse" + + def text_parse_embeddings(self, text): + return (self.convert_a1111_embeddings(text), ) + + def convert_a1111_embeddings(self, text): + for embeddings_path in comfy_paths.folder_names_and_paths["embeddings"][0]: + for filename in os.listdir(embeddings_path): + basename, ext = os.path.splitext(filename) + pattern = re.compile(r'\b(?= 0 else string[max_length:] + else: + return string[-max_length:] if max_length >= 0 else string[:max_length] + words = string.split() + if mode == 'beginning': + return ' '.join(words[:max_length]) if max_length >= 0 else ' '.join(words[max_length:]) + else: + return ' '.join(words[-max_length:]) if max_length >= 0 else ' '.join(words[:max_length]) + + + + +# Text Compare Strings + +class WAS_Text_Compare: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text_a": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "text_b": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "mode": (["similarity","difference"],), + "tolerance": ("FLOAT", {"default":0.0,"min":0.0,"max":1.0,"step":0.01}), + } + } + RETURN_TYPES = (TEXT_TYPE,TEXT_TYPE,"BOOLEAN","NUMBER",TEXT_TYPE) + RETURN_NAMES = ("TEXT_A_PASS","TEXT_B_PASS","BOOLEAN","SCORE_NUMBER","COMPARISON_TEXT") + FUNCTION = "text_compare" + + CATEGORY = "WAS Suite/Text/Search" + + def text_compare(self, text_a='', text_b='', mode='similarity', tolerance=0.0): + + boolean = ( 1 if text_a == text_b else 0 ) + sim = self.string_compare(text_a, text_b, tolerance, ( True if mode == 'difference' else False )) + score = float(sim[0]) + sim_result = ' '.join(sim[1][::-1]) + sim_result = ' '.join(sim_result.split()) + + return (text_a, text_b, bool(boolean), score, sim_result) + + def string_compare(self, str1, str2, threshold=1.0, difference_mode=False): + m = len(str1) + n = len(str2) + if difference_mode: + dp = [[0 for x in range(n+1)] for x in range(m+1)] + for i in range(m+1): + for j in range(n+1): + if i == 0: + dp[i][j] = j + elif j == 0: + dp[i][j] = i + elif str1[i-1] == str2[j-1]: + dp[i][j] = dp[i-1][j-1] + else: + dp[i][j] = 1 + min(dp[i][j-1], # Insert + dp[i-1][j], # Remove + dp[i-1][j-1]) # Replace + diff_indices = [] + i, j = m, n + while i > 0 and j > 0: + if str1[i-1] == str2[j-1]: + i -= 1 + j -= 1 + else: + diff_indices.append(i-1) + i, j = min((i, j-1), (i-1, j)) + diff_indices.reverse() + words = [] + start_idx = 0 + for i in diff_indices: + if str1[i] == " ": + words.append(str1[start_idx:i]) + start_idx = i+1 + words.append(str1[start_idx:m]) + difference_score = 1 - ((dp[m][n] - len(words)) / max(m, n)) + return (difference_score, words[::-1]) + else: + dp = [[0 for x in range(n+1)] for x in range(m+1)] + similar_words = set() + for i in range(m+1): + for j in range(n+1): + if i == 0: + dp[i][j] = j + elif j == 0: + dp[i][j] = i + elif str1[i-1] == str2[j-1]: + dp[i][j] = dp[i-1][j-1] + if i > 1 and j > 1 and str1[i-2] == ' ' and str2[j-2] == ' ': + word1_start = i-2 + word2_start = j-2 + while word1_start > 0 and str1[word1_start-1] != " ": + word1_start -= 1 + while word2_start > 0 and str2[word2_start-1] != " ": + word2_start -= 1 + word1 = str1[word1_start:i-1] + word2 = str2[word2_start:j-1] + if word1 in str2 or word2 in str1: + if word1 not in similar_words: + similar_words.add(word1) + if word2 not in similar_words: + similar_words.add(word2) + else: + dp[i][j] = 1 + min(dp[i][j-1], # Insert + dp[i-1][j], # Remove + dp[i-1][j-1]) # Replace + if dp[i][j] <= threshold and i > 0 and j > 0: + word1_start = max(0, i-dp[i][j]) + word2_start = max(0, j-dp[i][j]) + word1_end = i + word2_end = j + while word1_start > 0 and str1[word1_start-1] != " ": + word1_start -= 1 + while word2_start > 0 and str2[word2_start-1] != " ": + word2_start -= 1 + while word1_end < m and str1[word1_end] != " ": + word1_end += 1 + while word2_end < n and str2[word2_end] != " ": + word2_end += 1 + word1 = str1[word1_start:word1_end] + word2 = str2[word2_start:word2_end] + if word1 in str2 or word2 in str1: + if word1 not in similar_words: + similar_words.add(word1) + if word2 not in similar_words: + similar_words.add(word2) + if(max(m,n) == 0): + similarity_score = 1 + else: + similarity_score = 1 - (dp[m][n]/max(m,n)) + return (similarity_score, list(similar_words)) + + +# Text Random Line + +class WAS_Text_Random_Line: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_random_line" + + CATEGORY = "WAS Suite/Text" + + def text_random_line(self, text, seed): + lines = text.split("\n") + random.seed(seed) + choice = random.choice(lines) + return (choice, ) + + +# Text Concatenate + +class WAS_Text_Concatenate: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "delimiter": ("STRING", {"default": ", "}), + "clean_whitespace": (["true", "false"],), + }, + "optional": { + "text_a": ("STRING", {"forceInput": True}), + "text_b": ("STRING", {"forceInput": True}), + "text_c": ("STRING", {"forceInput": True}), + "text_d": ("STRING", {"forceInput": True}), + } + } + + RETURN_TYPES = ("STRING",) + FUNCTION = "text_concatenate" + + CATEGORY = "WAS Suite/Text" + + def text_concatenate(self, delimiter, clean_whitespace, **kwargs): + text_inputs = [] + + # Handle special case where delimiter is "\n" (literal newline). + if delimiter in ("\n", "\\n"): + delimiter = "\n" + + # Iterate over the received inputs in sorted order. + for k in sorted(kwargs.keys()): + v = kwargs[k] + + # Only process string input ports. + if isinstance(v, str): + if clean_whitespace == "true": + # Remove leading and trailing whitespace around this input. + v = v.strip() + + # Only use this input if it's a non-empty string, since it + # never makes sense to concatenate totally empty inputs. + # NOTE: If whitespace cleanup is disabled, inputs containing + # 100% whitespace will be treated as if it's a non-empty input. + if v != "": + text_inputs.append(v) + + # Merge the inputs. Will always generate an output, even if empty. + merged_text = delimiter.join(text_inputs) + + return (merged_text,) + + + +# Text Find + + +# Note that these nodes are exposed as "Find", not "Search". This is the first class that follows the naming convention of the node itself. +class WAS_Find: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "substring": ("STRING", {"default": '', "multiline": False}), + "pattern": ("STRING", {"default": '', "multiline": False}), + } + } + + RETURN_TYPES = ("BOOLEAN",) + RETURN_NAMES = ("found",) + FUNCTION = "execute" + + CATEGORY = "WAS Suite/Text/Search" + + def execute(self, text, substring, pattern): + if substring: + return (substring in text, ) + + return (bool(re.search(pattern, text)), ) + + + +# Text Search and Replace + +class WAS_Search_and_Replace: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "find": ("STRING", {"default": '', "multiline": False}), + "replace": ("STRING", {"default": '', "multiline": False}), + } + } + + RETURN_TYPES = (TEXT_TYPE, "NUMBER", "FLOAT", "INT") + RETURN_NAMES = ("result_text", "replacement_count_number", "replacement_count_float", "replacement_count_int") + FUNCTION = "text_search_and_replace" + + CATEGORY = "WAS Suite/Text/Search" + + def text_search_and_replace(self, text, find, replace): + modified_text, count = self.replace_substring(text, find, replace) + return (modified_text, count, float(count), int(count)) + + def replace_substring(self, text, find, replace): + modified_text, count = re.subn(find, replace, text) + return (modified_text, count) + + +# Text Shuffle + +class WAS_Text_Shuffle: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "separator": ("STRING", {"default": ',', "multiline": False}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "shuffle" + + CATEGORY = "WAS Suite/Text/Operations" + + def shuffle(self, text, separator, seed): + + if seed is not None: + random.seed(seed) + + text_list = text.split(separator) + random.shuffle(text_list) + new_text = separator.join(text_list) + + return (new_text, ) + + +# Text Sort + +class WAS_Text_Sort: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "separator": ("STRING", {"default": ', ', "multiline": False}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "sort" + + CATEGORY = "WAS Suite/Text/Operations" + + def sort(self, text, separator): + tokens = WAS_Text_Sort.split_using_protected_groups(text.strip(separator + " \t\n\r"), separator.strip()) + sorted_tokens = sorted(tokens, key=WAS_Text_Sort.token_without_leading_brackets) + return (separator.join(sorted_tokens), ) + + @staticmethod + def token_without_leading_brackets(token): + return token.replace("\\(", "\0\1").replace("(", "").replace("\0\1", "(").strip() + + @staticmethod + def split_using_protected_groups(text, separator): + protected_groups = "" + nesting_level = 0 + for char in text: + if char == "(": nesting_level += 1 + if char == ")": nesting_level -= 1 + + if char == separator and nesting_level > 0: + protected_groups += "\0" + else: + protected_groups += char + + return list(map(lambda t: t.replace("\0", separator).strip(), protected_groups.split(separator))) + + + +# Text Search and Replace + +class WAS_Search_and_Replace_Input: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "find": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "replace": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + + RETURN_TYPES = (TEXT_TYPE, "NUMBER", "FLOAT", "INT") + RETURN_NAMES = ("result_text", "replacement_count_number", "replacement_count_float", "replacement_count_int") + FUNCTION = "text_search_and_replace" + + CATEGORY = "WAS Suite/Text/Search" + + def text_search_and_replace(self, text, find, replace): + count = 0 + new_text = text + while find in new_text: + new_text = new_text.replace(find, replace, 1) + count += 1 + return (new_text, count, float(count), int(count)) + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + +# Text Search and Replace By Dictionary + +class WAS_Search_and_Replace_Dictionary: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "dictionary": ("DICT",), + "replacement_key": ("STRING", {"default": "__", "multiline": False}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_search_and_replace_dict" + + CATEGORY = "WAS Suite/Text/Search" + + def text_search_and_replace_dict(self, text, dictionary, replacement_key, seed): + + random.seed(seed) + + # Parse Text + new_text = text + + for term in dictionary.keys(): + tkey = f'{replacement_key}{term}{replacement_key}' + tcount = new_text.count(tkey) + for _ in range(tcount): + new_text = new_text.replace(tkey, random.choice(dictionary[term]), 1) + if seed > 0 or seed < 0: + seed = seed + 1 + random.seed(seed) + + return (new_text, ) + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + +# Text Parse NSP + +class WAS_Text_Parse_NSP: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "mode": (["Noodle Soup Prompts", "Wildcards"],), + "noodle_key": ("STRING", {"default": '__', "multiline": False}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + + OUTPUT_NODE = True + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_parse_nsp" + + CATEGORY = "WAS Suite/Text/Parse" + + def text_parse_nsp(self, text, mode="Noodle Soup Prompts", noodle_key='__', seed=0): + + if mode == "Noodle Soup Prompts": + + new_text = nsp_parse(text, seed, noodle_key) + cstr(f"Text Parse NSP:\n{new_text}").msg.print() + + else: + + new_text = replace_wildcards(text, (None if seed == 0 else seed), noodle_key) + cstr(f"CLIPTextEncode Wildcards:\n{new_text}").msg.print() + + return (new_text, ) + + +# TEXT SAVE + +class WAS_Text_Save: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": ("STRING", {"forceInput": True}), + "path": ("STRING", {"default": './ComfyUI/output/[time(%Y-%m-%d)]', "multiline": False}), + "filename_prefix": ("STRING", {"default": "ComfyUI"}), + "filename_delimiter": ("STRING", {"default": "_"}), + "filename_number_padding": ("INT", {"default": 4, "min": 0, "max": 9, "step": 1}), + }, + "optional": { + "file_extension": ("STRING", {"default": ".txt"}), + "encoding": ("STRING", {"default": "utf-8"}), + "filename_suffix": ("STRING", {"default": ""}) + } + } + + OUTPUT_NODE = True + RETURN_TYPES = () + FUNCTION = "save_text_file" + CATEGORY = "WAS Suite/IO" + + def save_text_file(self, text, path, filename_prefix='ComfyUI', filename_delimiter='_', + filename_number_padding=4, file_extension='.txt', encoding='utf-8', filename_suffix=''): + tokens = TextTokens() + path = tokens.parseTokens(path) + filename_prefix = tokens.parseTokens(filename_prefix) + + if not os.path.exists(path): + cstr(f"The path `{path}` doesn't exist! Creating it...").warning.print() + try: + os.makedirs(path, exist_ok=True) + except OSError as e: + cstr(f"The path `{path}` could not be created! Is there write access?\n{e}").error.print() + + if text.strip() == '': + cstr(f"There is no text specified to save! Text is empty.").error.print() + + delimiter = filename_delimiter + number_padding = int(filename_number_padding) + filename = self.generate_filename(path, filename_prefix, delimiter, number_padding, file_extension, filename_suffix) + file_path = os.path.join(path, filename) + self.write_text_file(file_path, text, encoding) + update_history_text_files(file_path) + return (text, {"ui": {"string": text}}) + + def generate_filename(self, path, prefix, delimiter, number_padding, extension, suffix): + if number_padding == 0: + # If number_padding is 0, don't use a numerical suffix + filename = f"{prefix}{suffix}{extension}" + else: + if delimiter: + pattern = f"{re.escape(prefix)}{re.escape(delimiter)}(\\d{{{number_padding}}}){re.escape(suffix)}{re.escape(extension)}" + else: + pattern = f"{re.escape(prefix)}(\\d{{{number_padding}}}){re.escape(suffix)}{re.escape(extension)}" + + existing_counters = [ + int(re.search(pattern, filename).group(1)) + for filename in os.listdir(path) + if re.match(pattern, filename) and filename.endswith(extension) + ] + existing_counters.sort() + if existing_counters: + counter = existing_counters[-1] + 1 + else: + counter = 1 + if delimiter: + filename = f"{prefix}{delimiter}{counter:0{number_padding}}{suffix}{extension}" + else: + filename = f"{prefix}{counter:0{number_padding}}{suffix}{extension}" + + while os.path.exists(os.path.join(path, filename)): + counter += 1 + if delimiter: + filename = f"{prefix}{delimiter}{counter:0{number_padding}}{suffix}{extension}" + else: + filename = f"{prefix}{counter:0{number_padding}}{suffix}{extension}" + + return filename + + def write_text_file(self, file, content, encoding): + try: + with open(file, 'w', encoding=encoding, newline='\n') as f: + f.write(content) + except OSError: + cstr(f"Unable to save file `{file}`").error.print() + + +# TEXT FILE HISTORY NODE + +class WAS_Text_File_History: + def __init__(self): + self.HDB = WASDatabase(WAS_HISTORY_DATABASE) + self.conf = getSuiteConfig() + + @classmethod + def INPUT_TYPES(cls): + HDB = WASDatabase(WAS_HISTORY_DATABASE) + conf = getSuiteConfig() + paths = ['No History',] + if HDB.catExists("History") and HDB.keyExists("History", "TextFiles"): + history_paths = HDB.get("History", "TextFiles") + if conf.__contains__('history_display_limit'): + history_paths = history_paths[-conf['history_display_limit']:] + paths = [] + for path_ in history_paths: + paths.append(os.path.join('...'+os.sep+os.path.basename(os.path.dirname(path_)), os.path.basename(path_))) + + return { + "required": { + "file": (paths,), + "dictionary_name": ("STRING", {"default": '[filename]', "multiline": True}), + }, + } + + RETURN_TYPES = (TEXT_TYPE,"DICT") + FUNCTION = "text_file_history" + + CATEGORY = "WAS Suite/History" + + def text_file_history(self, file=None, dictionary_name='[filename]]'): + file_path = file.strip() + filename = ( os.path.basename(file_path).split('.', 1)[0] + if '.' in os.path.basename(file_path) else os.path.basename(file_path) ) + if dictionary_name != '[filename]' or dictionary_name not in [' ', '']: + filename = dictionary_name + if not os.path.exists(file_path): + cstr(f"The path `{file_path}` specified cannot be found.").error.print() + return ('', {filename: []}) + with open(file_path, 'r', encoding="utf-8", newline='\n') as file: + text = file.read() + + # Write to file history + update_history_text_files(file_path) + + import io + lines = [] + for line in io.StringIO(text): + if not line.strip().startswith('#'): + lines.append(line.replace("\n",'')) + dictionary = {filename: lines} + + return ("\n".join(lines), dictionary) + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + +# TEXT TO CONDITIONIONG + +class WAS_Text_to_Conditioning: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "clip": ("CLIP",), + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "text_to_conditioning" + + CATEGORY = "WAS Suite/Text/Operations" + + def text_to_conditioning(self, clip, text): + encoder = nodes.CLIPTextEncode() + encoded = encoder.encode(clip=clip, text=text) + return (encoded[0], { "ui": { "string": text } }) + + + +# TEXT PARSE TOKENS + +class WAS_Text_Parse_Tokens: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_parse_tokens" + + CATEGORY = "WAS Suite/Text/Tokens" + + def text_parse_tokens(self, text): + # Token Parser + tokens = TextTokens() + return (tokens.parseTokens(text), ) + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + +# TEXT ADD TOKENS + + +class WAS_Text_Add_Tokens: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "tokens": ("STRING", {"default": "[hello]: world", "multiline": True}), + "print_current_tokens": (["false", "true"],), + } + } + + RETURN_TYPES = () + FUNCTION = "text_add_tokens" + OUTPUT_NODE = True + CATEGORY = "WAS Suite/Text/Tokens" + + def text_add_tokens(self, tokens, print_current_tokens="false"): + + import io + + # Token Parser + tk = TextTokens() + + # Parse out Tokens + for line in io.StringIO(tokens): + parts = line.split(':') + token = parts[0].strip() + token_value = parts[1].strip() + tk.addToken(token, token_value) + + # Current Tokens + if print_current_tokens == "true": + cstr(f'Current Custom Tokens:').msg.print() + print(json.dumps(tk.custom_tokens, indent=4)) + + return tokens + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + +# TEXT ADD TOKEN BY INPUT + + +class WAS_Text_Add_Token_Input: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "token_name": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "token_value": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "print_current_tokens": (["false", "true"],), + } + } + + RETURN_TYPES = () + FUNCTION = "text_add_token" + OUTPUT_NODE = True + CATEGORY = "WAS Suite/Text/Tokens" + + def text_add_token(self, token_name, token_value, print_current_tokens="false"): + + if token_name.strip() == '': + cstr(f'A `token_name` is required for a token; token name provided is empty.').error.print() + pass + + # Token Parser + tk = TextTokens() + + # Add Tokens + tk.addToken(token_name, token_value) + + # Current Tokens + if print_current_tokens == "true": + cstr(f'Current Custom Tokens:').msg.print() + print(json.dumps(tk.custom_tokens, indent=4)) + + return (token_name, token_value) + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + + +# TEXT TO CONSOLE + +class WAS_Text_to_Console: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "label": ("STRING", {"default": f'Text Output', "multiline": False}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + OUTPUT_NODE = True + FUNCTION = "text_to_console" + + CATEGORY = "WAS Suite/Debug" + + def text_to_console(self, text, label): + if label.strip() != '': + cstr(f'\033[33m{label}\033[0m:\n{text}\n').msg.print() + else: + cstr(f"\033[33mText to Console\033[0m:\n{text}\n").msg.print() + return (text, ) + +# DICT TO CONSOLE + +class WAS_Dictionary_To_Console: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "dictionary": ("DICT",), + "label": ("STRING", {"default": f'Dictionary Output', "multiline": False}), + } + } + + RETURN_TYPES = ("DICT",) + OUTPUT_NODE = True + FUNCTION = "text_to_console" + + CATEGORY = "WAS Suite/Debug" + + def text_to_console(self, dictionary, label): + if label.strip() != '': + print(f'\033[34mWAS Node Suite \033[33m{label}\033[0m:\n') + from pprint import pprint + pprint(dictionary, indent=4) + print('') + else: + cstr(f"\033[33mText to Console\033[0m:\n") + pprint(dictionary, indent=4) + print('') + return (dictionary, ) + + +# LOAD TEXT FILE + +class WAS_Text_Load_From_File: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "file_path": ("STRING", {"default": '', "multiline": False}), + "dictionary_name": ("STRING", {"default": '[filename]', "multiline": False}), + } + } + + RETURN_TYPES = (TEXT_TYPE,"DICT") + FUNCTION = "load_file" + + CATEGORY = "WAS Suite/IO" + + def load_file(self, file_path='', dictionary_name='[filename]]'): + + filename = ( os.path.basename(file_path).split('.', 1)[0] + if '.' in os.path.basename(file_path) else os.path.basename(file_path) ) + if dictionary_name != '[filename]': + filename = dictionary_name + if not os.path.exists(file_path): + cstr(f"The path `{file_path}` specified cannot be found.").error.print() + return ('', {filename: []}) + with open(file_path, 'r', encoding="utf-8", newline='\n') as file: + text = file.read() + + # Write to file history + update_history_text_files(file_path) + + import io + lines = [] + for line in io.StringIO(text): + if not line.strip().startswith('#'): + lines.append(line.replace("\n",'').replace("\r",'')) + dictionary = {filename: lines} + + return ("\n".join(lines), dictionary) + +# TEXT LOAD FROM FILE + +class WAS_Text_Load_Line_From_File: + def __init__(self): + self.HDB = WASDatabase(WAS_HISTORY_DATABASE) + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "file_path": ("STRING", {"default": '', "multiline": False}), + "dictionary_name": ("STRING", {"default": '[filename]', "multiline": False}), + "label": ("STRING", {"default": 'TextBatch', "multiline": False}), + "mode": (["automatic", "index"],), + "index": ("INT", {"default": 0, "min": 0, "step": 1}), + }, + "optional": { + "multiline_text": (TEXT_TYPE, {"forceInput": True}), + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + if kwargs['mode'] != 'index': + return float("NaN") + else: + m = hashlib.sha256() + if os.path.exists(kwargs['file_path']): + with open(kwargs['file_path'], 'rb') as f: + m.update(f.read()) + return m.digest().hex() + else: + return False + + RETURN_TYPES = (TEXT_TYPE, "DICT") + RETURN_NAMES = ("line_text", "dictionary") + FUNCTION = "load_file" + + CATEGORY = "WAS Suite/Text" + + def load_file(self, file_path='', dictionary_name='[filename]', label='TextBatch', + mode='automatic', index=0, multiline_text=None): + if multiline_text is not None: + lines = multiline_text.strip().split('\n') + if mode == 'index': + if index < 0 or index >= len(lines): + cstr(f"Invalid line index `{index}`").error.print() + return ('', {dictionary_name: []}) + line = lines[index] + else: + line_index = self.HDB.get('TextBatch Counters', label) + if line_index is None: + line_index = 0 + line = lines[line_index % len(lines)] + self.HDB.insert('TextBatch Counters', label, line_index + 1) + return (line, {dictionary_name: lines}) + + if file_path == '': + cstr("No file path specified.").error.print() + return ('', {dictionary_name: []}) + + if not os.path.exists(file_path): + cstr(f"The path `{file_path}` specified cannot be found.").error.print() + return ('', {dictionary_name: []}) + + file_list = self.TextFileLoader(file_path, label) + line, lines = None, [] + if mode == 'automatic': + line, lines = file_list.get_next_line() + elif mode == 'index': + if index >= len(file_list.lines): + index = index % len(file_list.lines) + line, lines = file_list.get_line_by_index(index) + if line is None: + cstr("No valid line was found. The file may be empty or all lines have been read.").error.print() + return ('', {dictionary_name: []}) + file_list.store_index() + update_history_text_files(file_path) + + return (line, {dictionary_name: lines}) + + class TextFileLoader: + def __init__(self, file_path, label): + self.WDB = WDB + self.file_path = file_path + self.lines = [] + self.index = 0 + self.label = label + self.load_file(file_path) + + def load_file(self, file_path): + stored_file_path = self.WDB.get('TextBatch Paths', self.label) + stored_index = self.WDB.get('TextBatch Counters', self.label) + if stored_file_path != file_path: + self.index = 0 + self.WDB.insert('TextBatch Counters', self.label, 0) + self.WDB.insert('TextBatch Paths', self.label, file_path) + else: + self.index = stored_index + with open(file_path, 'r', encoding="utf-8", newline='\n') as file: + self.lines = [line.strip() for line in file] + + def get_line_index(self): + return self.index + + def set_line_index(self, index): + self.index = index + self.WDB.insert('TextBatch Counters', self.label, self.index) + + def get_next_line(self): + if self.index >= len(self.lines): + self.index = 0 + line = self.lines[self.index] + self.index += 1 + if self.index == len(self.lines): + self.index = 0 + cstr(f'{cstr.color.YELLOW}TextBatch{cstr.color.END} Index: {self.index}').msg.print() + return line, self.lines + + def get_line_by_index(self, index): + if index < 0 or index >= len(self.lines): + cstr(f"Invalid line index `{index}`").error.print() + return None, [] + self.index = index + line = self.lines[self.index] + cstr(f'{cstr.color.YELLOW}TextBatch{cstr.color.END} Index: {self.index}').msg.print() + return line, self.lines + + def store_index(self): + self.WDB.insert('TextBatch Counters', self.label, self.index) + + +class WAS_Text_To_String: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + + RETURN_TYPES = ("STRING",) + FUNCTION = "text_to_string" + + CATEGORY = "WAS Suite/Text/Operations" + + def text_to_string(self, text): + return (text, ) + +class WAS_Text_To_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + + RETURN_TYPES = ("NUMBER",) + FUNCTION = "text_to_number" + + CATEGORY = "WAS Suite/Text/Operations" + + def text_to_number(self, text): + if "." in text: + number = float(text) + else: + number = int(text) + return (number, ) + + +class WAS_String_To_Text: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "string": ("STRING", {}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "string_to_text" + + CATEGORY = "WAS Suite/Text/Operations" + + def string_to_text(self, string): + return (string, ) + +# Random Prompt + +class WAS_Text_Random_Prompt: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "search_seed": ("STRING", {"multiline": False}), + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "random_prompt" + + CATEGORY = "WAS Suite/Text" + + def random_prompt(self, search_seed=None): + if search_seed in ['', ' ']: + search_seed = None + return (self.search_lexica_art(search_seed), ) + + def search_lexica_art(self, query=None): + if not query: + query = random.choice(["portrait","landscape","anime","superhero","animal","nature","scenery"]) + url = f"https://lexica.art/api/v1/search?q={query}" + try: + response = requests.get(url) + data = response.json() + images = data.get("images", []) + if not images: + return "404 not found error" + random_image = random.choice(images) + prompt = random_image.get("prompt") + except Exception: + cstr("Unable to establish connection to Lexica API.").error.print() + prompt = "404 not found error" + + return prompt + +# BLIP Model Loader + +class WAS_BLIP_Model_Loader: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "blip_model": ("STRING", {"default": "Salesforce/blip-image-captioning-base"}), + "vqa_model_id": ("STRING", {"default": "Salesforce/blip-vqa-base"}), + "device": (["cuda", "cpu"],), + } + } + + RETURN_TYPES = ("BLIP_MODEL",) + FUNCTION = "blip_model" + + CATEGORY = "WAS Suite/Loaders" + + def blip_model(self, blip_model, vqa_model_id, device): + + blip_dir = os.path.join(comfy_paths.models_dir, "blip") + + # Attempt legacy support + if blip_model in ("caption", "interrogate"): + blip_model = "Salesforce/blip-image-captioning-base" + + blip_model = BlipWrapper(caption_model_id=blip_model, vqa_model_id=vqa_model_id, device=device, cache_dir=blip_dir) + + return ( blip_model, ) + + +# BLIP CAPTION IMAGE + +class WAS_BLIP_Analyze_Image: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "images": ("IMAGE",), + "mode": (["caption", "interrogate"], ), + "question": ("STRING", {"default": "What does the background consist of?", "multiline": True, "dynamicPrompts": False}), + "blip_model": ("BLIP_MODEL",), + }, + "optional": { + "min_length": ("INT", {"min": 1, "max": 1024, "default": 24}), + "max_length": ("INT", {"min": 2, "max": 1024, "default": 64}), + "num_beams": ("INT", {"min": 1, "max": 12, "default": 5}), + "no_repeat_ngram_size": ("INT", {"min": 1, "max": 12, "default": 3}), + "early_stopping": ("BOOLEAN", {"default": False}) + } + } + + RETURN_TYPES = (TEXT_TYPE, TEXT_TYPE) + RETURN_NAMES = ("FULL_CAPTIONS", "CAPTIONS") + OUTPUT_IS_LIST = (False, True) + + FUNCTION = "blip_caption_image" + CATEGORY = "WAS Suite/Text/AI" + + def blip_caption_image(self, images, mode, question, blip_model, min_length=24, max_length=64, num_beams=5, no_repeat_ngram_size=3, early_stopping=False): + + captions = [] + for image in images: + pil_image = tensor2pil(image).convert("RGB") + if mode == "caption": + cap = blip_model.generate_caption(image=pil_image, min_length=min_length, max_length=max_length, num_beams=num_beams, no_repeat_ngram_size=no_repeat_ngram_size, early_stopping=early_stopping) + captions.append(cap) + cstr(f"\033[33mBLIP Caption:\033[0m {cap}").msg.print() + else: + cap = blip_model.answer_question(image=pil_image, question=question, min_length=min_length, max_length=max_length, num_beams=num_beams, no_repeat_ngram_size=no_repeat_ngram_size, early_stopping=early_stopping) + captions.append(cap) + cstr(f"\033[33m BLIP Answer:\033[0m {cap}").msg.print() + + full_captions = "" + for i, caption in enumerate(captions): + full_captions += caption + ("\n\n" if i < len(captions) else "") + + return (full_captions, captions) + + +# CLIPSeg Model Loader + +class WAS_CLIPSeg_Model_Loader: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "model": ("STRING", {"default": "CIDAS/clipseg-rd64-refined", "multiline": False}), + }, + } + + RETURN_TYPES = ("CLIPSEG_MODEL",) + RETURN_NAMES = ("clipseg_model",) + FUNCTION = "clipseg_model" + + CATEGORY = "WAS Suite/Loaders" + + def clipseg_model(self, model): + from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation + + cache = os.path.join(MODELS_DIR, 'clipseg') + + inputs = CLIPSegProcessor.from_pretrained(model, cache_dir=cache) + model = CLIPSegForImageSegmentation.from_pretrained(model, cache_dir=cache) + + return ( (inputs, model), ) + +# CLIPSeg Node + +class WAS_CLIPSeg: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "text": ("STRING", {"default": "", "multiline": False}), + }, + "optional": { + "clipseg_model": ("CLIPSEG_MODEL",), + } + } + + RETURN_TYPES = ("MASK", "IMAGE") + RETURN_NAMES = ("MASK", "MASK_IMAGE") + FUNCTION = "CLIPSeg_image" + + CATEGORY = "WAS Suite/Image/Masking" + + def CLIPSeg_image(self, image, text=None, clipseg_model=None): + from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation + + B, H, W, C = image.shape + + cache = os.path.join(MODELS_DIR, 'clipseg') + + if clipseg_model: + inputs = clipseg_model[0] + model = clipseg_model[1] + else: + inputs = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined", cache_dir=cache) + model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined", cache_dir=cache) + + if B == 1: + image = tensor2pil(image) + with torch.no_grad(): + result = model(**inputs(text=text, images=image, padding=True, return_tensors="pt")) + + tensor = torch.sigmoid(result[0]) + mask = 1. - (tensor - tensor.min()) / tensor.max() + mask = mask.unsqueeze(0) + mask = tensor2pil(mask).convert("L") + mask = mask.resize(image.size) + + return (pil2mask(mask), pil2tensor(ImageOps.invert(mask.convert("RGB")))) + else: + import torchvision + with torch.no_grad(): + image = image.permute(0, 3, 1, 2) + image = image * 255 + result = model(**inputs(text=[text] * B, images=image, padding=True, return_tensors="pt")) + t = torch.sigmoid(result[0]) + mask = (t - t.min()) / t.max() + mask = torchvision.transforms.functional.resize(mask, (H, W)) + mask: torch.tensor = mask.unsqueeze(-1) + mask_img = mask.repeat(1, 1, 1, 3) + return (mask, mask_img,) +class CLIPSeg2: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + "text": ("STRING", {"default": "", "multiline": False}), + "use_cuda": ("BOOLEAN", {"default": False}), + }, + "optional": { + "clipseg_model": ("CLIPSEG_MODEL",), + } + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "apply_transform" + + CATEGORY = "image/transformation" + + def apply_transform(self, image, text, use_cuda, clipseg_model): + import torch + import torch.nn.functional as F + from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation + + B, H, W, C = image.shape + + if B != 1: + raise NotImplementedError("Batch size must be 1") + + # Desired slice size and overlap + slice_size = 352 + overlap = slice_size // 2 + + # Calculate the number of slices needed along each dimension + num_slices_h = (H - overlap) // (slice_size - overlap) + 1 + num_slices_w = (W - overlap) // (slice_size - overlap) + 1 + + # Prepare a list to store the slices + slices = [] + + # Generate the slices + for i in range(num_slices_h): + for j in range(num_slices_w): + start_h = i * (slice_size - overlap) + start_w = j * (slice_size - overlap) + + end_h = min(start_h + slice_size, H) + end_w = min(start_w + slice_size, W) + + start_h = max(0, end_h - slice_size) + start_w = max(0, end_w - slice_size) + + slice_ = image[:, start_h:end_h, start_w:end_w, :] + slices.append(slice_) + + # Initialize CLIPSeg model and processor + if clipseg_model: + processor = clipseg_model[0] + model = clipseg_model[1] + else: + processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") + model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") + # Move model to CUDA if requested + if use_cuda and torch.cuda.is_available(): + model = model.to('cuda') + + processor.image_processor.do_rescale = True + processor.image_processor.do_resize = False + + image_global = image.permute(0, 3, 1, 2) + image_global = F.interpolate(image_global, size=(slice_size, slice_size), mode='bilinear', align_corners=False) + image_global = image_global.permute(0, 2, 3, 1) + _, image_global = self.CLIPSeg_image(image_global.float(), text, processor, model, use_cuda) + image_global = image_global.permute(0, 3, 1, 2) + image_global = F.interpolate(image_global, size=(H, W), mode='bilinear', align_corners=False) + image_global = image_global.permute(0, 2, 3, 1) + + # Apply the transformation to each slice + transformed_slices = [] + for slice_ in slices: + transformed_mask, transformed_slice = self.CLIPSeg_image(slice_, text, processor, model, use_cuda) + transformed_slices.append(transformed_slice) + + transformed_slices = torch.cat(transformed_slices) + + # Initialize tensors for reconstruction + reconstructed_image = torch.zeros((B, H, W, C)) + count_map = torch.zeros((B, H, W, C)) + + # Create a blending mask + mask = np.ones((slice_size, slice_size)) + mask[:overlap, :] *= np.linspace(0, 1, overlap)[:, None] + mask[-overlap:, :] *= np.linspace(1, 0, overlap)[:, None] + mask[:, :overlap] *= np.linspace(0, 1, overlap)[None, :] + mask[:, -overlap:] *= np.linspace(1, 0, overlap)[None, :] + mask = torch.tensor(mask, dtype=torch.float32).unsqueeze(0).unsqueeze(-1) + + # Place the transformed slices back into the original image dimensions + for idx in range(transformed_slices.shape[0]): + i = idx // num_slices_w + j = idx % num_slices_w + + start_h = i * (slice_size - overlap) + start_w = j * (slice_size - overlap) + + end_h = min(start_h + slice_size, H) + end_w = min(start_w + slice_size, W) + + start_h = max(0, end_h - slice_size) + start_w = max(0, end_w - slice_size) + + reconstructed_image[:, start_h:end_h, start_w:end_w, :] += transformed_slices[idx] * mask + count_map[:, start_h:end_h, start_w:end_w, :] += mask + + # Avoid division by zero + count_map[count_map == 0] = 1 + + # Average the overlapping regions + y = reconstructed_image / count_map + + total_power = (y + image_global) / 2 + just_black = image_global < 0.01 + + p1 = total_power > .5 + p2 = y > .5 + p3 = image_global > .5 + + condition = p1 | p2 | p3 + condition = condition & ~just_black + y = torch.where(condition, 1.0, 0.0) + + return (y,) + + def CLIPSeg_image(self, image, text, processor, model, use_cuda): + import torch + import torchvision.transforms.functional as TF + B, H, W, C = image.shape + + import torchvision + with torch.no_grad(): + image = image.permute(0, 3, 1, 2).to(torch.float32) * 255 + + inputs = processor(text=[text] * B, images=image, padding=True, return_tensors="pt") + + # Move model and image tensors to CUDA if requested + if use_cuda and torch.cuda.is_available(): + model = model.to('cuda') + inputs = {k: v.to('cuda') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} + + result = model(**inputs) + t = torch.sigmoid(result[0]) + mask = (t - t.min()) / t.max() + mask = torchvision.transforms.functional.resize(mask, (H, W)) + mask = mask.unsqueeze(-1) + mask_img = mask.repeat(1, 1, 1, 3) + + # Move mask and mask_img back to CPU if they were moved to CUDA + if use_cuda and torch.cuda.is_available(): + mask = mask.cpu() + mask_img = mask_img.cpu() + + return (mask, mask_img,) + +# CLIPSeg Node + +class WAS_CLIPSeg_Batch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_a": ("IMAGE",), + "image_b": ("IMAGE",), + "text_a": ("STRING", {"default":"", "multiline": False}), + "text_b": ("STRING", {"default":"", "multiline": False}), + }, + "optional": { + "image_c": ("IMAGE",), + "image_d": ("IMAGE",), + "image_e": ("IMAGE",), + "image_f": ("IMAGE",), + "text_c": ("STRING", {"default":"", "multiline": False}), + "text_d": ("STRING", {"default":"", "multiline": False}), + "text_e": ("STRING", {"default":"", "multiline": False}), + "text_f": ("STRING", {"default":"", "multiline": False}), + } + } + + RETURN_TYPES = ("IMAGE", "MASK", "IMAGE") + RETURN_NAMES = ("IMAGES_BATCH", "MASKS_BATCH", "MASK_IMAGES_BATCH") + FUNCTION = "CLIPSeg_images" + + CATEGORY = "WAS Suite/Image/Masking" + + def CLIPSeg_images(self, image_a, image_b, text_a, text_b, image_c=None, image_d=None, + image_e=None, image_f=None, text_c=None, text_d=None, text_e=None, text_f=None): + from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation + import torch.nn.functional as F + + images_pil = [tensor2pil(image_a), tensor2pil(image_b)] + + if image_c is not None: + if image_c.shape[-2:] != image_a.shape[-2:]: + cstr("Size of image_c is different from image_a.").error.print() + return + images_pil.append(tensor2pil(image_c)) + if image_d is not None: + if image_d.shape[-2:] != image_a.shape[-2:]: + cstr("Size of image_d is different from image_a.").error.print() + return + images_pil.append(tensor2pil(image_d)) + if image_e is not None: + if image_e.shape[-2:] != image_a.shape[-2:]: + cstr("Size of image_e is different from image_a.").error.print() + return + images_pil.append(tensor2pil(image_e)) + if image_f is not None: + if image_f.shape[-2:] != image_a.shape[-2:]: + cstr("Size of image_f is different from image_a.").error.print() + return + images_pil.append(tensor2pil(image_f)) + + images_tensor = [torch.from_numpy(np.array(img.convert("RGB")).astype(np.float32) / 255.0).unsqueeze(0) for img in images_pil] + images_tensor = torch.cat(images_tensor, dim=0) + + prompts = [text_a, text_b] + if text_c: + prompts.append(text_c) + if text_d: + prompts.append(text_d) + if text_e: + prompts.append(text_e) + if text_f: + prompts.append(text_f) + + cache = os.path.join(MODELS_DIR, 'clipseg') + + inputs = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined", cache_dir=cache) + model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined", cache_dir=cache) + + with torch.no_grad(): + result = model(**inputs(text=prompts, images=images_pil, padding=True, return_tensors="pt")) + + masks = [] + mask_images = [] + for i, res in enumerate(result.logits): + tensor = torch.sigmoid(res) + mask = 1. - (tensor - tensor.min()) / tensor.max() + mask = mask.unsqueeze(0) + mask = tensor2pil(mask).convert("L") + mask = mask.resize(images_pil[0].size) + mask_batch = pil2mask(mask) + + masks.append(mask_batch.unsqueeze(0).unsqueeze(1)) + mask_images.append(pil2tensor(ImageOps.invert(mask.convert("RGB"))).squeeze(0)) + + masks_tensor = torch.cat(masks, dim=0) + mask_images_tensor = torch.stack(mask_images, dim=0) + + del inputs, model, result, tensor, masks, mask_images, images_pil + + return (images_tensor, masks_tensor, mask_images_tensor) + + +# SAM MODEL LOADER + +class WAS_SAM_Model_Loader: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "model_size": (["ViT-H", "ViT-L", "ViT-B"], ), + } + } + + RETURN_TYPES = ("SAM_MODEL",) + FUNCTION = "sam_load_model" + + CATEGORY = "WAS Suite/Image/Masking" + + def sam_load_model(self, model_size): + conf = getSuiteConfig() + + model_filename_mapping = { + "ViT-H": "sam_vit_h_4b8939.pth", + "ViT-L": "sam_vit_l_0b3195.pth", + "ViT-B": "sam_vit_b_01ec64.pth", + } + + model_url_mapping = { + "ViT-H": conf['sam_model_vith_url'] if conf.__contains__('sam_model_vith_url') else r"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", + "ViT-L": conf['sam_model_vitl_url'] if conf.__contains__('sam_model_vitl_url') else r"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", + "ViT-B": conf['sam_model_vitb_url'] if conf.__contains__('sam_model_vitb_url') else r"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", + } + + model_url = model_url_mapping[model_size] + model_filename = model_filename_mapping[model_size] + + if 'GitPython' not in packages(): + install_package("gitpython") + + if not os.path.exists(os.path.join(WAS_SUITE_ROOT, 'repos'+os.sep+'SAM')): + from git.repo.base import Repo + cstr("Installing SAM...").msg.print() + Repo.clone_from('https://github.com/facebookresearch/segment-anything', os.path.join(WAS_SUITE_ROOT, 'repos'+os.sep+'SAM')) + + sys.path.append(os.path.join(WAS_SUITE_ROOT, 'repos'+os.sep+'SAM')) + + sam_dir = os.path.join(MODELS_DIR, 'sam') + if not os.path.exists(sam_dir): + os.makedirs(sam_dir, exist_ok=True) + + sam_file = os.path.join(sam_dir, model_filename) + if not os.path.exists(sam_file): + cstr("Selected SAM model not found. Downloading...").msg.print() + r = requests.get(model_url, allow_redirects=True) + open(sam_file, 'wb').write(r.content) + + from segment_anything import build_sam_vit_h, build_sam_vit_l, build_sam_vit_b + + if model_size == 'ViT-H': + sam_model = build_sam_vit_h(sam_file) + elif model_size == 'ViT-L': + sam_model = build_sam_vit_l(sam_file) + elif model_size == 'ViT-B': + sam_model = build_sam_vit_b(sam_file) + else: + raise ValueError(f"SAM model does not match the model_size: '{model_size}'.") + + return (sam_model, ) + + +# SAM PARAMETERS +class WAS_SAM_Parameters: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "points": ("STRING", {"default": "[128, 128]; [0, 0]", "multiline": False}), + "labels": ("STRING", {"default": "[1, 0]", "multiline": False}), + } + } + + RETURN_TYPES = ("SAM_PARAMETERS",) + FUNCTION = "sam_parameters" + + CATEGORY = "WAS Suite/Image/Masking" + + def sam_parameters(self, points, labels): + parameters = { + "points": np.asarray(np.matrix(points)), + "labels": np.array(np.matrix(labels))[0] + } + + return (parameters,) + + +# SAM COMBINE PARAMETERS +class WAS_SAM_Combine_Parameters: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "sam_parameters_a": ("SAM_PARAMETERS",), + "sam_parameters_b": ("SAM_PARAMETERS",), + } + } + + RETURN_TYPES = ("SAM_PARAMETERS",) + FUNCTION = "sam_combine_parameters" + + CATEGORY = "WAS Suite/Image/Masking" + + def sam_combine_parameters(self, sam_parameters_a, sam_parameters_b): + parameters = { + "points": np.concatenate( + (sam_parameters_a["points"], + sam_parameters_b["points"]), + axis=0 + ), + "labels": np.concatenate( + (sam_parameters_a["labels"], + sam_parameters_b["labels"]) + ) + } + + return (parameters,) + + +# SAM IMAGE MASK +class WAS_SAM_Image_Mask: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "sam_model": ("SAM_MODEL",), + "sam_parameters": ("SAM_PARAMETERS",), + "image": ("IMAGE",), + } + } + + RETURN_TYPES = ("IMAGE", "MASK",) + FUNCTION = "sam_image_mask" + + CATEGORY = "WAS Suite/Image/Masking" + + def sam_image_mask(self, sam_model, sam_parameters, image): + image = tensor2sam(image) + points = sam_parameters["points"] + labels = sam_parameters["labels"] + + from segment_anything import SamPredictor + + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + sam_model.to(device=device) + + predictor = SamPredictor(sam_model) + predictor.set_image(image) + + masks, scores, logits = predictor.predict( + point_coords=points, + point_labels=labels, + multimask_output=False + ) + + sam_model.to(device='cpu') + + mask = np.expand_dims(masks, axis=-1) + + image = np.repeat(mask, 3, axis=-1) + image = torch.from_numpy(image) + + mask = torch.from_numpy(mask) + mask = mask.squeeze(2) + mask = mask.squeeze().to(torch.float32) + + return (image, mask, ) + +#! BOUNDED IMAGES + +# IMAGE BOUNDS + +class WAS_Image_Bounds: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "image": ("IMAGE",), + } + } + + RETURN_TYPES = ("IMAGE_BOUNDS",) + FUNCTION = "image_bounds" + + CATEGORY = "WAS Suite/Image/Bound" + + def image_bounds(self, image): + # Ensure we are working with batches + image = image.unsqueeze(0) if image.dim() == 3 else image + + return([(0, img.shape[0]-1 , 0, img.shape[1]-1) for img in image],) + +# INSET IMAGE BOUNDS + +class WAS_Inset_Image_Bounds: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "image_bounds": ("IMAGE_BOUNDS",), + "inset_left": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + "inset_right": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + "inset_top": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + "inset_bottom": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = ("IMAGE_BOUNDS",) + FUNCTION = "inset_image_bounds" + + CATEGORY = "WAS Suite/Image/Bound" + + def inset_image_bounds(self, image_bounds, inset_left, inset_right, inset_top, inset_bottom): + inset_bounds = [] + for rmin, rmax, cmin, cmax in image_bounds: + rmin += inset_top + rmax -= inset_bottom + cmin += inset_left + cmax -= inset_right + + if rmin > rmax or cmin > cmax: + raise ValueError("Invalid insets provided. Please make sure the insets do not exceed the image bounds.") + + inset_bounds.append((rmin, rmax, cmin, cmax)) + return (inset_bounds,) + +# BOUNDED IMAGE BLEND + +class WAS_Bounded_Image_Blend: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "target": ("IMAGE",), + "target_bounds": ("IMAGE_BOUNDS",), + "source": ("IMAGE",), + "blend_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0}), + "feathering": ("INT", {"default": 16, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "bounded_image_blend" + + CATEGORY = "WAS Suite/Image/Bound" + + def bounded_image_blend(self, target, target_bounds, source, blend_factor, feathering): + # Ensure we are working with batches + target = target.unsqueeze(0) if target.dim() == 3 else target + source = source.unsqueeze(0) if source.dim() == 3 else source + + # If number of target images and source images don't match then all source images + # will be applied only to the first target image, otherwise they will be applied + # 1 to 1 + # If the number of target bounds and source images don't match then all sourcess will + # use the first target bounds for scaling and placing the source images, otherwise they + # will be applied 1 to 1 + tgt_len = 1 if len(target) != len(source) else len(source) + bounds_len = 1 if len(target_bounds) != len(source) else len(source) + + # Convert target PyTorch tensors to PIL images + tgt_arr = [tensor2pil(tgt) for tgt in target[:tgt_len]] + src_arr = [tensor2pil(src) for src in source] + + result_tensors = [] + for idx in range(len(src_arr)): + src = src_arr[idx] + # If only one target image, then ensure it is the only one used + if (tgt_len == 1 and idx == 0) or tgt_len > 1: + tgt = tgt_arr[idx] + + # If only one bounds object, no need to extract and calculate more than once. + # Additionally, if only one bounds obuect, then the mask only needs created once + if (bounds_len == 1 and idx == 0) or bounds_len > 1: + # Extract the target bounds + rmin, rmax, cmin, cmax = target_bounds[idx] + + # Calculate the dimensions of the target bounds + height, width = (rmax - rmin + 1, cmax - cmin + 1) + + # Create the feathered mask portion the size of the target bounds + if feathering > 0: + inner_mask = Image.new('L', (width - (2 * feathering), height - (2 * feathering)), 255) + inner_mask = ImageOps.expand(inner_mask, border=feathering, fill=0) + inner_mask = inner_mask.filter(ImageFilter.GaussianBlur(radius=feathering)) + else: + inner_mask = Image.new('L', (width, height), 255) + + # Create a blend mask using the inner_mask and blend factor + inner_mask = inner_mask.point(lambda p: p * blend_factor) + + # Create the blend mask with the same size as the target image + tgt_mask = Image.new('L', tgt.size, 0) + # Paste the feathered mask portion into the blend mask at the target bounds position + tgt_mask.paste(inner_mask, (cmin, rmin)) + + # Resize the source image to match the dimensions of the target bounds + src_resized = src.resize((width, height), Image.Resampling.LANCZOS) + + # Create a blank image with the same size and mode as the target + src_positioned = Image.new(tgt.mode, tgt.size) + + # Paste the source image onto the blank image using the target bounds + src_positioned.paste(src_resized, (cmin, rmin)) + + # Blend the source and target images using the blend mask + result = Image.composite(src_positioned, tgt, tgt_mask) + + # Convert the result back to a PyTorch tensor + result_tensors.append(pil2tensor(result)) + + return (torch.cat(result_tensors, dim=0),) + +# BOUNDED IMAGE CROP + +class WAS_Bounded_Image_Crop: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "image": ("IMAGE",), + "image_bounds": ("IMAGE_BOUNDS",), + } + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "bounded_image_crop" + + CATEGORY = "WAS Suite/Image/Bound" + + def bounded_image_crop(self, image, image_bounds): + # Ensure we are working with batches + image = image.unsqueeze(0) if image.dim() == 3 else image + + # If number of images and bounds don't match, then only the first bounds will be used + # to crop the images, otherwise, each bounds will be used for each image 1 to 1 + bounds_len = 1 if len(image_bounds) != len(image) else len(image) + + cropped_images = [] + for idx in range(len(image)): + # If only one bounds object, no need to extract and calculate more than once. + if (bounds_len == 1 and idx == 0) or bounds_len > 1: + rmin, rmax, cmin, cmax = image_bounds[idx] + + # Check if the provided bounds are valid + if rmin > rmax or cmin > cmax: + raise ValueError("Invalid bounds provided. Please make sure the bounds are within the image dimensions.") + + cropped_images.append(image[idx][rmin:rmax+1, cmin:cmax+1, :]) + + return (torch.stack(cropped_images, dim=0),) + + +# BOUNDED IMAGE BLEND WITH MASK + +class WAS_Bounded_Image_Blend_With_Mask: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "target": ("IMAGE",), + "target_mask": ("MASK",), + "target_bounds": ("IMAGE_BOUNDS",), + "source": ("IMAGE",), + "blend_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0}), + "feathering": ("INT", {"default": 16, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "bounded_image_blend_with_mask" + + CATEGORY = "WAS Suite/Image/Bound" + + def bounded_image_blend_with_mask(self, target, target_mask, target_bounds, source, blend_factor, feathering): + # Ensure we are working with batches + target = target.unsqueeze(0) if target.dim() == 3 else target + source = source.unsqueeze(0) if source.dim() == 3 else source + target_mask = target_mask.unsqueeze(0) if target_mask.dim() == 2 else target_mask + + # If number of target masks and source images don't match, then only the first mask will be used on + # the source images, otherwise, each mask will be used for each source image 1 to 1 + # Simarly, if the number of target images and source images don't match then + # all source images will be applied only to the first target, otherwise they will be applied + # 1 to 1 + tgt_mask_len = 1 if len(target_mask) != len(source) else len(source) + tgt_len = 1 if len(target) != len(source) else len(source) + bounds_len = 1 if len(target_bounds) != len(source) else len(source) + + tgt_arr = [tensor2pil(tgt) for tgt in target[:tgt_len]] + src_arr = [tensor2pil(src) for src in source] + tgt_mask_arr=[] + + # Convert Target Mask(s) to grayscale image format + for m_idx in range(tgt_mask_len): + np_array = np.clip((target_mask[m_idx].cpu().numpy().squeeze() * 255.0), 0, 255) + tgt_mask_arr.append(Image.fromarray((np_array).astype(np.uint8), mode='L')) + + result_tensors = [] + for idx in range(len(src_arr)): + src = src_arr[idx] + # If only one target image, then ensure it is the only one used + if (tgt_len == 1 and idx == 0) or tgt_len > 1: + tgt = tgt_arr[idx] + + # If only one bounds, no need to extract and calculate more than once + if (bounds_len == 1 and idx == 0) or bounds_len > 1: + # Extract the target bounds + rmin, rmax, cmin, cmax = target_bounds[idx] + + # Calculate the dimensions of the target bounds + height, width = (rmax - rmin + 1, cmax - cmin + 1) + + # If only one mask, then ensure that is the only the first is used + if (tgt_mask_len == 1 and idx == 0) or tgt_mask_len > 1: + tgt_mask = tgt_mask_arr[idx] + + # If only one mask and one bounds, then mask only needs to + # be extended once because all targets will be the same size + if (tgt_mask_len == 1 and bounds_len == 1 and idx == 0) or \ + (tgt_mask_len > 1 or bounds_len > 1): + + # This is an imperfect, but easy way to determine if the mask based on the + # target image or source image. If not target, assume source. If neither, + # then it's not going to look right regardless + if (tgt_mask.size != tgt.size): + # Create the blend mask with the same size as the target image + mask_extended_canvas = Image.new('L', tgt.size, 0) + + # Paste the mask portion into the extended mask at the target bounds position + mask_extended_canvas.paste(tgt_mask, (cmin, rmin)) + + tgt_mask = mask_extended_canvas + + # Apply feathering (Gaussian blur) to the blend mask if feather_amount is greater than 0 + if feathering > 0: + tgt_mask = tgt_mask.filter(ImageFilter.GaussianBlur(radius=feathering)) + + # Apply blending factor to the tgt mask now that it has been extended + tgt_mask = tgt_mask.point(lambda p: p * blend_factor) + + # Resize the source image to match the dimensions of the target bounds + src_resized = src.resize((width, height), Image.Resampling.LANCZOS) + + # Create a blank image with the same size and mode as the target + src_positioned = Image.new(tgt.mode, tgt.size) + + # Paste the source image onto the blank image using the target + src_positioned.paste(src_resized, (cmin, rmin)) + + # Blend the source and target images using the blend mask + result = Image.composite(src_positioned, tgt, tgt_mask) + + # Convert the result back to a PyTorch tensor + result_tensors.append(pil2tensor(result)) + + return (torch.cat(result_tensors, dim=0),) + +# BOUNDED IMAGE CROP WITH MASK + +class WAS_Bounded_Image_Crop_With_Mask: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(self): + return { + "required": { + "image": ("IMAGE",), + "mask": ("MASK",), + "padding_left": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + "padding_right": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + "padding_top": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + "padding_bottom": ("INT", {"default": 64, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = ("IMAGE", "IMAGE_BOUNDS",) + FUNCTION = "bounded_image_crop_with_mask" + + CATEGORY = "WAS Suite/Image/Bound" + + def bounded_image_crop_with_mask(self, image, mask, padding_left, padding_right, padding_top, padding_bottom): + # Ensure we are working with batches + image = image.unsqueeze(0) if image.dim() == 3 else image + mask = mask.unsqueeze(0) if mask.dim() == 2 else mask + + # If number of masks and images don't match, then only the first mask will be used on + # the images, otherwise, each mask will be used for each image 1 to 1 + mask_len = 1 if len(image) != len(mask) else len(image) + + cropped_images = [] + all_bounds = [] + for i in range(len(image)): + # Single mask or multiple? + if (mask_len == 1 and i == 0) or mask_len > 0: + rows = torch.any(mask[i], dim=1) + cols = torch.any(mask[i], dim=0) + rmin, rmax = torch.where(rows)[0][[0, -1]] + cmin, cmax = torch.where(cols)[0][[0, -1]] + + rmin = max(rmin - padding_top, 0) + rmax = min(rmax + padding_bottom, mask[i].shape[0] - 1) + cmin = max(cmin - padding_left, 0) + cmax = min(cmax + padding_right, mask[i].shape[1] - 1) + + # Even if only a single mask, create a bounds for each cropped image + all_bounds.append([rmin, rmax, cmin, cmax]) + cropped_images.append(image[i][rmin:rmax+1, cmin:cmax+1, :]) + + return torch.stack(cropped_images), all_bounds + +# DEBUG IMAGE BOUNDS TO CONSOLE + +class WAS_Image_Bounds_to_Console: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_bounds": ("IMAGE_BOUNDS",), + "label": ("STRING", {"default": 'Debug to Console', "multiline": False}), + } + } + + RETURN_TYPES = ("IMAGE_BOUNDS",) + OUTPUT_NODE = True + FUNCTION = "debug_to_console" + + CATEGORY = "WAS Suite/Debug" + + def debug_to_console(self, image_bounds, label): + label_out = 'Debug to Console' + if label.strip() != '': + label_out = label + + bounds_out = 'Empty' + if len(bounds_out) > 0: + bounds_out = ', \n '.join('\t(rmin={}, rmax={}, cmin={}, cmax={})' + .format(a, b, c, d) for a, b, c, d in image_bounds) + + cstr(f'\033[33m{label_out}\033[0m:\n[\n{bounds_out}\n]\n').msg.print() + return (image_bounds, ) + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + +#! NUMBERS + +# RANDOM NUMBER + +class WAS_Random_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number_type": (["integer", "float", "bool"],), + "minimum": ("FLOAT", {"default": 0, "min": -18446744073709551615, "max": 18446744073709551615}), + "maximum": ("FLOAT", {"default": 0, "min": -18446744073709551615, "max": 18446744073709551615}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + } + } + + RETURN_TYPES = ("NUMBER", "FLOAT", "INT") + FUNCTION = "return_randm_number" + + CATEGORY = "WAS Suite/Number" + + def return_randm_number(self, minimum, maximum, seed, number_type='integer'): + + # Set Generator Seed + random.seed(seed) + + # Return random number + if number_type: + if number_type == 'integer': + number = random.randint(minimum, maximum) + elif number_type == 'float': + number = random.uniform(minimum, maximum) + elif number_type == 'bool': + number = random.random() + else: + return + + # Return number + return (number, float(number), round(number)) + + @classmethod + def IS_CHANGED(cls, seed, **kwargs): + m = hashlib.sha256() + m.update(seed) + return m.digest().hex() + +# TRUE RANDOM NUMBER + +class WAS_True_Random_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "api_key": ("STRING",{"default":"00000000-0000-0000-0000-000000000000", "multiline": False}), + "minimum": ("FLOAT", {"default": 0, "min": -18446744073709551615, "max": 18446744073709551615}), + "maximum": ("FLOAT", {"default": 10000000, "min": -18446744073709551615, "max": 18446744073709551615}), + "mode": (["random", "fixed"],), + } + } + + RETURN_TYPES = ("NUMBER", "FLOAT", "INT") + FUNCTION = "return_true_randm_number" + + CATEGORY = "WAS Suite/Number" + + def return_true_randm_number(self, api_key=None, minimum=0, maximum=10): + + # Get Random Number + number = self.get_random_numbers(api_key=api_key, minimum=minimum, maximum=maximum)[0] + + # Return number + return (number, ) + + def get_random_numbers(self, api_key=None, amount=1, minimum=0, maximum=10, mode="random"): + '''Get random number(s) from random.org''' + if api_key in [None, '00000000-0000-0000-0000-000000000000', '']: + cstr("No API key provided! A valid RANDOM.ORG API key is required to use `True Random.org Number Generator`").error.print() + return [0] + + url = "https://api.random.org/json-rpc/2/invoke" + headers = {"Content-Type": "application/json"} + payload = { + "jsonrpc": "2.0", + "method": "generateIntegers", + "params": { + "apiKey": api_key, + "n": amount, + "min": minimum, + "max": maximum, + "replacement": True, + "base": 10 + }, + "id": 1 + } + + response = requests.post(url, headers=headers, data=json.dumps(payload)) + if response.status_code == 200: + data = response.json() + if "result" in data: + return data["result"]["random"]["data"], float(data["result"]["random"]["data"]), int(data["result"]["random"]["data"]) + + return [0] + + @classmethod + def IS_CHANGED(cls, api_key, mode, **kwargs): + m = hashlib.sha256() + m.update(api_key) + if mode == 'fixed': + return m.digest().hex() + return float("NaN") + + +# CONSTANT NUMBER + +class WAS_Constant_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number_type": (["integer", "float", "bool"],), + "number": ("FLOAT", {"default": 0, "min": -18446744073709551615, "max": 18446744073709551615, "step": 0.01}), + }, + "optional": { + "number_as_text": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + } + } + + RETURN_TYPES = ("NUMBER", "FLOAT", "INT") + FUNCTION = "return_constant_number" + + CATEGORY = "WAS Suite/Number" + + def return_constant_number(self, number_type, number, number_as_text=None): + + if number_as_text: + if number_type == "integer": + number = int(number_as_text) + elif number_type == "float": + number = float(number_as_text) + else: + number = bool(number_as_text) + + # Return number + if number_type: + if number_type == 'integer': + return (int(number), float(number), int(number) ) + elif number_type == 'float': + return (float(number), float(number), int(number) ) + elif number_type == 'bool': + boolean = (1 if float(number) > 0.5 else 0) + return (int(boolean), float(boolean), int(boolean) ) + else: + return (number, float(number), int(number) ) + +# INCREMENT NUMBER + +class WAS_Number_Counter: + def __init__(self): + self.counters = {} + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number_type": (["integer", "float"],), + "mode": (["increment", "decrement", "increment_to_stop", "decrement_to_stop"],), + "start": ("FLOAT", {"default": 0, "min": -18446744073709551615, "max": 18446744073709551615, "step": 0.01}), + "stop": ("FLOAT", {"default": 0, "min": -18446744073709551615, "max": 18446744073709551615, "step": 0.01}), + "step": ("FLOAT", {"default": 1, "min": 0, "max": 99999, "step": 0.01}), + }, + "optional": { + "reset_bool": ("NUMBER",), + }, + "hidden": { + "unique_id": "UNIQUE_ID", + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + RETURN_TYPES = ("NUMBER", "FLOAT", "INT") + RETURN_NAMES = ("number", "float", "int") + FUNCTION = "increment_number" + + CATEGORY = "WAS Suite/Number" + + def increment_number(self, number_type, mode, start, stop, step, unique_id, reset_bool=0): + + counter = int(start) if mode == 'integer' else start + if self.counters.__contains__(unique_id): + counter = self.counters[unique_id] + + if round(reset_bool) >= 1: + counter = start + + if mode == 'increment': + counter += step + elif mode == 'deccrement': + counter -= step + elif mode == 'increment_to_stop': + counter = counter + step if counter < stop else counter + elif mode == 'decrement_to_stop': + counter = counter - step if counter > stop else counter + + self.counters[unique_id] = counter + + result = int(counter) if number_type == 'integer' else float(counter) + + return ( result, float(counter), int(counter) ) + + +# NUMBER TO SEED + +class WAS_Number_To_Seed: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number": ("NUMBER",), + } + } + + RETURN_TYPES = ("SEED",) + FUNCTION = "number_to_seed" + + CATEGORY = "WAS Suite/Number/Operations" + + def number_to_seed(self, number): + return ({"seed": number, }, ) + + +# NUMBER TO INT + +class WAS_Number_To_Int: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number": ("NUMBER",), + } + } + + RETURN_TYPES = ("INT",) + FUNCTION = "number_to_int" + + CATEGORY = "WAS Suite/Number/Operations" + + def number_to_int(self, number): + return (int(number), ) + + + +# NUMBER TO FLOAT + +class WAS_Number_To_Float: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number": ("NUMBER",), + } + } + + RETURN_TYPES = ("FLOAT",) + FUNCTION = "number_to_float" + + CATEGORY = "WAS Suite/Number/Operations" + + def number_to_float(self, number): + return (float(number), ) + + + +# INT TO NUMBER + +class WAS_Int_To_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "int_input": ("INT",), + } + } + + RETURN_TYPES = ("NUMBER",) + FUNCTION = "int_to_number" + + CATEGORY = "WAS Suite/Number/Operations" + + def int_to_number(self, int_input): + return (int(int_input), ) + + + +# NUMBER TO FLOAT + +class WAS_Float_To_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "float_input": ("FLOAT",), + } + } + + RETURN_TYPES = ("NUMBER",) + FUNCTION = "float_to_number" + + CATEGORY = "WAS Suite/Number/Operations" + + def float_to_number(self, float_input): + return ( float(float_input), ) + + +# NUMBER TO STRING + +class WAS_Number_To_String: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number": ("NUMBER",), + } + } + + RETURN_TYPES = ("STRING",) + FUNCTION = "number_to_string" + + CATEGORY = "WAS Suite/Number/Operations" + + def number_to_string(self, number): + return ( str(number), ) + +# NUMBER TO STRING + +class WAS_Number_To_Text: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number": ("NUMBER",), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "number_to_text" + + CATEGORY = "WAS Suite/Number/Operations" + + def number_to_text(self, number): + return ( str(number), ) + + +# NUMBER PI + +class WAS_Number_PI: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": {} + } + + RETURN_TYPES = ("NUMBER", "FLOAT") + FUNCTION = "number_pi" + + CATEGORY = "WAS Suite/Number" + + def number_pi(self): + return (math.pi, math.pi) + +# Boolean + +class WAS_Boolean: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "boolean": ("FLOAT", {"default": 1, "min": 0.0, "max": 1.0, "step": 0.01}), + } + } + + RETURN_TYPES = ("BOOLEAN", "NUMBER", "INT", "FLOAT") + FUNCTION = "return_boolean" + + CATEGORY = "WAS Suite/Logic" + + def return_boolean(self, boolean=1.0): + boolean_bool = bool(int(round(boolean))) + int_bool = int(round(boolean)) + return (boolean_bool, int_bool, int_bool, boolean) + + +# Logical Comparisons Base Class + +class WAS_Logical_Comparisons: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "boolean_a": ("BOOLEAN", {"default": False}), + "boolean_b": ("BOOLEAN", {"default": False}), + } + } + + RETURN_TYPES = ("BOOLEAN",) + FUNCTION = "do" + + CATEGORY = "WAS Suite/Logic" + + def do(self, boolean_a, boolean_b): + pass + + +# Logical OR + +class WAS_Logical_OR(WAS_Logical_Comparisons): + def do(self, boolean_a, boolean_b): + return (boolean_a or boolean_b,) + + +# Logical AND + +class WAS_Logical_AND(WAS_Logical_Comparisons): + def do(self, boolean_a, boolean_b): + return (boolean_a and boolean_b,) + + +# Logical XOR + +class WAS_Logical_XOR(WAS_Logical_Comparisons): + def do(self, boolean_a, boolean_b): + return (boolean_a != boolean_b,) + + + +# Boolean + +class WAS_Boolean_Primitive: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "boolean": ("BOOLEAN", {"default": False}), + } + } + + RETURN_TYPES = ("BOOLEAN",) + FUNCTION = "do" + + CATEGORY = "WAS Suite/Logic" + + def do(self, boolean): + return (boolean,) + + +# Boolean + +class WAS_Boolean_To_Text: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "boolean": ("BOOLEAN", {"default": False}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "do" + + CATEGORY = "WAS Suite/Logic" + + def do(self, boolean): + if boolean: + return ("True",) + return ("False",) + + +# Logical NOT + +class WAS_Logical_NOT: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "boolean": ("BOOLEAN", {"default": False}), + } + } + + RETURN_TYPES = ("BOOLEAN",) + FUNCTION = "do" + + CATEGORY = "WAS Suite/Logic" + + def do(self, boolean): + return (not boolean,) + + +# NUMBER OPERATIONS + + +class WAS_Number_Operation: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number_a": ("NUMBER",), + "number_b": ("NUMBER",), + "operation": (["addition", "subtraction", "division", "floor division", "multiplication", "exponentiation", "modulus", "greater-than", "greater-than or equals", "less-than", "less-than or equals", "equals", "does not equal"],), + } + } + + RETURN_TYPES = ("NUMBER", "FLOAT", "INT") + FUNCTION = "math_operations" + + CATEGORY = "WAS Suite/Number/Operations" + + def math_operations(self, number_a, number_b, operation="addition"): + + # Return random number + if operation: + if operation == 'addition': + result = (number_a + number_b) + return result, result, int(result) + elif operation == 'subtraction': + result = (number_a - number_b) + return result, result, int(result) + elif operation == 'division': + result = (number_a / number_b) + return result, result, int(result) + elif operation == 'floor division': + result = (number_a // number_b) + return result, result, int(result) + elif operation == 'multiplication': + result = (number_a * number_b) + return result, result, int(result) + elif operation == 'exponentiation': + result = (number_a ** number_b) + return result, result, int(result) + elif operation == 'modulus': + result = (number_a % number_b) + return result, result, int(result) + elif operation == 'greater-than': + result = +(number_a > number_b) + return result, result, int(result) + elif operation == 'greater-than or equals': + result = +(number_a >= number_b) + return result, result, int(result) + elif operation == 'less-than': + result = +(number_a < number_b) + return result, result, int(result) + elif operation == 'less-than or equals': + result = +(number_a <= number_b) + return result, result, int(result) + elif operation == 'equals': + result = +(number_a == number_b) + return result, result, int(result) + elif operation == 'does not equal': + result = +(number_a != number_b) + return result, result, int(result) + else: + cstr("Invalid number operation selected.").error.print() + return (number_a, number_a, int(number_a)) + +# NUMBER MULTIPLE OF + +class WAS_Number_Multiple_Of: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number": ("NUMBER",), + "multiple": ("INT", {"default": 8, "min": -18446744073709551615, "max": 18446744073709551615}), + } + } + + RETURN_TYPES =("NUMBER", "FLOAT", "INT") + FUNCTION = "number_multiple_of" + + CATEGORY = "WAS Suite/Number/Functions" + + def number_multiple_of(self, number, multiple=8): + if number % multiple != 0: + return ((number // multiple) * multiple + multiple, ) + return (number, number, int(number)) + + +#! MISC + + +# Bus. Converts the 5 main connectors into one, and back again. You can provide a bus as input +# or the 5 separate inputs, or a combination. If you provide a bus input and a separate +# input (e.g. a model), the model will take precedence. +# +# The term 'bus' comes from computer hardware, see https://en.wikipedia.org/wiki/Bus_(computing) +class WAS_Bus: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required":{}, + "optional": { + "bus" : ("BUS",), + "model": ("MODEL",), + "clip": ("CLIP",), + "vae": ("VAE",), + "positive": ("CONDITIONING",), + "negative": ("CONDITIONING",), + } + } + RETURN_TYPES = ("BUS", "MODEL", "CLIP", "VAE", "CONDITIONING", "CONDITIONING",) + RETURN_NAMES = ("bus", "model", "clip", "vae", "positive", "negative") + FUNCTION = "bus_fn" + CATEGORY = "WAS Suite/Utilities" + + def bus_fn(self, bus=(None,None,None,None,None), model=None, clip=None, vae=None, positive=None, negative=None): + + # Unpack the 5 constituents of the bus from the bus tuple. + (bus_model, bus_clip, bus_vae, bus_positive, bus_negative) = bus + + # If you pass in specific inputs, they override what comes from the bus. + out_model = model or bus_model + out_clip = clip or bus_clip + out_vae = vae or bus_vae + out_positive = positive or bus_positive + out_negative = negative or bus_negative + + # Squash all 5 inputs into the output bus tuple. + out_bus = (out_model, out_clip, out_vae, out_positive, out_negative) + + if not out_model: + raise ValueError('Either model or bus containing a model should be supplied') + if not out_clip: + raise ValueError('Either clip or bus containing a clip should be supplied') + if not out_vae: + raise ValueError('Either vae or bus containing a vae should be supplied') + # We don't insist that a bus contains conditioning. + + return (out_bus, out_model, out_clip, out_vae, out_positive, out_negative) + + +# Image Width and Height to Number + +class WAS_Image_Size_To_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image": ("IMAGE",), + } + } + + RETURN_TYPES = ("NUMBER", "NUMBER", "FLOAT", "FLOAT", "INT", "INT") + RETURN_NAMES = ("width_num", "height_num", "width_float", "height_float", "width_int", "height_int") + FUNCTION = "image_width_height" + + CATEGORY = "WAS Suite/Number/Operations" + + def image_width_height(self, image): + image = tensor2pil(image) + if image.size: + return( image.size[0], image.size[1], float(image.size[0]), float(image.size[1]), image.size[0], image.size[1] ) + return ( 0, 0, 0, 0, 0, 0) + + +# Latent Width and Height to Number + +class WAS_Latent_Size_To_Number: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "samples": ("LATENT",), + } + } + + RETURN_TYPES = ("NUMBER", "NUMBER", "FLOAT", "FLOAT", "INT", "INT") + RETURN_NAMES = ("tensor_w_num","tensor_h_num","tensor_w_float","tensor_h_float","tensor_w_int","tensor_h_int") + FUNCTION = "latent_width_height" + + CATEGORY = "WAS Suite/Number/Operations" + + def latent_width_height(self, samples): + size_dict = {} + i = 0 + for tensor in samples['samples'][0]: + if not isinstance(tensor, torch.Tensor): + cstr(f'Input should be a torch.Tensor').error.print() + shape = tensor.shape + tensor_height = shape[-2] + tensor_width = shape[-1] + size_dict.update({i:[tensor_width, tensor_height]}) + return ( size_dict[0][0], size_dict[0][1], float(size_dict[0][0]), float(size_dict[0][1]), size_dict[0][0], size_dict[0][1] ) + + +# LATENT INPUT SWITCH + +class WAS_Latent_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "latent_a": ("LATENT",), + "latent_b": ("LATENT",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("LATENT",) + FUNCTION = "latent_input_switch" + + CATEGORY = "WAS Suite/Logic" + + def latent_input_switch(self, latent_a, latent_b, boolean=True): + + if boolean: + return (latent_a, ) + else: + return (latent_b, ) + +# NUMBER INPUT CONDITION + +class WAS_Number_Input_Condition: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number_a": ("NUMBER",), + "number_b": ("NUMBER",), + "return_boolean": (["false", "true"],), + "comparison": (["and", "or", "greater-than", "greater-than or equals", "less-than", "less-than or equals", "equals", "does not equal", "divisible by", "if A odd", "if A even", "if A prime", "factor of"],), + } + } + + RETURN_TYPES = ("NUMBER", "FLOAT", "INT") + FUNCTION = "number_input_condition" + + CATEGORY = "WAS Suite/Logic" + + def number_input_condition(self, number_a, number_b, return_boolean="false", comparison="greater-than"): + + if comparison: + if return_boolean == 'true': + if comparison == 'and': + result = 1 if number_a != 0 and number_b != 0 else 0 + elif comparison == 'or': + result = 1 if number_a != 0 or number_b != 0 else 0 + elif comparison == 'greater-than': + result = 1 if number_a > number_b else 0 + elif comparison == 'greater-than or equals': + result = 1 if number_a >= number_b else 0 + elif comparison == 'less-than': + result = 1 if number_a < number_b else 0 + elif comparison == 'less-than or equals': + result = 1 if number_a <= number_b else 0 + elif comparison == 'equals': + result = 1 if number_a == number_b else 0 + elif comparison == 'does not equal': + result = 1 if number_a != number_b else 0 + elif comparison == 'divisible by': + result = 1 if number_b % number_a == 0 else 0 + elif comparison == 'if A odd': + result = 1 if number_a % 2 != 0 else 0 + elif comparison == 'if A even': + result = 1 if number_a % 2 == 0 else 0 + elif comparison == 'if A prime': + result = 1 if self.is_prime(number_a) else 0 + elif comparison == 'factor of': + result = 1 if number_b % number_a == 0 else 0 + else: + result = 0 + else: + if comparison == 'and': + result = number_a if number_a != 0 and number_b != 0 else number_b + elif comparison == 'or': + result = number_a if number_a != 0 or number_b != 0 else number_b + elif comparison == 'greater-than': + result = number_a if number_a > number_b else number_b + elif comparison == 'greater-than or equals': + result = number_a if number_a >= number_b else number_b + elif comparison == 'less-than': + result = number_a if number_a < number_b else number_b + elif comparison == 'less-than or equals': + result = number_a if number_a <= number_b else number_b + elif comparison == 'equals': + result = number_a if number_a == number_b else number_b + elif comparison == 'does not equal': + result = number_a if number_a != number_b else number_b + elif comparison == 'divisible by': + result = number_a if number_b % number_a == 0 else number_b + elif comparison == 'if A odd': + result = number_a if number_a % 2 != 0 else number_b + elif comparison == 'if A even': + result = number_a if number_a % 2 == 0 else number_b + elif comparison == 'if A prime': + result = number_a if self.is_prime(number_a) else number_b + elif comparison == 'factor of': + result = number_a if number_b % number_a == 0 else number_b + else: + result = number_a + + return (result, float(result), int(result)) + + def is_prime(self, n): + if n <= 1: + return False + elif n <= 3: + return True + elif n % 2 == 0 or n % 3 == 0: + return False + i = 5 + while i * i <= n: + if n % i == 0 or n % (i + 2) == 0: + return False + i += 6 + return True + +# ASPECT RATIO + +class WAS_Image_Aspect_Ratio: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": {}, + "optional": { + "image": ("IMAGE",), + "width": ("NUMBER",), + "height": ("NUMBER",), + } + } + + RETURN_TYPES = ("NUMBER", "FLOAT", "NUMBER", TEXT_TYPE, TEXT_TYPE) + RETURN_NAMES = ("aspect_number", "aspect_float", "is_landscape_bool", "aspect_ratio_common", "aspect_type") + FUNCTION = "aspect" + + CATEGORY = "WAS Suite/Logic" + + def aspect(self, boolean=True, image=None, width=None, height=None): + + if width and height: + width = width; height = height + elif image is not None: + width, height = tensor2pil(image).size + else: + raise Exception("WAS_Image_Aspect_Ratio must have width and height provided if no image tensori supplied.") + + aspect_ratio = width / height + aspect_type = "landscape" if aspect_ratio > 1 else "portrait" if aspect_ratio < 1 else "square" + + landscape_bool = 0 + if aspect_type == "landscape": + landscape_bool = 1 + + gcd = math.gcd(width, height) + gcd_w = width // gcd + gcd_h = height // gcd + aspect_ratio_common = f"{gcd_w}:{gcd_h}" + + return aspect_ratio, aspect_ratio, landscape_bool, aspect_ratio_common, aspect_type + + +# NUMBER INPUT SWITCH + +class WAS_Number_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number_a": ("NUMBER",), + "number_b": ("NUMBER",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("NUMBER", "FLOAT", "INT") + FUNCTION = "number_input_switch" + + CATEGORY = "WAS Suite/Logic" + + def number_input_switch(self, number_a, number_b, boolean=True): + + if boolean: + return (number_a, float(number_a), int(number_a)) + else: + return (number_b, float(number_b), int(number_b)) + + +# IMAGE INPUT SWITCH + +class WAS_Image_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "image_a": ("IMAGE",), + "image_b": ("IMAGE",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("IMAGE",) + FUNCTION = "image_input_switch" + + CATEGORY = "WAS Suite/Logic" + + def image_input_switch(self, image_a, image_b, boolean=True): + + if boolean: + return (image_a, ) + else: + return (image_b, ) + +# CONDITIONING INPUT SWITCH + +class WAS_Conditioning_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "conditioning_a": ("CONDITIONING",), + "conditioning_b": ("CONDITIONING",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("CONDITIONING",) + FUNCTION = "conditioning_input_switch" + + CATEGORY = "WAS Suite/Logic" + + def conditioning_input_switch(self, conditioning_a, conditioning_b, boolean=True): + + if boolean: + return (conditioning_a, ) + else: + return (conditioning_b, ) + +# MODEL INPUT SWITCH + +class WAS_Model_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "model_a": ("MODEL",), + "model_b": ("MODEL",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("MODEL",) + FUNCTION = "model_switch" + + CATEGORY = "WAS Suite/Logic" + + def model_switch(self, model_a, model_b, boolean=True): + + if boolean: + return (model_a, ) + else: + return (model_b, ) + +# VAE INPUT SWITCH + +class WAS_VAE_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "vae_a": ("VAE",), + "vae_b": ("VAE",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("VAE",) + FUNCTION = "vae_switch" + + CATEGORY = "WAS Suite/Logic" + + def vae_switch(self, vae_a, vae_b, boolean=True): + + if boolean: + return (vae_a, ) + else: + return (vae_b, ) + +# CLIP INPUT SWITCH + +class WAS_CLIP_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "clip_a": ("CLIP",), + "clip_b": ("CLIP",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("CLIP",) + FUNCTION = "clip_switch" + + CATEGORY = "WAS Suite/Logic" + + def clip_switch(self, clip_a, clip_b, boolean=True): + + if boolean: + return (clip_a, ) + else: + return (clip_b, ) + +# UPSCALE MODEL INPUT SWITCH + +class WAS_Upscale_Model_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "upscale_model_a": ("UPSCALE_MODEL",), + "upscale_model_b": ("UPSCALE_MODEL",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("UPSCALE_MODEL",) + FUNCTION = "upscale_model_switch" + + CATEGORY = "WAS Suite/Logic" + + def upscale_model_switch(self, upscale_model_a, upscale_model_b, boolean=True): + + if boolean: + return (upscale_model_a, ) + else: + return (upscale_model_b, ) + + +# CONTROL NET INPUT SWITCH + +class WAS_Control_Net_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "control_net_a": ("CONTROL_NET",), + "control_net_b": ("CONTROL_NET",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("CONTROL_NET",) + FUNCTION = "control_net_switch" + + CATEGORY = "WAS Suite/Logic" + + def control_net_switch(self, control_net_a, control_net_b, boolean=True): + + if boolean: + return (control_net_a, ) + else: + return (control_net_b, ) + +# CLIP VISION INPUT SWITCH + +class WAS_CLIP_Vision_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "clip_vision_a": ("CLIP_VISION",), + "clip_vision_b": ("CLIP_VISION",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = ("CLIP_VISION",) + FUNCTION = "clip_vision_switch" + + CATEGORY = "WAS Suite/Logic" + + def clip_vision_switch(self, clip_vision_a, clip_vision_b, boolean=True): + + if boolean: + return (clip_vision_a, ) + else: + return (clip_vision_b) + +# TEXT INPUT SWITCH + +class WAS_Text_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text_a": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "text_b": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + + RETURN_TYPES = (TEXT_TYPE,) + FUNCTION = "text_input_switch" + + CATEGORY = "WAS Suite/Logic" + + def text_input_switch(self, text_a, text_b, boolean=True): + + if boolean: + return (text_a, ) + else: + return (text_b, ) + + +# TEXT CONTAINS + +class WAS_Text_Contains: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "text": ("STRING", {"default": '', "multiline": False}), + "sub_text": ("STRING", {"default": '', "multiline": False}), + }, + "optional": { + "case_insensitive": ("BOOLEAN", {"default": True}), + } + } + + RETURN_TYPES = ("BOOLEAN",) + FUNCTION = "text_contains" + + CATEGORY = "WAS Suite/Logic" + + def text_contains(self, text, sub_text, case_insensitive): + if case_insensitive: + sub_text = sub_text.lower() + text = text.lower() + + return (sub_text in text,) + + +# DEBUG INPUT TO CONSOLE + + +class WAS_Debug_Number_to_Console: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "number": ("NUMBER",), + "label": ("STRING", {"default": 'Debug to Console', "multiline": False}), + } + } + + RETURN_TYPES = ("NUMBER",) + OUTPUT_NODE = True + FUNCTION = "debug_to_console" + + CATEGORY = "WAS Suite/Debug" + + def debug_to_console(self, number, label): + if label.strip() != '': + cstr(f'\033[33m{label}\033[0m:\n{number}\n').msg.print() + else: + cstr(f'\033[33mDebug to Console\033[0m:\n{number}\n').msg.print() + return (number, ) + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + +# CUSTOM COMFYUI NODES + +class WAS_Checkpoint_Loader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "config_name": (comfy_paths.get_filename_list("configs"), ), + "ckpt_name": (comfy_paths.get_filename_list("checkpoints"), )}} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", TEXT_TYPE) + RETURN_NAMES = ("MODEL", "CLIP", "VAE", "NAME_STRING") + FUNCTION = "load_checkpoint" + + CATEGORY = "WAS Suite/Loaders/Advanced" + + def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): + config_path = comfy_paths.get_full_path("configs", config_name) + ckpt_path = comfy_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=comfy_paths.get_folder_paths("embeddings")) + return (out[0], out[1], out[2], os.path.splitext(os.path.basename(ckpt_name))[0]) + +class WAS_Checkpoint_Loader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "config_name": (comfy_paths.get_filename_list("configs"), ), + "ckpt_name": (comfy_paths.get_filename_list("checkpoints"), )}} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", TEXT_TYPE) + RETURN_NAMES = ("MODEL", "CLIP", "VAE", "NAME_STRING") + FUNCTION = "load_checkpoint" + + CATEGORY = "WAS Suite/Loaders/Advanced" + + def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): + config_path = comfy_paths.get_full_path("configs", config_name) + ckpt_path = comfy_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=comfy_paths.get_folder_paths("embeddings")) + return (out[0], out[1], out[2], os.path.splitext(os.path.basename(ckpt_name))[0]) + +class WAS_Diffusers_Hub_Model_Loader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "repo_id": ("STRING", {"multiline":False}), + "revision": ("STRING", {"default": "None", "multiline":False})}} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", TEXT_TYPE) + RETURN_NAMES = ("MODEL", "CLIP", "VAE", "NAME_STRING") + FUNCTION = "load_hub_checkpoint" + + CATEGORY = "WAS Suite/Loaders/Advanced" + + def load_hub_checkpoint(self, repo_id=None, revision=None): + if revision in ["", "None", "none", None]: + revision = None + model_path = comfy_paths.get_folder_paths("diffusers")[0] + self.download_diffusers_model(repo_id, model_path, revision) + diffusersLoader = nodes.DiffusersLoader() + model, clip, vae = diffusersLoader.load_checkpoint(os.path.join(model_path, repo_id)) + return (model, clip, vae, repo_id) + + def download_diffusers_model(self, repo_id, local_dir, revision=None): + if 'huggingface-hub' not in packages(): + install_package("huggingface_hub") + + from huggingface_hub import snapshot_download + model_path = os.path.join(local_dir, repo_id) + ignore_patterns = ["*.ckpt","*.safetensors","*.onnx"] + snapshot_download(repo_id=repo_id, repo_type="model", local_dir=model_path, revision=revision, use_auth_token=False, ignore_patterns=ignore_patterns) + +class WAS_Checkpoint_Loader_Simple: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (comfy_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", TEXT_TYPE) + RETURN_NAMES = ("MODEL", "CLIP", "VAE", "NAME_STRING") + FUNCTION = "load_checkpoint" + + CATEGORY = "WAS Suite/Loaders" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = comfy_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=comfy_paths.get_folder_paths("embeddings")) + return (out[0], out[1], out[2], os.path.splitext(os.path.basename(ckpt_name))[0]) + +class WAS_Diffusers_Loader: + @classmethod + def INPUT_TYPES(cls): + paths = [] + for search_path in comfy_paths.get_folder_paths("diffusers"): + if os.path.exists(search_path): + paths += next(os.walk(search_path))[1] + return {"required": {"model_path": (paths,), }} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", TEXT_TYPE) + RETURN_NAMES = ("MODEL", "CLIP", "VAE", "NAME_STRING") + FUNCTION = "load_checkpoint" + + CATEGORY = "WAS Suite/Loaders/Advanced" + + def load_checkpoint(self, model_path, output_vae=True, output_clip=True): + for search_path in comfy_paths.get_folder_paths("diffusers"): + if os.path.exists(search_path): + paths = next(os.walk(search_path))[1] + if model_path in paths: + model_path = os.path.join(search_path, model_path) + break + + out = comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=comfy_paths.get_folder_paths("embeddings")) + return (out[0], out[1], out[2], os.path.basename(model_path)) + + +class WAS_unCLIP_Checkpoint_Loader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (comfy_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION", "STRING") + RETURN_NAMES = ("MODEL", "CLIP", "VAE", "CLIP_VISION", "NAME_STRING") + FUNCTION = "load_checkpoint" + + CATEGORY = "WAS Suite/Loaders" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = comfy_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=comfy_paths.get_folder_paths("embeddings")) + return (out[0], out[1], out[2], out[3], os.path.splitext(os.path.basename(ckpt_name))[0]) + + +class WAS_Lora_Input_Switch: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "model_a": ("MODEL",), + "clip_a": ("CLIP",), + "model_b": ("MODEL",), + "clip_b": ("CLIP",), + "boolean": ("BOOLEAN", {"forceInput": True}), + } + } + RETURN_TYPES = ("MODEL", "CLIP") + FUNCTION = "lora_input_switch" + + CATEGORY = "WAS Suite/Logic" + + def lora_input_switch(self, model_a, clip_a, model_b, clip_b, boolean=True): + if boolean: + return (model_a, clip_a) + else: + return (model_b, clip_b) + + +class WAS_Lora_Loader: + def __init__(self): + self.loaded_lora = None; + + @classmethod + def INPUT_TYPES(s): + file_list = comfy_paths.get_filename_list("loras") + file_list.insert(0, "None") + return {"required": { "model": ("MODEL",), + "clip": ("CLIP", ), + "lora_name": (file_list, ), + "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), + }} + RETURN_TYPES = ("MODEL", "CLIP", TEXT_TYPE) + RETURN_NAMES = ("MODEL", "CLIP", "NAME_STRING") + FUNCTION = "load_lora" + + CATEGORY = "WAS Suite/Loaders" + + def load_lora(self, model, clip, lora_name, strength_model, strength_clip): + if strength_model == 0 and strength_clip == 0: + return (model, clip) + + lora_path = comfy_paths.get_full_path("loras", lora_name) + lora = None + if self.loaded_lora is not None: + if self.loaded_lora[0] == lora_path: + lora = self.loaded_lora[1] + else: + temp = self.loaded_lora + self.loaded_lora = None + del temp + + if lora is None: + lora = comfy.utils.load_torch_file(lora_path, safe_load=True) + self.loaded_lora = (lora_path, lora) + + model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip) + return (model_lora, clip_lora, os.path.splitext(os.path.basename(lora_name))[0]) + +class WAS_Upscale_Model_Loader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model_name": (comfy_paths.get_filename_list("upscale_models"), ), + }} + RETURN_TYPES = ("UPSCALE_MODEL",TEXT_TYPE) + RETURN_NAMES = ("UPSCALE_MODEL","MODEL_NAME_TEXT") + FUNCTION = "load_model" + + CATEGORY = "WAS Suite/Loaders" + + def load_model(self, model_name): + model_path = comfy_paths.get_full_path("upscale_models", model_name) + sd = comfy.utils.load_torch_file(model_path) + out = model_loading.load_state_dict(sd).eval() + return (out,model_name) + +# VIDEO WRITER + +class WAS_Video_Writer: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + WTools = WAS_Tools_Class() + v = WTools.VideoWriter() + codecs = [] + for codec in v.get_codecs(): + codecs.append(codec.upper()) + codecs = sorted(codecs) + return { + "required": { + "image": ("IMAGE",), + "transition_frames": ("INT", {"default":30, "min":0, "max":120, "step":1}), + "image_delay_sec": ("FLOAT", {"default":2.5, "min":0.1, "max":60000.0, "step":0.1}), + "fps": ("INT", {"default":30, "min":1, "max":60.0, "step":1}), + "max_size": ("INT", {"default":512, "min":128, "max":1920, "step":1}), + "output_path": ("STRING", {"default": "./ComfyUI/output", "multiline": False}), + "filename": ("STRING", {"default": "comfy_writer", "multiline": False}), + "codec": (codecs,), + } + } + + #@classmethod + #def IS_CHANGED(cls, **kwargs): + # return float("NaN") + + RETURN_TYPES = ("IMAGE",TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("IMAGE_PASS","filepath_text","filename_text") + FUNCTION = "write_video" + + CATEGORY = "WAS Suite/Animation/Writer" + + def write_video(self, image, transition_frames=10, image_delay_sec=10, fps=30, max_size=512, + output_path="./ComfyUI/output", filename="morph", codec="H264"): + + conf = getSuiteConfig() + if not conf.__contains__('ffmpeg_bin_path'): + cstr(f"Unable to use MP4 Writer because the `ffmpeg_bin_path` is not set in `{WAS_CONFIG_FILE}`").error.print() + return (image,"","") + + if conf.__contains__('ffmpeg_bin_path'): + if conf['ffmpeg_bin_path'] != "/path/to/ffmpeg": + sys.path.append(conf['ffmpeg_bin_path']) + os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"] = "rtsp_transport;udp" + os.environ['OPENCV_FFMPEG_BINARY'] = conf['ffmpeg_bin_path'] + + if output_path.strip() in [None, "", "."]: + output_path = "./ComfyUI/output" + + if image == None: + image = pil2tensor(Image.new("RGB", (512,512), (0,0,0))) + + if transition_frames < 0: + transition_frames = 0 + elif transition_frames > 60: + transition_frames = 60 + + if fps < 1: + fps = 1 + elif fps > 60: + fps = 60 + + results = [] + for img in image: + print(img.shape) + new_image = self.rescale_image(tensor2pil(img), max_size) + print(new_image.size) + + tokens = TextTokens() + output_path = os.path.abspath(os.path.join(*tokens.parseTokens(output_path).split('/'))) + output_file = os.path.join(output_path, tokens.parseTokens(filename)) + + if not os.path.exists(output_path): + os.makedirs(output_path, exist_ok=True) + + WTools = WAS_Tools_Class() + MP4Writer = WTools.VideoWriter(int(transition_frames), int(fps), int(image_delay_sec), max_size=max_size, codec=codec) + path = MP4Writer.write(new_image, output_file) + + results.append(img) + + return (torch.cat(results, dim=0), path, filename) + + def rescale_image(self, image, max_dimension): + width, height = image.size + if width > max_dimension or height > max_dimension: + scaling_factor = max(width, height) / max_dimension + new_width = int(width / scaling_factor) + new_height = int(height / scaling_factor) + image = image.resize((new_width, new_height), Image.Resampling(1)) + return image + +# VIDEO CREATOR + +class WAS_Create_Video_From_Path: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + WTools = WAS_Tools_Class() + v = WTools.VideoWriter() + codecs = [] + for codec in v.get_codecs(): + codecs.append(codec.upper()) + codecs = sorted(codecs) + return { + "required": { + "transition_frames": ("INT", {"default":30, "min":0, "max":120, "step":1}), + "image_delay_sec": ("FLOAT", {"default":2.5, "min":0.01, "max":60000.0, "step":0.01}), + "fps": ("INT", {"default":30, "min":1, "max":60.0, "step":1}), + "max_size": ("INT", {"default":512, "min":128, "max":1920, "step":1}), + "input_path": ("STRING", {"default": "./ComfyUI/input", "multiline": False}), + "output_path": ("STRING", {"default": "./ComfyUI/output", "multiline": False}), + "filename": ("STRING", {"default": "comfy_video", "multiline": False}), + "codec": (codecs,), + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + RETURN_TYPES = (TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("filepath_text","filename_text") + FUNCTION = "create_video_from_path" + + CATEGORY = "WAS Suite/Animation" + + def create_video_from_path(self, transition_frames=10, image_delay_sec=10, fps=30, max_size=512, + input_path="./ComfyUI/input", output_path="./ComfyUI/output", filename="morph", codec="H264"): + + conf = getSuiteConfig() + if not conf.__contains__('ffmpeg_bin_path'): + cstr(f"Unable to use MP4 Writer because the `ffmpeg_bin_path` is not set in `{WAS_CONFIG_FILE}`").error.print() + return ("","") + + if conf.__contains__('ffmpeg_bin_path'): + if conf['ffmpeg_bin_path'] != "/path/to/ffmpeg": + sys.path.append(conf['ffmpeg_bin_path']) + os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"] = "rtsp_transport;udp" + os.environ['OPENCV_FFMPEG_BINARY'] = conf['ffmpeg_bin_path'] + + if output_path.strip() in [None, "", "."]: + output_path = "./ComfyUI/output" + + if transition_frames < 0: + transition_frames = 0 + elif transition_frames > 60: + transition_frames = 60 + + if fps < 1: + fps = 1 + elif fps > 60: + fps = 60 + + tokens = TextTokens() + + # Check if output_path is an absolute path + if not os.path.isabs(output_path): + output_path = os.path.abspath(os.path.join(*tokens.parseTokens(output_path).split('/'))) + + output_file = os.path.join(output_path, tokens.parseTokens(filename)) + + if not os.path.exists(output_path): + os.makedirs(output_path, exist_ok=True) + + WTools = WAS_Tools_Class() + MP4Writer = WTools.VideoWriter(int(transition_frames), int(fps), int(image_delay_sec), max_size, codec) + path = MP4Writer.create_video(input_path, output_file) + + return (path, filename) + +# VIDEO FRAME DUMP + +class WAS_Video_Frame_Dump: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "video_path": ("STRING", {"default":"./ComfyUI/input/MyVideo.mp4", "multiline":False}), + "output_path": ("STRING", {"default": "./ComfyUI/input/MyVideo", "multiline": False}), + "prefix": ("STRING", {"default": "frame_", "multiline": False}), + "filenumber_digits": ("INT", {"default":4, "min":-1, "max":8, "step":1}), + "extension": (["png","jpg","gif","tiff"],), + } + } + + @classmethod + def IS_CHANGED(cls, **kwargs): + return float("NaN") + + RETURN_TYPES = (TEXT_TYPE,"NUMBER") + RETURN_NAMES = ("output_path","processed_count") + FUNCTION = "dump_video_frames" + + CATEGORY = "WAS Suite/Animation" + + def dump_video_frames(self, video_path, output_path, prefix="fame_", extension="png",filenumber_digits=-1): + + conf = getSuiteConfig() + if not conf.__contains__('ffmpeg_bin_path'): + cstr(f"Unable to use dump frames because the `ffmpeg_bin_path` is not set in `{WAS_CONFIG_FILE}`").error.print() + return ("",0) + + if conf.__contains__('ffmpeg_bin_path'): + if conf['ffmpeg_bin_path'] != "/path/to/ffmpeg": + sys.path.append(conf['ffmpeg_bin_path']) + os.environ["OPENCV_FFMPEG_CAPTURE_OPTIONS"] = "rtsp_transport;udp" + os.environ['OPENCV_FFMPEG_BINARY'] = conf['ffmpeg_bin_path'] + + if output_path.strip() in [None, "", "."]: + output_path = "./ComfyUI/input/frames" + + tokens = TextTokens() + output_path = os.path.abspath(os.path.join(*tokens.parseTokens(output_path).split('/'))) + prefix = tokens.parseTokens(prefix) + + WTools = WAS_Tools_Class() + MP4Writer = WTools.VideoWriter() + processed = MP4Writer.extract(video_path, output_path, prefix, extension,filenumber_digits) + + return (output_path, processed) + +# CACHING + +class WAS_Cache: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "latent_suffix": ("STRING", {"default": str(random.randint(999999, 99999999))+"_cache", "multiline":False}), + "image_suffix": ("STRING", {"default": str(random.randint(999999, 99999999))+"_cache", "multiline":False}), + "conditioning_suffix": ("STRING", {"default": str(random.randint(999999, 99999999))+"_cache", "multiline":False}), + }, + "optional": { + "output_path": ("STRING", {"default": os.path.join(WAS_SUITE_ROOT, 'cache'), "multiline": False}), + "latent": ("LATENT",), + "image": ("IMAGE",), + "conditioning": ("CONDITIONING",), + } + } + + RETURN_TYPES = (TEXT_TYPE,TEXT_TYPE,TEXT_TYPE) + RETURN_NAMES = ("latent_filename","image_filename","conditioning_filename") + FUNCTION = "cache_input" + OUTPUT_NODE = True + + CATEGORY = "WAS Suite/IO" + + def cache_input(self, latent_suffix="_cache", image_suffix="_cache", conditioning_suffix="_cache", output_path=None, latent=None, image=None, conditioning=None): + + if 'joblib' not in packages(): + install_package('joblib') + + import joblib + + output = os.path.join(WAS_SUITE_ROOT, 'cache') + if output_path: + if output_path.strip() not in ['', 'none', 'None']: + output = output_path + if not os.path.isabs(output): + output = os.path.abspath(output) + if not os.path.exists(output): + os.makedirs(output, exist_ok=True) + + l_filename = "" + i_filename = "" + c_filename = "" + + tokens = TextTokens() + output = tokens.parseTokens(output) + + if latent != None: + l_filename = f'{tokens.parseTokens(latent_suffix)}.latent' + out_file = os.path.join(output, l_filename) + joblib.dump(latent, out_file) + cstr(f"Latent saved to: {out_file}").msg.print() + + if image != None: + i_filename = f'{tokens.parseTokens(image_suffix)}.image' + out_file = os.path.join(output, i_filename) + joblib.dump(image, out_file) + cstr(f"Tensor batch saved to: {out_file}").msg.print() + + if conditioning != None: + c_filename = f'{tokens.parseTokens(conditioning_suffix)}.conditioning' + out_file = os.path.join(output, c_filename) + joblib.dump(conditioning, os.path.join(output, out_file)) + cstr(f"Conditioning saved to: {out_file}").msg.print() + + return (l_filename, i_filename, c_filename) + + +class WAS_Load_Cache: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "latent_path": ("STRING", {"default": "", "multiline":False}), + "image_path": ("STRING", {"default": "", "multiline":False}), + "conditioning_path": ("STRING", {"default": "", "multiline":False}), + } + } + + RETURN_TYPES = ("LATENT","IMAGE","CONDITIONING") + RETURN_NAMES = ("LATENT","IMAGE","CONDITIONING") + FUNCTION = "load_cache" + + CATEGORY = "WAS Suite/IO" + + def load_cache(self, latent_path=None, image_path=None, conditioning_path=None): + + if 'joblib' not in packages(): + install_package('joblib') + + import joblib + + input_path = os.path.join(WAS_SUITE_ROOT, 'cache') + + latent = None + image = None + conditioning = None + + if latent_path not in ["",None]: + if os.path.exists(latent_path): + latent = joblib.load(latent_path) + else: + cstr(f"Unable to locate cache file {latent_path}").error.print() + + if image_path not in ["",None]: + if os.path.exists(image_path): + image = joblib.load(image_path) + else: + cstr(f"Unable to locate cache file {image_path}").msg.print() + + if conditioning_path not in ["",None]: + if os.path.exists(conditioning_path): + conditioning = joblib.load(conditioning_path) + else: + cstr(f"Unable to locate cache file {conditioning_path}").error.print() + + return (latent, image, conditioning) + + +# SAMPLES PASS STAT SYSTEM + +class WAS_Samples_Passthrough_Stat_System: + def __init__(self): + pass + + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "samples": ("LATENT",), + } + } + + RETURN_TYPES = ("LATENT",) + RETURN_NAMES = ("samples",) + FUNCTION = "stat_system" + + CATEGORY = "WAS Suite/Debug" + + def stat_system(self, samples): + + log = "" + for stat in self.get_system_stats(): + log += stat + "\n" + + cstr("\n"+log).msg.print() + + return (samples,) + + def get_system_stats(self): + + import psutil + + # RAM + ram = psutil.virtual_memory() + ram_used = ram.used / (1024 ** 3) + ram_total = ram.total / (1024 ** 3) + ram_stats = f"Used RAM: {ram_used:.2f} GB / Total RAM: {ram_total:.2f} GB" + + # VRAM (with PyTorch) + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + vram_used = torch.cuda.memory_allocated(device) / (1024 ** 3) + vram_total = torch.cuda.get_device_properties(device).total_memory / (1024 ** 3) + vram_stats = f"Used VRAM: {vram_used:.2f} GB / Total VRAM: {vram_total:.2f} GB" + + # Hard Drive Space + hard_drive = psutil.disk_usage("/") + used_space = hard_drive.used / (1024 ** 3) + total_space = hard_drive.total / (1024 ** 3) + hard_drive_stats = f"Used Space: {used_space:.2f} GB / Total Space: {total_space:.2f} GB" + + return [ram_stats, vram_stats, hard_drive_stats] + +# Class to count the number of places on an integer + +class WAS_Integer_Place_Counter: + @classmethod + def INPUT_TYPES(cls): + return { + "required": { + "int_input": ("INT", {"default": 0, "min": 0, "max": 10000000, "step": 1}), + } + } + RETURN_TYPES = ("INT",) + RETURN_NAMES = ("INT_PLACES",) + FUNCTION = "count_places" + + CATEGORY = "WAS Suite/Integer" + + def count_places(self, int_input): + output = len(str(int_input)) + cstr("\nInteger Places Count: "+str(output)).msg.print() + return (output,) + + +# NODE MAPPING +NODE_CLASS_MAPPINGS = { + "BLIP Model Loader": WAS_BLIP_Model_Loader, + "RD_Load_Image" : RD_Load_Image, + "RD_Upload_Image": RD_Upload_Image, + "Blend Latents": WAS_Blend_Latents, + "Bus Node": WAS_Bus, + "Cache Node": WAS_Cache, + "Checkpoint Loader": WAS_Checkpoint_Loader, + "Checkpoint Loader (Simple)": WAS_Checkpoint_Loader_Simple, + "CLIPTextEncode (NSP)": WAS_NSP_CLIPTextEncoder, + "CLIP Input Switch": WAS_CLIP_Input_Switch, + "CLIP Vision Input Switch": WAS_CLIP_Vision_Input_Switch, + "Conditioning Input Switch": WAS_Conditioning_Input_Switch, + "Constant Number": WAS_Constant_Number, + "Create Grid Image": WAS_Image_Grid_Image, + "Create Grid Image from Batch": WAS_Image_Grid_Image_Batch, + "Create Morph Image": WAS_Image_Morph_GIF, + "Create Morph Image from Path": WAS_Image_Morph_GIF_By_Path, + "Create Video from Path": WAS_Create_Video_From_Path, + "CLIPSeg Masking": WAS_CLIPSeg, + "CLIPSeg Model Loader": WAS_CLIPSeg_Model_Loader, + "CLIPSeg Batch Masking": WAS_CLIPSeg_Batch, + "Convert Masks to Images": WAS_Mask_To_Image, + "Control Net Model Input Switch": WAS_Control_Net_Input_Switch, + "Debug Number to Console": WAS_Debug_Number_to_Console, + "Dictionary to Console": WAS_Dictionary_To_Console, + "Diffusers Model Loader": WAS_Diffusers_Loader, + "Diffusers Hub Model Down-Loader": WAS_Diffusers_Hub_Model_Loader, + "Export API": WAS_Export_API, + "Latent Input Switch": WAS_Latent_Input_Switch, + "Load Cache": WAS_Load_Cache, + "Logic Boolean": WAS_Boolean, + "Logic Boolean Primitive": WAS_Boolean_Primitive, + "Logic Comparison OR": WAS_Logical_OR, + "Logic Comparison AND": WAS_Logical_AND, + "Logic Comparison XOR": WAS_Logical_XOR, + "Logic NOT": WAS_Logical_NOT, + "Lora Loader": WAS_Lora_Loader, + "Hex to HSL": WAS_Hex_to_HSL, + "HSL to Hex": WAS_HSL_to_Hex, + "Image SSAO (Ambient Occlusion)": WAS_Image_Ambient_Occlusion, + "Image SSDO (Direct Occlusion)": WAS_Image_Direct_Occlusion, + "Image Analyze": WAS_Image_Analyze, + "Image Aspect Ratio": WAS_Image_Aspect_Ratio, + "Image Batch": WAS_Image_Batch, + "Image Blank": WAS_Image_Blank, + "Image Blend by Mask": WAS_Image_Blend_Mask, + "Image Blend": WAS_Image_Blend, + "Image Blending Mode": WAS_Image_Blending_Mode, + "Image Bloom Filter": WAS_Image_Bloom_Filter, + "Image Canny Filter": WAS_Canny_Filter, + "Image Chromatic Aberration": WAS_Image_Chromatic_Aberration, + "Image Color Palette": WAS_Image_Color_Palette, + "Image Crop Face": WAS_Image_Crop_Face, + "Image Crop Location": WAS_Image_Crop_Location, + "Image Crop Square Location": WAS_Image_Crop_Square_Location, + "Image Displacement Warp": WAS_Image_Displacement_Warp, + "Image Lucy Sharpen": WAS_Lucy_Sharpen, + "Image Paste Face": WAS_Image_Paste_Face_Crop, + "Image Paste Crop": WAS_Image_Paste_Crop, + "Image Paste Crop by Location": WAS_Image_Paste_Crop_Location, + "Image Pixelate": WAS_Image_Pixelate, + "Image Power Noise": WAS_Image_Power_Noise, + "Image Dragan Photography Filter": WAS_Dragon_Filter, + "Image Edge Detection Filter": WAS_Image_Edge, + "Image Film Grain": WAS_Film_Grain, + "Image Filter Adjustments": WAS_Image_Filters, + "Image Flip": WAS_Image_Flip, + "Image Gradient Map": WAS_Image_Gradient_Map, + "Image Generate Gradient": WAS_Image_Generate_Gradient, + "Image High Pass Filter": WAS_Image_High_Pass_Filter, + "Image History Loader": WAS_Image_History, + "Image Input Switch": WAS_Image_Input_Switch, + "Image Levels Adjustment": WAS_Image_Levels, + "Image Load": WAS_Load_Image, + "Image Median Filter": WAS_Image_Median_Filter, + "Image Mix RGB Channels": WAS_Image_RGB_Merge, + "Image Monitor Effects Filter": WAS_Image_Monitor_Distortion_Filter, + "Image Nova Filter": WAS_Image_Nova_Filter, + "Image Padding": WAS_Image_Padding, + "Image Perlin Noise": WAS_Image_Perlin_Noise, + "Image Rembg (Remove Background)": WAS_Remove_Rembg, + "Image Perlin Power Fractal": WAS_Image_Perlin_Power_Fractal, + "Image Remove Background (Alpha)": WAS_Remove_Background, + "Image Remove Color": WAS_Image_Remove_Color, + "Image Resize": WAS_Image_Rescale, + "Image Rotate": WAS_Image_Rotate, + "Image Rotate Hue": WAS_Image_Rotate_Hue, + "Image Send HTTP": WAS_Image_Send_HTTP, + "Image Save": WAS_Image_Save, + "Image Seamless Texture": WAS_Image_Make_Seamless, + "Image Select Channel": WAS_Image_Select_Channel, + "Image Select Color": WAS_Image_Select_Color, + "Image Shadows and Highlights": WAS_Shadow_And_Highlight_Adjustment, + "Image Size to Number": WAS_Image_Size_To_Number, + "Image Stitch": WAS_Image_Stitch, + "Image Style Filter": WAS_Image_Style_Filter, + "Image Threshold": WAS_Image_Threshold, + "Image Tiled": WAS_Image_Tile_Batch, + "Image Transpose": WAS_Image_Transpose, + "Image fDOF Filter": WAS_Image_fDOF, + "Image to Latent Mask": WAS_Image_To_Mask, + "Image to Noise": WAS_Image_To_Noise, + "Image to Seed": WAS_Image_To_Seed, + "Images to RGB": WAS_Images_To_RGB, + "Images to Linear": WAS_Images_To_Linear, + "Integer place counter": WAS_Integer_Place_Counter, + "Image Voronoi Noise Filter": WAS_Image_Voronoi_Noise_Filter, + "KSampler (WAS)": WAS_KSampler, + "KSampler Cycle": WAS_KSampler_Cycle, + "Latent Batch": WAS_Latent_Batch, + "Latent Noise Injection": WAS_Latent_Noise, + "Latent Size to Number": WAS_Latent_Size_To_Number, + "Latent Upscale by Factor (WAS)": WAS_Latent_Upscale, + "Load Image Batch": WAS_Load_Image_Batch, + "Load Text File": WAS_Text_Load_From_File, + "Load Lora": WAS_Lora_Loader, + "Lora Input Switch": WAS_Lora_Input_Switch, + "Masks Add": WAS_Mask_Add, + "Masks Subtract": WAS_Mask_Subtract, + "Mask Arbitrary Region": WAS_Mask_Arbitrary_Region, + "Mask Batch to Mask": WAS_Mask_Batch_to_Single_Mask, + "Mask Batch": WAS_Mask_Batch, + "Mask Ceiling Region": WAS_Mask_Ceiling_Region, + "Mask Crop Dominant Region": WAS_Mask_Crop_Dominant_Region, + "Mask Crop Minority Region": WAS_Mask_Crop_Minority_Region, + "Mask Crop Region": WAS_Mask_Crop_Region, + "Mask Paste Region": WAS_Mask_Paste_Region, + "Mask Dilate Region": WAS_Mask_Dilate_Region, + "Mask Dominant Region": WAS_Mask_Dominant_Region, + "Mask Erode Region": WAS_Mask_Erode_Region, + "Mask Fill Holes": WAS_Mask_Fill_Region, + "Mask Floor Region": WAS_Mask_Floor_Region, + "Mask Gaussian Region": WAS_Mask_Gaussian_Region, + "Mask Invert": WAS_Mask_Invert, + "Mask Minority Region": WAS_Mask_Minority_Region, + "Mask Smooth Region": WAS_Mask_Smooth_Region, + "Mask Threshold Region": WAS_Mask_Threshold_Region, + "Masks Combine Regions": WAS_Mask_Combine, + "Masks Combine Batch": WAS_Mask_Combine_Batch, + "MiDaS Model Loader": MiDaS_Model_Loader, + "MiDaS Depth Approximation": MiDaS_Depth_Approx, + "MiDaS Mask Image": MiDaS_Background_Foreground_Removal, + "Model Input Switch": WAS_Model_Input_Switch, + "Number Counter": WAS_Number_Counter, + "Number Operation": WAS_Number_Operation, + "Number to Float": WAS_Number_To_Float, + "Number Input Switch": WAS_Number_Input_Switch, + "Number Input Condition": WAS_Number_Input_Condition, + "Number Multiple Of": WAS_Number_Multiple_Of, + "Number PI": WAS_Number_PI, + "Number to Int": WAS_Number_To_Int, + "Number to Seed": WAS_Number_To_Seed, + "Number to String": WAS_Number_To_String, + "Number to Text": WAS_Number_To_Text, + "Boolean To Text": WAS_Boolean_To_Text, + "Prompt Styles Selector": WAS_Prompt_Styles_Selector, + "Prompt Multiple Styles Selector": WAS_Prompt_Multiple_Styles_Selector, + "Random Number": WAS_Random_Number, + "Save Text File": WAS_Text_Save, + "Seed": WAS_Seed, + "Tensor Batch to Image": WAS_Tensor_Batch_to_Image, + "BLIP Analyze Image": WAS_BLIP_Analyze_Image, + "SAM Model Loader": WAS_SAM_Model_Loader, + "SAM Parameters": WAS_SAM_Parameters, + "SAM Parameters Combine": WAS_SAM_Combine_Parameters, + "SAM Image Mask": WAS_SAM_Image_Mask, + "Samples Passthrough (Stat System)": WAS_Samples_Passthrough_Stat_System, + "String to Text": WAS_String_To_Text, + "Image Bounds": WAS_Image_Bounds, + "Inset Image Bounds": WAS_Inset_Image_Bounds, + "Bounded Image Blend": WAS_Bounded_Image_Blend, + "Bounded Image Blend with Mask": WAS_Bounded_Image_Blend_With_Mask, + "Bounded Image Crop": WAS_Bounded_Image_Crop, + "Bounded Image Crop with Mask": WAS_Bounded_Image_Crop_With_Mask, + "Image Bounds to Console": WAS_Image_Bounds_to_Console, + "Text Dictionary Update": WAS_Dictionary_Update, + "Text Dictionary Get": WAS_Dictionary_Get, + "Text Dictionary Convert": WAS_Dictionary_Convert, + "Text Dictionary New": WAS_Dictionary_New, + "Text Dictionary Keys": WAS_Dictionary_Keys, + "Text Dictionary To Text": WAS_Dictionary_to_Text, + "Text Add Tokens": WAS_Text_Add_Tokens, + "Text Add Token by Input": WAS_Text_Add_Token_Input, + "Text Compare": WAS_Text_Compare, + "Text Concatenate": WAS_Text_Concatenate, + "Text File History Loader": WAS_Text_File_History, + "Text Find and Replace by Dictionary": WAS_Search_and_Replace_Dictionary, + "Text Find and Replace Input": WAS_Search_and_Replace_Input, + "Text Find and Replace": WAS_Search_and_Replace, + "Text Find": WAS_Find, + "Text Input Switch": WAS_Text_Input_Switch, + "Text List": WAS_Text_List, + "Text List Concatenate": WAS_Text_List_Concatenate, + "Text List to Text": WAS_Text_List_to_Text, + "Text Load Line From File": WAS_Text_Load_Line_From_File, + "Text Multiline": WAS_Text_Multiline, + "Text Multiline (Code Compatible)": WAS_Text_Multiline_Raw, + "Text Parse A1111 Embeddings": WAS_Text_Parse_Embeddings_By_Name, + "Text Parse Noodle Soup Prompts": WAS_Text_Parse_NSP, + "Text Parse Tokens": WAS_Text_Parse_Tokens, + "Text Random Line": WAS_Text_Random_Line, + "Text Random Prompt": WAS_Text_Random_Prompt, + "Text String": WAS_Text_String, + "Text Contains": WAS_Text_Contains, + "Text Shuffle": WAS_Text_Shuffle, + "Text Sort": WAS_Text_Sort, + "Text to Conditioning": WAS_Text_to_Conditioning, + "Text to Console": WAS_Text_to_Console, + "Text to Number": WAS_Text_To_Number, + "Text to String": WAS_Text_To_String, + "Text String Truncate": WAS_Text_String_Truncate, + "True Random.org Number Generator": WAS_True_Random_Number, + "unCLIP Checkpoint Loader": WAS_unCLIP_Checkpoint_Loader, + "Upscale Model Loader": WAS_Upscale_Model_Loader, + "Upscale Model Switch": WAS_Upscale_Model_Input_Switch, + "Write to GIF": WAS_Image_Morph_GIF_Writer, + "Write to Video": WAS_Video_Writer, + "VAE Input Switch": WAS_VAE_Input_Switch, + "Video Dump Frames": WAS_Video_Frame_Dump, + "CLIPSEG2": CLIPSeg2 +} + +#! EXTRA NODES + +# Check for BlenderNeko's Advanced CLIP Text Encode repo +BKAdvCLIP_dir = os.path.join(CUSTOM_NODES_DIR, "ComfyUI_ADV_CLIP_emb") +if os.path.exists(BKAdvCLIP_dir): + + cstr(f"BlenderNeko\'s Advanced CLIP Text Encode found, attempting to enable `CLIPTextEncode` support.").msg.print() + + class WAS_AdvancedCLIPTextEncode: + @classmethod + def INPUT_TYPES(s): + return { + "required": { + "mode": (["Noodle Soup Prompts", "Wildcards"],), + "noodle_key": ("STRING", {"default": '__', "multiline": False}), + "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), + "clip": ("CLIP", ), + "token_normalization": (["none", "mean", "length", "length+mean"],), + "weight_interpretation": (["comfy", "A1111", "compel", "comfy++"],), + "text": ("STRING", {"multiline": True}), + } + } + + RETURN_TYPES = ("CONDITIONING", TEXT_TYPE, TEXT_TYPE) + RETURN_NAMES = ("conditioning", "parsed_text", "raw_text") + OUTPUT_NODE = True + FUNCTION = "encode" + CATEGORY = "WAS Suite/Conditioning" + + DESCRIPTION = "A node based on Blenderneko's Advanced CLIP Text Encode. This version adds the ability to use Noodle Soup Prompts and Wildcards. Wildcards are stored in WAS Node Suite root under the folder 'wildcards'. You can create the folder if it doesn't exist and move your wildcards into it." + URL = { + "Example Workflow": "https://github.com/WASasquatch/was-node-suite-comfyui", + } + IMAGES = [ + "https://i.postimg.cc/Jh4N2h5r/CLIPText-Encode-BLK-plus-NSP.png", + ] + + def encode(self, clip, text, token_normalization, weight_interpretation, seed=0, mode="Noodle Soup Prompts", noodle_key="__"): + + BKAdvCLIP_dir = os.path.join(CUSTOM_NODES_DIR, "ComfyUI_ADV_CLIP_emb") + sys.path.append(BKAdvCLIP_dir) + + from ComfyUI_ADV_CLIP_emb.nodes import AdvancedCLIPTextEncode + + if mode == "Noodle Soup Prompts": + new_text = nsp_parse(text, int(seed), noodle_key) + else: + new_text = replace_wildcards(text, (None if seed == 0 else seed), noodle_key) + + new_text = parse_dynamic_prompt(new_text, seed) + new_text, text_vars = parse_prompt_vars(new_text) + cstr(f"CLIPTextEncode Prased Prompt:\n {new_text}").msg.print() + + encode = AdvancedCLIPTextEncode().encode(clip, new_text, token_normalization, weight_interpretation) + + sys.path.remove(BKAdvCLIP_dir) + + return ([[encode[0][0][0], encode[0][0][1]]], new_text, text, { "ui": { "string": new_text } } ) + + + NODE_CLASS_MAPPINGS.update({"CLIPTextEncode (BlenderNeko Advanced + NSP)": WAS_AdvancedCLIPTextEncode}) + + if NODE_CLASS_MAPPINGS.__contains__("CLIPTextEncode (BlenderNeko Advanced + NSP)"): + cstr('`CLIPTextEncode (BlenderNeko Advanced + NSP)` node enabled under `WAS Suite/Conditioning` menu.').msg.print() + +# opencv-python-headless handling +installed_packages = packages() +opencv_candidates = ['opencv-python', 'opencv-python-headless', 'opencv-contrib-python', 'opencv-contrib-python-headless'] +if any(package in installed_packages for package in opencv_candidates): + try: + import cv2 + build_info = ' '.join(cv2.getBuildInformation().split()) + if "FFMPEG: YES" in build_info: + if was_config.__contains__('show_startup_junk'): + if was_config['show_startup_junk']: + cstr("OpenCV Python FFMPEG support is enabled").msg.print() + if was_config.__contains__('ffmpeg_bin_path'): + if was_config['ffmpeg_bin_path'] == "/path/to/ffmpeg": + cstr(f"`ffmpeg_bin_path` is not set in `{WAS_CONFIG_FILE}` config file. Will attempt to use system ffmpeg binaries if available.").warning.print() + else: + if was_config.__contains__('show_startup_junk'): + if was_config['show_startup_junk']: + cstr(f"`ffmpeg_bin_path` is set to: {was_config['ffmpeg_bin_path']}").msg.print() + else: + cstr(f"OpenCV Python FFMPEG support is not enabled\033[0m. OpenCV Python FFMPEG support, and FFMPEG binaries is required for video writing.").warning.print() + except ImportError: + cstr("OpenCV Python module cannot be found. Attempting install...").warning.print() + install_package( + package='opencv-python-headless[ffmpeg]', + uninstall_first=['opencv-python', 'opencv-python-headless[ffmpeg]'] + ) + try: + import cv2 + cstr("OpenCV Python installed.").msg.print() + except ImportError: + cstr("OpenCV Python module still cannot be imported. There is a system conflict.").error.print() +else: + install_package('opencv-python-headless[ffmpeg]') + try: + import cv2 + cstr("OpenCV Python installed.").msg.print() + except ImportError: + cstr("OpenCV Python module still cannot be imported. There is a system conflict.").error.print() + +# scipy handling +if 'scipy' not in packages(): + install_package('scipy') + try: + import scipy + except ImportError as e: + cstr("Unable to import tools for certain masking procedures.").msg.print() + print(e) + +# scikit-image handling +try: + import skimage +except ImportError as e: + install_package( + package='scikit-image', + uninstall_first=['scikit-image'] + ) + import skimage + +was_conf = getSuiteConfig() + +# Suppress warnings +if was_conf.__contains__('suppress_uncomfy_warnings'): + if was_conf['suppress_uncomfy_warnings']: + import warnings + warnings.filterwarnings("ignore", category=UserWarning, module="safetensors") + warnings.filterwarnings("ignore", category=UserWarning, module="torch") + warnings.filterwarnings("ignore", category=UserWarning, module="transformers") + +# Well we got here, we're as loaded as we're gonna get. +print(" ".join([cstr("Finished.").msg, cstr("Loaded").green, cstr(len(NODE_CLASS_MAPPINGS.keys())).end, cstr("nodes successfully.").green])) + +show_quotes = True +if was_conf.__contains__('show_inspiration_quote'): + if was_conf['show_inspiration_quote'] == False: + show_quotes = False +if show_quotes: + art_quotes = [ + # ARTISTIC INSPIRATION QUOTES + '\033[93m"Every artist was first an amateur."\033[0m\033[3m - Ralph Waldo Emerson', + '\033[93m"Art is not freedom from discipline, but disciplined freedom."\033[0m\033[3m - John F. Kennedy', + '\033[93m"Art enables us to find ourselves and lose ourselves at the same time."\033[0m\033[3m - Thomas Merton', + '\033[93m"Art is the most intense mode of individualism that the world has known."\033[0m\033[3m - Oscar Wilde', + '\033[93m"The purpose of art is washing the dust of daily life off our souls."\033[0m\033[3m - Pablo Picasso', + '\033[93m"Art is the lie that enables us to realize the truth."\033[0m\033[3m - Pablo Picasso', + '\033[93m"Art is not what you see, but what you make others see."\033[0m\033[3m - Edgar Degas', + '\033[93m"Every artist dips his brush in his own soul, and paints his own nature into his pictures."\033[0m\033[3m - Henry Ward Beecher', + '\033[93m"Art is the stored honey of the human soul."\033[0m\033[3m - Theodore Dreiser', + '\033[93m"Creativity takes courage."\033[0m\033[3m - Henri Matisse', + '\033[93m"Art should disturb the comfortable and comfort the disturbed." - Cesar Cruz', + '\033[93m"Art is the most beautiful of all lies."\033[0m\033[3m - Claude Debussy', + '\033[93m"Art is the journey of a free soul."\033[0m\033[3m - Alev Oguz', + '\033[93m"The artist\'s world is limitless. It can be found anywhere, far from where he lives or a few feet away. It is always on his doorstep."\033[0m\033[3m - Paul Strand', + '\033[93m"Art is not a thing; it is a way."\033[0m\033[3m - Elbert Hubbard', + '\033[93m"Art is the lie that enables us to recognize the truth."\033[0m\033[3m - Friedrich Nietzsche', + '\033[93m"Art is the triumph over chaos."\033[0m\033[3m - John Cheever', + '\033[93m"Art is the lie that enables us to realize the truth."\033[0m\033[3m - Pablo Picasso', + '\033[93m"Art is the only way to run away without leaving home."\033[0m\033[3m - Twyla Tharp', + '\033[93m"Art is the most powerful tool we have to connect with the world and express our individuality."\033[0m\033[3m - Unknown', + '\033[93m"Art is not about making something perfect, it\'s about making something meaningful."\033[0m\033[3m - Unknown', + '\033[93m"Art is the voice of the soul, expressing what words cannot."\033[0m\033[3m - Unknown', + '\033[93m"Art is the bridge that connects imagination to reality."\033[0m\033[3m - Unknown', + '\033[93m"Art is the language of the heart and the window to the soul."\033[0m\033[3m - Unknown', + '\033[93m"Art is the magic that brings beauty into the world."\033[0m\033[3m - Unknown', + '\033[93m"Art is the freedom to create, explore, and inspire."\033[0m\033[3m - Unknown', + '\033[93m"Art is the mirror that reflects the beauty within us."\033[0m\033[3m - Unknown', + '\033[93m"Art is the universal language that transcends boundaries and speaks to all."\033[0m\033[3m - Unknown', + '\033[93m"Art is the light that shines even in the darkest corners."\033[0m\033[3m - Unknown', + '\033[93m"Art is the soul made visible."\033[0m\033[3m - George Crook', + '\033[93m"Art is the breath of life."\033[0m\033[3m - Liza Donnelly', + '\033[93m"Art is a harmony parallel with nature."\033[0m\033[3m - Paul Cézanne', + '\033[93m"Art is the daughter of freedom."\033[0m\033[3m - Friedrich Schiller', + # GENERAL INSPIRATION QUOTES + '\033[93m"Believe you can and you\'re halfway there."\033[0m\033[3m - Theodore Roosevelt', + '\033[93m"The only way to do great work is to love what you do."\033[0m\033[3m - Steve Jobs', + '\033[93m"Success is not final, failure is not fatal: It is the courage to continue that counts."\033[0m\033[3m - Winston Churchill', + '\033[93m"Your time is limited, don\'t waste it living someone else\'s life."\033[0m\033[3m - Steve Jobs', + '\033[93m"The future belongs to those who believe in the beauty of their dreams."\033[0m\033[3m - Eleanor Roosevelt', + '\033[93m"Success is not the key to happiness. Happiness is the key to success."\033[0m\033[3m - Albert Schweitzer', + '\033[93m"The best way to predict the future is to create it."\033[0m\033[3m - Peter Drucker', + '\033[93m"Don\'t watch the clock; do what it does. Keep going."\033[0m\033[3m - Sam Levenson', + '\033[93m"Believe in yourself, take on your challenges, and dig deep within yourself to conquer fears."\033[0m\033[3m - Chantal Sutherland', + '\033[93m"Challenges are what make life interesting and overcoming them is what makes life meaningful."\033[0m\033[3m - Joshua J. Marine', + '\033[93m"Opportunities don\'t happen. You create them."\033[0m\033[3m - Chris Grosser', + '\033[93m"Your work is going to fill a large part of your life, and the only way to be truly satisfied is to do what you believe is great work."\033[0m\033[3m - Steve Jobs', + '\033[93m"The harder I work, the luckier I get."\033[0m\033[3m - Samuel Goldwyn', + '\033[93m"Don\'t be pushed around by the fears in your mind. Be led by the dreams in your heart."\033[0m\033[3m - Roy T. Bennett', + '\033[93m"Believe in yourself, and the rest will fall into place."\033[0m\033[3m - Unknown', + '\033[93m"Life is 10% what happens to us and 90% how we react to it."\033[0m\033[3m - Charles R. Swindoll', + '\033[93m"Success is not just about making money. It\'s about making a difference."\033[0m\033[3m - Unknown', + '\033[93m"The only limit to our realization of tomorrow will be our doubts of today."\033[0m\033[3m - Franklin D. Roosevelt', + '\033[93m"Great minds discuss ideas; average minds discuss events; small minds discuss people."\033[0m\033[3m - Eleanor Roosevelt', + '\033[93m"The future depends on what you do today."\033[0m\033[3m - Mahatma Gandhi', + '\033[93m"Don\'t be afraid to give up the good to go for the great."\033[0m\033[3m - John D. Rockefeller', + '\033[93m"Success usually comes to those who are too busy to be looking for it."\033[0m\033[3m - Henry David Thoreau', + '\033[93m"The secret to getting ahead is getting started."\033[0m\033[3m - Mark Twain', + '\033[93m"Every great dream begins with a dreamer."\033[0m\033[3m - Harriet Tubman', + '\033[93m"Do not wait for the opportunity. Create it."\033[0m\033[3m - George Bernard Shaw', + '\033[93m"Your time is now. Start where you are and never stop."\033[0m\033[3m - Roy T. Bennett', + '\033[93m"The only person you should try to be better than is the person you were yesterday."\033[0m\033[3m - Unknown', + '\033[93m"Success is not in what you have, but who you are."\033[0m\033[3m - Bo Bennett', + '\033[93m"Do one thing every day that scares you."\033[0m\033[3m - Eleanor Roosevelt', + '\033[93m"Failure is the opportunity to begin again more intelligently."\033[0m\033[3m - Henry Ford', + '\033[93m"Dream big and dare to fail."\033[0m\033[3m - Norman Vaughan', + '\033[93m"Everything you\'ve ever wanted is on the other side of fear."\033[0m\033[3m - George Addair', + '\033[93m"Believe you deserve it and the universe will serve it."\033[0m\033[3m - Unknown', + '\033[93m"Don\'t wait. The time will never be just right."\033[0m\033[3m - Napoleon Hill', + '\033[93m"The distance between insanity and genius is measured only by success."\033[0m\033[3m - Bruce Feirstein', + '\033[93m"Be the change that you wish to see in the world."\033[0m\033[3m - Mahatma Gandhi', + '\033[93m"Success is not about being better than someone else. It\'s about being better than you used to be."\033[0m\033[3m - Unknown', + '\033[93m"The best revenge is massive success."\033[0m\033[3m - Frank Sinatra', + '\033[93m"You have within you right now, everything you need to deal with whatever the world can throw at you."\033[0m\033[3m - Brian Tracy', + '\033[93m"Don\'t let yesterday take up too much of today."\033[0m\033[3m - Will Rogers', + '\033[93m"The biggest risk is not taking any risk. In a world that is changing quickly, the only strategy that is guaranteed to fail is not taking risks."\033[0m\033[3m - Mark Zuckerberg', + '\033[93m"The journey of a thousand miles begins with one step."\033[0m\033[3m - Lao Tzu', + '\033[93m"Every strike brings me closer to the next home run."\033[0m\033[3m - Babe Ruth', + ] + print(f'\n\t\033[3m{random.choice(art_quotes)}\033[0m\n')