217

Object-oriented analysis

F ocused initially on the implementation aspects of software construction, the object
oriented method quickly expanded to cover the totality of the software lifecycle. Of
particular interest has been the application of O-O ideas to the modeling of softwar
systems, or even of non-software systems and issues. This use of object technology
presenproblems rather than solutions is known as object-oriented analysis.

In the past few years, many books have appeared on the topic and many speci
methods of object-oriented analysis have been proposed. The bibliography section lis
some of the best-known books, and Web addresses for some of the best-known metho

Most of the concepts introduced in the preceding chapters are directly relevant t
object-oriented analysis. Here we will briefly review what make object-oriertatysis
special among other object-oriented topics, and what makgst-orientedanalysis
different from other analysis methods.

Two points of terminology to avoid imagining differences where none exist. First,
you will encounter, as a synonym for “analysis”, the tesystem modelingor just
modeling Second, the computing science community tends to use thespecdication
where information modeling folks talk about analysis; in particular, computing scientists
have devoted considerable efforts to devising methods and languagdsrrfal
specificationusing mathematical techniques for purposes of system modeling. The goal
are the same, although the techniques may differ. In the past few years the tw
communities — information modelers and formal specifiers — have been paying mor
attention to each other’s contributions.

27.1 THE GOALS OF ANALYSIS

To understand analysis issues we must be aware of the roles of analysis in softwa
development and define requirements on an analysis method.

Tasks

By devoting time to analysis and producing analysis documents we pursue seven goals

904 OBJECT-ORIENTED ANALYSIS §27.1

Goals of performing analysis

Al +To understand the problem or problems that the eventual soffware
system, if any, should solve.

A2 « To prompt relevant questions about the problem and the system.

A3 « To provide a basis for answering questions about specific properties of
the problem and system.

A4 « To decide what the system should do.
A5 « To decide what the system should not do.

A6 « To ascertain that the system will satisfy the needs of its users, and
define acceptance criteria (especially when the system is developed for
an outside customer under a contractual relationship).

A7 « To provide a basis for the development of the system.

If analysis is being applied to a non-software system, or independently of a decision
to build a software systerAl, A2 andA3 may be the only relevant goals.

For a software system, the list assumes that analysis follows a stfeasibility
studywhich has resulted in a decision to build a system. If, as sometimes happens, the two
stages are merged into one (not an absurd proposition, since you may need an in-depth
analysis to determine whether a satisfactory result is conceivable), the list needs another
item: AO, deciding whether to build a system.

Although related, the goals listed are distinct, prompting us in the rest of this chapter
to look for a set of complementary techniques; what is good for one of the goals may be
irrelevant to another.

GoalsA2 andA3 are the least well covered in the analysis literature and deserve all
the emphasis they can get. One of the primary benefits of an analysis process,
independently of any document that it produces in the end, is that it leads you to ask the
relevant questionsA2): what is the maximum acceptable temperature? What are the
recognized categories of employees? How are bonds handled differently from stocks? By
providing you with a framework, which you will have to fill using input from people
competent in the application domain, an analysis method will help spot and remove
obscurities and ambiguities which can be fatal to a development. Nothing is worse than
discovering, at the last stage of implementation, that the marketing and engineering
departments of the client company have irreconcilable views of what equipment
maintenance means, that one of these views was taken by default, and that no one cared
to check what the actual order giver had in mind. AA3, a good analysis document will
be the place to which everyone constantly goes back if delicate questions or conflicting
interpretations arise during the development process.

Requirements

The practical requirements on the analysis process and supporting notations follow from
the above list of goals:

§27.1 THE GOALS OF ANALYSIS 905

« There must be a way to let non-software people contribute input to the analys
examine the results and discuss thA1, A2).

« The analysis must also have a form that is directly usable by software deveA7).rs (
» The approach muscale uj (Al).
* The analysis notation must be able to express precise properties unambicA3).sly (

It must enable readers to get a quick glimpse of the overall organization of a syst
or subsystemA1l, A7)

Scaling up (the third point) means catering to systems that are complex, large or b
— the ones for which you most need analysis. The method should enable you to desc
the high-level structure of the problem or system, and to organize the description o\
several layers of abstraction, so that you can at any time focus on as big or as small a
of the system as you wish, while retaining the overall picture. Here, of course, tl
structuring and abstracting facilities of object technology will be precious.

Scaling up also means that the criteria of extendibility and reusability, which hay
guided much of our earlier discussions, are just as applicable to analysis as they ar
software design and implementation. Systems change, requiring their descriptions
follow; and systems are similar to previous systems, prompting us tlibraries of
specification elements to build their specifications, just as we use libraries of softwa
components to build their implementations.

The clouds and the precipice

It is not easy to reconcile the last two requirements of the above list. The conflict, alrea
discussed in the context of abstract data types, has plagued analysis methods
specification languages as long as they have existed. How do you “express prec
properties unambiguously” without saying too much? How do you provide readab
broad-brush structural descriptions without risking vagueness?

The analyst walks on a mountain path. On your left is the mountain top, dee
ensconced in clouds; this is the realm of the fuzzy. But you must also stay away, on y:
right, from the precipice of overspecification, to which you might be perilously drawn i
your attempts to be precise tempt you to say too much, especially by giving o
implementatio details instead of external properties of the system.

The risk of overspecification is ever present in the minds of people interested
analysis. (It is said that, to gain the upper hand in a debate in this field, you should
“Approach X is nic, but isn't it a tad implementation-orient?” The poor author of X,
reputation lost, career shattered, will not dare show up in a software gathering for 1
next twenty years.) To avoid this pitfall, analysis methods have tended to err on the s
of the clouds, relying on formalisms that do a good job of capturing overall structure
often through cloud-like graphical notations, but are quite limited when it comes t
expressing thsemanticproperties of systems as required to addressA2 (answering
precise questions).

906 OBJECT-ORIENTED ANALYSIS §27.2

Many of the traditional analysis methods fit this description. Their success comes
from their ability to list the components of a system and describe their relations
graphically, making them the software equivalent of block diagram of other
engineering disciplines. But they are not too good at capturing the semantics. For software
projects this carries a risk: believing that you have completed a successful analysis when
all you have really done is to define the major components and their relations, leaving out
many deeper properties of the specification that may turn out to be critical.

Later in this chapter we will study ideas for reconciling the goals of structural
description and semantic precision.

27.2 THE CHANGING NATURE OF ANALYSIS

Although the object-oriented analysis literature hardly mentions this point, the most
significant contribution of object technology to analysis is not technical but
organizational. Object technology does not just provide new ways of doing analysis; it
affects the very nature of the task and its role in the software process.

This change follows from the method’'s emphasis on reusability. If instead of
assuming that every new project must start from scratch, considering the customer’s
requirements as the Gospel, we bring into the picture the presence of a regularly growing
repertory of software components, some obtained (or obtainable) from the outside and
some developed as a result of in-house projects, the process becomes different: not the
execution of an order from above, bunegotiation.

Customer A Requw_ements
analysis as a
. negotiation
(Compromise)
Developer B

The figure suggests this process: the customer starts with a requirerA; you
counter with a proposal B, covering perhaps only part of the requirements, or a slightly
different form of the requirements, but based for a large part on existing reusable
components and hence achievable at significantly less cost and sooner. The customer may
initially find the sacrifice of functionality too large; this opens a haggling phase which
should eventually lead to an acceptable compromise.

The haggling has always been there, of course. The customer’s requirements were
the Gospel only in some descriptions of the “software process” in the software engineering
literature, presenting an ideal view for pedagogical purposes, and perhaps in some
government contracts. In most normal situations, the developers had some freedom to
discuss requirements. But with the advent of object technology this officious phenomenon
becomes an official part of the software development process, and gains new prominence
with the development of reusable likies.

§27.3 THE CONTRIBUTION OF OBJECT TECHNOLOGY 907

27.3 THE CONTRIBUTION OF OBJECT TECHNOLOGY

Object technology also affects, of course, the techniques of analysis.

Here the most important thing to learn is that we have almost nothing to learn. T
framework defined in the preceding chapters has more than enough to get us started
modeling. “More than enough” actually means too much: the notation includes &
operationalpart, made of two components which we do not need for analysis:

* Instructions (assignments, loops, procedure c...) and all that goes with them.

* Routine bodies of thdo form (but we do neecdeferred routines to specify
operations without giving out their implementation).

If we ignore these imperative elements, we have a powerful system modelir
method and notation. In particular:

» Classe will enable us to organize our system descriptions around object types,
the broad sense of the word “object” defined in preceding chapters (covering not jt
physical objects but also important concepts of the application domain).

* TheADT approach — the idea of characterizing objects by the applicable operatiol
and their properties — yields clear, abstract, evolutionary specifications.

« To capture inter-component relations, the two basic mechanisms of “client” ar
inheritance are appropriate. Thclient relation, in particular, covers such
information modeling concepts as “part of”, association and aggregation.

« As we saw in the discussion of objects, the distinction betvreference and
expandec clients corresponds to the two basic kinds of modeling association.

* Inheritance — single, multiple and repeated — addresses classification. Even su
seemingly specialized inheritance mechanisms as renaming will be precious
model analysis concepts.

» Assertions are essential to capture what was called abovsemantic of systems:
properties other than structural. Design by Contract is a powerful guide to analysi

* Libraries of reusable classes will provide us — especially through their higher-leve
deferred classes — with ready-made specification elements.

This does not necessarily mean that the approach seen so far covers all the nee
system analysis (a question that will be discussed further below); but it certainly provid
the right basis. The following example will provide some evidence.

27.4 PROGRAMMING ATV STATION

Let us see concretely how to apply the O-O concepts that we know to pure modeling.

The example involves organizing the schedule of a television station. Because i
drawn from a familiar application area, we can start it (although we most likely could n
complete it) withouthe benefit of input from “domain experts”, future users etc.; we car
just, for the analysis exercise, rely on every layperson’s understanding of TV.

Although the effort may be the prelude to the construction of a computerized syste
to manage the station’s programming automatically, this possibility is neither certain n
relevant here; we are just interested in modeling.

908 OBJECT-ORIENTED ANALYSIS §27.4

Schedules

We concentrate on the schedule for a 24-hour period; the class (data abstraction)
SCHEDULE presents itself. A schedule contains a sequence of individual program
segments; let us start with

classSCHEDULE feature
segment: LIST[SEGMEN
end

When doing analysis we must constantly watch ourselves for fear of lapsing into
overspecification. Is it overspecifying to useLIST? No: LIST is a deferred class,
describing the abstract notion of sequence; and television programming is indeed
sequential, since one cannot broadcast two segments on the same station at the same time.
By usingLIST we capture a property of the problem, not the solution.

Note in passing the importance of reusability: by using classes sLLIST you
immediately gain ecess to a whole set of features describing list operations: commands
such aputfor adding elements, queries such as the number of elecoun. Reusability
is as central to object-oriented analysis as it is to other O-O tasks.

What would be overspecifying here would beequate the notion of schedule with See*More on
that of list of segments. Object technology, as you will remember from the discussiimplicitness”, page
abstract data types, is implicit; it describes abstractions by listing their properties. e
there will certainly be more to a schedule than the list of its segments, so we need a
separate class. Some of the other features of a schedule present themselves naturally:

indexing

descriptior: "Twenty-four hour TV schedu"zs
deferred clas;SCHEDULEfeature
segment: LIST[SEGMENT is
-- The successive segments
deferred
end
air_time: DATEIs
-- Twenty-four hour period for this schedule
deferred
end
set_air_time(t: DATE) is
-- Assign this schedule to be broadcast at t.ne
require
t.in_future
deferred
ensure
air_time=t
end
print is
-- Print paper version of schedule.
deferred
end
end

§27.4 PROGRAMMING A TV STATION 909

See*Using asser- Note the use of deferred bodies. This is appropriate since by nature an analy
tions for documen- document is implementation-independent and even design-independent; having no bc
Egtr'gn;ftgecls;sog deferred features are the proper tool. You could, of course, dispense with writing t
page 38) " deferred specification and instead use a formalism such as that of short forms. But tv

important arguments justify using the full notation:

« By writing texts that conform to the syntax of the software notation, you can mak
use of all the tools of the supporting software development environment. |
particular, the compiling mechanism will double up as a precious CASE (compute
aided software engineering) tool, applying type rules and other validity constrain
to check the consistency of your specifications and detect contradictions a
ambiguities; and the browsing and documentation facilities of a good O-(
environment will be as useful for analysis as they are for design and implementatic

« Using the software notation also means that, should you decide to proceed to
design and implementation of a software system, you will be able to follow a smoo
transition path; your work will be to add new classes, effective versions of th
deferred features and new features. This supporiseamlessne of the approach,
discussed in the next chapter.

The class assumes a boolean qiin_future on objects of typDATE; it only allows
setting air time for future dates. Note our first use of a precondition and postcondition
express semantic properties of a system during analysis.

Segments

Rather than continuing to refine and enhaSCHEDULE, let us at this stage switch to
the notion oiISEGMEN". We can start with the following features:

indexing
descriptior: "Individual fragments of a broadcasting schec'ule
deferred clas;;SEGMENTfeature

schedul: SCHEDULEis deferred end
-- Schedule to which segment belongs

inde>: INTEGERIs deferred end
-- Position of segment in its schedule

starting_tim¢, ending_tim: INTEGERIs deferred end
-- Beginning and end of scheduled air time

nex: SEGMENTis deferred end
-- Segment to be played next, if any

sponso: COMPANYis deferred end
-- Segment’s principal sponsor

910 OBJECT-ORIENTED ANALYSIS §27.4

rating: INTEGERIs deferred end
-- Segment’s rating (for children’s viewing etc.)

... Commands such ichange_ne:,; set_sponss, set_ratingomitted...

Minimum_duratio: INTEGERIs 30
-- Minimum length of segments, in seconds

Maximum_interve: INTEGERIs 2
-- Maximum time between two saessive segments, in seconds

invariant
in_list: (1 <=inde») and (index<= schedulesegmentscoun)
in_schedul: schedulesegmentsitem (inde») = Current
next_in_lis: (next/= Voic) implies (schedulesegmentsitem(index + 1) = nex)
no_next_iff las (next= Void) = (index= schedulesegmentscoun)
non_negative_ratin: rating >= 0
positive time: (starting_time> 0) and (ending_time> 0)
sufficient_duratio: ending_time — starting_timr>= Minimum_duration
decent_interve (next starting_time¢) — ending_tim«= Maximum_interval
end

Each segment “knows” the schedule of which it is a part, expressed by the query
schedul, and its position in that schedule, expresseindex. It has astarting_time¢and
anending_tim; we could also add a queduratior, with an invariant clause expressing
its relation to the previous two. Redundancy is acceptable in system analysis provided
redundant features express concepts of interest to users or developers, and the relations
between redundant elements are stated clearly through the invariant. Here,in_listes
andin_schedul of the invariant express the relation between a segment’inde> and
its position in the schedule’s list of segments.

A segment also knows about the segment that will follnex. Invariant clauses
again express the consistency requirements: clnext in_lis indicates that if the
segment is at positici thenex one is at positioi +1; clauseno_next_iff_las, that there
is anex if and only if the segment is not the last in its schedule.

The last two invariant clauses express constraints on durasufficient_duration
defines a minimum duration of 30 seconds for a program fragment to deserve being called
a segment, andecent_interve a maximum of two seconds for the time between two
successive segments (when the TV screen may go blank).

The class specification has taken two shortcuts that would almost certainly have to
be removed at the next iteration of the analysis process. First, times and durations have
been expressed as integers, measured in seconds; this is not abstract enough, and we
should be able to rely onlibrary clasDATE, TIME andDURATION. Second, the notion
of SEGMEN’ covers two separate notions: a TV program fragment, which can be defined
independently of its scheduling time; and the scheduling of a certain program at a certain
time slot. To separate these two notions is easy; just sSSEGMENTan attribute

conten: PROGRAM_FRAGMENT

§27.4 PROGRAMMING A TV STATION 911

See'TAXOMA-
NIA”, 24.4, page
820.

with a new classPROGRAM_FRAGMEN describing the content independently of its
scheduling. Featurduration should then appear PROGRAM_FRAGMEN, and a new
invariant clause cSEGMEN' should state

contentduration= ending_time — starting_time

For brevity the rest of this sketch continues to treat the content as part of the segm:
Such discussions are typical of what goes on during the analysis process, aided by
object-oriented method: we examine various abstractions, discuss whether they jus
different classes, move features to other classes if we think they have been misassigne

A segment has a primary sponsor, and a rating. Although here too we might bene
from a separate clasrating has just been specified as an integer, with the convention the
a higher rating implies more restrictions; 0 means a segment accessible to all audienc

Programs and commercials

Probing the notion cSEGMEN" further, we distinguish two kinds: program segments and
commercial breaks (advertizing segments). This immediately suggests using inheritan

PROGRAM @

This urge to use inheritance during analysis, by the way, is always suspect; y
should be wary of bouts of taxomania, prompting you to create spurious classes wh
simple distinctive properties would suffice. The guiding criterion was given in the
description of inheritance: does each proposed class really correspond to a sepa
abstraction, characterized by specific features and properties? Here the answer will be
it is not difficult to think of features for both programs and commercials, as will be liste
in part below. Using inheritance will also yield the benefit of openness: we can add a n
heir such aINFOMERCIAL later to describe segments of a different kind.

We can starCOMMERCIALI as follows:
indexing
descriptior: "Advertizing segme™it
deferred clastiCOMMERCIALinherit
SEGMENT

renamesponso as advertizerend

912 OBJECT-ORIENTED ANALYSIS §27.4

feature

primary: PROGRANis deferred
-- Program to which this commercial is attached
primary_inde:: INTEGERIs deferred
-- Index of primary
set_primary(p: PROGRAN) is
-- Attach commercial 1 p.
require
program_exist: p/= Void
same_schedu: p.schedule= schedule
before: p.starting_time<= starting_time
deferred
ensure
index_update: primary_index= p.index
primary_update: primary=p
end
invariant
meaningful_primary_inde primary_index= primary.index
primary_befor: primary. starting_time<= starting_time
acceptable_spons: advertizercompatible(primary. sponsoy
acceptable_ratin: rating <= primary.rating
end

Note the use of renaming, another example of a notational facility that at first sight
might have appeared to be useful mostly for implementation-level classes, but turns out to
be just as necessary for modeling. When a segment is a commercial, it is more appropriate
to refer to itssponso as being itadvertize.

Every commercial segment is attached to an earlier program segment (not a
commercial), itsprimary, whose index in the scheduleprimary_inde:. The first two
invariant clauses express consistency conditions; the last two express compatibility rules:

« If a show has a sponsor, any advertizer during that show must be acceptable to it; you
do not advertize for Pepsi-Cola during a show sponsored by Coca-Cola. The query
compatible of classCOMPANY might be given through some database.

« The rating of a commercial must be compatible with that of its primary program: you
should not advertize fcBulldozer Massacre llon a toddlers’ program.

The notion oprimary needs refinement. It becomes clear at this stage of our analysis
that we should really add a level: instead of a schedule being a succession of program
segments and commercials, we should view it as a succession of shows, where each show
(described by a classHOW) has its own features, such as the show’s sponsor, and a
succession of show segments and commercials. Such improvement and refinement,
developed as we gain more insight into the problem and learn from our first attempts, are
a normal component of the analysis process.

§27.4 PROGRAMMING A TV STATION 913

Business rules

We have seen how invariant clauses and other assertions can cover semantic constr
of the application domain, also known in analysis parlancbusiness rule: in class
SCHEDULE, that one can schedule a segment only in the futISEGMEN, that the
interruption between two segments may not exceed a preset duraCOMMERCIAI,
that a commercial’s rating must be compatible with that of the enclosing program.

It is indeed one of the principal contributions of the method that you can us
assertions and the principles of Design by Contract to express such rules along with
structure, avoiding both the clouds and the precipice.

A practical warning however: even without any implementation commitment, ther
is a risk of overspecification. In assertions of the analysis text, you should only inclu
business rules that have a high degree of certainty and durability. If any rule is subjec
change, use abstraction to express what you need but leave room for adaptation.
example the rules on sponsor-advertizer compatibility can change; so the invariant
COMMERCIAI stays away from overspecification by simply postulating a boolean
valued querycompatiblein classCOMPAN®. One of the great advantages of analysis is
that you choose what you say and what you say not. State what is known — if you spec
nothing, the specification will not be of much interest — but no more. This is the san
comment that we encountered in the discussion of abstract data types: we want the tr
all the relevant truth, but nothirmcre than the truth.

That ADT comments should be directly applicable here is no surprise: ADTs are a high-
level specification technique, and in fact the use of deferred classes with their assertions
as a tool for analysis, illustrated by the TV station example, is conceptually a variant of
ADT specification using software syntax.

Assessment

Although we have only begun the TV station programming example, we have gone |
enough to understand the general principles of the approach. What is striking is h
powerful and intuitive the concepts and notation are for general, software-independs
system modeling, even though they were initially developed (in earlier chapters) f
software purposes and, to the superficial observer, may even appear to address
programmin¢issues. Here they come outin their full scope: as a general-purpose meth
and notation for describing systems of many kinds, covering the structure of systems
well as fine aspects of their semantics, and able to tackle complexity as well as evoluti

Nothing in a specification of the kind illustrated above is implementation-related, ¢
even software-related, or even computer-related. We are using the concepts of ob
technology for purely descriptive purposes; no computer need enter the picture.

Of course if you or your customer do decide to go ahead and build a software syst
for managing TV station programming, you will have the tremendous advantage of
description that is already in a software-like form, syntactically and structurally. Th
transition to a design and implementation will proceed seamlessly in the same framewc
you may even be able to retain many of the analysis clas i< in the final system, with
implementations provided in proper descendants.

914 OBJECT-ORIENTED ANALYSIS §27.5

27.5 EXPRESSING THE ANALYSIS: MULTIPLE VIEWS

The use of specifications expressed in a software-like language, illustrated by the TV
station example, raises an obvious question of practicality in normal industrial
environments.

What can cause some skepticism is that the people who will have to review the
analysis document may not all be comfortable with such notations; more than any other
stage, analysis is the time for collaboration with application domain experts, future users,
managers, contract administrators. Can we expect to them to read a specification that at first
sight looks like a software text (although it is a pure model), and possibly contribute to it?

Surprisingly often, the answer is yes. Understanding the part of the notation that
serves for analysis, as illustrated by the preceding example, does not require in-depth
software expertise, simply an understanding of elements of the basic laws of logic and
organized reasoning in any discipline. | can attest to having used such specifications
successfully with people of widely different backgrounds and education.

But this is not the end of the story. A core of formalism-averse people may remain,
whose input you will still need. And even those who appreciate the power of the formalism
will need other views, in particular graphical representations. In fact the recurrent fights
about graphics versus formalism, formalism versus natural language, are pointless. In
practice the description of a non-trivial system requsevera complementary views,
such as:

« A formal text, as illustrated in the preceding example.

« A graphical representation, showing system structures in terms of “bubble and
arrow” diagrams (also used in one instance for the example). Here the graphs will
show classes, clusters, objects, and relations such as client and inheritance.

« A natural-language requirements document.
« Perhaps a tabular form, as appears in the presentation of the BON method below.

Each such view has its unigue advantages, addressing some of the multiple goals of
analysis defined at the beginning of this chapter; each has limitations that may make it
irrelevant to other goals. In particular:

* Natural-language documents are irreplaceable for conveying essential idea“STUDYING A
explaining fine nuances. But they are notoriously prone to imprecision REQUIREMENTS

ambiguity, as we saw in the critique of the “underline the nouns” approach. ?%ggy%’gT”' 22.

« Tabular representations are useful to collect a set of related properties, such as tne
principal characteristics of a class — parents, features, invariant.

» Graphical representations are excellent for descrilstructura properties of a
problem or system by showing the components and their relations. This explains the
success of “bubble-and-arrow” descriptions as promoted by “structured analysis”.
But they are severely limited when it comes to expressing presemantic
properties, as required by iteA3 of the list of analysis goals (answering specific

§27.5 EXPRESSING THE ANALYSIS: MULTIPLE VIEWS 915

Inheritance
link

guestions). For example a graphical description is not the best place to look at for
answer to the questiowhat is the maximum length of a commercial b?”ak

« Formal textual representations, such as the notation of this book, are the best tool
answering such precise questions, although they cannot compete with graphi
representation when the goal is simply to get a quick understanding of how a syst
is organized.

The usual argument for graphical representations over textual ones is the cliché that “a
picture is worth a thousand words”. It has its share of truth; block diagrams are indeed
unsurpassed to convey to the reader the overall impression of a structure. But the proverb
conveniently ignores the details that the words can carry, the imprecision that can affect
the picture, and therrors that it can contain. The next time someone invites you to use
adiagram as the final specification of some delicate aspect of a system, look at the comics
page of the daily paper: the “find the differences between these two variants” teasers do
not ask you to rack your eyes and brain over two sentences or two paragraphs, but to find
the hidden differences between two deceptively sinpictures.

So what we need with a good analysis method is a way to use each one of these vi
as the need arises, switching freely from one to the other.

The question then arises of how to maintain consistency between the various vie\
The solution is to use one of the views as the reference, and to rely on software tool:
make sure that additions and changes get propagated to all views. The best candida
serve as reference — the only credible one, in fact — is the formal text, precisely becal
it is the only one that is both defined rigorously and able to cover semantics as well
structural properties.

With this approach, the use of formal software-like descriptions is not exclusive ¢
other styles, and you can use a variety of tools adapted to the expertise levels and pers
tastes of the analysis participants (software people, managers, end users). For the fol
text, the software development environment may be appropriate: we have seen
particular that the compiler can double as an analysis support tool thanks to its facilit
for checking type rules and other validity constraints, although its code generati
mechanism is irrelevant at this stage. For the graphical notation, you will use a graphi
CASE tool, apt at producing and manipulating structure charts. For the natural langue
texts, document manipulation and management systems can help. Tables can also |
specific tool support. The various tools involved can be either separate or integrated in
analysis or development workbench.

Graphical or tabular input will immediately be reflected in the formal representatior
for example if the graphical view showed a cIC inheriting from a clasA

D ED

916 OBJECT-ORIENTED ANALYSIS §27.5

and you interactively redirect the arrow to poinB, the tools will automatically change
the inherit clause of the formal text to reflect the change. Conversely, if you edit the
formal description, the graphical and tabular representations will be updated.

It is more difficult for tools to process changes in natural-language descriptions. But

if the document manipulation system enforces structured system descriptions, with
chapters, sections and paragraphs, it is possible to keep links between the formal text and
the natural-language requirements document, for example to indicate that a certain class
or feature is connected to a certain paragraph of the requirements; this is particularly
useful when the environment also provides configuration management tools, so that when
something changes in the requirements the tools can, if not update the formal description,
at least alert you to the change and produce a list of all the elements that depended, directly
or indirectly, on the modified part.

The other direction is interesting too: producing natural-language descriptions from
formal texts. The idea is simply to reconstruct, from a formal system description, a
natural-language text that would express the same information in a form that will not scare
the more formalism-averse members of the target readership. Itis not hard indeed to think
of a tool that, starting from our analysis sketch, would produce a fake English form such as

1. System concepts
The concepts of this system are:
SCHEDULE, SEGMEN’, COMMERCIAI, PROGRANM...
SCHEDULE s discussed in sectionSEGMENTis discussed in section [etc.]
2. The notion o SCHEDULE

3....
4. The notion 0o COMMERCIAL
4.1 General description:
Advertizing segments
4.2 Source notions.
The notion 0iCOMMERCIALIs a specialized case of the notion
of SEGMENTand has all its operations and properties,
except for redefined ones as listed below.
4.2 Renamed operations.
Whatis callessponscfor SEGMEN' is callecadvertize for COMMERCIAL.

4.3 Redefined operations

4.4 New operations
The following operations characterizCOMMERCIAL:
primary, a query returning PROGRAM
Needs: none [Arguments, if any, would be listed here]
Description:
Program to which commercial is attached
Input conditions:

§27.6 ANALYSIS METHODS 917

Result conditions:

... Other operation...
4.5 Constraints
... An English-like rendition of the invariant properti...;
4. The notion 0o PROGRAM

etc.

All the English sentences The concepts of this system ”, “The following
operations characterize...” and so on) are drawn from a standard set of predefinec
formulae, so they are not really “natural” language; but the illusion can be strong enou
to make the result palatable to non-technical people, with the guarantee that it is consis
with the more formal view since it has been mechanically derived from it.

Although | do not know any tool that has explored this idea very far, the goal seer
reachable. A project to build such a tool would be several orders of magnitude mc
realistic than long-going efforts in the reverse direction (attempts at autcanalysisof
natural-language requirements documents) which have never been able to produce m
because of the inherent difficulty of analyzing natural language. Here we are interestec
natural languaggeneratiol, an easier task (in the same way that speech synthesis h;
progresed faster than speereccgnition).

What makes this possible is the generality of the formal notation and, especially,
support for assertions, allowing us to include useful semantic properties in the genera
natural-language texts. Without assertions we would remain in the vague — in the clou

27.6 ANALYSIS METHODS

Here is a list of some of the best-known methods of O-O analysis, listed in the approxim
order of their public appearance. Although the description focuses on the analy
component of the methods, note that most of them also include design-related or e
implementation-related components. The short summaries cannot do justice to the meth
to learn more, see the books and Web pages listed in the bibliographic notes to this cha

The Coad-Yourdon method initially resulted from an effort to objectify ideas
coming from structured analysis. It involves five stages: finding classes and objec
starting from the application domain and analyzing system responsibilities; identifyin
structures by looking for generalization-specialization and whole-part relationship
defining “subjects” (class-object groups); defining attributes; defining services.

The OMT method (Object Modeling Technique) combines concepts of objec
technology with those of entity-relation modeling. The method includes a static mode
based on the concepts of class, attribute, operation, relation and aggregation, an
dynamic model based on event-state diagrams, describing in an abstract way the inter
behavior of the system.

918 OBJECT-ORIENTED ANALYSIS §27.6

The Shlaer-Mellor method is original in its emphasis on producing models that lend
themselves to simulation and execution, making it possible to validate model behavior
independently of any design or implementation. To separate concerns, it divides the problem
into a number of domains: application domain, service domains (such as the user interface
domain), software architecture domain, implementation domains (such as operating system
or language). Rather than seamless development, its model for the development process uses
translation to link the domains together into code for final system construction.

The presence of architecture, design and implementation models in Shlaer-Mellor and

some of the following methods illustrates the comment made above that the methods’

ambition often extends beyond analysis to cover a large part of the lifecycle, or all of it.

In the Martin-Odell method, also known as OOIE (Object-Oriented Information
Engineering), analysis consists of two parts: object structure analysis, which identifies the
object types and their composition and inheritance relations; and object behavior analysis,
which defines the dynamic model by considering object states and the events that may
change these states. The events are considered first, leading to the identification of classes.

TheBooch method uses a logical model (class and object structure) and a physical
model (module and process architecture), including both static and dynamic components,
and relying on numerous graphical symbols. Itis intended to be subsumed by the “Unified
Modeling Language” (see below).

The OOSE method (Object-Oriented Software Engineering), also known See‘Use cases”,
Jacobson’s method or as Objectory, the name of the original supporting tool, relies (page 73i3
cases (scenarios) to elicit classes. It distinguishes five use case models: domain uvujeut
model, analysis model (the use cases structured by the analysis), design model,
implementation model, testing model.

The OSA method (for Object-oriented Systems Analysis) is meant to provide a
general model of the analysis process rather than a step-by-step procedure. It consists of
three parts: the object-relationship model, which describes objects and classes as well as
their relations — with each other and with the “real world”; the object-behavior model,
which provides the dynamic view through states, transitions, events, actions and
exceptions; and the object-interaction model, specifying possible interactions between
objects. The method also supports a notion of view, as well as generalization and
specialization, which apply to both the interaction and behavior models.

TheFusion method seeks to combine some of the best ideas of earlier methods. For
analysis it includes an object model, devoted to the problem domain, and an interface
model, describing system behavior. The interface model is itself made of an operation
model, specifying events and the resulting operations, and a lifecycle model, describing
scenarios that guide the evolution of the system. Analysts should maintain a data
dictionary which collects all the information from the various models.

The Syntropy method defines three models: the essential mds a model of a real Citation from the
or imaginary situatiol, [having nothin| to do with softwar: it describes the elements gSyntropy Web page
the situatiol, their structure and behavi”. The specification model is an abstract mod'r';tehoI 'Qggtfoﬁ'b"og'
that treats the system as a stimulus-response mechanism, assuming unlimited hardware -
resources. The implementation model takes into account the actual computing environment.
Each model may be expressed along several views: a type view describing object types and

their static properties; state views, similar to the state transition diagrams of OMT, to

§27.7 THE BUSINESS OBJECT NOTATION 919

describe dynamic behavior; and mechanisms diagrams for implementation. The mett
also supports a notion of viewpoint to describe various interfaces to the same objects, gc
beyond the mere separation of interface and implementation provided by O-O languagt

The MOSES method involves five models: object-class; event, showing clas:
collaboration by describing what messages are triggered as a result of calling a service
an object; “objectcharts”, to model state-transition dynamics; inheritance; and servi
structure, to show data flow. Like the Business Object Notation reviewed in the ne
section, MOSES emphasizes the importance of contracts in specifying a class, us
preconditions, postconditions and invariants in the style of the present book. Its “fountai
process model defines a number of standard documents to be produced at each stage

The SOMA method (Semantic Object Modeling Approach) uses a “Task Objec
Model” to capture the requirements and transforms them into a “Business Object Mode
It is one of the few methods to have benefited from formal approaches, using a notion
contract to describe business rules applying to objects.

Atthe time of writing, two separate efforts are progressing to unify existing method
One, led by Brian Henderson-Sellers, Don Firesmith, lan Graham and Jim Odell,
intended to produce an OPEN (the retained name) unified method. The other, by Ratic
Corporation, is starting from the OMT, Booch and Jacobson methods to define a “Unifi
Modeling Language”.

27.7 THE BUSINESS OBJECT NOTATION

Each of the approaches listed in the preceding sections has its strong points. The me
that seems to provide the most benefit for the least complexity is Nerson’'s and Waldé
Business Object Notation; let us take a slightly closer look at it to gain some insight in
what a comprehensive approach to O-O analysis requires. This brief presentation will o
sketch the principal features of the method, limiting itself to its contribution to analysi:
for more details, and to explore design and implementation aspects, see the Wald
Nerson book cited in the bibliography.

The Business Object Notation started as a graphical formalism for representi
system structures. The original name was kept, even though BON has grown from jus
notation to a complete development method. BON has been used in many differ
application areas for the analysis and development of systems, some very complex.

BON is based on three principleseamlessne, reversibility and contractin.
Seamlessness is the use of a continuous process throughout the software lifecy
Reversibility is the support for both forward and backward engineering: from analysis
design and implementation, and back. Contracting (remeDesign by Contraj) is the
precise definition, for each software element, of the associated semantic properties; B
is almost the only one among the popular analysis methods to use a full-fledged asser
mechanism, allowing analysts to specify not only the structure of a system but also
semantics (constraints, invariants, properties of the expected results).

Several other properties make BON stand out among O-O methods:

It is meant to “scale up”, in the sense explained at the beginning of this chapt
Various facilities and conventions enable you to choose the level of abstraction o

920 OBJECT-ORIENTED ANALYSIS §27.7

system or subsystem description, to zoom in on a component, to hide parts of a
description. This selective hiding is preferable, in my opinion, to the use of multiple
models illustrated by some of the preceding methods: here, for seamlessness and
reversibility, you keep a single model; but you can at any time decide what aspects
are relevant to your needs of the moment, and hide the rest.

* BON, created in the nineteen-nineties, was designed under the assumption that its
users would have access to computing resources, not just paper and whiteboards.
This makes it possible to use powerful tools to display complex information, free
from the tyranny of fixed-size areas such as paper pages. Such a tool is sketched in
the last chapter of this book. For small examples, the method can of course be used
with pencil and paper.

« For all its ambition, especially its ability to cover large and complex systems, the
method is notable for its simplicity. It only involves a small number of basic
concepts. Note in particular that the formalism can be described over two pages; the
most important elements appear below and on the facing page.

BON's support for large systems relies in part on the noticcluster, denoting a For further discus-
group of logically related classes. Clusters can include subclusters, so that the ression of clusters see
nested structure allowing analysts to work on various levels at different times. Some 1?;298;’5;38 28,
clusters may of course be libraries; the method puts a strong emphasis on reuse.

The static part of the model focuses on classes and clusters; the dynamic part
describes objects, object interactions and possible scenarios for message sequencing.

BON recognizes the need for several complementary formalisms, explained earlier
in this chapter. (The assumed availability of software tools is essential here: with a manual
process, multiple views would raise the issue of how to maintaiconsistenc of the
model; tools can ensure it automatically.) The formalisms include a textual notation, a
tabular form and graphical diagrams.

Thetextual notatio is similar to the notation of this book; but since it does not have
to be directly compilable, it can use a few extensions in the area of assertions, including
delta ato specify that a feature can change an attria, forall andexists to express logic
formulae of first-order predicate calculus, and set operators sumember_ol.

Thetabular form is convenient to summarize the properties of a class compactly.
Here is the general form of a tabular clchart:

CLASS Class name Part: “Constraints” are
— invariants.

Short description Indexing information

Inherits from

Queries

Commands

Constraints

§27.7 THE BUSINESS OBJECT NOTATION 921

The graphical notation is extremely simple, so as to be easy to learn and rememl|
The principal conventions, static as well as dynamic, appear below.

Main diagram STATIC DIAGRAMS

gg:iieoésthe Cluster (with some classes) Inter-class relations
Object / ’Ngm-e\l Inherits from

Notation e e e N name

\ Client :>

It
I
(After | I Expanded clien—21¢ [
[Waldén 1995, : I (aggregation) L
used with | o .
permissiol.) I ; Multiplicity of relations

T) P&

Class generic, effective, deferred, reused, persistent, interfaced, root.

Class detailed interface

NAME Features
mheris: namé, namé, namé’ deferred, effective, redefined
Parent classes ~ name TYPE input argument
|I| precondition, postcondition

Public features
Assertion operators

A B | A name feature may change attributame
Features selectively . .
exported toA, B @, 991 current object, vo!d reference .
[, [1,], « symbols for predicate calculus operations

Invariant
(Class invariant; o, 0 membership operators

DYNAMIC DIAGRAMS

Obiject group (with some objects) Object
(ngmE))
_—————— Objects Namsg

! \ (one or more)
| I
| |‘ -» 1, Inter-object relations
\ J

. 7
.~ e _ _ Message passing - — — —
(with message number from scenario)

922 OBJECT-ORIENTED ANALYSIS §27.8

The method defines a precise process for analysis and development, consisting of
seven tasks. The order of tasks corresponds to an ideal process, but the method recognizes
that in practice it is subject to variation and iteration, as implied in fact by the very concept
of reversibility. The standard tasks are:

B1 ¢ Delineate system borderlin: identify what the system will include and not
include; define major subsystems, user metaphors, functionality, reused libraries.

B2 « List candidate classe: produce first list of classes based on problem domain.

B3 ¢ Selectclasses and group into cluste: organize classes in logical groups, decide
what classes will be deferred, persistent, externally interfaced etc.

B4 « Define classe: expand the initial definition of classes to specify each of them in
terms of queries, commands and constraints.

B5 « Sketch system behavio: define charts for object creation, events and scenarios.
B6 « Define public features: finalize class interfaces.
B7 « Refine systerr.

Throughout the process, the method prescribes keegglossaryof terms of the
technical domain. Experience shows this to be an essential tool for any large application
project, both to give non-experts a place to go when they do not understand some of the
domain experts’ jargon, and to make sure that the experts actually agree on the terms (it is
surprising to see how often the process reveals that they do not!).

More generally, the method specifies for each step is a precise list of its deliverables:
documents that the manager is entitled to expect as a result of the step’s work. This
precision in defining organizational responsibilities makes BON not only an analysis and
design method but also a strategic tool for project management.

27.8 BIBLIOGRAPHY

The principal reference on the Business Object NotaticfWaldén 1995. The basic Add the rituahttp:/
concepts were introduced [Nerson 1992. A Web page is available www.tools.con/ gz(‘j‘rg;‘i"sm all web
productybor/. '

Here are the principal references on other methods, with associated Web addi
Coad-Yourdon:[Coad 199C, www.oi.corr; OMT: [Rumbaugh 199:; Shlaer-Mellor
[Shlaer 1992, www.projtect.comr; Martin-Odell, [Martin 1992; Booch:[Booch 1994;
OOSE: [Jacobson 199; OSA: [Embley 1992, osm’.cs.byL.edUOSAhtml; Syntropy:
[Cook 1994, www.objectdesignel.co.uk/syntropy, Fusion,[Coleman 1994 MOSES:
[Henderson-Sellers 19S, www.csse.swin.edu.au/cotaryfOPEN/OPEN.; SOMA,
[Graham 199%]

On the OPEN method convergence project {Henderson-Sellers 19¢;3]
[Computer 199¢is a discussion of Rational’s Unified Modeling Language effort (Booch-
OMT-Jacobson).

Katsuya Amako maintains a set of descriptions of O-O methods, along with other
useful O-O information, eéarkhpl.kekjp/~amakd/OOInfc.html.

	27 27 Object-oriented analysis
	27.1 THE GOALS OF ANALYSIS
	Tasks
	Goals of performing analysis

	Requirements
	The clouds and the precipice

	27.2 THE CHANGING NATURE OF ANALYSIS
	Requirements analysis as a negotiation

	27.3 THE CONTRIBUTION OF OBJECT TECHNOLOGY
	27.4 PROGRAMMING A TV STATION
	Schedules
	Segments
	Programs and commercials
	Business rules
	Assessment

	27.5 EXPRESSING THE ANALYSIS: MULTIPLE VIEWS
	Inheritance link

	27.6 ANALYSIS METHODS
	27.7 THE BUSINESS OBJECT NOTATION
	Main diagram types of the Business Object Notation...
	(After [Waldén 1995], used with permission.)

	27.8 BIBLIOGRAPHY

