Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Swahili
Libraries:
Datasets
pandas
License:
File size: 5,825 Bytes
774715d
 
733e20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf270
0474440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf270
0474440
774715d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf270
774715d
733e20a
 
 
 
 
 
0474440
 
 
 
 
 
774715d
 
 
 
 
 
c9bf270
 
 
 
 
774715d
c9bf270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05cfaa7
 
 
c9bf270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
dataset_info:
- config_name: dav_swa
  features:
  - name: id
    dtype: int64
  - name: translation
    dtype:
      translation:
        languages:
        - dav
        - swa
  splits:
  - name: train
    num_bytes: 1578920.3838421723
    num_examples: 21329
  - name: test
    num_bytes: 394785.6161578276
    num_examples: 5333
  download_size: 1455916
  dataset_size: 1973706
- config_name: kln_swa
  features:
  - name: id
    dtype: int64
  - name: translation
    dtype:
      translation:
        languages:
        - kln
        - swa
  splits:
  - name: train
    num_bytes: 2830217.170467162
    num_examples: 28101
  - name: test
    num_bytes: 707629.829532838
    num_examples: 7026
  download_size: 2556732
  dataset_size: 3537847
- config_name: luo_swa
  features:
  - name: id
    dtype: int64
  - name: translation
    dtype:
      translation:
        languages:
        - luo
        - swa
  splits:
  - name: train
    num_bytes: 3510010.5175378737
    num_examples: 23446
  - name: test
    num_bytes: 877577.4824621264
    num_examples: 5862
  download_size: 3058596
  dataset_size: 4387588
configs:
- config_name: dav_swa
  data_files:
  - split: train
    path: dav_swa/train-*
  - split: test
    path: dav_swa/test-*
- config_name: kln_swa
  data_files:
  - split: train
    path: kln_swa/train-*
  - split: test
    path: kln_swa/test-*
- config_name: luo_swa
  data_files:
  - split: train
    path: luo_swa/train-*
  - split: test
    path: luo_swa/test-*
license: cc-by-4.0
task_categories:
- translation
language:
- sw
---

# Low-Resource Language Data: Parallel Corpora for Kiswahili and Kidaw'ida, Kalenjin, and Dholuo

## Description

This dataset consists of three parallel corpora:

1. Kidaw'ida (Dawida)-Kiswahili (dav_swa)
2. Kalenjin-Kiswahili (kln_swa)
3. Dholuo-Kiswahili (luo_swa)

Each corpus contains approximately 30,000 sentence pairs. The dataset was created for use in training machine translation models, enabling translation from Kiswahili (the national language of Kenya) into indigenous languages.

## Purpose

The primary purpose of this dataset is to facilitate the development of machine translation models for three indigenous Kenyan languages:

- Kidaw'ida (Dawida)
- Kalenjin
- Dholuo

By providing parallel corpora with Kiswahili, this dataset aims to bridge the gap between the national language and these indigenous languages, promoting linguistic diversity and accessibility.

## Dataset Details

- **Format**: Parallel corpora (sentence pairs)
- **Languages**: Kiswahili (swa), Kidaw'ida (dav), Kalenjin (kln), Dholuo (luo)
- **License**: CC-BY-4.0
- **Task**: Translation

### Corpus Statistics

1. Kidaw'ida-Kiswahili (dav_swa):
   - Train set: 21,329 examples
   - Test set: 5,333 examples
   - Total size: 1,973,706 bytes

2. Kalenjin-Kiswahili (kln_swa):
   - Train set: 28,101 examples
   - Test set: 7,026 examples
   - Total size: 3,537,847 bytes

3. Dholuo-Kiswahili (luo_swa):
   - Train set: 23,446 examples
   - Test set: 5,862 examples
   - Total size: 4,387,588 bytes

## How to Use

To use this dataset for machine translation tasks:

1. Load the dataset using the Hugging Face Datasets library:

```python
from datasets import load_dataset

# Load a specific language pair
dav_swa = load_dataset("kenyan-low-resource-language-data", "dav_swa")
kln_swa = load_dataset("kenyan-low-resource-language-data", "kln_swa")
luo_swa = load_dataset("kenyan-low-resource-language-data", "luo_swa")
```

2. Access the train and test splits:

```python
train_data = dav_swa["train"]
test_data = dav_swa["test"]
```

3. Iterate through the examples:

```python
for example in train_data:
    kidawida_text = example["translation"]["dav"]
    kiswahili_text = example["translation"]["swa"]
    # Process the text as needed
```

4. Use the data to train your machine translation model or for other NLP tasks.

## Citation

If you use this dataset in your research or project, please cite it as follows:

```
@dataset{mbogho_2024_low_resource_language_data,
  author       = {Mbogho, Audrey and
                  Kipkebut, Andrew and
                  Wanzare, Lilian and
                  Awuor, Quin and
                  Oloo, Vivian and
                  Lugano, Rose},
  title        = {{Low-Resource Language Data: Parallel Corpora for 
                   Kiswahili and Kidaw'ida, Kalenjin, and Dholuo}},
  year         = 2024,
  publisher    = {Tech Innovators Network (THiNK) on Hugging Face},
  howpublished = {\url{https://huggingface.co/datasets/thinkKenya/kenyan-low-resource-language-data}}
}
```

## Contributors

### Creators

- Audrey Mbogho (Project Manager) - United States International University Africa
- Andrew Kipkebut (Data Curator) - Kabarak University
- Lilian Wanzare (Data Curator) - Maseno University
- Quin Awuor (Data Curator) - United States International University Africa
- Vivian Oloo (Data Curator) - Maseno University
- Rose Lugano (Data Curator) - University of Florida

### Data Collectors

- Esther Mkawanyika Nkrumah
- Shalet Doreen Mkamzungu
- Patience Chao Mwangola
- David Mbela Mwakaba

## Funding

This dataset was collected with funding from Lacuna Fund.

## Updates and Future Releases

This dataset is also available on GitHub, where it will continue to be expanded and improved. Future releases will be uploaded to Hugging Face and Zenodo as new versions become available.

## Contact

For questions or more information about this dataset, please contact:

- Principal Investigator: Audrey Mbogho, United States International University - Africa

## Acknowledgments

We would like to thank all the contributors, data collectors, and the Lacuna Fund for making this dataset possible. Their efforts contribute significantly to the preservation and technological advancement of low-resource languages in Kenya.