Datasets:
File size: 5,825 Bytes
774715d 733e20a c9bf270 0474440 c9bf270 0474440 774715d c9bf270 774715d 733e20a 0474440 774715d c9bf270 774715d c9bf270 05cfaa7 c9bf270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
dataset_info:
- config_name: dav_swa
features:
- name: id
dtype: int64
- name: translation
dtype:
translation:
languages:
- dav
- swa
splits:
- name: train
num_bytes: 1578920.3838421723
num_examples: 21329
- name: test
num_bytes: 394785.6161578276
num_examples: 5333
download_size: 1455916
dataset_size: 1973706
- config_name: kln_swa
features:
- name: id
dtype: int64
- name: translation
dtype:
translation:
languages:
- kln
- swa
splits:
- name: train
num_bytes: 2830217.170467162
num_examples: 28101
- name: test
num_bytes: 707629.829532838
num_examples: 7026
download_size: 2556732
dataset_size: 3537847
- config_name: luo_swa
features:
- name: id
dtype: int64
- name: translation
dtype:
translation:
languages:
- luo
- swa
splits:
- name: train
num_bytes: 3510010.5175378737
num_examples: 23446
- name: test
num_bytes: 877577.4824621264
num_examples: 5862
download_size: 3058596
dataset_size: 4387588
configs:
- config_name: dav_swa
data_files:
- split: train
path: dav_swa/train-*
- split: test
path: dav_swa/test-*
- config_name: kln_swa
data_files:
- split: train
path: kln_swa/train-*
- split: test
path: kln_swa/test-*
- config_name: luo_swa
data_files:
- split: train
path: luo_swa/train-*
- split: test
path: luo_swa/test-*
license: cc-by-4.0
task_categories:
- translation
language:
- sw
---
# Low-Resource Language Data: Parallel Corpora for Kiswahili and Kidaw'ida, Kalenjin, and Dholuo
## Description
This dataset consists of three parallel corpora:
1. Kidaw'ida (Dawida)-Kiswahili (dav_swa)
2. Kalenjin-Kiswahili (kln_swa)
3. Dholuo-Kiswahili (luo_swa)
Each corpus contains approximately 30,000 sentence pairs. The dataset was created for use in training machine translation models, enabling translation from Kiswahili (the national language of Kenya) into indigenous languages.
## Purpose
The primary purpose of this dataset is to facilitate the development of machine translation models for three indigenous Kenyan languages:
- Kidaw'ida (Dawida)
- Kalenjin
- Dholuo
By providing parallel corpora with Kiswahili, this dataset aims to bridge the gap between the national language and these indigenous languages, promoting linguistic diversity and accessibility.
## Dataset Details
- **Format**: Parallel corpora (sentence pairs)
- **Languages**: Kiswahili (swa), Kidaw'ida (dav), Kalenjin (kln), Dholuo (luo)
- **License**: CC-BY-4.0
- **Task**: Translation
### Corpus Statistics
1. Kidaw'ida-Kiswahili (dav_swa):
- Train set: 21,329 examples
- Test set: 5,333 examples
- Total size: 1,973,706 bytes
2. Kalenjin-Kiswahili (kln_swa):
- Train set: 28,101 examples
- Test set: 7,026 examples
- Total size: 3,537,847 bytes
3. Dholuo-Kiswahili (luo_swa):
- Train set: 23,446 examples
- Test set: 5,862 examples
- Total size: 4,387,588 bytes
## How to Use
To use this dataset for machine translation tasks:
1. Load the dataset using the Hugging Face Datasets library:
```python
from datasets import load_dataset
# Load a specific language pair
dav_swa = load_dataset("kenyan-low-resource-language-data", "dav_swa")
kln_swa = load_dataset("kenyan-low-resource-language-data", "kln_swa")
luo_swa = load_dataset("kenyan-low-resource-language-data", "luo_swa")
```
2. Access the train and test splits:
```python
train_data = dav_swa["train"]
test_data = dav_swa["test"]
```
3. Iterate through the examples:
```python
for example in train_data:
kidawida_text = example["translation"]["dav"]
kiswahili_text = example["translation"]["swa"]
# Process the text as needed
```
4. Use the data to train your machine translation model or for other NLP tasks.
## Citation
If you use this dataset in your research or project, please cite it as follows:
```
@dataset{mbogho_2024_low_resource_language_data,
author = {Mbogho, Audrey and
Kipkebut, Andrew and
Wanzare, Lilian and
Awuor, Quin and
Oloo, Vivian and
Lugano, Rose},
title = {{Low-Resource Language Data: Parallel Corpora for
Kiswahili and Kidaw'ida, Kalenjin, and Dholuo}},
year = 2024,
publisher = {Tech Innovators Network (THiNK) on Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/thinkKenya/kenyan-low-resource-language-data}}
}
```
## Contributors
### Creators
- Audrey Mbogho (Project Manager) - United States International University Africa
- Andrew Kipkebut (Data Curator) - Kabarak University
- Lilian Wanzare (Data Curator) - Maseno University
- Quin Awuor (Data Curator) - United States International University Africa
- Vivian Oloo (Data Curator) - Maseno University
- Rose Lugano (Data Curator) - University of Florida
### Data Collectors
- Esther Mkawanyika Nkrumah
- Shalet Doreen Mkamzungu
- Patience Chao Mwangola
- David Mbela Mwakaba
## Funding
This dataset was collected with funding from Lacuna Fund.
## Updates and Future Releases
This dataset is also available on GitHub, where it will continue to be expanded and improved. Future releases will be uploaded to Hugging Face and Zenodo as new versions become available.
## Contact
For questions or more information about this dataset, please contact:
- Principal Investigator: Audrey Mbogho, United States International University - Africa
## Acknowledgments
We would like to thank all the contributors, data collectors, and the Lacuna Fund for making this dataset possible. Their efforts contribute significantly to the preservation and technological advancement of low-resource languages in Kenya. |